IBM WebSphere Partner Gateway Enterprise and
Advanced Editions

Enterprise Integration Guide

Version 6.1.1

<|ll

IBM WebSphere Partner Gateway Enterprise and
Advanced Editions

Enterprise Integration Guide

Version 6.1.1

<|ll

Note!
FBefore using this information and the product it supports, read the information in|[“Notices” on page 243

Third Edition (March 2008)

This edition applies to IBM WebSphere Partner Gateway Enterprise Edition (5724-L69), Version 6.1.1, and Advanced
Edition (5724-L68), Version 6.1.1, and to all subsequent releases and modifications until otherwise indicated in new
editions.

To send us your comments about this documentation, e-mail doc-comments@us.ibm.com. We look forward to
hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004, 2008. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book . ix
Audience . ix
Typographic conventrons . ix
Related documents . X
New in this release . . X
New in release 6.1.1 . . X
New in release 6.1 . xi
Part 1. Introduction to back-end integration .1
Chapter 1. Overview . 3
Overview of document processing . .3
The roles in the hub community . .4
The hub configuration process .4
Overview of back-end integration .6
Chapter 2. Planning for back-end integration . .9
Which business protocol are you using? . .9
Web services (SOAP) . .9
cXML .o . 10
EDI . . 10
RosettaNet. .15
ebMS . 16
XMLEvent. .19
Which packaging will you use7 .23
None packaging . . .24
Backend integration packaging . .24
Which packaging type works with your documents7 .33
Example of Backend Integration packaging over HTTP . . 33
Which message transport will you use? . . . 34
HTTP transport protocol . . 37
JMS protocol . . 38
File-system protocol . .41
How do you access your back-end apphcatlon" .41
Message handling . .42
Queued delivery. .42
Communication error handhng .42
Duplicate messages. . . 43
Configuring WebSphere Partner Gateway . 43
Sending documents to the back-end system .44
Receiving documents from the back-end system . . 48
Part 2. Integrating with WebSphere Process Server . 53
Chapter 3. Introduction to WebSphere Process Server integration . . 55
Overview . . o . 55
How WebSphere Process Server and WebSphere Partner Gateway communlcate . 56
Planning for integration with WebSphere Process Server . 57
WebSphere Process Server versions that WebSphere Partner Gateway supports . 57
Supported installation scenarios e . 57
Message transports that WebSphere Process Server supports . . 58
Support for WebSphere Process Server integration . 59
Overview of tasks for integrating WebSphere Partner Gateway w1th WebSphere Process Server . 60
On the WebSphere Partner Gateway system . 60
© Copyright IBM Corp. 2004, 2008 iii

On the WebSphere Process Server system . 60
Handling Backend Integration Packaging messages . . 61
JMS transport. . 62
HTTP transport 62
Top-level and child business ob]ects . . 63
How the Backend Integration packaging data bmdrng works . 67
BCGBackEndIntegrationDataBindingUtil class . .73
DataBinding interface . e .73
Methods .73
Example code . .78
BCGBackEndIntegratlon]MSDataBlndlngImp1 Class . .78
JMSDataBinding interface . .o .78
Methods . o . .79
Including data-binding classes in your component 1rnplementatron .79
Chapter 4. Integrating WebSphere Process Server with HTTP as transport . 81
How messages are sent to WebSphere Process Server . 81
How messages are sent from WebSphere Process Server . 83
Sending documents to WebSphere Process Server. . 85
Setting up WebSphere Partner Gateway . . 85
Setting up WebSphere Process Server . . . 85
Sending documents from WebSphere Process Server . 86
Setting up WebSphere Partner Gateway . . 86
Setting up WebSphere Process Server . . 87
Chapter 5. Integrating WebSphere Process Server with JMS as transport . . 89
Sending documents using the JMS transport protocol e . . 89
Receiving documents using the JMS transport protocol . .o .90
Setting up the WebSphere Process Server environment on WebSphere Apphcatron Server .92
Creating an SCA service with WSDL . .92
Customizing JMS Import and Export bindings. .92
Implementing JMS data binding . . 93
Customizing a Function Selector . . .93
Configuring JMS when WebSphere Partner Gateway is 1nsta11ed on WebSphere Apphcatlon Server . .95
Creating and configuring buses, J]MS queues, and Connection Factories o . 96
Creating the JMS receiver. .97
Creating the JMS destination . 98
Creating a destination queue .99
Chapter 6. Integrating WebSphere Process Server with SOAP/HTTP. . 101
How SOAP messages are exchanged over the HTTP protocol . 101
How Web services hosted by WebSphere Process Server are invoked . . 101
How Web services hosted by partners are invoked . . 102
Invoking Web services hosted by WebSphere Process Server. . 103
Configuring WebSphere Partner Gateway . . 104
Configuring WebSphere Process Server . . 104
Invoking Web services hosted by external partners . 104
Configuring WebSphere Partner Gateway . . 104
Configuring WebSphere Process Server . . 105
Chapter 7. Integrating WebSphere Process Server with File-system as transport . 107
Sending documents using the File-system protocol . . . 107
Receiving documents using the File-system protocol . 107
Setting up the WebSphere Process Server environment . . 107
Deploying and configuring the WebSphere Adapter for Flat Flles . . 108
Creating SCA components . . S . 109
Setting up the WebSphere Partner Gateway env1ronment . 109
Part 3. Integrating with WebSphere InterChange Server . .11

iv IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 8. Introduction to InterChange Server integration 113

Planning for integration with InterChange Server . . . e O K¢
InterChange Server versions that WebSphere Partner Gateway supports. e
Message transports that InterChange Server supports .14
Support for InterChange Server integration . . e ¢}

Configuring WebSphere Partner Gateway for InterChange Server e 1
Providing support for outgoing documents .16
Providing support for incoming documents .18

Configuring InterChange Server .19
Creating business object definitions .19
Creating the connectors L L L oo 22
Creating the collaborations .123
Deploying the project. . . . e VoA

Handling documents with attachments .o A 1o
How the Attachment data handler performs the conversion.124
Setting up the environment for the Attachment data handler129
Configuring the Attachment data handler e, 1 [0]
Creating attachment-related business object deﬁmtrons T £ 3o}

Chapter 9. Integrating InterChange Server over HTTP 143

Using HTTP transport protocol with ICS e
Components required for documents to ICS over HTTP transport e)
Setting up the environment for HTTP transport with ICS.146
Creating business object definitions for ICS over HTTP149
Creating ICS artifacts for HTTP .15

Sending SOAP documents over HTTP/S .156
Components required for sending and receiving. .157
How external partners invoke Web services .157
How the internal partner invokes Web services .157

Chapter 10. Integrating with InterChange ServeroverJMS. 159

Components required for documents over JMS transport.15
How documents are sent over the JMS transport .10
How documents are received over the JMS transport .162

Setting up the environment for JMS transport .le4
Configuring the J]MS queues .16

Configuring the Adapter for JMS. .165

Creating business object definitions for JMS N (s V4
Creating the payload business-object structure for]MS e (e
Creating JMS header information. .1e8

Creating ICS artifacts for JMS1In
Creating the JMS connector object . . . e V4]
Binding collaborations to communicate with Adapter for]MS B Vi

Part 4. Integrating with other back-end systems 173

Chapter 11. Integrating with WebSphere Message Broker 175

Planning for integration with WebSphere Message Broker . . e V4]
WebSphere Message Broker versions that WebSphere Partner Gateway supports e V(0
Message transports that WebSphere Message Broker supports I V()
Support for WebSphere Message Broker integration . . e V44

Configuring WebSphere Partner Gateway for WebSphere Message Broker B v
Providing support for outgoing documents .177
Providing support for incoming documents .178

Configuring WebSphere Message Broker .18
Creating the message flow .18
Deploying the project. . . e 0]

Using HTTP transport protocol w1th WebSphere Message Broker e £ (0]
Components required for documents over HTTP transport181

Contents V

Creating the message flow for HTTP transport .18

Sending SOAP documents . . . e £
Using JMS transport protocol with WebSphere Message Broker T £)
Components required for documents over JMS transport.18
Setting up the environment for JMS transport .18
Creating the message flow for JMS transport. .19

Chapter 12. Integrating with WebSphere Data Interchange e RoK

Who should read this chapter . . . e L
Resources you can use with this Chapter e L)
Introduction. . . e L
How documents are sent to WebSphere Data Interchange e P
How documents are received from WebSphere Data Interchange19
Example scenario used in this chapter 2]
Planning for integration with WebSphere Data Interchange .o B 4
WebSphere Data Interchange versions that WebSphere Partner Gateway supports e
Configuring your environment for message exchange .197
Configuring WebSphere MQ communication. .197
Configuring WebSphere Data Interchange .198
Setting up the JMS environment . . . S ... o.208
Configuring WebSphere Partner Gateway Enterprlse Ed1t10n A0
Configuring WebSphere Partner Gateway Express A i
Configuring My Profile A i |
Creating a partner for Partner One ... 212
Configuring the Partner One partner .212
Summary.o L218

Part 5. Integrating with other products.215

Chapter 13. Integrating with WebSphere Transformation Extender. 217

Introduction. . . v
What is WebSphere Transformatlon Extender'? S L7
How does WebSphere Transformation Extender work w1th WebSphere Partner Gateway" A V4

Planning for integration with WebSphere Transformation Extender218
Integration using WebSphere Message Broker . . A
Integration using a WebSphere Partner Gateway User Ex1t S A

Integrating WebSphere Message Broker with WebSphere Transformatron Extender e

Integrating WebSphere Transformation Extender User Exit . . . L. .00 220
Creating the WebSphere Partner Gateway User Exit for WebSphere Transformatlon Extender L. ... 0220
Configuring WebSphere Partner Gateway for the User Exit220
WebSphere Partner Gateway Runtime configuration for the User Exit221
WebSphere Partner Gateway-provided Example User Exit221
WebSphere Transformation Extender - RMI Server configuration223

Chapter 14. Integrating with WebSphere Transformation Extender Tradlng Manager 227

Introduction. . . o .. 227
What is WebSphere Transformatlon Extender Trad1ng Manager7 .o .. 227
How does WebSphere Transformation Extender Trading Manager work w1th WebSphere Partner Gateway .. 227
Applicable documentation . . . e 227

Planning for integration with WebSphere Transformatlon Extender Tradlng Manager . . 227

Common Configuration between WebSphere Partner Gateway and WebSphere Transformation Extender Tradlng

Manager . . . C e e 228

Configuring WebSphere Partner Gateway C o228
Internal Partner issues e 228
External Partner issues L L L L L L o229
Document Definition issues ... 229
Interactions issues. L . . L. L, 0230
Connection issueso oo 230
Receiver issues . . . i 4]

Configuring WebSphere Transformatlon Extender Tradmg Manager e 230

vi IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Part 6. Other business protocol-specific information .

Chapter 15. Routing EDI documents

Overview of EDI routing

Chapter 16. Special considerations for AS packaglng
How inbound documents are routed .

How outbound documents are routed .

Setting both IDs in the partner profile .

AS3 MDN Processing. .

Other AS references .

Chapter 17. Special considerations for RosettaNet packagmg
Other RosettaNet references e .o

Chapter 18. Special considerations for ebMS packaglng
Other ebMS references e

Notices . . . e
Programming interface mformatlon .

Trademarks and service marks

Index .

. 233

. 235

. 235

. 237

. 237
. 237
. 237
. 238
. 238

. 239

. 239

. 241

. 241

. 243

. 245
. 245

. 247

Contents

vii

viii IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

About this book

This guide describes the Backend Integration interface, which is the mechanism
that back-end systems and IBM® WebSphere® Partner Gateway use to
communicate. The guide then describes how to integrate WebSphere Process
Server, WebSphere InterChange Server, WebSphere Message Broker, and
WebSphere Data Interchange with WebSphere Partner Gateway using the Backend
Integration interface.

The information in this guide pertains to WebSphere Partner Gateway Enterprise
and Advanced Editions only.

Audience

This book is intended for the person responsible for integrating WebSphere Partner
Gateway with back-end systems.

Typographic conventions

This document uses the following conventions.

Table 1. Typographic conventions

Convention Description

Monospace font Text in this font indicates text that you type, values for
arguments or command options, examples and code
examples, or information that the system prints on the
screen (message text or prompts).

bold Boldface text indicates graphical user interface controls (for
example, online button names, menu names, or menu
options) and column headings in tables and text.

italics Text in italics indicates emphasis, book titles, new terms
and terms that are defined in the text, variable names, or
letters of the alphabet used as letters.

Italic monospace font Text in italic monospace font indicates variable names
within monospace-font text.

ProductDir ProductDir represents the directory where the product is
installed. All IBM WebSphere Partner Gateway product
path names are relative to the directory where the IBM
WebSphere Partner Gateway product is installed on your
system.

Stext% and $text Text within percent signs (%) indicates the value of the
Windows®™ text system variable or user variable. The
equivalent notation in a UNIX® environment is $text,
indicating the value of the text UNIX environment variable.

Underlined colored text Underlined colored text indicates a cross-reference. Click the
text to go to the object of the reference.

Text in a blue outline (In PDF files only) A blue outline around text indicates a
cross-reference. Click the outlined text to go to the object of
the reference. This convention is the equivalent for PDF files
of the “Underlined colored text” convention included in this
table.

© Copyright IBM Corp. 2004, 2008 ix

Table 1. Typographic conventions (continued)

Convention

Description

“ “(quotation marks)

(In PDF files only) Quotation marks surround
cross-references to other sections of the document.

{}

In a syntax line, curly braces surround a set of options from
which you must choose one and only one.

[] In a syntax line, square brackets surround optional
parameters.

<> Angle brackets surround variable elements of a name to
distinguish them from one another. For example,
<server_name><connector_name>tmp.log.

/,\ Backslashes (\) are used as separators in directory paths in

Windows installations. For UNIX installations, substitute
slashes (/) for backslashes.

Related documents

The complete set of documentation available with this product includes
comprehensive information about installing, configuring, administering, and using
WebSphere Partner Gateway Enterprise and Advanced Editions.

You can download this documentation or read it directly online at the following
site: |http:/ /www.ibm.com/software/integration /wspartnergateway /library /|

Note: Important information about this product may be available in Technical
Support Technotes and Flashes issued after this document was published. These
can be found on the WebSphere Business Integration Support Web site,

lhttp:/ /www.ibm.com /software/integration/ wspartnergateway /support| Select the

component area of interest and browse the Technotes and Flashes section.

New in this rele

ase

This section describes the new features of IBM WebSphere Partner Gateway:.

New in release 6.1.1

WebSphere Partner Gateway 6.1.1 supports the following new features:

In the earlier releases, basic authentication support was available only for
webservices messages. This feature is now extended to all protocols. The
recommendation for basic authentication is the usage of secure HTTP
connection, that is, HTTPS instead of HTTP.

Apart from signing and encryption, support for compression and decompression
is provided for RNIF messages.

Support is provided for validating the SOAP Body and SOAP Envelope. In
addition, you can de-envelope a SOAP Envelope.

The synchronous maximum time out and synchronous maximum connections
can be locally controlled for every HTTP receiver.

The FTP Server is integrated with WebSphere Partner Gateway to support AS3
protocol, FTP Scripting Destination, FIP Scripting Receiver, FTP / FTPS receiver

and destination.

X IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

http://www.ibm.com/software/integration/wspartnergateway/library/
http://www.ibm.com/software/integration/wspartnergateway/support

* Error document can be sent to initiating partner, receiving partner, or both. The
error document flow can be configured in WebSphere Partner Gateway console
and can be sent in either WebSphere Partner Gateway format or Web services
format.

¢ Performance of the archiver has been improved.
* Support is provided for multiple internal partners.
* You can resend multiple Inbound or Outbound documents simultaneously.

* Support for FIPS mode is provided. The product can be configured to run on
FIPS mode or default mode.

* Delete and Whereused functionality is provided for Destination, Validation
Maps, Document Definitions, Interactions, and Users.

* Large file compression support is provided for AS2 and AS3 documents.
¢ Support is provided for encryption and signing.

* The configuration type dependencies for migration also includes Event codes
and Alert Notifications. Also, the partner migration functionality has been
enhanced to provide support for import / export definitions of alertable events.

* Support is provided to upload multiple certificates. New wizard is included in
the console to upload and configure certificates.

¢ The product now supports AIX 6.1, RHEL 5 (32 and 64 bit), SLES 10 (64 bit) and
Windows Server 2003 64 bit.

New in release 6.1
WebSphere Partner Gateway V6.1 supports the following new features:

* New business protocols: AS3, SOAP with attachments, CIDX, and ebXML
Message Service (ebMS) 2.0 support

* Improved support for Custom XML documents includes better organization, full
XPath expression support, search fields, user defined attributes, and
synchronous support

* New IPv6 support and enhanced FTP Scripting for supporting AS3

* Reorganization of Document Definition attributes

¢ New Document Definition attributes for use with User Exits.

