
12-05 1

IBM’s WebSphere Service Registry and
Repository - Technical Overview

Barbara McKee, Marc-Thomas Schmidt, John Colgrave, Duncan Clark

Version 0.7, July 2006

This paper describes the main concepts and capabilities of the WebSphere Service
Registry and Repository (WSRR). We will explain the role of a service registry and
repository in a Service Oriented Architecture (SOA) and describe the capabilities of IBM’s
WSRR; we will discuss its relationship with other parts of the IBM SOA Foundation and
describe integration with other repositories of service metadata artefacts.

Introduction
Service Oriented Architectures offer the promise of business agility and resilience through
reuse, loose coupling, flexibility, interoperability, integration and governance. These are
realized by separating service descriptions from their implementations, and using this
descriptive metadata across the service life-cycle. Standards-based service metadata
artefacts, such as WSDL, XML Schema, WS-Policy or SCA documents, capture the
technical details of what a service can do, how it can be invoked or what it expects other
services to do. Semantic annotations and other metadata can be associated with these
artefacts to offer insight to potential users of the service on how and when it can be
used, and what purposes it serves. This service metadata is used by Analysts, Architects,
Integrators, and Developers during the Model and Assemble phases of the SOA life-cycle1
to locate services and policies to (re)use and to evaluate impact of changes to service
configurations; it is used by Deployers and Administrators in the Deploy phase of the
SOA life-cycle, and exploited by the SOA Foundation runtimes for dynamic selection of
service endpoints and configuration of the SOA environment; and in the Manage phase of
the life-cycle to support policy enforcement required by Service Level Agreements (SLAs)
and to present a more comprehensive view of the managed service environment.

Service metadata artefacts exist across an enterprise in a variety of heterogeneous
development and runtime stores which often provide information about a service tailored
towards use cases in a particular phase of the SOA life-cycle; examples include Asset
Management systems in the development space or Configuration Management systems
in runtime space. In this context, WSRR handles the metadata management aspects of
operational services and provides the system of record of these metadata artefacts – the
place where anybody looking for a catalogue of all services deployed in or used by the
enterprise would go first. It provides Registry functions supporting publication of
metadata about services, their capabilities, requirements and semantics of services that
enable service consumers to find services or to analyse their relationships. And it
provides Repository functions to store, manage and version service metadata. It also
supports Governance of service definitions: to control access to service metadata; to
model life-cycle of service artefacts; to manage promotion of services through phases of
their life-cycle in various deployment environments; to perform impact analysis and to
socialize changes to the governed service metadata.

1 For a detailed description of IBM’s SOA Foundation, the SOA life-cycle and the Reference Architecture see
http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-soa-whitepaper.pdf

Service Registry & Repository Technical Overview

06-06 IBM Confidential 2

A Day in the Life – WSRR in the SOA Life-cycle
The WebSphere Service Registry and Repository (WSRR) is the master metadata
repository for service descriptions. We use a broad definition of “service” here, including
traditional Web services implementing WSDL interfaces with SOAP/HTTP bindings as well
as a broad range of SOA services that can be described using WSDL, XSD and WS-Policy
decorations, but might use a range of protocols and be implemented according to a
variety of programming models2. As the integration point for service metadata, the
WSRR establishes a central point for finding and managing service metadata acquired
from a number of sources, including service application deployments and other service
metadata & endpoint registries and repositories, such as UDDI. It is where service
metadata that is scattered across an enterprise is brought together to provide a single,
comprehensive description of a service. Once that happens, visibility is controlled,
versions are managed, proposed changes are analyzed and communicated, usage is

monitored and other parts of the SOA foundation
can access service metadata with the confidence
that they have found the copy of record. WSRR
focuses on a minimalist set of metadata describing
capabilities, requirements and semantics of
services. It interacts and federates with other
metadata stores that support specific phases of the
SOA life-cycle and capture more detailed
information about services relevant in those life-
cycle phases; examples of specialized repositories
include a reusable asset manager in development or
configuration management database in service

management. For the minimalist metadata set WSRR allows users to manage their life-
cycle from development through deployment to their use by SOA runtimes and in service
management.

To illustrate use of the WSRR across the SOA life-cycle phases, let’s take a look at a day
in the life of a business service – from it’s invention in the Model phase of the SOA life-
cycle to its translation into an executable composite application in the Assemble phase to
its transition into the SOA runtime environment in the Deploy phase to it being observed
and controlled in the Manage phase of that life-cycle.

We will use a simple insurance claims processing example to illustrate the concepts: our
insurance company has an existing Motor Insurance Claims process that uses a Policy Validation
service; and it wants to expand into Home Insurance and introduce a corresponding Claims
handling process. Let’s assume that the metadata describing the existing Motor Insurance Claims
service and the Policy Validation service it depends on (e.g., the iMotorClaim.wsdl &
iPolicyVal.wsdl describing their interfaces and a iClaimMsg.xsd describing the schema of messages
they exchange) have been published in WSRR; as a side-effect of that publication, the
relationships between the WSDL files and the XSD have been represented in WSRR and that the
services have been assigned life-cycle state “production”3. Let’s further assume that the fact that
iMotorClaims uses iPolicyVal has been modelled in WSRR via a “uses” relationship between the
two service definitions and that an Insurance Services Classification taxonomy has been imported
into WSRR that is used to classify the two services as /ClaimMgmt/ClaimHandling and
/PolicyMgmt/PolicyDataValidation respectively.

2 For more information see “Introduction to the IBM SOA programming model”, by D. F. Ferguson, M. Stockton
at http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/
3 Often different WSRR repositories will be used to manage service metadata in production versus pre-
production; but it is possible, as illustrated here, to partition a single repository to manage both

Service Registry & Repository Technical Overview

06-06 IBM Confidential 3

Figure 1: Simplified WSRR content example

Model & Assemble

During the development phases of the service life-cycle WSRR is used to locate the
copies of record of candidate service interaction metadata or intermediaries as well as
policies governing the interactions; and it can be used to publish and govern service
metadata about emerging, to-be-deployed services.

As in the other SOA life-cycle phases, WSRR is complemented by repositories that
specialize in managing SOA artefacts during the development phases of the life-cycle. For
example, a development artefact management system such as Rational Clearcase can
take care of service and composite application building blocks such as source code,
service interface declarations, software architecture models or business process models
that are under construction. Asset management systems can manage “bundles” of
artefacts describing assets according to the Reusable Asset Specification (RAS)4
standard; it can implement governance processes controlling the promotion of artefacts
to assets and the approval process associated with that.

The WSRR complements these repositories and federates data they manage; for
example, a given WSDL document in the WSRR can be annotated with a user-defined
relationship to a reusable asset declaration that WSRR users can follow to find more
information about intended usage and function of that service, or Reusable Asset
managers can use to analyze usage of the asset (e.g., how many deployed services are
based on it).

