
IBM WebSphere Partner Gateway Enterprise and

Advanced Editions

Enterprise Integration Guide

Version 6.1.1

���

IBM WebSphere Partner Gateway Enterprise and

Advanced Editions

Enterprise Integration Guide

Version 6.1.1

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page 243.

Third Edition (March 2008)

This edition applies to IBM WebSphere Partner Gateway Enterprise Edition (5724-L69), Version 6.1.1, and Advanced

Edition (5724-L68), Version 6.1.1, and to all subsequent releases and modifications until otherwise indicated in new

editions.

To send us your comments about this documentation, e-mail doc-comments@us.ibm.com. We look forward to

hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book . ix

Audience . ix

Typographic conventions . ix

Related documents . x

New in this release . x

New in release 6.1.1 . x

New in release 6.1 . xi

Part 1. Introduction to back-end integration 1

Chapter 1. Overview . 3

Overview of document processing . 3

The roles in the hub community . 4

The hub configuration process . 4

Overview of back-end integration . 6

Chapter 2. Planning for back-end integration . 9

Which business protocol are you using? . 9

Web services (SOAP) . 9

cXML . 10

EDI . 10

RosettaNet . 15

ebMS . 16

XMLEvent . 19

Which packaging will you use? . 23

None packaging . 24

Backend integration packaging . 24

Which packaging type works with your documents? . 33

Example of Backend Integration packaging over HTTP . 33

Which message transport will you use? . 34

HTTP transport protocol . 37

JMS protocol . 38

File-system protocol . 41

How do you access your back-end application? . 41

Message handling . 42

Queued delivery . 42

Communication error handling . 42

Duplicate messages . 43

Configuring WebSphere Partner Gateway . 43

Sending documents to the back-end system . 44

Receiving documents from the back-end system . 48

Part 2. Integrating with WebSphere Process Server 53

Chapter 3. Introduction to WebSphere Process Server integration 55

Overview . 55

How WebSphere Process Server and WebSphere Partner Gateway communicate 56

Planning for integration with WebSphere Process Server . 57

WebSphere Process Server versions that WebSphere Partner Gateway supports 57

Supported installation scenarios . 57

Message transports that WebSphere Process Server supports 58

Support for WebSphere Process Server integration . 59

Overview of tasks for integrating WebSphere Partner Gateway with WebSphere Process Server 60

On the WebSphere Partner Gateway system . 60

© Copyright IBM Corp. 2004, 2008 iii

On the WebSphere Process Server system . 60

Handling Backend Integration Packaging messages . 61

JMS transport . 62

HTTP transport . 62

Top-level and child business objects . 63

How the Backend Integration packaging data binding works 67

BCGBackEndIntegrationDataBindingUtil class . 73

DataBinding interface . 73

Methods . 73

Example code . 78

BCGBackEndIntegrationJMSDataBindingImpl class . 78

JMSDataBinding interface . 78

Methods . 79

Including data-binding classes in your component implementation 79

Chapter 4. Integrating WebSphere Process Server with HTTP as transport 81

How messages are sent to WebSphere Process Server . 81

How messages are sent from WebSphere Process Server . 83

Sending documents to WebSphere Process Server . 85

Setting up WebSphere Partner Gateway . 85

Setting up WebSphere Process Server . 85

Sending documents from WebSphere Process Server . 86

Setting up WebSphere Partner Gateway . 86

Setting up WebSphere Process Server . 87

Chapter 5. Integrating WebSphere Process Server with JMS as transport 89

Sending documents using the JMS transport protocol . 89

Receiving documents using the JMS transport protocol . 90

Setting up the WebSphere Process Server environment on WebSphere Application Server 92

Creating an SCA service with WSDL . 92

Customizing JMS Import and Export bindings . 92

Implementing JMS data binding . 93

Customizing a Function Selector . 93

Configuring JMS when WebSphere Partner Gateway is installed on WebSphere Application Server 95

Creating and configuring buses, JMS queues, and Connection Factories 96

Creating the JMS receiver . 97

Creating the JMS destination . 98

Creating a destination queue . 99

Chapter 6. Integrating WebSphere Process Server with SOAP/HTTP 101

How SOAP messages are exchanged over the HTTP protocol 101

How Web services hosted by WebSphere Process Server are invoked 101

How Web services hosted by partners are invoked . 102

Invoking Web services hosted by WebSphere Process Server 103

Configuring WebSphere Partner Gateway . 104

Configuring WebSphere Process Server . 104

Invoking Web services hosted by external partners . 104

Configuring WebSphere Partner Gateway . 104

Configuring WebSphere Process Server . 105

Chapter 7. Integrating WebSphere Process Server with File-system as transport . . . 107

Sending documents using the File-system protocol . 107

Receiving documents using the File-system protocol . 107

Setting up the WebSphere Process Server environment . 107

Deploying and configuring the WebSphere Adapter for Flat Files 108

Creating SCA components . 109

Setting up the WebSphere Partner Gateway environment . 109

Part 3. Integrating with WebSphere InterChange Server 111

iv IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 8. Introduction to InterChange Server integration 113

Planning for integration with InterChange Server . 113

InterChange Server versions that WebSphere Partner Gateway supports 114

Message transports that InterChange Server supports . 114

Support for InterChange Server integration . 116

Configuring WebSphere Partner Gateway for InterChange Server 116

Providing support for outgoing documents . 116

Providing support for incoming documents . 118

Configuring InterChange Server . 119

Creating business object definitions . 119

Creating the connectors . 122

Creating the collaborations . 123

Deploying the project . 123

Handling documents with attachments . 123

How the Attachment data handler performs the conversion 124

Setting up the environment for the Attachment data handler 129

Configuring the Attachment data handler . 130

Creating attachment-related business object definitions 135

Chapter 9. Integrating InterChange Server over HTTP 143

Using HTTP transport protocol with ICS . 143

Components required for documents to ICS over HTTP transport 143

Setting up the environment for HTTP transport with ICS 146

Creating business object definitions for ICS over HTTP 149

Creating ICS artifacts for HTTP . 155

Sending SOAP documents over HTTP/S . 156

Components required for sending and receiving . 157

How external partners invoke Web services . 157

How the internal partner invokes Web services . 157

Chapter 10. Integrating with InterChange Server over JMS 159

Components required for documents over JMS transport . 159

How documents are sent over the JMS transport . 160

How documents are received over the JMS transport . 162

Setting up the environment for JMS transport . 164

Configuring the JMS queues . 165

Configuring the Adapter for JMS . 165

Creating business object definitions for JMS . 167

Creating the payload business-object structure for JMS 168

Creating JMS header information . 168

Creating ICS artifacts for JMS . 171

Creating the JMS connector object . 172

Binding collaborations to communicate with Adapter for JMS 172

Part 4. Integrating with other back-end systems 173

Chapter 11. Integrating with WebSphere Message Broker 175

Planning for integration with WebSphere Message Broker 175

WebSphere Message Broker versions that WebSphere Partner Gateway supports 176

Message transports that WebSphere Message Broker supports 176

Support for WebSphere Message Broker integration . 177

Configuring WebSphere Partner Gateway for WebSphere Message Broker 177

Providing support for outgoing documents . 177

Providing support for incoming documents . 178

Configuring WebSphere Message Broker . 180

Creating the message flow . 180

Deploying the project . 180

Using HTTP transport protocol with WebSphere Message Broker 180

Components required for documents over HTTP transport 181

Contents v

Creating the message flow for HTTP transport . 182

Sending SOAP documents . 184

Using JMS transport protocol with WebSphere Message Broker 185

Components required for documents over JMS transport 185

Setting up the environment for JMS transport . 189

Creating the message flow for JMS transport . 190

Chapter 12. Integrating with WebSphere Data Interchange 193

Who should read this chapter . 193

Resources you can use with this chapter . 193

Introduction . 194

How documents are sent to WebSphere Data Interchange 194

How documents are received from WebSphere Data Interchange 195

Example scenario used in this chapter . 195

Planning for integration with WebSphere Data Interchange 197

WebSphere Data Interchange versions that WebSphere Partner Gateway supports 197

Configuring your environment for message exchange . 197

Configuring WebSphere MQ communication . 197

Configuring WebSphere Data Interchange . 198

Setting up the JMS environment . 203

Configuring WebSphere Partner Gateway Enterprise Edition 204

Configuring WebSphere Partner Gateway - Express . 211

Configuring My Profile . 211

Creating a partner for Partner One . 212

Configuring the Partner One partner . 212

Summary . 213

Part 5. Integrating with other products . 215

Chapter 13. Integrating with WebSphere Transformation Extender 217

Introduction . 217

What is WebSphere Transformation Extender? . 217

How does WebSphere Transformation Extender work with WebSphere Partner Gateway? 217

Planning for integration with WebSphere Transformation Extender 218

Integration using WebSphere Message Broker . 218

Integration using a WebSphere Partner Gateway User Exit 218

Integrating WebSphere Message Broker with WebSphere Transformation Extender 219

Integrating WebSphere Transformation Extender User Exit 220

Creating the WebSphere Partner Gateway User Exit for WebSphere Transformation Extender 220

Configuring WebSphere Partner Gateway for the User Exit 220

WebSphere Partner Gateway Runtime configuration for the User Exit 221

WebSphere Partner Gateway-provided Example User Exit 221

WebSphere Transformation Extender - RMI Server configuration 223

Chapter 14. Integrating with WebSphere Transformation Extender Trading Manager 227

Introduction . 227

What is WebSphere Transformation Extender Trading Manager? 227

How does WebSphere Transformation Extender Trading Manager work with WebSphere Partner Gateway . . 227

Applicable documentation . 227

Planning for integration with WebSphere Transformation Extender Trading Manager 227

Common Configuration between WebSphere Partner Gateway and WebSphere Transformation Extender Trading

Manager . 228

Configuring WebSphere Partner Gateway . 228

Internal Partner issues . 228

External Partner issues . 229

Document Definition issues . 229

Interactions issues . 230

Connection issues . 230

Receiver issues . 230

Configuring WebSphere Transformation Extender Trading Manager 230

vi IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Part 6. Other business protocol-specific information 233

Chapter 15. Routing EDI documents . 235

Overview of EDI routing . 235

Chapter 16. Special considerations for AS packaging 237

How inbound documents are routed . 237

How outbound documents are routed . 237

Setting both IDs in the partner profile . 237

AS3 MDN Processing . 238

Other AS references . 238

Chapter 17. Special considerations for RosettaNet packaging 239

Other RosettaNet references . 239

Chapter 18. Special considerations for ebMS packaging 241

Other ebMS references . 241

Notices . 243

Programming interface information . 245

Trademarks and service marks . 245

Index . 247

Contents vii

viii IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

About this book

This guide describes the Backend Integration interface, which is the mechanism

that back-end systems and IBM(R) WebSphere(R) Partner Gateway use to

communicate. The guide then describes how to integrate WebSphere Process

Server, WebSphere InterChange Server, WebSphere Message Broker, and

WebSphere Data Interchange with WebSphere Partner Gateway using the Backend

Integration interface.

The information in this guide pertains to WebSphere Partner Gateway Enterprise

and Advanced Editions only.

Audience

This book is intended for the person responsible for integrating WebSphere Partner

Gateway with back-end systems.

Typographic conventions

This document uses the following conventions.

 Table 1. Typographic conventions

Convention Description

Monospace font Text in this font indicates text that you type, values for

arguments or command options, examples and code

examples, or information that the system prints on the

screen (message text or prompts).

bold Boldface text indicates graphical user interface controls (for

example, online button names, menu names, or menu

options) and column headings in tables and text.

italics Text in italics indicates emphasis, book titles, new terms

and terms that are defined in the text, variable names, or

letters of the alphabet used as letters.

Italic monospace font Text in italic monospace font indicates variable names

within monospace-font text.

ProductDir ProductDir represents the directory where the product is

installed. All IBM WebSphere Partner Gateway product

path names are relative to the directory where the IBM

WebSphere Partner Gateway product is installed on your

system.

%text% and $text Text within percent signs (%) indicates the value of the

Windows(R) text system variable or user variable. The

equivalent notation in a UNIX(R) environment is $text,

indicating the value of the text UNIX environment variable.

Underlined colored text Underlined colored text indicates a cross-reference. Click the

text to go to the object of the reference.

Text in a blue outline (In PDF files only) A blue outline around text indicates a

cross-reference. Click the outlined text to go to the object of

the reference. This convention is the equivalent for PDF files

of the “Underlined colored text” convention included in this

table.

© Copyright IBM Corp. 2004, 2008 ix

Table 1. Typographic conventions (continued)

Convention Description

“ “(quotation marks) (In PDF files only) Quotation marks surround

cross-references to other sections of the document.

{ } In a syntax line, curly braces surround a set of options from

which you must choose one and only one.

[] In a syntax line, square brackets surround optional

parameters.

< > Angle brackets surround variable elements of a name to

distinguish them from one another. For example,

<server_name><connector_name>tmp.log.

/, \ Backslashes (\) are used as separators in directory paths in

Windows installations. For UNIX installations, substitute

slashes (/) for backslashes.

Related documents

The complete set of documentation available with this product includes

comprehensive information about installing, configuring, administering, and using

WebSphere Partner Gateway Enterprise and Advanced Editions.

You can download this documentation or read it directly online at the following

site: http://www.ibm.com/software/integration/wspartnergateway/library/

 Note: Important information about this product may be available in Technical

Support Technotes and Flashes issued after this document was published. These

can be found on the WebSphere Business Integration Support Web site,

http://www.ibm.com/software/integration/wspartnergateway/support. Select the

component area of interest and browse the Technotes and Flashes section.

New in this release

This section describes the new features of IBM WebSphere Partner Gateway.

New in release 6.1.1

WebSphere Partner Gateway 6.1.1 supports the following new features:

v In the earlier releases, basic authentication support was available only for

webservices messages. This feature is now extended to all protocols. The

recommendation for basic authentication is the usage of secure HTTP

connection, that is, HTTPS instead of HTTP.

v Apart from signing and encryption, support for compression and decompression

is provided for RNIF messages.

v Support is provided for validating the SOAP Body and SOAP Envelope. In

addition, you can de-envelope a SOAP Envelope.

v The synchronous maximum time out and synchronous maximum connections

can be locally controlled for every HTTP receiver.

v The FTP Server is integrated with WebSphere Partner Gateway to support AS3

protocol, FTP Scripting Destination, FTP Scripting Receiver, FTP / FTPS receiver

and destination.

x IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

http://www.ibm.com/software/integration/wspartnergateway/library/
http://www.ibm.com/software/integration/wspartnergateway/support

v Error document can be sent to initiating partner, receiving partner, or both. The

error document flow can be configured in WebSphere Partner Gateway console

and can be sent in either WebSphere Partner Gateway format or Web services

format.

v Performance of the archiver has been improved.

v Support is provided for multiple internal partners.

v You can resend multiple Inbound or Outbound documents simultaneously.

v Support for FIPS mode is provided. The product can be configured to run on

FIPS mode or default mode.

v Delete and Whereused functionality is provided for Destination, Validation

Maps, Document Definitions, Interactions, and Users.

v Large file compression support is provided for AS2 and AS3 documents.

v Support is provided for encryption and signing.

v The configuration type dependencies for migration also includes Event codes

and Alert Notifications. Also, the partner migration functionality has been

enhanced to provide support for import / export definitions of alertable events.

v Support is provided to upload multiple certificates. New wizard is included in

the console to upload and configure certificates.

v The product now supports AIX 6.1, RHEL 5 (32 and 64 bit), SLES 10 (64 bit) and

Windows Server 2003 64 bit.

New in release 6.1

WebSphere Partner Gateway V6.1 supports the following new features:

v New business protocols: AS3, SOAP with attachments, CIDX, and ebXML

Message Service (ebMS) 2.0 support

v Improved support for Custom XML documents includes better organization, full

XPath expression support, search fields, user defined attributes, and

synchronous support

v New IPv6 support and enhanced FTP Scripting for supporting AS3

v Reorganization of Document Definition attributes

v New Document Definition attributes for use with User Exits.

v Non-repudiation configurable by document type and trading partner level

v Document viewer has additional user-defined search fields.

v Improved AS Viewer support based on MDN return status

v EDI Configuration Wizard and EIF Import Wizard (previously delivered in the

GA02 Support pack)

v New Alert notification mode to send notifications to all related parties (source

and target partners or all subscribed contacts, which reduces alert configuration

v Resend and Gateway permissions now available to users other than the

hubadmin administrator

v New user group for allowing multiple users to have the ability to be hub

administrators

v LDAP support for log-on authentication

v Use of WebSphere Application Server logging and tracing for WebSphere Partner

Gateway components

v Property file configuration data now centrally located and managed by the

WebSphere Partner Gateway Console

v WebSphere MQ is no longer a prerequisite product; the WebSphere Platform

Messaging support is now used for internal communications

About this book xi

v Selective archive based on partner and/or document type

v Migration of WebSphere Partner Gateway configuration by exporting and

importing definitions from one WebSphere Partner Gateway instance to another

instance

v A simplified single machine (simple mode) installation option

v WebSphere Application Server Network Deployment now used for multiple

machine deployments enabling clustering and central infrastructure management

v Support for using WebSphere Process Server, Version 6.1 as a backend

integration system

Notes:

1. The XML-based administrative API is deprecated in version 6.1.

2. WebSphere Partner Gateway, Version 6.1 does not support the RC5 algorithm.

xii IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Part 1. Introduction to back-end integration

The following chapters provides an overview on integration of WebSphere Partner

Gateway with a back-end system. Also, it provides guidelines to plan back-end

integration.

© Copyright IBM Corp. 2004, 2008 1

2 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 1. Overview

This chapter provides the following general information about back-end

integration:

v “Overview of document processing”

v “Overview of back-end integration” on page 6

Overview of document processing

With WebSphere Partner Gateway, you exchange business documents with your

external partners. The purpose of exchanging these documents is to communicate

information, which typically involves processing data and returning a result. When

you receive data from an external partner, processing of that data generally occurs

in the back-end system of your enterprise. WebSphere Partner Gateway is the point

within the hub community through which messages to and from the enterprise are

routed.

The enterprise is accessed through a back-end system to which WebSphere Partner

Gateway connects.

Figure 1 shows how documents flow through the WebSphere Partner Gateway

Enterprise and Advanced Editions. A partner sends a document to WebSphere

Partner Gateway (the hub). WebSphere Partner Gateway receives the document

and performs any actions that have been predefined (such as validating or

transforming the document). WebSphere Partner Gateway then sends the

document to a back-end application, where the document is processed.

Note: As indicated in the illustration, communication flows in the opposite

direction too. The back-end application can generate a document and send it to the

hub, which processes it and sends it on to the partner.

 This guide focuses on the integration between the hub and the back-end

application.

Figure 1. End-to-end document flow

© Copyright IBM Corp. 2004, 2008 3

Note: The information in this document applies to the WebSphere Partner

Gateway Enterprise and Advanced Editions. WebSphere Partner Gateway -

Express, a light-weight, easy-to-use B2B connectivity tool, differs from WebSphere

Partner Gateway Enterprise and Advanced Editions. It provides a community

integration solution (versus a gateway hub solution that WebSphere Partner

Gateway Enterprise and Advanced Editions provide for an internal partner). For

information about WebSphere Partner Gateway - Express, refer to its WebSphere

Partner Gateway User Guide.

The roles in the hub community

WebSphere Partner Gateway Enterprise and Advanced Editions have three types of

partners--the Hub Administrator, Internal Partner, and External Partners. A Hub

Administrator is created automatically when WebSphere Partner Gateway is

installed. The Hub Administrator is in charge of setting up the hub and creating

the partners that will interact with the hub.

The Internal Partner, which is typically the owner of the hub, is actually considered

to be one of the partners of the hub. The Hub Administrator creates a profile for

the Internal Partner, providing the information necessary to allow the Internal

Partner to send documents to and receive documents from partners. When the hub

sends documents to the back-end system, it uses the information (URL or JMS

queue, for example) set up for the Internal Partner. The Hub Administrator also

creates profiles for partners, of which there can be many.

The hub configuration process

The hub administrator is the user responsible for administering the hub. The hub

administrator sets up the hub to send and receive business documents from the

internal partner and external partners. To receive business documents from the

internal partner, the hub administrator creates the receivers for the transports that

the internal partner will use to send documents. For example, if the internal

partner uses the file-directory and JMS transports, the hub administrator sets up a

file-directory receiver and a JMS receiver for the internal partner. Similarly, if

external partners will use the HTTP transport and the FTP transport, the hub

administrator sets up an HTTP receiver and an FTP receiver for them.

Destinations are created for the internal partner and external partners for each of

the transports that they will use to receive business documents sent by the hub.

Figure 2. Receivers for the internal partner and external partners

4 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

As part of the hub configuration, the hub administrator establishes document flow

definitions, which define characteristics of a document flow, such as:

v Packaging, which provides information about the routing of the document

v Protocol, which is the business protocol to which the document adheres

v Document flow, which represents the document itself

When WebSphere Partner Gateway is installed, a set of document definitions is

available for use. You can also add to the document definitions by creating your

own definitions or by uploading definitions. For example, document definitions for

a variety of RosettaNet PIPs are included as ZIP files on the installation medium.

You can upload these files to make them available for use. If you are exchanging

EDI files, you can import document definitions and associated maps from the Data

Interchange Services client.

Consider the following example--an external partner sends an RNIF 2.0 message

containing a RosettaNet PIP 3A4 purchase order document to the HTTP receiver of

WebSphere Partner Gateway. The message is intended for the internal partner. The

internal partner has a back-end system that processes purchase orders and expects

to receive the purchase order, which essentially is the payload of the RNIF message

sent by the external partner. Before the external partner connections in WebSphere

Partner Gateway are set up, it is agreed that:

v The external partner will send an RNIF message containing the RosettaNet PIP

3A4 purchase order document over HTTP.

v WebSphere Partner Gateway will extract the business payload or the RosettaNet

Service Content from the incoming message.

v The document will be routed to the back-end system over JMS. The Backend

Integration packaging will be used.

v The back-end application will then process the received document.

When Backend Integration packaging is used, WebSphere Partner Gateway-defined

transport headers are added to the document to convey information helpful for the

document exchange.

For the previous example, the hub administrator would upload the appropriate

PIP package, which would set up the following document definitions for the

exchange of RosettaNet PIP 3A4:

v A flow that consists of RNIF packaging, the RosettaNet protocol, and the 3A4

PIP

Figure 3. Destinations to the internal partner and external partners

Chapter 1. Overview 5

v A flow that consists of Backend Integration packaging, RNSC protocol, and the

3A4 PIP

After the hub administrator establishes the document definitions, the hub

administrator creates interactions for the document flow definitions. For example,

the hub administrator might indicate that the RNIF/RosettaNet/3A4 document

flow definition can come into the hub from a source.

The hub administrator (or the external partners) select the appropriate B2B

capabilities for the document exchange. In this example, the internal partner would

have the following B2B capability enabled:

v Package: Backend Integration

v Protocol: RNSC

v Document Flow: 3A4

The external partner would have the following B2B capability enabled:

v Package: RNIF

v Protocol: RosettaNet

v Document Flow: 3A4

The hub administrator then creates connections between external partners.

In the following illustration, the hub administrator has created profiles for the

internal partner and external partner, has created receivers for receiving documents

and destinations for sending documents, has created the document flow definitions

listed above, has set the B2B capabilities of the external partner and internal

partner, and has created a connection between the two.

For information on setting up the hub, refer to the WebSphere Partner Gateway Hub

Configuration Guide.

Overview of back-end integration

All editions of WebSphere Partner Gateway provide the ability to connect to

back-end systems. These editions differ in the transport protocols they can support,

as follows:

v WebSphere Partner Gateway - Express provides file-based integration.

Figure 4. How a document flows to the back-end system

6 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

v WebSphere Partner Gateway Enterprise and Advanced Editions provide

file-based integration. In addition, they provide integration over the HTTP,

HTTPS, and JMS protocols.

Documents exchanged between the external partner and WebSphere Partner

Gateway can be in a variety of formats. Documents can be in the SOAP, cXML,

XML, EDI, record-oriented data (ROD)/flat file, or binary formats or in any custom

format mutually agreed upon by the external partners. The WebSphere Partner

Gateway Administrator Guide has a complete list of the document types supported

as well as the transport protocols (for example, HTTP) that can be used to send the

documents.

Documents that can be exchanged between WebSphere Partner Gateway and the

back-end system of the internal partner as well as the transport types associated

with the documents are shown in Table 16 on page 35, Table 17 on page 35, and

Table 18 on page 36.

Figure 5 illustrates how WebSphere Partner Gateway uses the back-end integration

interface to communicate with the back-end system at the internal partner. Note

that the arrows go in both directions; that is, the document can originate from the

back-end system of the internal partner.

 s

Figure 5. The role of the business protocol and packaging in the flow of documents

Chapter 1. Overview 7

8 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 2. Planning for back-end integration

This chapter describes how to plan for integration of WebSphere Partner Gateway

with a back-end system. It describes the types of decisions you will make when

planning for back-end integration:

v “Which business protocol are you using?”

v “Which packaging will you use?” on page 23

v “Which message transport will you use?” on page 34

v “How do you access your back-end application?” on page 41

It also describes the following information:

v “Message handling” on page 42

v “Configuring WebSphere Partner Gateway” on page 43

Which business protocol are you using?

The business protocol of your message determines the format of the document.

The business protocol affects many of the decisions you must make as you plan for

integration to a back-end system. The choice of business protocol determines the

packaging method you must use, which, in turn, affects which message-transport

protocols you can use.

For a complete description of business protocols, see the WebSphere Partner Gateway

Hub Configuration Guide. This section describes integration information that is

specific to the following business protocols:

v “Web services (SOAP)”

v “cXML” on page 10

v “EDI” on page 10

Note: The section on EDI also describes how XML and record-oriented-data

(ROD)/flat documents are processed.

v “RosettaNet” on page 15

Web services (SOAP)

WebSphere Partner Gateway can make the following Web services available to

members of the hub community:

v Web services provided by the internal partner can be available to external

partners.

You will have to provide your external partner with the public WSDL that

WebSphere Partner Gateway generates. It is important to note that the URL on

which the external partner invokes the Web service is the Web service public

URL specified while uploading the Web service. WebSphere Partner Gateway

acts as a proxy. It receives a SOAP message from the partner and figures out the

corresponding private Web service. It then invokes the private Web service

(provided by the internal partner) using the same SOAP message. The response

returned by the internal partner is then returned to the external partner.

v Web services provided by external partners can be available to the internal

partner.

© Copyright IBM Corp. 2004, 2008 9

It is important to note that the same Web Service Interface can be provided by

multiple partners. WebSphere Partner Gateway makes the Web service available

to the internal partner at the Web service URL specified in the console while

uploading the Web service. Additionally the internal partner will have to

provide the URL parameter to identify ″To Partner″. Refer to the WebSphere

Partner Gateway Hub Configuration Guide for more details. WebSphere Partner

Gateway acts as a proxy. It receives a SOAP message from the internal partner

and figures out the corresponding Web service and the ″To Partner″. It then

invokes the Web service provided by the partner using the same SOAP message.

The response message returned by the partner is then returned to the internal

partner.

Refer to the WebSphere Partner Gateway Hub Configuration Guide for more

information, including how to set up your document flow definitions for Web

services.

cXML

You can send or receive cXML documents to or from your external partners. When

WebSphere Partner Gateway receives a cXML document from an external partner,

it validates the document and translates it (if specified) before sending it to the

back-end system at the internal partner. Note that translation should not be used

for synchronous cXML messages. In a synchronous exchange, the back-end system

generates a response, which WebSphere Partner Gateway returns to the external

partner (if appropriate for the message).

A back-end system at the internal partner that needs to send a cXML document

can do one of two things:

v Generate and send a cXML document, which WebSphere Partner Gateway

passes through to the external partner

v Generate and send an XML document, which WebSphere Partner Gateway

converts to cXML before sending to the external partner

Note: If XML document translation is used, for synchronous request/response

transactions with the external partner, the response is returned asynchronously to

the back-end system.

Refer to the WebSphere Partner Gateway Hub Configuration Guide for more

information, including how to set up your document flow definitions for cXML.

EDI

WebSphere Partner Gateway accepts EDI documents from partners from value

added networks (VANs) as well as from the Internet. EDI documents sent to or

received from a VAN use the FTP Scripting transport. The FTP Scripting transport

can also be used to send documents to or receive documents from the Internet. See

the WebSphere Partner Gateway Hub Configuration Guide for information on the FTP

Scripting transport.

An EDI document enters the hub and leaves the hub in an EDI envelope, known

as an interchange. The interchange contains individual EDI transactions or groups

of transactions.

If the EDI interchange will be passed through the hub (without being

de-enveloped), you create one connection between the hub and internal partner.

10 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

However, if the EDI interchange will be de-enveloped, the process for creating

interactions and connections is different from other business protocols. The

interchange must be de-enveloped, and the individual transactions processed. The

transactions are typically translated to another form, according to a transformation

map that is imported from the Data Interchange Services client. If the EDI

transactions are translated to XML or record-oriented-data (ROD)/flat documents,

those documents are sent to the internal partner or external partner. If the

transactions are translated to other EDI formats, the transactions are first

enveloped before being sent to the internal partner or external partner.

Back-end application to partner flows

A back-end application can send the following types of documents:

v A single EDI interchange that contains one or more transactions

WebSphere Partner Gateway de-envelopes the individual EDI transactions and

translates these individual transactions. If the transactions are translated into

EDI, they are enveloped and then routed to the partner. The back-end

application can use None or Backend packaging and send the interchange over a

variety of transports, as defined in Table 17 on page 35.

Figure 6 shows an X12 interchange consisting of three transactions being

de-enveloped. The transactions are transformed into EDIFACT format and are

then enveloped and sent to the partner.

Each of the transactions has a transformation map associated with it, which

specifies how the transaction is transformed. The transaction can be transformed

into a single transaction or, if map chaining was used to create the map,

multiple transactions.

If the transaction is translated into an XML or ROD/flat document, it is routed

as configured in the Partner Connection view for that transaction.

Figure 7 on page 12 shows an EDI X12 interchange being de-enveloped and

transformed into XML documents, which are then sent to the partner.

EDI X12

X12
Transaction

EDIFACT
Transaction

X12 Transaction
X12 Transaction
X12 Transaction

X12
Transaction

EDIFACT
Transaction

X12
Transaction

EDIFACT
Transaction

EDIFACT
Interchange

EDIFACT
Transaction

EDIFACT
Transaction

EDIFACT
Transaction

De-envelope Transform Envelope

WebSphere Partner Gateway

Figure 6. EDI interchange from back-application to partner

Chapter 2. Planning for back-end integration 11

The transaction can be transformed into a single document or, if map chaining

was used to create the map, multiple documents.

v A single document, such as an XML or ROD/flat document

WebSphere Partner Gateway translates the document into an EDI transaction,

envelopes the transaction, and sends it to the partner. The back-end application

can use None or Backend Integration packaging and can send the document

over a variety of transports, as defined in Table 17 on page 35.

Figure 8 shows an XML document that is transformed into X12 transactions and

then enveloped.

One document can be transformed into multiple transactions (if map chaining

was used to create the map), and the transactions can be enveloped into

different interchanges.

Figure 9 on page 13 shows an XML document that is transformed into three X12

transactions. Two of the transactions are enveloped together. One is put in a

separate envelope.

EDI X12
Interchange

X12
Transaction

XML
Document

X12 Transaction
X12 Transaction
X12 Transaction

X12
Transaction

XML
Document

X12
Transaction

XML
Document

De-envelope Transform

WebSphere Partner Gateway

Figure 7. EDI interchange sent from backend application to partner (as XML documents)

EDI X12
Interchange

X12
Transaction

XML
Document

X12 Transaction
X12 Transaction
X12 Transaction

X12
Transaction

XML
Document

X12
Transaction

XML
Document

EnvelopeTransform

WebSphere Partner Gateway

Figure 8. XML documents sent from backend application to partner (as an EDI interchange)

12 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

If the document is translated into another XML document or another ROD/flat

document, it is routed as configured in the Partner Connection view for the

document.

v A single file containing multiple XML or ROD/flat documents

WebSphere Partner Gateway splits the documents and translates them. If the

documents are translated into EDI transactions, WebSphere Partner Gateway

envelopes the transactions and sends the envelope to the partner. If batch IDs

were assigned to the XML or ROD/flat documents, WebSphere Partner Gateway

attempts to send the EDI transactions in one envelope (as a batch). The back-end

application can use None or Backend Integration packaging and can send the

document over a variety of transports, as defined in Table 17 on page 35.

Figure 10 shows a set of XML documents being split, resulting in individual

XML documents. The XML documents are transformed into X12 transactions,

and the transactions are enveloped.

Figure 10 shows how the documents are split and the transformed transactions

are enveloped together. To allow documents to be split, you must configure a

splitter handler (in this case, the XML Splitter Handler) for the receiver you are

using to send the documents. The XML Splitter Handler must have the

BCG_BATCHDOCS option set to on (the default value) for this scenario to occur.

BCG_BATCHDOCS assigns a batch ID to the XML documents so that the

resulting transactions will be put into the same envelope. See the WebSphere

Partner Gateway Hub Configuration Guide for information on the XML Splitter

Handler and the BCG_BATCHDOCS attribute.

EDI X12
Interchange

EDI X12
Interchange

X12
Transaction

X12 Transaction
X12 Transaction

X12 Transaction

X12
Transaction

XML
Document

X12
Transaction

EnvelopeTransform

WebSphere Partner Gateway

Figure 9. XML document sent from back-end application to partner (as EDI interchanges)

XML file

XML
Document

XML Document
XML Document
XML Document

X12 Transaction
X12 Transaction
X12 Transaction

X12 Transaction

X12 Transaction

X12 Transaction

XML
Document

XML
Document

EDI X12
interchange

Split Transform Envelope

WebSphere Partner Gateway

Figure 10. Multiple XML documents sent from backend-application, split, and then sent to

partner (as an EDI interchange)

Chapter 2. Planning for back-end integration 13

If the documents are translated into other XML documents or other ROD/flat

documents, they are routed as configured in the Partner Connection view for the

documents.

v A single file containing multiple EDI interchanges

WebSphere Partner Gateway splits the file into individual interchanges. It then

de-envelopes the interchanges into individual transactions and translates them. If

the documents are translated into EDI transactions, WebSphere Partner Gateway

envelopes the transactions and sends the envelope to the partner. The back-end

application can use None or Backend Integration packaging and can send the

document over a variety of transports, as defined in Table 17 on page 35.

If the documents are translated into XML or ROD/flat documents, they are

routed as configured in the Partner Connection view for the documents.

Partner to backend-application flows

A partner can send the following types of documents:

v A single EDI interchange that contains one or more transactions

WebSphere Partner Gateway de-envelopes the individual EDI transactions and

translates these transactions. If the transactions are translated into EDI, they are

enveloped and routed to the back-end application. The back-end application can

use None or Backend Integration packaging, and the transactions can be sent

over a variety of transports, as defined in Table 18 on page 36.

If the transactions are translated into XML or ROD/flat documents, they are

routed as configured in the Partner Connection view for the transactions.

v A single document, such as an XML or ROD/flat document

WebSphere Partner Gateway translates the document into an EDI transaction,

envelopes the transaction, and routes the envelope to the back-end application.

Either None or Backend Integration packaging can be used.

If the document is translated into another XML document or another ROD/flat

document, it is routed as configured in the Partner Connection view for the

document.

v A single file containing multiple XML or ROD/flat documents

WebSphere Partner Gateway splits the documents and translates them. If the

documents are translated into EDI transactions, WebSphere Partner Gateway

envelopes the transactions and sends the envelope to the back-end application. If

batch IDs were assigned to the XML or ROD/flat documents, WebSphere Partner

Gateway attempts to send the EDI transactions in one envelope (as a batch).

Either None or Backend Integration packaging can be used.

If the documents are translated into other XML documents or other ROD/flat

documents, they are routed as configured in the Partner Connection view for the

documents.

v A single file containing multiple EDI interchanges

WebSphere Partner Gateway splits the file into individual interchanges. It then

de-envelopes the interchanges into individual transactions and translates them. If

the documents are translated into EDI transactions, WebSphere Partner Gateway

envelopes the transactions and sends the envelope to the back-end application.

Either None or Backend Integration packaging can be used.

If the documents are translated into XML or ROD/flat documents, they are

routed as configured in the Partner Connection view for the documents.

Functional acknowledgments

A functional acknowledgment specifies that an EDI interchange was received. A

functional acknowledgment is always enveloped before being delivered.

14 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Note: Functional acknowledgments apply only to those interchanges that are

de-enveloped by WebSphere Partner Gateway or generated by WebSphere Partner

Gateway. They do not apply to interchanges that are passed through WebSphere

Partner Gateway.

For interchanges received by WebSphere Partner Gateway

v If the interchange is received from a back-end application, WebSphere Partner

Gateway can send functional acknowledgments back to the back-end

application.

v If the interchange is received from a partner, WebSphere Partner Gateway can

send functional acknowledgments back to the partner.

For interchanges generated by WebSphere Partner Gateway:

v If the interchange is sent to a partner, the partner can send a functional

acknowledgment back to WebSphere Partner Gateway. WebSphere Partner

Gateway will not send this functional acknowledgment to the backend system.

v If the interchange is sent to the back-end application, the back-end application

can send a functional acknowledgment back to WebSphere Partner Gateway.

WebSphere Partner Gateway will not send this functional acknowledgment to

the partner.

RosettaNet

WebSphere Partner Gateway provides support to let you send and receive

documents that adhere to the RosettaNet 1.1 and 2.0 standards. When a partner

sends a RosettaNet message to the hub, the target side of the partner connection

must have Backend Integration specified. The hub converts the payload of the

message to RNSC format and sends the message to the back-end system. Because

Backend Integration packaging is used, the hub adds transport-level headers to the

message. The message is sent through the HTTP or JMS transport protocol. The

transport-level header retains meta-information that is not part of the PIP and

enables WebSphere Partner Gateway to route the message appropriately.

Similarly, when the internal partner back-end system sends an RNSC message to

the hub, the source side of the partner connection must have Backend Integration

packaging specified, and the back-end system must supply the transport-level

headers.

For example, suppose an application wants to send a message to an external

partner using RosettaNet sent on HTTP. The application provides the RosettaNet

service content and adds the transport-level header. The header identifies which

external partner will handle the request, which PIP will be sent, and the version of

the PIP along with other information. This information enables WebSphere Partner

Gateway to send the correct PIP to the external partner.

You can find information about setting up RosettaNet support and configuring

PIPs in the WebSphere Partner Gateway Hub Configuration Guide.

Event notification

WebSphere Partner Gateway executes RNIF PIP processes with external partners

on behalf of the internal partner back-end applications. Therefore, WebSphere

Partner Gateway provides event notification as the mechanism to notify the

back-end application about various aspects of the RNIF PIP process execution.

Event notification enables WebSphere Partner Gateway to, for example, notify the

application if WebSphere Partner Gateway is unable to send a PIP to the partner.

The application can then handle the failure.

Chapter 2. Planning for back-end integration 15

An event notification message is an XML document that carries information about

events that occurred within WebSphere Partner Gateway or an application. These

messages have the same structure as any other message that enters or leaves

WebSphere Partner Gateway; that is, they have a transport-level header and

payload. WebSphere Partner Gateway can be configured to send or not send event

notification messages, because they are optional.

Table 2 summarizes the event notification messages that WebSphere Partner

Gateway can send to back-end systems.

 Table 2. Event notification messages sent to back-end system

Event condition Event notification message

WebSphere Partner Gateway delivers a RosettaNet

document to an external partner and receives a Receipt

Acknowledgment.

Event StatusCode 100

General error during RNIF action performance. WebSphere

Partner Gateway cancels a PIP by generating an 0A1

message and delivering it to the external partner.

If this is the last action in the PIP, this action code causes

WebSphere Partner Gateway to cancel this PIP by

generating a 0A1 message and delivering it to the external

partner. Otherwise, WebSphere Partner Gateway sends a

“general exception” to the partner.

Event StatusCode 800

Error during RNIF action performance. Validating the

Service Content against a PIP-specified dictionary.

WebSphere Partner Gateway cancels a PIP by generating an

0A1 message and delivering it to the external partner.

Event StatusCode 801

WebSphere Partner Gateway receives a Receipt

Acknowledgment exception or a general exception from an

external partner.

Event StatusCode 900

WebSphere Partner Gateway can send 0A1 messages to the destination application

as it would do with any other PIP, if it has been configured to send these messages

using Exclusion List Management. See “Managing Exclusion Lists” in the

WebSphere Partner Gateway Administrator Guide.

An application can send an event notification message to WebSphere Partner

Gateway to cancel a RosettaNet PIP.

See “Event codes used by WebSphere Partner Gateway” on page 23 for information

on event codes used by WebSphere Partner Gateway.

ebMS

WebSphere Partner Gateway provides support to let you send and receive

documents that adhere to the ebMS 2.0 standards. When a partner sends a ebMS

message to the hub, the target side of the partner connection must have Backend

Integration specified. The hub extracts the payload from the message and sends the

message to the back-end system. Because Backend Integration packaging is used,

the hub adds transport-level headers to the message. The message is sent through

the HTTP or JMS transport protocol. The transport-level header retains

meta-information that is not part of the ebMS message and enables WebSphere

Partner Gateway to route the message appropriately.

16 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Similarly, when the internal partner back-end system sends payloads to the hub,

the source side of the partner connection must have Backend Integration packaging

specified, and the back-end system must supply the transport-level headers.

For example, suppose an application wants to send a message to an external

partner using ebMS on HTTP. The application provides the ebMS Service, Action,

Partner IDs (to and from), protocol and packaging information, message-ID, and

conversation ID and it adds the transport-level headers. The header identifies

which external partner will handle the request. This information enables

WebSphere Partner Gateway to construct ebMS message and put the payloads

from backend as ebMS payloads and send it to the external partner.

Headers in Table 3 are required to be set by backend for ebMS flow.

 Table 3. Backend Headers Required for ebMS flow

Header name Explanation Example value Required

x-aux-sender-id Identifier of the message sender,

such as a DUNS number.

987654321 Yes

x-aux-receiver-id Identifier of the message receiver,

such as a DUNS number.

123456789 Yes

x-aux-protocol Protocol of the message content.

The value should match with the

protocol value towards the source

side on the Partner Connection

view.

ebMS Yes

x-aux-protocol-
version

Version of the message content

protocol. The value should match

with the protocol version towards

the source side on Partner

Connection view.

2.0 Yes

x-aux-process-
type

Process to be performed or what

type of message is being sent. The

value should match with the

Document Type value towards the

source side on the Partner

Connection view.

Purchase Order

Request

Yes

x-aux-process-
version

Version of the process. The value

should match with Document Type

version on the source side of the

Partner Connection view. This value

is same as Service Type in the

ebXML message.

ALL Yes

x-aux-activity The activity to be performed on the

type of the message sent. The value

should match with the activity

value on the source side of Partner

Connection view. For ebMS flow

this is same as x-aux-process-type.

Purchase Order

Request

Yes

x-aux-action The action to be performed on the

ebMS message. The value is same as

Action element in the ebXML Soap

message. Moreover, it should be

equal to the action value on the

source side of the Partner

Connection view.

Purchase Order

Action

Yes

Chapter 2. Planning for back-end integration 17

Table 3. Backend Headers Required for ebMS flow (continued)

Header name Explanation Example value Required

x-aux-system-
msg-id

Global Unique Identifier (GUID) for

the message, which is used for

duplicate checking. This ID is used

by WebSphere Partner Gateway to

do duplicate check. It is not used in

ebMS flow.

28282828282828 Yes

x-aux-
production

Routing of the message. Valid

values are: Production and Test.

This value is populated for requests

in both directions.

Production Yes

x-aux-msg-id Unique Message Identifier. Set as

MessageId in the ebXML Soap

Message

123454321@abc.com No

contentType The content-Type of the message.

This is not required if you are

sending message wrapped in

wbipackaging from backend.

text/xml No

x-aux-process-
instance-id

The processId or ConversationId in

the ebXML message.

329878738@abc.com No

x-aux-seq-
number

The sequence number of the

message, if “Message Order

Semantics” is set as “Guaranteed”

on the target side of Document

Flow Definition. This is the

sequence of the message going out

in that conversation.

2 No

x-aux-request-
msg-id

This header should be only set for

the response document. The value

of this header will be the messageId

of the request document associated

with current response document.

123455521@abc.com No

x-aux-role This field is not required if

WBIPackaging1.2 is used as user

can then set this attribute in the

XML itself Otherwise, the value of

this field is the value of the role

attribute in Manifest/Referernce

element in the ebXML Soap

message.

http://reqrep.org/
gci/purchaseOrder

No

x-aux-role-
schema

The schema against which role is

validated. This validation is not

done by WebSphere Partner

Gateway. The value of this field is

put in ebXML Soap Message as

Schema attribute.

http://reqrep.org/
gci/purchaseOrder/
po.xsd

No

x-aux-role-
schema-version

The version of the above Schema 2.0 No

x-aux-
description

The description of the payload. The

value is put as the value of

Description element in ebXML Soap

Message.

Purchase Order

Request

No

18 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

You can find information about setting up ebMS support and configuring ebMS

connections in the WebSphere Partner Gateway Hub Configuration Guide.

Event notification

WebSphere Partner Gateway provides event notification as the mechanism to notify

the back-end application about various aspects of the ebMS process execution. For

more details on event notification refer to EventNotification/XMLEvent section.

Table 4 summarizes the event notification messages sent to and from WebSphere

Partner Gateway from and to the backend for ebMS.

 Table 4. Event notification messages sent to back-end system

Event condition Event notification message

WebSphere Partner Gateway generates this event after

receiving the receipt acknowledgement from a partner.

Event StatusCode 100

WebSphere Partner Gateway receives a Receipt

Acknowledgment exception or a general exception from an

external partner.

Event StatusCode 900

WebSphere Partner Gateway generates this event when all

the retries are done or when the message time to live is

over and an acknowledgment for the message is not

received.

Event StatusCode 902

WebSphere Partner Gateway generates this event when a

delivery failure happens. That is, when WebSphere Partner

Gateway is unable to send the message to a partner because

the partner destination is down and all the transport and

destination-level retries are over.

Event StatusCode 903

See “Event codes used by WebSphere Partner Gateway” on page 23 for information

on event codes used by WebSphere Partner Gateway.

XMLEvent

WebSphere Partner Gateway provides a way of notifying the backend about the

status of the message. For example, if WebSphere Partner Gateway sends a

message to a partner and the partner sends back an acknowledgment, WebSphere

Partner Gateway will generate an XML event containing an event code 100 (for list

of event code, see “Event codes used by WebSphere Partner Gateway” on page 23)

and send it to the backend. The structure of the XML Event is given in “Event

message structure” on page 20. XMLEvents are only used between WebSphere

Partner Gateway and a backend application. They are never sent to partners. In

WebSphere Partner Gateway 6.1, XMLEvents are only generated for RosettaNet

and ebMS flows.

You can enable or disable an XMLEvent that is created between WebSphere Partner

Gateway and a backend application. See “Enabling or disabling XMLEvents” for

more details.

Enabling or disabling XMLEvents

To enable an XMLEvent, do the following:

1. Enable B2B Capability for either RosettaNet or ebMS document definition flow

as applicable.

The source B2B capability must be:

Chapter 2. Planning for back-end integration 19

Package: Backend Integration (1.0)

Protocol: XMLEvent (1.0)

Document Type: XMLEvent

The target B2B capability must be:

Package: Backend Integration (1.0)

Protocol: XMLEvent (1.0)

Document Type: XMLEvent

2. Create Interaction between Source and Target as described below:

a. Click Hub Admin > Hub Configuration > Document Definition.

b. Click Manage Interactions.

c. Click Create Interaction.

d. Under Source, expand Package: Backend Integration (1.0) > Protocol:

XMLEvent.

e. Select Document Type: XMLEvent (1.0).

f. Repeat the previous steps (step d and step e) in theTarget column.

g. Select Pass Through from the Action list and click Save.
3. Activate the XMLEvent using the following procedure:

a. Click Account Admin > Connections. The Manage Connections page is

displayed.

b. Select the Source and Target.

c. Click Search to find the connections that match your criteria

d. To enable the XMLEvent, click Activate. The Manage Connections page is

re-displayed with the required connection highlighted in green. This page

shows the package, protocol, and document type for the source and target.

You can also view and change partner-connection status and parameters.

To disable the XMLEvent, you can either:

v Disable the Protocol:XMLEvent in Hub Admin > Document Definition >

Manage Document Definitions. OR

v Do the following:

1. Click Account Admin > Exclusion List.

2. Select the Partner name.

3. Click Edit .

4. Select Don't Send Backend Event Notifications check box.

Event notification

For RosettaNet and ebMS processing, there are circumstances in which an XML

Event is either sent to the backend or received from the backend. For the specific

circumstances for the use of an XML Event in these protocols, see “Event

notification” on page 15 for RosettaNet processing and “Event notification” on

page 19 for ebMS processing.

Event message structure

An event notification message has the standard transport-level header with the

x-aux-process-type field set to XMLEvent. However, the payload of the message has

a specific structure, as shown in the XML schema in Figure 11.

20 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace=

 "http://www.ibm.com/websphere/bcg/2003/v1.0/xmleventnotification"

 xmlns:evntf=

 "http://www.ibm.com/websphere/bcg/2003/v1.0/xmleventnotification"

 elementFormDefault="qualified">

 <!-- EventNotification version 1.0 document element -->

 <xsd:element name="EventNotification">

 <xsd:complexType>

 <xsd:all>

 <xsd:element ref="evntf:StatusCode"/>

 <xsd:element ref="evntf:StatusMessage"/>

 <xsd:element ref="evntf:EventMessageID"/>

 <xsd:element ref="evntf:BusinessObjectID"/>

 <xsd:element ref="evntf:GlobalMessageID"/>

 <xsd:element ref="evntf:Timestamp"/>

 </xsd:all>

 </xsd:complexType>

 </xsd:element>

<!-- StatusCode element -->

 <xsd:element name="StatusCode">

 <xsd:simpleType>

 </xsd:simpleType>

 </xsd:element>

<!-- StatusMessage element -->

 <xsd:element name="StatusMessage">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:element>

<!-- EventMessageID element -->

 <xsd:element name="EventMessageID">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:element>

<!-- BusinessObjectID element -->

 <xsd:element name="BusinessObjectID">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:element>

 <!-- GlobalMessageID element -->

 <xsd:element name="GlobalMessageID">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string"/>

 </xsd:simpleType>

 </xsd:element>

 <!-- Timestamp element -->

 <xsd:element name="Timestamp">

 <xsd:simpleType>

 <xsd:restriction base="xsd:dateTime"/>

 </xsd:simpleType>

 </xsd:element>

 </xsd:schema>

Figure 11. XML schema for an event notification message

Chapter 2. Planning for back-end integration 21

Table 5 describes each field within the event payload.

 Table 5. Event notification XML fields

Field Description

StatusCode Type of message. For valid values, see “Event codes used by

WebSphere Partner Gateway” on page 23.

StatusMessage Alphanumeric description of this event notification message.

EventMessageID Alphanumeric identifier of this particular event notification message.

BusinessObjectID The x-aux-msg-id in the transport-level header of the message

affected by this message notification event. This links the payload of

the original message to this event.

GlobalMessageID The x-aux-system-msg-id in the transport-level header of the

message that caused this message notification event.

Timestamp When the event occurred using the UTC time stamp format:

CCYY-MM-DDThh:mm:ssZ

including fractional precision of seconds (...ss.ssssZ). The date stamp

must conform to the XML schema data type for dateTime

(w3.org/TR/2001/REC-xmlschema-2-20010502#dateTime).

Event notification example

Figure 12 shows an example of an event notification message sent using the HTTP

protocol.

POST /builderURL HTTP/1.1

Content-Type: application/xml

Content-length: 250

x-aux-sender-id: 000000001

x-aux-receiver-id: 000000002

x-aux-third-party-bus-id: 000000003

x-aux-create-datetime: 2002-10-28T23:05:02Z

x-aux-protocol: XMLEvent

x-aux-protocol-version: 1.0

x-aux-process-type: XMLEvent

x-aux-process-version: 1.0

x-aux-payload-root-tag: evntf:EventNotification

x-aux-msg-id: 98732

x-aux-system-msg-id: 12345

x-aux-production: Production

x-aux-process-instance-id: 3456

x-aux-event-status-code: 100

x-aux-transport-retry-count: 0

<?xml version="1.0" encoding="UTF-8"?>

<evntf:EventNotification xmlns:evntf=

 "http://www.ibm.com/websphere/bcg/2003/v1.0/xmleventnotification">

 <evntf:StatusCode>100</evntf:StatusCode>

 <evntf:StatusMessage>The message was delivered</evntf:StatusMessage>

 <evntf:EventMessageID>12345</evntf:EventMessageID>

 <evntf:BusinessObjectID>34234</evntf:BusinessObjectID>

 <evntf:GlobalMessageID>98732</evntf:GlobalMessageID>

 <evntf:Timestamp>2001-01-31T13:20:00Z</evntf:Timestamp>

</evntf:EventNotification>

Figure 12. Example of an event notification message using HTTP

22 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Event codes used by WebSphere Partner Gateway

This section contains a summary of all the event codes used by WebSphere Partner

Gateway. For how these event codes are used in the specific protocols, see “Event

notification” on page 15 for RosettaNet protocols and “Event notification” on page

19 for ebMS protocols.

Table 6 summarizes the event codes used by WebSphere Partner Gateway.

 Table 6. Event codes used by WebSphere Partner Gateway

Event status code Protocol used in Sent From Sent To

100 RosettaNet ebMS WebSphere Partner

Gateway

Backend

800 RosettaNet Backend WebSphere Partner

Gateway

801 RosettaNet Backend WebSphere Partner

Gateway

900 RosettaNet ebMS WebSphere Partner

Gateway

Backend

902 ebMS WebSphere Partner

Gateway

Backend

903 ebMS WebSphere Partner

Gateway

Backend

Which packaging will you use?

The packaging type determines the format in which WebSphere Partner Gateway

sends the message to the back-end system and the format in which the back-end

system sends the message to WebSphere Partner Gateway.

You use the Community Console to establish the connection with your external

partners and to specify the packaging that is used between WebSphere Partner

Gateway and the back-end system. To determine which packaging to use, you

must understand the following issues:

v Which packaging types are valid for use with a back-end system?

v Which packaging types are valid with a message in a particular business

protocol?

For more information on how to set up partner connections, see the WebSphere

Partner Gateway Hub Configuration Guide.

Not all packaging types are valid when you use WebSphere Partner Gateway for

integration. Table 7 lists the packaging types that are relevant when WebSphere

Partner Gateway is exchanging documents or messages with a back-end

application of the internal partner.

 Table 7. Packaging types relevant for back-end integration

Packaging type Description

None packaging Causes the message to be sent to the

back-end system or to the hub without any

header data

Chapter 2. Planning for back-end integration 23

Table 7. Packaging types relevant for back-end integration (continued)

Packaging type Description

Backend Integration packaging Adds additional attributes to the message

header and, optionally, wraps the message

contents in an XML transport envelope

Note: Other packaging types (such as AS) are available with WebSphere Partner

Gateway. However, for integration with back-end systems, only the None and

Backend Integration packaging types are recommended.