* Non-repudiation configurable by document type and trading partner level
* Document viewer has additional user-defined search fields.

e Improved AS Viewer support based on MDN return status

* EDI Configuration Wizard and EIF Import Wizard (previously delivered in the
GAO02 Support pack)

* New Alert notification mode to send notifications to all related parties (source
and target partners or all subscribed contacts, which reduces alert configuration

* Resend and Gateway permissions now available to users other than the
hubadmin administrator

* New user group for allowing multiple users to have the ability to be hub
administrators

¢ LDAP support for log-on authentication

* Use of WebSphere Application Server logging and tracing for WebSphere Partner
Gateway components

* Property file configuration data now centrally located and managed by the
WebSphere Partner Gateway Console

* WebSphere MQ is no longer a prerequisite product; the WebSphere Platform
Messaging support is now used for internal communications

About this book X1

* Selective archive based on partner and/or document type

* Migration of WebSphere Partner Gateway configuration by exporting and
importing definitions from one WebSphere Partner Gateway instance to another
instance

* A simplified single machine (simple mode) installation option

* WebSphere Application Server Network Deployment now used for multiple
machine deployments enabling clustering and central infrastructure management

* Support for using WebSphere Process Server, Version 6.1 as a backend
integration system

Notes:
1. The XML-based administrative API is deprecated in version 6.1.
2. WebSphere Partner Gateway, Version 6.1 does not support the RC5 algorithm.

xii IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Part 1. Introduction to back-end integration

The following chapters provides an overview on integration of WebSphere Partner
Gateway with a back-end system. Also, it provides guidelines to plan back-end
integration.

© Copyright IBM Corp. 2004, 2008

2 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 1. Overview

This chapter provides the following general information about back-end
integration:

+ [“Overview of document processing”|

« [“Overview of back-end integration” on page 6|

Overview of document processing

With WebSphere Partner Gateway, you exchange business documents with your
external partners. The purpose of exchanging these documents is to communicate
information, which typically involves processing data and returning a result. When
you receive data from an external partner, processing of that data generally occurs
in the back-end system of your enterprise. WebSphere Partner Gateway is the point
within the hub community through which messages to and from the enterprise are
routed.

The enterprise is accessed through a back-end system to which WebSphere Partner
Gateway connects.

shows how documents flow through the WebSphere Partner Gateway
Enterprise and Advanced Editions. A partner sends a document to WebSphere
Partner Gateway (the hub). WebSphere Partner Gateway receives the document
and performs any actions that have been predefined (such as validating or
transforming the document). WebSphere Partner Gateway then sends the
document to a back-end application, where the document is processed.

Note: As indicated in the illustration, communication flows in the opposite
direction too. The back-end application can generate a document and send it to the
hub, which processes it and sends it on to the partner.

INTERNET
WebSphere Process < or other public
Server network
Partner
Other back-end < > Hub
system
. VAN
h rivate network
p
WebSphere MQ
Brok
roxer Partner
Internal Partner WebSphere Partner
Backend Application Gateway server

Figure 1. End-to-end document flow

This guide focuses on the integration between the hub and the back-end
application.

© Copyright IBM Corp. 2004, 2008 3

Note: The information in this document applies to the WebSphere Partner
Gateway Enterprise and Advanced Editions. WebSphere Partner Gateway -
Express, a light-weight, easy-to-use B2B connectivity tool, differs from WebSphere
Partner Gateway Enterprise and Advanced Editions. It provides a community
integration solution (versus a gateway hub solution that WebSphere Partner
Gateway Enterprise and Advanced Editions provide for an internal partner). For
information about WebSphere Partner Gateway - Express, refer to its WebSphere
Partner Gateway User Guide.

The roles in the hub community

WebSphere Partner Gateway Enterprise and Advanced Editions have three types of
partners--the Hub Administrator, Internal Partner, and External Partners. A Hub
Administrator is created automatically when WebSphere Partner Gateway is
installed. The Hub Administrator is in charge of setting up the hub and creating
the partners that will interact with the hub.

The Internal Partner, which is typically the owner of the hub, is actually considered
to be one of the partners of the hub. The Hub Administrator creates a profile for
the Internal Partner, providing the information necessary to allow the Internal
Partner to send documents to and receive documents from partners. When the hub
sends documents to the back-end system, it uses the information (URL or JMS
queue, for example) set up for the Internal Partner. The Hub Administrator also
creates profiles for partners, of which there can be many.

The hub configuration process

The hub administrator is the user responsible for administering the hub. The hub
administrator sets up the hub to send and receive business documents from the
internal partner and external partners. To receive business documents from the
internal partner, the hub administrator creates the receivers for the transports that
the internal partner will use to send documents. For example, if the internal
partner uses the file-directory and JMS transports, the hub administrator sets up a
file-directory receiver and a JMS receiver for the internal partner. Similarly, if
external partners will use the HTTP transport and the FTP transport, the hub
administrator sets up an HTTP receiver and an FTP receiver for them.

WebSphere Process Server

nnnnnn

Figure 2. Receivers for the internal partner and external partners

Destinations are created for the internal partner and external partners for each of
the transports that they will use to receive business documents sent by the hub.

4 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

A

.| Gateway I
I Gateway I——é:}—*

A

.l Gateway I

Internal Partner WebSphere Partner Partner
Backend Application Gateway

Figure 3. Destinations to the internal partner and external partners

As part of the hub configuration, the hub administrator establishes document flow
definitions, which define characteristics of a document flow, such as:

* Packaging, which provides information about the routing of the document
* Protocol, which is the business protocol to which the document adheres

* Document flow, which represents the document itself

When WebSphere Partner Gateway is installed, a set of document definitions is
available for use. You can also add to the document definitions by creating your
own definitions or by uploading definitions. For example, document definitions for
a variety of RosettaNet PIPs are included as ZIP files on the installation medium.
You can upload these files to make them available for use. If you are exchanging
EDI files, you can import document definitions and associated maps from the Data
Interchange Services client.

Consider the following example--an external partner sends an RNIF 2.0 message
containing a RosettaNet PIP 3A4 purchase order document to the HTTP receiver of
WebSphere Partner Gateway. The message is intended for the internal partner. The
internal partner has a back-end system that processes purchase orders and expects
to receive the purchase order, which essentially is the payload of the RNIF message
sent by the external partner. Before the external partner connections in WebSphere
Partner Gateway are set up, it is agreed that:

* The external partner will send an RNIF message containing the RosettaNet PIP
3A4 purchase order document over HTTP.

* WebSphere Partner Gateway will extract the business payload or the RosettaNet
Service Content from the incoming message.

* The document will be routed to the back-end system over JMS. The Backend
Integration packaging will be used.

* The back-end application will then process the received document.

When Backend Integration packaging is used, WebSphere Partner Gateway-defined
transport headers are added to the document to convey information helpful for the
document exchange.

For the previous example, the hub administrator would upload the appropriate
PIP package, which would set up the following document definitions for the
exchange of RosettaNet PIP 3A4:

* A flow that consists of RNIF packaging, the RosettaNet protocol, and the 3A4
PIP

Chapter 1. Overview 5

* A flow that consists of Backend Integration packaging, RNSC protocol, and the
3A4 PIP

After the hub administrator establishes the document definitions, the hub
administrator creates interactions for the document flow definitions. For example,
the hub administrator might indicate that the RNIF/RosettaNet/3A4 document
flow definition can come into the hub from a source.

The hub administrator (or the external partners) select the appropriate B2B
capabilities for the document exchange. In this example, the internal partner would
have the following B2B capability enabled:

* Package: Backend Integration
* Protocol: RNSC
¢ Document Flow: 3A4

The external partner would have the following B2B capability enabled:
* Package: RNIF

* Protocol: RosettaNet

* Document Flow: 3A4

The hub administrator then creates connections between external partners.

In the following illustration, the hub administrator has created profiles for the
internal partner and external partner, has created receivers for receiving documents
and destinations for sending documents, has created the document flow definitions
listed above, has set the B2B capabilities of the external partner and internal
partner, and has created a connection between the two.

Internal Partner WebSphere Partner External Partner
Backend Application Gateway Server
6. Receive the document 2. Remove the RNIF header information. 1. Send the 3A4 content
7. Process the document 3. Perform any transformation or to the target at the hub

validation indicated in the interaction
4. Add Backend Integration packaging

transport headers to the RNSC content
5. Send the RNSC document to the

destination of the back-end system

Figure 4. How a document flows to the back-end system

For information on setting up the hub, refer to the WebSphere Partner Gateway Hub
Configuration Guide.

Overview of back-end integration

All editions of WebSphere Partner Gateway provide the ability to connect to
back-end systems. These editions differ in the transport protocols they can support,
as follows:

* WebSphere Partner Gateway - Express provides file-based integration.

6 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

* WebSphere Partner Gateway Enterprise and Advanced Editions provide
file-based integration. In addition, they provide integration over the HTTP,
HTTPS, and JMS protocols.

Documents exchanged between the external partner and WebSphere Partner
Gateway can be in a variety of formats. Documents can be in the SOAP, cXML,
XML, EDJ, record-oriented data (ROD)/flat file, or binary formats or in any custom
format mutually agreed upon by the external partners. The WebSphere Partner
Gateway Administrator Guide has a complete list of the document types supported
as well as the transport protocols (for example, HTTP) that can be used to send the
documents.

Documents that can be exchanged between WebSphere Partner Gateway and the
back-end system of the internal partner as well as the transport types associated
with the documents are shown in [Table 16 on page 35} [Table 17 on page 35| and
[Table 18 on page 36}

illustrates how WebSphere Partner Gateway uses the back-end integration
interface to communicate with the back-end system at the internal partner. Note
that the arrows go in both directions; that is, the document can originate from the
back-end system of the internal partner.

Back-end system

Backend Integration
interface

WebSphere Partner
Gateway

Business protocol such
as RosettaNet or AS2

l

External Partnert

Figure 5. The role of the business protocol and packaging in the flow of documents

S

Chapter 1. Overview 7

8 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 2. Planning for back-end integration

This chapter describes how to plan for integration of WebSphere Partner Gateway
with a back-end system. It describes the types of decisions you will make when
planning for back-end integration:

* [“Which business protocol are you using?”|

* [“Which packaging will you use?” on page 23|

* [“Which message transport will you use?” on page 34|

+ [“How do you access your back-end application?” on page 41|

It also describes the following information:

* ["Message handling” on page 42|

+ [“Configuring WebSphere Partner Gateway” on page 43|

Which business protocol are you using?

The business protocol of your message determines the format of the document.
The business protocol affects many of the decisions you must make as you plan for
integration to a back-end system. The choice of business protocol determines the
packaging method you must use, which, in turn, affects which message-transport
protocols you can use.

For a complete description of business protocols, see the WebSphere Partner Gateway
Hub Configuration Guide. This section describes integration information that is
specific to the following business protocols:

* [“Web services (SOAP)”|
+ [“cXML” on page 10|
* [“EDI” on page 10

Note: The section on EDI also describes how XML and record-oriented-data
(ROD)/flat documents are processed.

+ |“RosettaNet” on page 15|

Web services (SOAP)

WebSphere Partner Gateway can make the following Web services available to
members of the hub community:

* Web services provided by the internal partner can be available to external
partners.

You will have to provide your external partner with the public WSDL that
WebSphere Partner Gateway generates. It is important to note that the URL on
which the external partner invokes the Web service is the Web service public
URL specified while uploading the Web service. WebSphere Partner Gateway
acts as a proxy. It receives a SOAP message from the partner and figures out the
corresponding private Web service. It then invokes the private Web service
(provided by the internal partner) using the same SOAP message. The response
returned by the internal partner is then returned to the external partner.

* Web services provided by external partners can be available to the internal
partner.

© Copyright IBM Corp. 2004, 2008 9

It is important to note that the same Web Service Interface can be provided by
multiple partners. WebSphere Partner Gateway makes the Web service available
to the internal partner at the Web service URL specified in the console while
uploading the Web service. Additionally the internal partner will have to
provide the URL parameter to identify "To Partner”. Refer to the WebSphere
Partner Gateway Hub Configuration Guide for more details. WebSphere Partner
Gateway acts as a proxy. It receives a SOAP message from the internal partner
and figures out the corresponding Web service and the "To Partner”. It then
invokes the Web service provided by the partner using the same SOAP message.
The response message returned by the partner is then returned to the internal
partner.

Refer to the WebSphere Partner Gateway Hub Configuration Guide for more
information, including how to set up your document flow definitions for Web
services.

cXML

You can send or receive cXML documents to or from your external partners. When
WebSphere Partner Gateway receives a c XML document from an external partner,
it validates the document and translates it (if specified) before sending it to the
back-end system at the internal partner. Note that translation should not be used
for synchronous cXML messages. In a synchronous exchange, the back-end system
generates a response, which WebSphere Partner Gateway returns to the external
partner (if appropriate for the message).

A back-end system at the internal partner that needs to send a cXML document
can do one of two things:

* Generate and send a cXML document, which WebSphere Partner Gateway
passes through to the external partner

* Generate and send an XML document, which WebSphere Partner Gateway
converts to cXML before sending to the external partner

Note: If XML document translation is used, for synchronous request/response
transactions with the external partner, the response is returned asynchronously to
the back-end system.

Refer to the WebSphere Partner Gateway Hub Configuration Guide for more
information, including how to set up your document flow definitions for cXML.

EDI

WebSphere Partner Gateway accepts EDI documents from partners from value
added networks (VANSs) as well as from the Internet. EDI documents sent to or
received from a VAN use the FTP Scripting transport. The FTP Scripting transport
can also be used to send documents to or receive documents from the Internet. See
the WebSphere Partner Gateway Hub Configuration Guide for information on the FTP
Scripting transport.

An EDI document enters the hub and leaves the hub in an EDI envelope, known
as an interchange. The interchange contains individual EDI transactions or groups

of transactions.

If the EDI interchange will be passed through the hub (without being
de-enveloped), you create one connection between the hub and internal partner.

10 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

However, if the EDI interchange will be de-enveloped, the process for creating
interactions and connections is different from other business protocols. The
interchange must be de-enveloped, and the individual transactions processed. The
transactions are typically translated to another form, according to a transformation
map that is imported from the Data Interchange Services client. If the EDI
transactions are translated to XML or record-oriented-data (ROD)/flat documents,
those documents are sent to the internal partner or external partner. If the
transactions are translated to other EDI formats, the transactions are first
enveloped before being sent to the internal partner or external partner.

Back-end application to partner flows
A back-end application can send the following types of documents:

* A single EDI interchange that contains one or more transactions

WebSphere Partner Gateway de-envelopes the individual EDI transactions and
translates these individual transactions. If the transactions are translated into
ED], they are enveloped and then routed to the partner. The back-end
application can use None or Backend packaging and send the interchange over a
variety of transports, as defined in [Table 17 on page 35|

shows an X12 interchange consisting of three transactions being
de-enveloped. The transactions are transformed into EDIFACT format and are
then enveloped and sent to the partner.

X12 N EDIFACT — EDIFACT
Transaction Transaction
EDI X12 Interchange
X12 EDIFACT EDIFACT
X12 Transaction > Transaction > | Transaction |] Transaction
X12 Transaction T EDI FACt:'T
X12 Transaction ransaction
X12 EDIFACT
. I ! — EDIFACT
Transaction Transaction et ian

De-envelope Envelope

WebSphere Partner Gateway

Figure 6. EDI interchange from back-application to partner

Each of the transactions has a transformation map associated with it, which
specifies how the transaction is transformed. The transaction can be transformed
into a single transaction or, if map chaining was used to create the map,
multiple transactions.

If the transaction is translated into an XML or ROD/flat document, it is routed
as configured in the Partner Connection view for that transaction.

[Figure 7 on page 12| shows an EDI X12 interchange being de-enveloped and
transformed into XML documents, which are then sent to the partner.

Chapter 2. Planning for back-end integration 11

> X12 N XML
Transaction Document
EDI X12
Interchange
R X12 N XML
X12 Transaction > Transaction "] Document
X12 Transaction
X12 Transaction . X12 A XML
"l Transaction " Document
De-envelope Transform

[|
WebSphere Partner Gateway

Figure 7. EDI interchange sent from backend application to partner (as XML documents)

The transaction can be transformed into a single document or, if map chaining
was used to create the map, multiple documents.

* A single document, such as an XML or ROD/flat document
WebSphere Partner Gateway translates the document into an EDI transaction,
envelopes the transaction, and sends it to the partner. The back-end application
can use None or Backend Integration packaging and can send the document
over a variety of transports, as defined in [Table 17 on page 35

shows an XML document that is transformed into X12 transactions and
then enveloped.

XML . X12
Document "} Transaction EDI X12
Interchange
XML . X12 . »| X12 Transaction
Document > Transaction .
X12 Transaction
X12 Transaction
XML R X12
Document "Il Transaction
Transform Envelope

[|
WebSphere Partner Gateway

Figure 8. XML documents sent from backend application to partner (as an EDI interchange)

One document can be transformed into multiple transactions (if map chaining
was used to create the map), and the transactions can be enveloped into
different interchanges.

[Figure 9 on page 13| shows an XML document that is transformed into three X12
transactions. Two of the transactions are enveloped together. One is put in a
separate envelope.