4 See http://www.omg.org/cgi-bin/doc?formal/2005-11-02

port:
policyValP1

WsdlDoc:
iMotorClaims

XsdDoc:
iClaimMsg

Class:
Insurance Services

Version: 01

port:
motorClaimP1

Class:
Claim Mgmt

Class:
State

Class:
Develop

Class:
Test

Class:
Claim

Handling

complexType:
claims

portType:
motorClaims

portType:
policyVal

Rel: Uses

ImportsImports

Contains
Contains

Contains

Uses Uses

WsdlDoc:
iPolicyVal

Classifies

Class:
Policy Mgmt

Class:
Policy Data
Validation

Classifies

TypeType

Class:
Production

Service Registry & Repository Technical Overview

06-06 IBM Confidential 4

Figure 2: Service Registry & Repository and SOA Tasks

Business Analysts, Solution Architects Component Developers and Integration
Developers5 create service metadata and make use of existing service metadata as they
perform their specific tasks. They use development artefact management systems to
take care of their intermediate work products and contribute to the definition of reusable
assets hosted by a RAS manager; they use WSRR to explore the set of already deployed
services as building blocks for the new things they are building and they produce service
metadata that is published to WSRR once the underlying service is considered ready for
being shared in a governed way; classifications associated with service metadata can be
used to indicate the life-cycle state of the service (e.g., under construction, in test, ready
for production). Or they can use WSRR to understand impact changes they intend to
make on existing services would have on other service building blocks. Their interest in
and contribution to WSRR content differs according to their specific tasks; here’s a brief
summary:

• Business Analysts model new business processes and can browse WSRR to better
understand the existing environment. They are less interested in IT-level technical
details of services like their WSDL interfaces, than in a business view on service
capabilities established by the WSRR via semantic annotation of the underlying IT-level
artefacts. They may work with the Asset Manager to define and apply classifier systems
used to describe business semantics of services. And they may create WSRR entries
representing business-level concepts like main applications and processes that will later
on be refined by architects and developers into IT-level artefacts.

In our example, an Analyst (see (1) in figure below) could identify the need for a new Home
Insurance Claims handling process service and sketch out important process elements such as
distinguishing between low and high risk claims. They could use WSRR to discover the existing
Policy Validation service that can be used to implement the new process and indicate that a new
High Risk Validation service is needed to deal with special cases. They could create a WSRR
Concept entity to represent the envisioned new Home Insurance claims business service, relate it
to the existing service and use the Insurance Services taxonomy to indicate semantics of the new
Concept. They could declare the new entity to be governed and select the life-cycle stage to be
applied to it.

• Solution Architects use the Service Registry & Repository to find existing services they
can use as building blocks for assembly of new composite services; they may also use

5 For more information about the User Roles used here see “SOA user roles” by M. Chessell, B. Schmidt-Wesche
at http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel10/

Service
Development

Lifecycle WebSphere Service Registry and Repository

Service Endpoint
Registries /

Repositories

Change and
Release

Management

Operational
Efficiency and

Resilience

Runtime Integration

Model Build

Assemble

Deploy

Mediate Bind

Manage

Discover

Test

Service Registry & Repository Technical Overview

06-06 IBM Confidential 5

service descriptions they find in WSRR to populate the set of building blocks analysts
use when modelling new business processes, abstracting the IT specifics into process
modelling artefacts. They can publish service metadata that describe interfaces of to be
deployed services that will be realized by Component- and Integration-Developers.

In our example, a Solution Architect (see (2) in figure below) could design the main service
components used to implement the new Home Insurance processes; they’d define service
interfaces for the High Risk Policy validation service and define the Policy for distinguishing high-
risk from low-risk home insurance claims. They’d create WSRR entries for the iRiskyPolicyVal.wsdl
and the iRiskyPolicy.policy documents and relate them to the Home InsurancecClaims Concepts
created by Analysts and the existing iPolicyVal and iClaimMsg.xsd metadata. They might also
request a new version of the Policy Validation service to be built to reflect additional requirements
in the new process and use WSRR impact analysis to determine which applications would be
affected by a change of this service.

• Component Developers build new service components and can browse the WSRR to find
services they could invoke as part of their implementation or to scope queries against
WSRR they want to use as part of their service implementation. They can use the
WSRR to analyse the impact an envisioned change on a service might have on other
services; and they can publish service interfaces and other service metadata to WSRR
that need to be put under Governance control.

In our example, a Component Developer (see (3) in figure below)would take on the task to
implement the new High Risk Claims handling service based on the iRiskyPolicyVal.wsdl service
interface specification provided by the Solution Architect. They could attach a reference to the
actual service implementation artefacts in a source code library to the WSRR artefact.

• Integration Developers assemble solutions from new or existing components. They use
WSRR to find building blocks they can bind references in their composite applications
to; and they model the mediations necessary to facilitate interactions between service
interaction endpoints, e.g., using WSRR lookup to select a service endpoint to be used
in a dynamic routing scenario. In coordination with the Asset Manager role they also
can discover existing service endpoints (e.g., external service offered by a business
partner) and publish relevant service metadata in the WSRR.

In our example, the Integration Developer (see (4) in figure below) could implement an SCA
Mediation Integration Module that handles routing of Home Insurance Claims to either the regular
or the high risk Policy Validation service; the module would implement the iHomeClaims interface
and declare a dependency on a service implementing the iPolicyVal interface. They would
implement mediations that lookup potential endpoints in WSRR and pick the one that has a
riskyPolicy.policy attached to it.

Service Registry & Repository Technical Overview

06-06 IBM Confidential 6

Figure 3: Simplified WSRR content model after development6

Deploy

The WSRR provides the system of record for metadata describing service interaction
endpoints. It is populated with metadata as part of SOA solution deployment or via
discovery of existing endpoints; and it is used by SOA runtimes as well as Deployer and
Administrator roles when detailed information about service endpoints is required to
drive operations of the deployed composite applications.

Once the development team has finished their work and testing is complete, Deployers
further augment the service metadata, providing binding information for service
endpoints used in composite applications and managing deployment of the metadata
from the development environment to the staging or production instance of WSRR as
part of the service deployment process. Governance over the service metadata takes
place, as metadata is promoted from test to staging to production environments that
may have separate WSRR installations. In the production WSRR, service metadata is
made available to a broader audience and shared. It is available to the runtime systems
and those user roles that are responsible for the management of the IT systems.

In our example, a Deployer (see (1) in the figure below) would promote the Home Insurance
Claims business service from test into production. Most importantly, they would update the
service bindings for the new service components to reflect their deployment into a production
environment; they would update the endpoint declaration in the port definition of the
iRiskyPolicyVal service and add a service binding to the iHomeClaimsMediation interface. They
would transition the state of the application to (a sub-state of) the production state classifier – if
the validations associated with this life-cycle state transition are successful. If multiple WSRR
repositories are used, the promotion would include export of service metadata from the pre-
production WSRR and import of the updated service endpoints into the production WSRR.