None packaging

When packaging is set to None, WebSphere Partner Gateway neither adds a

transport-level header when it sends a message to a back-end system nor expects

one when it receives a message from a back-end system. Instead, WebSphere

Partner Gateway sends only the message to the back-end system. Information in

the document controls routing.

Backend integration packaging

When packaging is set to Backend Integration, messages sent to or received from a

back-end system have the following components:

v A transport-level header, which contains meta-information about the message

(required)

v A payload, which contains the content of the message (required)

v An attachment (optional)

The header and payload are mandatory while attachments are optional. The

following sections describe each of the components of a document that uses

Backend Integration packaging.

Transport-level header content

The transport-level header contains information that WebSphere Partner Gateway

uses to process and route the message to the correct destination. The

transport-level header is bi-directional so that all messages entering and leaving

WebSphere Partner Gateway have the mandatory fields and any of the optional

fields that apply.

Table 8 lists the fields of the transport-level header.

 Table 8. Transport-level header fields

Header field Description Required

x-aux-sender-id Identifier of the message sender, such as a DUNS number. Yes

x-aux-receiver-id Identifier of the message receiver, such as a DUNS number. Yes

x-aux-protocol Protocol of the message content. Valid values include RNSC for

RosettaNet service content, XMLEvent, and Binary. For WebSphere

Partner Gateway, the value in this field has priority over any protocol

field in the payload.

Yes

x-aux-protocol-version Version of the message content protocol. Yes

24 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 8. Transport-level header fields (continued)

Header field Description Required

x-aux-process-type Process to be performed or what type of message is being sent. For

RosettaNet messages, this is the PIP code (for example, 3A4). For event

messages, it is XMLEvent, and for Binary messages, it is Binary. For

WebSphere Partner Gateway, the value in this field has priority over any

process field in the payload.

Yes

x-aux-process-version Version of the process. For RosettaNet messages, this is the version

number of the PIP.

Yes

x-aux-create-datetime When the message was successfully posted using the UTC time stamp

format (CCYY-MM-DDThh:mm:ssZ).

x-aux-msg-id Identifier of the payload content. For example, it could be the identifier

of the RNPIPServiceContent instance for a RosettaNet message or it

could be a proprietary document identifier. This links the message

payload with something in the message sender’s system for tracing

purposes.

x-aux-production Routing of the message. Valid values are: Production and Test. This

value is populated for requests in both directions. Note that when the

message is a response to a two-way PIP initiated by an external partner,

WebSphere Partner Gateway uses the GlobalUsageCode in the request

and ignores the value in the transport level header.

x-aux-system-msg-id Global Unique Identifier (GUID) for the message, which is used for

duplicate checking.

Yes

x-aux-payload-root-tag Root tag element of the payload. For example, for 3A4 RosettaNet

service content, the value of this field would be

Pip3A4PurchaseOrderRequest. For event notification messages, the value

for this field would be EventNotification.

x-aux-process-instance-id Identifier that links documents in a multiple-message business process to

a unique process instance. For RosettaNet, it must be unique for

RosettaNet processes within the last 30 days. All messages exchanged as

part of a RosettaNet process instance, including retries, use the same

process instance ID.

x-aux-event-status-code Status code for the event notification. See the StatusCode field in “Event

message structure” on page 20.

x-aux-third-party-bus-id Identifier such as a DUNS number of the party that delivered the

message. This can be different from both the x-aux-sender-id and the

x-aux-receiver-id if a third party is hosting WebSphere Partner Gateway

on behalf of the community owner.

x-aux-transport-retry-count Number of unsuccessful attempts at posting this message prior to this

attempt. If a message posts successfully on the first attempt, the value of

this field will be 0.

x-aux-in-file-name The original file name of the message being sent to WebSphere Partner

Gateway over JMS or HTTP. (See note 3 on page 26.)

No

x-out-filename The original file name for messages being sent over JMS with Backend

Integration packaging. (See note 2 on page 26.)

No

content-type The content type of the message.

content-length The length of the message (in bytes).

Chapter 2. Planning for back-end integration 25

Table 8. Transport-level header fields (continued)

Header field Description Required

x-aux-SyncResponse This attribute is used in ebMS flow to inform the backend that

SyncResponse is needed for this request. If sync response is not required

from backend then it will not be present. It has the following values:

Note: All values for this attribute are in lowercase.

v signalsonly : A signal can be a acceptance signal or exception signal.

It is upto backend to determine what is a signal. If attribute value is

signalsonly then the sending partner is expecting only the signals over

a synchronous connection.

v responseonly: A response document is a business response for the

document received. If the value is responseonly then the sending

partner is expecting a response over a synchronous connection.

v signalsandresponse: In this case both signals and response should be

sent over synchronous connection. This attribute is a routing object

attribute. It is present in CPA and can be set at partner connection

level if no CPA is present.

No

x-aux-TimeToAccept This attribute is used in ebMS flow and will contain value of

″timeToAcknowledgeAcceptance″ in CPA. When CPA is uploaded this

value is set as TimeToPerform as Source Document Definition attribute.

The value is a number in minutes It specifies the time period within

which the receiving Party has to non-substantively acknowledge

acceptance of a business document meaning, after it has passed business

rules validation).

No

x-aux-
IntelligibleCheckRequired

This attribute is used in ebMS flow. The possible values are yes and no.

If the value is ″yes″, then the backend must verify that a business

document is not garbled (meaning, passes schema validation) before

returning a Receipt Acknowledgment signal.

Notes:

1. For compatibility with IBM WebSphere MQ (a JMS provider), the fields of a

JMS protocol message use underscores instead of hyphens. For example, in a

JMS message, there is an x_aux_sender_id field instead of an x-aux-sender-id

field.

2. If the gateway is specified as HTTP and the package is specified as None, the

original file name is set in the HTTP headers as “Content-Disposition:

attachment;po.xml.”

If the receiver is specified as JMS and the package is specified as Backend

Integration, the original file name is written into x-out-filename along with

other x-aux-* headers.

3. If the receiver is specified as HTTP and the source package is specified as

None, the original file name is set in the HTTP headers as ″Content-
Disposition: attachment;po.xml,″

If the receiver is specified as JMS and the source package is specified as

Backend Integration, the original file name is set to ″x_aux_in_file_name:

po.xml.″ In the case of HTTP receiver, it is set to “Content-Disposition:

attachment;po.xml.”

Table 8 provides an overview of the transport-level header information. The

following sections provide transport-level header information specific to certain

business protocols:

v “Transport-level header and a RosettaNet message” on page 27

v “Transport-level header and an AS2 message” on page 28

26 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

v “Transport-level header and an AS1 message” on page 28

Transport-level header and a RosettaNet message: Table 9 describes where

WebSphere Partner Gateway obtains values for the fields of the transport-level

header from a RosettaNet message.

 Table 9. Transport-level header fields and RosettaNet content

Header field Source of value: RosettaNet 2.0 Source of value: RosettaNet 1.1

x-aux-sender-id <(DeliveryHeader)>

 <messageSenderIdentification>

 <PartnerIdentification>

 <GlobalBusinessIdentifier>

<ServiceHeader>

 <ProcessControl>

 <TransactionControl>

 <ActionControl> or <SignalControl>

 <PartnerRouter>

 <fromPartner>

 <PartnerDescription>

 <BusinessDescription>

 <GlobalBusinessIdentifier>

x-aux-receiver-id <(DeliveryHeader)>

 <messageReceiverIdentification>

 <PartnerIdentification>

 <GlobalBusinessIdentifier>

<ServiceHeader>

 <ProcessControl>

 <TransactionControl>

 <ActionControl> or <SignalControl>

 <PartnerRouter>

 <toPartner>

 <PartnerDescription>

 <BusinessDescription>

 <GlobalBusinessIdentifier>

x-aux-protocol Set value for RosettaNet: RNSC Same as for RosettaNet 2.0

x-aux-protocol-
version

Set value: 1.0 Same as for RosettaNet 2.0

x-aux-process-type The source XPath is:

/ServiceHeader/ProcessControl/

pipCode/GlobalProcessIndicatorCode

The source XPath is:

/ServiceHeader/ProcessControl/

ProcessIdentity/GlobalProcessIndicatorCode

x-aux-process-version The source XPath is:

/ServiceHeader/ProcessControl/

pipVersion/VersionIdentifier

The value of the version identifier of each

PIP is in its PIP specification.

The source XPath is:

/ServiceHeader/ProcessControl/

ProcessIdentity/VersionIdentifier

The value of the version identifier of each PIP is

in its PIP specification.

x-aux-payload-

root-tag

Name of the PIP, such as

Pip3A4PurchaseOrderRequest

Same as for RosettaNet 2.0

x-aux-process-
instance-id

For processes initiated by the application,

the value is the ID of the process instance.

For processes initiated by an external

partner that are not pass-through

workflow, the value is the process ID in

the initial RosettaNet request:

<ServiceHeader>

 <ProcessControl>

 <pipInstanceId>

 <InstanceIdentifier>

<ServiceHeader>

 <ProcessControl>

 <ProcessIdentity>

 <InstanceIdentifier>

x-aux-msg-id <(RNPipServiceContent)>

 <thisDocumentIdentifier>

 <ProprietaryDocumentIdentifier>

Same as for RosettaNet 2.0

x-aux-production <ServiceHeader>

 <ProcessIndicator>

 <GlobalUsageCode>

<Preamble>

 <GlobalUsageCode>

Chapter 2. Planning for back-end integration 27

Transport-level header and an AS2 message: Table 10 describes where WebSphere

Partner Gateway obtains values for the fields of the transport-level header from an

AS2 message.

Note: The values are case-sensitive.

 Table 10. Transport-level header fields from AS2 content

Header field

Source of value when an external partner

sends an AS/2 message to the hub

Source of value when an AS2 message is

sent to an external partner

x-aux-sender-id The AS2-From header field of the AS2

message is set in the x-aux-sender-id field

of the back-end integration message that is

sent to the internal partner.

The x-aux-sender-id field of the incoming

back-end integration message is used as

the AS2-From header value of the AS2

message.

x-aux-receiver-id The AS2-To header field of the AS2

message is set in the x-aux-receiver-id field

of the back-end integration message that is

sent to the internal partner.

The x-aux-receiver-id field of the incoming

back-end integration message is used as

the AS2-To header value of the AS2

message.

x-aux-protocol The ToProtocol of the partner connection is

set in the x-aux-protocol field of the

back-end integration message that is sent

to the internal partner.

The x-aux-protocol field of the incoming

back-end integration message is used to

determine the FromProtocol of the partner

connection.

x-aux-protocol-version The ToProtocolVersion of the partner

connection is set in the

x-aux-protocol-version field of the

back-end integration message that is sent

to the internal partner.

The x-aux-protocol-version field of the

incoming back-end integration message is

used as the FromProtocolVersion of the

partner connection.

x-aux-process-type The ToProcessCode of the partner

connection is used to set the

x-aux-process-type field of the back-end

integration message that is sent to the

internal partner.

The x-aux-process-type field of the

incoming back-end integration message is

used as the FromProcessCode of the

partner connection.

x-aux-process-version The ToProcessVersion of the partner

connection is set in the

x-aux-process-version field of the back-end

integration message that is sent to the

internal partner.

The x-aux-process-version field of the

incoming back-end integration message is

used as the FromProcessVersion of the

partner connection.

x-aux-payload-root-tag For custom XML protocol only, the Root

tag specified in the XPATH is parsed out

of the message and used in the

x-aux-payload-root-tag field.

This field does not need to be set in the

incoming back-end integration message.

x-aux-process-instance-id This field is not used for AS2. This field is not used for AS2.

x-aux-msg-id For custom XML protocol only, the Doc ID

specified in the XPATH is parsed out of

the message and used in the x-aux-msg-id

field.

This field does not need to be set in the

incoming back-end integration message

x-aux-system-msg-id This field is set to the internally generated

unique ID for this message.

This field does not need to be set in the

incoming back-end integration message

x-aux-production This field is not used for AS2. This field is not used for AS2.

Transport-level header and an AS1 message: Table 11 on page 29 describes where

WebSphere Partner Gateway obtains values for fields in the transport-level header

from an AS1 message.

Note: The values are case-sensitive.

28 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 11. Transport-level header fields from AS1 content

Header field

Source of value when an external partner

sends an AS/1 message to the hub

Source of value when an AS/1 message is

sent to an external partner

x-aux-sender-id The FromID in the ″Subject: ToID;FromID″

header field of the AS1 message is set in

the x-aux-sender-id field of the back-end

integration message that is sent to the

internal partner.

The x-aux-sender-id field of the incoming

back-end integration message is used as

FromID in the ″Subject: ToID;FromID″

header value of the AS1 message.

x-aux-receiver-id The ToID in the ″Subject: ToID;FromID″

header field of the AS1 message is set in

the x-aux-receiver-id field of the back-end

integration message that is sent to the

internal partner.

The x-aux-receiver-id field of the incoming

back-end integration message is used as

ToID in the ″Subject: ToID;FromID″ header

value of the AS1 message.

x-aux-protocol The ToProtocol of the partner connection is

set in the x-aux-protocol field of the

back-end integration message that is sent

to the internal partner.

The x-aux-protocol field of the incoming

back-end integration message is used as

the FromProtocol of the partner connection.

x-aux-protocol-version The ToProtocolVersion of the partner

connection is set in the

x-aux-protocol-version field of the back-end

integration message that is sent to the

internal partner.

The x-aux-protocol-version field of the

incoming back-end integration message is

used as the FromProtocolVersion of the

partner connection.

x-aux-process-type The ToProcessCode of the partner

connection is set in the x-aux-process-type

field of the back-end integration message

that is sent to the internal partner.

The x-aux-process-type field of the

incoming back-end integration message is

used as the FromProcessCode of the

partner connection.

x-aux-process-version The ToProcessVersion of the partner

connection is set in the

x-aux-process-version field of the back-end

integration message that is sent to the

internal partner.

The x-aux-process-version field of the

incoming back-end integration message is

used as the FromProcessVersion of the

partner connection.

x-aux-payload-root-tag For custom XML protocol only, the Root

tag specified in the XPATH is parsed out of

the message and set in the

x-aux-payload-root-tag field.

This field does not need to be set in the

incoming back-end integration message.

x-aux-process-instance-id This field is not used for AS1. This field is not used for AS1.

x-aux-msg-id For custom XML protocol only, the Doc ID

specified in the XPATH is parsed out of the

message and used in the x-aux-msg-id

field.

This field does not need to be set in the

incoming back-end integration message.

x-aux-system-msg-id This field is set to the internally generated

unique ID for this message.

This field does not need to be set in the

incoming back-end integration message.

x-aux-production This field is not used for AS1. This field is not used for AS1.

Transport-level header and an ebMS message: Table 11 describes where

WebSphere Partner Gateway obtains values for fields in the transport-level header

from an ebMS message.

Note: The values are case-sensitive.

Chapter 2. Planning for back-end integration 29

Table 12. Transport-level header fields from ebMS content

Header field

Source of value when an external partner sends an

ebMS document to the hub

Source of value when an ebMS

document is sent to an external

partner

x-aux-receiver-id (SOAP Header)

<eb:MessageHeader><eb:To><eb:PartyId>

The value of this attribute comes

from backend as backend

headers

x-aux-sender-id (SOAP Header)

<eb:MessageHeader><eb:From><eb:PartyId>

The value of this attribute comes

from backend as backend

headers.

x-aux-SyncResponse Comes from the Source Document Definition

attribute bcg.ro.ebxml.SYNCREPLYMODE

Possible values:

v responseOnly

v signalAndResponse

v signalOnly

Comes from Target Document

Definition attribute

x-aux-process-instance-id (SOAP Header)

<eb:MessageHeader><eb:ConversationId>

Comes from backend as backend

headers. If backend does not set

it then WebSphere Partner

Gateway will generate it

The required ConversationId

element in an ebMS flow is a

string identifying the set of

related messages that make up a

conversation between two

parties. Messages in the same

conversation will have same

Conversation Id but different

messageId.

x-aux-process-type (SOAP Header) <eb:MessageHeader><eb:Service> Comes from backend as backend

headers

x-aux-process-version (SOAP Header) <eb:MessageHeader><eb:Service>

The text of the element value after the ″$″ character.

If the element value does not have the ″$″ character

or is not a URI then use the default ″ALL″.

Comes from backend as backend

headers

x-aux-protocol ″EBMS″ Comes from Target protocol on

Partner Connection view

x-aux-protocol-version (SOAP Header) <eb:MessageHeader><eb:version> Comes from Target protocol

version on Partner Connection

view

x-aux-third-party-bus-id Console > System Administration > DocMgr

properties

N/A

x-aux-TimeToAccept Comes from Source Document Definition attribute

x-aux-system-msg-id This field is set to the internally generated unique ID

for this message.

This field does not need to be set

in the incoming back-end

integration message

x-aux-msg-id <soapenv:Header><eb:MessageHeader>

<eb:MessageData><eb:MessageId>

It can be set by backend as

backend headers. If it is not set

by backend then WebSphere

Partner Gateway will internally

generate it.

30 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 12. Transport-level header fields from ebMS content (continued)

Header field

Source of value when an external partner sends an

ebMS document to the hub

Source of value when an ebMS

document is sent to an external

partner

x-aux-
IntelligibleCheckRequired

Comes from the Source Document Definition

attribute

bcg.ro.ebxml.ISINTELLIGIBLECHECKREQUIRED

N/A

ebMS Transport header example:

Connection : Keep-Alive

x-aux-process-version : ALL

x-aux-receiver-id : 124456789

x-aux-SyncResponse : signalsonly

Content-Length : 1326186

x-aux-process-instance-id : 918423619611581617869031

x-aux-process-type : ALMService

x-aux-protocol : ebMS

x-aux-sender-id : 987654421

x-aux-third-party-bus-id :

Content-Type : application/xml

x-aux-create-datetime : 2006-09-13T16:15:01Z

x-aux-TimeToAccept : 1

x-aux-transport-retry-count : 3

Host : 9.184.251.32:58080

x-aux-system-msg-id : 1158164092823000D606BBA390013320000000000000021

ReferenceId : 1158164101686000D606BBA390013320000000000000003

x-aux-msg-id : 1158163556558000C7627E08C025182D1C3AD7C5B55F7A3

 @wks184446wss.in.ibm.com

Keep-Alive : timeout=5, max=10000

x-aux-IntelligibleCheckRequired : no

x-aux-protocol-version : 2.0

Payload

The payload of the message contains the actual content of the message. The

location of the payload depends on the transport protocol that is sending the

message, as Table 13 shows.

 Table 13. Location of payload

Transport protocol Location of payload

HTTP protocol messages In the body of the HTTP post

JMS protocol messages In the body of the JMS message

RosettaNet messages The service content from the PIP

EDI The EDI envelope

ROD/flat or XML document The ROD/flat or XML document

The payload can be Base64-encoded and in an XML transport envelope in either of

the following cases:

v If the document contains an attachment

A document with attachments must be wrapped in an XML transport envelope.

For more information on how attachments are formatted, see “Attachments” on

page 32.

v If you set the envelope flag for Backend Integration packaging to Yes

To wrap a document in the XML transport envelope regardless of whether it

contains attachments, set the Backend Integration envelope flag to Yes from the

Chapter 2. Planning for back-end integration 31

profile’s B2B Capabilities view. For example, to set this flag in the internal

partner’s profile, perform the following tasks:

1. Click Account Admin > Profiles.

2. Enter the name of the Internal Partner (or perform a search on all External

Partners).

3. Click the View details icon next to the name of the Internal Partner.

4. Click B2B Capabilities.

5. Click the Edit icon next to Backend Integration.

6. Set the Envelop Flag to Yes.

This XML transport envelope wraps the document in the <transport-envelope>

root tag. Inside this root tag there is a <payload> tag that contains the document

payload. If any attachments exist, each is contained in an <attachment> tag. For

more information on the structure of these tags, see “Attachments.”

WebSphere Partner Gateway includes the following W3C XML schema file that

describes the Backend Integration XML transport envelope structure:

wbipackaging_v1.1_ns.xsd

Note: For ebMS flow, the packaging wbipackaging_v1.2_ns.xsd should be used.

This schema file is located in the following directory on the installation medium:

B2BIntegrate\packagingSchemas

You can use any XML editing tool to validate your Backend Integration XML

against this schema file to ensure the document is valid before it is sent to the

Document Manager.

Attachments

If the business message protocol permits them, each document can have one or

more attachments. If the document has attachments, it must be wrapped in an XML

transport envelope, as described in “Payload” on page 31. Table 14 describes the

XML attributes in the payload and attachment tags.

 Table 14. XML attributes of the payload and attachment tags

XML attribute Description Required

Content-Type Identifies the MIME

type/subtype, such as

text/xml or image/gif.

Yes

Encoding Identifies the encoding.

Because the attachment and

payload must be

Base64-encoded, the only

valid value for this attribute

is ″Base64″.

No

Figure 13 shows an example of a document in an XML transport envelope that

contains the payload and one attachment.

Note: The namespace in this example is required:

xmlns="http://www.ibm.com/websphere/bcg/2003/v1.0/wbipackaging"

32 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Notes:

1. To process documents wrapped in the XML transport envelope with the

WebSphere Interchange Server, WebSphere Partner Gateway provides the

Attachment data handler. For more information, see “Handling documents with

attachments” on page 123.

2. To process documents with attachments on WebSphere Process Server,

WebSphere Partner Gateway provides Backend Integration packaging data

binding. See “Handling Backend Integration Packaging messages” on page 61.

Which packaging type works with your documents?

Documents in certain business protocols can use only certain types of packaging.

For example, a RosettaNet or an ebMS document can be processed only when a

packaging of Backend Integration has been specified. See Table 16 on page 35,

Table 17 on page 35, and Table 18 on page 36 for a complete list of which

document types can be associated with which types of packaging.

Example of Backend Integration packaging over HTTP

Figure 14 shows an example of a message from WebSphere Partner Gateway to an

application using the HTTP transport protocol. Note that the message does not

contain an attachment.

<?xml version="1.0" encoding="utf-8"?>

<transport-envelope

 xmlns="http://www.ibm.com/websphere/bcg/2003/v1.0/wbipackaging">

 <payload encoding="base64" contentType="application/xml">

 ...base64 encoded XML message...

 </payload>

 <attachment encoding="base64" Content-Type="text/xml">

 ...base64 encoded XML attachment...

 </attachment>

</transport-envelope>

Figure 13. Sample XML transport envelope for payload and one attachment

Chapter 2. Planning for back-end integration 33

Which message transport will you use?

When the back-end system and WebSphere Partner Gateway send messages to one

another, each must use the same message-transport protocol. The message transport

protocol defines the communication protocol in which the messages are sent.

WebSphere Partner Gateway communicates with a back-end system through its

Backend Integration interface. Table 15 lists the transport protocols that this

Backend Integration interface supports.

 Table 15. Transport protocols supported by Backend Integration

Transport protocol For more information

HTTP or HTTPS “HTTP transport protocol” on page 37

File-system files “File-system protocol” on page 41

JMS “JMS protocol” on page 38

Table 16 on page 35 shows which transport protocols are supported for the

packaging types and business protocols when the hub is sending documents to the

back-end system.

POST /sample/receive HTTP/1.1

Host: sample. COM

Content-Type: application/xml

Content-Length: nnn

x-aux-sender-id: 000000001

x-aux-receiver-id: 000000002

x-aux-third-party-bus-id: 000000003

x-aux-create-datetime: 2002-10-28T23:05:02Z

x-aux-protocol: RNSC

x-aux-protocol-version: 1.0

x-aux-process-type: 3A4

x-aux-process-version: V02.00

x-aux-payload-root-tag: Pip3A4PurchaseOrderRequest

x-aux-msg-id: 1021358129419

x-aux-system-msg-id: 2

x-aux-production: Production

x-aux-process-instance-id: 123456

x-aux-transport-retry-count: 0

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Pip3A4PurchaseOrderRequest SYSTEM

 "3A4PurchaseOrderRequestMessageGuideline_v1_2.dtd">

<Pip3A4PurchaseOrderRequest>

 <PurchaseOrder>

 ...

 </PurchaseOrder>

 ...

 <thisDocumentIdentifier>

 <ProprietaryDocumentIdentifier>1021358129419

 </ProprietaryDocumentIdentifier>

 </thisDocumentIdentifier>

 <GlobalDocumentFunctionCode>Request</GlobalDocumentFunctionCode>

</Pip3A4PurchaseOrderRequest>

Figure 14. Sample message using HTTP transport protocol

34 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 16. Supported transport protocols from WebSphere Partner Gateway to back-end

system

Packaging type Business protocol

HTTP or

HTTPS? JMS? File system?

Backend Integration RosettaNet (RNSC) Yes Yes No

ebMS Yes Yes No

Binary Yes Yes No

EDI (see Table 18 on

page 36 for information

on EDI)

XML Yes Yes No

ROD/flat Yes Yes No

None EDI (see Table 18 on

page 36 for information

on EDI)

cXML only Yes No No

SOAP only Yes No No

Binary Yes Yes Yes

XML Yes Yes Yes

ROD/flat Yes Yes Yes

Table 17 shows which transport protocols are supported for the packaging types

and business protocols when the back-end system is sending documents to the

hub.

 Table 17. Supported transport protocols from back-end system to WebSphere Partner

Gateway

Packaging type Business protocol

HTTP or

HTTPS? JMS? File system?

Backend Integration RosettaNet (RNSC) Yes Yes No

ebMS Yes Yes No

XML Yes Yes No

Binary Yes Yes No

ROD/flat Yes Yes No

None XML only Yes Yes Yes

EDI (See Table 18 on

page 36 for information

on EDI).

cXML only Yes No No

SOAP only Yes No No

Binary only No No No

ROD/flat only Yes Yes Yes

Table 18 on page 36 shows which transport protocols and packaging types are

supported for various EDI, XML, and record-oriented data (ROD)/flat documents.

Chapter 2. Planning for back-end integration 35

Table 18. Supported transport protocols between WebSphere Partner Gateway and the

back-end system for EDI

Packaging type Document

HTTP or

HTTPS? JMS?

File

system?

Backend

Integration

Single interchange containing a

single transaction (such as an

X12 850 transaction within an

envelope)

Yes Yes No

Single interchange containing

multiple transactions (such as

an X12 850 transaction and an

X12 890 transaction within the

same envelope)

Yes Yes No

Multiple interchanges

containing a single transaction

(such as two X12 envelopes

within the same file, each of

which contains a single

transaction)

Yes Yes No

Multiple interchanges

containing multiple transactions

(such as two X12 envelopes

within the same file, each of

which contains two or more

transactions)

Yes Yes No

EDI transaction (for example, an

X12 850 transaction), which

cannot be delivered by itself

because a transaction must be

within an EDI interchange

No No No

Document (for example, XML)

that is later transformed into an

EDI transaction

Yes Yes No

None Single interchange containing a

single transaction

Yes Yes Yes

Single interchange containing

multiple transactions

Yes Yes Yes

Multiple interchange containing

a single transaction

Yes Yes Yes

Multiple interchanges

containing multiple transactions

Yes Yes Yes

EDI transaction (not supported;

must have interchange

envelope)

No No No

Document (for example, XML)

that is later transformed into an

EDI transaction

Yes Yes Yes

The previous tables list the transport protocols that are valid between the hub and

the back-end system. The hub can use additional transport protocols to send

documents to or receive documents from partners. For example, the hub can send

a document to a remote FTP server by using the FTP Scripting transport. It can

also receive documents using the FTP Scripting transport. The FTP Scripting

36 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

transport, which is described in the WebSphere Partner Gateway Hub Configuration

Guide, can be used to send and receive documents over the Internet but it must be

used to send and receive documents from Value Added Networks (VANs).

HTTP transport protocol

To send messages using an HTTP protocol, WebSphere Partner Gateway uses

HTTP/S 1.1. To receive messages from back-end systems, WebSphere Partner

Gateway supports both HTTP/S Version 1.0 and 1.1.

The HTTP message can include the integration packaging attributes. Whether these

attributes are included depends on the packaging type associated with the partner

connection, as follows:

v If the partner connection specifies that the HTTP message includes Backend

Integration packaging, the transport-level header of the HTTP message includes

additional attributes containing information about the message, such as the

protocol of the content, the ID of the message, and the sender of the message.

For a complete list of the fields in the header, see “Transport-level header

content” on page 24.

RosettaNet messages must use Backend Integration packaging.

v If the partner connection specifies None packaging, the HTTP message does not

have these additional attributes, and WebSphere Partner Gateway parses the

message to obtain this information.

SOAP and cXML messages must use None packaging.

Note: XML messages can use either None or Backend Integration packaging.

Similarly, EDI documents can use either None or Backend Integration. Binary

messages received from the back-end system must have the Backend Integration

packaging; however, the reverse is not true because WebSphere Partner Gateway

supports sending binary messages to the application using either type of

packaging.

Process

When HTTP or HTTPS messages are sent between WebSphere Partner Gateway

and an application for asynchronous exchanges, the following steps occur:

1. The source system (WebSphere Partner Gateway or the back-end system) posts

an HTTP message to the receiver system using a specific URL.

2. The receiver system receives the message and sends the protocol-level

acknowledgment, HTTP 200 or 202, to signify the change in ownership. The

source system ignores the body of this acknowledgment message. If an error

occurs during this processing, the receiver system sends an HTTP 500 message

back to the source system.

3. If WebSphere Partner Gateway is the receiver system (that is, when WebSphere

Partner Gateway receives a message), it then persists the message and releases

the connection to the source system.

4. The receiver system can then process the message asynchronously.

When the exchange is synchronous (for example, for a SOAP or cXML document),

a response is returned along with the HTTP 200 message in the same HTTP

connection.

Sending messages from the back-end system using the HTTP

protocol

To send a message to WebSphere Partner Gateway using the HTTP protocol, a

back-end system takes the following steps:

Chapter 2. Planning for back-end integration 37

1. Creates the message.

The Content-Type attribute in the transport-level header gives the encoding

used for the message.

2. Packages the message according to the packaging type set for the connection.

For Backend Integration packaging, the back-end system adds the protocol

header attributes that WebSphere Partner Gateway requires.

3. Posts the message to the URL that WebSphere Partner Gateway uses to receive

these messages.

4. If the exchange is synchronous, the back-end system waits to receive a response

in the same connection that was used for the request.

To enable HTTP message exchange in this direction, use the Receiver Details page

of the Community Console to set up a receiver at the hub for inbound documents.

This receiver specifies a URL. The back-end system needs to know this address to

send documents to the hub.

Receiving messages at the back-end system using the HTTP

protocol

To receive a message from WebSphere Partner Gateway using the HTTP protocol, a

back-end system takes the following steps:

1. Listens for a message at a particular URL.

2. When a message is received, processes the message:

v If the connection has None packaging, the back-end system must parse the

message to determine how to handle it.

v If the connection has Backend Integration packaging, the application can use

the Backend Integration attributes to determine how to handle the message.
3. If the exchange is synchronous, the back-end system returns a response in the

same connection used for the request.

To enable HTTP message exchange in this direction, use the Destination page of

the Community Console to set up a destination that specifies where documents

should be delivered to the back-end system.

JMS protocol

The JMS protocol is based on the Java(TM) Message Service (JMS) and transfers

messages through transactional, persistent JMS queues provided by, for example,

IBM WebSphere MQ. The JMS protocol supports the following JMS message types:

v StreamMessage (as a byte array)

v BytesMessage (as a byte array)

v TextMessage

In the JMS protocol, one system sends a JMS message to another. After the second

system receives the message, it removes it from the queue. From this point

forward, the receiving system can process the message asynchronously.

The JMS message can include integration packaging attributes. Whether these

attributes are included depends on the packaging type associated with the partner

connection, as follows:

v If the partner connection specifies that the JMS message includes Backend

Integration packaging, the JMS message contains transport-level information

(such as the protocol of the content, the ID of the message, and the sender of the

38 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

message) as JMS properties within the message. For a complete list of the

properties, see “Transport-level header content” on page 24.

Note: For compatibility with WebSphere MQ JMS, the properties in the JMS

messages use underscores in the property names instead of hyphens. For

example, in a JMS message, the property is x_aux_system_msg_id while the

equivalent HTTP header field will be x-aux-system-msg-id. When WebSphere

Partner Gateway processes a JMS message, it converts the underscores to

hyphens in these properties.

v If the partner connection specifies None packaging, the JMS message does not

have these additional attributes.

With the exception of binary messages, WebSphere Partner Gateway supports

sending and receiving JMS messages with either type of packaging. Binary

messages received from an application must have the Backend Integration

packaging. The reverse is not true because WebSphere Partner Gateway supports

sending binary messages to the application using either type of packaging.

Setting up the JMS environment

To set up your JMS environment, the following providers are required.

v JMS provider

A JMS provider provides the implementation of JMS API support for messaging.

The backend system with which you are exchanging documents determines

which JMS provider you use.

– If you are exchanging documents with WebSphere Interchange Server, you

use WebSphere MQ as the JMS provider.

– If you are exchanging documents with WebSphere Process Server, you use

WebSphere Platform Messaging and a service integration bus as the JMS

provider. Details about the JMS providers available for use with WebSphere

Process Server can be found in Chapter 5, “Integrating WebSphere Process

Server with JMS as transport,” on page 89.
The JMS provider typically provides a program you can use to set up the JMS

environment. For example, WebSphere MQ provides the JMSAdmin program,

which lets you construct the objects required by JMS--the JMS connection factory

and JMS queue objects. When these objects are constructed, references to them

are stored in JNDI.

Note: For messaging, WebSphere Partner Gateway supports the point-to-point

model only.

v JNDI provider

The JNDI provider supplies the implementation of JNDI, which is used to store

references to JMS objects.

For a back-end application to send business documents to WebSphere Partner

Gateway using the JMS protocol, a JMS receiver must be configured. The JMS

receiver receives messages from a JMS queue, and the documents are introduced

into the WebSphere Partner Gateway workflow. The JMS receiver configuration

includes the required parameters for accessing the JNDI as well as the names of

JMS objects. For integration with the back-end system, the queue configured in the

JMS receiver is the queue from which the back-end system is sending the JMS

message.

Similarly, a JMS destination is used by WebSphere Partner Gateway to send

business documents to a queue where partners expect to receive them. Therefore,

Chapter 2. Planning for back-end integration 39

for sending messages to the back-end system, make sure a JMS destination is

configured in the profile of the internal partner. The destination should be

configured to send to the queue on which the back-end system is receiving. The

JMS destination configuration includes the required parameters to access the JNDI

as well as the names of JMS objects.

Overview of setting up the JMS environment

To communicate over the JMS transport protocol, WebSphere Partner Gateway and

the back-end system require a JMS queue for each direction of the communication.

Therefore, you must take the following steps to supply the appropriate JMS

queues:

v Configure your JMS environment.

v Create a queue manager and the required queues including the transmission

queue, remote queue, and receiver queue.

The JMS queue manager can exist on any computer, including the following:

v The computer where the back-end system resides

v The computer where WebSphere Partner Gateway resides

In addition, you can have a queue manager on both the computer where the

back-end system resides and the computer where WebSphere Partner Gateway

resides. In this case, use setup channels to tie the two queue managers together.

Using this method, neither side needs to make client connections over the network.

Instructions for configuring a JMS transport-protocol mechanism using WebSphere

MQ Version 6.0 with the latest fixpack are provided in the WebSphere Partner

Gateway Hub Configuration Guide. Instructions for configuring the JMS environment

when you are exchanging documents with WebSphere Process Server are described

in Chapter 5, “Integrating WebSphere Process Server with JMS as transport,” on

page 89.

Sending messages from the back-end system using the JMS

protocol

To send a message to WebSphere Partner Gateway using the JMS protocol, a

back-end system takes the following steps:

1. Creates the message.

2. Packages the message according to the packaging type set for the connection.

For Backend Integration packaging, the application adds the required JMS

header attributes.

3. Sends the message to the JMS queue that the back-end system uses to send

messages to WebSphere Partner Gateway.

Receiving messages at the back-end system using the JMS

protocol

To receive a message from WebSphere Partner Gateway using the JMS protocol, a

back-end system takes the following steps:

1. Listens for a message on the JMS queue.

2. When a message is received, processes the message:

v If the connection has None packaging, the back-end system must parse the

message to determine how to handle it.

v If the connection has Backend Integration packaging, the application can use

the Backend Integration attributes to determine how to handle the message.

40 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

File-system protocol

The File System protocol enables WebSphere Partner Gateway to send messages by

placing them in a defined directory structure. WebSphere Partner Gateway receives

messages by reading them from the directory structure. The file-system protocol

supports only the None packaging type.

Sending messages from the back-end system using the

file-system protocol

To send a message to WebSphere Partner Gateway using the file-system protocol,

an application should take the following steps:

1. Create the message file in a temporary directory.

2. Once the file is ready, move the file to the directory that WebSphere Partner

Gateway polls.

To enable file-system message exchange in this direction, use the Receiver Details

page of the Community Console to set up a receiver for inbound documents. The

receiver of the message determines the directory that WebSphere Partner Gateway

polls. When you create a receiver, WebSphere Partner Gateway creates a

Documents directory and its subdirectories for the receiver, as follows:

<doc_root>

 Documents

 Production

 Test

 <other destination types>

WebSphere Partner Gateway polls the Documents directories and their

subdirectories regularly to detect message files. If it finds a message, WebSphere

Partner Gateway persists the message and then deletes the message from the

directory. WebSphere Partner Gateway then processes the message normally. See

the WebSphere Partner Gateway Hub Configuration Guide for information on how to

create a receiver.

Receiving messages at the back-end system using the

file-system protocol

To receive messages using the file system protocol, an application should do the

following:

1. Poll the appropriate directory for message files.

2. When there is a message, persist it.

3. Delete the message from the directory.

4. Process the message.

To enable file-system message exchange in this direction, use the Destination page

of the Community Console to set up a destination that specifies where documents

should be delivered. WebSphere Partner Gateway places the message file in the

Documents directory, which the destination defines. By defining the destination

directory according to the destination, each partner connection can have a different

directory. For information on destinations, see the WebSphere Partner Gateway Hub

Configuration Guide.

How do you access your back-end application?

WebSphere Partner Gateway provides the ability to integrate with many different

back-end applications. Typically, a back-end application is accessed through a

back-end system, such as an integration broker. Integration to the back-end

systems listed in Table 19 is covered in this guide.

Chapter 2. Planning for back-end integration 41

Table 19. Supported back-end systems for WebSphere Partner Gateway

Back-end system For more information

WebSphere Process Server Chapter 3, “Introduction to WebSphere

Process Server integration,” on page 55

WebSphere Interchange Server Chapter 8, “Introduction to InterChange

Server integration,” on page 113

WebSphere Message Broker Chapter 11, “Integrating with WebSphere

Message Broker,” on page 175

WebSphere Data Interchange Chapter 12, “Integrating with WebSphere

Data Interchange,” on page 193

Message handling

This section describes how WebSphere Partner Gateway handles the following

situations that affect the delivery of messages:

v “Queued delivery”

v “Communication error handling”

v “Duplicate messages” on page 43

Queued delivery

WebSphere Partner Gateway posts information on all documents that it wants to

send to a particular destination into a queue. The Document Manager processes

these messages in the order the queue receives them (FIFO) and uses a thread for

each message to send them. Note that if the destination (for example, URL if the

transport protocol is HTTP or JMS destination if the transport protocol is JMS) has

been configured to be offline (see Communication error handling), the messages

remain in the queue until the destination is enabled (online). If the Document

Manager receives an error in a thread, it stops other threads from attempting to

deliver their messages. The Document Manager places these messages back into

the queue until it is able to deliver the message that caused the error.

If the number of failed attempts exceeds the maximum number of attempts, the

Document Manager places the message in a failed directory and then attempts to

deliver the next message in the queue unless the destination is offline.

Communication error handling

When WebSphere Partner Gateway is the sender and the application returns an

error (for example, an HTTP Response message that is not a 200 or 202 message

when using the HTTP protocol), WebSphere Partner Gateway may then try to send

the message again depending on how it has been configured for this particular

destination. Each destination (URL in the case of HTTP) has the following options

that affect the number of retries and how the messages are sent:

 Table 20. Destination configuration options

Configuration options Description

Retry Count How many document retries to attempt if an error is received

Retry Interval Time interval between retry attempts

Online/Offline Starts and stops delivery attempts

Number of Threads Number of posting threads that will process messages per

destination

42 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

If WebSphere Partner Gateway is not configured to retry sending the message or if

all delivery attempts fail, WebSphere Partner Gateway signals the problem by

doing any or all of the following actions:

v Presenting the errors in various views of the Community Console such as the

Document Viewer and RosettaNet Viewer

v Sending an e-mail to appropriate people to notify them of the problem so that

they can take appropriate actions, if an e-mail alert for the delivery failed event

has been set up

v Creating an event document and then sending that document to the receiver.

See “Managing destination configurations” in the WebSphere Partner Gateway

Administrator Guide for more information.

Duplicate messages

All messages sent to or received from WebSphere Partner Gateway must have a

Global Unique Identifier (GUID). WebSphere Partner Gateway uses the GUID to

detect duplicate messages. When Backend Integration packaging is used, each

message carries its GUID in the transport-level header. For the HTTP protocol, for

example, the GUID is carried in the x-aux-system-msg-id field (see

“Transport-level header content” on page 24). The sender of the message generates

the GUID. The file system protocol does not support checking for duplicate

messages.

If the attempt to send a message results in an error, WebSphere Partner Gateway

reuses the message’s GUID in each retry. If WebSphere Partner Gateway receives a

message that contains a duplicate GUID, it returns a positive acknowledgment (for

example, HTTP 200) but does not process the duplicate message.

Note: WebSphere Partner Gateway checks for duplicate messages at the

RosettaNet process level if RosettaNet is being used. It also checks for duplicate

messages if XML is being used.

Configuring WebSphere Partner Gateway

“The hub configuration process” on page 4 provided a high-level description of the

steps the hub administrator takes to configure the hub. This section summarizes

steps for configuring WebSphere Partner Gateway for use with a back-end system.

These configuration steps assume that you have already configured the external

partners in your hub community. In particular, this section assumes that the

following configuration has already been performed:

v A partner profile for the internal partner has already been created.

v External partners for the origin (or destination) of the documents have already

been created.

v In the external partners’ B2B programs, partner profiles for the internal partner

have been created.

v A receiver has been defined so that the WebSphere Partner Gateway Receiver

can listen for incoming documents from the external partner over the

appropriate transport protocol.

v B2B capabilities have been defined and enabled in the profile of the external

partner (from which the document is received) so that WebSphere Partner

Gateway expects documents from that source.

Chapter 2. Planning for back-end integration 43

v Partner connections exist between the internal partner and the external partners

so that an external partner and the internal partner can receive (or send) a

document.

Note: You should log in as the hub administrator (hubadmin).

For a complete description of how to configure WebSphere Partner Gateway to

support a hub community, see the WebSphere Partner Gateway Hub Configuration

Guide.

After the external partners are configured, you must configure WebSphere Partner

Gateway so that it can communicate with a back-end system. This section provides

the following information to describe how to incorporate a back-end system into

your hub community:

v “Sending documents to the back-end system”

v “Receiving documents from the back-end system” on page 48

Sending documents to the back-end system

To send a document to the back-end system, WebSphere Partner Gateway takes the

following steps:

1. Receives a document from some external partner.

The Receiver retrieves this source document from a receiver that has been

defined at the hub for incoming messages from the external partner and its

associated transfer protocol. When sending a document to the back-end system,

the source document is the document that is received from some external

partner; it is therefore referred to as the partner document.

2. Converts the partner document to the destination document, which is in the

format that the back-end system requires.

The WebSphere Partner Gateway Document Manager performs this conversion

to the destination document. When sending a document to the back-end

system, the destination document is the document that is sent to the back-end

system; it is therefore referred to as the back-end document.

3. Sends the back-end document to the back-end system.

The Document Manager sends the back-end document through a destination

that has been defined at the hub for outgoing messages to the back-end system.

Therefore, for the hub to be able to send a document to the back-end system, you

must ensure that the configuration summarized in Table 21 has been performed

within WebSphere Partner Gateway.

 Table 21. Configuration steps to send documents to the back-end system

Configuration step WebSphere Partner Gateway steps For more information

1. Define where to send the

document.

1. Create a destination to the back-end

system.

“Defining where to send the partner

document” on page 45

44 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 21. Configuration steps to send documents to the back-end system (continued)

Configuration step WebSphere Partner Gateway steps For more information

2. Define how to process the

document.

2. Create document flow definitions

for the source and destination

formats.

3. Enable B2B capabilities for the

document flow definition of the

document sent to the back-end

system.

4. Create a document flow definition

interaction between the source and

destination document flow definitions.

“Defining how to process the partner

document” on page 46

3. Define how to connect to the

back-end system.

5. Create a partner connection that

sends documents to the back-end

system.

“Defining how to connect to the

back-end system” on page 47

Defining where to send the partner document

To send documents to the back-end system, the hub must have a destination

defined. This destination specifies the destination for the converted documents;

that is, it specifies the location (as a URI) to which the hub sends the back-end

document. This location is the same one at which the back-end system listens for

incoming messages. The destination identifies the entrance point into the enterprise

application layer (within the back-end system). Within WebSphere Partner

Gateway, it is Document Manager that checks for a destination. Once the

Document Manager has processed the document, it sends the converted document

to the back-end system at the location specified in the destination.

To define a destination within WebSphere Partner Gateway

1. Click Account Admin > Profiles.

2. Click Search to display a list of partners.

3. Select the View details icon next to the internal partner.

4. Click Destinations.

5. Click Create.

When you define the destination, you specify the transport protocol that the hub

and back-end system both use to transfer the back-end document. As Table 16 on

page 35 shows, the choice of transport protocol depends on the format of the

document. Its format includes its packaging type and business protocol, which are

defined in its document flow definition.

Note: For more information on how to create a destination in WebSphere Partner

Gateway, see the WebSphere Partner Gateway Hub Configuration Guide.

The choice of transport protocol also depends on the transport protocols your

particular back-end system supports. For more information, refer to the chapter in

this guide for integrating your particular back-end system.

Once you have selected a valid transport protocol for your document, you can

provide the other information you need to define for the destination in the

Destinations view.

Chapter 2. Planning for back-end integration 45

Defining how to process the partner document

For the Document Manager to be able to process the partner document, it must

know the format to which it needs to convert this document; that is, it needs to

know the format of the back-end document. As part of the back-end integration,

you must ensure that the following entities are defined within your WebSphere

Partner Gateway:

v Document definitions must exist to define the format of both the partner

document and the back-end document.

v The internal partner’s B2B capabilities must include enablement of the back-end

document’s document flow definition as a destination (target).

v A document flow definition interaction must exist that brings together the

partner document as the source and the back-end document as the destination.

Defining the document definition: Each document definition defines how

WebSphere Partner Gateway processes a particular document. It includes the

packaging type and business protocol of the document. WebSphere Partner

Gateway provides some predefined packaging types and protocol definitions. If

these predefined formats correctly define your partner and back-end documents,

you do not need to define any document definition. However, if the predefined

formats do not adequately define your partner or back-end document, you must

create a valid document definition for that document. To define a document flow

definition within WebSphere Partner Gateway, you use the Manage Document

Flow Definitions page (Hub Admin > Hub Configuration > Document Flow

Definition > Create Document Flow Definition).

Note: For more information on predefined document flow definitions as well as

how to create document flow definitions in WebSphere Partner Gateway, see the

WebSphere Partner Gateway Hub Configuration Guide.

For back-end integration, the packaging type of the back-end document must be

one of the following:

v None packaging

v Backend Integration packaging

You must determine which of these packaging types applies, based on the business

protocol of your document and the particular back-end system you are using. For

information on packaging types with back-end systems, see “Which packaging will

you use?” on page 23. For information on supported back-end systems, see “How

do you access your back-end application?” on page 41.

Setting the B2B capabilities for sending: Before the Document Manager can

convert the source document, it must determine whether it can handle the format

of the desired destination document. To make this determination, the Document

Manager checks the B2B capabilities of the internal partner profile, which define

which document definitions have been enabled for the internal partner. Supported

document definitions have each of their component document types (such as

packaging type, business protocol, and document type) enabled. To enable a

particular document flow definition, you use the B2B Capabilities page of

WebSphere Partner Gateway. To access this view, perform the following steps:

1. Click Account Admin > Profiles > Partner.

2. Click Search to display a list of partners.

3. Select the View details icon next to the internal partner.

4. Click B2B Capabilities.

46 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

5. For back-end integration, make sure each of the document types that will be

sent to the back-end is enabled under the appropriate packaging, protocol and

document type for the Set Target document. Under Set Target, enable each

document-type component in the document definition of the back-end

document.

6. If the hub will also be receiving documents from the back-end system, you

might want to enable B2B capabilities required while you still have the B2B

Capabilities page displayed. In this case, you enable, under Set Source, the

document-type component of the back-end document.

Note: For more information about how to set B2B capabilities in WebSphere

Partner Gateway, see the WebSphere Partner Gateway Hub Configuration Guide.

Defining the document interaction for sending: For the Document Manager to

know how to convert the partner document, it must be able to locate an interaction

that combines the document flow definitions for the partner document and the

back-end document and identifies which is the source and which is the destination

partner.

When the Document Manager is ready to send the converted document to the

back-end system, it must be able to locate a partner connection between the source

partner and the destination partner (back-end system). However, for a partner

connection to exist, a valid interaction between the source and the destination

documents must exist. To define a document flow definition interaction within

WebSphere Partner Gateway, click: Hub Admin > Hub Configuration > Document

Definition > Manage Interactions > Create Interaction.

Note: For more information about how to create document flow definition

interactions in WebSphere Partner Gateway, see the WebSphere Partner Gateway Hub

Configuration Guide.

To send documents to the back-end system, define an interaction between the

source and destination (target) documents, as summarized in Table 22.

 Table 22. Creating an interaction for sending a document

Manage Interactions section Action

Source Select the component document-types in the

partner document’s document type

definition.

Target Select the component document-types in the

back-end document’s document type

definition.

Defining how to connect to the back-end system

For the Document Manager to be able to send the converted document to the

back-end system, it must find a valid partner connection, which identifies the

source and destination partners and provides the location through which these two

partners communicate. To create a partner connection, you use the Manage

Connections page in WebSphere Partner Gateway. To access this view, click:

Account Admin > Connections.

For a partner connection to be defined, a document definition interaction between

the source and destination documents must already exist. On the Manage

Connections view, you first check for an existing interaction by specifying the

source and destination (target) partners. Table 23 lists the partners to choose on the

Chapter 2. Planning for back-end integration 47

Manage Connections page to define a partner connection for sending a document

to the back-end system.

 Table 23. Creating a partner connection for sending a document

Manage Connection dropdown list Name of external partner

Source Name of the external partner that is sending

the document to the internal partner

Target Name of the internal partner, who receives

the document from the external partner

Once you specify the Source and Target, you then click Search to check for an

existing document flow definition interaction. If no interaction exists, you must

create one before you can proceed with the creation of a partner connection. If an

interaction does exist (one whose source is the partner document flow definition

and whose target is the back-end document flow definition), you can configure the

partner connection for communication with the back-end system.

Note: For more information about how to create a partner connection in

WebSphere Partner Gateway, see the WebSphere Partner Gateway Hub Configuration

Guide.

For back-end integration, this partner connection should specify as its target

destination the destination you defined in “Defining where to send the partner

document” on page 45.

Receiving documents from the back-end system

To receive a document from the back-end system, the hub takes the following

steps:

1. Receives a document from the back-end system.

The WebSphere Partner Gateway Receiver retrieves this source document from

a receiver that has been defined in the hub for incoming messages from the

back-end system and the associated transfer protocol. When receiving a

document from the back-end system, the source document is the document that

is received from the back-end system; therefore, this document is referred to as

the back-end document.

2. Converts the back-end document to the destination (target) document, which is

in the format that the designated external partner requires.

The Document Manager performs this conversion to the destination document.

When receiving a document from the back-end system, the destination

document is the document that is sent to some external partner; therefore, this

document is referred to as the partner document.

3. Sends the partner document to the appropriate external partner.

The Document Manager sends the partner document through a destination that

has been defined in the hub for outgoing messages to the appropriate external

partner.

Therefore, for the hub to be able to receive a document from the back-end system,

you must ensure that the configuration summarized in Table 24 has been

performed within WebSphere Partner Gateway.

48 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 24. Configuration steps to receive documents from the back-end system

Configuration step WebSphere Partner Gateway steps For more information

1. Define where to retrieve the

document.

1. Create a receiver that receives

incoming messages from the back-end

system.

“Defining where to retrieve the

back-end document”

2. Define how to process the

document.

2. Create document flow definitions for

the source and destination formats.

3. Enable B2B capabilities for the

document flow definition of the

document received from the back-end

system.

4. Create a document flow definition

interaction between the source and

destination document flow definitions.

“Defining how to process the back-end

document”

3. Define how to connect to

WebSphere Partner Gateway.

5. Create a partner connection that sends

documents to WebSphere Partner

Gateway.

“Defining how to connect to

WebSphere Partner Gateway” on page

50

Defining where to retrieve the back-end document

To receive documents from the back-end system, the hub must have a receiver

defined. This receiver specifies the source of the documents; that is, it identifies the

location (as a URI) at which the hub listens for incoming documents. This location

is the same one to which the back-end system sends documents. The receiver

identifies the entrance point into the Receiver (within WebSphere Partner

Gateway). Within WebSphere Partner Gateway, it is the Receiver that receives

documents into WebSphere Partner Gateway. Once the Receiver has processed the

document, it saves the converted document to the persistent shared storage for

later retrieval by the Document Manager.

To define a receiver within WebSphere Partner Gateway, click Hub Admin > Hub

Configuration > Receivers.

Note: For more information on how to create a receiver in WebSphere Partner

Gateway, see the WebSphere Partner Gateway Hub Configuration Guide.

When you define the receiver, you specify the transport protocol that the hub and

back-end system both use to transfer the back-end document. As Table 17 on page

35 shows, the choice of transport protocol depends on the format of the document.

Its format includes its packaging type and business protocol, which are defined in

its document flow definition.

Note: The choice of transport protocol also depends on the transport protocols

your particular back-end system supports. For more information, refer to the

chapter in this guide for integrating to your particular back-end system.

Once you have selected a valid transport protocol for your document, you can

provide the other information you need to define for the receiver in the Receiver

Details view.

Defining how to process the back-end document

For the Document Manager to be able to process the back-end document, it must

know the format to which it needs to convert this document; that is, it needs to

know the format of the partner document. As part of the back-end integration, you

Chapter 2. Planning for back-end integration 49

must ensure that the entities summarized in Table 25 are defined within your

WebSphere Partner Gateway.

 Table 25. Defining how to convert the back-end document

Step For more information

1. Document definitions must exist to define

the format of both the partner document and

the back-end document.

“Defining the document definition” on page

46

2. The internal partner’s B2B capabilities

must include enablement of the back-end

document’s document definition as a source.

“Setting B2B capabilities for receiving”

3. A document definition interaction must

exist that brings together the back-end

document as the source and the partner

document as the destination.

“Defining an interaction for receiving”

Setting B2B capabilities for receiving: For a summary of B2B capabilities as they

apply to back-end integration, see “Setting the B2B capabilities for sending” on

page 46.