12 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

T X12 EDI X12
ransaction Interchange
XML . X12 X12 Transact!on
Document » Transaction X12 Transaction
X12
Transaction >
EDI X12
Interchange
Transform Envelope)
l l X12 Transaction

WebSphere Partner Gateway

Figure 9. XML document sent from back-end application to partner (as EDI interchanges)

If the document is translated into another XML document or another ROD/flat
document, it is routed as configured in the Partner Connection view for the
document.

* A single file containing multiple XML or ROD/flat documents

WebSphere Partner Gateway splits the documents and translates them. If the
documents are translated into EDI transactions, WebSphere Partner Gateway
envelopes the transactions and sends the envelope to the partner. If batch IDs
were assigned to the XML or ROD/flat documents, WebSphere Partner Gateway
attempts to send the EDI transactions in one envelope (as a batch). The back-end
application can use None or Backend Integration packaging and can send the
document over a variety of transports, as defined in [Table 17 on page 35

shows a set of XML documents being split, resulting in individual
XML documents. The XML documents are transformed into X12 transactions,
and the transactions are enveloped.

Doéyr#ent »| X12 Transaction j— EDI X12
XML file —‘ interchange
XML N)
XML Document > Document >| X12 Transaction X12 Transaction
XML Document X12 Transaction
XML Document XML X12 Transaction
Docliment »| X12 Transaction |—

= o]

WebSphere Partner Gateway

Figure 10. Multiple XML documents sent from backend-application, split, and then sent to
partner (as an EDI interchange)

shows how the documents are split and the transformed transactions
are enveloped together. To allow documents to be split, you must configure a
splitter handler (in this case, the XML Splitter Handler) for the receiver you are
using to send the documents. The XML Splitter Handler must have the
BCG_BATCHDOCS option set to on (the default value) for this scenario to occur.
BCG_BATCHDOCS assigns a batch ID to the XML documents so that the
resulting transactions will be put into the same envelope. See the WebSphere
Partner Gateway Hub Configuration Guide for information on the XML Splitter
Handler and the BCG_BATCHDOCS attribute.

Chapter 2. Planning for back-end integration 13

14

If the documents are translated into other XML documents or other ROD/flat
documents, they are routed as configured in the Partner Connection view for the
documents.

* A single file containing multiple EDI interchanges

WebSphere Partner Gateway splits the file into individual interchanges. It then
de-envelopes the interchanges into individual transactions and translates them. If
the documents are translated into EDI transactions, WebSphere Partner Gateway
envelopes the transactions and sends the envelope to the partner. The back-end
application can use None or Backend Integration packaging and can send the
document over a variety of transports, as defined in [Table 17 on page 35|

If the documents are translated into XML or ROD/flat documents, they are
routed as configured in the Partner Connection view for the documents.

Partner to backend-application flows
A partner can send the following types of documents:

* A single EDI interchange that contains one or more transactions

WebSphere Partner Gateway de-envelopes the individual EDI transactions and
translates these transactions. If the transactions are translated into EDI, they are
enveloped and routed to the back-end application. The back-end application can
use None or Backend Integration packaging, and the transactions can be sent
over a variety of transports, as defined in [Table 18 on page 36

If the transactions are translated into XML or ROD/flat documents, they are
routed as configured in the Partner Connection view for the transactions.

A single document, such as an XML or ROD/flat document

WebSphere Partner Gateway translates the document into an EDI transaction,
envelopes the transaction, and routes the envelope to the back-end application.
Either None or Backend Integration packaging can be used.

If the document is translated into another XML document or another ROD/flat
document, it is routed as configured in the Partner Connection view for the
document.

A single file containing multiple XML or ROD/flat documents

WebSphere Partner Gateway splits the documents and translates them. If the
documents are translated into EDI transactions, WebSphere Partner Gateway
envelopes the transactions and sends the envelope to the back-end application. If
batch IDs were assigned to the XML or ROD/flat documents, WebSphere Partner
Gateway attempts to send the EDI transactions in one envelope (as a batch).
Either None or Backend Integration packaging can be used.

If the documents are translated into other XML documents or other ROD/flat
documents, they are routed as configured in the Partner Connection view for the
documents.

A single file containing multiple EDI interchanges

WebSphere Partner Gateway splits the file into individual interchanges. It then
de-envelopes the interchanges into individual transactions and translates them. If
the documents are translated into EDI transactions, WebSphere Partner Gateway
envelopes the transactions and sends the envelope to the back-end application.
Either None or Backend Integration packaging can be used.

If the documents are translated into XML or ROD/flat documents, they are
routed as configured in the Partner Connection view for the documents.

Functional acknowledgments
A functional acknowledgment specifies that an EDI interchange was received. A
functional acknowledgment is always enveloped before being delivered.

IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Note: Functional acknowledgments apply only to those interchanges that are
de-enveloped by WebSphere Partner Gateway or generated by WebSphere Partner
Gateway. They do not apply to interchanges that are passed through WebSphere
Partner Gateway.

For interchanges received by WebSphere Partner Gateway

¢ If the interchange is received from a back-end application, WebSphere Partner
Gateway can send functional acknowledgments back to the back-end
application.

* If the interchange is received from a partner, WebSphere Partner Gateway can
send functional acknowledgments back to the partner.

For interchanges generated by WebSphere Partner Gateway:

* If the interchange is sent to a partner, the partner can send a functional
acknowledgment back to WebSphere Partner Gateway. WebSphere Partner
Gateway will not send this functional acknowledgment to the backend system.

* If the interchange is sent to the back-end application, the back-end application
can send a functional acknowledgment back to WebSphere Partner Gateway.
WebSphere Partner Gateway will not send this functional acknowledgment to
the partner.

RosettaNet

WebSphere Partner Gateway provides support to let you send and receive
documents that adhere to the RosettaNet 1.1 and 2.0 standards. When a partner
sends a RosettaNet message to the hub, the target side of the partner connection
must have Backend Integration specified. The hub converts the payload of the
message to RNSC format and sends the message to the back-end system. Because
Backend Integration packaging is used, the hub adds transport-level headers to the
message. The message is sent through the HTTP or JMS transport protocol. The
transport-level header retains meta-information that is not part of the PIP and
enables WebSphere Partner Gateway to route the message appropriately.

Similarly, when the internal partner back-end system sends an RNSC message to
the hub, the source side of the partner connection must have Backend Integration
packaging specified, and the back-end system must supply the transport-level
headers.

For example, suppose an application wants to send a message to an external
partner using RosettaNet sent on HTTP. The application provides the RosettaNet
service content and adds the transport-level header. The header identifies which
external partner will handle the request, which PIP will be sent, and the version of
the PIP along with other information. This information enables WebSphere Partner
Gateway to send the correct PIP to the external partner.

You can find information about setting up RosettaNet support and configuring
PIPs in the WebSphere Partner Gateway Hub Configuration Guide.

Event notification

WebSphere Partner Gateway executes RNIF PIP processes with external partners
on behalf of the internal partner back-end applications. Therefore, WebSphere
Partner Gateway provides event notification as the mechanism to notify the
back-end application about various aspects of the RNIF PIP process execution.
Event notification enables WebSphere Partner Gateway to, for example, notify the
application if WebSphere Partner Gateway is unable to send a PIP to the partner.
The application can then handle the failure.

Chapter 2. Planning for back-end integration 15

An event notification message is an XML document that carries information about
events that occurred within WebSphere Partner Gateway or an application. These
messages have the same structure as any other message that enters or leaves
WebSphere Partner Gateway; that is, they have a transport-level header and
payload. WebSphere Partner Gateway can be configured to send or not send event
notification messages, because they are optional.

summarizes the event notification messages that WebSphere Partner
Gateway can send to back-end systems.

Table 2. Event notification messages sent to back-end system

Event condition Event notification message
WebSphere Partner Gateway delivers a RosettaNet Event StatusCode 100
document to an external partner and receives a Receipt

Acknowledgment.

General error during RNIF action performance. WebSphere |Event StatusCode 800
Partner Gateway cancels a PIP by generating an 0A1
message and delivering it to the external partner.

If this is the last action in the PIP, this action code causes
WebSphere Partner Gateway to cancel this PIP by
generating a 0A1 message and delivering it to the external
partner. Otherwise, WebSphere Partner Gateway sends a
“general exception” to the partner.

Error during RNIF action performance. Validating the Event StatusCode 801
Service Content against a PIP-specified dictionary.
WebSphere Partner Gateway cancels a PIP by generating an
0A1 message and delivering it to the external partner.

WebSphere Partner Gateway receives a Receipt Event StatusCode 900
Acknowledgment exception or a general exception from an
external partner.

WebSphere Partner Gateway can send 0A1 messages to the destination application
as it would do with any other PIP, if it has been configured to send these messages
using Exclusion List Management. See “Managing Exclusion Lists” in the
WebSphere Partner Gateway Administrator Guide.

An application can send an event notification message to WebSphere Partner
Gateway to cancel a RosettaNet PIP.

See [“Event codes used by WebSphere Partner Gateway” on page 23| for information
on event codes used by WebSphere Partner Gateway:.

ebMS

WebSphere Partner Gateway provides support to let you send and receive
documents that adhere to the ebMS 2.0 standards. When a partner sends a ebMS
message to the hub, the target side of the partner connection must have Backend
Integration specified. The hub extracts the payload from the message and sends the
message to the back-end system. Because Backend Integration packaging is used,
the hub adds transport-level headers to the message. The message is sent through
the HTTP or JMS transport protocol. The transport-level header retains
meta-information that is not part of the ebMS message and enables WebSphere
Partner Gateway to route the message appropriately.

16 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Similarly, when the internal partner back-end system sends payloads to the hub,
the source side of the partner connection must have Backend Integration packaging
specified, and the back-end system must supply the transport-level headers.

For example, suppose an application wants to send a message to an external
partner using ebMS on HTTP. The application provides the ebMS Service, Action,
Partner IDs (to and from), protocol and packaging information, message-ID, and
conversation ID and it adds the transport-level headers. The header identifies

which external partner will handle the request. This information enables

WebSphere Partner Gateway to construct ebMS message and put the payloads

from backend as ebMS payloads and send it to the external partner.

Headers in [Table 3| are required to be set by backend for ebMS flow.

Table 3. Backend Headers Required for ebMS flow

Header name

Explanation

Example value

Required

x-aux-sender-id

Identifier of the message sender,
such as a DUNS number.

987654321

Yes

X-aux-receiver-id

Identifier of the message receiver,
such as a DUNS number.

123456789

Yes

x-aux-protocol

Protocol of the message content.
The value should match with the
protocol value towards the source
side on the Partner Connection
view.

ebMS

Yes

x-aux-protocol-
version

Version of the message content
protocol. The value should match
with the protocol version towards
the source side on Partner
Connection view.

2.0

Yes

X-auX-process-

type

Process to be performed or what
type of message is being sent. The
value should match with the
Document Type value towards the
source side on the Partner
Connection view.

Purchase Order
Request

Yes

X-aux-process-
version

Version of the process. The value
should match with Document Type
version on the source side of the
Partner Connection view. This value
is same as Service Type in the
ebXML message.

ALL

Yes

x-aux-activity

The activity to be performed on the
type of the message sent. The value
should match with the activity
value on the source side of Partner
Connection view. For ebMS flow
this is same as x-aux-process-type.

Purchase Order
Request

Yes

X-aux-action

The action to be performed on the
ebMS message. The value is same as
Action element in the ebXML Soap
message. Moreover, it should be
equal to the action value on the
source side of the Partner
Connection view.

Purchase Order
Action

Yes

Chapter 2. Planning for back-end integration 17

Table 3. Backend Headers Required for ebMS flow (continued)

Header name

Explanation

Example value

Required

X-aux-system-
msg-id

Global Unique Identifier (GUID) for
the message, which is used for
duplicate checking. This ID is used
by WebSphere Partner Gateway to
do duplicate check. It is not used in
ebMS flow.

28282828282828

Yes

X-aux-
production

Routing of the message. Valid
values are: Production and Test.
This value is populated for requests
in both directions.

Production

Yes

x-aux-msg-id

Unique Message Identifier. Set as
Messageld in the ebXML Soap
Message

123454321@abc.com

contentType

The content-Type of the message.
This is not required if you are
sending message wrapped in
wbipackaging from backend.

text/xml

X-aux-process-
instance-id

The processld or Conversationld in
the ebXML message.

329878738@abc.com

X-aux-seq-
number

The sequence number of the
message, if “Message Order
Semantics” is set as “Guaranteed”
on the target side of Document
Flow Definition. This is the
sequence of the message going out
in that conversation.

X-aux-request-
msg-id

This header should be only set for
the response document. The value
of this header will be the messageld
of the request document associated
with current response document.

123455521@abc.com

x-aux-role

This field is not required if
WBIPackaging1.2 is used as user
can then set this attribute in the
XML itself Otherwise, the value of
this field is the value of the role
attribute in Manifest/Referernce
element in the ebXML Soap
message.

http:/ /reqrep.org/
gci/purchaseOrder

x-aux-role-
schema

The schema against which role is
validated. This validation is not
done by WebSphere Partner
Gateway. The value of this field is
put in ebXML Soap Message as
Schema attribute.

http:/ /reqrep.org/
gci/purchaseOrder/
po.xsd

x-aux-role-
schema-version

The version of the above Schema

2.0

X-aux-
description

The description of the payload. The
value is put as the value of
Description element in ebXML Soap
Message.

Purchase Order
Request

IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

You can find information about setting up ebMS support and configuring ebMS
connections in the WebSphere Partner Gateway Hub Configuration Guide.

Event notification

WebSphere Partner Gateway provides event notification as the mechanism to notify
the back-end application about various aspects of the ebMS process execution. For
more details on event notification refer to EventNotification/XMLEvent section.

summarizes the event notification messages sent to and from WebSphere
Partner Gateway from and to the backend for ebMS.

Table 4. Event notification messages sent to back-end system

Event condition Event notification message

WebSphere Partner Gateway generates this event after Event StatusCode 100
receiving the receipt acknowledgement from a partner.

WebSphere Partner Gateway receives a Receipt Event StatusCode 900
Acknowledgment exception or a general exception from an
external partner.

WebSphere Partner Gateway generates this event when all | Event StatusCode 902
the retries are done or when the message time to live is
over and an acknowledgment for the message is not
received.

WebSphere Partner Gateway generates this event when a Event StatusCode 903
delivery failure happens. That is, when WebSphere Partner
Gateway is unable to send the message to a partner because
the partner destination is down and all the transport and
destination-level retries are over.

See [“Event codes used by WebSphere Partner Gateway” on page 23| for information
on event codes used by WebSphere Partner Gateway.

XMLEvent

WebSphere Partner Gateway provides a way of notifying the backend about the
status of the message. For example, if WebSphere Partner Gateway sends a
message to a partner and the partner sends back an acknowledgment, WebSphere
Partner Gateway will generate an XML event containing an event code 100 (for list
of event code, see [“Event codes used by WebSphere Partner Gateway” on page 23)
and send it to the backend. The structure of the XML Event is given in|“Event]
imessage structure” on page 20| XMLEvents are only used between WebSphere
Partner Gateway and a backend application. They are never sent to partners. In
WebSphere Partner Gateway 6.1, XMLEvents are only generated for RosettaNet
and ebMS flows.

You can enable or disable an XMLEvent that is created between WebSphere Partner
Gateway and a backend application. See [“Enabling or disabling XMLEvents”| for
more details.

Enabling or disabling XMLEvents
To enable an XMLEvent, do the following;:

1. Enable B2B Capability for either RosettaNet or ebMS document definition flow
as applicable.

The source B2B capability must be:

Chapter 2. Planning for back-end integration 19

Package: Backend Integration (1.0)
Protocol: XMLEvent (1.0)
Document Type: XMLEvent

The target B2B capability must be:

Package: Backend Integration (1.0)
Protocol: XMLEvent (1.0)
Document Type: XMLEvent

2. Create Interaction between Source and Target as described below:
a. Click Hub Admin > Hub Configuration > Document Definition.
b. Click Manage Interactions.
c. Click Create Interaction.
d

. Under Source, expand Package: Backend Integration (1.0) > Protocol:
XMLEvent.

e. Select Document Type: XMLEvent (1.0).
f. Repeat the previous steps (step d and step e) in theTarget column.
g. Select Pass Through from the Action list and click Save.
3. Activate the XMLEvent using the following procedure:
a. Click Account Admin > Connections. The Manage Connections page is
displayed.
b. Select the Source and Target.
c. Click Search to find the connections that match your criteria

d. To enable the XMLEvent, click Activate. The Manage Connections page is
re-displayed with the required connection highlighted in green. This page
shows the package, protocol, and document type for the source and target.
You can also view and change partner-connection status and parameters.

To disable the XMLEvent, you can either:

e Disable the Protocol:XMLEvent in Hub Admin > Document Definition >
Manage Document Definitions. OR

* Do the following;:
1. Click Account Admin > Exclusion List.
2. Select the Partner name.
3. Click Edit .
4. Select Don't Send Backend Event Notifications check box.