Here again, service metadata can be discovered in other service registries and

6 The SCA portion of the model is significantly simplified here; alternative realizations of the scenario without
use of SCA Mediation module are possible

Class:
Insurance Services

Governed: Yes

Class:
Claim Mgmt

Class:
State

Class:
Test

Class:
Claim

Handling

WsdlDoc:
iPolicyVal

Class:
Policy Mgmt

Class:
Policy Data
Validation

Classifies

WsdlDoc:
iHomeClaims

WsdlDoc:
iRiskyPolicyVal

WS-PolicyDoc:
iRiskyPolicyProp:impl =

/myLib/iRiskyPolVal.java

portType:
policyVal

Classifies

port:
policyValP1

port:
riskyPolicyValP1

Rel: Uses

Rel: Provides Rel: Requires

Class:
Production

portType:
homeClaims

IntegrationModule:
iHomeClaimsMediation

Rel: UsesConcept:
Home Claims

Rel: Policy

Class:
Develop

1

1

2

2

22

3

3

4

4

4 4

Service Registry & Repository Technical Overview

06-06 IBM Confidential 7

repositories, published in the WSRR, and can be used as input for the application
configuration and binding tasks performed by the Deployers and Solution Administrators.
Discovered service metadata is usually incomplete and not yet suitable for broader
visibility and consumption. Deployers work with Asset Managers to ensure the metadata
is augmented with necessary semantics, permissions and scoping constraints.

Automation of service metadata publication during service application deployment
integrates the management of service metadata with the overall SOA management and
governance processes in a first class way.

Execution time interactions with the WSRR can be implemented in a service endpoint by
a Component Developer or by a mediating intermediary which acts on behalf of the
service requester or the provider and is configured by an Integration Developer. Dynamic
endpoint selection is a key use case that involves querying the WSRR for the service
provider or a set of candidate service providers, and binding to the endpoint that is the
best choice. Endpoint selection rules can be encoded in ESB-managed mediations7.

In our example, the HomeClaimsMediation service would perform a lookup (see (2) in the figure
below) of the Policy Validation service to be used; it queries for service endpoints (i.e., ports) that
implement the PolicyVal portType and are classified as Policy Validation services; depending on
the content of the request to be processed it will then pick either a vanilla one, or, if a high risk
claim is to be handled one that has a relationship to the iRiskyPolicy WS-Policy declaration.

Another use case is dynamic retrieval and enforcement of the policies that are in effect
for a service interaction in the areas of logging, filtering, data transformation, or routing.
WSRR can store the policy definitions; service interaction endpoints can reference
applicable policies; policy enforcement points, such as mediations, can be configured
using that information and can be updated when the WSRR-managed metadata changes.

SOA runtime elements will often maintain configuration information beyond the
minimalist set of service metadata managed by the WSRR; they will cache WSRR
managed metadata and relate it to the additional configuration information they
maintain.

Solution Administrators use WSRR content to better understand the solution artefacts
they are administering, and in the future may be able to dynamically affect changes in
the configuration of deployed applications by updating WSRR content (e.g., replacing
documents describing endpoint selection rules or applicable policies).

In our example, a Solution Administrator (3) might observe increased traffic between the
homeClaimP1 and the riskyPolicyValP1 endpoints and use WSRR information to understand the
nature of the services involved (e.g., retrieving information about portTypes or Classification of
the service endpoints) and the relationship between those services; they could modify the
riskyPolicy WS-Policy definition to adjust routing criteria in the iHomeClaimsMediation.

Clearly those types of administrator-driven updates must be controlled and that’s
achieved using the WSRR governance support for the artefacts in question which controls
visibility of artefacts as well as who can perform which actions on specific governed
entities.

Figure 4: Simplified view on WSRR content in deploy phase

7 For more details see “An introduction to the IBM Enterprise Service Bus”, by B. Hutchison, M-T. Schmidt, D.
Wolfson, M. Stockton at http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel4/

Service Registry & Repository Technical Overview

06-06 IBM Confidential 8

Manage

Operational management and resilience within the SOA is enhanced by sharing the
service metadata that exists in the WSRR with operational data stores, allowing
management and monitoring dashboards to present a more comprehensive view of the
managed service environment. Summary information about service performance can be
fed back into the WSRR and used by the execution environment to affect the selection of
the best-fit provider.

As in the other life-cycle phases, WSRR only manages a minimalist set of service
metadata and federates with repositories specializing on managing information about
services in this life-cycle phase. For example a Configuration Management Database
(CMDB) like Tivoli’s Change and Configuration Management Database will acquire and
manage detailed information about the environment & topology in which service
endpoints execute; and service management products like IBM IT Service Management
suite will use and update that information and drive governance of processes that
provision and configure the underlying infrastructure.

 In our example, a CMDB would manage information about the topology into which the Home
Claims service and its building blocks are deployed; for the homeClaimsP1 port it would have
information about the environment it is installed into. A reference to the CMDB entry that allows
navigation to this information could be established in WSRR (see (1) in the figure below). IT
service monitoring applications such as ITCAM could provide summary health information about
service endpoints in WSRR and trigger updates of a service health reporting property on those
endpoints in WSRR8.

WSRR and CMDB federation enables WSRR users to drill down into information about
environment and runtime status of a service while CMDB exploiters can obtain detailed
descriptions of syntax and semantics of service endpoints from WSRR. Service
monitoring and management products like ITCAM for SOA provide instrumentation of
service interactions that allow monitoring of service interactions and service endpoint

8 WSRR would only provide summary information about service status (e.g., whether it is active or not) , not in
any way real-time status information (e.g., current throughput)

Class:
Insurance Services

Class:
Claim Mgmt

Class:
State

Class:
Test

Class:
Claim

Handling

WsdlDoc:
iPolicyVal

Class:
Policy Mgmt

Class:
Policy Data
Validation

WsdlDoc:
iHomeClaims

WsdlDoc:
iRiskyPolicyVal

WS-PolicyDoc:
iRiskyPolicy

portType:
policyVal

port:
policyValP1

port:
riskyPolicyValP1

Class:
Production

portType:
homeClaims

IntegrationModule:
iHomeClaimsMediation

Concept:
Home Claims

Rel: Policy

Class:
Develop

2

1

2

WsdlDoc:
iHomeClaimsBinding

port:
homeClaimP1

2 2

1

1

1

3

3

3

Service Registry & Repository Technical Overview

06-06 IBM Confidential 9

behaviour; summary information about service behaviour can be pushed into WSRR to
decorate service endpoint metadata with execution statistics and that information can in
turn be used by Integration Developers or SOA runtimes to understand state or usage of
a deployed service. In the future service management products can use WSRR managed
policy information to configure policy enforcement points that implement the SLAs users
want to enforce in service interactions.