If you have not already done so, enable, under Set Source, the document-type

component of the back-end document.

Defining an interaction for receiving: For a summary of document flow

definitions interactions as they apply to back-end integration, see “Defining the

document interaction for sending” on page 47. This section summarizes how to

define the interaction for receiving a document from the back-end system.

To receive documents from the back-end system, define an interaction between the

document flow definitions of the source and destination (target) documents as

summarized in Table 26.

 Table 26. Creating an interaction for receiving a document

Manage Interactions section Action

Source Select the component document-types in the

back-end document’s document flow

definition.

Target Select the component document-types in the

partner document’s document flow

definition.

Defining how to connect to WebSphere Partner Gateway

For the Document Manager to be able to process the document from the back-end

system, it must find a valid connection, which identifies the source and destination

partners and provides the location through which these two partners communicate.

For a summary of connections as they apply to back-end integration, see “Defining

how to connect to the back-end system” on page 47.

Table 27 lists the partners to choose on the Manage Connections page in

WebSphere Partner Gateway to define a partner connection for receiving a

document from the back-end system.

50 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 27. Creating a partner connection for receiving a document

Manage Connection dropdown list Name of external partner

Source Name of the internal partner

Target Name of the external partner that is

receiving the document from the internal

partner

Once you specify the Source and Target, you then click Search to check for an

existing document flow definition interaction. If no interaction exists, you must

create one before you can proceed with the creation of a partner connection. If an

interaction does exist (one whose source is the back-end document flow definition

and whose target is the partner document definition), you can configure the

partner connection for communication with the back-end system.

Note: For more information about how to create a partner connection in

WebSphere Partner Gateway, see the WebSphere Partner Gateway Hub Configuration

Guide.

Chapter 2. Planning for back-end integration 51

52 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Part 2. Integrating with WebSphere Process Server

The following chapters details the procedure to integrate WebSphere Partner

Gateway with WebSphere Process Server.

© Copyright IBM Corp. 2004, 2008 53

54 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 3. Introduction to WebSphere Process Server

integration

This chapter provides an overview of integration between WebSphere Partner

Gateway and WebSphere Process Server.

Note: For a description of the general process used to integrate WebSphere Partner

Gateway with a back-end system, see Chapter 2, “Planning for back-end

integration,” on page 9.

This chapter includes the following sections:

v “Overview”

v “Planning for integration with WebSphere Process Server” on page 57

v “Overview of tasks for integrating WebSphere Partner Gateway with WebSphere

Process Server” on page 60

v “Handling Backend Integration Packaging messages” on page 61

– “BCGBackEndIntegrationDataBindingUtil class” on page 73

– “BCGBackEndIntegrationJMSDataBindingImpl class” on page 78

Overview

This section describes how WebSphere Partner Gateway can be used to provide the

B2B capabilities for WebSphere Process Server.

Note: For detailed information about WebSphere Process Server, see the

WebSphere Process Server information center.

WebSphere Process Server uses the B2B capabilities of WebSphere Partner Gateway

to manage interactions with trading partners (known, in WebSphere Partner

Gateway, as external partners). For example, suppose a service running on

WebSphere Process Server needs to send a document to an external partner.

WebSphere Process Server sends the document to WebSphere Partner Gateway,

which determines the transformation map (if any) that should be used to transform

the document into the form that the external partner is expecting. WebSphere

Partner Gateway also handles all the external partner profile information.

Now suppose WebSphere Process Server needs to send a document to multiple

external partners. The external partners receive the document in different formats.

WebSphere Process Server needs to deal with only one type of format (the one it

sends to WebSphere Partner Gateway). WebSphere Partner Gateway handles the

interaction with the external partners.

© Copyright IBM Corp. 2004, 2008 55

You can develop the transformation maps that convert the document to the format

required by the external partner, or you can import maps from the Data

Interchange Services client program.

Similarly, when WebSphere Process Server receives documents sent from external

partners, those documents are processed by WebSphere Partner Gateway. The

documents can be in a variety of formats. WebSphere Partner Gateway transforms

the documents and sends them to the destination defined for the internal partner

on WebSphere Process Server.

How WebSphere Process Server and WebSphere Partner

Gateway communicate

WebSphere Partner Gateway sends a document from an external partner to

WebSphere Process Server so that the document can be processed by a service on

WebSphere Process Server. The way a service on WebSphere Process Server makes

itself available for use by other applications (including WebSphere Partner

Gateway) is through its export binding.

The WebSphere Process Server component has an interface that describes the

service (the methods available and the input and output data) and a binding (in

this case, an export binding).

Figure 15. WebSphere Partner Gateway sends documents in multiple formats to external

partners

Service

WebSphere Partner Gateway
WebSphere Process Server

WebSphere
Partner

Gateway
Document
Manager

Export Service
Component

Figure 16. How WebSphere Partner Gateway uses the export binding to send documents to

WebSphere Process Server

56 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Figure 16 on page 56 presents a generic view of how the export binding invokes a

service on WebSphere Process Server. The transport type (for example, JMS or

HTTP) you use to send the message affects where the message is sent and how it

is retrieved, as described in “Message transports that WebSphere Process Server

supports” on page 58.

Similarly, when a service on WebSphere Process Server wants to send a business

document to an external partner, it uses its import binding. Imports identify

services outside of a module, so they can be called from within the module. In this

case, WebSphere Process Server uses the import binding to call WebSphere Partner

Gateway, which processes the document and sends it to the external partner.

Planning for integration with WebSphere Process Server

To plan for your integration with WebSphere Process Server, follow the steps

outlined in Chapter 2, “Planning for back-end integration,” on page 9.

WebSphere Process Server versions that WebSphere Partner

Gateway supports

WebSphere Partner Gateway Version 6.1 supports integration with WebSphere

Process Server Version 6.0.2.

WebSphere Process Server is available on several platforms, including Windows

2000 and several UNIX-based platforms. For more information, consult your

installation guide for WebSphere Process Server in the WebSphere Process Server

information center.

Supported installation scenarios

In the following table, each row shows a supported combination of WebSphere

Partner Gateway installations and WebSphere Process Server installations.

Note: During installation, WebSphere Partner Gateway creates separate WebSphere

Application Server profiles for each of its components. These profiles are for

WebSphere Partner Gateway use only. Do not deploy WebSphere Process Server or

any other WebSphere Application Server application into these profiles.

WebSphere Partner GatewayWebSphere Process Server

WebSphere
Partner

Gateway
Receiver

Import

Service

Service
Component

Figure 17. How WebSphere Process Server uses the import binding to invoke WebSphere

Partner Gateway

Chapter 3. Introduction to WebSphere Process Server integration 57

Table 28. Supported installation scenarios

WebSphere Partner Gateway

installation

WebSphere Process Server

installation

Details

Installed on WebSphere

Application Sever 6.1, or one

or more instances of

WebSphere Application

Server Network Deployment

6.1.

WebSphere Process Server

installer installs its supported

WebSphere Application

Server ND along with

WebSphere Process Server.

Installed on WebSphere

Application Sever 6.1, or one

or more instances of

WebSphere Application

Server Network Deployment

6.1.

Installed on the same

installation, but not the same

instance, of WebSphere

Application Server 6.1 on

which WebSphere Partner

Gateway is installed. The

profile used for WebSphere

Process Server must be

different than the one used

by WebSphere Partner

Gateway components.

This is supported only on the

platforms (operating systems

and versions) that are

supported by both

WebSphere Partner Gateway

and WebSphere Process

Server.

Message transports that WebSphere Process Server supports

When WebSphere Partner Gateway sends a message to WebSphere Process Server

over a particular message transport protocol, the transport-specific destination

defined for the internal partner sends the message to the WebSphere Process Server

end point. WebSphere Process Server retrieves the message from the end point and

processes the message. The type of message transport determines how the message

is handled after it arrives at WebSphere Process Server:

v For the JMS transport, you set up a JMS export to retrieve the message from the

JMS queue.

v For the HTTP transport, you create a servlet on WebSphere Process Server that

handles the receipt of the message from WebSphere Partner Gateway.

v For SOAP documents (which are sent over the HTTP transport protocol), you set

up a Web Service export binding in WebSphere Process Server to retrieve the

SOAP request.

v For the file-system, you set up an inbound Flat File adapter to route the message

to WebSphere Process Server.

When you send messages from WebSphere Process Server to WebSphere Partner

Gateway, you send them to the transport-specific receiver (for example, a JMS

queue or a URL) on WebSphere Partner Gateway. The type of message transport

determines how the message is sent.

v For the JMS transport, you set up a JMS import to send the message to the JMS

queue.

v For the HTTP transport, you create a component on WebSphere Process Server

that does an HTTP POST to the URL specified for the WebSphere Partner

Gateway receiver.

v For SOAP documents (which are sent over the HTTP transport protocol), you set

up a Web Service import binding in WebSphere Process Server to send the SOAP

request to a WebSphere Partner Gateway URL.

v For the file-system, you set up an outbound Flat File adapter to route the

message to a directory on WebSphere Partner Gateway.

58 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Information about sending and receiving messages using the supported transports

can be found in the following sections:

v Chapter 4, “Integrating WebSphere Process Server with HTTP as transport,” on

page 81

v Chapter 5, “Integrating WebSphere Process Server with JMS as transport,” on

page 89

v Chapter 6, “Integrating WebSphere Process Server with SOAP/HTTP,” on page

101

v Chapter 7, “Integrating WebSphere Process Server with File-system as transport,”

on page 107

Support for WebSphere Process Server integration

This section describes the samples, documentation, and utility classes that

WebSphere Partner Gateway provides to assist you with WebSphere Process Server

integration.

Samples

WebSphere Partner Gateway provides samples of using the JMS transport protocol

to assist you in the integration process with WebSphere Process Server. These

samples reside in the following subdirectory of the WebSphere Partner Gateway

product directory:

Integration/WBI/WPG/samples

Table 29 lists the subdirectories of the samples directory.

 Table 29. Samples for WebSphere Process Server integration

Type of sample Samples subdirectory

General samples JMS

RosettaNet-specific samples RosettaNet/JMS

Documentation

In addition to the information in this document, WebSphere Partner Gateway

provides the PIP Sample for WebSphere Process Server, which gives you step-by-step

instructions on how to set up a PIP flow between an external partner and

WebSphere Process Server.

Utility classes

WebSphere Partner Gateway provides two utility classes that you can use to

transform a Backend Integration packaging message into a business object or to

transform a business object into a Backend Integration packaging message:

v BCGBackEndIntegrationDataBindingUtil class

This class implements the DataBinding interface and provides utility methods to

read and write strings, streams, and byte arrays. You can use this class as is or

develop a new data binding using this class.

v BCGBackEndIntegrationJMSDataBindingImpl class

This class implements the JMSDataBinding interface. This class can be specified

in SCA JMS export and import bindings. It creates a data object from a JMS

message containing a payload or writes the data object to a JMS message.

Chapter 3. Introduction to WebSphere Process Server integration 59

Overview of tasks for integrating WebSphere Partner Gateway with

WebSphere Process Server

This section lists the tasks that you perform so that WebSphere Partner Gateway

can send documents to or receive documents from WebSphere Process Server. It

provides a foundation for the transport-specific chapters that describe how to

integrate with WebSphere Process Server.

On the WebSphere Partner Gateway system

This section provides a very brief overview of the tasks you perform to configure

the hub so that you can send documents to and receive documents from

WebSphere Partner Gateway. These tasks, which are described in detail in the

WebSphere Partner Gateway Hub Configuration Guide, are performed at the

Community Console of WebSphere Partner Gateway.

v Create a transport-specific receiver on the hub to receive documents sent to the

hub from WebSphere Process Server or from external partners.

v Create an Internal Partner profile (if one does not already exist), including a

transport-specific destination that WebSphere Partner Gateway will use to send

documents to WebSphere Process Server.

v Create External Partner profiles, including transport-specific destinations that

WebSphere Partner Gateway will use to send documents to the partners.

v Import any WSDL files, transformation maps, RosettaNet packages, or other

document definition mechanisms so that a document definition for the type of

document you are exchanging displays on the Document Flow Definition page

of the WebSphere Partner Gateway Community Console.

v Create interactions between the types of document the hub will receive (from

WebSphere Process Server or from an external partner) and the types of

documents the hub will send (to WebSphere Process Server or to the external

partners).

v Create B2B capabilities in the profiles of the internal partner and external

partners to indicate the types of documents they are able to send and receive.

v Create partner connections between the internal partner and external partners to

indicate the source partner (the sender of the document), the target partner (the

recipient of the document), and the action that the hub should take (if any) to

transform the document.

On the WebSphere Process Server system

The module is the WebSphere Process Server artifact used to assemble and deploy

a service. The first step, then, is to create a module, using the WebSphere

Integration Developer.

After the module is created, you create the components and their interfaces and

then specify the binding used.

1. Specify an interface for the component. You can import an interface (for

example, you can import an existing WSDL file), or you can create the

interface.

When you create an interface, you define one or more operations performed by

the component, and you define the inputs and outputs expected by the

component.

60 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

An interface for a component can be a WSDL or you can use a Java

implementation for the interface. Refer to the WebSphere Process Server

documentation for information on when to create a WSDL interface and when

to create a Java interface.

2. Specify an implementation for the component. You can import an

implementation (for example, you can import an existing Java program), or you

can create the implementation.

3. Compose the application using the Assembly Editor of WebSphere Integration

Developer. You create a service component, and then specify the interface for

the component (which you created or imported in step 1 on page 60). You also

specify the implementation (which you created or imported in step 2).

4. Create an export binding to allow WebSphere Partner Gateway to send a

document to the service, or create an import binding to allow WebSphere

Process Server to send a document to WebSphere Partner Gateway.

When you create the binding, you specify information needed to send and

receive documents. For example, in the JMS Binding definition, you indicate the

JMS queue and bus as well as the data binding that should be used to

transform a business document to or from a business object. (See “Handling

Backend Integration Packaging messages” for information on the use of and

requirements for data binding.) The transport-specific requirements for the

service bindings are described in subsequent chapters.

5. When you have finished assembling the components that make up the module,

you deploy the module.

Handling Backend Integration Packaging messages

For certain protocols such as RosettaNet, WebSphere Partner Gateway expects

backend applications to use Backend Integration packaging. WebSphere Partner

Gateway supports Backend Integration packaging over HTTP and JMS protocols.

This requires WebSphere Process Server services be able to handle Backend

Integration packaging messages. WebSphere Process Server services use business

objects. Therefore, to send Backend Integration packaging messages to WebSphere

Partner Gateway, WebSphere Process Server services have to serialize business

objects into Backend Integration packaging messages. Similarly to receive Backend

Integration packaging messages from WebSphere Partner Gateway, WebSphere

Process Server services have to deserialize backend integration packaging message

into business objects.

This section describes the data binding utility API and JMS data binding that

WebSphere Partner Gateway provides, which can be used by WebSphere Process

Server services for handling Backend Integration packaging messages.

Data binding refers to the mechanism used to:

v Transform a business object, sent from WebSphere Process Server, into a business

document that WebSphere Partner Gateway can process

v Transform a business document, sent from WebSphere Partner Gateway, into a

business object that WebSphere Process Server can process

The WebSphere Partner Gateway-provided Backend Integration packaging data

binding utility API and JMS data binding provide a way to create a Backend

Integration packaging message from a business object or to convert a Backend

Integration packaging message into a business object. The WebSphere Partner

Gateway-provided data binding can be used as is when you are sending and

receiving documents with Backend Integration packaging. Or, if you want to

Chapter 3. Introduction to WebSphere Process Server integration 61

customize the processing, you can create your own data binding using the data

binding utility API provided by WebSphere Partner Gateway.

JMS transport

If you are using JMS as your transport protocol and you are sending or receiving

an XML document that does not have BackEnd Integration packaging (in other

words, it has a packaging of None specified), you can use the default JMS binding

provided by WebSphere Process Server or you can use the WebSphere Process

Server-provided business object APIs to create your own data binding. If you are

sending or receiving a document other than XML that does not have BackEnd

Integration packaging (in other words, it has a packaging of None specified), you

have to create your own data binding. You select the JMS binding when you

configure the SCA (Service Component Architecture) JMS Export or Import

binding. Refer to the WebSphere Process Server information center for more

information on using the default JMS binding.

If you are using JMS as your transport protocol and you are sending or receiving

documents with BackEnd Integration packaging, you can use the

BCGBackEndIntegrationJMSDataBindingImpl data binding as is, or, if you want to

customize the processing, you can create your own data binding using

BCGBackEndIntegrationJMSDataBindingImpl. To use

BCGBackEndIntegrationJMSDataBindingImpl, you configure it as the data binding

in the SCA JMS Export Binding and JMS Import Binding.

v For request processing, the export invokes the read method of the

JMSDataBinding interface to convert the Backend Integration packaging JMS

message from WebSphere Partner Gateway into a business object. For

request-response processing, the export might also invoke the write method.

v For request processing, the import invokes the write method of the

JMSDataBinding interface to construct a Backend Integration packaging JMS

message from a business object before the message is sent to WebSphere Partner

Gateway. For request-response processing, the import might also invoke the read

method to read the response provided by the service.

Refer to the WebSphere Process Server information center for more information

about how and when methods of data binding are called.

HTTP transport

If you are using HTTP as your transport protocol, you can write an HTTP data

binding class that extends and overrides the generic

BCGBackEndIntegrationDataBindingUtil class.

v An HTTP servlet can invoke methods of BCGBackendIntegrationDataBindingUtil

to construct a business object from the HTTP stream that is sent from WebSphere

Partner Gateway. The servlet can then use this business object to invoke a

service.

v A component can be written to perform an HTTP POST to WebSphere Partner

Gateway. A service can then invoke this component with the business object. If

the component requires a Backend Integration packaging message, it can use the

BCGBackendIntegrationDataBindingUtil class to construct the message from the

business object.

Note: WebSphere Partner Gateway supports request-only invocations for Backend

Integration packaging. You can, however, develop request-response flows with

Backend Integration packaging data binding (via WebSphere Partner Gateway user

62 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

exits). This utility class can be used as the basis for converting a response business

object into a response stream or for converting a response stream into a response

business object.

Top-level and child business objects

This section describes the top-level business object and the child business objects

used by Backend Integration data binding.

Top-level business object

To use Backend Integration packaging data binding, you create a top-level business

object that has three child attributes:

 Table 30. Top-level business object

Attribute Type

payload This attribute is of type payload container

business object. It can be of any type but

must have the properties specified in

Table 31 on page 64 or Table 32 on page 65

attachment This attribute is of type attachment container

business object. It can be of any type but

must have the properties specified in

Table 33 on page 65

packagingHeaders This attribute is of type packaging header

business object. It can be of any type but

must have the properties specified in

Table 34 on page 66

When a Backend Integration packaging message is converted to a top-level object,

the top-level object is populated with the data from the message. When a top-level

object is converted to a Backend Integration packaging message, the top-level

object is the input to the data binding.

The following illustration shows the top-level business object and its child objects:

Chapter 3. Introduction to WebSphere Process Server integration 63

Payload Container business object

The structure of the payload container business object depends on whether the

payload is XML or non-XML.

XML payloads: If the payload is XML, the payload container has the following

properties:

 Table 31. Payload container object for XML payloads

Attribute Type

contentType xsd:string

encoding xsd:string

role xsd:string

schema xsd:string

schemaVersion xsd:string

description xsd:string

dataBytes xsd:base64Binary

Figure 18. Top-level business object

64 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 31. Payload container object for XML payloads (continued)

Attribute Type

payload A reference to the payload business object.

For example, if the payload itself is

contained in a Pip3A4PurchaseOrderRequest

object, the payload attribute is of type

PIP3A4PurchaseOrderRequest.

“Creating business objects for RosettaNet service content” on page 67 describes

how to create a business object for a PIP.

Non-XML payloads: If the payload is not XML, the payload container has the

following properties:

 Table 32. Payload container object for non-XML payloads

Attribute Type

contentType xsd:string

encoding xsd:string

role xsd:string

schema xsd:string

schemaVersion xsd:string

description xsd:string

dataBytes xsd:base64Binary

dataString xsd:string

The payload is the value of dataBytes or dataString.

v If your payload is not XML, while converting the Backend Integration packaging

message into a top-level object, the Backend Integration packaging data binding

will not convert the value of the <payload> element from the message into the

payload business object. Instead, it will set the value of the dataBytes (or

dataString) attribute of the payload container business object as the bytes (or

string) value of the payload.

v Similarly, while constructing the Backend Integration packaging message from a

top-level object, the Backend Integration packaging data binding will set the

contents of the dataBytes (or dataString) attribute of the payload container

business object as the value of the <payload> element of the Backend Integration

packaging message.

The attributes Role, Schema, SchemaVersion and Description are added in

wbipackaging 1.2. This is only used in ebXML flow. The value of these attributes

for a payload will be set as value of the corresponding attributes in ebXML Soap

message for that payload.

Attachment Container business object

This business object represents an attachment. It can be of any complex type;

however it must have the following attributes:

 Table 33. Attachment container business object attributes

Attribute Type

contentID xsd:string

contentType xsd:string

Chapter 3. Introduction to WebSphere Process Server integration 65

Table 33. Attachment container business object attributes (continued)

Attribute Type

encoding xsd:string

role xsd:string

schema xsd:string

schemaVersion xsd:string

description xsd:string

dataBytes xsd:base64Binary

dataString xsd:string

The attachment is the value of dataBytes or dataString.

Packaging header business object

This business object holds the transport-level headers. The x-aux transport headers

are described in “Transport-level header content” on page 24. This business object

must have the following attributes.

 Table 34. Packaging header business object attributes

Attribute Type

x-aux-sender-id string

x-aux-receiver-id string

x-aux-protocol string

x-aux-protocol-version string

x-aux-process-type string

x-aux-process-version string

x-aux-create-datetime string

x-aux-msg-id string

x-aux-production string

x-aux-system-msg-id string

x-aux-payload-root-tag string

x-aux-process-instance-id string

x-aux-event-status-code string

x-aux-third-party-bus-id string

x-aux-transport-retry-count string

x-aux-SyncResponse string

x-aux-IntelligibleCheckRequired string

x-aux-TimeToAccept string

x-aux-role string

x-aux-role-schema string

x-aux-role-schema-version string

x-aux-description string

content-type string

content-length string

66 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Creating business objects for RosettaNet service content

Backend Integration packaging data binding requires a top-level object. You can

create the top level object as described in “Top-level business object” on page 63.

WebSphere Partner Gateway expects RosettaNet service content XML as the

payload of the Backend Integration packaging message. To create the payload

container object, you need a payload business object that represents the RosettaNet

service content XML. You can create the RosettaNet service content business object

using one of the following approaches:

v If the structure of the PIP service content provided by RosettaNet is in XML

schema format, this XML schema can be used as your payload business object.

v If the structure of the PIP service content provided by RosettaNet is in DTD

format, you need to convert this DTD into XML schema. To convert PIP service

content DTD into XML schema, follow the procedure in WebSphere Partner

Gateway Hub Configuration Guide. This XML schema can be used as your payload

business object.

v Alternatively, if the PIP is in DTD format and a WebSphere Partner

Gateway-provided PIP package exists for the PIP, follow this procedure to create

the PIP service content business object.

1. Navigate to the RosettaNet service content PIP package for the RNIF version

you are interested in. For example, if you want to create a

PIP3A4PurchaseOrderRequest business object, you can use the

BCG_Package_RNSC1.0_RNIFV02.02.zip file in the WebSphere Partner

Gateway product directory.

2. Using WebSphere Integration Developer, import the ZIP file into the

WebSphere Process Server modules you have set up for the PIP.

3. Expand the Data Types folder and right-click the business object that

corresponds to the root element of your service content. For example, in the

case of a PIP 3A4 request, right-click the Pip3A4PurchaseOrder from the

Data Types folder; then select Open with the Text Editor.

4. In the text editor, change the includes as follows.

../../common/

to

./

5. Save your changes, and close the text editor.

How the Backend Integration packaging data binding works

This section provides a description of how Backend Integration data binding

creates a Backend Integration packaging message from a business object or creates

a business object from an incoming message.

Backend Integration packaging message to top-level object

conversion

This section describes how a Backend Integration packaging message is converted

to a business object that can be used by services on WebSphere Process Server.

As mentioned in “Top-level and child business objects” on page 63, Backend

Integration packaging data binding works with a specific type of top-level business

object. You must create this business object before you can use the data binding.

The top-level business object is described in “Top-level business object” on page 63.

Chapter 3. Introduction to WebSphere Process Server integration 67

Types of messages: The way the Backend Integration packaging message from

WebSphere Partner Gateway is converted depends upon the type of message. The

message can be one of three types:

v An XML message with a root tag of <transport envelope> and a URI of

“http://www.ibm.com/websphere/bcg/2003/v1.1/wbipackaging” or

″http://www.ibm.com/websphere/bcg/2003/v1.0/wbipackaging” .

An example of a message inside a transport envelope is:

<transport-envelope

 xmlns="http://www.ibm.com/websphere/bcg/2003/v1.1/wbipackaging">

 <payload encoding="base64" contentType="application/xml"

contentId=”111111111111”>

 ...base64 encoded XML message...

 </payload>

 <attachment encoding="base64" contentType="text/xml"

contentId=”2222222222222”>

 ...base64 encoded XML attachment...

 </attachment>

 <attachment encoding="base64" contentType="application/pdf"

contentId=”3333333333”>

 ...base64 encoded PDF attachment...

 </attachment>

</transport-envelope>

v Any other XML message

v A non-XML message

Methods used to convert the message: To convert a Backend Integration

packaging JMS message into a top-level object, you use the read method of

BCGBackEndIntegrationJMSDataBindingImpl.

To convert a Backend Integration packaging message into a top-level object, you

can use the following methods of BCGBackEndIntegrationDataBindingUtil:

v read():

If your Backend Integration packaging message is contained in an input stream,

you can use this method.

v setFromByteArray:

If your Backend Integration packaging message is contained in a byte array, you

can use this method.

v setFromString

If your backend integration packaging is contained in a string, you can use this

method.

Before calling any of these methods, you can customize the processing of data

binding by calling the following methods:

v setTLOTypeName()

You can use setTLOTypeName on the object to name it and to specify its URI.

v setBOPrefix()

You can use setBOPrefix to specify the business object prefix. If you have not

done this, the default prefix of TLO_ is used.

– If the payload business object type can be determined, the top-level object is:

<BOPrefix><PayloadBOTypeName>.

– If the payload business object is not determined (for non-XML payloads), the

name is BCG_TLO_BackendPackaging (the default).

If you specify both setTLOTypeName and setBOPrefix, setBOPrefix is ignored.

68 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

For non-XML payloads, if you do not specify the top-level object name by calling

setTLOTypeName before calling the read method, the default top-level object is

used. The payload is not converted into a payload business object. Instead, the

data bytes are set as is in the default top-level object. The default top-level object is

shown in Figure 19.

 If the message has transport headers, you need to read those transport headers and

set them using setxAuxHeaders (). The setxAuxHeaders method must be called

before calling read(). The setxAuxHeaders method does not apply to the

BCGBackEndIntegrationJMSDataBindingImpl data binding, because the JMS

transport headers will be read from the given JMS message in the read method.

How messages are converted: The following section describes how the read,

setFromByteArray, and setFromString methods of

BCGBackEndIntegrationDataBindingUtil and the read method of

BCGBackEndIntegrationJMSDataBindingImpl work. The method:

1. Determines the XML content type from the Content-type header (if it is

available in the message). For example:

Content-Type: application/xml

If the contentType is not available, the method inspects the first few bytes of

the message to determine its type.

The method obtains the payload based on the content type, as follows:

v For an XML message, it deserializes the message to obtain the payload

business object.

Figure 19. Default top-level business object

Chapter 3. Introduction to WebSphere Process Server integration 69

v For an XML message that has a root tag of <transport envelope>, it Base64

decodes the payload to obtain the payload bytes, and parses the message to

determine whether it is XML or non-XML.

– If the message is XML, it deserializes the payload bytes to obtain the

payload business object.

– If the message is not XML, it does not deserialize the payload bytes. The

payload bytes are used as is.
For each attachment contained within the transport envelope, it Base64

decodes the attachment to obtain the attachment bytes. The attachment bytes

are used as is; they are not deserialized.

v For an XML message that has a root tag of <EventNotification>, it

deserializes the message to obtain the event-notification business object.

v For a message that is not XML, it does not deserialize the message. The bytes

are used as is.
2. Determines the name of the top-level business object.

v If the payload is XML:

– If setTLOTypeName was invoked before calling read, setFromByteArray,

or setFromString, the name specified in the method is directly used to

create the top-level name.

– If you use setBOPrefix, the top-level object name is made up of the prefix

you specify plus the XML root element of the payload. The URI is also

obtained from the payload.

– If you do not use setTLOTypeName or setBOPrefix, the top-level object

name is made up of the default prefix TLO_ plus the XML root element of

the payload.
v If the payload is not XML:

– The default top-level object can be used.

– The setTLOTypeName method can be used, but it must conform to the

top-level object you created or to the default top-level object

(BCG_TLO_BackendPackaging).
3. Instantiates the top-level object.

4. Instantiates the payload container business object and set its values. The way

the values are set depends upon the type of message.

v For an XML message with a root tag of <transport envelope>, the attributes

are set as follows:

– contentType

The value of the contentType attribute of the <payload> tag.

– encoding

The value of the encoding attribute of the <payload> tag.

– payload

The name of the payload business object.
v For an XML message or an XML message with a root tag of <event

notification>, the attributes are set as follows:

– contentType is not set

– encoding is not set

– payload

The name of the payload business object.
v For a non-XML message, the attributes are set as follows:

– contentType is not set

70 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

– encoding is not set

– dataBytes

If the incoming message is received as bytes, the entire set of bytes is set

as the value of this attribute.

– dataString

If the incoming message is received as a string, the entire string is set as

the value of this attribute.

– payload is not set.
5. Instantiates the attachment business objects and set their values as follows:

v contentType

The value of the contentType attribute of the <attachment> tag.

v encoding

The value of the encoding attribute of the <attachment> tag.

v contentId

The value of the contentId attribute of the <attachment> tag.

v dataBytes

The Base64-decoded attachment bytes.
6. Instantiates the transport headers business object and sets the transport headers

read from the message. The name of this business object is set as the value of

the packagingHeaders attribute in the top-level object.

Example code shows how the methods are used.

Top-level object to Backend Integration packaging message

conversion

This section describes how a business object from WebSphere Process Server is

serialized into a Backend Integration packaging message. The data binding puts

the content and any attachments into a transport envelope in Base64 format. It also

puts the transport headers from the top-level object into the envelope as a string.

Before invoking backend integration packaging data binding, a service has to

create a top-level object, as described in “Top-level business object” on page 63.

Methods used to convert the object: A WebSphere Process Server service invokes

the Backend Integration packaging data binding, sending it the top-level object. To

convert the object into a Backend Integration packaging JMS message, you use the

write method of BCGBackEndIntegrationJMSDataBindingImpl. To convert the

object into a Backend Integration packaging message, you use the write,

getAsByteArray, or getAsString method of

BCGBackEndIntegrationDataBindingUtil.

Before calling one of these methods, you can call:

v The setPackagingSchema method

This method specifies which packaging schema to use in constructing the

Backend Integration packaging message.

v The setOptions method

This method provides information (such as the root tag of the payload) that can

be used to serialize the message. For the options you can set, see “setOptions

method” on page 76.

Chapter 3. Introduction to WebSphere Process Server integration 71

How objects are converted: The following section describes how the write,

getAsByteArray, and getAsString methods of

BCGBackEndIntegrationDataBindingUtil and the write method of

BCGBackEndIntegrationJMSDataBindingImpl work. The method:

1. Determines the content type of the payload. This information is obtained from

the payload container business object. The way the payload is processed is

based on its content type, as follows:

v XML payload

The dataBytes or dataString attribute of the payload container (if present)

must be null and the payload container business object should have at least

one attribute that is of complex type. This is a reference to the payload

business object. The business object is serialized and is used as the XML

payload. If there are more attributes of complex type set, the first complex

type attribute is considered to be the XML payload.

v EventNotification

The first non-null attribute should be of type EventNotification. This is a

reference to the event notification business object. The business object is

serialized and is used as the XML payload.

v Non-XML

If the dataBytes attribute is not null, the value of the attribute is used as the

payload.

If the dataString attribute is not null, the value of the attribute is used as the

payload.
2. Serializes the payload business object if it is of type XML or EventNotification.

3. Base64 encodes the payload, based on its type:

If the payload container business object has a non-null value for the dataByte

attribute, that value (the payload bytes) is Base64 encoded.

If the payload container business object has a non-null value for the dataString

attribute, the bytes are extracted based on the contentType attribute of the

business object. The bytes are then Base64 encoded.

If the payload was serialized from a business object, the bytes are extracted

based on the contentType attribute of the business object. The bytes are then

Base64 encoded.

4. Constructs an XML document based on the packaging schema specified.

a. The <transport envelope> root tag is added.

b. The <payload> tag, which is a child element of the <transport envelope>

tag, is set with the base64-encoded string from step 3.
5. Processes any attachments.

If the attachment container object has a dataByte attribute that is not null, the

bytes are base64-encoded, and the string is set as the value of the <attachment>

tag.

If the attachment container object has a dataString attribute that is not null, the

bytes are extracted based on the contentType attribute of the business object.

The bytes are then base-64-encoded, and the string is set as the value of the

<attachment> tag.

72 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Example code shows how the methods are used.

BCGBackEndIntegrationDataBindingUtil class

This section describes the BCGBackEndIntegrationDataBindingUtil class and the

methods of the class. You can use this class as it is, or, if you want to customize

the processing of the data binding, you can create a new data binding class.

DataBinding interface

BCGBackEndIntegrationDataBindingUtil implements the following DataBinding

interface:

DataBinding

public interface commonj.connector.runtime.DataBinding extends Serializable {

 public DataObject getDataObject()throws

commonj.connector.runtime.DataBindingException;

 public void setDataObject(DataObject dataObject) throws

commonj.connector.runtime.DataBindingException;

}

Methods

The BCGBackEndIntegrationDataBindingUtil methods are described in this section.

The BCGBackEndIntegrationDataBindingUtil class has two types of methods:

v Those that create a data object from a byte array, string, or data stream:

– read(InputStream)

– setFromByteArray(byte[])

– setFromString(String)

– setxAuxHeaders(HashMap)

– setBOPrefix(String)

– setTLOTypeName(String, String)

– getDataObject()

Serialized
and Base-64

encoded string

Payload
Business

Object

Attachment
Business

Object

Base-64
encoded string

Backend Integration
Packaging Data Binding

Backend Integration
Packaging Data Binding

<payload>

<payload>

<attachment>

<attachment>

2 1

4

3

6

5

Figure 20. How data binding adds converted business objects to the Backend Integration

packaging message

Chapter 3. Introduction to WebSphere Process Server integration 73

Notes:

1. You can use one of the following methods to create the data object:

– read(InputStream)

– setFromByteArray(byte[])

– setFromString(String)
Before calling the method to create the data object, the program can invoke

any of the following methods:

– setxAuxHeaders

– setBOPrefix

– setTLOTypeName
2. If the setTLOTypeName method is used, the setBOPrefix method has no

significance and is ignored.

3. Use the getDataObject method to obtain the top-level business object.
v Those that convert a data object into a byte, string, or data stream:

– setDataObject(DataObject)

– setPackagingSchema(String)

– setOptions(HashMap)

– getAsString()

– getAsByteArray()

– write(OutputStream)

– getxAuxHeaders()

getAsByteArray method

This method returns the byte[] obtained from the top-level object.

Syntax:

public byte[] getAsByteArray()

getAsString method

This method returns a string form of the top-level object.

Syntax:

protected java.lang.String getAsString()

getDataObject method

This method returns the data object, if it has already been instantiated.

Syntax:

public commonj.sdo.DataObject getDataObject()

getxAuxHeader method

This method returns the x-aux headers from the transport envelope. See

“Transport-level header content” on page 24 for information about the x-aux

headers.

Syntax:

public java.util.HashMap getxAuxHeaders()

74 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

read method

This method takes an input stream, reads this stream, and converts it to a top-level

business object. The actions taken by the read method are described in detail in

“Backend Integration packaging message to top-level object conversion” on page

67.

Syntax:

public void read(java.io.InputStream inputStream)

 throws commonj.connector.runtime.DataBindingException

Parameter:

inputStream

The input stream from which the data will be read.

setBOPrefix method

If the top-level object was not specified, you may specify a prefix by calling

setBOPrefix (). If you do not specify a prefix, TLO_ is used as the default prefix.

Notes:

1. In the case of an XML payload, the namespace of the XML payload is used as

the namespace of the top-level object.

2. In the case of a non-XML payload, the default namespace ″http://ibm.com/
websphere/bcg/2005/wbi/bo″ is used as the namespace for the top-level

object.

Syntax:

public void setBOPrefix(java.lang.String prefix)

setDataObject method

This method sets the data object.

Syntax:

public void setDataObject(commonj.sdo.DataObject topLevelbo)

 throws commonj.connector.runtime.DataBindingException

Parameter:

topLevelbo

The top-level business object. See “Top-level business object” on page 63 for

information.

setDebugLevel method

By default, the debug level is set to error. Use this method to change the level.

Syntax:

public static void setDebugLevel(int debugLevel)

Parameter:

debugLevel

Possible values for the debug level are:

v BCG_LOG_DEBUG

v BCG_LOG_ERROR

v BCG_LOG_WARNING

v BCG_LOG_INFO

Chapter 3. Introduction to WebSphere Process Server integration 75

setFromByteArray method

This method takes the payload data bytes or transport-envelope data bytes and

creates a top-level object. Before calling this method, you may call one or more of

the following methods:

v setTLOTypeName method

v setBOPrefix method

v setxAuxHeader method

Syntax:

public void setFromByteArray(byte[] dataBytes)

 throws commonj.connector.runtime.DataBindingException

Parameter:

dataBytes

The payload in the form of bytes.

setFromString method

This method takes a string as a parameter and converts it to a top-level object.

Before calling this method, you may call one or more of the following methods:

v setTLOTypeName method

v setBOPrefix method

v setOptions method

Syntax:

public void setFromString(java.lang.String fromString)

 throws commonj.connector.runtime.DataBindingException

Parameter:

fromString

The string form of the top-level data object or payload.

setOptions method

This method sets the required options.

Syntax:

public void setOptions(java.util.HashMap options)

 throws commonj.connector.runtime.DataBindingException

Parameter:

Hashmap

Hashmap can have the following key values:

v BCG_ROOT_NODE_NAME

This is the root name to be used to generate the payload.

v BCG_APPEND_DTD

This attribute indicates whether to append a DTD tag to the payload. The

value can be BCG_APPEND_DTD_TRUE or BCG_APPEND_DTD_FALSE.

The default is BCG_APPEND_DTD_FALSE.

v BCG_SYSTEM_ID

This is the system ID for the DTD. If the value of BCG_APPEND_DTD is

BCG_APPEND_DTD_TRUE, this value may be set. If the value of

BCG_APPEND_DTD is BCG_APPEND_DTD_FALSE, this value is ignored.

v BCG_PUBLIC_ID

76 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

This is the public ID for the DTD. If the value of BCG_APPEND_DTD is

BCG_APPEND_DTD_TRUE, this value is optional. If the value of

BCG_APPEND_DTD is BCG_APPEND_DTD_FALSE, this option is ignored.

setPackagingSchema method

This method defines the packaging schema to use when generating Backend

Integration packaging. You can specify one of the following packaging schemas:

v http://www.ibm.com/websphere/bcg/2003/v1.0/wbipackaging

v http://www.ibm.com/websphere/bcg/2003/v1.1/wbipackaging

v http://www.ibm.com/websphere/bcg/2004/v1.2/wbipackaging

If the packaging schema is not specified, http://www.ibm.com/websphere/bcg/
2003/v1.1/wbipackaging is used.

The packaging schema is used when you call the write method.

Syntax:

public void setPackagingSchema(java.lang.String packagingSchema)

Parameter:

packagingSchema

The schema name for the top-level business object.

setTLOTypeName method

This method sets the top-level object name and its name space.

v If the payload is not XML and setTLOTypeName is not used, the default

top-level object name is used.

v If the payload is an XML document, the top-level object name is derived as

follow:

boPrefix + < RootTag of the XML Payload >.

For example, if setBOPrefix(″IBM″) is called, and the root element of the payload

is ″ABC″, the top-level name is ″IBM_ABC″.

The prefix can be set using the setBOPrefix method. If the top-level object name

is not set and the payload is an XML doc, you must create a DataType of type

boPrefix + < RootTag >.

Syntax:

public void setTLOTypeName(java.lang.String tns,

 java.lang.String typeName)

Parameters:

tns

Namespace of the top-level business object.

typeName

The top-level object type.

setxAuxHeader method

This method sets the transport headers. If no transport headers are set, there are no

transport headers to read. See “Transport-level header content” on page 24 for

information about the x-aux headers.

Syntax:

public void setxAuxHeaders(java.util.HashMap xAuxHeaders)

Chapter 3. Introduction to WebSphere Process Server integration 77

write method

This method writes the top-level object into the specified output stream. The

actions taken by the write method are described in detail in “Top-level object to

Backend Integration packaging message conversion” on page 71.

Syntax:

public void write(java.io.OutputStream outputStream)

 throws commonj.connector.runtime.DataBindingException

Parameter:

outputStream

The output stream to which the data object will be written.

Example code

The following code shows how to create a top-level object from an input stream:

BCGBackEndIntegrationDataBindingUtil util = BCGBackEndIntegrationDataBindingUtil ();

util.setTLOTypeName ("TLO_URIName","TLOName");

//util.setBOPrefix ("BO_prefix");

//setBoPrefix is commented because setTLOTypeName () is being used

util.read (inputStream);

DataObject tlo = util.getDataObject ();

The following code shows how to get a stream from a data object:

BCGBackEndIntegrationDataBindingUtil util = BCGBackEndIntegrationDataBindingUtil ();

util.setOptions (options);

util.setDataObject (tlo);

byte [] tlo_bytes = util.getAsByteArray ();

BCGBackEndIntegrationJMSDataBindingImpl class

This class creates a business object from a JMS message containing a payload or

writes the business object to a JMS message. When it reads the business object

from a JMS message, the JMS transport headers are read before the business object

is created. When it writes the business object to a JMS message, this class writes

JMS transport headers if the business object has a packaging headers child business

object.

BCGBackEndIntegrationJMSDataBindingImpl extends

BCGBackEndIntegrationDataBindingUtil, which is described in

“BCGBackEndIntegrationDataBindingUtil class” on page 73.

JMSDataBinding interface

BCGBackEndIntegrationJMSDataBindingImpl implements the JMSDataBinding

interface:

public interface com.ibm.websphere.sca.jms.data.JMSDataBinding extends DataBinding {

 public void read(javax.jms.Message message) throws javax.jms.JMSException;

 public void write(javax.jms.Message message) throws javax.jms.JMSException;

 public int getMessageType();

 static public int OBJECT_MESSAGE = 0;

 static public int TEXT_MESSAGE = 1;

 static public int BYTES_MESSAGE = 2;

 static public int STREAM_MESSAGE = 3;

 static public int MAP_MESSAGE = 4;

}

78 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Methods

The BCGBackEndIntegrationJMSDataBindingImpl methods are described in this

section.

getMessageType

This method returns the type of message.

Syntax:

public int getMessageType()

isBusinessException

This method returns an indication of whether there are any business exceptions.

Syntax:

public boolean isBusinessException()

read

This method reads the transport headers and, depending on the message type,

creates the top-level business object. The actions taken by the read method are

described in detail in “Backend Integration packaging message to top-level object

conversion” on page 67.

In this method, there is no need to set the AuxHeaders and read from the message

itself.

Syntax:

public void read(javax.jms.Message jmsMessage)

 throws javax.jms.JMSException

Parameter:

jmsMessage

The message containing the payload and transport headers.

setBusinessException

This method sets an indicator of whether a business exception has occurred.

Syntax:

public void setBusinessException(boolean arg0)

write

This method writes the data object to the message, and, depending on the message

type, sets the headers in the message. The actions taken by the write method are

described in detail in “Top-level object to Backend Integration packaging message

conversion” on page 71.

Syntax:

public void write(javax.jms.Message jmsMessage)

 throws javax.jms.JMSException

Including data-binding classes in your component implementation

While developing WebSphere Process Server components using WebSphere

Integration Developer, you can use the WebSphere Partner Gateway-provided

BCGBackEndIntegrationJMSDataBindingImpl and

BCGBackEndIntegrationDataBindingUtil classes. These classes are available in

Chapter 3. Introduction to WebSphere Process Server integration 79

databinding.jar, which is located in the Integration\WBI\WebSphereProcessServer\
DataBinding directory on the product image.

To use these classes in your Business Integration project, you need to make sure

databinding.jar is available in the EAR file of the Business Integration project you

will deploy to WebSphere Process Server. To include the databinding.jar file in

your generated EAR file, you can refer to the WebSphere Process Server and

WebSphere Integration Developer information centers, or you can follow the

procedure in this section. Before following this procedure, make sure you are in the

Business Integration Perspective and that you have created the Business Integration

project in which you are trying to import this jar file.

1. From WebSphere Integration Developer, import databinding.jar into your

project. You need to import databindng.jar as ″J2EE Utility jars″. After a

successful import, WebSphere Integration Developer will implicitly create a

project for databinding.jar

2. Add this project as a dependency to your Business Integration project. To add

the project as a dependency:

Note: The following is an example of one way to add the project as a

dependency. Refer to the WebSphere Process Server documentation for

information on other ways to do to this.

a. Double-click on your business integration project.

This step opens the dependency editor.

b. Expand the Java folder.

c. Click the Add button.

The list of projects is displayed.

d. Select the project that was implicitly created by WebSphere Integration

Developer for databinding.jar in step 1.

The project created by WebSphere Integration Developer for databinding.jar

is displayed as a dependency under Java.

e. Select the project.

f. Select the Deploy with Module check box.
3. Close the dependency editor and save the workspace.

After you complete these steps, databindng.jar will be available in your generated

EAR file.

80 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 4. Integrating WebSphere Process Server with HTTP

as transport

This chapter describes how to integrate WebSphere Partner Gateway with

WebSphere Process Server over the HTTP transport protocol. This chapter provides

the following information:

v “How messages are sent to WebSphere Process Server”

v “How messages are sent from WebSphere Process Server” on page 83

v “Sending documents to WebSphere Process Server” on page 85

v “Sending documents from WebSphere Process Server” on page 86

This chapter does not describe how SOAP requests sent over HTTP are processed.

For information about sending and receiving SOAP requests over HTTP, see

Chapter 6, “Integrating WebSphere Process Server with SOAP/HTTP,” on page

101.

How messages are sent to WebSphere Process Server

This section describes how WebSphere Partner Gateway receives a message from

an external partner and sends the message to WebSphere Process Server over

HTTP.

Notes:

1. All document types except RosettaNet can have a packaging of None when

sent from WebSphere Partner Gateway to WebSphere Process Server.

RosettaNet documents must have Backend Integration packaging.

2. All document types except SOAP (Web service requests) can have a packaging

of Backend Integration when sent from WebSphere Partner Gateway to

WebSphere Process Server. SOAP requests must have a packaging of None

specified.

For information about sending and receiving SOAP documents over HTTP, see

Chapter 6, “Integrating WebSphere Process Server with SOAP/HTTP,” on page

101.

In order for WebSphere Process Server to receive a message sent from WebSphere

Partner Gateway, you must write a servlet to retrieve the message and convert it to

a business object.

WebSphere Partner Gateway sends messages to the URL configured in the internal

partner’s ″To″ HTTP destination in the partner connection. The servlet is listening

on this URL and receives the message. The service that will receive the converted

business document has an SCA export binding. Figure 21 on page 82 shows how a

message sent from an external partner is processed by WebSphere Partner Gateway

and then sent to the HTTP servlet where, via the export binding, the business

object invokes the service.

© Copyright IBM Corp. 2004, 2008 81

The HTTP servlet performs the following tasks:

1. From the request message it receives, the servlet determines which service and

which method of that service need to be invoked.

2. The HTTP servlet constructs a business object from the incoming message, as

described in “Creating a servlet” on page 86.

3. The HTTP servlet invokes the service using the appropriate SCA client API:

a. If the SCA service method is request-only, there is no business response

expected. If the HTTP servlet is able to invoke the SCA service, the servlet

returns an HTTP 200 status code to WebSphere Partner Gateway. If the

HTTP servlet is not able to invoke the SCA service, it returns the

appropriate HTTP error status code.

b. If the SCA service method is request-response, the SCA service returns a

response business object. The HTTP servlet serializes this business object

into a message. The HTTP servlet returns this message to WebSphere

Partner Gateway in an HTTP response. If for some reason the HTTP servlet

is not able to invoke the SCA service successfully, it returns the appropriate

HTTP error status code.

For example, for a cXML synchronous message received from partners,

WebSphere Partner Gateway sends the cXML message to WebSphere

Process Server over HTTP. WebSphere Partner Gateway expects WebSphere

Process Server to provide a synchronous cXML response on the same HTTP

connection.

Note: WebSphere Partner Gateway supports request-only invocations for

Backend Integration packaging. You can, however, develop request-response

flows with Backend Integration packaging data binding (via WebSphere Partner

Figure 21. How a message is sent from WebSphere Partner Gateway to the HTTP servlet

82 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Gateway user exits). The BCGBackEndIntegrationDataBindingUtil class can be

used as the basis for converting a response business object into a response

stream.

How messages are sent from WebSphere Process Server

This section describes how WebSphere Partner Gateway receives a message from

WebSphere Process Server over HTTP and sends it to an external partner.

Notes:

1. All document types except RosettaNet and binary can have a packaging of

None when sent from WebSphere Process Server to WebSphere Partner

Gateway. RosettaNet and binary documents must have Backend Integration

packaging.

2. All document types except SOAP (Web service requests) can have a packaging

of Backend Integration when sent from WebSphere Process Server to

WebSphere Partner Gateway. SOAP requests must have a packaging of None

specified.

For information about sending and receiving SOAP documents over HTTP, see

Chapter 6, “Integrating WebSphere Process Server with SOAP/HTTP,” on page

101.

When WebSphere Process Server sends a message to WebSphere Partner Gateway,

it uses a component that does an HTTP POST to a WebSphere Partner Gateway

HTTP receiver. to send an HTTP POST to a WebSphere Partner Gateway HTTP

receiver. You develop the component and expose it as a service.

Chapter 4. Integrating WebSphere Process Server with HTTP as transport 83

WebSphere Process Server services send messages to WebSphere Partner Gateway

as follows:

1. A WebSphere Process Server SCA service that needs to send business

documents to WebSphere Partner Gateway over HTTP uses its SCA import

binding to invoke the component that will perform the HTTP POST. The SCA

import binding of the service invokes the component with a business object.

2. The component receives the business object on its export. The component then

serializes the business object into a business document. See “Creating the

component to convert and send the message” on page 87.

3. The component sends the message using an HTTP POST to the WebSphere

Partner Gateway HTTP receiver URL.

4. WebSphere Partner Gateway receives this message on its HTTP receiver.

The way WebSphere Partner Gateway responds depends on whether the

message requires a synchronous response or whether it requires only an HTTP

transport-level response. The HTTP receiver has a SyncCheck configuration

point that makes this determination. You can configure SyncCheck when you

create the receiver, or you can modify the receiver to specify it. See the

WebSphere Partner Gateway Hub Configuration Guide for information on the

SyncCheck configuration point.

a. If WebSphere Partner Gateway determines that the message received from

the WebSphere Process Server requires only a transport-level response, the

WebSphere Partner Gateway receiver responds with the appropriate HTTP

status code. It then routes the business document to the external partner.

Figure 22. How a message is sent from WebSphere Process Server to the HTTP receiver on

WebSphere Partner Gateway

84 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

b. If WebSphere Partner Gateway determines that the message received from

WebSphere Process Server requires a response business document, it keeps

the HTTP transport connection open. WebSphere Partner Gateway routes

the business document to an external partner. The external partner receives

the request document and sends a response document to WebSphere

Partner Gateway. WebSphere Partner Gateway returns the response business

document as an HTTP response to WebSphere Process Server.
5. The component receives the HTTP response. It determines whether the

response is an HTTP status code only or also a business document:

a. If the response is an HTTP status code indicating success, the component

returns the call. The WebSphere Process Server SCA service (which invoked

the component) continues its processing. However, if the HTTP status code

indicates failure, the component returns the appropriate fault. The

WebSphere Process Server SCA service does the appropriate fault handling.

b. If the response is a business document, the component converts this

business document to a business object. It then returns the business object

to the WebSphere Process Server SCA service, which processes the response

business object.

For example, for cXML synchronous messages received from WebSphere

Process Server and intended for an external partner, WebSphere Partner

Gateway sends the message to the partner and receives the response

synchronously. WebSphere Partner Gateway then returns the response to

WebSphere Process Server as an HTTP response of the same HTTP request

that was originally sent from WebSphere Process server.

Note: WebSphere Partner Gateway supports request-only invocations for

Backend Integration packaging. You can, however, develop request-response

flows with Backend Integration packaging data binding (via WebSphere Partner

Gateway user exits). The BCGBackEndIntegrationDataBindingUtil class can be

used as the basis for converting a response business object into a response

stream.

Sending documents to WebSphere Process Server

The section describes the steps you take to enable WebSphere Process Server to

accept documents sent from WebSphere Partner Gateway

Setting up WebSphere Partner Gateway

You configure WebSphere Partner Gateway as described in the WebSphere Partner

Gateway Hub Configuration Guide. Make note of the following as you configure

WebSphere Partner Gateway:

1. Add the com.ibm.bcg.server.sync.SoapSyncHdlr handler to the syncCheck

configuration point of the HTTP receiver (if you will be handling two-way

requests).

2. Make sure the HTTP destination of the internal partner indicates the URL to

which WebSphere Partner Gateway will send messages to WebSphere Process

Server.

The destination should point to the HTTP servlet deployed on WebSphere

Process Server.

Setting up WebSphere Process Server

This section describes how to set up WebSphere Process Server to receive messages

from WebSphere Partner Gateway.

Chapter 4. Integrating WebSphere Process Server with HTTP as transport 85

Creating a business object

If you are using the BCGBackendIntegrationDataBindingUtil class to perform the

conversion from message to business object, you must use the top-level business

object described in “Top-level and child business objects” on page 63. You can use

the BO Editor to create the business object, or you can import the xsd file

(BCG_TLO_BackendPackaging.xsd) that is available on the installation medium.

If you are not using Backend Integration packaging (in other words, if the

packaging for the document was specified as None), you create the business object

per the requirements of the document exchange.

Creating a servlet

This section describes the servlet you must create so that WebSphere Partner

Gateway can send messages to WebSphere Process Server over the HTTP transport.