Event notification

For RosettaNet and ebMS processing, there are circumstances in which an XML
Event is either sent to the backend or received from the backend. For the specific
circumstances for the use of an XML Event in these protocols, see [“Event]
notification” on page 15|for RosettaNet processing and [“Event notification” on|

page 19 for ebMS processing.

Event message structure
An event notification message has the standard transport-level header with the

x-aux-process-type field set to XMLEvent. However, the payload of the message has
a specific structure, as shown in the XML schema in

20 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace=
"http://www.ibm.com/websphere/bcg/2003/v1.0/xmleventnotification”
xmins:evntf=
"http://www.ibm.com/websphere/bcg/2003/v1.0/xmleventnotification”
elementFormDefault="qualified">

<!-- EventNotification version 1.0 document element -->
<xsd:element name="EventNotification">
<xsd:complexType>
<xsd:all>
<xsd:element ref="evntf:StatusCode"/>
<xsd:element ref="evntf:StatusMessage"/>
<xsd:element ref="evntf:EventMessagelID"/>
<xsd:element ref="evntf:BusinessObjectID"/>
<xsd:element ref="evntf:GlobalMessageID"/>
<xsd:element ref="evntf:Timestamp"/>
</xsd:all>
</xsd:complexType>
</xsd:element>

<!-- StatusCode element -->
<xsd:element name="StatusCode">
<xsd:simpleType>
</xsd:simpleType>
</xsd:element>

<l-- StatusMessage element -->
<xsd:element name="StatusMessage">
<xsd:simpleType>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
</xsd:element>

<!-- EventMessageID element -->
<xsd:element name="EventMessageID">
<xsd:simpleType>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
</xsd:element>

<!l-- BusinessObjectID element -->
<xsd:element name="BusinessObjectID">
<xsd:simpleType>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
</xsd:element>

<l-- GlobalMessagelID element -->
<xsd:element name="GlobalMessageID">
<xsd:simpleType>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
</xsd:element>

<!-- Timestamp element -->
<xsd:element name="Timestamp">
<xsd:simpleType>
<xsd:restriction base="xsd:dateTime"/>
</xsd:simpleType>
</xsd:element>
</xsd:schema>

Figure 11. XML schema for an event notification message

Chapter 2. Planning for back-end integration

21

describes each field within the event payload.
Table 5. Event notification XML fields

Field

Description

StatusCode

Type of message. For valid values, see|“Event codes used by
[WebSphere Partner Gateway” on page 23]

StatusMessage

Alphanumeric description of this event notification message.

EventMessagelD

Alphanumeric identifier of this particular event notification message.

BusinessObjectID

The x-aux-msg-id in the transport-level header of the message
affected by this message notification event. This links the payload of
the original message to this event.

GlobalMessagelD

The x-aux-system-msg-id in the transport-level header of the
message that caused this message notification event.

Timestamp

When the event occurred using the UTC time stamp format:
CCYY-MM-DDThh:mm:ssZ

including fractional precision of seconds (...ss.ssssZ). The date stamp
must conform to the XML schema data type for dateTime
(w3.0rg/TR/2001/REC-xmlschema-2-20010502#dateTime).

Event notification example
shows an example of an event notification message sent using the HTTP

protocol.

POST /builderURL HTTP/1.1
Content-Type: application/xml

Content-length: 250

x-aux-sender-id: 000000001

Xx-aux-receiver-id: 000000002
x-aux-third-party-bus-id: 000000003
x-aux-create-datetime: 2002-10-28T723:05:02Z
x-aux-protocol: XMLEvent
x-aux-protocol-version: 1.0

X-aux-process-type: XMLEvent
X-aux-process-version: 1.0
x-aux-payload-root-tag: evntf:EventNotification

X-aux-msg-id: 98732

Xx-aux-system-msg-id:

12345

x-aux-production: Production
x-aux-process-instance-id: 3456
x-aux-event-status-code: 100
x-aux-transport-retry-count: 0

<?xml version="1.0"

encoding="UTF-8"?>

<evntf:EventNotification xmlns:evntf=
"http://www.ibm.com/websphere/bcg/2003/v1.0/xmleventnotification">
<evntf:StatusCode>100</evntf:StatusCode>
<evntf:StatusMessage>The message was delivered</evntf:StatusMessage>
<evntf:EventMessageID>12345</evntf:EventMessagelD>
<evntf:BusinessObjectID>34234</evntf:BusinessObjectID>
<evntf:GlobalMessageID>98732</evntf:GlobalMessagelD>
<evntf:Timestamp>2001-01-31T13:20:00Z</evntf:Timestamp>

</evntf:EventNotification>

Figure 12. Example of an event notification message using HTTP

22 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Event codes used by WebSphere Partner Gateway

This section contains a summary of all the event codes used by WebSphere Partner
Gateway. For how these event codes are used in the specific protocols, see ['Event]
notification” on page 15|for RosettaNet protocols and [“Event notification” on page|
19| for ebMS protocols.

summarizes the event codes used by WebSphere Partner Gateway.
Table 6. Event codes used by WebSphere Partner Gateway

Event status code | Protocol used in Sent From Sent To
100 RosettaNet ebMS WebSphere Partner | Backend
Gateway
800 RosettaNet Backend WebSphere Partner
Gateway
801 RosettaNet Backend WebSphere Partner
Gateway
900 RosettaNet ebMS WebSphere Partner | Backend
Gateway
902 ebMS WebSphere Partner Backend
Gateway
903 ebMS WebSphere Partner Backend
Gateway

Which packaging will you use?

The packaging type determines the format in which WebSphere Partner Gateway
sends the message to the back-end system and the format in which the back-end
system sends the message to WebSphere Partner Gateway:.

You use the Community Console to establish the connection with your external
partners and to specify the packaging that is used between WebSphere Partner
Gateway and the back-end system. To determine which packaging to use, you
must understand the following issues:

* Which packaging types are valid for use with a back-end system?

¢ Which packaging types are valid with a message in a particular business
protocol?

For more information on how to set up partner connections, see the WebSphere
Partner Gateway Hub Configuration Guide.

Not all packaging types are valid when you use WebSphere Partner Gateway for
integration. lists the packaging types that are relevant when WebSphere
Partner Gateway is exchanging documents or messages with a back-end
application of the internal partner.

Table 7. Packaging types relevant for back-end integration

Packaging type Description

None packaging Causes the message to be sent to the
back-end system or to the hub without any
header data

Chapter 2. Planning for back-end integration 23

Table 7. Packaging types relevant for back-end integration (continued)

Packaging type Description

Backend Integration packaging Adds additional attributes to the message
header and, optionally, wraps the message
contents in an XML transport envelope

Note: Other packaging types (such as AS) are available with WebSphere Partner
Gateway. However, for integration with back-end systems, only the None and
Backend Integration packaging types are recommended.

None packaging

When packaging is set to None, WebSphere Partner Gateway neither adds a
transport-level header when it sends a message to a back-end system nor expects
one when it receives a message from a back-end system. Instead, WebSphere
Partner Gateway sends only the message to the back-end system. Information in
the document controls routing.

Backend integration packaging

When packaging is set to Backend Integration, messages sent to or received from a

back-end system have the following components:

* A transport-level header, which contains meta-information about the message
(required)

* A payload, which contains the content of the message (required)

* An attachment (optional)

The header and payload are mandatory while attachments are optional. The
following sections describe each of the components of a document that uses
Backend Integration packaging.

Transport-level header content

The transport-level header contains information that WebSphere Partner Gateway
uses to process and route the message to the correct destination. The
transport-level header is bi-directional so that all messages entering and leaving
WebSphere Partner Gateway have the mandatory fields and any of the optional
fields that apply.

lists the fields of the transport-level header.

Table 8. Transport-level header fields

Header field Description Required
x-aux-sender-id Identifier of the message sender, such as a DUNS number. Yes
x-aux-receiver-id Identifier of the message receiver, such as a DUNS number. Yes
x-aux-protocol Protocol of the message content. Valid values include RNSC for Yes

RosettaNet service content, XMLEvent, and Binary. For WebSphere
Partner Gateway, the value in this field has priority over any protocol
field in the payload.

x-aux-protocol-version

Version of the message content protocol. Yes

24 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 8. Transport-level header fields (continued)

Header field

Description

Required

x-aux-process-type

Process to be performed or what type of message is being sent. For
RosettaNet messages, this is the PIP code (for example, 3A4). For event
messages, it is XMLEvent, and for Binary messages, it is Binary. For
WebSphere Partner Gateway, the value in this field has priority over any
process field in the payload.

Yes

X-aux-process-version

Version of the process. For RosettaNet messages, this is the version
number of the PIP.

Yes

Xx-aux-create-datetime

When the message was successfully posted using the UTC time stamp
format (CCYY-MM-DDThh:mm:ssZ).

x-aux-msg-id

Identifier of the payload content. For example, it could be the identifier
of the RNPIPServiceContent instance for a RosettaNet message or it
could be a proprietary document identifier. This links the message
payload with something in the message sender’s system for tracing
purposes.

x-aux-production

Routing of the message. Valid values are: Production and Test. This
value is populated for requests in both directions. Note that when the
message is a response to a two-way PIP initiated by an external partner,
WebSphere Partner Gateway uses the GlobalUsageCode in the request
and ignores the value in the transport level header.

x-aux-system-msg-id

Global Unique Identifier (GUID) for the message, which is used for
duplicate checking.

Yes

x-aux-payload-root-tag

Root tag element of the payload. For example, for 3A4 RosettaNet
service content, the value of this field would be
Pip3A4PurchaseOrderRequest. For event notification messages, the value
for this field would be EventNotification.

X-aux-process-instance-id

Identifier that links documents in a multiple-message business process to
a unique process instance. For RosettaNet, it must be unique for
RosettaNet processes within the last 30 days. All messages exchanged as
part of a RosettaNet process instance, including retries, use the same
process instance ID.

x-aux-event-status-code

Status code for the event notification. See the StatusCode field in
[message structure” on page 20

x-aux-third-party-bus-id

Identifier such as a DUNS number of the party that delivered the
message. This can be different from both the x-aux-sender-id and the
x-aux-receiver-id if a third party is hosting WebSphere Partner Gateway
on behalf of the community owner.

x-aux-transport-retry-count

Number of unsuccessful attempts at posting this message prior to this
attempt. If a message posts successfully on the first attempt, the value of
this field will be 0.

x-aux-in-file-name

The original file name of the message being sent to WebSphere Partner
Gateway over JMS or HTTP. (See note)

No

x-out-filename

The original file name for messages being sent over JMS with Backend
Integration packaging. (See note)

No

content-type

The content type of the message.

content-length

The length of the message (in bytes).

Chapter 2. Planning for back-end integration

25

Table 8. Transport-level header fields (continued)

Header field

Description Required

x-aux-SyncResponse

This attribute is used in ebMS flow to inform the backend that No
SyncResponse is needed for this request. If sync response is not required
from backend then it will not be present. It has the following values:
Note: All values for this attribute are in lowercase.

* signalsonly : A signal can be a acceptance signal or exception signal.
It is upto backend to determine what is a signal. If attribute value is
signalsonly then the sending partner is expecting only the signals over
a synchronous connection.

* responseonly: A response document is a business response for the
document received. If the value is responseonly then the sending
partner is expecting a response over a synchronous connection.

* signalsandresponse: In this case both signals and response should be
sent over synchronous connection. This attribute is a routing object
attribute. It is present in CPA and can be set at partner connection
level if no CPA is present.

x-aux-TimeToAccept

This attribute is used in ebMS flow and will contain value of No
"timeToAcknowledgeAcceptance” in CPA. When CPA is uploaded this
value is set as TimeToPerform as Source Document Definition attribute.
The value is a number in minutes It specifies the time period within
which the receiving Party has to non-substantively acknowledge
acceptance of a business document meaning, after it has passed business
rules validation).

X-aux-

IntelligibleCheckRequired |If the value is "yes”, then the backend must verify that a business

This attribute is used in ebMS flow. The possible values are yes and no.

document is not garbled (meaning, passes schema validation) before
returning a Receipt Acknowledgment signal.

Notes:

1. For compatibility with IBM WebSphere MQ (a JMS provider), the fields of a
JMS protocol message use underscores instead of hyphens. For example, in a

JMS message, there is an x_aux_sender_id field instead of an x-aux-sender-id
field.

2. If the gateway is specified as HTTP and the package is specified as None, the
original file name is set in the HTTP headers as “Content-Disposition:
attachment;po.xml.”

If the receiver is specified as JMS and the package is specified as Backend
Integration, the original file name is written into x-out-filename along with
other x-aux-* headers.

3. If the receiver is specified as HITP and the source package is specified as
None, the original file name is set in the HTTP headers as "Content-
Disposition: attachment;po.xml,”

If the receiver is specified as JMS and the source package is specified as
Backend Integration, the original file name is set to "x_aux_in_file_name:
po.xml.” In the case of HTTP receiver, it is set to “Content-Disposition:
attachment;po.xml.”

provides an overview of the transport-level header information. The
following sections provide transport-level header information specific to certain
business protocols:

* [“Transport-level header and a RosettaNet message” on page 27|

* |"Transport-level header and an AS2 message” on page 28|

26 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

* |"Transport-level header and an AS1 message” on page 28|

Transport-level header and a RosettaNet message: [Table 9 describes where
WebSphere Partner Gateway obtains values for the fields of the transport-level

header from a RosettaNet message.

Table 9. Transport-level header fields and RosettaNet content

Header field

Source of value: RosettaNet 2.0

Source of value: RosettaNet 1.1

x-aux-sender-id

<(DeliveryHeader)>
<messageSenderIdentification>
<Partnerldentification>
<GlobalBusinessIdentifier>

<ServiceHeader>
<ProcessControl>
<TransactionControl>
<ActionControl> or <SignalControl>
<PartnerRouter>
<fromPartner>
<PartnerDescription>
<BusinessDescription>
<GlobalBusinessIdentifier>

x-aux-receiver-id

<(DeliveryHeader)>
<messageReceiverldentification>
<PartnerlIdentification>
<GlobalBusinessIdentifier>

<ServiceHeader>
<ProcessControl>
<TransactionControl>
<ActionControl> or <SignalControl>
<PartnerRouter>
<toPartner>
<PartnerDescription>
<BusinessDescription>
<GlobalBusinessIdentifier>

x-aux-protocol

Set value for RosettaNet: RNSC

Same as for RosettaNet 2.0

x-aux-protocol-
version

Set value: 1.0

Same as for RosettaNet 2.0

X-aux-process-type

The source XPath is:

/ServiceHeader/ProcessControl/
pipCode/GlobalProcessIndicatorCode

The source XPath is:

/ServiceHeader/ProcessControl/
ProcessIdentity/GlobalProcessIndicatorCode

x—aux—process—version

The source XPath is:
/ServiceHeader/ProcessControl/
pipVersion/Versionldentifier

The value of the version identifier of each
PIP is in its PIP specification.

The source XPath is:
/ServiceHeader/ProcessControl/
ProcessIdentity/Versionldentifier

The value of the version identifier of each PIP is
in its PIP specification.

x-aux-payload-
root-tag

Name of the PIP, such as
Pip3A4PurchaseOrderRequest

Same as for RosettaNet 2.0

X-auX-process-
instance-id

For processes initiated by the application,

the value is the ID of the process instance.

For processes initiated by an external
partner that are not pass-through
workflow, the value is the process ID in
the initial RosettaNet request:

<ServiceHeader>
<ProcessControl>
<pipInstanceld>
<Instanceldentifier>

<ServiceHeader>
<ProcessControl>
<Processldentity>
<Instanceldentifier>

x-aux-msg-id

<(RNPipServiceContent)>
<thisDocumentIdentifier>
<ProprietaryDocumentIdentifier>

Same as for RosettaNet 2.0

x-aux-production

<ServiceHeader>
<ProcessIndicator>
<GTobalUsageCode>

<Preamble>
<GlobalUsageCode>

Chapter 2. Planning for back-end integration 27

Transport-level header and an AS2 message: [[able 10| describes where WebSphere
Partner Gateway obtains values for the fields of the transport-level header from an
AS2 message.

Note: The values are case-sensitive.

Table 10. Transport-level header fields from AS2 content

Header field

Source of value when an external partner
sends an AS/2 message to the hub

Source of value when an AS2 message is
sent to an external partner

x-aux-sender-id

The AS2-From header field of the AS2
message is set in the x-aux-sender-id field
of the back-end integration message that is
sent to the internal partner.

The x-aux-sender-id field of the incoming
back-end integration message is used as
the AS2-From header value of the AS2
message.

X-aux-receiver-id

The AS2-To header field of the AS2
message is set in the x-aux-receiver-id field
of the back-end integration message that is
sent to the internal partner.

The x-aux-receiver-id field of the incoming
back-end integration message is used as
the AS2-To header value of the AS2
message.

x-aux-protocol

The ToProtocol of the partner connection is
set in the x-aux-protocol field of the
back-end integration message that is sent
to the internal partner.

The x-aux-protocol field of the incoming
back-end integration message is used to
determine the FromProtocol of the partner
connection.

x-aux-protocol-version

The ToProtocolVersion of the partner
connection is set in the
x-aux-protocol-version field of the
back-end integration message that is sent
to the internal partner.