In the Operator user role category, the Incident Analyst investigates unexpected
incidents when they occur in the IT system and manages service endpoints. They consult
the metadata about service endpoints found in the WSRR to understand the behaviour of
the IT systems and to assess the impact of an underlying failure; they retrieve
information to augment what is known about services from monitoring their interactions
and can obtain information about the life-cycle state of a deployed service. And the
Business Operations Manager analyses performance of SOA applications from a business
value perspective and uses metadata provided from the WSRR to understand application
semantics and to compare expected with observed behaviour of those applications.

In our example, an Incident Analyst (see (2) in figure below) could observe a problem with the
iPolicyVal service endpoint and use WSRR to understand that any homeClaims and motorClaims
service could be affected by that problem.

Figure 5: Simplified view on WSRR content in Manage phase

Governance

Class:
Insurance Services

Class:
Claim Mgmt

Class:
Claim

Handling

WsdlDoc:
iPolicyVal

Class:
Policy Mgmt

Class:
Policy Data
Validation

WsdlDoc:
iHomeClaims

WsdlDoc:
iRiskyPolicyVal

portType:
policyVal

port:
policyValP1

port:
riskyPolicyValP1

portType:
homeClaims

IntegrationModule:
iHomeClaimsMediation

WsdlDoc:
iHomeClaimsBinding

port:
homeClaimP1

Prop:perf = OK Prop:perf = Slow

WsdlDoc:
iMotorClaims

port:
motorClaimP1

Prop:perf = OK

Prop:cmdb =
/myConfig/homeClaim.cfg

1
1 1 1

Prop:cmdb =
/myConfig/riskyPolicyVal.cfg

1

2Prop:perf = OK1

Service Registry & Repository Technical Overview

06-06 IBM Confidential 10

The WSRR plays a key role in the end-to-end Governance underpinnings of the SOA life-
cycle9. Simply put WSRR support governance of service metadata throughout the life
cycle of a service from its initial publication in development space to deployment to
service management.

WSRR is mostly used in the Enable phase of the Governance cycle where Governance
policies and processes are actually implemented, for
example to implement service life-cycle models or
metadata validation rules or to define access control
for service metadata; as well as in the Measure phase
where governance requirements are monitored and
measured and WSRR information enables the
monitoring process. It is also used in the Plan phase
where governance needs are defined, e.g., to review
existing governance capabilities realized in WSRR or
to define the basic life-cycle model for governed
entities. And it is used in the Define phase where the
Governance approach is specified to, for example,
capture details of the life-cycle models for service
artefacts or SLAs governing service interactions.

The Enterprise Architect plays a key role in defining the Governance policies and
processes for an enterprise. This user role defines the process that the IT organization
will use to develop, run and maintain services. This process is reflected in the setup of
the WSRR and is reviewed and improved by the Enterprise Architect over time. For
example, governance policies and processes describe the rules for staged rollout of new
services from development to staging to production; determine who can access or modify
which service artefacts at what phase in their life-cycle; define validation rules for
services to be considered valid in a specific life-cycle phase.

In our example, an Enterprise Architect could define the basic life-cycle model for services in our
insurance company – this could be as simple as having three states: develop, test, production (as
in the illustrations above) or it could have more sophisticated sub-states for the various
development phases. They would also define access policies for user roles performing actions on
services; in general those would be generic rules such as “developers cannot promote services
from test to production” or “only developers have visibility to services with state classification
“develop”. And they would identify the Classification system to be used; in addition to a state
model they would pick the Insurance Services taxonomy.

The Asset Manager plays a key role in translating governance policies and processes into
production. They are responsible for the correct use and management of IT assets,
including the service metadata in the WSRR. They use WSRR governance features in
combination with governance features provided by other and more SOA life-cycle phase-
focussed tools (such as a reusable asset manager in development space or Service
Management products driving governed service provisioning and management
processes), to make the SOA Governance processes operational. Governance actions that
the Asset Manager role performs on service metadata are:

• driving discovery and publication of new services in cooperation with Analyst, Architect,
Developer and Administrator roles often in the context of managing reusable assets;

• driving definition of life-cycle models for metadata associated with deployed (or soon-
to-be-deployed) services;

• driving implementation of validation rules against WSRR content to maintain the
integrity of the service metadata;

9 For more information about SOA Governance see http://www-306.ibm.com/software/solutions/soa/gov/

Service Registry & Repository Technical Overview

06-06 IBM Confidential 11

• driving implementation of rules for who can affect which service metadata life-cycle
changes under which conditions and with which side-effects;

• driving configuration of WSRR installations to support a staged rollout of services and
their metadata from a test to a staging to a production WSRR;

• assigning classifiers to service descriptions so they can be located and used;
• selecting categorization systems to use to annotate service metadata artefacts;
• identifying and captures version information for service metadata;
• configuring WSRR to enable sharing and integration with other metadata and asset

stores;
• defining access rights for WSRR users to enforce service visibility and promotion rules;
• defining rules for propagating notifications of changes to WSRR managed service

metadata and
• supporting analysis of upcoming changes, communicating such changes, and realizing

those changes that are authorized.

In our example, Asset Managers would load the Insurance Service taxonomy into WSRR; they
would also provide a more detailed classification of the building blocks of the homeClaims service
and provide implementations for the validation rules to be applied; again, most of those rules are
probably service endpoint independent, so there is not much specific work to be done for our
example here. Finally, since Asset Managers are responsible for the integrity and visibility of the
service metadata throughout the organization, they would transition the service metadata
through its more advanced and visible life cycle states, such as the transition from pre-production
to production.

WebSphere Service Registry and Repository Architecture
In this section we discuss the WSRR architecture and capabilities that support the use
cases described above: the content model of the repository, registry and governance
capabilities, the interfaces for interacting with the WSRR, and the federation model for
integrating with other service metadata stores.

Overview

A servlet-based Web User Interface is the main way for users representing different roles
to interact with the WSRR, supporting lookup and publish scenarios, metadata
management and analysis scenarios, and functions that support SOA governance. An
Eclipse plug-in is also provided to support lookup, retrieval and publishing of service
metadata in the context of eclipse-based development tools or management consoles.

Programmatic interactions with the WSRR are provided through both Java APIs and SOAP
APIs. Basic CRUD operations as well as governance operations and a flexible query
capability based on XPath are provided through both APIs. When the SOAP API is used,
content is communicated using XML data structures; when the Java API is used, content
is communicated using SDO data graphs.

The WSRR core offers both Registry and Repository capabilities. The repository allows
users to store, manage and query content of documents holding service metadata
descriptions (WSDL, XSD, WS-Policy, SCDL or XML documents). It not only takes good
care of the documents containing service metadata but it also provides a fine-grained
representation of the content of those documents (e.g., ports, portTypes in WSDL
documents). And it provides registry functions for decorating registered service
declarations and elements of the derived content models with user-defined properties,
relationships and classifiers, and a rich query interface that makes use of those
decorations when users want to find a service endpoint, interface description or other
metadata about a service.