Design the servlet to:

v Receive messages from WebSphere Partner Gateway

v Convert the business document to a business object

v Invoke the appropriate service on WebSphere Process Server

If you are using Backend Integration packaging, you can use the

BCGBackEndIntegrationDataBindingUtil class to convert an HTTP request message

into a request business object expected by your service. Also you can use

BCGBackEndIntegrationDataBindingUtil to create an HTTP response message from

the response business object returned by your service. An example on how to use

the BCGBackEndIntegrationDataBindingUtil class to convert an HTTP request

message into a request business object follows. This example uses the read method

and the getDataObject method. If you know the name of the top level object in

advance, you can also call the setTLOTypeName method.

try{

 DataObject rootBO = null;

 BCGBackEndIntegrationDataBindingUtil dataBinding = new

BCGBackEndIntegrationDataBindingUtil();

 // request.getInputStream() gives the

 // backend integration packaging input stream received by servlet

 dataBinding.read(request.getInputStream());

 rootBO = dataBinding.getDataObject();

}

catch(Exception exp){

 System.out.println("Error occurred while creating request business

object: " + exp);

}

After you create the servlet, deploy it. The URL at which this servlet is receiving

should be specified as the URL in the TO destination configured for the partner

connection in WebSphere Partner Gateway.

Sending documents from WebSphere Process Server

The section describes the steps you take to enable WebSphere Process Server to

send documents to WebSphere Partner Gateway

Setting up WebSphere Partner Gateway

You configure WebSphere Partner Gateway as described in the WebSphere Partner

Gateway Hub Configuration Guide. Make note of the following as you configure

WebSphere Partner Gateway:

86 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

1. Create an HTTP/S receiver on the hub to receive the documents sent from

WebSphere Process Server (if one does not already exist). This receiver

identifies the URL at which the Receiver component of WebSphere Partner

Gateway listens for documents from WebSphere Process Server.

2. Add the com.ibm.bcg.server.sync.SoapSyncHdlr handler to the syncCheck

configuration point of the HTTP receiver (if you will be handling two-way

requests).

Setting up WebSphere Process Server

This section describes how to set up WebSphere Process Server to send messages

to WebSphere Partner Gateway. For a WebSphere Process Service to send a

message over HTTP to WebSphere Partner Gateway, you require a component that

can do an HTTP POST to the URL at which the WebSphere Partner Gateway HTTP

receiver is receiving documents. Whenever a WebSphere Process Server service

sends a business document to an external partner, it will invoke this component.

Creating a business object

If you are using the BCGBackendIntegrationDataBindingUtil class to perform the

conversion from business document to business object, you must use the top-level

business object described in “Top-level and child business objects” on page 63. You

can use the BO Editor to create the business object, or you can import the xsd file

(BCG_TLO_BackendPackaging.xsd) that is available on the installation medium.

If you are not using Backend Integration packaging (in other words, if the

packaging was specified as None), you create the business object per the

requirements of the document exchange.

Creating the component to convert and send the message

Create a component that converts the business object into an input stream and

then sends the HTTP message to WebSphere Partner Gateway. This component will

serialize the business object obtained from the service into a business document. It

can then use the JAVA API java.net.HTTPURLConnection to perform an HTTP

POST to the URL at which the WebSphere Partner Gateway HTTP receiver is

receiving documents.

The following example illustrates how this component can POST a message to

WebSphere Partner Gateway, if NONE packaging is used.

String wpgHTTPTargetURL; // URL of WebSphere Partner Gateway HTTP Target

byte payload[]; // message that needs to be sent to WebSphere Partner Gateway

// Set wpgHTTPTargetURL

// Set payload bytes. Convert business object received from service into bytes.

...

try{

 java.net.HttpURLConnection uc = (java.net.HttpURLConnection)

 new URL(wpgHTTPTargetURL).openConnection();

 uc.setDoInput(true);

 uc.setDoOutput(true);

 uc.setRequestMethod("POST");

 // Set the content type you want to send

 uc.setRequestProperty("Content-Type", "text/xml");

 uc.connect();

 BufferedOutputStream os = new BufferedOutputStream (uc.getOutputStream());

 os.write(payload);

Chapter 4. Integrating WebSphere Process Server with HTTP as transport 87

os.close();

 // If you are expecting response business document from WebSphere Partner

 // Gateway, then you have to read the response

 InputStream is = uc.getInputStream();

 if(is != null){

 BufferedInputStream bis = new BufferedInputStream

(uc.getInputStream());

 // Read bytes from BufferedInputStream obtained above

 // Convert response business document received from WebSphere

 // Partner Gateway into business object

 ...

 bis.close();

 }

 }

 catch(Throwable ex){

 System.out.println("Cannot post: " + ex.getMessage());

 ex.printStackTrace();

 }

 }

Important: If you are using Backend Integration packaging to send documents to

WebSphere Process Server, you can use the

BCGBackEndIntegrationDataBindingUtil class to convert business objects received

from the service (or component) into business documents expected by WebSphere

Partner Gateway. If you are expecting a response business document from

WebSphere Partner Gateway, you can also use

BCGBackEndIntegrationDataBindingUtil to create the HTTP response message

from the response business object returned by your service.

88 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 5. Integrating WebSphere Process Server with JMS

as transport

This chapter describes how to integrate WebSphere Partner Gateway with

WebSphere Process Server over the JMS transport protocol. It contains procedures

for configuring WebSphere Partner Gateway for JMS, when Websphere Platform

Messaging (default messaging provider) and a service integration bus are used as

the JMS provider and WebSphere Partner Gateway is installed on WebSphere

Application Server.

This chapter provides the following information on how to send and receive

documents between WebSphere Partner Gateway and WebSphere Process Server

using the JMS transport protocol:

v “Sending documents using the JMS transport protocol”

v “Receiving documents using the JMS transport protocol” on page 90

v “Setting up the WebSphere Process Server environment on WebSphere

Application Server” on page 92

v “Configuring JMS when WebSphere Partner Gateway is installed on WebSphere

Application Server” on page 95

Sending documents using the JMS transport protocol

For WebSphere Partner Gateway to send a document to WebSphere Process Server

using the JMS transport protocol, JMS Export binding must be used to invoke the

WebSphere Process Server component over JMS. Service Component Architecture

(SCA) components can receive JMS messages from the JMS queue configured in

their JMS Export binding. Figure 23 on page 90 provides an overview of how

WebSphere Partner Gateway sends a document to WebSphere Process Server over

the JMS transport protocol.

© Copyright IBM Corp. 2004, 2008 89

The following steps describe how SCA JMS Export bindings are used to invoke

SCA services over JMS:

1. Trading partner sends a business document to WebSphere Partner Gateway

using a B2B protocol.

2. WebSphere Partner Gateway receives the business document from the trading

partner.

3. Using the configured partner connection for this business document,

WebSphere Partner Gateway routes the document to WebSphere Process Server.

For JMS based integration, it is expected that the ″To″ destination of the partner

connection is a JMS destination.

This JMS destination is configured to send JMS messages to an SI Bus destination.

The SI Bus destination is the JMS queue configured in the SCA JMS Export binding

of the SCA component.

Receiving documents using the JMS transport protocol

For WebSphere Partner Gateway to receive a document from WebSphere Process

Server using the JMS transport protocol, JMS Import binding must be used to

invoke external services over JMS. Service Component Architecture (SCA)

components can send JMS messages to the JMS queue configured in their JMS

Import binding. Figure 24 on page 91 provides an overview of how WebSphere

Figure 23. JMS Export to invoke SCA services over JMS

90 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Partner Gateway receives a document from WebSphere Process Server over the

JMS transport protocol.

 The following steps describe how SCA JMS Import bindings are used to receive a

document from WebSphere Process Server:

1. WebSphere Partner Gateway JMS Receiver receives a business document from

WebSphere Process Server.

2. Using the configured partner connection for this business document,

WebSphere Partner Gateway routes this document to the trading partner.

3. Trading partner receives business document from WebSphere Partner Gateway

over mutually agreed upon B2B protocol.

For JMS based integration, it is expected that the JMS queue configured in the JMS

receiver of WebSphere Partner Gateway Receiver is the JMS destination on which

WebSphere Process Server Services will send JMS messages.

This JMS queue destination is the JMS queue destination configured in the SCA

JMS Import binding of the SCA component.

Figure 24. JMS Import to receive a document over JMS

Chapter 5. Integrating WebSphere Process Server with JMS as transport 91

Setting up the WebSphere Process Server environment on WebSphere

Application Server

This section provides the steps for setting up the WebSphere Process Server

environment for the JMS transport on WebSphere Application Server. This includes

creating and configuring the WebSphere Process Server artifacts.

This section provides the following information:

v “Creating an SCA service with WSDL”

v “Customizing JMS Import and Export bindings”

v “Implementing JMS data binding” on page 93

v “Customizing a Function Selector” on page 93

Creating an SCA service with WSDL

An SCA service, combined with Export and Import bindings, is used to leverage

WebSphere Partner Gateway’s B2B and trading partner interaction capabilities. For

instructions on how to use the Web Services Description Language (WSDL) to

create and define an SCA service, see the WebSphere Process Server information

center.

Customizing JMS Import and Export bindings

JMS Import binding of a component is used to invoke external services over JMS.

SCA components can send JMS messages to the JMS queue configured in their JMS

Import binding. To enable SCA components to send messages to the queue

configured in the WebSphere Partner Gateway JMS receiver:

1. Provide JMS data binding required by SCA JMS Import of the component.

Refer to “Implementing JMS data binding” on page 93.

2. Specify JMS Import binding attributes specific to your environment. JMS

Import of component places messages on the JMS destination specified in the

JMS Import binding. The JMS destination you specify in JMS Import binding

should refer to the JMS queue configured in WebSphere Partner Gateway JMS

receiver. For more details on JMS Import binding attributes, see the WebSphere

Process Server information center.

JMS Export binding of a component is used to invoke the WebSphere Process

Server component over JMS. To enable SCA components to receive JMS messages

from the JMS destination configured in their JMS Export binding:

1. Provide JMS data binding as required by SCA JMS Export binding of the

component. Refer to “Implementing JMS data binding” on page 93.

2. Provide function selector as required by SCA JMS Export binding of the

component. Refer to “Customizing a Function Selector” on page 93.

3. Specify JMS Export binding attributes specific to your environment. JMS Export

of a component retrieves the JMS message from the JMS destination specified

in the JMS export binding. The JMS destination you specify in JMS Export

binding should refer to the JMS queue configured in WebSphere Partner

Gateway JMS destination. For more details of JMS Import binding attributes,

see the WebSphere Process Server information center.

92 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Implementing JMS data binding

WebSphere Process Server SCA JMS Import and Export components provide

configuration information for specifying JMS data binding. JMS data binding is

used by SCA JMS Import and Export to convert business objects into JMS messages

and JMS messages into business objects:

v SCA JMS Export: SCA JMS Export of a service leverages a configured JMS data

binding to convert a JMS message received from WebSphere Partner Gateway

into business object as expected by the method of the service. This business

object is used to invoke the method of a service.

v SCA JMS Import: SCA JMS Import of a service leverges a configured JMS data

binding to convert a business object into a JMS message as expected by

WebSphere Partner Gateway.

To develop and implement JMS data binding, see the WebSphere Process Server

information center.

When JMS is used for backend integration, WebSphere Partner Gateway supports

NONE packaging and backend integration packaging.

If NONE packaging is used, you can leverage the WebSphere Process

Server-provided default JMS data binding or you can implement your own data

binding. Typically you will have to write your own data binding if the format of

JMS messages exchanged between WebSphere Partner Gateway and WebSphere

Process Server is other than XML.

If backend integration packaging is used, WebSphere Partner Gateway provided

com.ibm.bcg.dataBinding.BCGBackEndIntegrationJMSDataBindingImpl can be

leveraged. To customize the processing, you can implement data binding by

utilizing com.ibm.bcg.dataBinding.BCGBackEndIntegrationDataBindingUtil or

com.ibm.bcg.dataBinding.BCGBackEndIntegrationJMSDataBindingImpl provided

by WebSphere Partner Gateway. For more information on these classes please refer

to “BCGBackEndIntegrationJMSDataBindingImpl class” on page 78 and

“BCGBackEndIntegrationDataBindingUtil class” on page 73.

To implement the JMS data binding interface for Backend Integration Packaging,

create user-specified read and write methods.

Customizing a Function Selector

A Function Selector is required for SCA JMS Export binding. It is used to

determine what service method will be invoked for a business document that is

received at the JMS destination.

Implement a function selector using one of the following techniques:

v NONE packaging: If WebSphere Partner Gateway is sending JMS message to

WebSphere Process Server using NONE packaging, the user must determine

what method of their SCA service to invoke. With NONE packaging, the only

way to determine the type of business document is to parse the document. You

can use one of the following techniques to parse the document:

– Dispatcher: For NONE packaging, IBM recommends that you do not parse

the document using the function selector. This is redundant and expensive as

documents need to be parsed in the data binding also. IBM recommends that

you develop a dispatcher or function-selector component which will be the

front end to the actual WebSphere Process Server component interested in the

business document. JMS Export binding of this dispatcher component will

Chapter 5. Integrating WebSphere Process Server with JMS as transport 93

receive the business document from WebSphere Partner Gateway. This

dispatcher component will have one method on which it can receive all

possible business documents. JMS Export binding will un-marshal JMS

messages into business objects. The dispatcher module will then determine

which component of the service is interested in this business object and

invoke the component with this business object.

– Minimal Parsing: If a SCA JMS Export binding has multiple method bindings,

the function selector can be implemented perform minimal parsing of the

business document to determine the type of business document (for example

PO, POConfirm, Invoice etc). The function selector can then return the type of

business document as a native method name. At configuration time, the

native method name in the method binding of the SCA JMS Export binding

can be specified as a business document type. Using the method binding,

SCA JMS Export can resolve which method of the service needs to be

invoked.

Note: Data binding performs a full parsing of the business document to

construct the business object. Therefore, the function selector should do a very

minimal parsing of the business document. If parsing in the function selector

is too expensive, you should not use this technique.

– Trivial function selector: If the user is expecting only one type of business

document, you can develop a trivial function selector which will not parse the

document and that will always return the same native method name. At

configuration time, the native method name in the method binding of the

SCA JMS Export binding can be specified as this method name. Using the

method binding, SCA JMS Export will be able to determine which method of

the service needs to invoke. An advantage of this technique is that no parsing

of incoming an business document is required. However, the limitation of this

approach is that there can be only one type of business document on the JMS

queue.
v Backend integration packaging: If WebSphere Partner Gateway is sending a JMS

message to WebSphere Process Server using backend integration packaging, the

user can leverage backend integration packaging JMS headers to develop a

function selector. The JMS properties can be read by the function selector from

the JMS message input. The function selector can use the value of one of the

backend integration packaging JMS headers to compose a native method name.

For example, for a RosettaNet message, the x-aux-payload- root-tag JMS

property can be read to determine the type of business document. The function

selector can then compose the native method name to match the native method

name in method binding of JMS Export.

Using the WebSphere Integration Developer, create a custom a function selector by

implementing the commonj.connector.runtime.FunctionSelector interface. For

example:

public class PurchaseOrderSelector implements FunctionSelector {

 public String generateEISFunctionName(Object[] arg0)

 throws SelectorException {

 return "receiveMessage";

 }

}

94 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Configuring JMS when WebSphere Partner Gateway is installed on

WebSphere Application Server

This section provides the steps for setting up the WebSphere Partner Gateway

environment for the JMS transport on WebSphere Application Server when using

WebSphere Platform Messaging as the messaging provider. This section assumes

that WebSphere Partner Gateway is installed on WebSphere Application Server.

The information in this section assumes that the user is familiar with WebSphere

Platform Messaging and service integration buses.

This section provides the following information:

v “Creating and configuring buses, JMS queues, and Connection Factories” on

page 96

v “Creating the JMS receiver” on page 97

v “Creating the JMS destination” on page 98

v “Creating a destination queue” on page 99

Using the message engine (ME) and JNDI from the WebSphere Partner Gateway

component’s application server may restrict the bus topologies for the customer.

Therefore, IBM recommends that WebSphere Partner Gateway components (JMS

Receiver and JMS destination) connect to the ME on a different application server,

which may or may not be running WebSphere Process Server. See Figure 25 for an

overview of this topology.

Figure 25. Accessing the ME and JNDI from another WebSphere Application Server instance

Chapter 5. Integrating WebSphere Process Server with JMS as transport 95

Creating and configuring buses, JMS queues, and Connection

Factories

This section describes how to create and configure buses, JMS queues, and

Connection Factories that will be used by WebSphere Partner Gateway to send and

receive messages.

Creating a service integration bus

A service integration bus supports applications using message-based and

service-oriented architectures. A bus is a group of interconnected servers and

clusters that have been added as members of the bus. Applications connect to a

bus at one of the messaging engines associated with its bus members.

Using the WebSphere Administrative Console:

1. Create and name a bus.

a. Click Service integration > Buses.

b. Click New and provide a bus name. For example, SIBUS.

c. Click Apply.

d. Save the configuration by clicking Save in the Messages window that

displays. This message is to confirm that you want to apply the changes to

the master configuration.

e. Click Save again when asked to update the master repository with your

changes.
2. Add bus members to the bus.

a. Click on the name of the newly created bus.

b. In the Additional Properties pane, click Bus members.

c. Click Add and select the server or cluster to be added.

d. Click Next and then click Finish to confirm the addition of the new bus

members.

e. Save the configuration by clicking Save in the Messages window that

displays. This message is to confirm that you want to apply the changes to

the master configuration.

f. Click Save again when asked to update the master repository with your

changes.
3. Create a destination queue:

a. In the WebSphere Application Server default Console, click on System

Integration in the left panel.

b. Click on Buses < SIBUS (or the name of the bus created in step 1).

c. In the Additional Properties pane, click Destinations. Click New.

d. Select the Queue radio button for the destination type and click Next.

e. Enter an Identifier. For example, Request. This will create the destination

queue on the bus.
4. Save the configuration by clicking Save in the Messages window that displays.

This message is to confirm that you want to apply the changes to the master

configuration.

5. Click Save again when asked to update the master repository with your

changes.

Creating a JMS Queue Connection Factory

A JMS queue connection factory is used to create connections to the associated JMS

provider of JMS queues, for point-to-point messaging.

96 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Using the WebSphere Administrative Console:

1. Create a Queue Connection Factory by populating the Name and JNDI name

fields using the following syntax:

v Name: SIBUS.JMSTargetQCF

v JNDI name: SIBUS/JMSTargetQCF

Where SIBUS is the name of the bus created in the previous steps.
2. Select the bus. For example, SIBUS.

3. In the resulting window, click on the Queue Connection Factory that you just

created and input the Provider endpoints as:

IPaddress/Name:7276:BootstrapBasicMessaging

Where IPaddress is the IP address or the name of the machine on which

WebSphere Application Server is running. It is expected that the Message

Engine for this service integration bus is running on this machine. 7276 is the

port number specified for SIB_ENDPOINT_ADDRESS for the WebSphere

instance. If your Messaging Engine is running on the system with the IP

address 9.26.234.100 and SIB_ENDPOINT_ADDRESS for the WebSphere

instance running on this server is specified as 7276, you will specify Provider

endpoints as follows:

9.26.234.100:7276:BootstrapBasicMessaging

4. Save the configuration by clicking Save in the Messages window that displays.

This message is to confirm that you want to apply the changes to the master

configuration.

5. Click Save again when asked to update the master repository with your

changes.

Creating a JMS queue

A JMS queue is used as a destination for point-to-point messaging.

Using the WebSphere Administrative Console:

1. Expand the Resources menu and click JMS Providers > Default messaging.

2. Click JMS queues in the Destinations section of the resulting page.

3. Click New.

4. Input a queue name in both the Name and JNDI name fields using the

following syntax:

v Name: Request.JMSTarget

v JNDI name: Request/JMSTarget
5. Select the Bus Name (For example, SIBUS) and Queue name from the

drop-down lists.

6. Click OK.

7. Save the configuration by clicking Save in the Messages window that displays.

This message is to confirm that you want to apply the changes to the master

configuration.

8. Click Save again when asked to update the master repository with your

changes.

Creating the JMS receiver

This section provides directions for creating a receiver in WebSphere Partner

Gateway.

Using the WebSphere Partner Gateway Community Console:

Chapter 5. Integrating WebSphere Process Server with JMS as transport 97

1. Click Hub Admin > Hub Configuration > Receivers to display the Receiver

List.

2. From the Receiver List page, click Create Receiver.

3. In the Receiver Details section, perform the following steps:

a. Type a name for the receiver. For example, you might call the receiver

JMSTarget. This is a required field. The name you enter here will be

displayed on the Receivers list.

b. Optionally indicate the status of the receiver. Enabled is the default. A

receiver that is enabled is ready to accept documents. A receiver that is

disabled cannot accept documents.

c. Optionally enter a description of the receiver.
4. Select JMS from the Transport list.

5. Enter the JMS provider URL. For example,

iiop://systemip:2809/

Where systemip is the IP address of the system where WebSphere Platform

Messaging is running and 2809 is the default port where the BOOTSTRAP

server is running.

6. Enter a value for JMS queue name. This is a required field. This name should

match the JNDI name of the JMS queue created in the previous section. For

example, Request/JMSTarget.

7. Enter a value for the JMS factory name. This is a required field. This name

should match the Queue Connection Factory name created earlier. For example,

SIBUS/JMSTargetQCF.

8. Enter the JNDI factory name as follows:

com.ibm.websphere.naming.WsnInitialContextFactory

9. Click Save.

Creating the JMS destination

This section provides directions for creating the destination in WebSphere Partner

Gateway.

Using the WebSphere Partner Gateway Community Console, create a JMS

destination:

 1. Click Account Admin > Profiles > Partner.

 2. Enter search criteria and click Search, or click Search without entering any

search criteria to display a list of all partners.

 3. Click the View details icon to display the partner’s profile.

 4. Click Destinations.

 5. Click Create.

 6. From the Destination List page, type a name to identify the destination. This

is a required field.

 7. Select JMS from the Transport type list.

 8. In the Address field, enter the URI where the document will be delivered. For

example:

 iiop//systemip:2809

Where systemip is the IP address of the system on which WebSphere Platform

Messaging is running.

98 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

9. In the JMS Factory Name field, enter the name of the Java class that the JMS

provider uses to connect to the JMS queue. This will be the JNDI name for the

JMS factory we created earlier. For example:

SIBUS/JMSTargetQCF

10. In the JMS Queue Name field, enter the name of the JMS queue where

documents are to be sent. This will be the JNDI name for the queue where

messages must be placed. For example:

Response/JMSTarget

11. In the JMS JNDI Factory Name field, enter the following factory:

com.ibm.websphere.naming.WsnInitialContextFactory

12. Click Save.

Creating a destination queue

Using the WebSphere Administrative Console, create a destination queue on the

WebSphere Application Server:

1. Click on System Integration in the left panel.

2. Click on Buses < SIBUS (or the name of the bus created in the previous

section).

3. In the Additional Properties pane, click Destinations. Click New.

4. Select the Queue radio button for the destination type and click Next.

5. Enter an Identifier. For example, Response. This will create the destination

queue on the bus.

Chapter 5. Integrating WebSphere Process Server with JMS as transport 99

100 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 6. Integrating WebSphere Process Server with

SOAP/HTTP

This chapter describes how to integrate WebSphere Partner Gateway with

WebSphere Process Server using SOAP over the HTTP transport protocol. It

includes the following information:

v “How SOAP messages are exchanged over the HTTP protocol”

v “Invoking Web services hosted by WebSphere Process Server” on page 103

v “Invoking Web services hosted by external partners” on page 104

How SOAP messages are exchanged over the HTTP protocol

When an external partner requests a Web service from WebSphere Process Server,

or when WebSphere Process Server requests a Web service from an external

partner, the associated SOAP message is sent to a receiver on WebSphere Partner

Gateway. WebSphere Partner Gateway acts as a proxy, passing the request through

to the URL where the service is located.

How Web services hosted by WebSphere Process Server are

invoked

When an external partner invokes a Web Service hosted on WebSphere Process

Server, the following flow occurs:

© Copyright IBM Corp. 2004, 2008 101

WebSphere Partner Gateway routes the Web service request to WebSphere Process

Server, where the Web Service Export binding is used to invoke the service.

You provide your external partner with the public WSDL, which has the URL of

WebSphere Partner Gateway specified as the end point. See “Configuring

WebSphere Process Server” on page 105 for information on specifying this URL.

WebSphere Partner Gateway acts as a proxy. It receives a SOAP message from the

partner and figures out the corresponding private Web service. It then invokes the

private Web service on WebSphere Process Server using the same SOAP message.

The HTTP response returned by the WebSphere Process Server (both the

transport-level response and the Web service response) is then returned to the

partner

How Web services hosted by partners are invoked

When WebSphere Process Server invokes a Web service from an external partner,

the following flow occurs:

Figure 26. External partner invoking a Web service

102 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

WebSphere Process Server uses its Web Services Import binding to invoke the Web

service. WebSphere Partner Gateway routes the Web service request from

WebSphere Process Server to the appropriate external partner.

WebSphere Partner Gateway makes the Web service available to WebSphere

Process Server at the Web service URL specified when the Web service is uploaded

in the Community Console. Additionally the service on WebSphere Process Server

must provide the URL parameter to identify “To Partner”. Refer to the WebSphere

Partner Gateway Hub Configuration Guide for more details. WebSphere Partner

Gateway acts as a proxy. It receives a SOAP message from WebSphere Process

Server and figures out the corresponding Web service and the “To Partner”. It then

invokes the Web service provided by the external partner using the same SOAP

message. The HTTP response returned by the external partner (both the

transport-level response and the Web service response) is returned to WebSphere

Process Server.

The response received from the external partner is returned to WebSphere Process

Server in the same HTTP connection as the request. The behavior is the same for

both request-only and request-response Web services.

Invoking Web services hosted by WebSphere Process Server

This section describes how an external partner invokes a Web service hosted on

WebSphere Process Server.

Figure 27. Service on WebSphere Process Server invoking a Web service

Chapter 6. Integrating WebSphere Process Server with SOAP/HTTP 103

An external partner sends the request to an HTTP receiver on the WebSphere

Partner Gateway hub. WebSphere Partner Gateway authenticates the user, looks up

the connection between the external partner and internal partner, and forwards the

request to a destination defined at the internal partner.

Note: When the external partner sends the SOAP message, the external partner

must authenticate itself to WebSphere Partner Gateway. The external partner can

use HTTP Basic Authentication, supplying the partner’s Business ID, console name,

and console password. Alternatively, the partner can present an SSL client

certificate that has been previously set up in WebSphere Partner Gateway. See the

WebSphere Partner Gateway Hub Configuration Guide for more information on

certificates.

Configuring WebSphere Partner Gateway

You configure WebSphere Partner Gateway for Web services as described in the

WebSphere Partner Gateway Hub Configuration Guide. Make note of the following as

you configure WebSphere Partner Gateway:

1. Add the com.ibm.bcg.server.sync.SoapSyncHdlr handler to the syncCheck

configuration point of the HTTP receiver (if you will be handling two-way

requests).

2. From WebSphere Process Server, obtain the WSDL generated by the Web

Service Export binding of your component.

3. Make sure the HTTP destination of the internal partner indicates the URL to

which WebSphere Partner Gateway will send messages to WebSphere Process

Server. This destination points to the EndPointURL specified in the WSDL you

uploaded in step 2.

Configuring WebSphere Process Server

Set up components on WebSphere Process Server per the documentation in the

WebSphere Process Server information center. When you create an export for the

component, be sure to select Web Service Binding.

Invoking Web services hosted by external partners

When a service on WebSphere Process Server makes a SOAP request to a URL on

WebSphere Partner Gateway, WebSphere Partner Gateway identifies the partner

capable of processing the SOAP request. It uses the basic authentication supplied

by WebSphere Process Server against its partner profile. If the SOAP request is

two-way, WebSphere Partner Gateway gets the response from the external partner

and sends the response back to WebSphere Process Server.

Configuring WebSphere Partner Gateway

You configure WebSphere Partner Gateway for Web services as described in the

WebSphere Partner Gateway Hub Configuration Guide. Make note of the following as

you configure WebSphere Partner Gateway:

1. Add the com.ibm.bcg.server.sync.SoapSyncHdlr handler to the syncCheck

configuration point of the HTTP receiver (if you will be handling two-way

requests).

2. Make sure the HTTP destination of the external partner indicates the URL to

which WebSphere Partner Gateway will send messages. This destination points

to the EndPointURL specified in the WSDL you upload as part of the

configuration process.

104 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Configuring WebSphere Process Server

Set up components on WebSphere Process Server per the documentation in the

WebSphere Process Server information center. Note that you must obtain the

WSDL file that describes the Web service from the provider of the service. You

import the WSDL file into the module for the components.

WebSphere Partner Gateway makes the external partner-provided Web services

available at its URL. Therefore, WebSphere Process Server must invoke the service

at the URL of the WebSphere Partner Gateway HTTP receiver. WebSphere Partner

Gateway also requires the internal partner to provide a user name and password

as part of HTTP basic authentication. See the WebSphere Partner Gateway Hub

Configuration Guide for information on the user name and password. To enable

WebSphere Process Server to provide HTTP basic authentication and also to

change the end point of the Web service that will be invoked by WebSphere

Process Server, follow these steps:

To change the end-point address:

1. Log in to the WebSphere Process Server administrative console

2. Navigate to the Web service client bindings of the service you are invoking

from WebSphere Partner Gateway. You can locate it by following this path:

Enterprise Applications > <your_application> > EJB Modules > <your_JAR_file>

> Web service client bindings

3. Specify the Overridden Endpoint URL for the service port you want to invoke

from WebSphere Partner Gateway. Specify the URL of the WebSphere Partner

Gateway HTTP receiver that will receive the Web service request from

WebSphere Process Server. The endpoint URL takes the form:

<IP_address:port_number>bcgreceiver/<target_name>

4. Click Apply, and then click OK.

To specify the user name and password required for basic authentication, perform

the following steps:

1. Log in to the WebSphere Process Server administrative console

2. Navigate to the Web service client bindings of the service you are invoking

from WebSphere Partner Gateway. You can locate it by following this path:

Enterprise Applications > <your_application> > EJB Modules >

<your_JAR_files> > Web services:Client security bindings > HTTP basic

authentication

3. Specify the Basic authentication ID and Basic authentication password.

The authentication ID takes the form:

BusinessID/username

For example, if the business ID of the internal partner is 987654321, and the

user name of the internal partner is admin, the authentication ID would be:

 987654321/admin

4. Click Apply and then click OK.

Chapter 6. Integrating WebSphere Process Server with SOAP/HTTP 105

106 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 7. Integrating WebSphere Process Server with

File-system as transport

This chapter describes how to integrate WebSphere Partner Gateway with

WebSphere Process Server using the File-system protocol.

The File-system protocol enables WebSphere Partner Gateway to send messages by

placing them in a defined directory structure. WebSphere Partner Gateway receives

messages by reading them from the directory structure. The file-system protocol

supports the None packaging type.

This chapter provides the following information:

v “Sending documents using the File-system protocol”

v “Receiving documents using the File-system protocol”

v “Setting up the WebSphere Process Server environment”

v “Setting up the WebSphere Partner Gateway environment” on page 109

Sending documents using the File-system protocol

WebSphere Process Server components leverage the Service Component

Architecture (SCA) J2C import binding to send business data to the WebSphere

Adapter for Flat Files. The adapter writes the business data to a directory in the

File-system. WebSphere Partner Gateway’s File-system receiver reads this business

document from the directory on the File-system and routes it to the appropriate

trading partner.

Receiving documents using the File-system protocol

WebSphere Partner Gateway receives a business document from the trading

partner. WebSphere Partner Gateway’s Document Manager writes the document to

the File-system directory. The WebSphere Adapter for Flat Files polls events from

this directory and reads the business document. It then invokes the Service

Component Architecture (SCA) service export that is expecting events form the

adapter. The SCA service receives the business document.

Note: The WebSphere Adapter for Flat Files expects a string or raw data that it can

read from or write to a file. Therefore, the WebSphere Process Server environment

must serialize the business object into either a string or raw data. WebSphere

Process Server services must create a component that will serialize a business

object into a business document and vice versa.

Setting up the WebSphere Process Server environment

This section provides the steps for setting up the WebSphere Process Server

environment for the File-system transport on WebSphere Application Server. This

includes creating and configuring the WebSphere Process Server artifacts.

This section contains the following information:

v “Deploying and configuring the WebSphere Adapter for Flat Files” on page 108

v “Creating SCA components” on page 109

© Copyright IBM Corp. 2004, 2008 107

Deploying and configuring the WebSphere Adapter for Flat

Files

For File-system based integration WebSphere Process Server leverages the

WebSphere Adapter for Flat Files, a bi-directional adapter which can read and

write business data from the File-system.

For inbound communication, the adapter supports the Read function.

For outbound communication, the adapter supports the following functions:

v Create

v Append

v Delete

v Overwrite

v Retrieve

v List

v Exists

The WebSphere Adapter for Flat Files installation provides a Resource Adapter

Archive (RAR) file that is deployable on the WebSphere Process Server. The RAR

file contains the files that are shipped with the adapter. Before you deploy the

WebSphere Adapter for Flat Files, you must import the adapter RAR file and create

the project in WebSphere Integration Developer.

The following sections contain an overview of the steps that need to be completed

to deploy and configure the WebSphere Adapter for Flat Files. Please refer to the

WebSphere Integration Developer documentation for detailed information.

Importing the RAR file:

1. Switch to the J2EE perspective and import the RAR file.

2. Specify the location from where you will import the RAR file (the same

location where you copied your adapter file during installation), and specify a

project name.

This creates a new J2EE Connector project in the workspace.

Adding external dependencies to the project:

Copy the external dependencies into the connectorModule in your WebSphere

Integration Developer project and add them to the project as internal libraries. This

is necessary to bundle the dependencies into the EAR file, which will be exported.

For details, refer to the WebSphere Integration Developer documentation.

Configuring the adapter:

The configuration process is done using the Enterprise Service Discovery wizard in

the WebSphere Integration Developer. This process allows you to enter all the

information necessary to configure the adapter for the first time. The output from

the Enterprise Service Discovery wizard is saved to a business integration module,

which contains the business objects, the import file (which describes outbound

processing, as defined by the ActivationSpec), the export file (which describes

inbound event processing, as defined by the InteractionSpec), and the Web Services

Description Language (WSDL) file. This results in a component in your module

which you can use to read and write from file system.

108 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Creating SCA components

If you want your SCA component to receive business documents from WebSphere

Partner Gateway the File-system protocol, you can leverage the Enterprise Service

Discovery tool to generate the required import bindings for the flat file adapter. To

generate the required import bindings, you must specify the service type as

Inbound in the Enterprise Service Discovery wizard. The method name is READ

for inbound. Wire your SCA component export to the import binding generated by

the Enterprise Service discovery tool.

If you want your SCA component to send business documents to WebSphere

Partner Gateway the File-system protocol, you can leverage the Enterprise Service

Discovery tool to generate the required export binding for the flat file adapter. To

generate the required export binding, you must specify the service type as

Outbound in the Enterprise Service Discovery wizard. Wire the export binding

generated by the Enterprise Service discovery tool to the import binding of your

SCA component.

Setting up the WebSphere Partner Gateway environment

This section provides the steps for setting up the WebSphere Partner Gateway

environment for the File-system transport on WebSphere Application Server.

Using the WebSphere Partner Gateway Community Console:

1. Create a File-system receiver on the hub to receive documents sent to the hub

from WebSphere Process Server or from external partners.

2. Create an Internal Partner profile (if one does not already exist), including a

File-system destination that WebSphere Partner Gateway will use to send

documents to WebSphere Process Server.

3. Create External Partner profiles, including File-system destinations that

WebSphere Partner Gateway will use to send documents to the partners.

4. Import any WSDL files, transformation maps, RosettaNet packages, or other

document definition mechanisms so that a document definition for the type of

document you are exchanging displays on the Document Flow Definition page

of the WebSphere Partner Gateway Community Console.

5. Create interactions between the types of document the hub will receive (from

WebSphere Process Server or from an external partner) and the types of

document the hub will send (to WebSphere Process Server or to the external

partners).

6. Create B2B capabilities in the profiles of the internal partner and external

partners to indicate the types of documents they are able to send and receive.

7. Create interactions between the types of document the hub will receive (from

WebSphere Process Server or from an external partner) and the types of

document the hub will send (to WebSphere Process Server or to the external

partners).

8. Create partner connections between the internal partner and external partners

to indicate the source partner (the sender of the document), the target partner

(the recipient of the document), and the action that the hub should take (if any)

to transform the document.

Chapter 7. Integrating WebSphere Process Server with File-system as transport 109

110 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Part 3. Integrating with WebSphere InterChange Server

The following chapters details the procedure to integrate WebSphere Partner

Gateway with WebSphere InterChange Server.

© Copyright IBM Corp. 2004, 2008 111

112 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 8. Introduction to InterChange Server integration

This chapter describes how to integrate WebSphere Partner Gateway with

WebSphere InterChange Server.

Notes:

1. For a description of the general process used to integrate WebSphere Partner

Gateway with a back-end system, see Chapter 2, “Planning for back-end

integration,” on page 9.

2. This chapter assumes that you are familiar with WebSphere InterChange Server

and associated components, such as collaborations, business objects, and

adapters.

Often integration of WebSphere Partner Gateway with a back-end system is done

by two separate people or roles. Each role configures a particular component, for

which that role has expertise. Therefore, this chapter separates the integration with

WebSphere InterChange Server into the configuration of WebSphere Partner

Gateway and the configuration of InterChange Server. Table 35 lists these

configuration roles along with the places in this chapter to obtain the associated

configuration information.

 Table 35. Roles for InterChange Server integration

Configuration role For more information

Configuration of WebSphere Partner

Gateway

1. “Planning for integration with

InterChange Server.”

2. “Configuring WebSphere Partner Gateway

for InterChange Server” on page 116.

Configuration of WebSphere InterChange

Server

1. “Planning for integration with

InterChange Server.”

2. “Configuring InterChange Server” on

page 119.

Note: While each of these configuration roles can be performed separately, each

also requires common information so that the two components can communicate.

This chapter provides the following information:

v “Planning for integration with InterChange Server”

v “Configuring WebSphere Partner Gateway for InterChange Server” on page 116

v “Configuring InterChange Server” on page 119

v “Handling documents with attachments” on page 123

Planning for integration with InterChange Server

To plan for your integration to WebSphere InterChange Server, follow the steps

outlined in Chapter 2, “Planning for back-end integration,” on page 9. Table 36

summarizes the integration steps to integrate WebSphere Partner Gateway with

InterChange Server (ICS).

© Copyright IBM Corp. 2004, 2008 113

Table 36. Planning for integration with WebSphere InterChange Server

Integration step For more information

1. Confirm that you have a supported

version of WebSphere InterChange Server

installed and available to WebSphere Partner

Gateway.

Chapter 3: “InterChange Server versions that

WebSphere Partner Gateway supports”

2. Determine the business protocol of the

WebSphere Partner Gateway document.

Chapter 2: “Which business protocol are you

using?” on page 9

3. Determine the packaging type for the

document: None or Backend Integration.

Chapter 2: “Which packaging will you use?”

on page 23

4. Determine the transport protocol to use

between WebSphere Partner Gateway and

WebSphere InterChange Server.

Chapter 3: “Message transports that

InterChange Server supports”

5. Configure WebSphere Partner Gateway. Chapter 3: “Configuring WebSphere Partner

Gateway for InterChange Server” on page

116

6. Configure WebSphere InterChange Server

components for use over the chosen

transport protocol.

Chapter 3: “Configuring InterChange

Server” on page 119

InterChange Server versions that WebSphere Partner Gateway

supports

Version 6.1 of WebSphere Partner Gateway supports integration with the following

versions of InterChange Server:

v 4.3.0

InterChange Server is available on several platforms including Windows 2000 and

several UNIX-based platforms. For more information, consult your installation

guide for InterChange Server in the WebSphere InterChange Server documentation

set.

WBI Adapters are used to integrate WebSphere Partner Gateway to Interchange

Server. The supported Adapter versions are:

v WBIA HTTP Adapter v1.3

v WBIA JMS Adapter v2.8.x

v WBIA web services adapter v3.4.x

v

WBI Data handlers are used with the adapters. For processing XML messages,

make sure you are using the WebSphere Business Integration Data Handler for

XML Version 2.3.1 or later. For cXML messages, you must use the Data Handler for

XML, Version 2.4.1 or later.

Message transports that InterChange Server supports

When WebSphere Partner Gateway sends your message to InterChange Server over

a particular message transport protocol, it sends that message to the appropriate

adapter, which understands the particular transport protocol and routes the

message to InterChange Server. Similarly when InterChange Server sends a

message to WebSphere Partner Gateway, it sends the message to the appropriate

adapter for routing to WebSphere Partner Gateway over the appropriate transport

protocol.

114 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

The adapter works with a data handler, which handles the actual conversion from

serialized data to business object, or from business object to serialized data. The

data handler appropriate for the payload type is used to perform these

conversions.

The following two message-transport protocols are supported by InterChange

Server:

v HTTP transport protocol

Note: The exchange of Web Services over HTTP is handled in a separate section

because Web Services are exchanged in a manner that is different from other

documents transmitted over HTTP. See “Sending SOAP documents over

HTTP/S” on page 156.

v JMS transport protocol

Note: InterChange Server provides other types of integration options, such as

file-based integration. Refer to the WebSphere InterChange Server documentation

for details on enabling the exchange of documents through file-based integration.

Use the transport protocol that best suits the needs of your business. Consider the

following:

v First and foremost, determine that the transport protocol you are using between

the external partner and WebSphere Partner Gateway is available with the

integration mechanism used. See “Which message transport will you use?” on

page 34.

v Sending SOAP documents to and receiving SOAP documents from the

WebSphere InterChange Server requires use of the HTTP transport protocol. For

more information, see “Sending SOAP documents over HTTP/S” on page 156.

HTTP

Which adapters are required to send and receive documents between WebSphere

Partner Gateway and InterChange Server over HTTP depends on the following:

v The type of document you are sending

v The version of InterChange Server with which you are integrating.

Note: All references to the HTTP transport protocol apply to HTTPS as well.

Table 37 summarizes where to find information on how to configure adapters for

use with InterChange Server.

 Table 37. Configuring for HTTP transport with InterChange Server

Condition For more information

If you are transferring non-SOAP documents

with InterChange Server

“Using HTTP transport protocol with ICS”

on page 143

If you are sending SOAP documents “Sending SOAP documents over HTTP/S”

on page 156

JMS

The components required to send and receive documents between WebSphere

Partner Gateway and InterChange Server over JMS are summarized in Table 63 on

page 160. Basically, support for JMS involves the use of the WebSphere Business

Integration Adapter for JMS. The Adapter for JMS invokes collaborations within

InterChange Server asynchronously.

Chapter 8. Introduction to InterChange Server integration 115

Benefits of using each transport

As you decide which message transport to use with InterChange Server, consider

the following benefits of each transport:

v The Adapter for HTTP supports synchronous communication. If you require

synchronous transactions, you must use the HTTP transport protocol.

v The Adapter for JMS can provide ″guaranteed event delivery″ from WebSphere

Partner Gateway to the WebSphere InterChange Server.

Guaranteed event delivery ensures that events are never lost or sent twice.

Support for InterChange Server integration

WebSphere Partner Gateway provides samples to assist you in the integration

process with InterChange Server. These samples reside in the following

subdirectory of the WebSphere Partner Gateway product directory:

Integration/WBI/WICS/samples

Table 38 lists the subdirectories of the samples directory for the different transport

protocols that InterChange Server supports.

 Table 38. Samples for InterChange Server integration

Transport

protocol

InterChange Server

version Samples subdirectory

HTTP All supported versions General samples: HTTP

RosettaNet-specific samples: RosettaNet/HTTP

JMS All supported versions General samples: JMS

RosettaNet-specific samples: RosettaNet/JMS

Configuring WebSphere Partner Gateway for InterChange Server

A general overview of how to configure WebSphere Partner Gateway to

communicate with a back-end system is provided in “Configuring WebSphere

Partner Gateway” on page 43. This section summarizes the steps needed to

configure WebSphere Partner Gateway to communicate with InterChange Server.

Configuration of WebSphere Partner Gateway involves the following steps:

v Configuring for support of outgoing documents

For information on sending documents from WebSphere Partner Gateway to

InterChange Server, see “Providing support for outgoing documents.”

v Configuring for incoming documents

For information on sending documents from InterChange Server to WebSphere

Partner Gateway, see “Providing support for incoming documents” on page 118.

Providing support for outgoing documents

For WebSphere Partner Gateway to send documents to any back-end system, you

must perform the steps described in “Defining where to send the partner

document” on page 45. When your back-end system is InterChange Server, you

need to create a destination whose transport type matches the transport protocol

used for messages between WebSphere Partner Gateway and InterChange Server.

When the hub sends a document to InterChange Server, it must know where to

route the document. This location must conform with the transport protocol being

116 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

used. The transport protocol must be one that InterChange Server supports (see

“Message transports that InterChange Server supports” on page 114).

The following sections summarize how to create destinations for following

transport protocols, which InterChange Server supports:

v “Configuration for sending documents to ICS over the HTTP transport protocol”

v “Configuration for sending documents to ICS over the JMS transport protocol”

Configuration for sending documents to ICS over the HTTP

transport protocol

When the hub sends a document to InterChange Server over the HTTP protocol,

the hub routes the message through the defined destination. This destination

identifies the URL where the document can be received by InterChange Server.

When InterChange Server uses the HTTP protocol, an adapter receives the

document at the appropriate URL, where it can then send it to InterChange Server.

For the hub to be able to send documents through a destination over the HTTP

transport protocol, you must create a destination from the Destination Details page

of the Community Console. This destination must be configured to use the HTTP

1.1. transport protocol and to write to the URL on which the appropriate adapter is

listening.

Note: An overview of how to create a destination is provided in “Defining where

to send the partner document” on page 45.

Configuration for sending documents to ICS over the JMS

transport protocol

When the hub sends documents to InterChange Server over the JMS protocol, the

hub routes the document to the appropriate JMS queue, where it can be retrieved

by InterChange Server. For the hub to obtain this JMS location, you must create a

destination in WebSphere Partner Gateway, one that uses the JMS transport

protocol. This destination must be configured to write to the queue on which the

Adapter for JMS polls.

Note: For an overview of how to create a destination, see “Defining where to send

the partner document” on page 45.

For the hub to be able to send documents through a destination over the JMS

transport protocol, create a destination from the Destination Details page of the

Community Console. If you are using WebSphere MQ Version 6.0 with latest Fix

pack as your JMS provider, refer to the WebSphere Partner Gateway Hub

Configuration Guide for detailed steps. In addition, provide the information

specified in Table 39 for the JMS protocol in the Destination Details page.

 Table 39. JMS values for the Destination Details page for communication with ICS

Destination Details field Value Notes and restrictions

JMS Message Class TextMessage, BytesMessage,

or StreamMessage

Chapter 8. Introduction to InterChange Server integration 117

Table 39. JMS values for the Destination Details page for communication with

ICS (continued)

Destination Details field Value Notes and restrictions

JMS Queue Name Same JMS queue name as

the input queue for the

Adapter for JMS

This queue must be included in

the list of input queues of the

Adapter for JMS; that is, the

adapter must poll this queue for

incoming events. For more

information, see “Identifying the

JMS queues” on page 166.

Providing support for incoming documents

For WebSphere Partner Gateway to receive messages from any back-end system,

you must perform the steps described in “Defining where to retrieve the back-end

document” on page 49. When your back-end system is InterChange Server, you

need to take the following steps in your hub:

1. As part of your partner profile for the internal partner, define the destination

type and provide the associated IP address on which the Receiver will listen.

2. Create a receiver whose transport type matches the transport protocol used for

documents between WebSphere Partner Gateway and InterChange Server.

For the hub to receive a document from InterChange Server, it must know the

location at which to retrieve the messages. This location must conform with the

transport protocol to be used. The transport protocol must be one that

InterChange Server supports (see “Message transports that InterChange Server

supports” on page 114).

The following sections summarize how to create receivers for transport protocols

that InterChange Server supports.

Configuration for receiving documents from ICS over the HTTP

transport protocol

When the hub receives a document over the HTTP transport protocol, its Receiver

retrieves the document from the defined receiver. This receiver identifies the URL

at which the Receiver listens for documents from InterChange Server. When

InterChange Server uses the HTTP transport protocol, an adapter sends the

document to the appropriate URL, where it can be received by the hub.

For the hub to receive documents through a receiver over the HTTP transport

protocol, you must create a receiver from the Receiver List page of the Community

Console. This receiver must use the HTTP 1.1 transport protocol. The hub

determines this URL as a combination of the following information:

v The IP address of the host computer, obtained from within the internal partner’s

profile

v The receiver URL, obtained from the URL field of the receiver definition

Note: An overview of how to create a receiver is provided in “Defining where to

retrieve the back-end document” on page 49.

For InterChange Server to be able to send documents to this receiver, its adapter

must be configured to send documents to this URL. Therefore, you must ensure

that this receiver URL is available for the InterChange Server configuration.

118 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Configuration for receiving documents from ICS over the JMS

transport protocol

When the hub receives documents from InterChange Server over the JMS protocol,

the hub obtains the document from the appropriate JMS queue, where InterChange

Server has sent it. For the hub to be able to obtain this JMS location, you must

create a receiver in WebSphere Partner Gateway, one that uses the JMS transport

protocol. Through the receiver, the hub listens for any documents on its input

queue and retrieves them.

Note: For an overview of how to create a receiver, see “Defining where to retrieve

the back-end document” on page 49.

For the hub to receive documents through a receiver over the JMS transport, you

must create a receiver from the Receiver List page of the Community Console. If

you are using WebSphere MQ Version 6.0 with latest Fix pack as your JMS

provider, refer to the WebSphere Partner Gateway Hub Configuration Guide for the

detailed steps. In addition, provide the information specified in Table 40 for the

JMS protocol in the Receiver Details page.

 Table 40. JMS values for the Receiver Details page for communication with ICS

Receiver Details field Value Notes and restrictions

JMS Message Class TextMessage

JMS Queue Name Same JMS queue name as

the output queue for the

Adapter for JMS

This queue must be listed as the

output queue of the Adapter for

JMS; that is, the adapter must

send documents to this queue.

For more information, see

“Identifying the JMS queues” on

page 166.

Configuring InterChange Server

For your interactions between WebSphere Partner Gateway and InterChange

Server, you must create an Integration Component Library (ICL) within the System

Manager tool. This ICL will include the following artifacts:

v Business object definitions

v Connector objects

v Collaboration templates and collaboration objects

You must also create a user product and select from the ICL those artifacts

required for your particular interaction between InterChange Server and

WebSphere Partner Gateway.

Note: For more information on how to create ICLs and configure InterChange

Server, see the System Implementation Guide in the WebSphere InterChange Server

documentation set.

Creating business object definitions

WebSphere Partner Gateway sends your message to an adapter, which routes the

message to InterChange Server in the form of one or more business objects. For

InterChange Server to recognize a business object, it must first locate a template,

called a business object definition, to describe the structure of the information in the

business object. Each piece of information in a business object definition is held in

Chapter 8. Introduction to InterChange Server integration 119

an attribute. Therefore, you must create business object definitions to represent the

information in your message. To create business object definitions, use the Business

Object Designer tool.

Note: Business Object Designer is included as part of both the WebSphere

InterChange Server and the WebSphere Business Integration Adapter products. For

more information on the use of this tool, see the Business Object Development Guide.

InterChange Server uses business objects for the following information:

v “Business object for the document”

v “Business objects for configuration information” on page 122

Business object for the document

To hold the payload of the WebSphere Partner Gateway document or message, you

must define a business object definition to represent the payload business object. It is

in the form of a payload business object that the adapter transfers the document

into (or out of) InterChange Server. This section provides the following information

on the payload business object:

v “Business object structure”

v “Business object conversion” on page 121

v “InterChange Server terminology” on page 122

Business object structure: The payload business object must be designed so that

each piece of information in the document that you want to transfer has an

attribute in its associated payload business object definition. As Table 41 shows, the

contents of the payload business object depend on the structure of the document

and the packaging type that the document uses.

 Table 41. Relationship of packaging to the structure of the payload business object

Document structure Packaging type Payload business object definition

Payload only None Holds the payload information of the document.

Payload only Backend Integration Holds:

v The payload information of the document

v Transport-level headers

Payload and attachments None Not applicable. You must use Backend Integration

packaging if your document contains attachments.

Payload and attachments

The document contains an XML

wrapper, called a transport

envelope, in which both the

payload and attachments are

wrapped.

Backend Integration Holds:

v The payload information of the document

v Transport-level headers

v The attachment container, which holds the

attachment data and any attachment business

objects

A WebSphere Partner Gateway-supplied data handler,

called the Attachment data handler, is required to

process the transport envelope. For more information,

see “Handling documents with attachments” on page

123.

The payload business object must also be designed according to the requirements

of the particular adapter used for integration with WebSphere Partner Gateway.

Table 42 provides information on where to find details of how to create the

payload business object for transfer over a particular transport protocol.

120 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 42. Creating payload business objects for different transport protocols

Transport protocol Notes and restrictions For more information

HTTP “Creating business object

definitions for ICS over HTTP”

on page 149

JMS If document uses Backend

Integration packaging

“Creating business object

definitions for JMS” on page 167

All If document has attachments “Creating attachment-related

business object definitions” on

page 135

Business object conversion: Typically, the adapter uses a data handler to convert

between the format of the document and its business-object representation. This

data handler is called the payload data handler. The adapter must be configured to

call the appropriate data handler for the payload’s content type. Typically, the

WebSphere Business Integration Data Handler for XML is configured as the

payload data handler because it converts between XML messages and business

objects. However, you can create custom data handlers for any message formats

that do not have a corresponding data handler provided by WebSphere Business

Integration Server.

Note: For processing XML messages, make sure you are using the WebSphere

Business Integration Data Handler for XML, Version 2.3.1 or later. For cXML

messages, you must use the Data Handler for XML, Version 2.4.1 or later.

You must make sure the payload data handlers you are using can ignore the child

meta-objects that are required by the transport protocol you are using. Before using

a data handler (whether it is supplied by WebSphere Business Integration or

whether it is a custom data handler), make sure it provides support for child

meta-objects. Refer to the section on the cw_mo_label tag in the business object’s

application-specific information in the appropriate section for your transport

protocol (see Table 42).

To indicate which data handler to use to convert the payload, you must take the

following steps:

1. Identify the MIME type that the data handler must support to convert the

payload and locate a data handler that can handle this MIME type.

The Data Handler Guide in the WebSphere Business Integration Adapter

documentation set describes the data handlers that IBM provides. If none of

these data handlers can work, you can create a custom data handler.

2. In Business Object Designer, create a child meta-object for the data handler you

need to use. If you are using an IBM-provided data handler, refer to the Data

Handler Guide for information on the structure of the child meta-object.

3. In Business Object Designer, update the top-level data-handler meta-object for

connectors to include an attribute for the supported MIME type. The attribute

type for this attribute is the data handler’s child meta-object.

4. In Connector Configurator, set the appropriate connector configuration

properties to identify the data handler to use:

v Set the DataHandlerConfigMO and DataHandlerMimeType properties with the

name of the top-level data-handler meta-object and the supported MIME

type, respectively.

Chapter 8. Introduction to InterChange Server integration 121

v Set the DataHandlerClassName property with the name of the data-handler

class to instantiate.

Note: You set either the DataHandlerConfigMO and DataHandlerMimeType

properties or the DataHandlerClassName property.