The x-aux-protocol-version field of the
incoming back-end integration message is
used as the FromProtocolVersion of the
partner connection.

X-aux-process-type

The ToProcessCode of the partner
connection is used to set the
x-aux-process-type field of the back-end
integration message that is sent to the
internal partner.

The x-aux-process-type field of the
incoming back-end integration message is
used as the FromProcessCode of the
partner connection.

x-aux-process—version

The ToProcessVersion of the partner
connection is set in the
x-aux-process-version field of the back-end
integration message that is sent to the
internal partner.

The x-aux-process-version field of the
incoming back-end integration message is
used as the FromProcessVersion of the
partner connection.

x-aux-payload-root-tag

For custom XML protocol only, the Root
tag specified in the XPATH is parsed out
of the message and used in the
x-aux-payload-root-tag field.

This field does not need to be set in the
incoming back-end integration message.

X-aux-process-instance-id

This field is not used for AS2.

This field is not used for AS2.

x-aux-msg-id

For custom XML protocol only, the Doc ID
specified in the XPATH is parsed out of
the message and used in the x-aux-msg-id
field.

This field does not need to be set in the
incoming back-end integration message

x-aux-system-msg-id

This field is set to the internally generated
unique ID for this message.

This field does not need to be set in the
incoming back-end integration message

x-aux-production

This field is not used for AS2.

This field is not used for AS2.

Transport-level header and an AS1 message: [[able 11 on page 29|describes where
WebSphere Partner Gateway obtains values for fields in the transport-level header
from an AS1 message.

Note: The values are case-sensitive.

28 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 11. Transport-level header fields from AS1 content

Header field

Source of value when an external partner
sends an AS/1 message to the hub

Source of value when an AS/1 message is
sent to an external partner

x-aux-sender-id

The FromID in the "Subject: ToID;FromID"
header field of the AS1 message is set in
the x-aux-sender-id field of the back-end
integration message that is sent to the
internal partner.

The x-aux-sender-id field of the incoming
back-end integration message is used as
FromID in the "Subject: ToID;FromID"
header value of the AS1 message.

x-aux-receiver-id

The ToID in the "Subject: ToID;FromID"
header field of the AS1 message is set in
the x-aux-receiver-id field of the back-end
integration message that is sent to the
internal partner.

The x-aux-receiver-id field of the incoming
back-end integration message is used as
ToID in the "Subject: ToID;FromID" header
value of the AS1 message.

x-aux-protocol

The ToProtocol of the partner connection is
set in the x-aux-protocol field of the
back-end integration message that is sent
to the internal partner.

The x-aux-protocol field of the incoming
back-end integration message is used as
the FromProtocol of the partner connection.

x-aux-protocol-version

The ToProtocolVersion of the partner
connection is set in the
x-aux-protocol-version field of the back-end
integration message that is sent to the
internal partner.

The x-aux-protocol-version field of the
incoming back-end integration message is
used as the FromProtocolVersion of the
partner connection.

X-aux-process-type

The ToProcessCode of the partner
connection is set in the x-aux-process-type
field of the back-end integration message
that is sent to the internal partner.

The x-aux-process-type field of the
incoming back-end integration message is
used as the FromProcessCode of the
partner connection.

X-aux-process-version

The ToProcessVersion of the partner
connection is set in the
x-aux-process-version field of the back-end
integration message that is sent to the
internal partner.

The x-aux-process-version field of the
incoming back-end integration message is
used as the FromProcessVersion of the
partner connection.

x-aux-payload-root-tag

For custom XML protocol only, the Root
tag specified in the XPATH is parsed out of
the message and set in the
x-aux-payload-root-tag field.

This field does not need to be set in the
incoming back-end integration message.

X-aux-process-instance-id

This field is not used for ASI.

This field is not used for ASI.

x-aux-msg-id

For custom XML protocol only, the Doc ID
specified in the XPATH is parsed out of the
message and used in the x-aux-msg-id
field.

This field does not need to be set in the
incoming back-end integration message.

x-aux-system-msg-id

This field is set to the internally generated
unique ID for this message.

This field does not need to be set in the
incoming back-end integration message.

x-aux-production

This field is not used for AS].

This field is not used for AS1.

Transport-level header and an ebMS message: [Iable 11| describes where
WebSphere Partner Gateway obtains values for fields in the transport-level header
from an ebMS message.

Note: The values are case-sensitive.

Chapter 2. Planning for back-end integration 29

Table 12. Transport-level header fields from ebMS content

Header field

Source of value when an external partner sends an
ebMS document to the hub

Source of value when an ebMS
document is sent to an external
partner

x-aux-receiver-id

(SOAP Header)
<eb:MessageHeader><eb:To><eb:Partyld>

The value of this attribute comes
from backend as backend
headers

x-aux-sender-id

(SOAP Header)
<eb:MessageHeader><eb:From><eb:Partyld>

The value of this attribute comes
from backend as backend
headers.

x-aux-SyncResponse

Comes from the Source Document Definition
attribute bcg.ro.ebxml.SYNCREPLYMODE

Possible values:

* responseOnly

* signal AndResponse
* signalOnly

Comes from Target Document
Definition attribute

X-aux-process-instance-id

(SOAP Header)
<eb:MessageHeader><eb:Conversationld>

Comes from backend as backend
headers. If backend does not set
it then WebSphere Partner
Gateway will generate it

The required Conversationld
element in an ebMS flow is a
string identifying the set of
related messages that make up a
conversation between two
parties. Messages in the same
conversation will have same
Conversation Id but different
messageld.

X-aux-process-type

(SOAP Header) <eb:MessageHeader><eb:Service>

Comes from backend as backend
headers

x-aux—process—version

(SOAP Header) <eb:MessageHeader><eb:Service>
The text of the element value after the "$” character.
If the element value does not have the "$" character
or is not a URI then use the default "ALL".

Comes from backend as backend
headers

x-aux-protocol

HEBMS ”

Comes from Target protocol on
Partner Connection view

x-aux-protocol-version

(SOAP Header) <eb:MessageHeader><eb:version>

Comes from Target protocol
version on Partner Connection
view

x-aux-third-party-bus-id

Console > System Administration > DocMgr
properties

N/A

x-aux-TimeToAccept

Comes from Source Document Definition attribute

x-aux-system-msg-id

This field is set to the internally generated unique ID
for this message.

This field does not need to be set
in the incoming back-end
integration message

x-aux-msg-id

<soapenv:Header><eb:MessageHeader>
<eb:MessageData><eb:Messageld>

It can be set by backend as
backend headers. If it is not set
by backend then WebSphere
Partner Gateway will internally
generate it.

30

IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 12. Transport-level header fields from ebMS content (continued)

Source of value when an ebMS
Source of value when an external partner sends an |document is sent to an external
Header field ebMS document to the hub partner

X-aux- Comes from the Source Document Definition N/A
IntelligibleCheckRequired | attribute
beg.ro.ebxmLISINTELLIGIBLECHECKREQUIRED

ebMS Transport header example:

Connection : Keep-Alive

X-aux-process-version : ALL

x-aux-receiver-id : 124456789

x-aux-SyncResponse : signalsonly

Content-Length : 1326186

x-aux-process-instance-id : 918423619611581617869031

Xx-aux-process-type : ALMService

x-aux-protocol : ebMS

x-aux-sender-id : 987654421

x-aux-third-party-bus-id :

Content-Type : application/xml

x-aux-create-datetime : 2006-09-13T716:15:01Z

x-aux-TimeToAccept : 1

x-aux-transport-retry-count : 3

Host : 9.184.251.32:58080

x-aux-system-msg-id : 1158164092823000D606BBA390013320000000000000021

Referenceld : 1158164101686000D606BBA390013320000000000000003

x-aux-msg-id : 1158163556558000C7627E08C025182D1C3AD7C5B55F7A3
Owks184446wss.in.ibm.com

Keep-Alive : timeout=5, max=10000

x-aux-IntelligibleCheckRequired : no

x-aux-protocol-version : 2.0

Payload
The payload of the message contains the actual content of the message. The
location of the i aiload depends on the transport protocol that is sending the

message, as [Table 13| shows.

Table 13. Location of payload

Transport protocol Location of payload

HTTP protocol messages In the body of the HTTP post
JMS protocol messages In the body of the J]MS message
RosettaNet messages The service content from the PIP
EDI The EDI envelope

ROD/flat or XML document The ROD/flat or XML document

The payload can be Base64-encoded and in an XML transport envelope in either of
the following cases:

e If the document contains an attachment

A document with attachments must be wrapped in an XML transport envelope.
For more information on how attachments are formatted, see [‘Attachments” on|

* If you set the envelope flag for Backend Integration packaging to Yes

To wrap a document in the XML transport envelope regardless of whether it
contains attachments, set the Backend Integration envelope flag to Yes from the

Chapter 2. Planning for back-end integration 31

profile’s B2B Capabilities view. For example, to set this flag in the internal
partner’s profile, perform the following tasks:

1. Click Account Admin > Profiles.

2. Enter the name of the Internal Partner (or perform a search on all External
Partners).

Click the View details icon next to the name of the Internal Partner.
Click B2B Capabilities.
Click the Edit icon next to Backend Integration.

ook w

Set the Envelop Flag to Yes.

This XML transport envelope wraps the document in the <transport-envelope>
root tag. Inside this root tag there is a <payload> tag that contains the document
payload. If any attachments exist, each is contained in an <attachment> tag. For
more information on the structure of these tags, see

WebSphere Partner Gateway includes the following W3C XML schema file that
describes the Backend Integration XML transport envelope structure:

wbipackaging_v1.1 ns.xsd
Note: For ebMS flow, the packaging wbipackaging_v1.2_ns.xsd should be used.

This schema file is located in the following directory on the installation medium:
B2BIntegrate\packagingSchemas

You can use any XML editing tool to validate your Backend Integration XML
against this schema file to ensure the document is valid before it is sent to the
Document Manager.

Attachments

If the business message protocol permits them, each document can have one or
more attachments. If the document has attachments, it must be wrapped in an XML
transport envelope, as described in[“Payload” on page 31|[Table 14| describes the
XML attributes in the payload and attachment tags.

Table 14. XML attributes of the payload and attachment tags

XML attribute Description Required

Content-Type Identifies the MIME Yes
type/subtype, such as
text/xml or image/gif.

Encoding Identifies the encoding. No
Because the attachment and
payload must be
Base64-encoded, the only
valid value for this attribute
is "Base64”.

shows an example of a document in an XML transport envelope that
contains the payload and one attachment.

Note: The namespace in this example is required:
xmIns="http://www.ibm.com/websphere/bcg/2003/v1.0/wbipackaging"

32 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

<?xml version="1.0" encoding="utf-8"?>
<transport-envelope
xmins="http://www.ibm.com/websphere/bcg/2003/v1.0/wbipackaging">

<payload encoding="base64" contentType="application/xml1">
...base64 encoded XML message...
</payload>

<attachment encoding="base64" Content-Type="text/xml">
...base64 encoded XML attachment...
</attachment>

</transport-envelope>

Figure 13. Sample XML transport envelope for payload and one attachment

Notes:

1. To process documents wrapped in the XML transport envelope with the
WebSphere Interchange Server, WebSphere Partner Gateway provides the
Attachment data handler. For more information, see [‘Handling documents with|
[attachments” on page 123/

2. To process documents with attachments on WebSphere Process Server,
WebSphere Partner Gateway provides Backend Integration packaging data
binding. See [“Handling Backend Integration Packaging messages” on page 61|

Which packaging type works with your documents?

Documents in certain business protocols can use only certain types of packaging.
For example, a RosettaNet or an ebMS document can be processed only when a
packaging of Backend Integration has been specified. See [Table 16 on page 35}
[Table 17 on page 35} and [Table 18 on page 3€| for a complete list of which
document types can be associated with which types of packaging.

Example of Backend Integration packaging over HTTP

shows an example of a message from WebSphere Partner Gateway to an
application using the HTTP transport protocol. Note that the message does not
contain an attachment.

Chapter 2. Planning for back-end integration 33

POST /sample/receive HTTP/1.1

Host: sample. COM

Content-Type: application/xml
Content-Length: nnn

x-aux-sender-id: 000000001
x-aux-receiver-id: 000000002
x-aux-third-party-bus-id: 000000003
x-aux-create-datetime: 2002-10-28T723:05:02Z
x-aux-protocol: RNSC
x-aux-protocol-version: 1.0
X-aux-process-type: 3A4
X-aux-process-version: V02.00
x-aux-payload-root-tag: Pip3A4PurchaseOrderRequest
x-aux-msg-id: 1021358129419
X-aux-system-msg-id: 2

x-aux-production: Production
Xx-aux-process-instance-id: 123456
x-aux-transport-retry-count: 0

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE Pip3A4PurchaseOrderRequest SYSTEM
"3A4PurchaseOrderRequestMessageGuideline vl 2.dtd">

<Pip3A4PurchaseOrderRequest>

<PurchaseOrder>

</PurchaseOrder>

<thisDocumentIdentifier>
<ProprietaryDocumentIdentifier>1021358129419
</ProprietaryDocumentIdentifier>

</thisDocumentIdentifier>

<GlobalDocumentFunctionCode>Request</GlobalDocumentFunctionCode>

</Pip3A4PurchaseOrderRequest>

Figure 14. Sample message using HTTP transport protocol

Which message transport will you use?

When the back-end system and WebSphere Partner Gateway send messages to one
another, each must use the same message-transport protocol. The message transport
protocol defines the communication protocol in which the messages are sent.

WebSphere Partner Gateway communicates with a back-end system through its
Backend Integration interface. [Table 15[lists the transport protocols that this
Backend Integration interface supports.

Table 15. Transport protocols supported by Backend Integration

Transport protocol For more information

HTTP or HTTPS [“HTTP transport protocol” on page 37|
File-system files |“File-system protocol” on page 41|
JMS |“TMS protocol” on page 38|

[Table 16 on page 35| shows which transport protocols are supported for the
packaging types and business protocols when the hub is sending documents to the
back-end system.

34 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 16. Supported transport protocols from WebSphere Partner Gateway to back-end

system
HTTP or
Packaging type Business protocol HTTPS? JMS? File system?
Backend Integration RosettaNet (RNSC) Yes Yes No
ebMS Yes Yes No
Binary Yes Yes No
EDI (see |Table 18 oﬁ|
|Eage 3§| for information
on EDI)
XML Yes Yes No
ROD/flat Yes Yes No
None EDI (see |Tab1e 18 oEl
|}3age 3§| for information
on EDI)
cXML only Yes No No
SOAP only Yes No No
Binary Yes Yes Yes
XML Yes Yes Yes
ROD/flat Yes Yes Yes

shows which transport protocols are supported for the packaging types
and business protocols when the back-end system is sending documents to the

hub.

Table 17. Supported transport protocols from back-end system to WebSphere Partner

Gateway

HTTP or

Packaging type Business protocol HTTPS? JMS? File system?

Backend Integration RosettaNet (RNSC) Yes Yes No
ebMS Yes Yes No
XML Yes Yes No
Binary Yes Yes No
ROD/flat Yes Yes No

None XML only Yes Yes Yes
EDI (See [Table 18 or
|Eage 3§| for information
on EDI).
cXML only Yes No No
SOAP only Yes No No
Binary only No No No
ROD/flat only Yes Yes Yes

[Table 18 on page 36| shows which transport protocols and packaging types are

supported for various EDI, XML, and record-oriented data (ROD)/flat documents.

Chapter 2. Planning for back-end integration

35

Table 18. Supported transport protocols between WebSphere Partner Gateway and the
back-end system for EDI

HTTP or File
Packaging type |Document HTTPS? JMS? system?

Backend Single interchange containing a | Yes Yes No
Integration single transaction (such as an
X12 850 transaction within an
envelope)

Single interchange containing Yes Yes No
multiple transactions (such as
an X12 850 transaction and an
X12 890 transaction within the
same envelope)

Multiple interchanges Yes Yes No
containing a single transaction
(such as two X12 envelopes
within the same file, each of
which contains a single
transaction)

Multiple interchanges Yes Yes No
containing multiple transactions
(such as two X12 envelopes
within the same file, each of
which contains two or more
transactions)

EDI transaction (for example, an | No No No
X12 850 transaction), which
cannot be delivered by itself
because a transaction must be
within an EDI interchange

Document (for example, XML) | Yes Yes No
that is later transformed into an
EDI transaction

None Single interchange containing a | Yes Yes Yes
single transaction

Single interchange containing Yes Yes Yes
multiple transactions

Multiple interchange containing | Yes Yes Yes
a single transaction

Multiple interchanges Yes Yes Yes
containing multiple transactions

EDI transaction (not supported; |No No No
must have interchange
envelope)

Document (for example, XML) | Yes Yes Yes
that is later transformed into an
EDI transaction

The previous tables list the transport protocols that are valid between the hub and
the back-end system. The hub can use additional transport protocols to send
documents to or receive documents from partners. For example, the hub can send
a document to a remote FIP server by using the FTP Scripting transport. It can
also receive documents using the FTP Scripting transport. The FTP Scripting

36 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

transport, which is described in the WebSphere Partner Gateway Hub Configuration
Guide, can be used to send and receive documents over the Internet but it must be
used to send and receive documents from Value Added Networks (VANSs).