Service Registry & Repository Technical Overview

06-06 IBM Confidential 12

Figure 6: WebSphere Service Registry and Repository Architecture

WSRR allows users to plug-in validation functions to be executed when changes are
made to the repository content (e.g., checks for completeness of a service definition). It
also provides notifications of any changes to the content of the repository and allows
users to register their interest in consuming those notifications.

The WSRR supports a fine grained access control model that allows users to define which
user roles can perform what kind of actions on which artefacts. It allows users to define
and import Classifier systems from simple classifier sets to taxonomies and classification
hierarchies.

The WSRR supports a rich set of Governance functions, including a life-cycle model for
governed entities using a state machine that describes these states, valid transitions
between them, plug-invalidators to guard the transition and (notification) actions to be
taken as result of the transition. It also provides interfaces to analyze impact of changes
to WSRR content and auditing of such changes.

The WSRR administration interfaces support import and export of WSRR content for
exchange with other metadata repositories (e.g., other WSRR installations) and provide a
JMX-based API for WSRR configuration and basic administration.

The WSRR is a J2EE application based on the WebSphere Application Server (WAS) and
uses a relational data base as a backing store for service metadata (e.g., DB2, Oracle)
via the xMeta metadata management framework used in many IBM products that deal
with XML metadata (e.g., the products in the WebSphere Information Server suite).

Content Model

RDB

WebSphere Application Server

Content Models

Operating Platform

 Programming
 Interfaces Java SOAP

 User
 Interface

Web Eclipse
Plug-in

Registry & Repository
Create

Retrieve
Update
Delete
Query

Validation

Notification

Classifications

Access Control

Events Generated Governance

Lifecycle

Transition
Validate
Notify

Impact Analysis
Audit

Validators

Events
Generated

Extensions &
Integrations

Admin

Import / Export
Configure

JMX

 External
 Systems

3rd Party Process
Servers

ESBs Appliances Monitors Registries &
Repositorie

s

Service Registry & Repository Technical Overview

06-06 IBM Confidential 13

In the following paragraphs we provide a rather informal description of the WSRR content
model; a more formal and complete description is provided in the WSRR Programming
Model [WSRR Programming Model]: in a nutshell the content model has entities
representing service description artefacts and service description metadata. All WSRR
content elements have a WSRR-assigned URI, a name and a description.

Figure 7: WSRR Content

Let’s start with the most elemental building blocks for the WSRR content model: service
metadata artefact documents (Physical Documents), such as XSD or WSDL files. These
service metadata documents are stored and managed in the WSRR; we refer to the
coarse-grained model made up from registry objects that represent those documents as
the physical model; documents are versionable objects in the WSRR content model which
basically means that in addition to a URI, name and description they also have a version
property.

Any service metadata artefact type can be stored in the WSRR and receive the benefits
of broader visibility and reuse, management, and governance. However, WSRR offers
advanced functions for a number of well-known SOA metadata types. The key WSRR
metadata document types are: WSDL, XSD, WS-Policy and SCDL; for those document
types the WSRR provides special services, including “shredding” of the documents upon
receipt into Logical Derivations or a set of Logical Objects to enable users to explore
WSRR content beyond the boundaries of the files stored. Logical objects cannot be
individually versioned since they are derived from a physical document (which can be
versioned) and cannot be individually manipulated.

For the key document types WSRR also defines a few pre-defined properties and makes
an effort to detect relationships to other key documents, and where available, records
those relationships in the content model. An XSDDocument, for example, has a
targetNamespace property and the relationships importedXSDs, redefinedXSDs and
includedXSDs. When an entry for a key-type document is created in the WSRR, it is
introspected for relationships to other key-type artefacts; if not already in represented in
WSRR, these related artefacts are also added, and in either case the relationship
between the artefacts is recorded.

Service Description Metadata

Properties Relationships Classifications
name
namespace
version
description
modifiedDate

name
namespace
User-defined
metrics

User-defined
owner
externalURL

Service Description Entities

Physical Documents

Logical derivations

Concepts

Interface
Operation
Message
Type

User-defined by classification
Business Application
Business Process
Governed Collection
External reference

Service
Binding
Endpoint
…..

WSDL
XSD
WS-Policy
XML - User-defined Documents
…..

Service Description Entities

Physical Documents

Logical derivations

Concepts

Interface
Operation
Message
Type

User-defined by classification
Business Application
Business Process
Governed Collection
External reference

Service
Binding
Endpoint
…..

WSDL
XSD
WS-Policy
XML - User-defined Documents
…..

imports
includes
predecessor
User-defined

derivedFrom
operations
messages
User-defined

User-defined
dependantServices
serviceInterface
governedEntities
policies
…..

User-defined
States

Created
Approved
Published
Operational

User-defined
Environments

Development
Test
Approval
Production

User-defined
Concepts

Application
Process
Capability

Standard Ontologies
NAICS
UNSPSC
ISO3166

Service Registry & Repository Technical Overview

06-06 IBM Confidential 14

The set of logical derivations comprises the logical model of the WSRR. The logical model
has entities such as portType, port, and message related to WSDL files, and
complexType or simpleType related to XSD documents. Elements of the logical model
have properties and relationships reflecting a subset of their characteristics as defined in
the underlying document. For example, a WSDLService element has a namespace
property and a relationship to the ports it contains. It is important to note that all
individual results of document shredding are aggregated into one logical model that
represents not only the content of individual documents, but also relationships between
content in different documents.

Other types of service metadata can be stored using a generic content type: XML
Document; documents of type XMLDocument are not decomposed into the logical model.

There is one other kind of entity in the WSRR, loosely referred to as a Concept in the
figure above. This is a generic object that can be used to represent anything that does
not have a physical document in the WSRR. Concepts can be used to represent a
reference to content in some other metadata repository such as a portlet in a portlet
catalogue, an asset in an asset repository, service implementation artefacts kept in a
source code library or information about SOA infrastructure topologies in a configuration
management database. It can also be used to group physical artefacts together for ease
of retrieval, for example. Concepts can be versioned. WSRR provides a set of pre-defined
Concepts that offer a business-level view on the SOA metadata managed in WSRR; this
basic SOA model includes concepts such as Business Process, Business Service, business
Object and Business Policy.

In addition to content directly related to service metadata documents, the WSRR
supports a number of user-defined metadata types that are used to decorate the service
metadata to explain their semantics; we refer to those metadata as Service Description
Metadata.

WSRR supports three types of service semantics metadata types: Properties,
Relationships and Classifiers; all three types can be used to decorate entities in the
physical or logical model, and concepts as well. Users can associate a property
“businessValue” with a physical model entity representing a WSDL file; or they can define
a new relationship “makesUseOf” between an entity in the logical model representing a
“portType” and an entity in the physical model representing an XML document; or they
can create a classifier “importantThings” and associate it with a “port” entity in the
logical model and with an entity in the physical model representing a “Policy” document.
This enables semantic queries to target individual elements of the service metadata, and
meaningful dependency analyses to take place prior to making changes.