5. In Connector Configurator, include the top-level data-handler meta-object in the

list of supported business objects.

InterChange Server terminology: For InterChange Server, the name of the

payload business object depends on the direction of the communication, as follows:

v When WebSphere Partner Gateway sends a document to InterChange Server, it is

participating in InterChange Server’s event notification.

In this case, the data business object is called the event business object (sometimes

called just an event), which notifies InterChange Server of an event that occurred

in some external partner.

v When WebSphere Partner Gateway receives a document from InterChange Server,

it is participating in InterChange Server’s request processing.

In this case, the data business object is a request business object, which

InterChange Server has sent to request information from some external partner.

In response, InterChange Server might send a response business object back to the

hub community.

Business objects for configuration information

For many of the adapters, you create business object definitions to hold

configuration information. Such business objects are often called meta-objects.

Table 43 provides information on where to find details of how to create the data

business object for transfer over a particular transport protocol.

 Table 43. Sections that describe business-object creation

Transport protocol Related component For more information

HTTP Adapter for HTTP “Creating HTTP

transport-level header

information for ICS” on page

153

JMS Adapter for JMS “Creating JMS header

information” on page 168

All Attachment data handler “Creating the Attachment

child meta-object” on page

130

Creating the connectors

You must create a connector object for the adapter you will be using. This

connector object represents an instance of the adapter at run-time. You create

connector objects within InterChange Server’s System Manager tool.

Note: For information on how to create connector objects, refer to the System

Implementation Guide in the WebSphere InterChange Server documentation set.

Table 44 summarizes where to find information about how to create connector

objects, based on the transport protocol you are using.

122 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 44. Creating connector objects for different transport protocols

Transport protocol Adapter For more information

HTTP Adapter for HTTP “Creating the HTTP connector

object” on page 156

JMS Adapter for JMS “Creating the JMS connector

object” on page 172

Creating the collaborations

It is the collaboration, within InterChange Server, that performs the actual business

process you need. Therefore, the appropriate collaboration must exist for

InterChange Server to correctly process your WebSphere Partner Gateway

documents. Make sure you take the following steps to make the appropriate

collaboration available at run-time:

1. Ensure that a collaboration template exists that provides the business process

you need:

v If such a collaboration template does not currently exist, you must create one

and compile it.

v If a collaboration template does exist, you must understand how to use it

sufficiently to be able to configure its collaboration object.
2. Create a collaboration object and bind its ports, as follows:

v For request processing, set the ″to″ port, which sends requests to WebSphere

Partner Gateway, to the adapter.

v For event notification, set the ″from″ port, which receives events from

WebSphere Partner Gateway, to the adapter.

Table 45 summarizes where to find information about how to create connector

objects, based on the transport protocol you are using.

 Table 45. Collaboration binding for different transport protocols

Transport protocol Adapter For more information

HTTP Adapter for HTTP “Binding collaborations to

communicate with Adapter for

HTTP” on page 156

JMS Adapter for JMS “Binding collaborations to

communicate with Adapter for

JMS” on page 172

Deploying the project

After your user project contains the artifacts that define the run-time components

needed, you must deploy it to the InterChange Server repository. You deploy a

user project within System Manager.

Handling documents with attachments

WebSphere Partner Gateway provides the Attachment data handler to process

documents that are sent between WebSphere Partner Gateway and InterChange

Server. The Attachment data handler converts a document within the XML

transport envelope (with or without attachments) between its serialized format and

its business-object representation. You should configure the Attachment data

handler as the payload data handler in either of the following cases:

Chapter 8. Introduction to InterChange Server integration 123

v The Envelope Flag for Backend Integration packaging has been set to Yes.

When this flag is set to Yes, WebSphere Partner Gateway always wraps a

document in an XML transport envelope, regardless of whether it contains

attachments. You set this flag to Yes for Backend Integration packaging as part of

the profile’s B2B Capabilities page. For more information, see “Payload” on page

31.

v The document to be processed can contain attachments.

When a document contains attachments, WebSphere Partner Gateway wraps it

in an XML transport envelope. In any document flow, there is one payload and,

optionally, multiple attachments. If you are sending or receiving documents that

contain attachments, your payload business object needs to contain attachment

information.

Note: The Attachment data handler is not required for SOAP documents that

contain attachments. For information on how SOAP documents are handled, see

“Sending SOAP documents over HTTP/S” on page 156.

The Attachment data handler is called from a WebSphere Business Integration

adapter.

v If WebSphere Partner Gateway and InterChange Server use the HTTP transport

protocol, it is the Adapter for HTTP that calls the Attachment data handler.

v If WebSphere Partner Gateway and InterChange Server use the JMS transport

protocol, it is the Adapter for JMS that calls the Attachment data handler.

When the adapter receives a document within an XML transport envelope, it calls

the Attachment data handler to convert this document to its appropriate

business-object representation. For example, Figure 35 on page 161 shows the

Adapter for JMS calling the Attachment data handler to convert the serialized

format of the document to its business-object representation. Conversely, when the

adapter receives a business-object representation for a document within an XML

transport envelope, it calls the Attachment data handler to convert this

business-object structure to its appropriate document format. For example,

Figure 36 on page 163 shows the Adapter for JMS calling the Attachment data

handler to convert the business-object representation of the document to its

serialized format.

This section provides the following information on the Attachment data handler:

v “How the Attachment data handler performs the conversion”

v “Setting up the environment for the Attachment data handler” on page 129

v “Configuring the Attachment data handler” on page 130

v “Creating attachment-related business object definitions” on page 135

How the Attachment data handler performs the conversion

The Attachment data handler can interpret the structure of the XML transport

envelope and handle the conversion between the contained data and the

corresponding business-object representation, as described in the following

sections:

v “How documents are converted to business objects” on page 125 to send a

document to InterChange Server

v “How business objects are converted to documents” on page 127 to receive a

document from InterChange Server

124 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

How documents are converted to business objects

Before WebSphere Partner Gateway sends a document to InterChange Server, it

must determine whether to wrap the contents in an XML transport envelope. If

WebSphere Partner Gateway creates the transport envelope, the payload and any

attachments are Base64-encoded. WebSphere Partner Gateway then sends the XML

transport envelope to the appropriate adapter with the appropriate transport-level

headers. This adapter can be configured to call the Attachment data handler to

handle the conversion of payload and any attachments in an XML-wrapped

document into the corresponding business-object representation.

To convert a document wrapped in an XML transport envelope to its

business-object representation, the calling entity instantiates the Attachment data

handler, passing it the document (in its transport envelope). The Attachment data

handler then takes the following steps:

1. Loads the content-type maps defined in the data handler’s child meta-object.

The content-type maps are defined in the ContentTypeMap_x configuration

properties of the child meta-object. The child meta-object is a business object

that contains configuration information for the Attachment data handler.

Attributes in this business object associate content-type maps with content

types. For more information, see “Creating the Attachment child meta-object”

on page 130.

2. Checks the document to see whether it is wrapped in an XML transport

envelope.

v If the Attachment data handler does not detect the transport envelope, it does

not need to extract the payload from this envelope structure.

The document contains only a payload, which the Attachment data handler

must convert to its associated business-object representation. For more

information, see “How documents without a transport envelope are

processed.”

v If the Attachment data handler does detect the transport envelope, it must

extract the payload and any attachments from this envelope structure.

The document contains a payload and possibly some attachments. Therefore,

the Attachment data handler needs to convert the payload and any

attachments to their associated business-object representation. For more

information, see “How documents in a transport envelope are processed.”
3. Sets the resulting payload business object and returns this business object to the

calling entity.

How documents without a transport envelope are processed: If the Attachment

data handler determines that the document is not contained in an XML transport

envelope, it does not need to extract the payload data from the envelope structure.

Therefore, the data handler uses the PayloadDataHandlerMimeType configuration

property (defined in its child meta-object) to obtain the MIME type that identifies

the default payload data handler to instantiate for the document payload. This

data handler converts the payload data to its corresponding payload business

object and returns the resulting payload business object to its calling entity.

How documents in a transport envelope are processed: If the Attachment data

handler determines that the document is contained in an XML transport envelope,

it must extract the payload and any attachments from this envelope structure

before it can process them. Therefore, the data handler takes the following steps to

process and convert the document:

1. Extracts the payload and any attachments from the transport envelope and

decodes the payload data.

Chapter 8. Introduction to InterChange Server integration 125

The payload is contained in the <payload> XML tag. Each attachment is

contained in an <attachment> XML tag.

2. Searches the content-type maps for a content type that matches that of the

payload.

The Attachment data handler uses the MIME type specified in the matching

content-type map to create an instance of a data handler. This data handler

converts the payload data to its corresponding payload business object and

returns the resulting business object to the Attachment data handler.

3. Creates the content-information business object for the payload.

The Attachment data handler examines the business-object-level

application-specific information of the payload business object definition and

determines the name of the content-information business object, whose attribute

name is specified by the cw_mo_bcg_content_info tag. It then creates an

instance of this content-information business object and sets the values for the

payload content type and encoding.

4. Creates the attachment-container business object for the payload.

The Attachment data handler examines the business-object-level

application-specific information of the payload business object and determines

the name of the attachment-container business object, whose attribute name is

specified by the cw_mo_bcg_attachment tag. It then creates an instance of the

attachment-container business object and saves it in the appropriate attribute of

the payload business object.

If the cw_mo_bcg_attachment tag does not exist (or is empty), assume that the

document does not contain any attachments. Therefore, no further processing

steps are required. The Attachment data handler returns the converted payload

business object.

5. Creates the default attachment business object for the attachment container.

The Attachment data handler examines the business-object-level

application-specific information of the attachment-container business object and

determines the name of the default attachment business object, whose attribute

name is specified by the cw_mo_bcg_default_attribute tag. It then creates an

instance of the default attachment business object and saves it in the

appropriate attribute of the attachment-container business object.

6. Determines whether the attachment needs to be converted to a business object

by searching the content-type maps for a content type that matches that of the

attachment.

The Attachment data handler examines the content type and character-set

encoding from the attachment and checks to see whether there is a

corresponding entry in a content-type map.

v If a corresponding content-type map is not found, the Attachment data

handler does not create a business object for the attachment data.

Therefore, the data handler creates an instance of the default attachment

business object, sets the values for the content type and encoding within its

content-information business object, and sets the base64-encoded attachment

data (as a string) in the attachment attribute.

The Attachment data handler then populates the attachment-container

business object with the default attachment business object.

v If a content-type map is found, the Attachment data handler checks to see

whether the attachment needs to be converted to a business object:

– If the ConvertAttachment configuration property in the matching

content-type map is false, the Attachment data handler creates an instance

of the default attachment business object, sets the values for the content

126 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

type and encoding within its content-information business object, and sets

the base64-encoded attachment data (as a string) in the attachment

attribute.

The Attachment data handler then populates the attachment-container

business object with the default attachment business object.

– If the ConvertAttachment configuration property in the matching

content-type map is true, the Attachment data handler decodes the

attachment data and creates an instance of a data handler to process the

attachment data. This data handler processes the decoded bytes and

returns the corresponding attachment business object.

The Attachment data handler then examines the business-object-level

application-specific information of the attachment business object

definition and determines the name of the content-information business

object, whose attribute name is specified by the cw_mo_bcg_content_info

tag. If this tag exists, the data handler creates the content-information

business object for the attachment and sets the values for attachment’s

content type and encoding.

Finally, the Attachment data handler populates the attachment-container

business object with the attachment business object.

How business objects are converted to documents

Before WebSphere Partner Gateway receives a document from InterChange Server,

an adapter must determine whether to wrap the business-object representation of

the payload and any attachments in the XML transport envelope. InterChange

Server sends the business object to the appropriate data handler, which handles the

actual conversion. This data handler can be configured to call the Attachment data

handler to handle the conversion of payload and any attachment business objects

into the corresponding payload and attachments as well as the creation of an XML

transport envelope.

To convert a payload business object with attachments to its transport-envelope

representation, the calling entity instantiates the Attachment data handler, passing

it the payload business object. The Attachment data handler takes the following

steps:

1. Loads the content-type maps defined in its configuration meta-object.

The content-type maps are defined in the ContentTypeMap_x configuration

properties of the child meta-object. The child meta-object is a business object

that contains configuration information for the Attachment data handler.

Attributes in this business object associate content-type maps with content

types. For more information, see “Creating the Attachment child meta-object”

on page 130.

2. Checks the business object to determine whether to create an XML transport

envelope.

v If the Attachment data handler does not determine that the document

requires a transport envelope, it does not need to wrap the payload in this

envelope structure.

The document contains only a payload, which the Attachment data handler

must create from its associated business-object representation. The data

handler does not need to create a transport envelope for the document. For

more information, see “How documents without a transport envelope are

created” on page 128.

v If the Attachment data handler does determine that the document requires a

transport envelope, it must wrap the payload and any attachments in this

envelope structure.

Chapter 8. Introduction to InterChange Server integration 127

The document contains a payload and possibly some attachments. Therefore,

the Attachment data handler needs to convert the payload business-object

representation to a payload and any attachments and wrap these components

in a transport envelope. For more information, see “How documents with a

transport envelope are created.”
3. Sets the resulting payload and any attachment tags in the WebSphere Partner

Gateway document and returns this document to the calling entity.

How documents without a transport envelope are created: If the Attachment

data handler determines that the payload business object does not require an XML

transport envelope, it does not need to wrap the payload data in the envelope

structure. Therefore, the data handler uses the default payload data handler to

convert the payload business object to its corresponding payload document. The

PayloadDataHandlerMimeType configuration property (defined in the Attachment

data handler’s child meta-object) contains the MIME type that identifies the default

payload data handler to instantiate for the payload business object. This data

handler receives the payload business object as an argument and returns the

resulting payload document to its calling entity.

How documents with a transport envelope are created: If the Attachment data

handler determines that the payload business object does require an XML transport

envelope, it must wrap the payload and attachment documents in this envelope

structure. Therefore, the data handler takes the following steps to process and

convert the business object:

1. Gets the content type and character-set encoding for the payload.

The cw_mo_bcg_content_info tag in the business-object-level application-specific

information of the payload business object specifies the name of the

content-information attribute. This attribute contains the content type and

encoding for the payload.

Note: If the content-information attribute does not exist, use the default data

handler (identified by the MIME type contained in the

PayloadDataHandlerMimeType configuration property, in the Attachment data

handler’s child meta-object) to convert the payload business object.

2. Searches the content-type maps for a content type that matches that of the

payload.

The Attachment data handler uses the MIME type specified in the matching

content-type map to create an instance of a payload data handler. This data

handler converts the payload business object to its corresponding payload

document and returns the resulting document to the Attachment data handler.

From the string that is returned by the payload data handler, the Attachment

data handler encodes the bytes using Base64 and stores the result in the

payload tag of the XML transport envelope.

3. Gets the attachment container from the payload business object.

The attachment container resides in the attachment-container attribute of the

payload business object. The business-object-level application-specific

information of the payload business object contains the cw_mo_bcg_attachment

tag, which identifies the attachment-container attribute. This attribute contains

the attachments.

If the cw_mo_bcg_attachment tag does not exist (or is empty), assume that the

document does not contain any attachments. Therefore, no further processing

steps are required. The Attachment data handler returns the converted payload

in its transport envelope.

128 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

4. For each attachment, determines whether the attachment is represented as a

business object or just data.

v If the attachment is just attachment data, the business-object-level

application-specific information of the attachment-container business object

contains the cw_mo_bcg_default_attribute tag, which identifies the

default-attachment attribute. This attribute contains the attachment data,

which the Attachment data handler retrieves, extracts the Base64-encoded

data, and stores the result in the document.

v If the attachment is represented by a business object, its attribute-level

application-specific information contains the wbic_type tag to indicate that it

contains an attachment business object.

The Attachment data handler takes the following steps to process the

attachment business object:

a. Retrieves the contents of the attachment attribute and gets the content

type and encoding for the attachment.

The business-object-level application-specific information of the

attachment business object contains the cw_mo_bcg_content_info tag,

which identifies the content-information attribute. This attribute contains

the content type and encoding for this attachment. The Attachment data

handler stores this content information in the attachment tag of the

document.

b. Searches the content-type maps for a content type that matches that of

the attachment.

The Attachment data handler uses the MIME type in the matching

content-type map to create an instance of a data handler. This data

handler converts the attachment business object to its corresponding

attachment document and returns the resulting document (as a string) to

the Attachment data handler.

c. Stores the encoded result in the attachment tag of the XML wrapper for

the document.

The Attachment data handler gets the bytes from the returned string

(using the character set, if one was present) and encodes the bytes using

Base64. It then stores the result in the attachment tag.

Setting up the environment for the Attachment data handler

Use of the WebSphere Partner Gateway-supplied Attachment data handler involves

the following steps:

v “Specifying which schema to use”

v “Deploying the Attachment data handler” on page 130

v “Configuring the Attachment data handler” on page 130

Specifying which schema to use

You have the option of using the default schema for the Attachment data handler

or using a schema (wbipackaging_v1.1_ns.xsd) that lets you pass the contentId in

the Backend Integration packaging.

To use the wbipackaging_v1.1_ns.xsd schema, configure the wbipackaging_version

property in the bcg.properties file. (The bcg.properties file is described in the

Administrator Guide.) This property is specified as:

 wbipackaging_version=1.n

where n is 0 or 1. The default value of this property is 1.0.

Chapter 8. Introduction to InterChange Server integration 129

The meta-object of the Attachment data handler has a wbipackaging_version

attribute, which can have a value of 1.0 or 1.1. If you specify 1.1, the Attachment

data handler parses and generates the XML messages containing the contentId of

the attachment.

To specify the content ID of the attachment, the encoding business object uses the

contentId attribute. When the Attachment Data Handler generates the XML from

the business object, it uses this attribute to create the contentId tag for the

attachment. When the Attachment Data Handler generates the business object from

the XML, it sets this attribute, using the value specified in the contentId tag in the

XML message.

Deploying the Attachment data handler

The Attachment data handler and associated repository file are available on the

WebSphere Partner Gateway installation medium, in the locations listed in

Table 46.

 Table 46. Location of the components for Attachment data handler

Component Location

Attachment data handler Integration/WBI/WICS/Attachment/

bcgwbiattachmentdh.jar

Repository file Integration/WBI/WICS/Attachment/

MO_DataHandler_DefaultAttachmentConfigV1.0.in

or

Integration/WBI/WICS/Attachment/

MO_DataHandler_DefaultAttachmentConfigV1.1.in

Deploy the files into the Web server according to the documentation for the Web

server.

Specifying the location of the Attachment data handler

WebSphere InterChange Server needs to know the location of the Attachment data

handler, so that it can load it at run-time. To specify the location of the Attachment

data handler, take the following steps:

1. Edit the ICS startup script, start_server.bat, which is located in the bin

subdirectory of the InterChange Server product directory (on the computer

where InterChange Server resides).

2. To the CLASSPATH variable in this file, add the jar file for the Attachment data

handler: bcgwbiattachmentdh.jar

Configuring the Attachment data handler

Configuring the Attachment data handler consists of the following steps to create

the configuration business objects:

v “Creating the Attachment child meta-object”

v “Updating the top-level data-handler meta-object” on page 133

Note: You must also create the attachment-related business object definitions for

the Attachment data handler. For more information, see “Creating

attachment-related business object definitions” on page 135.

Creating the Attachment child meta-object

To configure the Attachment data handler, you must create a child meta-object to

provide the class name and configuration properties that the Attachment data

130 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

handler needs. To create this meta-object, you create a business object definition

that contains the attributes listed in Table 47. Use Business Object Designer, which

is part of the WebSphere Business Integration Toolset, to create this business object

definition

The child meta-object provides the class name and configuration properties that the

Attachment data handler needs. In the Business Object Designer tool, create a child

meta-object that includes MIME types for the payload and for the types of

attachments you expect to receive.

The attributes of the child meta-object are shown in Table 47. An example of a

child meta-object for the Attachment data handler is shown in Figure 28 on page

133.

Note: The sample business objects shown in this chapter do not include the

standard attributes (such as ObjectEventId) required by WebSphere InterChange

Server but not used by the Attachment data handler.

 Table 47. Configuration properties in the Attachment child meta-object

Attribute Name Description

ClassName Class name (required), which points to the following data

handler class:

com.ibm.bcg.DataHandlers.AttachmentDataHandler

ContentTypeMap_x The content-type map for the payload and for each type of

attachment you expect to receive in the XML wrapper.

For more information, see “Content-type maps.”

PayloadDataHandlerMimeType MIME type used to identify the default data handler,

which processes a payload that does not have associated

attachments.

wbipackaging_version This attribute can have a value of 1.0 or 1.1. If you specify

1.1, the Attachment data handler parses and generates the

XML messages containing the contentId of the attachment.

Important: To assign a value to the attributes in Table 47, set the default value of

the attribute. For example, if the Attachment data handler is to use the XML data

handler for its default data handler, set the Default Value of the

PayloadDataHandlerMimeType attribute to text/xml.

Content-type maps: The content-type map determines the data handler that the

Attachment data handler calls to convert information formatted in the associated

content type. For example, if the content type of the payload is application/xml,

the Attachment data handler looks for a content-type map whose ContentType

attribute contains the value application/xml. If no matching content type can be

found, the data handler assumes that it should not convert the associated

attachment to a business object.

You would create a content-type map for each of these content types, with the

attribute-level application-specific information as shown in Table 49.

When you create an attribute in the child meta-object that represents a content-type

map, keep the following in mind:

v The name of the content-type-map attribute has the following format:

ContentTypeMap_x

Chapter 8. Introduction to InterChange Server integration 131

where x is an integer that uniquely identifies the content-type map within the

business object definition.

Note: You must order the ContentTypeMap_x attributes in sequence. For example,

if you have three content-type maps, their attributes must be named

ContentType_1, ContentType_2, and ContentType_3.

v The default value of the content-type-map attribute must contain some

combination of valid tags.

Table 48 lists the tags that the default value for this attribute can contain.

 Table 48. Valid tags for default value of content-type-map attribute

Tag name Description Required

ContentType Actual content type that comes in the transport

envelope (for example, text/xml).

Yes

MimeType MIME type used to identify the data handler to

convert the associated content type to a business

object. If you do not specify MimeType, the data

handler uses the value of ContentType to

instantiate the data handler.

No

CharSet Name of a character set (for example, UTF-8)

that the Attachment data handler uses to convert

bytes to a string or a string to bytes.

If you do not specify CharSet, the Attachment

data handler takes the following actions:

v For inbound data, the data bytes that result

from decoding the message from base64 are

used for the conversion to the business object.

v For outbound data, calls are made to the

method of the child data handler that returns

bytes (and not a string).

No

ConvertAttachment Boolean value to indicate whether the

attachment should be converted to a business

object. The default is false.

No

The content-type map can also specify the character set for encoding as well as

whether an attachment should be converted to a business object. For a description

of the child meta-object attributes and an example, see “Creating the Attachment

child meta-object” on page 130.

For example, suppose you have the following content types in your document:

v application/xml

v text/xml

v application/octet-stream

 Table 49. Sample content-type maps

Content type Attribute name Default value

text/xml ContentType_1 ContentType=text/xml;MimeType=myxml; CharSet=UTF-
8;ConvertAttachment=false;

application/xml ContentType_2 ContentType=application/xml;

MimeType=mynewxml;CharSet=UTF-16;

ConvertAttachment=true;

application/octet-stream ContentType_3 ContentType=application/octet-stream; MimeType=myoctet

132 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Sample child meta-object: WebSphere Partner Gateway provides the following

InterChange Server repository input files, which contains a sample child

meta-object for the Attachment data handler:

ProductDir/Integration/WBI/WICS/Attachment/

 MO_DataHandler_DefaultAttachmentConfigV1.0.in

ProductDir/Integration/WBI/WICS/Attachment/

 MO_DataHandler_DefaultAttachmentConfigV1.1.in

where ProductDir is the directory of your installed WebSphere Partner Gateway

product. The repository files define a single Attachment data handler whose

associated child meta-object is MO_DataHandler_DefaultAttachmentConfig. Figure 28

shows the sample child meta-object for the Attachment data handler. This

meta-object defines two content-type maps, ContentTypeMap_1 and

ContentTypeMap_2.

 MO_DataHandler_DefaultAttachmentConfigV1.1.in contains the additional

attribute:

[Attribute]

 Name = WBIPackaging_Version

 Type = String

 MaxLength = 255

 IsKey = false

 IsForeignKey = false

 IsRequired = true

 DefaultValue = 1.0

 IsRequiredServerBound = false

 [End]

Updating the top-level data-handler meta-object

A WebSphere Business Integration Adapter (such as the Adapter for JMS) uses the

MO_DataHandler_Default meta-object to identify the data handlers it can use. Add a

reference to the Attachment data handler in the meta-object.

To the MO_DataHandler_Default meta-object, you make the following modifications:

Name = ClassName
Default alue = com.ibm.bcg.DataHandlers.

AttachmentDataHandler
V

Name = ContentTypeMap_1
Default alue = ContentType=application/xml;

MimeType=text/xml;CharSet=UTF-8;
ConvertAttachment=true;

V

Name = ContentTypeMap_2
Default Value = ContentType=text/xml;

MimeType=text/xml;CharSet=UTF-8;

Name = PayloadDataHandlerMimeType
Default alue = text/xmlV

MO_DataHandler_DefaultAttachmentConfig

Figure 28. Sample child meta-object for the Attachment data handler

Chapter 8. Introduction to InterChange Server integration 133

1. Add an attribute whose name identifies the MIME type associated with the

Attachment data handler instance; that is, for a document that contains this

MIME type, the associated data handler can handle its conversion to a business

object.

The attribute type of this attribute is the business object definition for the

Attachment data handler’s child meta-object (see “Creating the Attachment

child meta-object” on page 130).

2. Add an attribute for each of the supported attachment MIME types, if these do

not already exist in the top-level data-handler meta-object.

The attribute type of these attributes would be the child meta-object of the

associated data handler.

For example, suppose you have the Attachment data handler as configured in

Figure 28 on page 133. Figure 29 shows the MO_DataHandler_Default meta-object

with an attribute that associates the wbic_attachment MIME type with the instance

of the Attachment data handler that is configured by the

MO_DataHandler_DefaultAttachmentConfig child meta-object. This top-level

data-handler meta-object also associates the document MIME type (text/xml) with

the XML data handler’s child meta-object.

 For each unique combination of supported content types that you need to support,

repeat the process by adding an attribute in the appropriate top-level data-handler

meta-object, whose attribute name is the MIME type associated with the

Attachment data handler instance and whose type is the name of the associated

child meta-object. Also ensure that the configured MIME types (and their child

meta-objects) exist in the top-level meta-object.

Name = wbic_attachment
Type = MO_DataHandler_DefaultAttachmentConfig

Name = ClassName
Default alue = com.ibm.bcg.DataHandlers.

AttachmentDataHandler
V

Name = ContentTypeMap_1
Default alue = ContentType=application/xml;

MimeType=text/xml;CharSet=UTF-8;
ConvertAttachment=true;

V

Name = ContentTypeMap_2
Default Value = ContentType=text/xml;

MimeType=text/xml;CharSet=UTF-8;

Name = PayloadDataHandlerMimeType
Default alue = text/xmlV

MO_DataHandler_DefaultAttachmentConfig

MO_DataHandler_Default

Name = text/xml
Type = MO_DataHandler_DefaultXMLConfig

Figure 29. Associating the wbic_attachment MIME type with the Attachment data handler

134 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Creating attachment-related business object definitions

If you are sending or receiving documents that are wrapped in an XML transport

envelope, your payload business object needs to contain attachment information. In

any document flow, there is one payload and, optionally, multiple attachments. The

Attachment data handler expects this attachment information to be in

attachment-related business objects. Therefore, you must create business object

definitions to represent this information. A business object definition is the form of

information that InterChange Server uses. You use the Business Object Designer

tool to create business object definitions.

Figure 30 shows the business-object structure for a payload that is wrapped in an

XML transport envelope.

Chapter 8. Introduction to InterChange Server integration 135

As Figure 30 shows, all the attachments are contained in the attachment-container

business object. If there are attachments, the payload business object has an

attribute that corresponds to the attachment-container business object.

Make sure your business-object structure includes attachment-required business

objects by taking the following steps:

1. Create a business object definition to hold the content-type-encoding properties

required by the Backend Integration packaging.

2. Create a business object definition for each type of attachment.

AppSpecInfo =
cw_mo_bcg_attachments=

attachments

Name = attachments

WBIC_Payload_BusObj

:
:

Type = attachContainer_BusObj

payload attributes

Name = contentType
Type = String

Name = encoding
Type = String

Name = contentId
Type = String

contentInfo_BusObj

attachment attributes

Name = contentType_attach1
Type = contentInfo_BusObj

:
:

AppSpecInfo =
cw_mo_bcg_content_info=

contentType_attach1

Name = defaultAttach

attachContainer_BusObj

Type = defaultAttach_BusObj

Name = attachment1
Type = attachment1_BusObj

AppSpecInfo =
cw_mo_bcg_default_attribute=

defaultAttach

Name = contentType
Type = String

contentInfo_BusObj

attachment1_BusObj

Name = attachment
Type = String
Name = attachment

Type = contentInfo_BusObj

AppSpecInfo =
cw_mo_bcg_content_info=

contentType_attach

defaultAttach_BusObj

Name = contentType_attach

Type = String

Name = encoding
Type = String

Name = contentId
Type = String

Figure 30. Relationship of the payload business object to the attachment business objects

136 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

3. Create a business object definition for the attachment-container business object.

4. Modify the business object definition for your payload business object.

Each of these steps is described in the sections below.

Representing the content information

To store the content type and encoding of the associated payload or attachment,

you create the content-information business object. To create a content-information

business object definition, create the attributes shown in Table 50.

 Table 50. Attributes of the content-information business object

Attribute

Attribute

type Description

Is key

attribute?

contentType String The content type for the associated payload

or attachment.

Yes

encoding String The character encoding for the associated

payload or attachment

No

In Figure 30 on page 136, the contentInfo_BusObj business object definition

contains attributes for the content type and encoding of the attachment. These

attributes all have attribute-level application-specific information to specify the

name of the related protocol header. For example, the x-aux-sender-id attribute

has the application-specific information set as follows:

name=x-aux-sender-id

You can choose whatever name you want to identify the content-information

business object definition. The application-specific information of the attachment

business object determines if this is a Content Type Encoding business object type.

Figure 30 on page 136 shows an example of a content-type-encoding business

object definition called contentType_BusObj.

Representing attachment data

For attachment data that is not to be converted into a business object, you create

the default attachment business object. This business object is useful for containing

base64-encoded data that comes from the transport envelope.

To create a default-attachment business object definition, take the following steps:

1. Create the attributes shown in Table 51.

2. If you create a content-information business object, in the application-specific

information for the default attachment business object definition, add the

cw_mo_bcg_content_info tag to identify the attribute that contains the content

information.

This cw_mo_bcg_content_info tag has the following format:

cw_mo_bcg_content_info=contentInfoAttr

where contentInfoAttr is the name of the attribute that contains the

attachment-container business object.

 Table 51. Attributes of the default attachment business object

Attribute Attribute type Description

Is key

attribute?

attachment String The piece of attachment data.

Note: This attribute is the key attribute of the business

object definition.

Yes

Chapter 8. Introduction to InterChange Server integration 137

Table 51. Attributes of the default attachment business object (continued)

Attribute Attribute type Description

Is key

attribute?

An attribute to hold

the content information

Business object An optional attribute to hold the content-information

business object, which provides the content type and

encoding for the attachment data. This attribute should

have single cardinality.

Note: If this attribute does not exist, the Attachment data

handler does not set the attachment data in the business

object.

For more information on the format of the

content-information business object, see “Representing the

content information” on page 137.

No

In Figure 30 on page 136, the defaultAttach_BusObj business object definition

contains attributes for the piece of attachment data, including a

content-information business object to hold its content type and encoding. The

piece of attachment data that this default attachment business object represents

does have a content-type encoding, represented by the contentType_attach

attribute. Therefore, the default attachment business object definition includes the

following tag in its business-object-level application-specific information:

cw_mo_bcg_content_info=contentType_attach

Representing the attachments

For each kind of attachment in your document that converts to a business object,

you must create a separate attachment business object definition. The attachment

business object definition represents the actual data in a document attachment. To

create an attachment business object definition, take the following steps:

1. Create an attribute for each piece of attachment data.

Possible attribute types can include String (for simple pieces of data) or a

business object definition (for complex data).

2. If the attachment requires content-type encoding:

a. Create a content-type-encoding attribute.

The attribute type for this attribute is the content-type-encoding business

object definition (see “Representing the content information” on page 137).

b. Add to the business-object-level application-specific information of the

attachment business object definition the cw_mo_bcg_content_info tag, to

identify the attribute that contains the content-type encoding.

This cw_mo_bcg_content_info tag has the following format:

cw_mo_bcg_content_info=contentTypeEncodingAttr

where contentTypeEncodingAttr is the name of the attribute that contains the

content-type-encoding business object.

In Figure 30 on page 136, the payload document has one attachment, represented

by the attachment1_BusObj business object definition. This attachment does have a

content-type encoding, represented by contentTypeEncoding attribute. Therefore,

the attachment business object definition includes the following tag in its

business-object-level application-specific information:

cw_mo_bcg_content_info=contentTypeEncoding

138 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Representing the attachment container

The attachment container contains all document attachments in the transport

envelope. To represent the attachment container for InterChange Server, you create

the attachment-container business object. Each attribute in the attachment-container

business object represents one attachment.

To create the attachment-container business object definition, take the following

steps:

1. Add an attribute for each attachment in the document that is to be converted to

a business object.

The attribute type for each of these attributes is the associated attachment

business object (see “Representing the attachments” on page 138). Each

attribute should have multiple cardinality.

2. Add to the application-specific information for each attribute the wbic_type tag

to identify the attribute as an attachment.

The wbic_type tag has the following format:

wbic_type=Attachment

Note: An attachment attribute can have multiple cardinality.

3. If the payload contains attachment data that should not be converted to a

business object:

a. Add an attribute for the default attachment business object.

The attribute type for this attribute is the default attachment business object

(see “Representing attachment data” on page 137). It is the key attribute for

the attachment-container business object. This attribute does not require the

wbic_type tag in its application-specific information.

Note: The attachment-container business object can contain only one default

attachment attribute. However, this attribute can have multiple cardinality.

b. Add to the business-object-level application-specific information of the

attachment business object definition the cw_mo_bcg_default_attribute tag,

to identify the attribute that contains the attachment data.

This cw_mo_bcg_default_attribute tag has the following format:

cw_mo_bcg_content_info=defaultAttachmentAttr

where defaultAttachmentAttr is the name of the attribute that contains the

default attachment business object.

Important: If no default-attachment attribute exists, the Attachment data

handler cannot convert any attachments that do not have an associated

content-type map or attachments that are not converted to business objects.

These attachments will be lost during the conversion to business-object

representation.

In Figure 30 on page 136, the attachment container is represented by the

attachContainer_BusObj business object definition. This attachment-container

business object definition has the following attributes:

v The attachment1 attribute represents the single attachment for the document.

Therefore, the attachment-container business object definition includes the

following tag in its attribute-level application-specific information:

wbic_type=Attachment

This attachment is represented by the attachment1_BusObj business object

definition.

Chapter 8. Introduction to InterChange Server integration 139

v The defaultAttach attribute represents the attachment data that does not require

conversion to the business-object representation. Therefore, the

attachment-container business object definition includes the following tag in its

business-object-level application-specific information:

cw_mo_bcg_default_attribute=defaultAttach

Modifying the payload business object definition

The payload business object definition represents the information in your

document. It contains an attribute for each piece of information you are

transferring between WebSphere Partner Gateway and InterChange Server. For

information on the creation of the payload business object definition, see “Business

object for the document” on page 120.

If you are sending or receiving documents that contain attachments, your payload

business object needs to contain attachment information. In any document flow,

there is one payload and, optionally, multiple attachments. If the payload of your

document contains attachments, you must modify the payload business object

definition as follows:

1. Create an attribute to hold the payload data.

You might find it easier to use if your actual payload data is stored in a

separate payload business object definition. In this case, the top-level payload

business object contains an attribute for the payload data whose attribute type

is the business object definition of actual payload data.

2. Add an attachment container:

a. Add an attribute to hold the attachment container.

The attribute type of this attribute is the attachment-container business

object definition (see “Representing the attachment container” on page 139).

This attribute should have single cardinality.

b. In the application-specific information for the payload business object

definition, add the cw_mo_bcg_attachment tag to identify the attribute that

contains the attachment container.

This cw_mo_bcg_attachment tag has the following format:

cw_mo_bcg_attachment=attachContainerAttr

where attachContainerAttr is the name of the attribute that contains the

attachment-container business object.
3. Optionally, you can specify the content type of the payload. The Attachment

data handler uses this content type to determine which data handler to

instantiate to convert the payload data. If it finds a matching content type in

the content-type maps, it instantiates the data handler for this content type.

a. Add a content-information attribute, which is an optional attribute to hold

the content type and encoding for the payload. This attribute should have

single cardinality.

Note: If this attribute does not exist, the Attachment data handler obtains

the data handler to convert the payload from the setting of the

PayloadDataHandlerMimeType configuration property, in its child meta object.

b. In the application-specific information for the payload business object

definition, add the cw_mo_bcg_content_info tag to identify the attribute that

contains the content information.

This cw_mo_bcg_content_info tag has the following format:

cw_mo_bcg_attachment=contentInfoAttr

140 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

where contentInfoAttr is the name of the attribute that contains the

content-information business object. For more information on the format of

the content-information business object, see “Representing the content

information” on page 137.
4. Add any configuration attributes required for your transport protocol.

For example, if you are using the JMS transport protocol, your payload

business object definition must contain the JMS dynamic business object. For

more information, see the section on how to create business object definitions in

support of your transport protocol.

Chapter 8. Introduction to InterChange Server integration 141

142 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 9. Integrating InterChange Server over HTTP

This chapter describes how to integrate WebSphere Partner Gateway with

WebSphere InterChange Server over the HTTP transport protocol. It provides

information on how to configure InterChange Server (ICS) and the adapters

required for communication over HTTP.

Note: For information on how to configure WebSphere Partner Gateway to

communicate with InterChange Server over HTTP, see “Configuring WebSphere

Partner Gateway for InterChange Server” on page 116. For general information on

how to configure InterChange Server, see “Configuring InterChange Server” on

page 119.

This chapter provides the following information on how to send and receive

documents between WebSphere Partner Gateway and WebSphere InterChange

Server through the use of the HTTP transport protocol:

v “Using HTTP transport protocol with ICS”

v “Sending SOAP documents over HTTP/S” on page 156

Using HTTP transport protocol with ICS

WebSphere Partner Gateway can send and receive documents with WebSphere

InterChange Server (ICS) over the HTTP transport protocol

Note: If you are exchanging SOAP documents over the HTTP transport protocol,

see “Sending SOAP documents over HTTP/S” on page 156.

This section provides the following information on how to configure InterChange

Server and the appropriate adapters for use with WebSphere Partner Gateway over

HTTP:

v “Components required for documents to ICS over HTTP transport”

v “Setting up the environment for HTTP transport with ICS” on page 146

v “Creating business object definitions for ICS over HTTP” on page 149

v “Creating ICS artifacts for HTTP” on page 155

Components required for documents to ICS over HTTP

transport

For WebSphere Partner Gateway to communicate with InterChange Server using

the HTTP transport protocol requires that these two components be configured.

Table 52 summarizes these configuration steps.

 Table 52. Configuring WebSphere Partner Gateway and InterChange Server

Component Version For more information

WebSphere Partner Gateway 6.1 “Configuration for sending documents

to ICS over the HTTP transport

protocol” on page 117

“Configuration for receiving

documents from ICS over the HTTP

transport protocol” on page 118

© Copyright IBM Corp. 2004, 2008 143

Table 52. Configuring WebSphere Partner Gateway and InterChange Server (continued)

Component Version For more information

WebSphere InterChange

Server

4.3 “Creating ICS artifacts for HTTP” on

page 155

In addition, to send or receive a document between WebSphere Partner Gateway

and InterChange Server using the HTTP transport protocol, you use the

components listed in Table 53.

 Table 53. Components required to transfer documents with InterChange Server through HTTP

Component Description Notes and restrictions

WebSphere Business Integration

Adapter for HTTP

(Adapter for HTTP)

This adapter allows InterChange Server to

exchange business objects with

applications that send or receive data in

the form of HTTP streams.

Use Version 4.2.1 of the Adapter for

HTTP.

A payload data handler This data handler converts the document

payload between its document format

(typically XML) and its business-object

representation.

This data handler is required and

must support the MIME type of your

payload document.

Attachment data handler This data handler handles attachment

documents for your document message.

This data handler is required only if

your documents include attachments.

The following sections describe how the components in Table 53 work together to

send and receive documents between WebSphere Partner Gateway and

InterChange Server over the HTTP transport protocol.

How documents are sent to ICS through HTTP

For WebSphere Partner Gateway to send a document to InterChange Server using

the HTTP transport protocol, you use the Adapter for HTTP to retrieve the

document that WebSphere Partner Gateway has sent as an HTTP stream. The

adapter then routes the document to InterChange Server. Figure 31 provides an

overview of how WebSphere Partner Gateway sends documents to InterChange

Server over the HTTP transport protocol.

144 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

How documents are received from ICS through HTTP

For WebSphere Partner Gateway to receive a document from InterChange Server

using the HTTP transport protocol, you use the Adapter for HTTP, which sends the

message it receives from InterChange Server as an HTTP stream for WebSphere

Partner Gateway to retrieve. Figure 32 provides an overview of how WebSphere

Partner Gateway receives documents from InterChange Server over the HTTP

transport protocol.

Internet

Document

Collaboration

HTTP request message

Adapter for HTTP

WebSphere Partner
Gateway

Payload
data handler

Business object

WebSphere
InterChange Server

Figure 31. Message flow from WebSphere Partner Gateway to a collaboration through the

HTTP transport protocol

Chapter 9. Integrating InterChange Server over HTTP 145

Setting up the environment for HTTP transport with ICS

Because the sending and receiving of documents to and from InterChange Server

involves adapters and data handlers, you must perform the setup and

configuration tasks on the Adapter for HTTP. For information on how to configure

WebSphere Partner Gateway for use with InterChange Server over HTTP, see

“Configuring WebSphere Partner Gateway for InterChange Server” on page 116.

Internet

Document

Collaboration

Adapter for HTTP

HTTP stream

WebSphere Partner
Gateway

Payload
data handler

Business object

WebSphere
InterChange Server

Figure 32. Message flow from a collaboration to WebSphere Partner Gateway through the

HTTP transport protocol

146 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

The Adapter for HTTP allows WebSphere Partner Gateway to exchange documents

with InterChange Server in the form of HTTP messages. It supports the following

interactions with InterChange Server:

v For request processing, it receives the request business object from InterChange

Server, converts it to an HTTP stream, and sends it to the specified URL, where

it can be received by WebSphere Partner Gateway.

v For event notification, it listens at a specified URL, where WebSphere Partner

Gateway sends documents. When it receives a document, it converts it to an

event business object (using a data handler) and sends it to InterChange Server.

Important: WebSphere Partner Gateway does not include the WebSphere Business

Integration Adapter for HTTP. You must obtain this product separately and install

it according to the instructions in its Adapter for HTTP User Guide. Refer to the

adapter documentation to ensure that the version of the adapter is compatible with

the version of InterChange Server you are using.

When you have configured the Adapter for HTTP to communicate with

InterChange Server, follow the steps in these sections to configure this adapter to

listen for HTTP messages from WebSphere Partner Gateway:

Specifying the payload data handler

As Figure 32 on page 146 shows, the Adapter for HTTP uses a data handler to

convert the business objects it receives from InterChange Server into the

appropriate HTTP streams.

Note: The data handler that the Adapter for HTTP calls converts the payload of

the document. If your document is wrapped in an XML transport envelope (it

contains attachments or the Envelope Flag is Yes), configure the Attachment data

handler as the payload data handler. For more information, see “Handling

documents with attachments” on page 123.

To indicate which data handler to use to convert the payload, you must take the

steps listed in “Business object conversion” on page 121. In addition, you must

configure the Adapter for HTTP to use this payload data handler. You can set the

payload data handler in either of the following ways:

v In Connector Configurator, set the DataHandlerMetaObjectName connector

configuration property to specify the name of the top-level data-handler

meta-object that the Adapter for HTTP uses to identify data handlers. Make sure

you include the top-level data-handler meta-object in the list of supported

business objects for the adapter.

v In the top-level business object, use the MimeType attribute to hold the MIME

type to identify the payload data handler. For more information on this business

object, see “Top-level business object” on page 150.

Configuring the protocol-handler package name

The Adapter for HTTP uses the JavaProtocolHandlerPackages connector

configuration property to identify the name of the Java Protocol Handler packages.

For integration with WebSphere Partner Gateway, make sure that the

JavaProtocolHandlerPackage property is set to its default value:

com.ibm.net.ssl.internal.www.protocol

Configuring the HTTP protocol listener

The Adapter for HTTP supports hierarchical configuration properties to obtain the

information it needs to configure its protocol listeners. The top-level configuration

property is called ProtocolListenerFramework. Within this top-level property are

Chapter 9. Integrating InterChange Server over HTTP 147

several levels of subproperties. To configure the protocol handlers for use with the

Adapter for HTTP, make sure that the properties are configured in the

ProtocolListener property, as described in the following steps:

1. Configure a protocol listener with subproperties under the following

configuration property:

ProtocolListenerFramework

 ProtocolListeners

 HttpListener1

To configure your protocol listener, set the subproperties listed in Table 54.

 Table 54. Configuring the protocol listener

Property Description Value

Protocol Type of protocol listener:

v HTTP

v HTTPS

http or https

Host IP address on which the protocol

listener listens

IP address of the local computer

on which WebSphere Partner

Gateway is running

Port Port on which the protocol listener

listens for requests

8080

2. Configure the URL configurations that the protocol listener supports with

subproperties under the following configuration property:

ProtocolListenerFramework

 ProtocolListeners

 HttpListener1

 URLsConfiguration

 URL1

Set the ContextPath property to the URI for the HTTP requests that the

protocol listener receives.

Note: This directory must be the same one that WebSphere Partner Gateway

specifies as its Receiver URI. For more information, see “Configuration for

sending documents to ICS over the HTTP transport protocol” on page 117.

3. If your document contains attachments, you must configure a transformation

for the protocol listener by setting subproperties of the following configuration

property:

ProtocolListenerFramework

 ProtocolListeners

 HttpListener1

 URLsConfiguration

 URL1

 TransformationRules

 TransformationRule1

To configure the attachment transformation for your protocol listener, set the

subproperties listed in Table 55. You need one transformation rule for each

instance of the Attachment data handler you are using. For more information

on the Attachment data handler, see “Handling documents with attachments”

on page 123.

 Table 55. Configuring the attachment transformation for the protocol listener

Property Description Value

ContentType Content type of the data to be

transformed with a data handler

Content type associated with the

attachment data

148 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 55. Configuring the attachment transformation for the protocol listener (continued)

Property Description Value

MimeType MIME type to use to identify the

data handler to call

MIME type associated with the

instance of the Attachment data

handler

Charset Character set to use when

transforming data of the specified

content type

Character set for the attachment

data

For more information on these properties, see the Adapter for HTTP User Guide.

Creating business object definitions for ICS over HTTP

The Adapter for HTTP sends and receives your document to InterChange Server in

the form of a payload business object. The Adapter for HTTP invokes the payload

data handler to handle this business object when it receives or sends a WebSphere

Partner Gateway document, as follows:

v For request processing, the payload data handler converts the request business

object to its corresponding HTTP stream.

v For event notification, the data handler converts the HTTP stream to an event

business object.

Therefore, you must create the business object definitions shown in Table 56 to

represent the payload business-object structure that the Adapter for HTTP expects.

 Table 56. Business object definitions for the Adapter for HTTP

Condition Business object definition For more information

If you are using None or

Backend Integration

packaging for your message

and your documents do not

have attachments

Payload business object:

v Top-level business object

v Request business object

v Response business object

(optional)

v Fault business object

(optional)

“Creating the payload

business-object structure for

ICS over HTTP”

If you are using Backend

Integration packaging for

your message

Add to the payload business

object the business objects to

hold the message header

information:

v Dynamic meta-object

v HTTP-properties business

object

“Creating HTTP

transport-level header

information for ICS” on page

153.

If the document includes

attachments

You must also create

additional business objects to

represent the attachments.

“Creating attachment-related

business object definitions”

on page 135

Creating the payload business-object structure for ICS over

HTTP

The Adapter for HTTP expects a payload business-object structure that consists of

the following business objects:

v A top-level business object

v A request business object

v A fault business object (optional)

Chapter 9. Integrating InterChange Server over HTTP 149

v A response business object (optional)

Figure 33 shows a sample business-object structure for a payload business object

definition for use with InterChange Server over the HTTP transport protocol.

Note: For a detailed description of this business-object structure, refer to the

Adapter for HTTP User Guide.

Top-level business object: The top-level business object is a wrapper for the

request and response business objects. You must create a business object definition

for this business object. Table 57 summarizes the attributes of the top-level business

object definition.

 Table 57. Attributes of top-level business object

Attribute Attribute type Description

MimeType String Defines the content type and format of the

data that is being passed to the URL.

Charset String Used to determine which data handler to

call.

Request Business object Child business object that represents the

request message. The purpose of this

business object depends on whether it

participates in request processing or event

notification. For more information on the

structure of this business object, see

“Request business object” on page 151.

Name = MimeType

Name = Charset

WBIC_TopLevel_BusObj

Name = Response

Name = Request

Type = MO_Response_BusObj

AppSpecificInfo = ws_botype=request
AppSpecInfo =

wbic_mainboname=WBIC_TopLevel_BusObj;
cw_mo_http=HTTPConfigMO

Name = XMLDeclaration

Name = HTTPConfigMO

WBIC_Response_BusObj

:
:

AppSpecInfo =
wbic_mainboname=WBIC_TopLevel_BusObj;
cw_mo_http=HTTPConfigMO

Name = XMLDeclaration

Name = HTTPConfigMO

WBIC_Request_BusObj

:
:

Top-level business object

Request business object

Response business object

Type = MO_Request_BusObj

AppSpecificInfo = ws_botype=response

Type = String

Type = String

AppSpecInfo = wsmode=synch;

Figure 33. Business-object structure for the HTTP payload business object for ICS

150 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 57. Attributes of top-level business object (continued)

Attribute Attribute type Description

Response Business object Child business object that represents the

response message (if you are expecting a

response). The purpose of this business

object depends on whether it participates in

request processing or event notification. For

more information on the structure of this

business object, see “Response business

object” on page 152.

Note: When using the Adapter for HTTP with WebSphere Partner Gateway, you

do not need to include fault business objects in your top-level business object.

Table 58 summarizes the application-specific information that the top-level business

object definition can have.

 Table 58. Application-specific information for the top-level business object definition

Application-specific

information Tag Description

Business-object level ws_mode Defines whether the interaction is

synchronous or asynchronous

Attribute level ws_botype Defines which attribute contains the

request or response business object

For a complete description of the structure of the top-level business object and its

application-specific information, see the Adapter for HTTP User Guide.

Request business object: The request business object contains the data to be

passed to the URL. It represents the HTTP request message. The purpose of this

request business object depends on which InterChange Server task it is

participating in, as follows:

v For event notification (sending a document to InterChange Server), the request

business object contains the request message from WebSphere Partner Gateway,

which is the event to be sent to InterChange Server.

v For request processing (receiving a document from InterChange Server), the

request business object contains the request that InterChange Server is making to

WebSphere Partner Gateway.

Note: The top-level business object identifies its child business objects as its

request and response business objects. However, this structure is used in both

request processing and event notification.

For the basic description of the request business object’s structure, refer to the

Adapter for HTTP User Guide. For use with WebSphere Partner Gateway, there are

two customizations you must make to the structure of the request business object

definition:

v If the document that WebSphere Partner Gateway sends to InterChange Server

uses Backend Integration packaging, you must add to the request business object

definition a special attribute to identify the HTTP protocol-configuration

meta-object.

Chapter 9. Integrating InterChange Server over HTTP 151

This attribute provides configuration information for the transport-level headers

of the message. For more information, see “Creating HTTP transport-level

header information for ICS” on page 153.

v To the business-object-level application-specific information of the request

business object definition, add the tags shown in Table 59.

 Table 59. Tags in application-specific information of request business object

Application-specific-
information tag Description Required

ws_tloname Gives the name of the top-level

business object

Only required if business

object definition participates

in event notification

cw_mo_http Specifies the HTTP

protocol-configuration meta-object,

which contains the HTTP

transport-level header fields. For

more information, see “Creating

HTTP transport-level header

information for ICS” on page 153.

Only required if you are

using Backend Integration

packaging

Note: If you are using the Attachment data handler to process documents

wrapped in an XML transport envelope, you must modify your request business

object to hold the attachments, as described in “Creating attachment-related

business object definitions” on page 135.

Response business object: The response business object contains the data to be

received from the URL. It contains attributes for the various XML tags in the

response message. The purpose of this response business object depends on which

InterChange Server task it is participating in, as follows:

v For event notification, the response business object contains the response

message, which is sent from the collaboration in InterChange Server.

v For request processing, the response business object contains the information

from WebSphere Partner Gateway in response to the request that InterChange

Server sent.

Regardless of whether the response is part of event notification or request

processing, a response business object is sent only if the exchange between

WebSphere Partner Gateway and InterChange Server is synchronous and a business

response is expected in response to your request.

For the basic description of the fault business object’s structure, refer to the Adapter

for HTTP User Guide. For use with WebSphere Partner Gateway, there are

customizations you must make to the structure of the request business object

definition:

v If the document that WebSphere Partner Gateway sends to InterChange Server

uses Backend Integration packaging, you must add to the response business

object definition a special attribute to identify the HTTP protocol-configuration

meta-object.

This attribute provides configuration information for the transport-level headers

of the message. For more information, see “Creating HTTP transport-level

header information for ICS” on page 153.

v To the business-object-level application-specific information of the response

business object definition, add the tags shown in Table 59.

152 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

v In the top-level business object, add the ws_botype tag to the attribute-level

application-specific information for the attribute that corresponds to the response

business object.

This tag has the following syntax:

ws_botype=response

If the exchange between WebSphere Partner Gateway and InterChange Server is

asynchronous, WebSphere Partner Gateway does not expect a response, so you do

not need to create a response business object.

Creating HTTP transport-level header information for ICS

If you are sending documents with Backend Integration packaging over the HTTP

transport protocol, your request business object needs to contain custom

transport-level header information. The Adapter for HTTP expects this custom

header information to be in a dynamic meta-object.

Figure 34 shows the business-object structure for a request business object that

represents a WebSphere Partner Gateway document with Backend Integration

packaging over the HTTP transport protocol.

 Make sure your business-object structure includes an HTTP protocol-configuration

meta-object by taking the following steps:

1. Create a business object definition to hold the HTTP properties required by the

Backend Integration packaging.