HTTP transport protocol

To send messages using an HTTP protocol, WebSphere Partner Gateway uses
HTTP/S 1.1. To receive messages from back-end systems, WebSphere Partner
Gateway supports both HTTP/S Version 1.0 and 1.1.

The HTTP message can include the integration packaging attributes. Whether these
attributes are included depends on the packaging type associated with the partner
connection, as follows:

e If the partner connection specifies that the HTTP message includes Backend
Integration packaging, the transport-level header of the HTTP message includes
additional attributes containing information about the message, such as the
protocol of the content, the ID of the message, and the sender of the message.
For a complete list of the fields in the header, see [“Transport-level header]
[content” on page 24/

RosettaNet messages must use Backend Integration packaging.

* If the partner connection specifies None packaging, the HTTP message does not
have these additional attributes, and WebSphere Partner Gateway parses the
message to obtain this information.

SOAP and cXML messages must use None packaging.

Note: XML messages can use either None or Backend Integration packaging.
Similarly, EDI documents can use either None or Backend Integration. Binary
messages received from the back-end system must have the Backend Integration
packaging; however, the reverse is not true because WebSphere Partner Gateway
supports sending binary messages to the application using either type of
packaging.

Process
When HTTP or HTTPS messages are sent between WebSphere Partner Gateway
and an application for asynchronous exchanges, the following steps occur:

1. The source system (WebSphere Partner Gateway or the back-end system) posts
an HTTP message to the receiver system using a specific URL.

2. The receiver system receives the message and sends the protocol-level
acknowledgment, HTTP 200 or 202, to signify the change in ownership. The
source system ignores the body of this acknowledgment message. If an error
occurs during this processing, the receiver system sends an HITP 500 message
back to the source system.

3. If WebSphere Partner Gateway is the receiver system (that is, when WebSphere
Partner Gateway receives a message), it then persists the message and releases
the connection to the source system.

4. The receiver system can then process the message asynchronously.

When the exchange is synchronous (for example, for a SOAP or cXML document),
a response is returned along with the HTTP 200 message in the same HTTP
connection.

Sending messages from the back-end system using the HTTP
protocol

To send a message to WebSphere Partner Gateway using the HTTP protocol, a
back-end system takes the following steps:

Chapter 2. Planning for back-end integration 37

1. Creates the message.
The Content-Type attribute in the transport-level header gives the encoding
used for the message.

2. Packages the message according to the packaging type set for the connection.

For Backend Integration packaging, the back-end system adds the protocol
header attributes that WebSphere Partner Gateway requires.

3. Posts the message to the URL that WebSphere Partner Gateway uses to receive
these messages.

4. 1If the exchange is synchronous, the back-end system waits to receive a response
in the same connection that was used for the request.

To enable HTTP message exchange in this direction, use the Receiver Details page
of the Community Console to set up a receiver at the hub for inbound documents.
This receiver specifies a URL. The back-end system needs to know this address to
send documents to the hub.

Receiving messages at the back-end system using the HTTP
protocol

To receive a message from WebSphere Partner Gateway using the HTTP protocol, a
back-end system takes the following steps:

1. Listens for a message at a particular URL.
2. When a message is received, processes the message:

¢ If the connection has None packaging, the back-end system must parse the
message to determine how to handle it.

* If the connection has Backend Integration packaging, the application can use
the Backend Integration attributes to determine how to handle the message.

3. If the exchange is synchronous, the back-end system returns a response in the
same connection used for the request.

To enable HTTP message exchange in this direction, use the Destination page of
the Community Console to set up a destination that specifies where documents
should be delivered to the back-end system.

JMS protocol

The JMS protocol is based on the Java™ Message Service (JMS) and transfers
messages through transactional, persistent J]MS queues provided by, for example,
IBM WebSphere MQ. The JMS protocol supports the following JMS message types:
* StreamMessage (as a byte array)

* BytesMessage (as a byte array)

* TextMessage

In the JMS protocol, one system sends a JMS message to another. After the second
system receives the message, it removes it from the queue. From this point
forward, the receiving system can process the message asynchronously.

The JMS message can include integration packaging attributes. Whether these
attributes are included depends on the packaging type associated with the partner
connection, as follows:

* If the partner connection specifies that the J]MS message includes Backend
Integration packaging, the J]MS message contains transport-level information
(such as the protocol of the content, the ID of the message, and the sender of the

38 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

message) as JMS properties within the message. For a complete list of the
properties, see|“Transport-level header content” on page 24/

Note: For compatibility with WebSphere MQ JMS, the properties in the JMS
messages use underscores in the property names instead of hyphens. For
example, in a JMS message, the property is x_aux_system_msg_id while the
equivalent HTTP header field will be x-aux-system-msg-id. When WebSphere
Partner Gateway processes a JMS message, it converts the underscores to
hyphens in these properties.

* If the partner connection specifies None packaging, the JMS message does not
have these additional attributes.

With the exception of binary messages, WebSphere Partner Gateway supports
sending and receiving JMS messages with either type of packaging. Binary
messages received from an application must have the Backend Integration
packaging. The reverse is not true because WebSphere Partner Gateway supports
sending binary messages to the application using either type of packaging.

Setting up the JMS environment
To set up your JMS environment, the following providers are required.

* JMS provider

A JMS provider provides the implementation of J]MS API support for messaging.
The backend system with which you are exchanging documents determines
which JMS provider you use.

— If you are exchanging documents with WebSphere Interchange Server, you
use WebSphere MQ as the JMS provider.

— If you are exchanging documents with WebSphere Process Server, you use
WebSphere Platform Messaging and a service integration bus as the J]MS
provider. Details about the JMS providers available for use with WebSphere
Process Server can be found in [Chapter 5, “Integrating WebSphere Procesg
[Server with JMS as transport,” on page 89/

The JMS provider typically provides a program you can use to set up the J]MS
environment. For example, WebSphere MQ provides the JMSAdmin program,
which lets you construct the objects required by JMS--the JMS connection factory
and JMS queue objects. When these objects are constructed, references to them
are stored in JNDI.

Note: For messaging, WebSphere Partner Gateway supports the point-to-point
model only.

* JNDI provider

The JNDI provider supplies the implementation of JNDI, which is used to store
references to JMS objects.

For a back-end application to send business documents to WebSphere Partner
Gateway using the JMS protocol, a JMS receiver must be configured. The JMS
receiver receives messages from a JMS queue, and the documents are introduced
into the WebSphere Partner Gateway workflow. The JMS receiver configuration
includes the required parameters for accessing the JNDI as well as the names of
JMS objects. For integration with the back-end system, the queue configured in the
JMS receiver is the queue from which the back-end system is sending the JMS
message.

Similarly, a JMS destination is used by WebSphere Partner Gateway to send
business documents to a queue where partners expect to receive them. Therefore,

Chapter 2. Planning for back-end integration 39

for sending messages to the back-end system, make sure a JMS destination is
configured in the profile of the internal partner. The destination should be
configured to send to the queue on which the back-end system is receiving. The
JMS destination configuration includes the required parameters to access the JNDI
as well as the names of JMS objects.

Overview of setting up the JMS environment

To communicate over the JMS transport protocol, WebSphere Partner Gateway and
the back-end system require a JMS queue for each direction of the communication.
Therefore, you must take the following steps to supply the appropriate J]MS
queues:

* Configure your JMS environment.

* Create a queue manager and the required queues including the transmission
queue, remote queue, and receiver queue.

The JMS queue manager can exist on any computer, including the following:
* The computer where the back-end system resides
e The computer where WebSphere Partner Gateway resides

In addition, you can have a queue manager on both the computer where the
back-end system resides and the computer where WebSphere Partner Gateway
resides. In this case, use setup channels to tie the two queue managers together.
Using this method, neither side needs to make client connections over the network.

Instructions for configuring a JMS transport-protocol mechanism using WebSphere
MQ Version 6.0 with the latest fixpack are provided in the WebSphere Partner
Gateway Hub Configuration Guide. Instructions for configuring the JMS environment
when you are exchanging documents with WebSphere Process Server are described
in [Chapter 5, “Integrating WebSphere Process Server with JMS as transport,” on|

|Eage 89.|

Sending messages from the back-end system using the JMS
protocol

To send a message to WebSphere Partner Gateway using the JMS protocol, a
back-end system takes the following steps:

1. Creates the message.
2. Packages the message according to the packaging type set for the connection.

For Backend Integration packaging, the application adds the required JMS
header attributes.

3. Sends the message to the J]MS queue that the back-end system uses to send
messages to WebSphere Partner Gateway.

Receiving messages at the back-end system using the JMS
protocol

To receive a message from WebSphere Partner Gateway using the JMS protocol, a
back-end system takes the following steps:

1. Listens for a message on the J]MS queue.
2. When a message is received, processes the message:

* If the connection has None packaging, the back-end system must parse the
message to determine how to handle it.

e If the connection has Backend Integration packaging, the application can use
the Backend Integration attributes to determine how to handle the message.

40 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

File-system protocol

The File System protocol enables WebSphere Partner Gateway to send messages by
placing them in a defined directory structure. WebSphere Partner Gateway receives
messages by reading them from the directory structure. The file-system protocol
supports only the None packaging type.

Sending messages from the back-end system using the
file-system protocol

To send a message to WebSphere Partner Gateway using the file-system protocol,
an application should take the following steps:

1. Create the message file in a temporary directory.

2. Once the file is ready, move the file to the directory that WebSphere Partner
Gateway polls.

To enable file-system message exchange in this direction, use the Receiver Details
page of the Community Console to set up a receiver for inbound documents. The
receiver of the message determines the directory that WebSphere Partner Gateway
polls. When you create a receiver, WebSphere Partner Gateway creates a
Documents directory and its subdirectories for the receiver, as follows:
<doc_root>

Documents

Production

Test
<other destination types>

WebSphere Partner Gateway polls the Documents directories and their
subdirectories regularly to detect message files. If it finds a message, WebSphere
Partner Gateway persists the message and then deletes the message from the
directory. WebSphere Partner Gateway then processes the message normally. See
the WebSphere Partner Gateway Hub Configuration Guide for information on how to
create a receiver.

Receiving messages at the back-end system using the
file-system protocol

To receive messages using the file system protocol, an application should do the
following:

1. Poll the appropriate directory for message files.
2. When there is a message, persist it.

3. Delete the message from the directory.

4. Process the message.

To enable file-system message exchange in this direction, use the Destination page
of the Community Console to set up a destination that specifies where documents
should be delivered. WebSphere Partner Gateway places the message file in the
Documents directory, which the destination defines. By defining the destination
directory according to the destination, each partner connection can have a different
directory. For information on destinations, see the WebSphere Partner Gateway Hub
Configuration Guide.

How do you access your back-end application?

WebSphere Partner Gateway provides the ability to integrate with many different
back-end applications. Typically, a back-end application is accessed through a
back-end system, such as an integration broker. Integration to the back-end
systems listed in is covered in this guide.

Chapter 2. Planning for back-end integration 41

Table 19. Supported back-end systems for WebSphere Partner Gateway

Back-end system For more information

WebSphere Process Server Chapter 3, “Introduction to WebSphere|
Process Server integration,” on page 55|

WebSphere Interchange Server Chapter 8, “Introduction to InterChange]
Server integration,” on page 113

WebSphere Message Broker Chapter 11, “Integrating with WebSphere|
Message Broker,” on page 175

WebSphere Data Interchange Chapter 12, “Integrating with WebSphere|

Data Interchange,” on page 193]

Message handling

42

This section describes how WebSphere Partner Gateway handles the following
situations that affect the delivery of messages:

* ["Queued delivery”]

¢ [“Communication error handling”|

* |"Duplicate messages” on page 43|

Queued delivery

WebSphere Partner Gateway posts information on all documents that it wants to
send to a particular destination into a queue. The Document Manager processes
these messages in the order the queue receives them (FIFO) and uses a thread for
each message to send them. Note that if the destination (for example, URL if the
transport protocol is HTTP or JMS destination if the transport protocol is JMS) has
been configured to be offline (see [Communication error handling), the messages
remain in the queue until the destination is enabled (online). If the Document
Manager receives an error in a thread, it stops other threads from attempting to
deliver their messages. The Document Manager places these messages back into
the queue until it is able to deliver the message that caused the error.

If the number of failed attempts exceeds the maximum number of attempts, the
Document Manager places the message in a failed directory and then attempts to
deliver the next message in the queue unless the destination is offline.

Communication error handling

When WebSphere Partner Gateway is the sender and the application returns an
error (for example, an HTTP Response message that is not a 200 or 202 message
when using the HTTP protocol), WebSphere Partner Gateway may then try to send
the message again depending on how it has been configured for this particular
destination. Each destination (URL in the case of HTTP) has the following options
that affect the number of retries and how the messages are sent:

Table 20. Destination configuration options

Configuration options Description

Retry Count How many document retries to attempt if an error is received

Retry Interval Time interval between retry attempts

Online/Offline Starts and stops delivery attempts

Number of Threads Number of posting threads that will process messages per
destination

IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

If WebSphere Partner Gateway is not configured to retry sending the message or if
all delivery attempts fail, WebSphere Partner Gateway signals the problem by
doing any or all of the following actions:

* Presenting the errors in various views of the Community Console such as the
Document Viewer and RosettaNet Viewer

* Sending an e-mail to appropriate people to notify them of the problem so that
they can take appropriate actions, if an e-mail alert for the delivery failed event
has been set up

* Creating an event document and then sending that document to the receiver.

See “Managing destination configurations” in the WebSphere Partner Gateway
Administrator Guide for more information.

Duplicate messages

All messages sent to or received from WebSphere Partner Gateway must have a
Global Unique Identifier (GUID). WebSphere Partner Gateway uses the GUID to
detect duplicate messages. When Backend Integration packaging is used, each
message carries its GUID in the transport-level header. For the HTTP protocol, for
example, the GUID is carried in the x-aux-system-msg-id field (see
[“Transport-level header content” on page 24). The sender of the message generates
the GUID. The file system protocol does not support checking for duplicate
messages.

If the attempt to send a message results in an error, WebSphere Partner Gateway
reuses the message’s GUID in each retry. If WebSphere Partner Gateway receives a
message that contains a duplicate GUID, it returns a positive acknowledgment (for
example, HTTP 200) but does not process the duplicate message.

Note: WebSphere Partner Gateway checks for duplicate messages at the
RosettaNet process level if RosettaNet is being used. It also checks for duplicate
messages if XML is being used.

Configuring WebSphere Partner Gateway

[“The hub configuration process” on page 4| provided a high-level description of the
steps the hub administrator takes to configure the hub. This section summarizes
steps for configuring WebSphere Partner Gateway for use with a back-end system.
These configuration steps assume that you have already configured the external
partners in your hub community. In particular, this section assumes that the
following configuration has already been performed:

* A partner profile for the internal partner has already been created.

 External partners for the origin (or destination) of the documents have already
been created.

¢ In the external partners’ B2B programs, partner profiles for the internal partner
have been created.

* A receiver has been defined so that the WebSphere Partner Gateway Receiver
can listen for incoming documents from the external partner over the
appropriate transport protocol.

* B2B capabilities have been defined and enabled in the profile of the external
partner (from which the document is received) so that WebSphere Partner
Gateway expects documents from that source.

Chapter 2. Planning for back-end integration 43

* Partner connections exist between the internal partner and the external partners
so that an external partner and the internal partner can receive (or send) a
document.

Note: You should log in as the hub administrator (hubadmin).

For a complete description of how to configure WebSphere Partner Gateway to
support a hub community, see the WebSphere Partner Gateway Hub Configuration
Guide.

After the external partners are configured, you must configure WebSphere Partner
Gateway so that it can communicate with a back-end system. This section provides
the following information to describe how to incorporate a back-end system into
your hub community:

* |“Sending documents to the back-end system”]

* |“Receiving documents from the back-end system” on page 4§

Sending documents to the back-end system

To send a document to the back-end system, WebSphere Partner Gateway takes the
following steps:

1. Receives a document from some external partner.

The Receiver retrieves this source document from a receiver that has been
defined at the hub for incoming messages from the external partner and its
associated transfer protocol. When sending a document to the back-end system,
the source document is the document that is received from some external
partner; it is therefore referred to as the partner document.

2. Converts the partner document to the destination document, which is in the
format that the back-end system requires.
The WebSphere Partner Gateway Document Manager performs this conversion
to the destination document. When sending a document to the back-end
system, the destination document is the document that is sent to the back-end
system; it is therefore referred to as the back-end document.

3. Sends the back-end document to the back-end system.

The Document Manager sends the back-end document through a destination
that has been defined at the hub for outgoing messages to the back-end system.

Therefore, for the hub to be able to send a document to the back-end system, you
must ensure that the configuration summarized in [Table 21| has been performed
within WebSphere Partner Gateway.