User-defined category systems are imported and shared through the use of documents
encoded using the Web Ontology Language (OWL)10. While any valid OWL document can
be used as a Classifier system, at this point in time WSRR exploits only a small subset of
the expressiveness of OWL – it represents OWL Classes as classifiers and interprets the
subTypeOf relationship between those Classes as establishing a classifier hierarchy; other
OWL concepts such as data or relationship representing properties or other built-in OWL
relationships are ignored.

A classifier system is imported into WSRR as a whole and can not be modified via WSRR
functions; updates are done by importing a modified version of the ontology. Any Class
in the underlying ontology can be used as a classifier; the same classifier can be used to
classify multiple entities and an entity can be associated with multiple classifiers.

User-defined properties and relationships can be used to customize the set of pre-defined

10 See http://www.w3.org/2004/OWL/ for details

Service Registry & Repository Technical Overview

06-06 IBM Confidential 15

properties and relationships provided in the WSRR meta-model. Users can add properties
to a WSDLDocument or they can configure a concept with properties and relationships to
represent its structure; to simplify the process of customizing WSRR entities, a simple
“template” mechanism is supported that allows users to identify an XSD complexType as
a template for definition of properties and relationships for a customized entity and by
associating the template schema with the entity drive creation of the required additions.

Registry and Repository Capabilities

The WSRR supports basic Create, Retrieve, Replace and Delete operations for the
documents it manages; content of the service metadata documents or of the logical
model derived from them cannot be modified via WSRR interfaces. Users can, however,
Create, Update and Delete semantic decorations on those artefacts and on the logical
model elements.

The WSRR query interface offers a set of predefined queries that are configured via user
provided parameters (example: all WSDL documents with classifier X) as well as generic,
XPath based query capabilities. For the Java interface the XPath expression identifies the
type of WSRR managed entity to be returned and a filter in terms of WSRR managed
elements related to the desired object. Extensions are provided to include classifier
annotations in a query. For example, to return all WSDLServices that have a port that
refers to a binding that refers to a portType named “StockQuotePortType” the following
query expression would be used:

//WSDLService[port/binding/portType/@name=’StockQuotePortType’];

WSRR allows users to register Validation functions to be run when basic CRUD operations
are executed against WSRR content and also in the context of the Governance model
(more on that below). Validation functions must not have side-effect and must return a
Boolean result that can be used to potentially veto the update.

The WSRR provides basic event notification features to allow exploiters to register their
interest in any changes to WSRR content. Initially notification will be based on JMS
publication of events. WSRR events identify the type of the change and contain a pointer
to the object that was changed. In the future we will also support a notification interface
based on the emerging WS-* standard in this space.

Both for validation and notification the WSRR product will provide some predefined
content; examples may include an e-mail notification feature that would allow users to
request an e-mail to be sent when an interesting event happens; or a WS-I compliance
checker that can be used in validation scenarios.

The WSRR provides a rich access control model that allows Asset Managers to specify
which user role can access which resources and what actions they can perform on those
resources. Specification of advanced access control rights is based on the eXtensible
Access Control Markup Language (XACML) standard11.

Governance Model

The WSRR plays an enabler role for SOA Governance, offering increased visibility, with
control over reuse, service compliance validation, and change impact analysis.
Governance is supported in the WSRR content model through predefined properties and
relationships, state machines, and a number of API and UI functions that can be used in
governance processes. Life-cycle phase, operational state and service definition status
are all used to offer a mechanism for (re)use visibility and operational readiness and

11 See www.oasis-open.org/committees/xacml for details

Service Registry & Repository Technical Overview

06-06 IBM Confidential 16

health.

At the centre of the WSRR Governance model is the concept of a Governed Entity.
Concepts, documents and collections can be governed entities. Users can decide to
govern a WSDL document or a collection of documents, for examples a WSDL with
related XSDs, a few WS-Policy documents and some XML document that are associated
with the WSDL via user defined relationships.

The WSRR features mentioned above such as content versioning, fine grained access
control and change notification can be applied in support of service governance.

Figure 8: Aspects of the WSRR Governance Model

For each governed entity a state machine is defined that describes the life-cycle states
the entity can take on, the transitions between those states, conditions for the transitions
to be taken and actions to be taken should a transition be performed. WSRR provides a
set of example state machine definitions but Asset managers can customize those or
define new ones as required to model the life-cycle of their governed entities. The WSRR
governance API allows users to request a transition to be performed on a governed
entity; if the entity is not in a state that allows the transition, the request is rejected.
Otherwise the conditions for the transitions are checked; these may include access
control restrictions prohibiting the requester from performing the transition; or they may
specify validators to be successfully executed before the transition can be performed
(e.g., check for certain documents to be present in a governed entity collection). If the
checks are successful, the transition is performed and associated actions are executed;
these may include creation of a notification event reporting on the transition, or updates
to the change of the visibility of the governed entity. As an added note, the life-cycle
states modelled in the state machine are WSRR Classifiers and can be used in WSRR
queries.

The WSRR API includes governance functions such as impact analysis queries and explicit
requests for running content validators.

In summary, the capabilities that the WSRR provides in support of governance activities

Actions

State State

Classification

Versioning

Promotion

Approval

Validation / Compliance

Impact Analysis

Actions

State State

Classification

Versioning

Promotion

Approval

Validation / Compliance

Impact Analysis

Socialization

State

State

Process

Notification

Collaboration

Communication

Socialization

State

State

Process

Notification

Collaboration

Communication

Governed Entity

GE

GEE

Concepts

Documents

Collections

Governed Entity

GE

GEE

Concepts

Documents

Collections

Access Control

Organization

Role

Action

Governed Entity

Lifecycle State

Access Control

Organization

Role

Action

Governed Entity

Lifecycle State

Life Cycle Model

Procured Approved

PublishedOperational

Specified

Development IT Governance

DeploymentNew Version

IT Management

States

Transitions

Guards

Actions

Life Cycle Model

Procured Approved

PublishedOperational

Specified

Development IT Governance

DeploymentNew Version

IT Management

Procured Approved

PublishedOperational

Specified

Development IT Governance

DeploymentNew Version

IT Management

States

Transitions

Guards

ActionsAudit

What was changed ?

What was done to it ?

Who changed it ?

When did they change it ?

Audit History Trail

Audit

What was changed ?

What was done to it ?

Who changed it ?

When did they change it ?

Audit History Trail

Service Registry & Repository Technical Overview

06-06 IBM Confidential 17

include:

• The ability to provide OWL-based user-defined semantic classifiers on all parts of the
content model, including operations, data types and interfaces to provide consistent
and agreed terminology across the enterprise, facilitating the sharing of service
metadata

• Control of visibility over and access to service metadata for sharing and reuse
• Support for the tracking of service metadata as it makes its ways through its governed

life-cycle, including approvals, deprecation, and retirement, in development, test,
staging and production environments

• The ability to perform automatic and upon-request user-defined validation of state
transitions

• A dependency analysis function to assist in the assessment of the impact of a change.
The WSRR captures many dependencies automatically, as a side effect of storing
artefacts in the WSRR

• Change notifications using user-defined notification schemes, basic JMS publication of
events providing basic information about what happened as well as an e-mail based
notification feature.