AppSpecInfo = cw_mo_http=HttpConfigMO

Name = HttpConfigMO

WBIC_Request_BusObj

:
:

Type = HttpConfigMO_BusObj

Name = UserDefinedProperties

HttpConfigMO_BusObj

Type = HttpProps_BusObj

:
:

:
:

Name = x-aux-sender-id

HttpProps_BusObj

AppSpecificInfo =
ws_prop_name=x-aux-sender-id;

Name = x-aux-receiver-id
AppSpecificInfo =

ws_prop_name=x-aux-receiver-id;
:
:

Figure 34. Relationship of the request business object to the HTTP protocol-configuration

meta-object

Chapter 9. Integrating InterChange Server over HTTP 153

2. Create a business object definition for the HTTP protocol-configuration

meta-object.

3. Modify the business object definition for your request business object to include

an attribute for the HTTP protocol-configuration meta-object.

Each of these steps is described in the sections below.

Creating the user-defined-properties business object: The Adapter for HTTP

supports a user-defined-properties business object to hold custom properties in the

HTTP protocol-configuration meta-object. WebSphere Partner Gateway uses this

business object to hold HTTP properties required by the Backend Integration

packaging. It can also contain the Content-Type attribute, which specifies the

content-type header to set in the request message, and the content-length attribute,

which specifies the length of the message, in bytes. Table 8 on page 24 describes

each of the valid transport-header fields.

To create a user-defined-properties business object definition for the HTTP header

fields, take the following steps:

1. Create an attribute within the business object definition for each of the

transport-header fields.

All attributes should have an attribute type of String. You can name the

attribute with the exact name of the HTTP property (as listed in the Header

field column of Table 8 on page 24).

2. For each of the attributes in the HTTP-properties business object, add

application-specific information to identify the purpose of the associated

attribute.

This attribute-level application-specific information has the following format:

ws_prop_name=HTTPproperty

where HTTPproperty is one of the values in the Header field column of Table 8

on page 24.

In Figure 34 on page 153, the HttpProps_BusObj business object definition contains

attributes for the various transport-header fields. These attributes all have

attribute-level application-specific information to specify the name of the related

protocol header. For example, the x-aux-sender-id attribute has the

application-specific information set as follows:

ws_prop_name=x-aux-sender-id

Creating the HTTP protocol-configuration meta-object: For event notification,

the request, response, or fault business object can contain a dynamic meta-object

called the HTTP protocol configuration meta-object to hold configuration information

(such as header information).

For the basic description of the HTTP protocol-configuration business object’s

structure, refer to the Adapter for HTTP User Guide. For use with WebSphere

Partner Gateway, you must make the following customizations to the structure of

the HTTP protocol-configuration business object definition:

1. Create an attribute within the business object definition for any of the fields

you require.

All attributes should have an attribute type of String.

Note: For a complete list of attributes in the HTTP protocol-configuration

meta-object, see the Adapter for HTTP User Guide.

2. Add the UserDefinedProperties attribute to this business object definition.

154 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

The attribute type of this attribute is the business object definition for the

user-defined-properties business object (see “Creating the user-defined-
properties business object” on page 154).

For example, in Figure 34 on page 153, the HttpConfigMO_BusObj business object

definition contains the UserDefinedProperties attribute, whose attribute type is

HttpProps_BusObj.

Modify the request business object definition: The request business object

definition represents the information requested from WebSphere Partner Gateway.

For information on how to create the request business object, see “Request business

object” on page 151. To incorporate the dynamic meta-object into your payload

business-object structure, you must make the following modifications to your

request business object definition:

1. Add an attribute to your request business object definition to hold the HTTP

protocol-configuration meta-object.

The attribute type for this attribute is the business object definition for the

HTTP protocol-configuration meta-object (see “Creating the HTTP

protocol-configuration meta-object” on page 154).

2. Add the cw_mo_http tag to the business-object-level application-specific

information of your request business object definition to identify the attribute

that contains the HTTP protocol-configuration meta-object.

The cw_mo_http tag has the following format:

cw_mo_http=HttpConfigMetaObjAttr

where HttpConfigMetaObjAttr is the name of the attribute in the request

business object that holds the HTTP protocol-configuration meta-object.

For example, in Figure 34 on page 153, an attribute named HttpConfigMO has been

added to the request business object definition, hub_HttpRequest_BusObj. This

attribute contains the dynamic meta-object, which is a child business object of type

HttpConfigMO_BusObj. In addition, the application-specific information of the

request business object has been modified to include the following cw_mo_http tag

to identify this dynamic meta-object:

cw_mo_http=HttpConfigMO

Creating ICS artifacts for HTTP

To configure InterChange Server for communication with WebSphere Partner

Gateway over the HTTP transport protocol, you must create the InterChange

Server artifacts shown in Table 60.

 Table 60. Artifacts for communicating with ICS over the HTTP transport protocol

ICS artifact Purpose For more information

Business object

definitions

Represent the document “Creating business object

definitions for ICS over

HTTP” on page 149

Connector object Represents the Adapter for

HTTP at run-time

“Creating the HTTP

connector object” on page 156

Collaboration template

and collaboration object

Represents the business process

that InterChange Server uses to

process the document

“Binding collaborations to

communicate with Adapter

for HTTP” on page 156

Chapter 9. Integrating InterChange Server over HTTP 155

Creating the HTTP connector object

To obtain an instance of the Adapter for HTTP at run-time, you must take the

following steps within System Manager:

1. Create the connector objects:

v Create a connector object to represent an instance of the Adapter for HTTP.

Note: In the Supported Business Objects tab of Connector Configurator,

make sure that you specify all business object definitions you created for use

with the Adapter for HTTP. For a description of these business object

definitions, see “Creating business object definitions for ICS over HTTP” on

page 149.

v If required by your collaboration, create a connector object for the Port

Connector.
2. Configure the connector objects

For information on how to configure your Adapter for HTTP connector object

for use with WebSphere Partner Gateway, see “Setting up the environment for

HTTP transport with ICS” on page 146.

Binding collaborations to communicate with Adapter for HTTP

As described in “Creating the collaborations” on page 123, a collaboration object

must exist at run-time for InterChange Server to know where to receive and send

business objects. When you create the collaboration object for the collaboration that

uses the Adapter for HTTP to send information to and receive it from WebSphere

Partner Gateway, you bind the collaboration ports, as follows:

v For request processing, set the ″to″ port, which sends requests to WebSphere

Partner Gateway, to the connector object you created for the Adapter for HTTP;

that is, the Adapter for HTTP is the destination adapter.

v For event notification, set the ″from″ port, which receives events from

WebSphere Partner Gateway, to the connector object you created for the Adapter

for HTTP; that is, the Adapter for HTTP is the source adapter.

Sending SOAP documents over HTTP/S

SOAP documents differ from other types of documents exchanged over HTTP/S.

They use the standard Adapter for Web Services, which calls the SOAP data

handler to transform SOAP messages into business objects and to transform

business objects into SOAP messages. This section describes how to send and

receive SOAP documents between WebSphere Partner Gateway and WebSphere

InterChange Server over the HTTP transport protocol.

Note: To send and receive non-SOAP documents between WebSphere Partner

Gateway and WebSphere InterChange Server over the HTTP transport protocol, see

“Using HTTP transport protocol with ICS” on page 143.

Refer to the Adapter for Web Services documentation for information on the

business-object structure and on the WSDL Object Discovery Agent (ODA), a

design-time tool you can use to generate SOAP business objects that include

information about the receiver Web services.

As described in the WebSphere Partner Gateway Hub Configuration Guide, you must

have set up a receiver to receive Web service invocations from a back-end system

(the Web services receiver) as well as a receiver to receive Web service invocations

from an external partner (the external Web services receiver).

156 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Components required for sending and receiving

To send a SOAP document from WebSphere Partner Gateway to InterChange

Server using the HTTP transport protocol, you use the component listed in

Table 61.

 Table 61. Components required to send SOAP documents to InterChange Server through HTTP

Component Description Notes and restrictions

WebSphere Business Integration

Adapter for Web Services

This adapter allows InterChange

Server to exchange business objects

with applications that send or receive

data in the form of HTTP messages.

1. This adapter cannot be used with

non-SOAP documents.

2. Make sure you are using the Adapter

for Web Services 3.4.0 (or later). Refer

to the Adapter for Web Services User

Guide to make sure that the level of

the adapter is compatible with the

version of WebSphere InterChange

Server you are using.

Note: If a SOAP document contains attachments, you do not need to use the

Attachment data handler to handle them.

How external partners invoke Web services

The following steps occur when an external partner sends a request for a

collaboration that is exposed as a Web Service that the internal partner provides:

1. The external partner sends a SOAP request message to the destination specified

in the WSDL document generated for the collaboration. Note that the endpoint

specified in the WSDL is the Web services receiver (URL) of WebSphere Partner

Gateway instead of the actual endpoint.

2. WebSphere Partner Gateway receives and routes the message to the Adapter for

Web services.

3. The Adapter for Web Services sends the SOAP message to the SOAP data

handler to convert the SOAP message to a business object. The adapter invokes

the collaboration exposed as a Web service.

4. If this is a request/response operation, the collaboration returns a SOAP

response (or fault) business object.

5. If the collaboration returned a SOAP response (or fault) business object, the

Adapter for Web Services calls the SOAP data handler to convert the SOAP

response (or fault) business object to a SOAP response message. The adapter

returns the response to WebSphere Partner Gateway. If the collaboration did not

return a SOAP response (or fault) business object, the Adapter for Web Services

returns the appropriate HTTP response status code.

6. WebSphere Partner Gateway routes the response to the Web service.

How the internal partner invokes Web services

The Public WSDL provided by WebSphere Partner Gateway can be used for

creating business objects using WSDL ODA. It is important to note that when the

Web service is provided by an external partner for use by the internal partner, the

public URL used by the internal partner to invoke the Web service should contain

the following query string:

?to=<External Partner Web Service Provider’s business ID>

For example, the following address tells WebSphere Partner Gateway that the

provider of the Web service is the partner with business ID 123456789:

Chapter 9. Integrating InterChange Server over HTTP 157

http://<Hub_IP_address>/bcgreceiver/Receiver?to=123456789

The WSDL ODA will not add the query string in the default value of the URL

attribute of the Web Service top-level business object.

The following steps occur when a collaboration sends a request (to the Adapter for

Web Services) to invoke a Web service of an external partner:

1. The collaboration sends a service call request to the adapter, which calls the

SOAP data handler to convert the business object to a SOAP request message.

2. The adapter invokes the Web service by sending the SOAP message to the

external Web services receiver (URL) on WebSphere Partner Gateway.

3. WebSphere Partner Gateway acts as a proxy, sending the SOAP message to the

endpoint corresponding to the destination (external partner) Web service. This

invokes the Web service.

4. The invoked Web service receives the SOAP request message and performs the

requested processing.

5. The invoked Web service sends a SOAP response (or fault) message. In the case

of a one-way operation, the appropriate HTTP status code is returned.

6. If this is a request/response Web Service, WebSphere Partner Gateway routes

the SOAP response (or fault) message to the adapter, which calls the data

handler to convert it to a response or fault business object. The connector

returns the SOAP response or fault business object to the collaboration.

158 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 10. Integrating with InterChange Server over JMS

This chapter describes how to integrate WebSphere Partner Gateway with

WebSphere InterChange Server over the JMS transport protocol. It provides

information on how to configure InterChange Server and the adapters required for

communication over JMS.

Note: For information on how to configure WebSphere Partner Gateway to

communicate with InterChange Server over JMS, see “Configuring WebSphere

Partner Gateway for InterChange Server” on page 116. For general information on

how to configure InterChange Server, see “Configuring InterChange Server” on

page 119.

This chapter provides the following information on how to send and receive

documents between WebSphere Partner Gateway and WebSphere InterChange

Server through the use of the JMS transport protocol:

v “Components required for documents over JMS transport”

v “Setting up the environment for JMS transport” on page 164

v “Creating business object definitions for JMS” on page 167

Components required for documents over JMS transport

For WebSphere Partner Gateway to communicate with InterChange Server over the

JMS transport protocol, the components must be configured to work with JMS.

Table 62 summarizes these configuration steps.

 Table 62. Configuring WebSphere Partner Gateway and InterChange Server for JMS

transport protocol

Component Version For more information

WebSphere Partner Gateway 6.1 “Configuration for sending documents

to ICS over the JMS transport protocol”

on page 117

“Configuration for receiving documents

from ICS over the JMS transport

protocol” on page 119

WebSphere InterChange Server 4.3 “Creating ICS artifacts for JMS” on

page 171

In addition, to send or receive a document between WebSphere Partner Gateway

and InterChange Server over the JMS transport protocol, you also use the

components listed in Table 63.

© Copyright IBM Corp. 2004, 2008 159

Table 63. Components required to transfer documents to and from InterChange Server through JMS

Component Description Notes and restrictions

WebSphere Business

Integration Adapter for JMS

(Adapter for JMS)

This adapter allows InterChange Server

to exchange business objects with

applications that send or receive data in

the form of JMS messages. The Adapter

for JMS and WebSphere Partner Gateway

communicate through JMS queues.

Make sure you are using the Adapter for

JMS, Version 2.7.0 (or later), which

provides support for custom header

properties. Refer to the adapter

documentation to make sure that the

version of the adapter is compatible with

the version of InterChange Server you are

using.

A payload data handler This data handler converts the payload

between its document format and its

business-object representation.

For more information, see “Specifying the

payload data handler” on page 166.

Attachment data handler This data handler converts documents

with attachments into business objects.

This data handler is required only if your

documents include attachments. For more

information, see “Handling documents

with attachments” on page 123.

The following sections describe how the components in Table 63 work together to

send and receive documents between WebSphere Partner Gateway and

InterChange Server over the JMS transport protocol.

How documents are sent over the JMS transport

For WebSphere Partner Gateway to send a document to InterChange Server using

the JMS transport protocol, you use the Adapter for JMS to retrieve the message

that WebSphere Partner Gateway has put on a JMS queue. The adapter then routes

the message to InterChange Server. Figure 35 provides an overview of how

WebSphere Partner Gateway sends documents to InterChange Server over the JMS

transport protocol.

160 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

The following steps describe how WebSphere Partner Gateway participates in

event notification by sending a document to a collaboration within InterChange

Server over the JMS transport protocol:

1. WebSphere Partner Gateway posts a message to its JMS outbound queue.

If the packaging type of the document is Backend Integration, WebSphere

Partner Gateway has provided custom properties in this message. The JMS

message header, JMSType, is set with the content type of the payload.

Internet

Document

Collaboration

JMS message

Input queue

Adapter for JMS

WebSphere Partner
Gateway

Payload
data handler

Business object

WebSphere
InterChange Server

Figure 35. Message flow from WebSphere Partner Gateway to a collaboration through the

JMS transport protocol

Chapter 10. Integrating with InterChange Server over JMS 161

Note: Within WebSphere Partner Gateway, you must configure a destination

that identifies the JMS queue to which WebSphere Partner Gateway sends the

message and on which the Adapter for JMS is polling.

2. When the Adapter for JMS sees a message on one of its input queues, it

retrieves the message.

The JMS queue that WebSphere Partner Gateway uses as its outbound queue is

the same queue that the Adapter for JMS uses as its input queue. For

information on how to set up this queue, see “Configuring the JMS queues” on

page 165. For detailed information on the processing of the Adapter for JMS,

see the Adapter for JMS User Guide.

3. The Adapter for JMS moves the message to its in-progress queue.

4. The Adapter for JMS extracts the body of the JMS message and invokes a data

handler with the body of the message. This data handler converts the body of

the JMS message to a business object.

Note: If your messages have attachments, you can install the Attachment data

handler and then configure the Adapter for JMS to call it to convert the body of

the JMS message to a business object. For more information, see “Handling

documents with attachments” on page 123.

When Backend Integration is the packaging type and the document contains

attachments, the configured data handler is responsible for handling the

payload and attachments.

5. The data handler returns the business object to the Adapter for JMS.

Note: If the Attachment data handler was used, this business object contains

the payload as well as the attachments.

6. If the Adapter for JMS finds a child dynamic meta-object (specified using

cw_mo_conn in the business-object level application specific information), the

adapter populates the user-defined JMS headers present in the business object

with the headers present in the JMS message.

7. The Adapter for JMS delivers the business object to the InterChange Server as

part of a subscription delivery.

How documents are received over the JMS transport

For WebSphere Partner Gateway to receive a document from InterChange Server

using the JMS transport protocol, you use the Adapter for JMS, which places the

message it receives from InterChange Server on a JMS queue for WebSphere

Partner Gateway to retrieve. Figure 36 provides an overview of how WebSphere

Partner Gateway receives documents from InterChange Server over the JMS

transport protocol.

162 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

The following steps describe how WebSphere Partner Gateway participates in

request processing by receiving a document from a collaboration within

InterChange Server over the JMS transport protocol:

1. The collaboration within InterChange Server makes a service call to the

Adapter for JMS, sending it the request business object.

The request business object contains application-specific information pointing to

a dynamic meta-object that contains the JMS transport-level header information,

which WebSphere Partner Gateway expects.

Internet

Document

Collaboration

JMS message

Output queue

Adapter for JMS

WebSphere Partner
Gateway

Payload
data handler

Business object

WebSphere
InterChange Server

Figure 36. Message flow from a collaboration to WebSphere Partner Gateway through the

JMS transport protocol

Chapter 10. Integrating with InterChange Server over JMS 163

2. The Adapter for JMS uses a data handler to convert the business object that the

collaboration has sent it into a JMS message.

The adapter reads the DataHandlerMimeType and DataHandlerConfigMO

properties to determine the data handler to use. For more information, see

“Specifying the payload data handler” on page 166.

Note: If your documents have attachments, install the Attachment data handler

and then configure the Adapter for JMS to call it to convert the request

business object to a document with attachments. For more information, see

“Handling documents with attachments” on page 123.

3. The data handler converts the business object to a string and returns it to the

Adapter for JMS.

4. The Adapter for JMS determines, from the request business object, the name of

the dynamic meta-object for custom JMS properties.

The adapter searches the application-specific information of the request

business object for the cw_mo_conn tag, which identifies the attribute that

contains the dynamic meta-object. If you are using Backend Integration

packaging for your document, you can specify transport-level header

information in this dynamic meta-object.

5. The Adapter for JMS searches the dynamic meta-object for the JMSProperties

attribute.

If this attribute is populated, the adapter sets the transport-level header fields

in the request document. Within the JMSProperties attribute, you can also

specify the content-type standard JMS header. For more information, see

“Creating JMS header information” on page 168.

6. The Adapter for JMS creates a JMS message, using the string returned by the

data handler. It also sets any custom properties, as defined in the dynamic

meta-object.

7. The Adapter for JMS sends the resulting request message to an output queue.

The queue can be specified in the static meta-object or the dynamic meta-object.

For information on specifying queues, see “Identifying the JMS queues” on

page 166. WebSphere Partner Gateway listens on this JMS queue, which is

configured as its inbound queue in its receiver definition.

8. WebSphere Partner Gateway receives the message from its JMS inbound queue,

as configured in its receiver.

Note: WebSphere Partner Gateway supports only asynchronous interaction with

InterChange Server over JMS. Therefore, you might not want to wait for the

response. The response from the external partner or WebSphere Partner Gateway

can come on a different queue. You can configure the Adapter for JMS to poll that

queue. The response that comes on the queue can be delivered to InterChange

Server as part of the event delivery.

Setting up the environment for JMS transport

Because the sending and receiving of documents to and from InterChange Server

involves JMS queues and the Adapter for JMS, you must perform the setup and

configuration tasks described in Table 64. For information on how to configure

WebSphere Partner Gateway for use with InterChange Server over JMS, see

“Configuring WebSphere Partner Gateway for InterChange Server” on page 116.

164 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 64. Setting up the environment for use of JMS transport protocol

Configuration step For more information

1. Configure your JMS queues. “Configuring the JMS queues”

2. Configure the WebSphere Business

Integration Adapter for JMS.

“Configuring the Adapter for JMS”

Note: If your documents contain attachments, you must also install and configure

the Attachment data handler. For more information, see “Handling documents

with attachments” on page 123.

Configuring the JMS queues

To use the JMS transport protocol with InterChange Server, you must set up the

JMS system that WebSphere MQ provides. Supported versions of InterChange

Server use WebSphere MQ Version 6.0 with latest Fix pack as a JMS provider. You

can use the steps in the WebSphere Partner Gateway Hub Configuration Guide to set

up the JMS transport-protocol mechanism.

Important: The steps in the WebSphere Partner Gateway Hub Configuration Guide

must be performed on the computer on which WebSphere Partner Gateway

resides. This guide assumes that the JMS transport-mechanism required by the

Adapter for JMS and InterChange Server has already been set up as part of the

InterChange Server installation.

When you create your JMS queues for use between WebSphere Partner Gateway

and InterChange Server, consider the following points:

v Part of the InterChange Server installation process involves the creation of a

WebSphere MQ queue manager. You can use this queue manager with

WebSphere Partner Gateway.

v When you create your JMS queue aliases, you might want to name them to

indicate the direction of flow between WebSphere Partner Gateway and

InterChange Server. For example, if you create the queues listed in the Original

queue name column of Table 65, you could rename these queues to indicate the

InterChange Server directional flow, as shown in the Directional queue name

column of Table 65.

 Table 65. Naming JMS queues for InterChange Server to indicate direction

Original queue name Directional queue name

inQ ICS2HUB

outQ HUB2ICS

Configuring the Adapter for JMS

The Adapter for JMS allows WebSphere Partner Gateway to exchange documents

with InterChange Server in the form of JMS messages. It supports the following

interactions with InterChange Server:

v For request processing, it receives the request business object from InterChange

Server, converts it to a JMS message (using a data handler), and puts the JMS

message on a JMS queue (see Figure 36 on page 163), where it can be picked up

by WebSphere Partner Gateway.

v For event notification, it polls a JMS queue for JMS messages from WebSphere

Partner Gateway. When it finds a JMS message, it converts it to an event

business object (using a data handler) and sends it to InterChange Server.

Chapter 10. Integrating with InterChange Server over JMS 165

Important: WebSphere Partner Gateway does not include the WebSphere Business

Integration Adapter for JMS. You must obtain this product separately and install it

according to the instructions in its Adapter for JMS User Guide. It is important that

you read the steps described in this guide to correctly install and configure your

Adapter for JMS.

When you have configured the Adapter for JMS to communicate with InterChange

Server, follow the steps in this section to configure this adapter to accept JMS

messages from WebSphere Partner Gateway:

v “Specifying the payload data handler”

v “Identifying the JMS queues”

Specifying the payload data handler

As Figure 36 on page 163 shows, the Adapter for JMS uses a data handler to

convert the business objects it receives from InterChange Server into the

appropriate JMS messages.

Note: The data handler that the Adapter for JMS calls converts the payload of the

document. If your document is wrapped in an XML transport envelope (it contains

attachments or the Envelope Flag is Yes), configure the Attachment data handler as

the payload data handler. For more information, see “Handling documents with

attachments” on page 123.

To indicate which data handler to use to convert the payload, you must take the

steps listed in “Business object conversion” on page 121. In addition, you must

configure the Adapter for JMS to use this payload data handler. In Connector

Configurator, take the following steps:

1. Set the following connector configuration properties to identify the payload

data handler:

v Set the DataHandlerConfigMO and DataHandlerMimeType properties with the

name of the top-level data-handler meta-object and the supported MIME

type, respectively.

v Set the DataHandlerClassName property with the name of the data-handler

class to instantiate.

Note: You set either the DataHandlerConfigMO and DataHandlerMimeType

properties or the DataHandlerClassName property.

2. Include the top-level data-handler meta-object in the list of supported business

objects.

You can also specify the data handler to use in the static or dynamic meta-object.

The same properties (DataHandlerMimeType, DataHandlerConfigMO, and

DataHandlerClassName) are available as attributes in these meta-objects. For a

complete description, refer to the Adapter for JMS User Guide.

Identifying the JMS queues

When the Adapter for JMS receives a document from InterChange Server, it puts

the message in its outbound queue, which is the one that the WebSphere Partner

Gateway Receiver is polling. Similarly, when WebSphere Partner Gateway sends a

document to InterChange Server, it puts the document in its outbound queue,

which is the one that the Adapter for JMS is polling.

Table 66 summarizes how to configure the JMS queues that the Adapter for JMS

uses to receive and send documents.

166 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Note: For a complete description of how to configure JMS queues, refer to the

Adapter for JMS User Guide.

 Table 66. JMS queues

JMS queue Configuration set

Input queue Set the InputDestination connector configuration property to the

name of the JMS queue that the Adapter for JMS will poll for

incoming messages.

Make sure that the name of this queue is the same as the one

WebSphere Partner Gateway is using as its JMS outbound queue. If

this queue is not specified in InputDestination, the Adapter for JMS

will not poll the queue.

Note: The InputDestination property contains a comma-separated

list of input queues. If the Adapter for JMS polls multiple queues,

make sure that this list includes the name of the JMS queue that

WebSphere Partner Gateway is using as its JMS outbound queue.

Output queue At run-time, the collaboration can dynamically set the OutputQueue

attribute in the dynamic meta-object to the name of the JMS queue

that the Adapter for JMS will use to send its outgoing message.

You must make sure that the static or dynamic meta-objects are configured so that

they can write to the queue on which the WebSphere Partner Gateway receiver is

listening.

Creating business object definitions for JMS

The Adapter for JMS sends and receives your document to InterChange Server in

the form of a payload business object. The Adapter for JMS invokes the payload

data handler to handle this business object when it receives or sends a WebSphere

Partner Gateway document, as follows:

v For request processing, the payload data handler converts the request business

object to its corresponding JMS message.

v For event notification, the data handler converts the JMS message to an event

business object.

Therefore, you must create the business object definitions shown in Table 67 to

represent the payload business-object structure that the Adapter for JMS expects.

 Table 67. Business object definitions for the Adapter for JMS

Condition Business object definition For more information

If you are using None or

Backend Integration

packaging for your message

and your documents do not

have attachments

Payload business object “Creating the payload

business-object structure for

JMS” on page 168.

If you are using Backend

Integration packaging for

your document

Business objects to hold the

message header information:

v Dynamic meta-object

v JMS-properties business

object

“Creating JMS header

information” on page 168.

If the document includes

attachments

You must also create

additional business objects to

represent the attachments.

“Creating attachment-related

business object definitions”

on page 135

Chapter 10. Integrating with InterChange Server over JMS 167

Creating the payload business-object structure for JMS

The structure of the payload business object for the JMS transport protocol

depends on the packaging type, as follows:

v If your document uses None packaging, there are no special requirements to

create the payload business object for a document sent over the JMS transport

protocol.

As discussed in “Business object for the document” on page 120, you must

create an attribute for each piece of payload information you need to transfer.

v If your document uses Backend Integration packaging, you must take the

following steps:

1. Add to the payload business object definition a special attribute to identify

the dynamic meta-object. This attribute provides configuration information

for the transport-level headers of the message.

2. In the business-object-level application-specific information, add the

cw_mo_conn tag to identify the attribute that contains the dynamic

meta--object.

For more information on these steps, see “Creating JMS header information.”

Note: For request processing, the JMS transport protocol can only support

asynchronous interactions. You can send a request business object, but you cannot

obtain a response. Therefore, you must create a request business object definition

but not a business object definition for a response.

Creating JMS header information

If you are sending or receiving documents that use Backend Integration packaging

over the JMS transport protocol, your request business object needs to contain

custom transport-level header information. The Adapter for JMS expects this

custom header information to be in its dynamic meta-object.

Figure 37 shows the business-object structure that the Adapter for JMS uses for a

request business object representing a WebSphere Partner Gateway document that

uses Backend Integration packaging.

Note: The Adapter for JMS User Guide provides information about this required

business-object structure. Refer to this guide when defining your business object

definitions.

168 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Make sure your business-object structure includes a dynamic child meta-object by

taking the following steps:

1. Create a business object definition to hold the JMS properties required by the

Backend Integration packaging.

2. Create a business object definition for the dynamic meta-object.

3. Modify the business object definition for your request business object to include

an attribute for the dynamic meta-object.

Each of these steps is described in the sections below.

Creating the JMS-properties business object

A JMS-properties business object contains JMS properties required for transport-level

headings, which are needed by Backend Integration packaging. It can also contain

the content-type attribute, which specifies the content-type header to set in the

request message, and the content-length attribute, which specifies the length of the

message, in bytes. Table 8 on page 24 describes each of the valid transport-header

fields.

To create a JMS-properties business object definition, take the following steps:

1. Create an attribute within the business object definition for each of the

transport-level header fields.

All attributes should have an attribute type of String. For JMS messages, the

names of transport-header fields use underscores instead of hyphens, as shown

in Table 68 on page 170.

AppSpecInfo = cw_mo_conn=JMSDynMO

Name = JMSDynMO

WBIC_JMSRequest_BusObj

:
:

Type = JMSDynMO_BusObj

Name = JMSProperties

JMSDynMO_BusObj

Type = JMSProps_BusObj

:
:

:
:

Name = x_aux_sender_id

JMSProps_BusObj

AppSpecificInfo = name=x_aux_sender_id;
type=string

Name = x_aux_receiver_id
AppSpecificInfo = name=x_aux_receiver_id;

type=string
:
:

Figure 37. Relationship of the request business object to the JMS dynamic meta-object

Chapter 10. Integrating with InterChange Server over JMS 169

2. For each of the attributes in the JMS-properties business object definition, add

application-specific information to identify the purpose of the associated

attribute.

This attribute-level application-specific information must have the following

format:

name=JMSproperty;type=string

where JMSproperty is one of the values in the JMS property name column of

Table 68.

3. For any of the attributes in the JMS-properties business object definition, you

can add a default value to indicate the common (or only valid) value for that

transport-level field.

 Table 68. Attributes for the JMS-properties business object definition

Transport-header field JMS property name

x-aux-sender-id x_aux_sender_id

x-aux-receiver-id x_aux_receiver_id

x-aux-protocol x_aux_protocol

x-aux-protocol-version x_aux_protocol_version

x-aux-process-type x_aux_process_type

x-aux-process-version x_aux_process_version

x-aux-create-datetime x_aux_create_datetime

x-aux-msg-id x_aux_msg_id

x-aux-production x_aux_production

x-aux-system-msg-id x_aux_system_msg_id

x-aux-payload-root-tag x_aux_payload_root_tag

x-aux-process-instance-id x_aux_process_instance_id

x-aux-event-status-code x_aux_event_status_code

x-aux-third-party-bus-id x_aux_third_party_bus_id

x-aux-transport-retry-count x_aux_transport_retry_count

content-type content_type

content-length content_length

Note: Table 68 does not provide an exhaustive list of the headers required for

back-end integration. For a complete list and description of the headers, see

“Transport-level header content” on page 24. Make sure you substitute underscore

characters for any hyphens in transport-header field names.

In Figure 37 on page 169, the JMSProps_BusObj business object definition contains

attributes for the various transport-level header fields. These attributes all have

attribute-level application-specific information to specify the name of the related

protocol header. For example, the x_aux_sender_id attribute has the

application-specific information set as follows:

name=x_aux_sender_id;type=string

Creating the JMS dynamic meta-object

This dynamic meta-object contains a child business object with configuration

information for the Adapter for JMS. To create a business object definition for a

dynamic meta-object, take the following steps:

170 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

1. Create an attribute named JMSProperties, whose attribute type is the business

object definition for the JMS-properties business object (see “Creating the

JMS-properties business object” on page 169).

2. Add other configuration properties as appropriate. For a list of valid attributes

in the dynamic meta-object, see the Adapter for JMS User Guide. Consult this

guide for information on how to create attributes to configure the dynamic

meta-object.

For the Adapter for JMS to work with WebSphere Partner Gateway, the business

object definition for the dynamic meta-object must include the attribute named

JMSProperties, whose attribute type is the business object definition for the

JMS-properties business object (see “Creating the JMS-properties business object”

on page 169). For example, in Figure 37 on page 169, the JMSDynMO_BusObj business

object definition contains attributes for various configuration properties (not

shown) and includes the JMSProperties attribute.

Modifying the request business object definition

To incorporate the business-object structure into your request business object, you

must make the following modifications to your request business object definition:

1. Add an attribute to your request business object definition to hold the dynamic

child meta-object.

The attribute type for this attribute is the business object definition for the

dynamic meta-object (see “Creating the JMS dynamic meta-object” on page

170).

2. Add the cw_mo_conn tag to the business-object-level application-specific

information of your request business object definition to identify the attribute

that contains the dynamic meta-object.

The cw_mo_conn tag has the following format:

cw_mo_conn=dynamicMetaObjAttr

where dynamicMetaObjAttr is the name of the attribute in the request business

object that holds the dynamic meta-object.

For example, in Figure 37 on page 169, an attribute named JMSDynMO has been

added to the request business object definition, HUB_JMSRequest_BusObj. This

attribute contains the dynamic meta-object, which is a child business object of type

JMSDynMO_BusObj. In addition, the application-specific information of the request

business object has been modified to include the following cw_mo_conn tag to

identify this dynamic meta-object:

cw_mo_conn=JMSDynMO

Creating ICS artifacts for JMS

To configure InterChange Server for communication with WebSphere Partner

Gateway over the JMS transport protocol, you must create the InterChange Server

artifacts shown in Table 69.

 Table 69. ICS artifacts for communicating over the JMS transport protocol

ICS artifact Purpose For more information

Business object

definitions

Represent the document “Creating business object

definitions for JMS” on page

167

Connector object Represents the Adapter for JMS at

run-time

“Creating the JMS connector

object” on page 172

Chapter 10. Integrating with InterChange Server over JMS 171

Table 69. ICS artifacts for communicating over the JMS transport protocol (continued)

ICS artifact Purpose For more information

Collaboration template

and collaboration

object

Represents the business process

that InterChange Server uses to

process the document

“Binding collaborations to

communicate with Adapter

for JMS”

Creating the JMS connector object

To obtain an instance of the Adapter for JMS at run-time, take the following steps

within System Manager:

1. Create the connector objects:

v Create a connector object to represent an instance of the Adapter for JMS.

Note: In the Supported Business Objects tab of Connector Configurator,

make sure that you specify all business object definitions you created for use

with the Adapter for JMS. For a description of these business object

definitions, see “Creating business object definitions for JMS” on page 167.

v If required by your collaboration, create a connector object for the Port

Connector.
2. Configure the connector objects.

For information on how to configure your Adapter for JMS for use with

WebSphere Partner Gateway, see “Configuring the Adapter for JMS” on page

165.

Binding collaborations to communicate with Adapter for JMS

As described in “Creating the collaborations” on page 123, a collaboration object

must exist at run-time for InterChange Server to know where to receive and send

business objects. When you create the collaboration object for the collaboration that

uses the Adapter for JMS to send information to and receive it from WebSphere

Partner Gateway, you bind the collaboration ports, as follows:

v For request processing, set the “to” port, which sends requests to WebSphere

Partner Gateway, to the connector object you created for the Adapter for JMS;

that is, the Adapter for JMS is the destination adapter.

v For event notification, set the “from” port, which receives events from

WebSphere Partner Gateway, to the connector object you created for the Adapter

for JMS; that is, the Adapter for JMS is the source adapter.

172 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Part 4. Integrating with other back-end systems

The following chapters details the procedure to integrate WebSphere Partner

Gateway with back-end systems such as WebSphere Message Broker and

WebSphere Data Interchange.

© Copyright IBM Corp. 2004, 2008 173

174 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 11. Integrating with WebSphere Message Broker

This chapter describes how to integrate WebSphere Partner Gateway with

WebSphere Message Broker.

Notes:

1. For a description of the general process used to integrate WebSphere Partner

Gateway with a back-end system, see Chapter 2, “Planning for back-end

integration,” on page 9.

2. This chapter assumes that you are familiar with WebSphere Message Broker

and associated components, such as projects and message flows.

Often integration of WebSphere Partner Gateway with a back-end system is done

by two separate people or roles. Each role configures a particular component, for

which that role has expertise. Therefore, this chapter separates the integration with

WebSphere Message Broker into the configuration of WebSphere Partner Gateway

and the configuration of Message Broker. Table 70 lists these configuration roles

along with the places in this chapter to obtain the associated configuration

information.

 Table 70. Roles for WebSphere Message Broker integration

Configuration role For more information

Configuration of WebSphere Partner

Gateway

1. “Planning for integration with WebSphere

Message Broker”

2. “Configuring WebSphere Partner Gateway

for WebSphere Message Broker” on page 177

Configuration of WebSphere Message Broker 1. “Planning for integration with WebSphere

Message Broker”

2. “Configuring WebSphere Message Broker”

on page 180

Note: While each of these configuration roles can be performed separately, each

also requires common information so that the two components can communicate.

This chapter provides the following information:

v “Planning for integration with WebSphere Message Broker”

v “Configuring WebSphere Partner Gateway for WebSphere Message Broker” on

page 177

v “Configuring WebSphere Message Broker” on page 180

v “Using HTTP transport protocol with WebSphere Message Broker” on page 180

v “Sending SOAP documents” on page 184

v “Using JMS transport protocol with WebSphere Message Broker” on page 185

Planning for integration with WebSphere Message Broker

To plan for your integration to WebSphere Message Broker, follow the steps

outlined in Chapter 2, “Planning for back-end integration,” on page 9. Table 71

summarizes the integration steps to integrate WebSphere Partner Gateway with

WebSphere Message Broker.

© Copyright IBM Corp. 2004, 2008 175

Table 71. Planning integration with WebSphere Message Broker

Integration step For more information

1. Confirm that you have a supported

version of WebSphere Message Broker

installed and available to WebSphere Partner

Gateway.

Chapter 11: “WebSphere Message Broker

versions that WebSphere Partner Gateway

supports”

2. Determine the business protocol of the

WebSphere Message Broker document.

Chapter 2: “Which business protocol are you

using?” on page 9

3. Determine the packaging type for the

document: None or Backend Integration.

Chapter 2: “Which packaging will you use?”

on page 23

4. Determine the message transport to use

between WebSphere Partner Gateway and

WebSphere Message Broker.

Chapter 11: “Message transports that

WebSphere Message Broker supports”

5. Configure WebSphere Partner Gateway. Chapter 11: “Configuring WebSphere Partner

Gateway for WebSphere Message Broker” on

page 177

WebSphere Message Broker versions that WebSphere Partner

Gateway supports

WebSphere Partner Gateway supports integration with Version 6.0 with latest Fix

pack of Message Broker. Message Broker is available on several platforms,

including Windows 2000 and several UNIX-based platforms. For more information,

consult your installation guide for Message Broker in the WebSphere Message

Broker documentation set.

Message transports that WebSphere Message Broker supports

The following two message-transport protocols are supported by WebSphere

Message Broker:

v HTTP transport protocol (including Web Services)

v JMS transport protocol

Support for these message transport protocols requires the installation and

configuration of IBM WebSphere MQ.

HTTP

Message Broker uses the HTTP transport protocol for its Web Services transactions.

You need no additional software to send and receive documents between

WebSphere Partner Gateway and Message Broker over the HTTP protocol.

However, to send the document out of Message Broker to some other destination,

you need WebSphere MQ.

Note: WebSphere Partner Gateway supports both asynchronous and synchronous

interactions with Message Broker over HTTP.

JMS

Message Broker uses the JMS transport protocol for most of its transactions. To

send and receive documents between WebSphere Partner Gateway and Message

Broker over the JMS transport protocol, you must use JMS queues. If these two

components reside on different computers, you must create the JMS queues on

each computer. Basically, support for JMS involves the use of a message flow

176 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

within Message Broker and the underlying JMS queues. For more information on

how to configure for JMS, see “Using JMS transport protocol with WebSphere

Message Broker” on page 185.

Note: WebSphere Partner Gateway supports only asynchronous interactions with

Message Broker over JMS.

Support for WebSphere Message Broker integration

WebSphere Partner Gateway provides samples to assist you in the integration

process with Message Broker. These samples reside in the following subdirectory of

the WebSphere Partner Gateway product directory:

Integration/WBI/WBIMB/samples

Configuring WebSphere Partner Gateway for WebSphere Message

Broker

A general overview of how to configure WebSphere Partner Gateway to

communicate with a back-end system is provided in “Configuring WebSphere

Partner Gateway” on page 43. This section summarizes the steps needed to

configure WebSphere Partner Gateway to communicate with Message Broker.

Configuration of WebSphere Partner Gateway involves the following steps:

v Configuring for support of outgoing documents

For information on sending documents from WebSphere Partner Gateway to

Message Broker, see “Providing support for outgoing documents.”

v Configuring for incoming documents

For information on sending documents from Message Broker to WebSphere

Partner Gateway, see “Providing support for incoming documents” on page 178.

Providing support for outgoing documents

For WebSphere Partner Gateway to send documents to any back-end system, you

must perform the steps described in “Defining where to send the partner

document” on page 45. When your back-end system is Message Broker, you need

to create a destination whose transport type matches the transport protocol used

for messages between WebSphere Partner Gateway and Message Broker. When the

hub sends a document to Message Broker, it must know where to route the

document. This location must conform with the transport protocol being used. The

transport protocol must be one that Message Broker supports (see “Message

transports that WebSphere Message Broker supports” on page 176).

The following sections summarize how to create destinations for the following

transport protocols, which Message Broker supports:

v “Configuration for sending documents over the HTTP transport protocol”

v “Configuration for receiving documents over the JMS transport protocol” on

page 178

Configuration for sending documents over the HTTP transport

protocol

When the hub sends a document to Message Broker over the HTTP protocol, it

routes the message through the defined destination. This destination identifies the

URL where the document can be received by Message Broker. When Message

Broker uses the HTTP protocol, it routes the document to the HTTPInput node of

the message flow associated with the specified URL.

Chapter 11. Integrating with WebSphere Message Broker 177

For the hub to be able to send documents through a destination over the HTTP

transport protocol, you must create a destination from the Destination Details page

of the Community Console. This destination must be configured to use the HTTP

1.1. transport protocol and to write to the URL on which the appropriate

HTTPInput node is listening. As Table 72 shows, you provide this URL in the

Receiver URI field of the destination definition.

Note: An overview of how to create a destination is provided in “Defining where

to send the partner document” on page 45.

 Table 72. HTTP values for Destination Details page for communication with WebSphere

Message Broker

Receiver

Details field Value Notes and restrictions

Receiver URI The URL should be the same as the

one configured for the HTTPInput

node in the Message Broker

message flow

Obtain this URL from the

configuration of the message flow

in the WebSphere Message Broker

integration .

Configuration for receiving documents over the JMS transport

protocol

When the hub sends documents to Message Broker over the JMS protocol, it routes

the document to the appropriate JMS queue, where it can be transferred to the JMS

queue from which Message Broker can retrieve it. For the hub to obtain this JMS

location, you must create a destination in WebSphere Partner Gateway, one that

uses the JMS transport protocol. This destination must be configured to write to

the queue whose contents are transferred to the queue on which Message Broker

receives messages.

Note: For an overview of how to create a destination, see “Defining where to send

the partner document” on page 45.

For the hub to be able to send documents through a destination over the JMS

transport protocol, create a destination from the Destination Details page of the

Community Console. When using WebSphere MQ Version 6.0 with latest Fix pack

as your JMS provider, refer to the WebSphere Partner Gateway Hub Configuration

Guide for the detailed steps. In addition, use the information specified in Table 73

for the JMS protocol in the Destination Details page.

 Table 73. JMS values for the Destination Details page for communication with WebSphere

Message Broker

Destination Details field Value Notes and restrictions

JMS Queue Name Name of the JMS queue, on

the computer where

WebSphere Partner Gateway

resides

Documents received on this

queue are transferred to the JMS

queue on the computer where

Message Broker resides.

Providing support for incoming documents

For WebSphere Partner Gateway to receive messages from any back-end system,

you must perform the steps described in “Defining where to retrieve the back-end

document” on page 49. When your back-end system is Message Broker, you need

to take the following steps:

1. As part of the partner profile for the internal partner, define the destination

type and provide the associated IP address on which the Receiver will listen.

178 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

2. Create a receiver whose transport type matches the transport protocol used for

documents between WebSphere Partner Gateway and Message Broker.

For the hub to receive a document from Message Broker, it must know the

location at which to retrieve the messages. This location must conform with the

transport protocol to be used.

The following sections summarize how to create receivers for transport protocols

that Message Broker supports.

Configuring for incoming documents over HTTP transport

protocol

When the hub receives a document over the HTTP transport protocol, its Receiver

retrieves the document from the defined receiver. This receiver identifies the URL

at which the Receiver listens for documents from Message Broker. When Message

Broker uses the HTTP transport protocol, the HTTPRequest node sends the

document to the appropriate URL, where it can be received by the hub.

For the hub to receive documents through a receiver over the HTTP transport

protocol, you must create a receiver from the Receiver List page of the Community

Console. This receiver must use the HTTP 1.1 transport protocol. The hub

determines this URL as a combination of the following information:

v The IP address of the host computer, obtained from within the internal partner’s

profile

v The receiver URL, obtained from the URL field of the receiver definition

Note: An overview of how to create a receiver is provided in “Defining where to

retrieve the back-end document” on page 49.

For Message Broker to be able to send documents to this receiver, the

HTTPRequest node of the message flow must be configured to send documents to

this URL. Therefore, you must ensure that this receiver URL is available to the

Message Broker configuration.

Configuring for incoming documents over JMS transport

protocol

When the hub receives documents from Message Broker over the JMS protocol, it

obtains the document from the appropriate JMS input queue, where it has been

transferred from the JMS output queue where Message Broker has sent it. For the

hub to be able to obtain this JMS location, you must create a receiver in WebSphere

Partner Gateway, one that uses the JMS transport protocol. Through the receiver,

the hub listens for any documents on its input queue and retrieves them.

Note: For an overview of how to create a receiver, see “Defining where to retrieve

the back-end document” on page 49.

For the hub to receive documents through a receiver over the JMS transport, you

must create a receiver from the Receiver List page of the Community Console.

When using WebSphere MQ Version 6.0 with latest Fix pack as your JMS provider,

refer to the WebSphere Partner Gateway Hub Configuration Guide for the detailed

steps. In addition, use the information specified in Table 74 for the JMS protocol in

the Receiver Details page.

Chapter 11. Integrating with WebSphere Message Broker 179

Table 74. JMS values for the Receiver Details page for communication with WebSphere

Message Broker

Receiver Details field Value Notes and restrictions

JMS Queue Name Name of the JMS input

queue that receives

documents from the output

queue of Message Broker

Documents in this input queue

are transferred from the JMS

output queue on the computer

where Message Broker resides

Configuring WebSphere Message Broker

For your interactions between WebSphere Partner Gateway and Message Broker,

you must create a Message flow project within the Broker Application

Development Perspective of the Message Brokers Toolkit. This project will include

the following artifacts:

v Message flows

v PIP files (RosettaNet only) or message definition files

Note: For more information on how to create message flow projects, see the

WebSphere Message Broker documentation set.

Creating the message flow

It is the message flow, within Message Broker, that performs the actual business

logic you need to process information. Therefore, the appropriate message flows

must exist for Message Broker to correctly process your WebSphere Partner

Gateway documents. Make sure that a message flow exists that provides the

business logic you need:

v If such a message flow does not currently exist, you must create or import one.

v If a message flow does exist, you must understand how to use it.

For Message Broker to handle incoming and outgoing documents, its message flow

uses special transport nodes. The type of transport node to use depends on the

particular transport protocol, as shown.

 Table 75. Creating message flows for different transport protocols

Transport protocol For more information

HTTP

HTTP (SOAP documents)

“Creating the message flow for HTTP transport” on page 182

JMS “Creating the message flow for JMS transport” on page 190

Deploying the project

After your message flow project contains the correct artifacts, you must deploy it

to Message Broker. You deploy a message flow project with the Broker

Administrator Perspective of the Message Brokers Toolkit.

Using HTTP transport protocol with WebSphere Message Broker

This section describes how to send and receive documents between WebSphere

Partner Gateway and WebSphere Message Broker through the use of the HTTP

transport protocol.

Note: All references to the HTTP transport protocol apply to HTTPS as well.

180 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Components required for documents over HTTP transport

You need no additional software to send or receive a document between

WebSphere Partner Gateway and Message Broker using the HTTP transport

protocol. Only WebSphere Partner Gateway and Message Broker are required. For

WebSphere Partner Gateway to communicate with Version 5.0 of Message Broker

using the HTTP transport protocol, these two components must be configured.

Table 76 summarizes these configuration steps.

 Table 76. Configuring WebSphere Partner Gateway and WebSphere Message Broker

Component Version For more information

WebSphere Partner Gateway 6.1 “Configuration for sending documents

over the HTTP transport protocol” on

page 177

“Configuring for incoming documents

over HTTP transport protocol” on page

179

WebSphere Message Broker 6.0 with latest Fix

pack

“Configuring WebSphere Message

Broker” on page 180

In addition, to send or receive a document between WebSphere Partner Gateway

and Message Broker using the HTTP transport protocol, you must use the Version

6.0 with latest Fix pack IBM WebSphere MQ as your JMS provider.

Sending documents over HTTP transport

For WebSphere Partner Gateway to send a document to Message Broker over the

HTTP transport protocol, you use special HTTP-transport nodes within the

Message Broker message flow to retrieve the document that WebSphere Partner

Gateway has sent as an HTTP stream. The nodes of the message flow perform the

computations required and then route the document to some destination (a JMS

output queue).

The following steps describe how WebSphere Partner Gateway sends a document

to a message flow within Message Broker over the HTTP transport protocol:

1. WebSphere Partner Gateway sends an HTTP message to Message Broker.

If the packaging type of the document was Backend Integration, WebSphere

Partner Gateway has provided custom properties in this message.

Note: Within WebSphere Partner Gateway, you must configure a destination

that identifies the URL to which WebSphere Partner Gateway sends the

message and on which Message Broker is polling. For more information, see

“Configuration for sending documents over the HTTP transport protocol” on

page 177.

2. The HTTPInput node of the message flow picks up the document and sends it

to the next node of the message flow. This node is typically a compute node.

3. The nodes of the message flow perform the business logic.

When business logic is complete, the message flow sends the resulting

document to its HTTPReply node.

4. The HTTPReply node, by default, sends back the output message to the client

(WebSphere Partner Gateway).

Alternatively, the message flow can put the message into an MQOutput node.

The MQOutput node receives the document and sends it to the appropriate

JMS queue or other application.

Chapter 11. Integrating with WebSphere Message Broker 181

Receiving documents over HTTP transport

For WebSphere Partner Gateway to receive a document from Message Broker using

the HTTP transport protocol, you use special HTTP-transport nodes within the

Message Broker message flow to send the document that WebSphere Partner

Gateway is to receive as an HTTP stream. The nodes of the message flow perform

the computations required and handle the request and response (if the interaction

is synchronous) with WebSphere Partner Gateway.

The following steps describe how WebSphere Partner Gateway receives a

document from a message flow within Message Broker over the HTTP transport

protocol:

1. The message flow within Message Broker receives a document in its MQInput

node (a JMS input queue).

2. The MQInput node of the message flow receives the document and sends it to

the HTTPRequest node.

3. The HTTPRequest node handles the request and response interactions with the

client (WebSphere Partner Gateway), using a specified URL.

4. WebSphere Partner Gateway receives the message from its URL, as configured

in its receiver.

For more information on the receiver, see “Configuring for incoming

documents over HTTP transport protocol” on page 179.

Creating the message flow for HTTP transport

For a Message Broker message flow to handle documents over the HTTP transport

protocol, it uses the following transport nodes:

v HTTPInput

v HTTPReply

v HTTPRequest

The order of use for these transport nodes depends on the direction of

communication, as follows:

v When WebSphere Partner Gateway sends a document to Message Broker, the

message flow includes the types of nodes in Table 77 (in the order shown) to

describe the business logic.

v When WebSphere Partner Gateway receives a document from Message Broker,

the message flow includes the types of nodes in Table 78 (in the order shown) to

describe the business logic.

182 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 77. Nodes for sending documents to WebSphere Message Broker over HTTP

Node type Purpose Notes

HTTPInput Receives the WebSphere Partner

Gateway request document into the

message flow

Set this transport node URL Selector field (in the Basic

properties) to the URL where WebSphere Partner

Gateway sends its documents (the URL configured in

the WebSphere Partner Gateway receiver).The URL

should have the following format:

http://hostName:port/path

where hostName is the name of the computer on which

Message Broker resides, port is the HTTP port number

on which the Message Broker is listening, and path

identifies the location on this computer.

For more information, see “Configuration for sending

documents over the HTTP transport protocol” on page

177.

Compute Performs business-logic tasks, such as

updating header information

Use ESQL to perform the business logic. The compute

node sends the resulting message to the HTTPReply

node.

HTTPReply Returns a response to WebSphere

Partner Gateway

By default, this node sends the output message to the

client. However, you can configure it to send it to an

MQOutput node.

MQOutput Receives the document from the

HTTPReply node and sends it to

WebSphere Partner Gateway

This transport node sends the resulting document to a

JMS output queue, which routes it to its next

destination.

 Table 78. Nodes for receiving documents from WebSphere Message Broker over HTTP

Node type Purpose Notes

MQInput Receives the document from

WebSphere Partner Gateway

This transport node receives the incoming document

from a JMS input queue.

HTTPRequest Handles request/response interactions

with WebSphere Partner Gateway

This transport node must set its Web Services URL field

(in the Basic Properties) to the URL where WebSphere

Partner Gateway is listening for documents (the URL

configured in the WebSphere Partner Gateway receiver).

The URL should have the following format:

http://hostName:port/bcgreceiver/path

where hostName is the name of the computer on which

WebSphere Partner Gateway resides, port is the HTTP

port number on which the WebSphere Partner Gateway

Receiver is listening, and path identifies the location on

this computer.

For more information, see “Configuring for incoming

documents over HTTP transport protocol” on page 179.

For more detailed information on how to create and configure message flow nodes,

see your WebSphere Message Broker documentation.

Chapter 11. Integrating with WebSphere Message Broker 183

Sending SOAP documents

SOAP documents differ from other types of documents exchanged over HTTP/S.

This section describes how to send and receive SOAP documents between

WebSphere Partner Gateway and WebSphere Message Broker over the HTTP

transport protocol.

The way to configure WebSphere Partner Gateway and Message Broker for the

transfer of SOAP documents is very similar to the configuration for transferring

non-SOAP documents over the HTTP protocol. Table 79 summarizes where to find

information on how to configure these two integration components.

 Table 79. Configuring WebSphere Partner Gateway and WebSphere Message Broker for transfer of SOAP

documents

Integration component Configuration step For more information

WebSphere Partner Gateway You configure the receiver and

destination the same way for SOAP

documents as for non-SOAP documents

over HTTP.

“Configuration for sending documents

over the HTTP transport protocol” on

page 177

“Configuring for incoming documents

over HTTP transport protocol” on page

179

WebSphere Message Broker The message flows to handle SOAP

documents are very similar to those for

non-SOAP documents over HTTP. Only

one additional transport node is required

to handle SOAP documents.

For sending a SOAP document to

Message Broker, see Table 80.

For receiving a SOAP document from

Message Broker, see “Creating the

message flow for HTTP transport” on

page 182.

For Message Broker to correctly process a SOAP document that WebSphere Partner

Gateway sends, the message flow must contain an HTTPRequest node to handle

communication with the Web Services client. Table 80 lists the nodes in a Message

Broker message flow needed to handle a SOAP document sent by WebSphere

Partner Gateway.