Table 21. Configuration steps to send documents to the back-end system

Configuration step WebSphere Partner Gateway steps For more information
1. Define where to send the 1. Create a destination to the back-end ||'Defining where to send the partner
document. system. document” on page 45|

44 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 21. Configuration steps to send documents to the back-end system (continued)

Configuration step

WebSphere Partner Gateway steps For more information

2. Define how to process the 2. Create document flow definitions ‘Defining how to process the partner]

document.

for the source and destination document” on page 44
formats.

3. Enable B2B capabilities for the
document flow definition of the
document sent to the back-end
system.

4. Create a document flow definition
interaction between the source and
destination document flow definitions.

3. Define how to connect to the 5. Create a partner connection that ‘Defining how to connect to the|

back-end system.

sends documents to the back-end back-end system” on page 47|
system.

Defining where to send the partner document

To send documents to the back-end system, the hub must have a destination
defined. This destination specifies the destination for the converted documents;
that is, it specifies the location (as a URI) to which the hub sends the back-end
document. This location is the same one at which the back-end system listens for
incoming messages. The destination identifies the entrance point into the enterprise
application layer (within the back-end system). Within WebSphere Partner
Gateway, it is Document Manager that checks for a destination. Once the
Document Manager has processed the document, it sends the converted document
to the back-end system at the location specified in the destination.

To define a destination within WebSphere Partner Gateway
1. Click Account Admin > Profiles.

2. Click Search to display a list of partners.

3. Select the View details icon next to the internal partner.
4. Click Destinations.

5. Click Create.

When you define the destination, you specify the transport protocol that the hub
and back-end system both use to transfer the back-end document. As|Table 16 on

shows, the choice of transport protocol depends on the format of the

document. Its format includes its packaging type and business protocol, which are
defined in its document flow definition.

Note: For more information on how to create a destination in WebSphere Partner
Gateway, see the WebSphere Partner Gateway Hub Configuration Guide.

The choice of transport protocol also depends on the transport protocols your
particular back-end system supports. For more information, refer to the chapter in
this guide for integrating your particular back-end system.

Once you have selected a valid transport protocol for your document, you can

provide the other information you need to define for the destination in the
Destinations view.

Chapter 2. Planning for back-end integration 45

Defining how to process the partner document

For the Document Manager to be able to process the partner document, it must

know the format to which it needs to convert this document; that is, it needs to

know the format of the back-end document. As part of the back-end integration,
you must ensure that the following entities are defined within your WebSphere

Partner Gateway:

* Document definitions must exist to define the format of both the partner
document and the back-end document.

* The internal partner’s B2B capabilities must include enablement of the back-end
document’s document flow definition as a destination (target).

* A document flow definition interaction must exist that brings together the
partner document as the source and the back-end document as the destination.

Defining the document definition: Each document definition defines how
WebSphere Partner Gateway processes a particular document. It includes the
packaging type and business protocol of the document. WebSphere Partner
Gateway provides some predefined packaging types and protocol definitions. If
these predefined formats correctly define your partner and back-end documents,
you do not need to define any document definition. However, if the predefined
formats do not adequately define your partner or back-end document, you must
create a valid document definition for that document. To define a document flow
definition within WebSphere Partner Gateway, you use the Manage Document
Flow Definitions page (Hub Admin > Hub Configuration > Document Flow
Definition > Create Document Flow Definition).

Note: For more information on predefined document flow definitions as well as
how to create document flow definitions in WebSphere Partner Gateway, see the
WebSphere Partner Gateway Hub Configuration Guide.

For back-end integration, the packaging type of the back-end document must be
one of the following:

* None packaging
* Backend Integration packaging

You must determine which of these packaging types applies, based on the business
protocol of your document and the particular back-end system you are using. For
information on packaging types with back-end systems, see [“Which packaging willl

ou use?” on page 23] For information on supported back-end systems, see[“How]|
do you access your back-end application?” on page 41]

Setting the B2B capabilities for sending: Before the Document Manager can
convert the source document, it must determine whether it can handle the format
of the desired destination document. To make this determination, the Document
Manager checks the B2B capabilities of the internal partner profile, which define
which document definitions have been enabled for the internal partner. Supported
document definitions have each of their component document types (such as
packaging type, business protocol, and document type) enabled. To enable a
particular document flow definition, you use the B2B Capabilities page of
WebSphere Partner Gateway. To access this view, perform the following steps:

1. Click Account Admin > Profiles > Partner.

2. Click Search to display a list of partners.

3. Select the View details icon next to the internal partner.
4. Click B2B Capabilities.

46 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

5. For back-end integration, make sure each of the document types that will be
sent to the back-end is enabled under the appropriate packaging, protocol and
document type for the Set Target document. Under Set Target, enable each
document-type component in the document definition of the back-end
document.

6. If the hub will also be receiving documents from the back-end system, you
might want to enable B2B capabilities required while you still have the B2B
Capabilities page displayed. In this case, you enable, under Set Source, the
document-type component of the back-end document.

Note: For more information about how to set B2B capabilities in WebSphere
Partner Gateway, see the WebSphere Partner Gateway Hub Configuration Guide.

Defining the document interaction for sending: For the Document Manager to
know how to convert the partner document, it must be able to locate an interaction
that combines the document flow definitions for the partner document and the
back-end document and identifies which is the source and which is the destination
partner.

When the Document Manager is ready to send the converted document to the
back-end system, it must be able to locate a partner connection between the source
partner and the destination partner (back-end system). However, for a partner
connection to exist, a valid interaction between the source and the destination
documents must exist. To define a document flow definition interaction within
WebSphere Partner Gateway, click: Hub Admin > Hub Configuration > Document
Definition > Manage Interactions > Create Interaction.

Note: For more information about how to create document flow definition
interactions in WebSphere Partner Gateway, see the WebSphere Partner Gateway Hub
Configuration Guide.

To send documents to the back-end system, define an interaction between the
source and destination (target) documents, as summarized in Table 2

Table 22. Creating an interaction for sending a document

Manage Interactions section Action

Source Select the component document-types in the
partner document’s document type
definition.

Target Select the component document-types in the
back-end document’s document type
definition.

Defining how to connect to the back-end system

For the Document Manager to be able to send the converted document to the
back-end system, it must find a valid partner connection, which identifies the
source and destination partners and provides the location through which these two
partners communicate. To create a partner connection, you use the Manage
Connections page in WebSphere Partner Gateway. To access this view, click:
Account Admin > Connections.

For a partner connection to be defined, a document definition interaction between
the source and destination documents must already exist. On the Manage

Connections view, you first check for an existing interaction by specifying the
source and destination (target) partners. [lable 23(lists the partners to choose on the

Chapter 2. Planning for back-end integration 47

Manage Connections page to define a partner connection for sending a document
to the back-end system.

Table 23. Creating a partner connection for sending a document

Manage Connection dropdown list Name of external partner

Source Name of the external partner that is sending
the document to the internal partner

Target Name of the internal partner, who receives
the document from the external partner

Once you specify the Source and Target, you then click Search to check for an
existing document flow definition interaction. If no interaction exists, you must
create one before you can proceed with the creation of a partner connection. If an
interaction does exist (one whose source is the partner document flow definition
and whose target is the back-end document flow definition), you can configure the
partner connection for communication with the back-end system.

Note: For more information about how to create a partner connection in
WebSphere Partner Gateway, see the WebSphere Partner Gateway Hub Configuration
Guide.

For back-end integration, this partner connection should specify as its target
destination the destination you defined in [“Defining where to send the partner|
ldocument” on page 45

Receiving documents from the back-end system

To receive a document from the back-end system, the hub takes the following
steps:
1. Receives a document from the back-end system.

The WebSphere Partner Gateway Receiver retrieves this source document from
a receiver that has been defined in the hub for incoming messages from the
back-end system and the associated transfer protocol. When receiving a
document from the back-end system, the source document is the document that
is received from the back-end system; therefore, this document is referred to as
the back-end document.

2. Converts the back-end document to the destination (target) document, which is
in the format that the designated external partner requires.
The Document Manager performs this conversion to the destination document.
When receiving a document from the back-end system, the destination
document is the document that is sent to some external partner; therefore, this
document is referred to as the partner document.

3. Sends the partner document to the appropriate external partner.
The Document Manager sends the partner document through a destination that
has been defined in the hub for outgoing messages to the appropriate external
partner.

Therefore, for the hub to be able to receive a document from the back-end system,

you must ensure that the configuration summarized in [Table 24 has been
performed within WebSphere Partner Gateway.

48 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 24. Configuration steps to receive documents from the back-end system

Configuration step WebSphere Partner Gateway steps For more information
1. Define where to retrieve the |1. Create a receiver that receives ‘Defining where to retrieve the|
document. incoming messages from the back-end back-end document”|

system.
2. Define how to process the 2. Create document flow definitions for ‘Defining how to process the back-end)|
document. the source and destination formats. document’|

3. Enable B2B capabilities for the

document flow definition of the

document received from the back-end

system.

4. Create a document flow definition

interaction between the source and

destination document flow definitions.
3. Define how to connect to 5. Create a partner connection that sends |[’Defining how to connect to|
WebSphere Partner Gateway. documents to WebSphere Partner WebSphere Partner Gateway” on page

Gateway. 50

Defining where to retrieve the back-end document

To receive documents from the back-end system, the hub must have a receiver
defined. This receiver specifies the source of the documents; that is, it identifies the
location (as a URI) at which the hub listens for incoming documents. This location
is the same one to which the back-end system sends documents. The receiver
identifies the entrance point into the Receiver (within WebSphere Partner
Gateway). Within WebSphere Partner Gateway, it is the Receiver that receives
documents into WebSphere Partner Gateway. Once the Receiver has processed the
document, it saves the converted document to the persistent shared storage for
later retrieval by the Document Manager.

To define a receiver within WebSphere Partner Gateway, click Hub Admin > Hub
Configuration > Receivers.

Note: For more information on how to create a receiver in WebSphere Partner
Gateway, see the WebSphere Partner Gateway Hub Configuration Guide.

When you define the receiver, you specify the transport protocol that the hub and
back-end system both use to transfer the back-end document. As [Table 17 on pagel
shows, the choice of transport protocol depends on the format of the document.
Its format includes its packaging type and business protocol, which are defined in
its document flow definition.

Note: The choice of transport protocol also depends on the transport protocols
your particular back-end system supports. For more information, refer to the
chapter in this guide for integrating to your particular back-end system.

Once you have selected a valid transport protocol for your document, you can
provide the other information you need to define for the receiver in the Receiver
Details view.

Defining how to process the back-end document

For the Document Manager to be able to process the back-end document, it must
know the format to which it needs to convert this document; that is, it needs to
know the format of the partner document. As part of the back-end integration, you

Chapter 2. Planning for back-end integration 49

must ensure that the entities summarized in [Table 25|are defined within your
WebSphere Partner Gateway.

Table 25. Defining how to convert the back-end document

Step For more information

1. Document definitions must exist to define [|“Defining the document definition” on page]
the format of both the partner document and @I
the back-end document.

2. The internal partner’s B2B capabilities |“Setting B2B capabilities for receiving”|
must include enablement of the back-end
document’s document definition as a source.

3. A document definition interaction must |[“Defining an interaction for receiving’|
exist that brings together the back-end
document as the source and the partner
document as the destination.

Setting B2B capabilities for receiving: For a summary of B2B capabilities as they
apply to back-end integration, see [‘Setting the B2B capabilities for sending” on|

If you have not already done so, enable, under Set Source, the document-type
component of the back-end document.

Defining an interaction for receiving: For a summary of document flow
definitions interactions as they apply to back-end integration, see
ldocument interaction for sending” on page 47.| This section summarizes how to
define the interaction for receiving a document from the back-end system.

To receive documents from the back-end system, define an interaction between the
document flow definitions of the source and destination (target) documents as

summarized in [Table 26

Table 26. Creating an interaction for receiving a document

Manage Interactions section Action

Source Select the component document-types in the
back-end document’s document flow
definition.

Target Select the component document-types in the
partner document’s document flow
definition.

Defining how to connect to WebSphere Partner Gateway

For the Document Manager to be able to process the document from the back-end
system, it must find a valid connection, which identifies the source and destination
partners and provides the location through which these two partners communicate.
For a summary of connections as they apply to back-end integration, see
lhow to connect to the back-end system” on page 47.

lists the partners to choose on the Manage Connections page in
WebSphere Partner Gateway to define a partner connection for receiving a
document from the back-end system.

50 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 27. Creating a partner connection for receiving a document

Manage Connection dropdown list

Name of external partner

Source

Name of the internal partner

Target

Name of the external partner that is
receiving the document from the internal
partner

Once you specify the Source and Target, you then click Search to check for an
existing document flow definition interaction. If no interaction exists, you must
create one before you can proceed with the creation of a partner connection. If an
interaction does exist (one whose source is the back-end document flow definition
and whose target is the partner document definition), you can configure the
partner connection for communication with the back-end system.

Note: For more information about how to create a partner connection in
WebSphere Partner Gateway, see the WebSphere Partner Gateway Hub Configuration

Guide.

Chapter 2. Planning for back-end integration 51

52 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Part 2. Integrating with WebSphere Process Server

The following chapters details the procedure to integrate WebSphere Partner
Gateway with WebSphere Process Server.

© Copyright IBM Corp. 2004, 2008

53

54 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 3. Introduction to WebSphere Process Server
integration

This chapter provides an overview of integration between WebSphere Partner
Gateway and WebSphere Process Server.

Note: For a description of the general process used to integrate WebSphere Partner
Gateway with a back-end system, see [Chapter 2, “Planning for back-end|
lintegration,” on page 9.

This chapter includes the following sections:

. ”Overview”l

+ [“Planning for integration with WebSphere Process Server” on page 57]

« [“Overview of tasks for integrating WebSphere Partner Gateway with WebSphere
Process Server” on page 60

+ |“Handling Backend Integration Packaging messages” on page 61|
- ["BCGBackEndIntegrationDataBindingUtil class” on page 73
- [“BCGBackEndIntegration]MSDataBindingImpl class” on page 78|

Overview

This section describes how WebSphere Partner Gateway can be used to provide the
B2B capabilities for WebSphere Process Server.

Note: For detailed information about WebSphere Process Server, see the
WebSphere Process Server information center.

WebSphere Process Server uses the B2B capabilities of WebSphere Partner Gateway
to manage interactions with trading partners (known, in WebSphere Partner
Gateway, as external partners). For example, suppose a service running on
WebSphere Process Server needs to send a document to an external partner.
WebSphere Process Server sends the document to WebSphere Partner Gateway,
which determines the transformation map (if any) that should be used to transform
the document into the form that the external partner is expecting. WebSphere
Partner Gateway also handles all the external partner profile information.

Now suppose WebSphere Process Server needs to send a document to multiple
external partners. The external partners receive the document in different formats.
WebSphere Process Server needs to deal with only one type of format (the one it
sends to WebSphere Partner Gateway). WebSphere Partner Gateway handles the
interaction with the external partners.

© Copyright IBM Corp. 2004, 2008 55

XML

Service — Map
Data

Partner1
Object . |

L Map \ Partner2
] I

Component |——» I — XML > Map e —
ROD
WebSphere WebSphere \
Process Server Partner Gatewy

Partner3

Figure 15. WebSphere Partner Gateway sends documents in multiple formats to external
partners

You can develop the transformation maps that convert the document to the format
required by the external partner, or you can import maps from the Data
Interchange Services client program.

Similarly, when WebSphere Process Server receives documents sent from external
partners, those documents are processed by WebSphere Partner Gateway. The
documents can be in a variety of formats. WebSphere Partner Gateway transforms
the documents and sends them to the destination defined for the internal partner
on WebSphere Process Server.

How WebSphere Process Server and WebSphere Partner
Gateway communicate

WebSphere Partner Gateway sends a document from an external partner to
WebSphere Process Server so that the document can be processed by a service on
WebSphere Process Server. The way a service on WebSphere Process Server makes
itself available for use by other applications (including WebSphere Partner
Gateway) is through its export binding.

WebSphere Process Server
WebSphere Partner Gateway

Service
WebSphere
Partner
Gateway D
Document Export -1 Service
Manager Component

Figure 16. How WebSphere Partner Gateway uses the export binding to send documents to
WebSphere Process Server

The WebSphere Process Server component has an interface that describes the
service (the methods available and the input and output data) and a binding (in
this case, an export binding).

56 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

[Figure 16 on page 56| presents a generic view of how the export binding invokes a
service on WebSphere Process Server. The transport type (for example, JMS or
HTTP) you use to send the message affects where the message is sent and how it
is retrieved, as described in|“Message transports that WebSphere Process Server|
lsupports” on page 58.|

Similarly, when a service on WebSphere Process Server wants to send a business
document to an external partner, it uses its import binding. Imports identify
services outside of a module, so they can be called from within the module. In this
case, WebSphere Process Server uses the import binding to call WebSphere Partner
Gateway, which processes the document and sends it to the external partner.