Programming Interfaces

We support two flavours of APIs that can be used to interact with the WSRR. One is Java
based and the other is SOAP based. Both support publishing (creating, updating) service
metadata artefacts and metadata associated with those artefacts, retrieving service
metadata artefacts, deleting the artefacts and their metadata, and querying the content
of the WSRR.

Clients are provided for both types of API. Service Data Objects (SDO) capture the data
graphs inherent in the content model, allowing access to physical documents, logical
parts of the physical documents, and concepts. The following discusses the Query and
Admin aspects of the APIs in a bit more detail.

The Query API allows the use of XPath expressions to perform unanticipated coarse- and
fine-grained queries. Queries can be performed using semantic annotations, properties,
and all or parts of physical service metadata artefacts. Fragments of metadata can be
returned (such as properties for name or endpoint address), all metadata can be
returned (data graph), and metadata and documents can be returned. In addition to
“free-form” XPath-based queries, a set of pre-canned queries are offered to address
common paths through the WSRR content model.

The Governance API allows users to perform impact analysis of changes to specific
artefacts; a set of pre-defined impact queries supports patterns of navigation through the
WSRR content such as: which WSDL files import or use this XSD. In addition it provides
operations to request life-cycle transitions for a governed entity as well as configuration
of e-mail notifications for users interested in specific WSRR content changes.

WSRR also provides a JMX-based Administration API that supports basic configuration as
well as loading and managing metadata in support of WSRR content classification and
life-cycle management: the API allows users to load definitions of state machines to be
used to model the life-cycle of governed entities as well as loading of OWL-described
classifier systems. In addition, the Administration API support registration of plug-ins for
Validation functions or potentially even addition Notification providers. As explained
earlier, Validation functions can be used to control basic CRUD operations as well as in
the context of life-cycle state transitions for governed entities.

WSRR ships a default notification handler that publishes change events on a JMS topic;
the event specifies the type of event (create, update, delete or transform), the artefact

Service Registry & Repository Technical Overview

06-06 IBM Confidential 18

impacted (identified via its URI) and a few more bits of information about the artefact; to
avoid access control problems the actual content of the artefact in question is not
shipped with the event but has to be retrieved separately.

A simple Audit capability is provided that basically logs information about WSRR updates
to a file.

User Interfaces

Figure 9: WSRR Web interface snapshot

Two user interfaces are provided to access the WebSphere Service Registry and
Repository. The main interface is a Web application deployed with the WSRR runtime.
This supports all anticipated user roles, offering lookup, browse, and retrieve capabilities;
publish and annotate capabilities; and governance activities, including import/export and
impact analysis. A subset of this user interface is offered as an Eclipse plug-in to meet
the needs of developer and analyst roles that use Eclipse based-tooling. The Eclipse plug-
in is used primarily for lookup, browse, retrieve and publish capabilities. The Web-based
User Interface is used for performing service metadata management and governance.

The Web interface supports customization of the views on the WSRR content represented
to a user. A set of user interface definition files describes content and layout of the
various components that make up the WSRR web interface; the concept of user-role-

Service Registry & Repository Technical Overview

06-06 IBM Confidential 19

specific perspectives is supported. WSRR comes with a set of pre-defined perspectives
for the most common user roles but WSRR users can customize the predefined ones or
introduce new, role-specific perspectives.

Sources of Service Metadata

Service metadata comes to the WSRR from a number of sources. Developers may be
allowed to publish service descriptions to the WSRR to socialize definitions of to-be-
deployed services. Very often a developer-provided description will be incomplete and an
Asset Manager will add semantic annotations and other metadata to facilitate (re)use and
discovery. Service descriptions can also be placed into the WSRR during service or
service-oriented application deployment.

Discovery utilities can be written to automatically retrieve service metadata from existing
endpoint repositories, from service runtime deployments, and from other service
registries and repositories. Discovered service metadata is copied to the WSRR. This
enables the WSRR to hold the copy-of-record of service metadata artefacts, where they
can be managed and made more broadly visible for reuse. Discovery utilities often
capture an external reference to the source of origin to allow the artefacts to be
synchronized using notifications, should the artefacts themselves change while residing
in the WSRR.

IBM’s WSRR will also federate with UDDI registries to the extent that the UDDI registry
use is restricted to best practices endorsed by OASIS, covering mapping to the UDDI
data model. UDDI federation is based on a copy-and-synchronize approach. WSDL and
XML Schema documents that are referenced from UDDI registries will be copied into
IBM’s WSRR where they will then be available for reuse, analyses and management.
Notifications of UDDI changes and additions are subscribed to and used to publish
corresponding content into the WSRR. Similarly, relevant changes originating in the
WSRR are published to UDDI.

Federation with other metadata registries and repositories that complement the
minimalist service metadata managed by the WSRR, such as development asset
repositories, IT configuration repositories, business performance repositories, IT
governance repositories, and service performance repositories, is enabled through the
use of Concept objects in the WSRR. WSRR uses Concepts to represent artefacts in those
repositories that are required to establish the link; the foreign artefact Concept provides
a URI reference to the artefact, and can be associated with other parts of the service
definition. For example, a Concept representing a business asset can be associated with
a service. These external reference Concepts are typed, contain a location and identifier,
and can be made visible to dependency analyses. Reciprocal references to WSRR content
from other metadata repositories is facilitated with the unique id assigned to every
service metadata artefact in the WSRR. Real-time synchronization with these other
repositories is made possible using the notification API, and manual synchronization
through WSRR crawlers is supported with the retention of modification timestamps.

Acknowledgements
Special thanks to the following for their contributions in shaping the WebSphere Service
Registry and Repository: Mandy Chessell, Raymond Ellis, Andrew Hately, Beth Hutchison,
Ed Kahan, Susan Malaika, Manish Modh, Birgit Schmidt-Wesche, Mike Starkey, Willi
Urban, Dan Wolfson, Greg Flurry, Rachel Reinitz, Steve Graham, Michael Ellis.

Glossary
Artefact: In the context of WSRR, a document that contains descriptive information about
or relating to a service.

Service Registry & Repository Technical Overview

06-06 IBM Confidential 20

Asset Management System: Software that manages the production and use of enterprise
technology assets, including, but not limited to, services.

Classifier: A value from a classifier system. In the context of WSRR, classifiers are
associated with entities to give them semantic meaning.

Classifier System: A collection of classifier values that are semantically related. Examples
include the NAICS industry classifier system, UNSPSC product and services classifier
system, user-defined type systems, and user-defined state systems.

CMDB: Configuration Management Data Base. A metadata repository for components of
an information system and their relationships and configurations.