 Table 80. Nodes for sending SOAP documents to WebSphere Message Broker

Node type Purpose Notes

HTTPInput Receives the WebSphere Partner

Gateway request document into the

message flow

Set this transport node URL Selector field (in the Basic

properties) to the URL where WebSphere Partner

Gateway sends its documents (the URL configured in

the WebSphere Partner Gateway destination). The URL

should have the following format:

http://hostName:port/path

where hostName is the name of the computer on which

WebSphere Partner Gateway resides, port is the HTTP

port number on which the WebSphere Partner Gateway

Receiver is listening, and path identifies the location on

this computer.

For more information, see “Configuration for sending

documents over the HTTP transport protocol” on page

177.

184 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 80. Nodes for sending SOAP documents to WebSphere Message Broker (continued)

Node type Purpose Notes

Compute Performs business-logic tasks, such as

updating header information

Use ESQL to perform the business logic. The compute

node sends the resulting message to the HTTPReply

node.

HTTPRequest Sends the SOAP request to the

external Web Service Provider

(WebServices) and gets back a

response from that Web Service.

None

HTTPReply Returns a response to WebSphere

Partner Gateway

By default, this node sends the output message to the

client.

Using JMS transport protocol with WebSphere Message Broker

This section describes how to configure components to send and receive

documents between WebSphere Partner Gateway and WebSphere Message Broker

through the use of the JMS transport protocol. It provides the following

information on how to send and receive documents:

v “Components required for documents over JMS transport”

v “How documents are sent over the JMS transport” on page 160

v “How documents are received over the JMS transport” on page 162

Components required for documents over JMS transport

To send or receive a document between WebSphere Partner Gateway and Version

6.0 Message Broker using the JMS transport protocol, WebSphere MQ must be the

JMS provider. The following sections describe how WebSphere Partner Gateway,

Message Broker, and WebSphere MQ work together to exchange documents over

the HTTP transport protocol.

How documents are sent over the JMS transport

For WebSphere Partner Gateway to send a document to Message Broker using the

JMS transport protocol, you use the JMS queues. WebSphere Partner Gateway

sends a document to its JMS output queue, where it is transferred to the JMS input

queue on which Message Broker listens. When Message Broker receives a

document, it retrieves it from its input queue. Message Broker’s message flow

contains special WebSphere MQ (JMS) transport nodes, which handle access to the

JMS queues. Figure 38 provides an overview of how WebSphere Partner Gateway

sends documents to Message Broker over the JMS transport protocol.

Chapter 11. Integrating with WebSphere Message Broker 185

The following steps describe how WebSphere Partner Gateway sends a document

to a message flow within Message Broker over the JMS transport protocol:

1. WebSphere Partner Gateway posts a message to its JMS output queue.

If the packaging type of the document was Backend Integration, WebSphere

Partner Gateway has provided custom properties in this message. The JMS

message header, JMSType, is set with the content type of the payload.

Internet

Document

Message flow

JMS message

WebSphere Partner
Gateway

Output queue

WebSphere Business Integration
Message Broker

Input queue

JMS message

Figure 38. Message flow from WebSphere Partner Gateway to a message flow through the

JMS transport protocol

186 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Note: Within WebSphere Partner Gateway, you must configure a destination

that identifies the JMS output queue to which WebSphere Partner Gateway

sends the message and on which Message Broker is polling. For more

information, see “Configuration for receiving documents over the JMS transport

protocol” on page 178.

2. WebSphere MQ transfers the document from the output queue on the computer

where WebSphere Partner Gateway resides to the input queue that Message

Broker is polling.

3. When Message Broker sees a message on its input queue, it retrieves the

message and sends it to the appropriate message flow.

For information on how to set up this queue, see “Setting up the environment

for JMS transport” on page 189.

4. The MQInput node sends the document to the next node of the message flow.

This node is typically a compute node.

5. The nodes of the message flow perform the business logic.

When business logic is complete, the message flow sends the resulting

document to its MQOutput node.

6. The MQOutput node sends the document to the appropriate queue.

How documents are received over the JMS transport

For WebSphere Partner Gateway to receive a document from Message Broker over

the JMS transport protocol, you use JMS queues. Message Broker sends a

document to its JMS output queue, where it is transferred to the JMS input queue

on which WebSphere Partner Gateway listens. When WebSphere Partner Gateway

receives a document, it retrieves it from its input queue. Message Broker’s message

flow contains special WebSphere MQ (JMS) transport nodes, which handle access

to the JMS queues. Figure 39 provides an overview of how documents are sent

from Message Broker to WebSphere Partner Gateway.

Chapter 11. Integrating with WebSphere Message Broker 187

The following steps describe how WebSphere Partner Gateway receives a

document from a message flow within Message Broker over the JMS transport

protocol:

1. The message flow within Message Broker receives a document in its MQInput

node.

The message flow receives its incoming message from a JMS input queue.

2. The MQInput queue of the message flow receives the document and sends it to

the next node of the message flow. This node is typically a compute node.

Internet

Document

Message flow

JMS message

WebSphere Partner
Gateway

JMS message

Input queue

WebSphere
Message Broker

Business Integration

Output queue

Figure 39. Message flow from a message flow to WebSphere Partner Gateway through the

JMS transport protocol

188 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

3. The nodes of the message flow perform the business logic.

When business logic is complete, the message flow sends the resulting

document to its MQOutput node.

4. The MQOutput node sends the document to the appropriate JMS output queue.

5. WebSphere MQ transfers the document from the queue on the computer where

Message Broker resides to the queue that WebSphere Partner Gateway is

polling.

6. WebSphere Partner Gateway receives the message from its JMS input queue, as

configured in its receiver.

For more information on the receiver, see “Configuring for incoming

documents over JMS transport protocol” on page 179. For information on how

to set up this queue, see “Setting up the environment for JMS transport.”

Setting up the environment for JMS transport

The sending and receiving of documents to and from Message Broker involves JMS

queues (remote and local). For information on how to configure WebSphere Partner

Gateway for use with Message Broker over JMS, see “Configuring WebSphere

Partner Gateway for WebSphere Message Broker” on page 177. To use the JMS

transport protocol with Message Broker, you can set up the JMS system that

WebSphere MQ provides. Version 6.0 of Message Broker uses Version 6.0 of

WebSphere MQ as a JMS provider. You can use the steps in the WebSphere Partner

Gateway Hub Configuration Guide to set up the JMS transport-protocol mechanism.

Important: The steps in the WebSphere Partner Gateway Hub Configuration Guide

must be performed on the computer on which WebSphere Partner Gateway

resides. This guide assumes that the JMS transport-mechanism required by

Message Broker has already been set up as part of the Message Broker installation.

When you create your JMS queues for use between WebSphere Partner Gateway

and Message Broker, consider the following points:

v Part of the Message Broker installation process should involve the creation of the

following queue managers:

– A WebSphere MQ queue manager associated with the broker domain

You can use the following command to create this queue manager and a set

of named queues:

mqsicreatebroker

– A WebSphere MQ queue manager for Message Broker

Because Message Broker uses a set of predetermined queue names, it requires

a separate WebSphere MQ queue manager per broker. Message Broker can

share this queue manager hosting with either its Configuration Manager or

the optional User Name Server, or both.
For more information, refer to your WebSphere Message Broker Installation and

Configuration Guide.

v When you create your JMS queue aliases, you might want to name them to

indicate the direction of flow between WebSphere Partner Gateway and Message

Broker.

For example, if you create the queues listed in the Original queue name column

of Table 65, you could rename these queues to indicate the direction of flow, as

shown in the Directional queue name column of Table 81.

Chapter 11. Integrating with WebSphere Message Broker 189

Table 81. Naming JMS queues for WebSphere Message Broker to indicate direction

Original queue name Directional queue name

inQ MB2HUB

outQ HUB2MB

Creating the message flow for JMS transport

For a Message Broker message flow to handle documents over the JMS transport

protocol, it uses the following transport nodes:

v MQInput

v MQOutput

The order of use for these transport nodes depends on the direction of

communication, as follows:

v When WebSphere Partner Gateway sends a document to Message Broker, the

message flow includes the types of nodes in Table 82 (in the order shown) to

describe the business logic.

v When WebSphere Partner Gateway receives a document from Message Broker,

the message flow includes the types of nodes in Table 83 (in the order shown) to

describe the business logic.

 Table 82. Nodes for sending documents to WebSphere Message Broker over JMS

Node type Purpose Notes and restrictions

MQInput Receives the document from WebSphere

Partner Gateway

The value in the Queue Name field (in the

Basic properties) of this transport node is the

message flow input queue. WebSphere MQ

must be set up so that this JMS queue receives

documents from the output queue of

WebSphere Partner Gateway. For more

information, see “Configuration for receiving

documents over the JMS transport protocol” on

page 178.

Compute Performs business-logic tasks, such as

removing header information

None

MQOutput Receives the document from the compute node

and sends it as the message-flow output

This transport node sends the resulting

document to a JMS output queue, which routes

it to its next destination.

 Table 83. Nodes for receiving documents from WebSphere Message Broker

Node type Purpose Notes and restrictions

MQInput Receives the document into the message flow This transport node receives the incoming

document from a JMS input queue.

Compute Performs business-logic tasks, such as updating

header information

None

MQOutput Receives the document from the compute node

and sends it to WebSphere Partner Gateway

The value in the Queue Name field (in the

Basic properties) of this transport node is the

message flow output queue. WebSphere MQ

must be set up so that this JMS queue sends

documents to the input queue of WebSphere

Partner Gateway. For more information, see

“Configuring for incoming documents over

JMS transport protocol” on page 179.

190 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

For more detailed information on how to create and configure message flow nodes,

see your WebSphere Message Broker documentation.

Chapter 11. Integrating with WebSphere Message Broker 191

192 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 12. Integrating with WebSphere Data Interchange

This chapter describes how to integrate WebSphere Partner Gateway with

WebSphere Data Interchange.

Note: For a description of the general process used to integrate WebSphere Partner

Gateway with a back-end system, see Chapter 2, “Planning for back-end

integration,” on page 9.

Who should read this chapter

WebSphere Partner Gateway now includes EDI processing capabilities (such as

de-enveloping and transformation) that are similar to those found in WebSphere

Data Interchange. You might be able to use these EDI capabilities in place of

WebSphere Data Interchange, in which case you would not need the information in

this chapter. Refer to the WebSphere Partner Gateway Hub Configuration Guide for

information on setting up the hub to process EDI documents.

This chapter, therefore, is intended for those who:

v Were using a previous version of WebSphere Partner Gateway (formerly known

as WebSphere Business Integration Connect) and want to continue to integrate

with WebSphere Data Interchange

v Need the advanced capabilities of WebSphere Data Interchange not included in

the WebSphere Partner Gateway EDI support

If you want to use WDI, follow the steps outlined in this chapter. Be aware that the

steps for configuring EDI have changed in WebSphere Partner Gateway, Version

6.0. You now select a specific document flow for the version of EDI you are using.

For example, if you are exchanging EDI-X12 documents, you select ISA (instead of

ALL) for Document Flow.

Resources you can use with this chapter

This chapter provides an explanation of the process by which documents are

exchanged and then lists the steps for setting up a sample environment for such

exchanges. The scenario used throughout this chapter is similar to the one

presented in the Integrating WebSphere Data Interchange V3.2 with WebSphere Business

Integration Connect V4.2 tutorial, which is available on the following Web site:

www.ibm.com/developerworks/websphere/

The tutorial provides additional scripts (in the section on configuring WebSphere

MQ) as well as sample transformation maps. By following the tutorial, you can set

up the environment described in this chapter.

Note: The tutorial describes integration with WebSphere Business Integration

Connect, Version 4.2; however, the same steps, with slight modifications, apply to

WebSphere Partner Gateway.

It is assumed that you are familiar with using WebSphere Data Interchange. See

the WebSphere Data Interchange documentation for additional information as you

read this chapter.

© Copyright IBM Corp. 2004, 2008 193

Introduction

WebSphere Data Interchange integrates electronic data interchange (EDI) into the

WebSphere business process, messaging, and Internet-based B2B capabilities. You

exchange documents and messages between WebSphere Partner Gateway and

WebSphere Data Interchange through the JMS transport protocol. You must specify

a packaging of None when sending a document to WebSphere Data Interchange.

Note: WebSphere Data Interchange provides other types of integration options,

such as file-based integration. Refer to the WebSphere Data Interchange

documentation for details on enabling the exchange of documents through

file-based integration.

How documents are sent to WebSphere Data Interchange

For WebSphere Partner Gateway to send an EDI document to WebSphere Data

Interchange, the following steps occur:

1. An external partner sends an EDI document to WebSphere Partner Gateway.

The document is sent with a specific packaging over a transport protocol (in

this example, AS2 packaging over HTTP). WebSphere Partner Gateway strips

off the AS2 packaging from the EDI document.

2. WebSphere Partner Gateway places the EDI document on a queue.

Note: WebSphere Partner Gateway determines the protocol used in the

document by examining the first three characters of the EDI document. It then

determines, from the protocol type, the sender and receiver information. See

“Overview of EDI routing” on page 235 for details.

3. WebSphere Data Interchange reads the EDI document from the queue. It

performs the tasks of unwrapping, validating, and translating the EDI

document.

Note: WebSphere Data Interchange must be configured with the necessary

maps, trading partner profiles, and other information. See the WebSphere Data

Interchange documentation for details.

4. WebSphere Data Interchange distributes the document to a back-end system. If

the back-end system is WebSphere InterChange Server, WebSphere Data

Interchange sends the document to the WebSphere Business Integration

Adapter for MQ to create a business object and invoke a collaboration within

InterChange Server.

 In Figure 40, an external partner sends an EDI document in AS packaging to

WebSphere Partner Gateway, which, in turn, sends it to the EDI_IN queue on the

WebSphere Data Interchange side. Note that the remote queue, transmission queue,

receiver queue (in the example, EDI_IN), and the sender and receiver channels

Internet

AS2 EDI XML

XML_OUT

WebSphere Partner
Gateway

WebSphere
Data Interchange

EDI_IN

Figure 40. EDI document from WebSphere Partner Gateway

194 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

must be set up so that the message sent to WebSphere Partner Gateway is

transmitted to the EDI_IN queue. The WebSphere Data Interchange server picks up

the EDI document, searches for the user profiles, mappings, and so on, converts

the document to XML, and puts it in the XML_OUT queue.

How documents are received from WebSphere Data

Interchange

For WebSphere Partner Gateway to receive an EDI document from WebSphere

Data Interchange, the following steps occur:

1. WebSphere Data Interchange places the EDI document on a queue.

2. WebSphere Partner Gateway reads the message from the queue.

Note: WebSphere Partner Gateway determines how to route the document as

described in “Overview of EDI routing” on page 235.

3. WebSphere Partner Gateway routes the document to the appropriate external

partner.

 In Figure 41, an XML document is placed into the XML_IN queue for WebSphere

Data Interchange to translate. It is assumed that the user profiles, mappings, and

so on, are already performed. Upon receiving a valid XML document, WebSphere

Data Interchange converts it into EDI format and places the output in the

EDI_OUT queue (a remote queue). It is also assumed that the transmission queue,

sender and receiver channels, and receiver queue on the WebSphere Partner

Gateway side are set up. Upon receiving the document, WebSphere Partner

Gateway routes it to the external partner.

Example scenario used in this chapter

Throughout this chapter, you will see the steps to set up the exchange of EDI

documents between two trading partners. The EDI documents are sent over the

internet, and AS2 (over HTTP) is used as the communication protocol.

In this sample, the trading partners are Partner One and Partner Two. Figure 42

illustrates the configurations of the two partners.

XML_IN EDI_OUT

Internet

WebSphere
Data Interchange

WebSphere Partner
Gateway

EDIXML AS2

Figure 41. Sending an EDI document to WebSphere Partner Gateway

Chapter 12. Integrating with WebSphere Data Interchange 195

The three computers have the following software installed:

v Computer A contains WebSphere Data Interchange Server 3.2 and WebSphere

Data Interchange Client 3.2 along with its prerequisite software.

v Computer B contains WebSphere Partner Gateway Enterprise Edition along with

its prerequisite software.

v Computer C contains WebSphere Partner Gateway - Express.

Refer to the WebSphere Partner Gateway Installation Guide and to the WebSphere

Data Interchange documentation for a complete list of software prerequisites.

In this example, partnerOne is operating two computers. Computer A has both

WebSphere MQ and WebSphere Data Interchange Server installed. Computer B has

WebSphere MQ as well as WebSphere Partner Gateway Enterprise Edition

installed. Computer B supports the communications between the two trading

partners.

WebSphere Data Interchange supports integration with WebSphere MQ, enabling

interoperation with a wide range of enterprise applications and business process

engines. WebSphere Partner Gateway employs WebSphere MQ as a JMS provider.

As such, integration between WebSphere Data Interchange and WebSphere Partner

Gateway is through MQ messages destined for JMS API clients.

WebSphere Partner Gateway is used to communicate EDI transactions over the

Internet using the AS2 protocol.

Note that, in this example, partnerTwo is using WebSphere Partner Gateway -

Express to accept transactions via AS2 and has its own WebSphere Data

Interchange environment for handling translations and acknowledgments.

Throughout this chapter, you will see the details about configuring the computers

used in this sample scenario. The flow of messages is bi-directional, and so both

send and receive artifacts are included.

Internet
Partner One Partner Two

WebSphere Data Interchange

HTTP/AS2HTTP/AS2

Machine B

Machine A

Machine C

WebSphere Partner Gateway -
Express

WebSphere Partner Gateway

DB2 Universal Database

DB2 Universal Database

Figure 42. Configuration of two partners in example scenario

196 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Planning for integration with WebSphere Data Interchange

WebSphere Data Interchange versions that WebSphere

Partner Gateway supports

The supported version of WebSphere Data Interchange is Version 3.2 with CSD 22.

WebSphere MQ is used for interfacing to WebSphere Data Interchange. The

supported version of WebSphere MQ is Version 6.0 with the latest Fix pack.

Configuring your environment for message exchange

To enable communication between WebSphere Data Interchange and WebSphere

Partner Gateway, you perform the following setup and configuration tasks:

v “Configuring WebSphere MQ communication”

v “Configuring WebSphere Data Interchange” on page 198

v “Setting up the JMS environment” on page 203

v “Configuring WebSphere Partner Gateway Enterprise Edition” on page 204

Configuring WebSphere MQ communication

The first step in setting up the environment is to configure WebSphere MQ

intercommunication. Intercommunication means sending messages from one queue

manager to another. The first step is to define a queue manager (and associated

objects) for the WebSphere Data Interchange system and the WebSphere Partner

Gateway system. If you will be sending messages in both directions, you set up a

source queue manager and a receiver queue manager on both systems. On the

source queue manager, you define a sender channel, a remote queue definition,

and a transmission queue. On the receiver queue manager, you define a receiver

channel and a receiver queue.

Note: Refer to the WebSphere MQ documentation for additional details on

defining queue managers.

This section shows you the values you would use to set up the queue managers

and associated objects needed for the sample scenario. In the scenario, WebSphere

MQ V5.3 is installed on both Computer A and Computer B. The first step, then, is

to create a queue manager on both Computer A and Computer B for use with

WebSphere Data Interchange and WebSphere Partner Gateway Enterprise Edition

respectively.

Note: Your WebSphere Data Interchange queue manager should be configured to

trigger the WebSphere Data Interchange Server using the WDI Adapter application.

v On Computer A, you would use the queue manager defined for use with

WebSphere Data Interchange. For the remainder of this chapter, this queue

manager is referred to as WDI32_QM.

v On Computer B, you would use the queue manager created during the initial

installation and configuration of WebSphere Partner Gateway Enterprise Edition.

For the remainder of this chapter, this queue manager is referred to as HUB_QM

To send messages from one queue manager to another using WebSphere MQ, you

define the following objects:

v On the source queue manager:

– Sender channel

– Remote queue definition

Chapter 12. Integrating with WebSphere Data Interchange 197

– Transmission queue
v On the receiver queue manager:

– Receiver channel

– Receiver queue

In the sample scenario, both Computer A and Computer B act as sender and

receiver. Therefore, you would have to define a number of objects on each

computer.

Table 84 lists the objects you would create to set Computer A and Computer B as

sender and receiver.

 Table 84. WebSphere MQ objects to create

WebSphere MQ object Computer A Computer B

Queue Manager WDI32_QM HUB_QM

Sender Channel TO.HUB60 TO.WDI32

Receiver Channel TO.WDI32 TO.HUB60

Remote Queue EDI_OUT_A EDI_OUT_B

Transmission Queue XMITQ_A XMITQ_B

Local Queue EDI_IN_A EDI_IN_B

Local Queue XML_IN_A XML_IN_B

Local Queue XML_OUT_A XML_OUT_B

Figure 43 shows the message flow between Computer A and Computer B,

indicating the role of the WebSphere MQ objects listed in Table 84.

 You could use several different methods to define these objects, depending on your

WebSphere MQ platform. For example, you could use WebSphere MQ Explorer on

Windows to define the objects.

Configuring WebSphere Data Interchange

For WebSphere Data Interchange to receive messages from the WebSphere MQ

queue and write EDI messages to a queue, you must configure profiles in the

WebSphere Data Interchange Client. Using WebSphere Data Interchange Client,

you would create the following profiles, which are described in the sections that

follow:

v MQ Series queue profile

v Network profile

v Mailbox profile

v Service profile

Machine A Machine B

Internet

XML_IN_A EDI_OUT_A

XML_OUT_A EDI_IN_A

EDI_IN_B

EDI_OUT_B

Figure 43. Message flow between Computer A and Computer B

198 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

In the sample scenario, WebSphere Data Interchange receives XML messages from

the WebSphere MQ queue XML_IN_A and writes the result of translation to

WebSphere MQ queue EDI_OUT_A. This is called the XML-to-EDI translation.

WebSphere Data Interchange also receives EDI from WebSphere Partner Gateway

Enterprise Edition on the WebSphere MQ queue EDI_IN_A and writes the result of

translation to XML_OUT_A.

MQSeries(R) Queue profile

An MQSeries Queue profile contains information about a WebSphere MQ message

queue. Table 85 shows the properties to configure for each profile.

 Table 85. Properties in an MQSeries Queue profile

MQ property Description

Queue Profile ID The unique identifier to name the profile

(logical name)

Full Queue Name The actual name of the WebSphere MQ

queue

Queue Manager Name The actual name of the WebSphere MQ

queue manager

Description Any string to identify the purpose of the

profile

Maximum Length The largest possible message for the queue

as configured in WebSphere MQ

Destructive Reads If selected, these cause WebSphere Data

Interchange to remove the message from the

WebSphere MQ queue when reading.

Syncpoint Control When checked, the reading and writing of

queue messages is under syncpoint control.

If syncpoint control is in effect,

modifications to a message queue do not

take place until WebSphere Data Interchange

issues a syncpoint.

Because you are working with the WebSphere MQ queues, you require an

MQSeries Queue profile in WebSphere Data Interchange for each queue. In all, you

would create four MQSeries Queue profiles, one for each WebSphere MQ queue

used in the message flow. From the setup area of WebSphere Data Interchange

Client, you would:

1. Create an MQSeries Queue profile for XML_IN_A and EDI_OU_A.

Table 86 lists the actual parameters specified in each MQSeries Queue profile

you created. The queues represented here are used with XML-to-EDI

translation.

 Table 86. MQSeries Queue profile for XML_IN_A and EDI_OU_A

Queue property Value for XML_IN_A Value for EDI_OU_A

Queue Profile ID XML_IN_A EDI_OU_A

Full Queue Name XML_IN_A EDI_OUT_A

Queue Manager Name WDI32_QM WDI32_QM

Destructive Reads Checked Checked

Syncpoint Control Checked Checked

Chapter 12. Integrating with WebSphere Data Interchange 199

Note: The Queue Profile ID is restricted to a maximum of eight characters.

Therefore, the profile ID for the EDI_OUT_A queue must be named

EDI_OU_A. All references to the WebSphere MQ queue EDI_OUT_A in

WebSphere Data Interchange use EDI_OU_A.

2. Create an MQSeries Queue profile for EDI_IN_A and XML_OU_A. Table 87

defines the properties of each queue used in EDI-to-XML translation.

 Table 87. MQSeries Queue profile for EDI_IN_A and XML_OU_A

Queue property Value for EDI_IN_A Value for XML_OU_A

Queue Profile ID EDI_IN_A XML_OU_A

Full Queue Name EDI_IN_A XML_OUT_A

Queue Manager Name WDI32_QM WDI32_QM

Destructive Reads Checked Checked

Syncpoint Control Checked Checked

Network profile

Network profiles define for WebSphere Data Interchange the characteristics of the

networks you use for communications with trading partners. For this scenario, you

would create and configure a Network Profile that communicates with the

WebSphere MQ queues created earlier.

Table 88 shows the properties to configure for the Network profile.

 Table 88. Properties in a Network profile

Network property Description

Network ID A unique identifier to name the profile

Communication Routine The name of the program that builds

network commands and invokes the

network program to process the commands

Network Program The program invoked by the communication

routine to process requests

Network Parameters Parameters required by the network

program

For this sample scenario, you create and configure a Network profile that

communicates with the WebSphere MQ queues created earlier (see “MQSeries(R)

Queue profile” on page 199), as follows:

1. Create a new Network profile called HUB_IN.

This network profile is used in the XML-to-EDI scenario. Table 89 lists the

actual parameters specified for HUB_IN.

 Table 89. Network profile for HUB_IN

Network property Value for HUB_IN profile

Network ID HUB_IN

Communication Routine VANIMQ

Network Program EDIMQSR

Network Parameters SENDMQ=EDI_OU_A RECEIVEMQ=XML_IN_A

2. Create a second Network profile called HUB_OUT.

200 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

This Network profile is used in the translation of EDI received from WebSphere

Partner Gateway Enterprise Edition. A second Network profile is required,

because WebSphere Partner Gateway Enterprise Edition places messages on the

WebSphere MQ queues that include RFH2 headers. Table 90 lists the properties

of HUB_OUT.

 Table 90. Network profile for HUB_OUT

Network property Value for HUB_OUT profile

Network ID HUB_OUT

Communication Routine VANIMQ

Network Program EDIRFH2

Network Parameters SENDMQ=XML_OU_A RECEIVEMQ=EDI_IN_A

Mailbox profile

Mailbox profiles contain the information that WebSphere Data Interchange needs to

identify the individuals and groups in your organization that receive documents to

be translated. Table 91 shows the properties to configure for each Mailbox profile.

 Table 91. Properties in a Mailbox profile

Mailbox property Description

Mailbox ID A unique identifier to name the profile

Network ID The network ID of the network profile

created earlier

You create mailbox profiles for each of the WebSphere MQ queues to identify the

individuals and groups in the organization, as follows:

1. Create a Mailbox profile for each WebSphere MQ queue used.

Table 92 lists the actual parameters in each of the Mailbox profiles.

 Table 92. Mailbox profiles for XML_IN_A and EDI_OU_A

Mailbox property Value for XML_IN_A Value for EDI_OU_A

Mailbox ID XML_IN_A EDI_OU_A

Network ID HUB_IN HUB_IN

Receive File XML_IN_A EDI_OU_A

2. Create a second pair of mailboxes.

Table 93 lists the properties for each.

 Table 93. Mailbox profiles for EDI_IN_A and XML_OU_A

Mailbox property Value for EDI_IN_A Value for XML_OU_A

Mailbox ID EDI_IN_A XML_OU_A

Network ID HUB_OUT HUB_OUT

Receive File EDI_IN_A XML_OU_A

Service profile

Service profiles allow you to enter a utility command and define all the files that

will be used during execution of that command.

For the sample scenario, you take the following steps:

Chapter 12. Integrating with WebSphere Data Interchange 201

1. Create a new Service Profile for XML_IN_A. You define the properties under

the General tab, as follows:

v Continue Command Chaining: On Success

v PERFORM Command:

PERFORM TRANSFORM WHERE INFILE(XML_IN_A) SYNTAX(X)

OUTTYPE(MQ)OUTFILE(EDI_OU_A)

Table 94 lists the Common Files properties.

 Table 94. Common Files for XML_IN_A

Common File property Value

Tracking File ..\trk\xml_in.trk

Exception File ..\xex\xml_in.xex

Work File ..\wrk\xml_in.wrk

Report File ..\rpt\xml_in.rpt

Query File ..\qry\xml_in.qry

2. Enter the following in the Output Files tab:

v Name in Command: EDI_OU_A

v System File Name: ..\edi\edi_out.txt

Note: EDI_OU_A is used rather than EDI_OUT _A because of character

length restrictions.
3. Create a second Service Profile for EDI_IN_A. You define the properties under

the General tab, as follows:

v Continue Command Chaining: On Success

v PERFORM Command:

PERFORM TRANSFORM WHERE INFILE(EDI_IN_A) SYNTAX(E)

OUTTYPE(MQ) OUTFILE(XML_OU_A)

Table 95 lists the Common Files properties.

 Table 95. Common files for EDI_IN_A

Common File property Value

Tracking File ..\trk\edi_in.trk

Exception File ..\xex\edi_in.xex

Work File ..\wrk\edi_in.wrk

Report File ..\rpt\edi_in.rpt

Query File ..\qry\edi_in.qry

4. Enter the following details under the Output Files tab:

v Name in Command: XML_OU_A

v System File Name: ..\xml\xml_out.txt

Note: XML_OU_A is used rather than XML_OUT_A because of character

length restrictions. This restriction was eliminated with CSD10 of the

WebSphere Interchange Server.

Import and compile data transformation maps

After you create the profiles, as described in the previous section, you can import

any maps you need to transform your data. You then compile the transformation

202 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

maps and set a rule for each. You use the WebSphere Data Interchange Client to

perform these tasks. See the WebSphere Data Interchange documentation for

information.

Setting up the JMS environment

As mentioned earlier in this chapter, WebSphere Partner Gateway Enterprise

Edition can use the WebSphere MQ implementation of the Java Message Service

(JMS) for integration with WebSphere Data Interchange.

Note: Alternatively, it is possible to use LDAP or WebSphere Application Server as

a JNDI provider.

This section outlines the steps involved in creating a JMS environment on

Computer B:

v “Configuring JMSAdmin”

v “Creating the JMS objects”

WebSphere MQ classes for Java and WebSphere MQ classes for JMS are built in to

WebSphere MQ for Windows, Version 5.3.

Configuring JMSAdmin

Use the JMSAdmin tool available in WebSphere MQ to create the JMS objects in

JNDI. For information on how to create the default configuration file called

JMSAdmin.config, see the WebSphere Partner Gateway Hub Configuration Guide.

To create the JMS objects for this tutorial:

1. To use a file-based JNDI provider, you would make sure the JMSAdmin.config

file contains the lines shown below:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory

PROVIDER_URL=file:/opt/mqm/java/JNDI

2. If the JNDI directory does not already exist, create the JNDI directory under the

following directory:

/opt/mqm/java/bin

Before invoking the JMSAdmin tool, you would ensure your CLASSPATH contains

the following entries:

/opt/mqm/java/lib/jms.jar

/opt/mqm/java/lib/com.ibm.mq.jar

/opt/mqm/java/lib/com.ibm.mqjms.jar

/opt/mqm/java/lib/jta.jar

/opt/mqm/java/lib/connector.jar

/opt/mqm/java/lib/jndi.jar

/opt/mqm/java/lib/providerutil.jar

/opt/mqm/java/lib/fscontext.jar

Note: The above entries, which relate to Linux(TM)), assume you are using file-based

JNDI.

Creating the JMS objects

To create the required JMS objects, you use the JMSAdmin tool. For the sample

scenario, you would:

1. Define a new context:

DEF CTX(WdiJms)

2. Change to the new context:

CHG CTX(WdiJms)

Chapter 12. Integrating with WebSphere Data Interchange 203

3. Define a queue connection factory:

DEF QCF(HUB60_QM_QCF) TRAN(CLIENT) HOST(IP_COMPUTER_B)

PORT(9999) CHAN(java.channel) QMANAGER(HUB60_QM)

4. Define the EDI_IN_B queue:

DEF Q(EDI_IN_B) QMANAGER(HUB60_QM) QUEUE(EDI_IN_B)

5. Define the EDI_OUT_B queue:

DEF Q(EDI_OUT_B) QMANAGER(HUB60_QM) QUEUE(EDI_OUT_B)

6. End the JMSAdmin session

END

Configuring WebSphere Partner Gateway Enterprise Edition

WebSphere Partner Gateway is the communication layer between disparate

external partners and internal processes. When setting up WebSphere Partner

Gateway to work with EDI documents, you can configure it to:

v Send and receive EDI documents to and from WebSphere Data Interchange

v Communicate EDI transactions with external trading partners using AS2

The WebSphere Partner Gateway Hub Configuration Guide provides complete

information on how to configure WebSphere Partner Gateway Enterprise and

Advanced Editions. This section provides you with an example of configuring the

WebSphere Partner Gateway Enterprise Edition that is described in the sample

scenario. It describes the following steps:

1. “Creating partners”

2. “Setting the B2B capabilities” on page 206

3. “Creating destinations” on page 207

4. “Defining interactions” on page 208

5. “Creating partner connections” on page 209

6. “Creating receivers” on page 210

Note: For information on how to configure WebSphere Partner Gateway - Express,

see “Configuring WebSphere Partner Gateway - Express” on page 211.

Creating partners

A partner profile identifies companies to the system. You create partners for

Partner One and Partner Two in the WebSphere Partner Gateway Enterprise

Edition Community Console.

Create a partner for Partner One: Create a partner profile to represent Computer

A and Computer B, which are the two systems that Partner One owns.

To create this partner profile, you take the following steps:

1. Open the WebSphere Partner Gateway Community Console.

2. Log in as hubadmin.

3. Click Account Admin > Profiles > Partner.

4. Click Create and enter the details as listed in Table 96 below.

 Table 96. Partner properties for Partner One

Field name Value

Company Login Name partnerOne

Partner Display Name Partner One

204 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 96. Partner properties for Partner One (continued)

Field name Value

Partner Type Internal Partner

Status Enabled

Vendor Type Other

Web Site http://IP_COMPUTER_A

where IP_COMPUTER_A is the Internet

protocol (IP) address of Computer A

Business ID Type Freeform

Business ID Identifier 123456789

IP Address Destination Type Production

IP Address IP_COMPUTER_A

where IP_COMPUTER_A is the Internet

protocol (IP) address of Computer A

Note: To create the Business ID Type and Business ID Identifier, you first click

the New button below Business ID. The Business ID must be unique. Similarly,

to create details relating to the IP Address, you click the New button below the

IP Address header.

5. Click Save.

WebSphere Partner Gateway Enterprise Edition uses the Business ID Identifier

(defined in Table 96 on page 204) to identify the sender or receiver of a document.

When an ANSI X12 EDI transaction is received, the Interchange Sender and

Receiver data is read to determine the source and target of the transaction.

Important: Make a note of the Administrator’s Password for Partner One, as you

will need it later. When you log on to the Community Console as Partner One, you

will be asked to enter the password and then to change it.

Create a partner for Partner Two: Next, create an external partner to represent

Partner Two. To create the partner, you take the following steps:

1. Click Account Admin > Profiles > Partner.

2. Click Create.

3. Enter the values listed in Table 97 below.

 Table 97. Partner properties for Partner Two

Field name Value

Company Login Name partnerTwo

Partner Display Name Partner Two

Partner Type Partner

Status Enabled

Vendor Type Other

Web Site http://IP_COMPUTER_C

where IP_COMPUTER_C is the Internet

protocol (IP) address of Computer C

Business ID Type Freeform

Chapter 12. Integrating with WebSphere Data Interchange 205

Table 97. Partner properties for Partner Two (continued)

Field name Value

Business ID Identifier 987654321

IP Address Destination Type Production

IP Address IP_COMPUTER_C

where IP_COMPUTER_C is the Internet

protocol (IP) address of Computer C

4. Click Save.

Important: Make a note of the Administrator’s Password for Partner Two, as you

will need it later. When you logged on to the Community Console as Partner Two,

you were asked to enter the password and then to change it.

Setting the B2B capabilities

You define the B2B capabilities for each partner in WebSphere Partner Gateway

Enterprise Edition through the Community Console. After you define the B2B

capabilities for partners, you can define a valid Document Flow Definition used to

support specific business collaboration types between the partners.

Set the B2B capabilities for Partner One: To define the B2B Capabilities for

Partner One, take the following steps:

1. Click Account Admin > Profiles > Partner.

2. Click Search to reveal a list of all partners defined in the system.

3. Click the View details icon next to Partner One, and then click B2B

Capabilities.

B2B Capabilities are set to active by clicking on the Role is not active icon. For the

purposes of this sample, you will configure only the B2B Capabilities required to

implement the scenario.

To set the source and target packaging for Partner One to None, you would:

1. Click the Role is not active icon underneath Set Source for Package: None to

enable it. Repeat this step for Set Target.

2. Click the Expand icon to drill down.

3. Click the Role is not active icon for Protocol: EDI-X12 (ALL) for both source

and target.

4. Click the Expand icon.

5. Click the Role is not active icon for Document Flow: ISA (ALL) for both

source and target.

Set the B2B capabilities for Partner Two: To define the B2B capabilities for

Partner Two, take the following steps:

1. Click Account Admin > Profiles > Partner.

2. Click Search to reveal a list of all partners defined in the system.

3. Click the View details icon next to Partner Two, and then click B2B

Capabilities.

To set the source and target packaging for Partner Two to AS, take the following

steps:

206 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

1. Click the Role is not active icon underneath Set Source for Package: AS to

enable it. Repeat this step for Set Target.

2. Click the Expand icon to drill down.

3. Click the Role is not active icon for Protocol: EDI-X12 (ALL) for both source

and target.

4. Click the Expand icon.

5. Click the Role is not active icon for Document Flow: ISA (ALL) for both

source and target.

Next, you update the AS definition for Partner Two, to ensure that Message

Disposition Notifications (MDNs) for AS2 sent to Partner Two are returned to the

correct address, as follows:

1. Click the Edit icon.

2. Enter an AS MDN E-mail address.

This address is used to receive MDNs for AS1.

3. Enter an AS MDN HTTP URL:

http://IP_COMPUTER_B:PORT/bcgreceiver/submit

Note: The URL defined for AS2 uses the same parameters that will be defined

for the AS2 Receiver later in this chapter.

Creating destinations

A destination in WebSphere Partner Gateway defines a network point that acts as

the entrance to another network. The destination contains the information that tells

WebSphere Partner Gateway how to deliver documents to the Enterprise

Application Integration (EAI) layer.

Create a Destination for Partner One: Partner Two sends EDI documents to

Partner One using AS2. Partner One’s destination is used to send the EDI

documents received via AS2 to a JMS queue and ultimately to WebSphere Data

Interchange for translation.

To create a new destination for Partner One, take the following steps:

1. Click Account Admin > Profiles > Partner.

2. Click Search.

3. Select Partner One by clicking the View details icon, and then select

Destinations.

4. Click Create to create a new destination for Partner One.

5. Enter the values for this new destination are shown in Table 98.

 Table 98. Properties for Partner One destination

Field name Value

Destination Name JMStoPartnerOne

Transport JMS

Receiver URI file:///opt/mqm/java/JNDI/WdiJms

JMS Factory Name HUB60_QM_QCF

JMS Message Class TextMessage

JMS Message Type TextMessage

JMS Queue Name EDI_OUT_B

JMS JNDI Factory Name com.sun.jndi.fscontext.RefFSContextFactory

Chapter 12. Integrating with WebSphere Data Interchange 207

6. Click Save.

Make JMStoPartnerOne the default destination for Partner One, as follows:

1. Click View Default Destinations.

2. From the Production list, select JMS2toPartnerOne.

3. Click Save.

Create a Destination for Partner Two: Partner One sends EDI documents to

WebSphere Partner Gateway Enterprise Edition over a JMS queue. Partner Two’s

destination is used to send the received EDI documents to Partner Two via AS2.

To create a new destination for Partner Two, take the following steps:

1. Click Account Admin > Profiles > Partner.

2. Click Search.

3. Select Partner Two by clicking the View details icon and then select

Destinations.

4. Click Create to create a new destination for Partner Two.

5. Enter the values for this destination as shown in Table 99.

 Table 99. Properties for Partner Two destination

Destination Name AS2toPartnerTwo

Transport HTTP/1.1

Receiver URI http://IP_COMPUTER_C/input/AS2

User Name partnerOne

Password partnerOne

6. Click Save.

Note: The User Name and Password as entered above refer to the Inbound

Partner Mapping Method for HTTP as defined in WebSphere Partner Gateway -

Express.

For an example of setting these properties in WebSphere Partner Gateway -

Express, see “Configuring WebSphere Partner Gateway - Express” on page 211.

Notice that AS2toPartnerTwo is displayed as Online with a Status of Enabled.

Make AS2toPartnerTwo the default destination for PartnerTwo, with the following

steps:

1. Click View Default Destinations.

2. From the Production list, select AS2toPartnerTwo.

3. Click Save.

Defining interactions

A document flow definition is a collection of “meta-information” that defines the

document processing capabilities of the partner. For the system to process a

business document, two or more document flow definitions must be linked to

create an interaction.

To create an interaction between Partner One and Partner Two, take the following

steps:

 1. Click Hub Admin > Hub Configuration > Document Definition .

208 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

2. Click Manage Interactions and then Create Interaction.

 3. From the Source column, select:

a. Package: None

b. Protocol: EDI-X12 (ALL)

c. Document Flow: ISA (ALL)

 4. From the Receiver column, select:

a. Package: AS

b. Protocol: EDI-X12 (ALL)

c. Document Flow: ISA (ALL)

 5. Set the Action as Pass Through.

 6. Click Save.

 7. Click Create Interaction again.

 8. From the Source column, select:

a. Package: AS

b. Protocol: EDI-X12 (ALL)

c. Document Flow: ISA (ALL)

 9. From the Receiver column select:

a. Package: None

b. Protocol: EDI-X12 (ALL)

c. Document Flow: ISA (ALL)

10. Set the Action as Pass Through.

11. Click Save.

Creating partner connections

Partner connections are the mechanism that enables the system to process and

route documents between the internal partner and its various partners.

Connections contain the information necessary for the proper exchange of each

document flow.

To create a partner connection between Partner One and Partner Two, take the

following steps:

1. Click Account Admin from the main menu and Partner Connections from the

horizontal navigation bar.

2. From the Source list, select Partner One.

3. From the Target list, select Partner Two.

4. Click Search.

5. Activate the Partner Connection that is displayed below by clicking on the

Activate button. This should display the B2B Capabilities shown in Table 100.

 Table 100. Activate Partner One-to-Partner Two partner connection

Document flow type Source Target

Package None (N/A) AS (N/A)

Protocol EDI-X12 (ALL) EDI-X12 (ALL)

Document Flow ISA (ALL) ISA (ALL)

To create a partner connection where Partner Two is the source and Partner One is

the target, take the following steps:

Chapter 12. Integrating with WebSphere Data Interchange 209

1. Click Account Admin from the main menu and Partner Connections from the

horizontal navigation bar.

2. From the Source list, select Partner Two.

3. From the Target list, select Partner One.

4. Click Search.

5. Activate the connection with the details shown in Table 101.

 Table 101. Activate Partner Two-to-Partner One partner connection

Document flow type Source Target

Package AS (N/A) None (N/A)

Protocol EDI-X12 (ALL) EDI-X12 (ALL)

Document Flow ISA (ALL) ISA (ALL)

Creating receivers

The Receiver List view provides location information that enables WebSphere

Partner Gateway’s Document Manager to fetch documents from the appropriate

system location based on the transport type of the incoming document. You can

create separate receiver configurations based on transport type. The Document

Manager can then poll the document repository locations of multiple Web, FTP,

and POP mail servers--including internal directories and JMS queues--for incoming

documents.

After the Document Manager retrieves a document from the location based on a

pre-defined receiver, the routing infrastructure can process the document based on

channel configuration.

To receive an EDI transaction from WebSphere Data Interchange, create a new JMS

receiver by doing the following:

1. Click Hub Admin > Hub Configuration > Receivers.

2. Click Create Receiver.

3. Assign the properties shown in Table 102.

 Table 102. Receiver properties for receipt over JMS

Receiver property Value

Receiver Name WdiJmsListener

Transport JMS

Destination Type Production

JMS Provider URL file:///opt/mqm/java/JNDI/WdiJms

JMS Queue Name EDI_IN_B

JMS Factory Name HUB60_QM_QCF

JNDI Factory Name com.sun.jndi.fscontext.RefFSContextFactory

A second receiver is required for the receipt of EDI from Partner Two via AS2.

Take the following steps to create this receiver:

1. Click Hub Admin > Hub Configuration > Receivers.

2. Click Create Receiver.

210 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

3. Assign the properties from Table 103 below:

 Table 103. Receiver properties for receipt over AS2

Receiver Name HubAS2Listener

Transport HTTP/S

Destination Type Production

URI /bcgreceiver/submit

Note: The URI for receipt of HTTP/S must always

begin with /bcgreceiver

4. Click Save.

Configuring WebSphere Partner Gateway - Express

This section provides you with the steps to configure the external partner’s

environment. In this case, this environment is handled with a WebSphere Partner

Gateway - Express system. In the sample scenario presented in this chapter,

partnerTwo is using WebSphere Partner Gateway - Express to send and receive

EDI using HTTP AS2.

To successfully receive EDI via HTTP AS2, take the following steps:

1. “Configuring My Profile”

2. “Creating a partner for Partner One” on page 212

3. “Configuring the Partner One partner” on page 212

Configuring My Profile

As the first step, you must create a profile for Partner Two in WebSphere Partner

Gateway - Express. To create a profile for Partner Two, take the following steps:

1. Click Configuration from the main menu.

2. Click My Profile from the horizontal navigation bar.

3. Enter the details as outlined in Table 104.

 Table 104. My Profile details

Receipt Address Unsecure Domain IP_COMPUTER_C

where IP_COMPUTER_C is the

Internet protocol (IP) address of

Computer C, where WebSphere

Partner Gateway - Express is

running

Receipt Address Unsecure Port 80

where 80 is the port assigned for

use by WebSphere Partner Gateway

- Express during installation.

AS2 Sender ID 987654321

Business ID Type DUNS

Business Identifier 987654321

4. Click Save.

Chapter 12. Integrating with WebSphere Data Interchange 211

Creating a partner for Partner One

Partner One must be identified as a partner to WebSphere Partner Gateway -

Express. To create Partner One as a partner, take the following steps:

1. Click Configuration from the main menu.

2. Click Partners from the horizontal navigation bar.

3. Click the Create Partners button.

4. Assign the following values:

a. Partner Name: partnerOne

b. AS2 Partner ID: 123456789

5. Click Save.

From the Manage Partners view, you can see the details for partnerOne.

Configuring the Partner One partner

Once the partner for Partner One exists, you must configure Partner One for AS2

and HTTP. This configuration identifies the parameters required by WebSphere

Partner Gateway - Express for both sending and receiving HTTP and AS2 to

partnerOne.

To configure partnerOne for HTTP and AS2, take the following steps:

 1. Click Configuration from the main menu.

 2. Click AS2 from the horizontal navigation bar.

 3. Select partnerOne from the Selected Partner list and click Edit.

 4. Define the Outbound Destination Address of partnerOne as:

http://IP_COMPUTER_B:7080/bcgreceiver/submit

Where IP_COMPUTER_B is the IP address of Computer B.

 5. Click Save.

 6. Click HTTP from the horizontal navigation bar. (partnerOne should still be

displayed as the Selected Partner.)

 7. Click Edit.

 8. Set the Inbound User Name and Password:

User Name: partnerOne

Password: partnerOne

Remember these were referenced earlier in the sample step of creating the

default destination for Partner Two in WebSphere Partner Gateway Enterprise

Edition on Computer B.

 9. Set the Outbound Destination Address to:

http://IP_COMPUTER_B:7080/bcgreceiver/submit

10. Click Save.

Important: After making these changes in WebSphere Partner Gateway - Express,

log out of the console and stop the destination. Restart the destination and console

for all changes to take effect.

212 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Summary

This chapter described the process by which WebSphere Partner Gateway interacts

with WebSphere Data Interchange. It also provided you with procedures to set up

the sample scenario described in “Example scenario used in this chapter” on page

195.

As mentioned at the beginning of this chapter, you can follow the Integrating

WebSphere Data Interchange V3.2 with WebSphere Business Integration Connect V4.2

tutorial to actually create a sample configuration. The tutorial provides sample

scripts and maps to help you configure the environment and then shows you how

to test a sample exchange. To access the tutorial, go to:

www.ibm.com/developerworks/websphere/

and search on the title of the tutorial.

Remember that you will have to select ISA (ALL) for Document Flow (in place of

ALL (ALL) when you set the B2B Capabilities of the partners. The interactions you

set up and the connections you activate will also have ISA (ALL) for the

Document Flow.

Chapter 12. Integrating with WebSphere Data Interchange 213

214 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Part 5. Integrating with other products

© Copyright IBM Corp. 2004, 2008 215

216 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 13. Integrating with WebSphere Transformation

Extender

This chapter describes how to integrate WebSphere Partner Gateway with

WebSphere Transformation Extender.

Introduction

What is WebSphere Transformation Extender?

WebSphere Transformation Extender is a powerful, transaction-oriented, data

integration solution that automates the transformation of high-volume, complex

transactions without the need for hand-coding. This provides enterprises with a

quick return on investment. This product supports EDI, XML, SWIFT, HIPAA and

other standards-based B2B integration, as well as the real-time integration of data

from multiple applications, databases, messaging middleware and communications

technologies across the enterprise.

WebSphere Transformation Extender performs transformation and routing of data

from source systems to target systems in batch and real-time environments. The

sources may include files, relational databases, MOMs (message-oriented

middleware), packaged applications, or other external sources. After retrieving the

data from its sources, the WebSphere Transformation Extender product transforms

it and routes it to any number of targets where it is needed, providing the

appropriate content and format for each target system. The WebSphere

Transformation Extender product delivers the following:

v Connectivity to a wide range of mainframe, legacy, and enterprise applications,

databases, messaging systems, and external information sources

v A comprehensive library of more than 120 pre-built functions to reduce

development time and simplify specification of rules for validation,

transformation, and routing

v Multiple execution options to support right-time, right-style

transformation-whether it is batch, real-time, or embedded

v Enterprise-class capabilities for development, deployment, and maintenance plus

high-availability platform support. This reduces on-going administration and

implementation risks and delivers results sooner than hand-coding.

How does WebSphere Transformation Extender work with

WebSphere Partner Gateway?

WebSphere Transformation Extender will be used within WebSphere Partner

Gateway to perform document transformations. Integration to WebSphere

Transformation Extender can be done using two different methods.

In one method there is no direct interaction between WebSphere Partner Gateway

and WebSphere Transformation Extender. This method involves treating

WebSphere Transformation Extender as another backend application. This involves

the use of the WebSphere Message Broker which in turn incorporates WebSphere

Transformation Extender. With this method the expectations are that the document

will not be transformed from within WebSphere Partner Gateway but instead will

© Copyright IBM Corp. 2004, 2008 217

be passed through to WebSphere Message Broker which in turns uses WebSphere

Transformation Extender to perform the transformation.

Another method has direct interaction between WebSphere Partner Gateway and

WebSphere Transformation Extender. From within a WebSphere Partner Gateway a

call out to WebSphere Transformation Extender will be made by using a User Exit

as an Action step handler. A User Exit is implemented that uses the WebSphere

Transformation Extender Java RMI APIs to invoke WebSphere Transformation

Extender for performing the transformation.

Planning for integration with WebSphere Transformation Extender

As mentioned in the Introduction, Integration to WebSphere Transformation

Extender can be done using two different methods: one using WebSphere Message

Broker and two using a user exit.

Integration using WebSphere Message Broker

Requirements for using WebSphere Message Broker

To use WebSphere Message Broker with WebSphere Partner Gateway, you must

have the following:

v The WebSphere Partner Gateway supported version of the WebSphere Message

Broker

v The version of WebSphere Transformation Extender supported by the WebSphere

Message Broker

v The WebSphere Transformation Extender for WebSphere Message Broker

Planning for using WebSphere Message Broker

WebSphere Partner Gateway will be interacting indirectly with WebSphere

Transformation Extender via the WebSphere Message Broker. This means that the

topology as concerns WebSphere Partner Gateway will be in relation to the

WebSphere Message Broker, and that the topology concerns of the WebSphere

Transformation Extender will be in relation to the WebSphere Message Broker.

Creation, configuration and deployment of WebSphere Transformation Extender

maps will be in the context of the WebSphere Message Broker.

Integration using a WebSphere Partner Gateway User Exit

Requirements for using a WebSphere Partner Gateway User Exit

from an Action

Version 6.1 of WebSphere Partner Gateway supports integration with WebSphere

Transformation Extender 8.1 with Fix pack 1 or later. If you are using Fix pack 1

and are using local invocation then patch number 105385 from WebSphere

Transformation Extender Support will be required. Later WebSphere

Transformation Extender Fix packs may have the patch already in them. Local

invocation, also known as In-process, is used either with the WebSphere

Transformation Extender Java APIs, or with the WebSphere Transformation

Extender RMI APIs when not using the RMI Server.

Planning for using a WebSphere Partner Gateway User Exit

WebSphere Transformation Extender can be invoked from within WebSphere

Partner Gateway either locally or remotely using the Java RMI APIs. The method

you choose depends on your deployment environment. Remote invocation allows

for greater flexibility and safety to WebSphere Partner Gateway.

218 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Invoking locally (also known as in-process): The following information applies

to invoking WebSphere Transformation Extender locally:

v A local invocation can be done either using the WebSphere Transformation

Extender Java APIs or using the WebSphere Transformation Extender RMI APIs

in local mode (that is, use a host name value of null and a port number value of

0).

v WebSphere Transformation Extender must be running on the same machine as

WebSphere Partner Gateway. This means that each instance of WebSphere

Partner Gateway requires WebSphere Transformation Extender to also be

installed.

v Document transformation takes place in the same WebSphere Partner Gateway

thread and memory that the WebSphere Transformation Extender API is called

from.

v WebSphere Partner Gateway and WebSphere Transformation Extender must be

installed on an operating system that is supported by both products.

v There is a runtime WebSphere Transformation Extender library that needs to be

in the WebSphere Partner Gateway PATH environment.

v The WebSphere Transformation Extender maps have to be available to the

WebSphere Transformation Extender APIs.

v Any unexpected errors during transformation may affect WebSphere Partner

Gateway.

Invoking remotely: The following information applies to invoking WebSphere

Transformation Extender remotely:

v WebSphere Partner Gateway can be on a remote machine from WebSphere

Transformation Extender. This means that multiple instances of WebSphere

Partner Gateway can share the same WebSphere Transformation Extender

instance.

v WebSphere Partner Gateway is not required to be running on a Windows

operating system.

v Requires the WebSphere Transformation Extender RMI Server to be running.

v Document transformation takes place in the WebSphere Transformation Extender

RMI Server.

v The WebSphere Partner Gateway common file system has to be available to the

WebSphere Transformation Extender RMI Server for the input document and the

output document.

v The WebSphere Transformation Extender maps have to be available to the

WebSphere Transformation Extender RMI Server.

v Any unexpected errors during transformation will not adversely affect

WebSphere Partner Gateway.

Integrating WebSphere Message Broker with WebSphere

Transformation Extender

The expected usage for this deployment will have transformation done by

WebSphere Transformation Extender using WebSphere Message Broker, although

there can still be transformation performed in WebSphere Partner Gateway using

the existing facilities. See Chapter 11, “Integrating with WebSphere Message

Broker,” on page 175 for details involving the WebSphere Message Broker. Refer to

the WebSphere Transformation Extender documentation for information on

integrating with the WebSphere Message Broker.

Chapter 13. Integrating with WebSphere Transformation Extender 219

Integrating WebSphere Transformation Extender User Exit

Prior to integration with WebSphere Partner Gateway, WebSphere Transformation

Extender must be installed according to requirements and instructions provided for

this product. In addition the machine that WebSphere Transformation Extender is

running on needs to have access to the WebSphere Partner Gateway common file

system in order to be able to read the input document that is to be transformed

and to write the output document from the transformation.

Refer to the WebSphere Transformation Extender product documentation for any

configuration requirements. Configuration considerations for the WebSphere

Transformation Extender RMI Server can be found in “WebSphere Transformation

Extender - RMI Server configuration” on page 223.

Creating the WebSphere Partner Gateway User Exit for

WebSphere Transformation Extender

The WebSphere Transformation Extender User Exit should use the WebSphere

Transformation Extender RMI APIs because these provide the most flexibility for

the installation location of WebSphere Transformation Extender and allow multiple

instances of WebSphere Partner Gateway to use the same WebSphere

Transformation Extender installation. Also, the User Exit will probably need to be

configurable as to the host name and port that the WebSphere Transformation

Extender RMI Server is listening on.

Refer to the following for information on specific tasks required for creation of this

user exit:

v The WebSphere Partner Gateway Programmer Guide for information on

implementing Variable Workflow handlers

v The WebSphere Transformation Extender documentation for information on

using the WebSphere Transformation Extender APIs

v The WebSphere Partner Gateway sample User Exit for information on this user

exit

Configuring WebSphere Partner Gateway for the User Exit

Using the WebSphere Partner Gateway Console, you need to configure WebSphere

Partner Gateway for using the WebSphere Transformation Extender User Exit. First,

you need to define the User Exit to WebSphere Partner Gateway and create the

Action that will use the User Exit. Specifically, you should complete the following

tasks:

1. Upload the XML handler definition that you created for your User Exit.

2. Create an Action that uses your User Exit.

After uploading the WebSphere Transformation Extender User Exit and creating

the Action, configure it as you would for any other WebSphere Partner Gateway

document flow. Specifically, you will need to complete the following tasks:

1. Configure the document types

2. Set up its B2B capabilities

3. Import your WebSphere Partner Gateway maps that your User Exit will use.

Note: The map will be in the format that you defined for your User Exit.

4. Configure Interactions.

5. Managing connections.

220 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

See the WebSphere Partner Gateway Hub Configuration Guide for specific information

on performing these tasks.

WebSphere Partner Gateway Runtime configuration for the

User Exit

In “Configuring WebSphere Partner Gateway for the User Exit” on page 220, you

configured WebSphere Partner Gateway to use the WebSphere Transformation

Extender User Exit. Before you can process documents through WebSphere Partner

Gateway, you need to make the runtime code available by installing the Java class

files.

To install the Java class files complete the following:

1. Put the User Exit Java class files in the {WPG Install}\router\lib\userexits.

2. From the WebSphere Transformation Extender installation directory copy the

development kit jar file dtxpi.jar into the directory {WPG Install}\router\lib\
userexits. This jar file contains the WebSphere Transformation Extender runtime

classes required to invoke the WebSphere Transformation Extender Map

Transformation.

3. WebSphere Partner Gateway needs to be restarted to pick up the new jar files.

4. If you are running locally then also add the WebSphere Transformation

Extender installation directory in the system PATH. WebSphere Partner

Gateway will need to be restarted to pick up the new path settings.

WebSphere Partner Gateway-provided Example User Exit

To help you integrate WebSphere Partner Gateway for WebSphere Transformation

Extender, an example user exit has been provided

WebSphere Transformation Extender User Exit example overview

The example User Exit demonstrates the recommendations for calling WebSphere

Transformation Extender from within a WebSphere Partner Gateway Action to

perform transformation. The actual implementation of the User Exit will depend

on how you construct your WebSphere Transformation Extender maps with their

Input cards and Output cards. This is a working example that can be run from

within WebSphere Partner Gateway. The README for installing and using the

example, source code, input files, and maps are located in Integration/
WebSphereTransformationExtender directory on the product CD, which can be

referred to for additional details.

In this example there are two types of maps. The WebSphere Transformation

Extender map which would be created using the WebSphere Transformation

Extender Map Designer and the WebSphere Partner Gateway map that contains

metadata in the form of a properties file to help the User Exit in running the

WebSphere Transformation Extender map. The WebSphere Partner Gateway map

format is specific to the User Exit implementation. Refer to the sample WebSphere

Partner Gateway map for details on its contents.

Example User Exit Class description

These classes wrapper the WebSphere Transformation Extender APIs with the

required WebSphere Partner Gateway User Exit interface code for operation within

an Action. Refer to the Java source code for details on the implementation. Here

are descriptions of the classes in the example user exit.

WTXTransformationFactory

This class is the Action User Exit Handler. It will create and return the

Chapter 13. Integrating with WebSphere Transformation Extender 221

BusinessProcessInterface instance to use depending on the Handlers

attributes. The Handlers attributes are themselves used by the Business

Process instance for further configuration

WTXProcess

This class is the super class for the Business Process classes that interface

to WebSphere Transformation Extender. This class contains the overall flow

logic for the WebSphere Transformation Extender non-API aspects.

WebSphere Transformation Extender API invocation specifics are

encapsulated in the sub-classes in the callWTX() method. The setCfg()

method is used by the sub-classes for them to set any information from the

handlers attributes that are pertinent to that sub-class.

WTXProcessRMI

This is a subclass of WTXProcess. This BusinessProcess class will call a

map using the WebSphere Transformation Extender RMI APIs on

WebSphere Transformation Extender remotely by using the WebSphere

Transformation Extender RMI Server. or for processing a map locally

without using the WebSphere Transformation Extender RMI Server. Some

of its characteristics are:

v The inputs into the WebSphere Transformation Extender Map are

expected to be file inputs. Information from the WebSphere Partner

Gateway map will be used to determine the map name and other

runtime invocation requirements.

v The use RMI Sever value from the User Exit Handler configuration will

be used to determine if the WebSphere Transformation ExtenderRMI

Server will be used. If the WebSphere Transformation Extender RMI

Server is going to be used then the host name and port number from the

User Exit Handler configuration will be used for accessing the

WebSphere Transformation Extender RMI Server. The WebSphere

Transformation Extender RMI APIs can be used to locally call a map so

if the User Exit Handler configuration indicates to call the map locally

then the same code can be used. For calling the map locally the

WebSphere Transformation Extender runtime dll must be available in the

path.

v Note that WebSphere Transformation Extender runs on Windows so if

WebSphere Partner Gateway is on a UNIX machine then the remote

invocation has to be used.

WTXProcessLocal

This is a subclass of WTXProcess. The BusinessProcess class will call a map

on WebSphere Transformation Extender locally. Some characteristics are: -

The inputs into the WebSphere Transformation Extender Map are expected

to be file inputs. Information from the WebSphere Partner Gateway map

will be used to determine the map name and other runtime invocation

requirements.

 To use this Business Process class the WebSphere Transformation Extender

runtime dll must be available in the path.

Note: The WTXTransformationFactory class will not instantiate this

subclass because the WebSphere Transformation Extender RMI APIs in the

WTXProcessRMI can also be used for local invocation. This class is

provided as an example for using the WebSphere Transformation Extender

Java APIs.

222 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Example User Exit Basic runtime operation

The following information applies to the basic runtime operation of the example

user exit:

v WebSphere Partner Gateway receives an XML document from the external

partner.

v The WebSphere Partner Gateway Connection gets looked up based on the XML

Format and business IDs obtained from the XML document, and then the

document is processed using that connection.

v The custom Action in that connection is configured to use the example

WebSphere Transformation Extender Transformation User Exit. When the

WebSphere Transformation Extender Transformation User Exit gets invoked it

will do the following:

– Obtain the host name and port number where the WebSphere Transformation

Extender RMI Server is running

– Set the Map Input and Output card information based on the WebSphere

Partner Gateway Transformation Extender map

– Invoke the WebSphere Transformation Extender map and sets the result into

the Business Document Object

WebSphere Transformation Extender - RMI Server

configuration

This section contains some considerations in configuring the WebSphere

Transformation Extender RMI Server as relates to WebSphere Partner Gateway.

Refer to the WebSphere Transformation Extender documentation for details on the

configuration properties.

If the WebSphere Transformation Extender map is being invoked locally, the RMI

Server configuration does not apply. Local invocation (In-process) calls the map

within the same thread that is running in WebSphere Partner Gateway. When

invoking the map remotely, the RMI Server is used, and the information in this

section applies. In-process considerations (local invocation) are described further

under the property server.mode.multi.process.

The RMI Server is started from the command line. There is one command line

parameter ″-verbose″ that is recommended since this parameter will print to

standard out some of the runtime configuration characteristics.

When the RMI Server is started up a set up configuration parameters are read

from a properties file. Some considerations for configuring these parameters as

relates to WebSphere Partner Gateway follows.

server.mode.multi.process

Recommended setting: true

Description: This property runs the RMI Server in multiprocess configuration

option. Each call to the RMI Server runs in a separate process and provides the

most protection in case map exceptions occur. If a map exception occurs the RMI

Server continues to run. If the single process configuration that is,

server.mode.multi.process=false) then each call to the RMI Server runs in the same

process but on a different thread. However if a map exception occurs there is a

chance for the RMI Server to stop running.

Multi-process considerations:

Chapter 13. Integrating with WebSphere Transformation Extender 223

v Each map call will run in its own process.

v Each process has its own Java memory heap.

v Added security because an exception in one map will not cause the RMI Server

to stop

v Each process loads a WebSphere Transformation Extender instance into memory

which can take up to about 30 MB.

v If a process is not available then the RMI Server property

pool.acquire.process.timeout f will determine the amount of wait time until the

map call times out.

v To ensure that there are enough processes available need to configure at least as

many processes as there are WebSphere Partner Gateway Document Managers

running times the number of threads in the Document Managers. The Document

Manager consists of multiple components. The component that will be executing

the User Exit is the Business Process Engine (BPE) that is configured by default

to two threads. So if there are two Document Manager instances installed with

the default configuration then there will be four threads running (two instances

X two threads) and so the RMI Server needs to be configured for a minimum of

four processes. See the other RMI Server configuration property

pool.max.process.count for controlling the number of processes.

Single-process considerations:

v Each map call runs in its own thread but in the same process as other map

threads.

v If a map exception occurs then the RMI Server can stop.

v Less memory overhead since there is only one WebSphere Transformation

Extender instance loaded.

In-process considerations:

v This is running locally without the RMI Server. Not recommended by

WebSphere Transformation Extender in a server environment because the map

runs within the calling thread, which in this case is WebSphere Partner Gateway.

An abnormal exception could cause problems within WebSphere Partner

Gateway.

v WebSphere Transformation Extender has to be installed on the same machine as

WebSphere Partner Gateway.

v Is limited to Windows operating systems.

pool.mode.managed

Recommended setting: true

Description: This property manages the number of processes that can be in use at

one time. If false then there is no limit. Recommended to prevent a situation where

processes keep increasing without bounds.

pool.max.process.count

Recommended setting: (total number of WebSphere Partner Gateway instances) X

(their thread configuration)

Description:The WebSphere Partner Gateway Document Manager consists of

multiple components. The component that will be executing the User Exit is the

Business Process Engine (BPE) that is configured by default to two threads. So, if

there are two Document Manager instances installed with the default configuration

then there will be four threads running (two instances X two threads) and so the

224 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

RMI Server needs to be configured for a minimum of four processes. This property

will ensure that there are enough processes to handle the User Exit calls to the

RMI Server. If the process count is less than the number of WebSphere Partner

Gateway threads then a User Exit call to the RMI Server will have to wait for an

available process if the other WebSphere Partner Gateway threads are using them.

pool.max.keep.idle.count

Recommended setting: No specific setting but high enough so that the processes

are not constantly having to be created, which will affect performance. Setting is in

seconds.

Description: This property controls how long a process remains idle before being

reclaimed. If the process is needed again though and the pool.max.process.count

has not been reached then the process will be created again.

pool.acquire.process.timeout

Recommended setting: 10 (seconds)

Description: This property determines how long a call to a map will wait to obtain

a process so that the map can execute. If the pool.max.process.count is properly

configured then timeout should not be an issue.

pool.map.auto.unload.timeout

Recommended setting: 120 (seconds)

Description: The RMI Server will cache maps in memory. This property controls

how long to keep a map in the RMI Servers memory pool before removing the

map from the pool. If the map is removed from the pool and is required again

then the map will be read from the file system. Since WebSphere Partner Gateway

maps should be well known in production there will be benefit in keep them

cached longer. The optimal setting will need to be determined from experience.

Chapter 13. Integrating with WebSphere Transformation Extender 225

226 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 14. Integrating with WebSphere Transformation

Extender Trading Manager

This chapter describes how to integrate WebSphere Partner Gateway with

WebSphere Transformation Extender Trading Manager .

Introduction

What is WebSphere Transformation Extender Trading

Manager?

The WebSphere Transformation Extender Trading Manager is a client/server

product for managing and processing electronic commerce data that provides the

capabilities for managing and controlling the Business-to-Business (B2B) integration

of partner relationships and message flow. Trading Manager users can audit,

control, monitor, and view the entire B2B integration environment across the

extended enterprise with secure data exchange fully integrated with back-end

systems.

For more information about Trading Manager and its components, see the Trading

Manager documentation.

How does WebSphere Transformation Extender Trading

Manager work with WebSphere Partner Gateway

Integration to Trading Manager will be similar to other backend applications. The

typical usage will be for using Trading Mananger for EDI document processing.

For example an AS2 document with an EDI payload is received from an external

partner and the EDI payload is sent to Trading Manager for further processing.

The compatible interfaces between WebSphere Partner Gateway (Destinations) and

Trading Manager (Post Offices) that can be used are File, HTTP or JMS.

The integration scenarios will be:

v External Partner → WebSphere Partner Gateway → Trading Manager (Internal

Partner) → Backend application External Partner

v WebSphere Partner Gateway → Trading Manager (Internal Partner) → Backend

application

Applicable documentation

For WebSphere Partner Gateway, the applicable documentation will be the

WebSphere Partner Gateway Hub Configuration Guide. For Trading Manager , it will

be the Trading Manager documentation.

Planning for integration with WebSphere Transformation Extender

Trading Manager

WebSphere Partner Gateway Version 6.1 supports integration with WebSphere

Transformation Extender Trading Manager Version 7.8 or later. If the File interface

to Trading Manager will be used then both WebSphere Partner Gateway and

Trading Manager must both have access to the same file system directory that will

be used for exchanging the documents.

© Copyright IBM Corp. 2004, 2008 227

Common Configuration between WebSphere Partner Gateway and

WebSphere Transformation Extender Trading Manager

There will be some common configuration between WebSphere Partner Gateway

and Trading Manager. The following table contains the cross reference between the

two products.

 Table 105. Configuration Terms for WebSphere Transformation Extender Trading Manager

WebSphere Partner Gateway Trading Manager Further comments

Internal Partner Internal Trading Partner

External Partner External Trading Partner

Partners Business ID. For

EDI consists of the EDI

Interchange Qualifier and ID

Partners business ID. For

EDI the Interchange Qualifier

and ID are configured

separately

Destination Get Post Office

Receiver Put Post Office

Connection – External

Partner Source to Internal

Partner Target

Inbound Trade Link There is not an exact one to

one relationship since there

may be more than one

Inbound Trade Link defined

based on EDI Group

configuration.

Connection – Internal Partner

Source to External Partner

Target

Outbound Trade Link There is not an exact one to

one relationship since there

may be more than one

Outbound Trade Link

defined based on EDI Group

configuration.

Configuring WebSphere Partner Gateway

This section describes items that are pertinent to the WebSphere Transformation

Extender Trading Manager interface.

Document flows will be defined as normal for any integration. Partners will need

to be defined in both WebSphere Partner Gateway and Trading Manager although

in WebSphere Partner Gateway configuration can be limited to only what is

required for document pass through operation.

Specific issues to Trading Manager interfacing related to the Internal Partner, the

External Partner, Document Definition, Interactions, Connection, and Receiver

follow.

Refer to the WebSphere Partner Gateway Hub Configuration Guide for additional

information on defining partners, destinations, and document flows.

Internal Partner issues

The Internal Partner is expected to be used for Trading Manager and corresponds

to the Trading Manager Internal Trading Partner.

228 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 106. Internal Partner configuration Issues for WebSphere Transformation Extender

Trading Manager

Item Special considerations

Business ID The Business ID that represents the Internal Partner in the EDI

Interchange will need to be configured. If the document is going to

Trading Manager then this will be the Interchange Receiver qualifier and

id. If the document is coming from Trading Manager then this will be the

Interchange Sender qualifier and id. Refer to Chapter 15, “Routing EDI

documents,” on page 235 for details.

Destination The transport type and configuration will correspond to the Trading

Manager Get Post Office that is being used, such as File, HTTP or JMS.

v If File is being used then both WebSphere Partner Gateway and Trading

Manager need to have access to the directory being shared between

them.

v If JMS is being used then both WebSphere Partner Gateway and

Trading Manager need to be configured to use the same JMS Queues.

B2B

Capabilities

B2B Capabilities of the Internal Partner will need to be enabled for the

Source and Target document types being used with Trading Manager. For

EDI documents this will be:

v Packaging – None.

v Protocol – EDI-EDIFACT or EDI-X12.

v Document Type – UNB (EDIFACT) or ISA (X12).

External Partner issues

The External Partner corresponds to the Trading Manager External Trading Partner.

 Table 107. External Partner configuration Issues for WebSphere Transformation Extender

Trading Manager

Item Special considerations

Business ID The Business ID that represents the External Partner in the EDI

Interchange will need to be configured. If the document is going to

Trading Manager then this will be the Interchange Sender qualifier and id.

If the document is coming from Trading Manager then this will be the

Interchange Receiver qualifier and id. Refer to Chapter 15, “Routing EDI

documents,” on page 235 for details.

Destination The External Partner's destination need not be configured in any specific

way for the Trading Manager.

B2B

Capabilities

B2B Capabilities of the External Partner will need to be enabled for the

Source and Target document types being used with the External Partner

and is not specific to Trading Manager. Example, for EDI documents using

AS2 packaging this will be:

v Packaging – AS

v Protocol – EDI-EDIFACT or EDI-X12.

v Document Type – UNB (EDIFACT) or ISA (X12).

Document Definition issues

When sending or receiving from Trading Manager, use None packaging for

Document Definition. If the document is EDI, then the Document Definition to use

will be:

v Packaging – None

v Protocol – EDI-EDIFACT or EDI-X12

Chapter 14. Integrating with WebSphere Transformation Extender Trading Manager 229

v Document Type – UNB (EDIFACT) or ISA (X12)

Interactions issues

When sending to Trading Manager, the Target Document Definition will be that

described in the Document Definition section. When receiving from Trading

Manager, the Source Document Definition will be that described in the Document

Definition section. The Action to use will be Pass Through.

Connection issues

There are no specific Trading Manager configuration settings for Connection.

Receiver issues

For Receiver, the transport type and configuration will correspond to the Trading

Manager Put Post Office that is being used, such as File, HTTP or JMS.

v If File is being used then both WebSphere Partner Gateway and Trading

Manager need to have access to the directory being shared between them.

v If JMS is being used then both WebSphere Partner Gateway and Trading

Manager need to be configured to use the same JMS Queues.

Configuring WebSphere Transformation Extender Trading Manager

Trading Manager will be configured as normal. Even though partners are defined

in WebSphere Partner Gateway they will also need to be defined in Trading

Manager. The partner names do not have to be identical between WebSphere

Partner Gateway and Trading Manager but keeping them similar will help with

administering the two products.

Specific items to WebSphere Partner Gateway interfacing are:

 Table 108. Configuration Considerations for WebSphere Transformation Extender Trading

Manager

Item Special considerations

Internal

Trading

Partner

The Internal Trading Partner corresponds to WebSphere Partner Gateway

Internal Partner.

The Business ID that represents the Internal Trading Partner in the EDI

Interchange will need to be configured. If the document is going to

WebSphere Partner Gateway then this will be the Interchange Source

qualifier and id. If the document is coming from WebSphere Partner

Gateway, then this will be the Interchange Receiver qualifier and id.

External

Trading

Partner

The External Trading Partner corresponds to WebSphere Partner Gateway

External Partner

The Business ID that represents the External Trading Partner in the EDI

Interchange will need to be configured. If the document is going to

WebSphere Partner Gateway then this will be the Interchange Receiver

qualifier and id. If the document is coming from WebSphere Partner

Gateway then this will be the Interchange Sender qualifier and id.

230 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 108. Configuration Considerations for WebSphere Transformation Extender Trading

Manager (continued)

Item Special considerations

Get Post Office The transport type and configuration will correspond to the WebSphere

Partner Gateway Internal Partner Destination that is being used for

interfacing to Trading Manager, such as File, HTTP or JMS.

v If File is being used then both WebSphere Partner Gateway and Trading

Manager, it needs to have access to the directory being shared between

them.

v If JMS is being used then both WebSphere Partner Gateway and

Trading Manager, it needs to be configured to use the same JMS

Queues.

Put Post Office The transport type and configuration will correspond to the WebSphere

Partner Gateway Receiver that is being used, such as File, HTTP or JMS.

v If File is being used then both WebSphere Partner Gateway and Trading

Manager, it needs to have access to the directory being shared between

them

v If JMS is being used then both WebSphere Partner Gateway and

Trading Manager, it needs to be configured to use the same JMS

Queues.

Inbound Trade

Link

No specific configuration

Outbound

Trade Link

No specific configuration

Refer to the WebSphere Transformation Extender Trading Manager documentation

for further configuration.

Chapter 14. Integrating with WebSphere Transformation Extender Trading Manager 231

232 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Part 6. Other business protocol-specific information

The following chapters provides business protocol specific information such as

routing EDI documents and provides guidelines on additional processing to be

followed for AS packaging, RosettaNet packaging, and ebMS packaging.

© Copyright IBM Corp. 2004, 2008 233

234 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 15. Routing EDI documents

This section describes the process by which WebSphere Partner Gateway

determines the routing information for electronic data interchange (EDI)

documents it sends and receives. It describes the general flow of this processing

(see Overview of EDI routing).

You can find additional information on how file-based integration can be used

when routing EDI documents in “File-system protocol” on page 41. For special

considerations for AS packaging, see Chapter 16, “Special considerations for AS

packaging,” on page 237.

Overview of EDI routing

An EDI document contains information, within the document, about the sender

and the recipient of the document. WebSphere Partner Gateway uses this

information when it routes the EDI document. The general flow is as follows:

1. WebSphere Partner Gateway determines the protocol used by examining the

first three characters of the document. Table 109 shows the document-type

protocol associated with each code.

 Table 109. EDI codes and associated document types and protocols

Code Document type

Document type

protocol

Outbound as Content

Type:

ISA X12 EDI-X12 application/EDI-X12

GS X12 EDI-X12 application/EDI-X12

UNB Edifact EDI-EDIFACT application/EDIFACT

UNA Edifact EDI-EDIFACT application/EDIFACT

ICS ICS EDI-X12 application/EDI-X12

STX UNTDI EDI-Consent application/edi-consent

BG UCS EDI-Consent application/edi-consent

2. WebSphere Partner Gateway extracts, from the EDI document, the sender

information, based on the element and position for that particular document

type, as described in Table 110.

 Table 110. EDI codes and the location of the sender and receiver information

Code From Qualifier From ID To Qualifier To ID

EDI

component

support notes

ISA Element 105 at

position 5

Element 107 at

position 6

Element 105 at

position 7

Element 106 at

position 8

Supported

GS N/A Element 142 at

position 2

N/A Element 124 at

position 3

″GS-only″

addressing not

supported

© Copyright IBM Corp. 2004, 2008 235

Table 110. EDI codes and the location of the sender and receiver information (continued)

Code From Qualifier From ID To Qualifier To ID

EDI

component

support notes

UNB

UNA

Sub-element

0007 at position

2 of composite

element S002 at

position 20

(2nd

composite) of

the UNB

segment

Sub-element

0004 at position

2 of composite

element S002 at

position 20

(2nd

composite) of

the UNB

segment

Sub-element

0007 at

position 2 of

composite

element S003

at position 30

(3rd

composite) of

the UNB

segment

Sub-element

0010 at position

1 of composite

element S003 at

position 30 (3rd

composite) of

the UNB

segment

Supported

ICS Element X05 at

position 4

Element X06 at

position 5

Element X05

at position 6

Element X08 at

position 7

Precursor to

ISA - Not

supported

STX Element

FROM1 at

position 3

Element

FROM2 at

position 3

Element UNT1

at position 4

Element UNT2

at position 4

Not supported

in this release

BG N/A Element BG03

at position 3

N/A Element BG04

at position 4

Supported

3. WebSphere Partner Gateway determines the sender ID from the sender ID and

qualifier of the EDI document.

Note that some EDI envelopes (for example, GS) do not have the notion of

qualifiers. In this case, WebSphere Partner Gateway uses only the ID.

4. WebSphere Partner Gateway concatenates the qualifier and ID with a dash (-)

character to look up the sender ID from the WebSphere Partner Gateway profile

repository. For example, if, in the EDI message for the sender, the qualifier is

AB and the identifier is 1234567, WebSphere Partner Gateway expects to find

an External Partner with an identifier of AB-1234567 in the profile repository. If

WebSphere Partner Gateway cannot find this ID, the EDI document is not

routed.

5. To look up the receiving partner, WebSphere Partner Gateway determines the

receiver qualifier and ID from the EDI message.

6. WebSphere Partner Gateway concatenates the qualifier and ID with a dash (-)

character to look up the receiver ID in the profile repository.

7. WebSphere Partner Gateway routes the document to the intended recipient.

236 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 16. Special considerations for AS packaging

This section describes additional processing required when AS packaging has been

specified.

When the packaging of the document is specified as AS, WebSphere Partner

Gateway performs some additional processing.

For information for Backend Packaging and AS see “Backend integration

packaging” on page 24.

How inbound documents are routed

When a document is received from an external partner,

1. WebSphere Partner Gateway first checks the AS1 or AS2 header information.

Specifically, it checks the sender and receiver information to determine whether

it matches IDs for valid external partners.

v For AS1, it uses the Subject header field, which is in the form ToID;FromID.

v For AS2, it uses the AS2-From and AS2-To header fields.
If the values in the header fields do not match valid IDs, WebSphere Partner

Gateway does not route the document.

2. WebSphere Partner Gateway then performs the steps as normal for the payload

(that is, determines the protocol and document type, extracts any business IDs,

etc.). For more specific information concerning EDI payload, see “Overview of

EDI routing” on page 235.

How outbound documents are routed

When a document is received from a back-end system, WebSphere Partner

Gateway determines whether an AS BusinessID attribute has been specified for

both the source packaging (None) and the receiver packaging (AS):

v If the AS BusinessId attribute has been specified, WebSphere Partner Gateway

uses this information to generate the From and To IDs in the AS1 or AS2 header.

v If the attribute has not been specified, WebSphere Partner Gateway uses the

sender and receiver ID from the document. For EDI, the sender and receiver ID

information is concatenated with the qualifier (as described in “Overview of EDI

routing” on page 235).

Setting both IDs in the partner profile

Because WebSphere Partner Gateway uses both the AS1 or AS2 header information

as well as the information derived from the EDI document, the IDs for the same

partner could be in different forms. For example, the AS header information for the

sender could be 123456789 while the information derived from the EDI document

could be AB-12345678.

Make sure that you have listed both IDs in the profile for the external partner.

Refer to the WebSphere Partner Gateway Hub Configuration Guide for information.

© Copyright IBM Corp. 2004, 2008 237

AS3 MDN Processing

In general when WebSphere Partner Gateway is sending an MDN back to the

partner, then the value of the IP address from ″Disposition-notification-to″ header

attribute from the original AS3 Request document will be used for sending the

MDN to the partner. The specific behavior is determined by the Return Destination

that is configured on the Connection that was used for the original AS3 Request

document from the partner.

On the Connection that was used for the original AS3 Request document from the

partner, there is a Return Destinations configuration. The value of this Return

Destinations configuration works as follows:

v An FTP Destination - The IP address value from the ″Disposition-notification-
to″ header attribute from the original AS3 Request will be used instead of the

value configured for that FTP Destination.

v An FTP Scripting Destination - The IP address value from the

″Disposition-notification-to″ header attribute from the original AS3 Request will

not be used. Instead the value configured in the FTP Scription Destination will

be used.

v Another Destination transport type - The MDN document will fail.

Other AS references

For information for Backend Integration and AS see “Backend integration

packaging” on page 24.

238 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 17. Special considerations for RosettaNet packaging

Other RosettaNet references

For information on Backend Integration and RosettaNet see the following:

v “RosettaNet” on page 15

v “Backend integration packaging” on page 24

For information on WebSphere Process Server and RosettaNet, see “Planning for

integration with WebSphere Process Server” on page 57.

© Copyright IBM Corp. 2004, 2008 239

240 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 18. Special considerations for ebMS packaging

Other ebMS references

For information on Backend Integration and ebMS see the following:

v “ebMS” on page 16

v “Backend integration packaging” on page 24

© Copyright IBM Corp. 2004, 2008 241

242 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM® Director of Licensing

IBM Corporation

North Castle Drive

Armonk, N.Y. 10504-1785

U.S.A.

 For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan.

 The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2004, 2008 243

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Burlingame Laboratory Director

IBM Burlingame Laboratory

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

244 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

Copyright (c) 1995-2008 International Business Machines Corporation and others

All rights reserved.

 If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program. General-use programming interfaces

allow you to write application software that obtain the services of this program’s

tools. However, this information may also contain diagnosis, modification, and

tuning information. Diagnosis, modification and tuning information is provided to

help you debug your application software.

 Attention: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

 IBM

the IBM logo

AIX

CICS

CrossWorlds

DB2

DB2

Universal

Database

Domino

IBMLink

i5/OS

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MVS

OS/400

Passport

Advantage

SupportPac

Tivoli

WebSphere

z/OS

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel

Corporation in the United States, other countries, or both.

Solaris, Java, and all Java-based trademarks are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product or service names may be trademarks or service marks of

others.

Notices 245

WebSphere Partner Gateway Enterprise and Advanced Editions includes software

developed by the Eclipse Project (www.eclipse.org)

246 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

http://www.eclipse.org/

Index

Numerics
0A1 messages 16

A
Adapter for HTTP

binding to collaboration 156

business-object structure 149

configuring 146

installing 147

payload data handler 147

protocol handler 147

Adapter for JMS
binding to collaboration 172

business-object structure 167

configuring 165

payload data handler 166

setting the input queue 167

Adapter for Web Services 157

AS packaging
special considerations for 237

AS1 documents and transport-level

headers 28

AS2 documents and transport-level

headers 28

attachment container business object
InterChange Server 139

WebSphere Process Server 65

Attachment data handler
business object definitions 135

configuring 130

introduction 123

location 130

repository file 130

representing attachments 138

attachments
content type 32

data handler for 123

description 32

encoding 32

InterChange Server 137

tag 32

tag attributes 32

WebSphere Process Server 65

authentication for Web services 104, 105

B
B2B capabilities

description 6

setting 46, 50

back-end documents 49

back-end integration overview 3

back-end system
receiving documents from 48

sending documents to 44

Backend Integration packaging
data binding 61

description 24

Envelope flag 31

Backend Integration packaging

(continued)
example 33

HTTP transport protocol 37

JMS transport protocol 38

transport protocols 34

when required 33, 37, 39

BCGBackendIntegration DataBindingUtil

class
example code 78

getAsByteArray method 74

getAsString method 74

getDataObject method 74

getxAuxHeader method 74

methods 73

overview 73

read method 75

setBOPrefix method 75

setDataObject method 75

setDebugLevel method 75

setFromByteArray method 76

setFromString method 76

setOptions method 76

setPackagingSchema method 77

setTLOTypeName method 77

setxAuxHeader method 77

write method 78

BCGBackendIntegration

JMSDataBindingImpl class
getMessageType method 79

isBusinessException method 79

methods 79

overview 78

read method 79

setBusinessException method 79

write method 79

binary documents
packaging restrictions 37, 39

transport protocols supported 35

business object definitions, InterChange

Server
Attachment data handler 135

creating 119

HTTP 149

JMS 167

Business Object ID field 22

business objects
InterChange Server

attachment 139

dynamic meta-object 154, 170

HTTP configuration

meta-object 154

JMS-properties 169

payload 120, 137, 140

top-level 150

user-defined-properties 154

WebSphere Process Server
attachment container 65

packaging headers 66

payload container 64

top-level 63

business protocols 9

C
collaborations

Adapter for HTTP 156

Adapter for JMS 172

description 123

Compute node 183, 185, 190

content-length attribute 25

content-type attribute 25, 32

cXML documents
and WebSphere Process Server 82, 85

data handler for 121

description 10

packaging required 37

transport protocols supported 35

D
data binding

Backend Integration packaging 61

HTTP transport 62

JMS transport 62

overview 61

data handlers
Attachment 123

child meta-object 130

top-level meta-object 133

Data Interchange Services client 5, 11

destinations
defining 45

description 4, 45

document flow definition
defining 46

description 5

document processing overview 3

documents
AS1 28

AS2 28

cXML 10, 82, 85

ebMS 16, 29

EDI 235

RosettaNet 15, 27

SOAP 9, 101, 156, 184

XMLEvent 19

Documents directory 41

duplicate message processing 43

dynamic meta-objects
HTTP 154

JMS 170

E
ebMS documents

overview 16

packaging for 35

service content 16

transport protocols supported 35

© Copyright IBM Corp. 2004, 2008 247

ebMS documents and transport-level

headers 29

ebMS packaging
special considerations for 241

ebMS service content
description 16

EDI documents
and WebSphere Data

Interchange 194

location of payload 31

packaging choices 37

routing 235

supported transport protocols 36

Encoding attribute 32

end-point URL, changing 105

Envelope flag 31

event notification 15, 19, 20

event notification messages
example 22

fields 22

EventMessageID field 22

Export binding
description 56

JMS 62, 89

SCA 81

Web Service 101

F
file-directory transport protocol

and WebSphere Process Server 107

description 41

directory structure 41

G
getAsByteArray method 71, 74

getAsString method 71, 74

getDataObject method 74

getMethodType method 79

getxAuxHeader method 74

Global Unique Identifier (GUID) 43

GlobalMessageID field 22

groups, EDI 10

H
HTTP protocol handler 147

HTTP protocol-configuration

meta-object 154

HTTP transport protocol
description 37

InterChange Server and 115, 143, 156

location of payload 31

servlet for WebSphere Process

Server 81, 86

WebSphere Message Broker 176, 180

WebSphere Process Server and 81

HTTPInput node 183, 184

HTTPReply node 183, 185

HTTPRequest node 183, 185

hub administrator 4

I
Import binding

description 57

JMS 62, 90

SCA 84

Web Services 102

intellectual property 243

interactions
creating 47, 50

description 6

for sending to backend system 47

InterChange Server
configuring 119, 143, 155, 171

creating artifacts for 155, 171

HTTP transport protocol 143, 156

integrating with 159

integration samples 116

introduction 113

JMS transport protocol 159

planning integration for 113

request processing 147

required components for receiving
over HTTP 143

over JMS 159

required components for sending
over HTTP 143

over JMS 159

supported transport protocols 114

supported versions 114

interchanges, EDI 10

internal partner 4

isBusinessException method 79

J
JMS transport protocol

creating header information 168

description 38

InterChange Server and 115, 159

InterChange Server business-object

structure 167

location of payload 31

queue manager 40

WebSphere Message Broker 176, 185

WebSphere Process Server and 89

JMS-properties business objects 169

L
license, patents 243

licensing
address 243

M
message flow

creating for HTTP transport 182

creating for JMS transport 190

description 180

methods
getAsByteArray 71, 74

getAsString 71, 74

getDataObject 74

getMessageType 79

getxAuxHeader 74

methods (continued)
isBusinessException 79

read 68, 75, 79

setBOPrefix 68, 75

setBusinessException 79

setDataObject 75

setDebugLevel 75

setFromByteArray 68, 76

setFromString 68, 76

setOptions 71, 76

setPackagingSchema 71, 77

setTLOTypeName 68, 77

setxAuxHeader 69, 77

write 71, 78, 79

MO_DataHandler_Default top-level

meta-object 133

MQInput node 183, 190

MQOutput node 183, 190

N
None packaging

description 23

HTTP transport protocol 37

when required 33, 37, 39

number of threads, destination 42

O
online/offline, destination 42

P
packaging

AS 237

Backend Integration 24

description 5, 23

ebMS 241

None 23

RosettaNet 239

packaging header business object 66

patents 243

payload
content type 32

description 31

encoding 32

event notification 20

event notification message 20

tag 32

tag attributes 32

payload business objects
InterChange Server 140, 149, 168

WebSphere Process Server 64

payload container business object 64

payload data handlers
Adapter for HTTP 147

Adapter for JMS 166

Q
queue manager 40

queues, message delivery 42

248 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

R
read method 68, 75, 79

receivers
defining 49

description 4

retry count, destination 42

retry interval, destination 42

ROD/flat documents
location of payload 31

transport protocols supported 35

RosettaNet documents
0A1 messages 16

as source for transport-level

headers 27

InterChange Server integration

samples 116

location of payload 31

overview 15

packaging for 35, 37

service content 15

transport protocols supported 35

WebSphere Process Server integration

samples 59

RosettaNet packaging
special considerations for 239

RosettaNet service content
creating business objects 67

description 15

S
schema, XML

event notification payload 20

transport envelopes 32

servlet for WebSphere Process Server,

HTTP 81, 86

setBOPrefix method 68, 75

setBusinessException method 79

setDataObject method 75

setDebugLevel method 75

setFromByteArray method 68, 76

setFromString method 68, 76

setOptions method 71, 76

setPackagingSchema method 71, 77

setTLOTypeName method 68, 77

setxAuxHeader method 69, 77

SOAP documents
InterChange Server over HTTP 156

introduction 9

packaging required 37

transport protocols supported 35

WebSphere Message Broker over

HTTP 184

WebSphere Process Server over

HTTP 101

StatusCode field 22

StatusMessage field 22

T
tags

attachment 32

payload 32

transport envelope 32

Timestamp field 22

top-level business objects
InterChange Server 150

WebSphere Process Server 63

top-level object
attributes 63

default 69

description 63

ToPartner designation on Web

service 103

transactions, EDI 10

transport envelopes
and attachments 32

tag 32

XML schema 32

transport protocols
Backend Integration packaging 34

list of 34

required for ebMS 16

required for RosettaNet 15

required for XMLEvent 19

transport-level headers
AS1 source 28

AS2 source 28

contents 24

ebMS source 29

InterChange Server 153, 168

RosettaNet source 27

WebSphere Process Server 66

U
user-defined-properties business

objects 154

W
Web Service Export binding 101

Web services
and WebSphere Process Server 101

authentication 104, 105

end-point URL, changing 105

provided by internal partner 9, 101

provided by partners 9, 102

To Partner specification 9, 103

Web Services Import binding 102

WebSphere Data Interchange 193

WebSphere Message Broker
configuring 180

HTTP transport protocol 180

integration samples 177

introduction 175

JMS transport protocol 185

planning integration for 175

required components for receiving
over HTTP 181

over JMS 185

required components for sending
over HTTP 181

over JMS 185

supported transport protocols 176

supported versions 176

WebSphere Partner Gateway
configuring 43

installation with WebSphere Process

Server 57

WebSphere Partner Gateway (continued)
integrating

with InterChange Server 113

with WebSphere Data

Interchange 193

with WebSphere Message

Broker 175

with WebSphere Process

Server 55

with WebSphere Transformation

Extender 217

with WebSphere Transformation

Extender Trading Manager 227

receiving documents from 48

sending documents from 44

WebSphere Partner Gateway - Express 4

WebSphere Process Server
attachment container business

object 65

Backend Integration packaging data

binding 61

data binding 61

file-directory transport protocol 107

HTTP transport protocol 81

integration samples 59

JMS transport protocol 89

overview 55

packaging headers business object 66

payload container business object 64

planning integration for 57

supported versions 57

top-level object 63

Web services 101

WebSphere Transformation Extender 217

WebSphere Transformation Extender

Trading Manager 227

write method 71, 78, 79

X
x-aux-create-datetime 25

x-aux-event-status-code 25

x-aux-in-file-name 25

x-aux-IntelligibleCheckRequired 26

ebMS source 31

x-aux-msg-id
AS1 source 29

AS2 source 28

description 25

ebMS source 30

RosettaNet source 27

x-aux-payload-root-tag
AS1 source 29

AS2 source 28

description 25

RosettaNet source 27

x-aux-process-instance-id
description 25

ebMS source 30

RosettaNet source 27

x-aux-process-type
AS1 source 29

AS2 source 28

description 25

ebMS source 30

RosettaNet source 27

Index 249

x-aux-process-version
AS1 source 29

AS2 source 28

description 25

ebMS source 30

RosettaNet source 27

x-aux-production
description 25

RosettaNet source 27

x-aux-protocol
AS1 source 29

AS2 source 28

description 24

ebMS source 30

RosettaNet source 27

x-aux-protocol-version
AS1 source 29

AS2 source 28

description 24

ebMS source 30

RosettaNet source 27

x-aux-receiver-id
AS1 source 29

AS2 source 28

description 24

ebMS source 30

RosettaNet source 27

x-aux-sender-id
AS1 source 29

AS2 source 28

description 24

ebMS source 30

RosettaNet source 27

x-aux-SyncResponse 26

ebMS source 30

x-aux-system-msg-id
AS1 source 29

AS2 source 28

description 25

ebMS source 30

x-aux-third-party-bus-id 25

ebMS source 30

x-aux-TimeToAccept 26

ebMS source 30

x-aux-transport-retry-count 25

x-out-filename 25

XML documents
location of payload 31

packaging choices 37

transport protocols supported 35

XML schema
event notification payload 20

transport envelope 32

XMLEvent documents
overview 19

service content 19

XMLEvent service content
description 19

250 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

����

Printed in USA

	Contents
	About this book
	Audience
	Typographic conventions
	Related documents
	New in this release
	New in release 6.1.1
	New in release 6.1

	Part 1. Introduction to back-end integration
	Chapter 1. Overview
	Overview of document processing
	The roles in the hub community
	The hub configuration process

	Overview of back-end integration

	Chapter 2. Planning for back-end integration
	Which business protocol are you using?
	Web services (SOAP)
	cXML
	EDI
	Back-end application to partner flows
	Partner to backend-application flows
	Functional acknowledgments

	RosettaNet
	Event notification

	ebMS
	Event notification

	XMLEvent
	Enabling or disabling XMLEvents
	Event notification
	Event message structure
	Event notification example
	Event codes used by WebSphere Partner Gateway

	Which packaging will you use?
	None packaging
	Backend integration packaging
	Transport-level header content
	Payload
	Attachments

	Which packaging type works with your documents?
	Example of Backend Integration packaging over HTTP

	Which message transport will you use?
	HTTP transport protocol
	Process
	Sending messages from the back-end system using the HTTP protocol
	Receiving messages at the back-end system using the HTTP protocol

	JMS protocol
	Setting up the JMS environment
	Overview of setting up the JMS environment
	Sending messages from the back-end system using the JMS protocol
	Receiving messages at the back-end system using the JMS protocol

	File-system protocol
	Sending messages from the back-end system using the file-system protocol
	Receiving messages at the back-end system using the file-system protocol

	How do you access your back-end application?
	Message handling
	Queued delivery
	Communication error handling
	Duplicate messages

	Configuring WebSphere Partner Gateway
	Sending documents to the back-end system
	Defining where to send the partner document
	Defining how to process the partner document
	Defining how to connect to the back-end system

	Receiving documents from the back-end system
	Defining where to retrieve the back-end document
	Defining how to process the back-end document
	Defining how to connect to WebSphere Partner Gateway

	Part 2. Integrating with WebSphere Process Server
	Chapter 3. Introduction to WebSphere Process Server integration
	Overview
	How WebSphere Process Server and WebSphere Partner Gateway communicate

	Planning for integration with WebSphere Process Server
	WebSphere Process Server versions that WebSphere Partner Gateway supports
	Supported installation scenarios
	Message transports that WebSphere Process Server supports
	Support for WebSphere Process Server integration
	Samples
	Documentation
	Utility classes

	Overview of tasks for integrating WebSphere Partner Gateway with WebSphere Process Server
	On the WebSphere Partner Gateway system
	On the WebSphere Process Server system

	Handling Backend Integration Packaging messages
	JMS transport
	HTTP transport
	Top-level and child business objects
	Top-level business object
	Payload Container business object
	Attachment Container business object
	Packaging header business object
	Creating business objects for RosettaNet service content

	How the Backend Integration packaging data binding works
	Backend Integration packaging message to top-level object conversion
	Top-level object to Backend Integration packaging message conversion

	BCGBackEndIntegrationDataBindingUtil class
	DataBinding interface
	Methods
	getAsByteArray method
	getAsString method
	getDataObject method
	getxAuxHeader method
	read method
	setBOPrefix method
	setDataObject method
	setDebugLevel method
	setFromByteArray method
	setFromString method
	setOptions method
	setPackagingSchema method
	setTLOTypeName method
	setxAuxHeader method
	write method

	Example code

	BCGBackEndIntegrationJMSDataBindingImpl class
	JMSDataBinding interface
	Methods
	getMessageType
	isBusinessException
	read
	setBusinessException
	write

	Including data-binding classes in your component implementation

	Chapter 4. Integrating WebSphere Process Server with HTTP as transport
	How messages are sent to WebSphere Process Server
	How messages are sent from WebSphere Process Server
	Sending documents to WebSphere Process Server
	Setting up WebSphere Partner Gateway
	Setting up WebSphere Process Server
	Creating a business object
	Creating a servlet

	Sending documents from WebSphere Process Server
	Setting up WebSphere Partner Gateway
	Setting up WebSphere Process Server
	Creating a business object
	Creating the component to convert and send the message

	Chapter 5. Integrating WebSphere Process Server with JMS as transport
	Sending documents using the JMS transport protocol
	Receiving documents using the JMS transport protocol
	Setting up the WebSphere Process Server environment on WebSphere Application Server
	Creating an SCA service with WSDL
	Customizing JMS Import and Export bindings
	Implementing JMS data binding
	Customizing a Function Selector

	Configuring JMS when WebSphere Partner Gateway is installed on WebSphere Application Server
	Creating and configuring buses, JMS queues, and Connection Factories
	Creating a service integration bus
	Creating a JMS Queue Connection Factory
	Creating a JMS queue

	Creating the JMS receiver
	Creating the JMS destination
	Creating a destination queue

	Chapter 6. Integrating WebSphere Process Server with SOAP/HTTP
	How SOAP messages are exchanged over the HTTP protocol
	How Web services hosted by WebSphere Process Server are invoked
	How Web services hosted by partners are invoked

	Invoking Web services hosted by WebSphere Process Server
	Configuring WebSphere Partner Gateway
	Configuring WebSphere Process Server

	Invoking Web services hosted by external partners
	Configuring WebSphere Partner Gateway
	Configuring WebSphere Process Server

	Chapter 7. Integrating WebSphere Process Server with File-system as transport
	Sending documents using the File-system protocol
	Receiving documents using the File-system protocol
	Setting up the WebSphere Process Server environment
	Deploying and configuring the WebSphere Adapter for Flat Files
	Creating SCA components

	Setting up the WebSphere Partner Gateway environment

	Part 3. Integrating with WebSphere InterChange Server
	Chapter 8. Introduction to InterChange Server integration
	Planning for integration with InterChange Server
	InterChange Server versions that WebSphere Partner Gateway supports
	Message transports that InterChange Server supports
	HTTP
	JMS
	Benefits of using each transport

	Support for InterChange Server integration

	Configuring WebSphere Partner Gateway for InterChange Server
	Providing support for outgoing documents
	Configuration for sending documents to ICS over the HTTP transport protocol
	Configuration for sending documents to ICS over the JMS transport protocol

	Providing support for incoming documents
	Configuration for receiving documents from ICS over the HTTP transport protocol
	Configuration for receiving documents from ICS over the JMS transport protocol

	Configuring InterChange Server
	Creating business object definitions
	Business object for the document
	Business objects for configuration information

	Creating the connectors
	Creating the collaborations
	Deploying the project

	Handling documents with attachments
	How the Attachment data handler performs the conversion
	How documents are converted to business objects
	How business objects are converted to documents

	Setting up the environment for the Attachment data handler
	Specifying which schema to use
	Deploying the Attachment data handler
	Specifying the location of the Attachment data handler

	Configuring the Attachment data handler
	Creating the Attachment child meta-object
	Updating the top-level data-handler meta-object

	Creating attachment-related business object definitions
	Representing the content information
	Representing attachment data
	Representing the attachments
	Representing the attachment container
	Modifying the payload business object definition

	Chapter 9. Integrating InterChange Server over HTTP
	Using HTTP transport protocol with ICS
	Components required for documents to ICS over HTTP transport
	How documents are sent to ICS through HTTP
	How documents are received from ICS through HTTP

	Setting up the environment for HTTP transport with ICS
	Specifying the payload data handler
	Configuring the protocol-handler package name
	Configuring the HTTP protocol listener

	Creating business object definitions for ICS over HTTP
	Creating the payload business-object structure for ICS over HTTP
	Creating HTTP transport-level header information for ICS

	Creating ICS artifacts for HTTP
	Creating the HTTP connector object
	Binding collaborations to communicate with Adapter for HTTP

	Sending SOAP documents over HTTP/S
	Components required for sending and receiving
	How external partners invoke Web services
	How the internal partner invokes Web services

	Chapter 10. Integrating with InterChange Server over JMS
	Components required for documents over JMS transport
	How documents are sent over the JMS transport
	How documents are received over the JMS transport

	Setting up the environment for JMS transport
	Configuring the JMS queues
	Configuring the Adapter for JMS
	Specifying the payload data handler
	Identifying the JMS queues

	Creating business object definitions for JMS
	Creating the payload business-object structure for JMS
	Creating JMS header information
	Creating the JMS-properties business object
	Creating the JMS dynamic meta-object
	Modifying the request business object definition

	Creating ICS artifacts for JMS
	Creating the JMS connector object
	Binding collaborations to communicate with Adapter for JMS

	Part 4. Integrating with other back-end systems
	Chapter 11. Integrating with WebSphere Message Broker
	Planning for integration with WebSphere Message Broker
	WebSphere Message Broker versions that WebSphere Partner Gateway supports
	Message transports that WebSphere Message Broker supports
	HTTP
	JMS

	Support for WebSphere Message Broker integration

	Configuring WebSphere Partner Gateway for WebSphere Message Broker
	Providing support for outgoing documents
	Configuration for sending documents over the HTTP transport protocol
	Configuration for receiving documents over the JMS transport protocol

	Providing support for incoming documents
	Configuring for incoming documents over HTTP transport protocol
	Configuring for incoming documents over JMS transport protocol

	Configuring WebSphere Message Broker
	Creating the message flow
	Deploying the project

	Using HTTP transport protocol with WebSphere Message Broker
	Components required for documents over HTTP transport
	Sending documents over HTTP transport
	Receiving documents over HTTP transport

	Creating the message flow for HTTP transport

	Sending SOAP documents
	Using JMS transport protocol with WebSphere Message Broker
	Components required for documents over JMS transport
	How documents are sent over the JMS transport
	How documents are received over the JMS transport

	Setting up the environment for JMS transport
	Creating the message flow for JMS transport

	Chapter 12. Integrating with WebSphere Data Interchange
	Who should read this chapter
	Resources you can use with this chapter
	Introduction
	How documents are sent to WebSphere Data Interchange
	How documents are received from WebSphere Data Interchange
	Example scenario used in this chapter

	Planning for integration with WebSphere Data Interchange
	WebSphere Data Interchange versions that WebSphere Partner Gateway supports

	Configuring your environment for message exchange
	Configuring WebSphere MQ communication
	Configuring WebSphere Data Interchange
	MQSeries(R) Queue profile
	Network profile
	Mailbox profile
	Service profile
	Import and compile data transformation maps

	Setting up the JMS environment
	Configuring JMSAdmin
	Creating the JMS objects

	Configuring WebSphere Partner Gateway Enterprise Edition
	Creating partners
	Setting the B2B capabilities
	Creating destinations
	Defining interactions
	Creating partner connections
	Creating receivers

	Configuring WebSphere Partner Gateway - Express
	Configuring My Profile
	Creating a partner for Partner One
	Configuring the Partner One partner

	Summary

	Part 5. Integrating with other products
	Chapter 13. Integrating with WebSphere Transformation Extender
	Introduction
	What is WebSphere Transformation Extender?
	How does WebSphere Transformation Extender work with WebSphere Partner Gateway?

	Planning for integration with WebSphere Transformation Extender
	Integration using WebSphere Message Broker
	Requirements for using WebSphere Message Broker
	Planning for using WebSphere Message Broker

	Integration using a WebSphere Partner Gateway User Exit
	Requirements for using a WebSphere Partner Gateway User Exit from an Action
	Planning for using a WebSphere Partner Gateway User Exit

	Integrating WebSphere Message Broker with WebSphere Transformation Extender
	Integrating WebSphere Transformation Extender User Exit
	Creating the WebSphere Partner Gateway User Exit for WebSphere Transformation Extender
	Configuring WebSphere Partner Gateway for the User Exit
	WebSphere Partner Gateway Runtime configuration for the User Exit
	WebSphere Partner Gateway-provided Example User Exit
	WebSphere Transformation Extender User Exit example overview
	Example User Exit Class description
	Example User Exit Basic runtime operation

	WebSphere Transformation Extender - RMI Server configuration
	server.mode.multi.process
	pool.mode.managed
	pool.max.process.count
	pool.max.keep.idle.count
	pool.acquire.process.timeout
	pool.map.auto.unload.timeout

	Chapter 14. Integrating with WebSphere Transformation Extender Trading Manager
	Introduction
	What is WebSphere Transformation Extender Trading Manager?
	How does WebSphere Transformation Extender Trading Manager work with WebSphere Partner Gateway
	Applicable documentation

	Planning for integration with WebSphere Transformation Extender Trading Manager
	Common Configuration between WebSphere Partner Gateway and WebSphere Transformation Extender Trading Manager
	Configuring WebSphere Partner Gateway
	Internal Partner issues
	External Partner issues
	Document Definition issues
	Interactions issues
	Connection issues
	Receiver issues

	Configuring WebSphere Transformation Extender Trading Manager

	Part 6. Other business protocol-specific information
	Chapter 15. Routing EDI documents
	Overview of EDI routing

	Chapter 16. Special considerations for AS packaging
	How inbound documents are routed
	How outbound documents are routed
	Setting both IDs in the partner profile
	AS3 MDN Processing
	Other AS references

	Chapter 17. Special considerations for RosettaNet packaging
	Other RosettaNet references

	Chapter 18. Special considerations for ebMS packaging
	Other ebMS references

	Notices
	Programming interface information
	Trademarks and service marks

	Index