Concept: In the context of the WSRR, this is the non-technical term for an entity in the
WSRR that has no physical document. Concepts can represent groupings which can be
typed, managed, and governed as a unit, and can represent external content which
resides in a separate repository.

Custom Entity: A Concept representing a collection of entities in the WSRR.

Descriptive Metadata: In the context of the WSRR, the properties, classifiers, and
relationships between entities in the WSRR.

Document: In the WSRR this is an XML file containing descriptive information about or
relating to a service. Examples are files containing WSDL, XSD, SCDL, WS-Policy. They
can also be other sorts of XML document that contain descriptive information about a
service.

Endpoint: A conceptual term relating to the physical document and logical model entities
that ultimately contain a service address. The WSDL and SCDL documents that contain a
service’s address as well as counterparts in the logical model – WSDLPortType and
SCDLExport – are examples of endpoints.

Entity: In the WSRR content model, a physical document, piece of the logical model
derived from shredding certain physical document types, or a Generic Object.

Generic Object: The technical name given to a Concept.

Governance: Governance is the set of activities associated with: • Establishing chains of
responsibility, authority and communication to empower people (decision rights) •
Establishing measurement, policy and control mechanisms to enable people to carry out
their roles and responsibilities.12

IT Governance: IT Governance is that subset of governance that pertains to an
organization’s IT processes and the way those processes support the goals of the
organization. Therefore IT governance includes the decision making rights associated
with IT as well as the mechanisms and policies used to measure and control the way IT
decisions are made and carried out within the organization.13

Logical Model: The collective set of modelled decompositions of certain physical
document types. The decomposed pieces that comprise the logical model are entities
which can have properties, classifiers and relationships associated with them. WSDL,
XSD, SCDL, and WS-Policy to a lesser degree, all have models.

Metadata Artefact: See Artefact.

Ontology: A specification of concepts and the relationships that may exist between those

12 http://en.wikipedia.org/wiki/SOA_Governance
13 http://en.wikipedia.org/wiki/SOA_Governance

Service Registry & Repository Technical Overview

06-06 IBM Confidential 21

concepts for some universe of discourse or community (see also taxonomy). 14 The WSRR
uses simple ontologies expressed in OWL as a means for describing Classifier Systems.

OWL: Web Ontology Language. The language used to capture Classifier Systems for use
by WSRR.

Physical Artefact: A Document in the WSRR.

Physical Entity: A Document in the WSRR.

Physical Model: The set of physical document types stored in the WSRR. Well known
types of documents that comprise the physical model include WSDL, XSD, SCDL, WS-
Policy. Other XML document types can be stored in the WSRR and given a user-defined
type.

Property: A name-value pair that can be associated with any entity in the WSRR.
Properties can be system-defined and assigned or can be user-defined.

RAS Repository: A repository of content (assets) that conform to the Reusable Asset
Specification. Assets may or may not be related to services.

Relationship: A correlation between a ‘from’ entity and a ‘to’ entity that is given a name.
Relationships can be system-defined and assigned, such as through wsdl:imports, or can
be user-defined.

SCDL Document: An XML document that contains all or part of a Service Component
Architecture (SCA) definition of a service. SCDL documents are modelled in WSRR and
are thus shredded into a logical model whose parts that can receive property, classifier,
and relationship annotations, and which can be used in fine-grained queries.

Semantic Annotations: Metadata, such as classifiers, properties and relationships, that is
assigned to entities to provide semantic meaning.

Service Description: The set of entities and semantic annotations that collectively define
a service.

Semantic Description Metadata: See Semantic Annotations.

Service Endpoint: See Endpoint.

Service Interaction Endpoint: See Endpoint.

Service Metadata: All the metadata that makes up a Service Description, including
metadata about a service that might not reside in WSRR but can be referenced from
WSRR.

Service Metadata Artefact: See Artefact.

Service Metadata Artefact Type: A kind of document in the WSRR Physical Model.
Examples of artefact type are WSDL, XSD, SCDL, WS-Policy, but can include user-defined
values as well.

Service Orientation: A way of integrating your business processes as linked services, and
the outcomes that these services bring.15

Service Oriented Architecture: An architectural style that supports service orientation.16

SOA: Service Oriented Architecture.

SOA Governance: A sub-discipline of IT Governance pertaining to the lifecycle of

14 http://en.wikipedia.org/wiki/Ontology_%28computer_science%29
15 ftp://ftp.software.ibm.com/software/solutions/pdfs/SOA_g224-7540-00_WP_final.pdf
16 ftp://ftp.software.ibm.com/software/solutions/pdfs/SOA_g224-7540-00_WP_final.pdf

Service Registry & Repository Technical Overview

06-06 IBM Confidential 22

services, composite applications and other artifacts and processes associated with the
adoption of Service-Orientation by an organization.17

SOAP: SOAP is a standard for exchanging XML-based messages over a computer network, normally
using HTTP. SOAP forms the foundation layer of the web services stack, providing a basic messaging
framework that more abstract layers can build on.18 The WSRR offers a Web Service version of its
Application Programming Interface (API) that utilizes SOAP over HTTP.

State: In the context of WSRR, the life-cycle stage of documents and Concepts.
Decomposed pieces of the logical model that are derived when physical documents are
shredded are not separately assigned state (but they do inherit the state of their
“parent” document).

Technical Details: The what and how of a Service Description, captured by documents

Transition: The governed movement of a governed entity from one life-cycle stage to
another.

UDDI: Universal Description Discovery and Integration. An early standard in the Web
Services space that provides a content model and Web Service API for advertising and
finding service descriptions.

User-defined Property: A Property that is defined by a user rather than the system.

User-defined Relationship: A Relationship that is defined by a user rather than the
system.

Web Service: A software component that is described via WSDL and is capable of being accessed
via standard network protocols such as but not limited to SOAP over HTTP.19

WSDL Document: An XML document that contains all or part of a description of a Web
service. WSDL 1.1 documents are modelled in WSRR and are thus shredded into a logical
model whose parts that can receive property, classifier, and relationship annotations, and
which can be used in fine-grained queries.

WSRR: WebSphere Service Registry and Repository

WS-Policy Document: An XML document that contains all or part of a policy declaration.
WS-Policy documents are only minimally modelled in WSRR, without regard for various
policy dialects, and are thus only minimally shredded into a logical model whose parts
that can receive property, classifier, and relationship annotations, and which can be used
in fine-grained queries.

XML Schema: An XSD Document.

XSD Document: An XML document that contains all or part of an XML Schema. XSD
documents are modelled in WSRR and are thus shredded into a logical model whose
parts that can receive property, classifier, and relationship annotations, and which can be
used in fine-grained queries.

17 http://en.wikipedia.org/wiki/SOA_Governance
18 http://en.wikipedia.org/wiki/SOAP
19 http://www.oasis-open.org/committees/wsia/glossary/wsia-draft-glossary-03.htm