WebSphere Process Server WebSphere Partner Gateway

Service

D WebSphere

Service I + Partner
Component | — fels N ” Gateway
Receiver

Figure 17. How WebSphere Process Server uses the import binding to invoke WebSphere
Partner Gateway

Planning for integration with WebSphere Process Server

To plan for your integration with WebSphere Process Server, follow the steps
outlined in [Chapter 2, “Planning for back-end integration,” on page 9/

WebSphere Process Server versions that WebSphere Partner
Gateway supports

WebSphere Partner Gateway Version 6.1 supports integration with WebSphere
Process Server Version 6.0.2.

WebSphere Process Server is available on several platforms, including Windows
2000 and several UNIX-based platforms. For more information, consult your
installation guide for WebSphere Process Server in the WebSphere Process Server
information center.

Supported installation scenarios

In the following table, each row shows a supported combination of WebSphere
Partner Gateway installations and WebSphere Process Server installations.

Note: During installation, WebSphere Partner Gateway creates separate WebSphere
Application Server profiles for each of its components. These profiles are for
WebSphere Partner Gateway use only. Do not deploy WebSphere Process Server or
any other WebSphere Application Server application into these profiles.

Chapter 3. Introduction to WebSphere Process Server integration 57

58

Table 28. Supported installation scenarios

WebSphere Partner Gateway
installation

WebSphere Process Server
installation

Details

Installed on WebSphere
Application Sever 6.1, or one
or more instances of
WebSphere Application
Server Network Deployment
6.1.

WebSphere Process Server
installer installs its supported
WebSphere Application
Server ND along with
WebSphere Process Server.

Installed on WebSphere
Application Sever 6.1, or one
or more instances of
WebSphere Application
Server Network Deployment
6.1.

Installed on the same
installation, but not the same
instance, of WebSphere
Application Server 6.1 on
which WebSphere Partner
Gateway is installed. The
profile used for WebSphere
Process Server must be
different than the one used
by WebSphere Partner
Gateway components.

This is supported only on the
platforms (operating systems
and versions) that are
supported by both
WebSphere Partner Gateway
and WebSphere Process
Server.

Message transports that WebSphere Process Server supports

When WebSphere Partner Gateway sends a message to WebSphere Process Server
over a particular message transport protocol, the transport-specific destination
defined for the internal partner sends the message to the WebSphere Process Server
end point. WebSphere Process Server retrieves the message from the end point and
processes the message. The type of message transport determines how the message
is handled after it arrives at WebSphere Process Server:

* For the JMS transport, you set up a JMS export to retrieve the message from the

JMS queue.

* For the HTTP transport, you create a servlet on WebSphere Process Server that
handles the receipt of the message from WebSphere Partner Gateway.

e For SOAP documents (which are sent over the HTTP transport protocol), you set
up a Web Service export binding in WebSphere Process Server to retrieve the

SOAP request.

* For the file-system, you set up an inbound Flat File adapter to route the message
to WebSphere Process Server.

When you send messages from WebSphere Process Server to WebSphere Partner
Gateway, you send them to the transport-specific receiver (for example, a JMS

queue or a URL) on WebSphere Partner Gateway. The type of message transport
determines how the message is sent.

* For the JMS transport, you set up a JMS import to send the message to the J]MS

queue.

* For the HTTP transport, you create a component on WebSphere Process Server
that does an HTTP POST to the URL specified for the WebSphere Partner

Gateway receiver.

* For SOAP documents (which are sent over the HTTP transport protocol), you set
up a Web Service import binding in WebSphere Process Server to send the SOAP
request to a WebSphere Partner Gateway URL.

¢ For the file-system, you set up an outbound Flat File adapter to route the
message to a directory on WebSphere Partner Gateway.

IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Information about sending and receiving messages using the supported transports
can be found in the following sections:

* |Chapter 4, “Integrating WebSphere Process Server with HTTP as transport,” on|
page 81|
+ |Chapter 5, “Integrating WebSphere Process Server with JMS as transport,” on|

[page 89|

+ |Chapter 6, “Integrating WebSphere Process Server with SOAP/HTTP,” on page]
101

* |Chapter 7, “Integrating WebSphere Process Server with File-system as transport,”|

on page 107|

Support for WebSphere Process Server integration

This section describes the samples, documentation, and utility classes that
WebSphere Partner Gateway provides to assist you with WebSphere Process Server
integration.

Samples

WebSphere Partner Gateway provides samples of using the JMS transport protocol
to assist you in the integration process with WebSphere Process Server. These
samples reside in the following subdirectory of the WebSphere Partner Gateway
product directory:

Integration/WBI/WPG/samples

lists the subdirectories of the samples directory.

Table 29. Samples for WebSphere Process Server integration

Type of sample Samples subdirectory
General samples JMS
RosettaNet-specific samples RosettaNet/JMS

Documentation

In addition to the information in this document, WebSphere Partner Gateway
provides the PIP Sample for WebSphere Process Server, which gives you step-by-step
instructions on how to set up a PIP flow between an external partner and
WebSphere Process Server.

Utility classes

WebSphere Partner Gateway provides two utility classes that you can use to
transform a Backend Integration packaging message into a business object or to
transform a business object into a Backend Integration packaging message:

+ [BCGBackEndIntegrationDataBindingUtil class|
This class implements the [DataBinding interfacef and provides utility methods to
read and write strings, streams, and byte arrays. You can use this class as is or
develop a new data binding using this class.

+ |BCGBackEndIntegrationJ]MSDataBindingImpl class|
This class implements the [MSDataBinding interfacel This class can be specified

in SCA JMS export and import bindings. It creates a data object from a JMS
message containing a payload or writes the data object to a JMS message.

Chapter 3. Introduction to WebSphere Process Server integration 59

Overview of tasks for integrating WebSphere Partner Gateway with
WebSphere Process Server

This section lists the tasks that you perform so that WebSphere Partner Gateway
can send documents to or receive documents from WebSphere Process Server. It
provides a foundation for the transport-specific chapters that describe how to
integrate with WebSphere Process Server.

On the WebSphere Partner Gateway system

This section provides a very brief overview of the tasks you perform to configure
the hub so that you can send documents to and receive documents from
WebSphere Partner Gateway. These tasks, which are described in detail in the
WebSphere Partner Gateway Hub Configuration Guide, are performed at the
Community Console of WebSphere Partner Gateway.

Create a transport-specific receiver on the hub to receive documents sent to the
hub from WebSphere Process Server or from external partners.

Create an Internal Partner profile (if one does not already exist), including a
transport-specific destination that WebSphere Partner Gateway will use to send
documents to WebSphere Process Server.

Create External Partner profiles, including transport-specific destinations that
WebSphere Partner Gateway will use to send documents to the partners.

Import any WSDL files, transformation maps, RosettaNet packages, or other
document definition mechanisms so that a document definition for the type of
document you are exchanging displays on the Document Flow Definition page
of the WebSphere Partner Gateway Community Console.

Create interactions between the types of document the hub will receive (from
WebSphere Process Server or from an external partner) and the types of
documents the hub will send (to WebSphere Process Server or to the external
partners).

Create B2B capabilities in the profiles of the internal partner and external
partners to indicate the types of documents they are able to send and receive.

Create partner connections between the internal partner and external partners to
indicate the source partner (the sender of the document), the target partner (the
recipient of the document), and the action that the hub should take (if any) to
transform the document.

On the WebSphere Process Server system

The module is the WebSphere Process Server artifact used to assemble and deploy
a service. The first step, then, is to create a module, using the WebSphere
Integration Developer.

After the module is created, you create the components and their interfaces and
then specify the binding used.

1.

Specify an interface for the component. You can import an interface (for
example, you can import an existing WSDL file), or you can create the
interface.

When you create an interface, you define one or more operations performed by
the component, and you define the inputs and outputs expected by the
component.

60 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

An interface for a component can be a WSDL or you can use a Java
implementation for the interface. Refer to the WebSphere Process Server
documentation for information on when to create a WSDL interface and when
to create a Java interface.

2. Specify an implementation for the component. You can import an
implementation (for example, you can import an existing Java program), or you
can create the implementation.

3. Compose the application using the Assembly Editor of WebSphere Integration

Developer. You create a service component, and then specify the interface for

the component (which you created or imported in step [l on page 60). You also
specify the implementation (which you created or imported in step [2).

4. Create an export binding to allow WebSphere Partner Gateway to send a

document to the service, or create an import binding to allow WebSphere
Process Server to send a document to WebSphere Partner Gateway.

When you create the binding, you specify information needed to send and
receive documents. For example, in the JMS Binding definition, you indicate the
JMS queue and bus as well as the data binding that should be used to
transform a business document to or from a business object. (See
[Backend Integration Packaging messages”|for information on the use of and
requirements for data binding.) The transport-specific requirements for the
service bindings are described in subsequent chapters.

5. When you have finished assembling the components that make up the module,
you deploy the module.

Handling Backend Integration Packaging messages

For certain protocols such as RosettaNet, WebSphere Partner Gateway expects
backend applications to use Backend Integration packaging. WebSphere Partner
Gateway supports Backend Integration packaging over HTTP and JMS protocols.
This requires WebSphere Process Server services be able to handle Backend
Integration packaging messages. WebSphere Process Server services use business
objects. Therefore, to send Backend Integration packaging messages to WebSphere
Partner Gateway, WebSphere Process Server services have to serialize business
objects into Backend Integration packaging messages. Similarly to receive Backend
Integration packaging messages from WebSphere Partner Gateway, WebSphere
Process Server services have to deserialize backend integration packaging message
into business objects.

This section describes the data binding utility API and JMS data binding that
WebSphere Partner Gateway provides, which can be used by WebSphere Process
Server services for handling Backend Integration packaging messages.

Data binding refers to the mechanism used to:

* Transform a business object, sent from WebSphere Process Server, into a business
document that WebSphere Partner Gateway can process

* Transform a business document, sent from WebSphere Partner Gateway, into a
business object that WebSphere Process Server can process

The WebSphere Partner Gateway-provided Backend Integration packaging data
binding utility API and JMS data binding provide a way to create a Backend
Integration packaging message from a business object or to convert a Backend
Integration packaging message into a business object. The WebSphere Partner
Gateway-provided data binding can be used as is when you are sending and
receiving documents with Backend Integration packaging. Or, if you want to

Chapter 3. Introduction to WebSphere Process Server integration 61

customize the processing, you can create your own data binding using the data
binding utility API provided by WebSphere Partner Gateway.

JMS transport

If you are using JMS as your transport protocol and you are sending or receiving
an XML document that does not have BackEnd Integration packaging (in other
words, it has a packaging of None specified), you can use the default J]MS binding
provided by WebSphere Process Server or you can use the WebSphere Process
Server-provided business object APIs to create your own data binding. If you are
sending or receiving a document other than XML that does not have BackEnd
Integration packaging (in other words, it has a packaging of None specified), you
have to create your own data binding. You select the JMS binding when you
configure the SCA (Service Component Architecture) JMS Export or Import
binding. Refer to the WebSphere Process Server information center for more
information on using the default JMS binding.

If you are using JMS as your transport protocol and you are sending or receiving
documents with BackEnd Integration packaging, you can use the
BCGBackEndIntegration]MSDataBindingImpl data binding as is, or, if you want to
customize the processing, you can create your own data binding using
BCGBackEndIntegration]MSDataBindingImpl. To use
BCGBackEndIntegration]MSDataBindingImpl, you configure it as the data binding
in the SCA JMS Export Binding and JMS Import Binding.

* For request processing, the export invokes the read method of the
JMSDataBinding interface to convert the Backend Integration packaging JMS
message from WebSphere Partner Gateway into a business object. For
request-response processing, the export might also invoke the write method.

* For request processing, the import invokes the write method of the
JMSDataBinding interface to construct a Backend Integration packaging JMS
message from a business object before the message is sent to WebSphere Partner
Gateway. For request-response processing, the import might also invoke the read
method to read the response provided by the service.

Refer to the WebSphere Process Server information center for more information
about how and when methods of data binding are called.

HTTP transport

If you are using HTTP as your transport protocol, you can write an HTTP data
binding class that extends and overrides the generic
[BCGBackEndIntegrationDataBindingUtil class}

e An HTTP servlet can invoke methods of BCGBackendIntegrationDataBindingUtil
to construct a business object from the HTTP stream that is sent from WebSphere
Partner Gateway. The servlet can then use this business object to invoke a
service.

e A component can be written to perform an HTTP POST to WebSphere Partner
Gateway. A service can then invoke this component with the business object. If
the component requires a Backend Integration packaging message, it can use the
BCGBackendIntegrationDataBindingUtil class to construct the message from the
business object.

Note: WebSphere Partner Gateway supports request-only invocations for Backend

Integration packaging. You can, however, develop request-response flows with
Backend Integration packaging data binding (via WebSphere Partner Gateway user

62 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

exits). This utility class can be used as the basis for converting a response business
object into a response stream or for converting a response stream into a response
business object.

Top-level and child business objects

This section describes the top-level business object and the child business objects
used by Backend Integration data binding.

Top-level business object
To use Backend Integration packaging data binding, you create a top-level business
object that has three child attributes:

Table 30. Top-level business object

Attribute Type

payload This attribute is of type payload container
business object. It can be of any type but
must have the properties specified in
[Table 31 on page 64| or [Table 32 on page 65|

attachment This attribute is of type attachment container
business object. It can be of any type but
must have the properties specified in

[Table 33 on page 65|

packagingHeaders This attribute is of type packaging header
business object. It can be of any type but
must have the properties specified in
[Table 34 on page 66|

When a Backend Integration packaging message is converted to a top-level object,
the top-level object is populated with the data from the message. When a top-level
object is converted to a Backend Integration packaging message, the top-level
object is the input to the data binding.

The following illustration shows the top-level business object and its child objects:

Chapter 3. Introduction to WebSphere Process Server integration 63

- |_J TLO_BackendPackaging =[] ProductType e, 5

[1 [] —: = [} PackagingHeaders
payload ProductType contentType string I
attachment AttachmentType [] encoding string | x-aux-sender-id string
packagingHeaders PackagingHeaders =~ ——————w— role string : x-aux-receiver-id string
schema string : x-aux-protocol string
schemaVersion string X-aux-protocol-version string
description string x-aux-process-type string
dataBytes base64Binary | X-aux-process-version string
payload Product ¢ x-aux-create-datetime string
X-aux-msg-id string
I . x-aux-production string
: x-aux-system-msg-id string
= L:I AttachmentType : x-aux-payload-root-tag string
[1 | x-aux-process-instance-id string
contentld string | x-aux-event-status-code string
contentType string ¢ x-aux-third-party-bus-id string
encoding string | x-aux-transport-retry-count string
role string x-aux-SyncResponse string
schema string i x-aux-IntelligibleCheckRequired string
schemaVersion string . x-aux-TimeToAccept string
description string x-aux-role string
dataBytes base64Binary ! x-aux-role-schema string
[- X-aux-role-schema-version string
X-aux-role-description string
content-type string
content-length string i

Figure 18. Top-level business object

Payload Container business object
The structure of the payload container business object depends on whether the
payload is XML or non-XML.

XML payloads: If the payload is XML, the payload container has the following
properties:

Table 31. Payload container object for XML payloads

Attribute Type
contentType xsd:string
encoding xsd:string

role xsd:string
schema xsd:string
schemaVersion xsd:string
description xsd:string
dataBytes xsd:base64Binary

64 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 31. Payload container object for XML payloads (continued)

Attribute Type

payload A reference to the payload business object.
For example, if the payload itself is
contained in a Pip3A4PurchaseOrderRequest
object, the payload attribute is of type
PIP3A4PurchaseOrderRequest.

[“Creating business objects for RosettaNet service content” on page 67| describes
how to create a business object for a PIP.

Non-XML payloads: If the payload is not XML, the payload container has the
following properties:

Table 32. Payload container object for non-XML payloads

Attribute Type
contentType xsd:string
encoding xsd:string

role xsd:string
schema xsd:string
schemaVersion xsd:string
description xsd:string
dataBytes xsd:base64Binary
dataString xsd:string

The payload is the value of dataBytes or dataString.

* If your payload is not XML, while converting the Backend Integration packaging
message into a top-level object, the Backend Integration packaging data binding
will not convert the value of the <payload> element from the message into the
payload business object. Instead, it will set the value of the dataBytes (or
dataString) attribute of the payload container business object as the bytes (or
string) value of the payload.

* Similarly, while constructing the Backend Integration packaging message from a
top-level object, the Backend Integration packaging data binding will set the
contents of the dataBytes (or dataString) attribute of the payload container
business object as the value of the <payload> element of the Backend Integration
packaging message.

The attributes Role, Schema, SchemaVersion and Description are added in
wbipackaging 1.2. This is only used in ebXML flow. The value of these attributes
for a payload will be set as value of the corresponding attributes in ebXML Soap
message for that payload.

Attachment Container business object
This business object represents an attachment. It can be of any complex type;
however it must have the following attributes:

Table 33. Attachment container business object attributes

Attribute Type
contentID xsd:string
contentType xsd:string

Chapter 3. Introduction to WebSphere Process Server integration 65

Table 33. Attachment container business object attributes (continued)

Attribute Type

encoding xsd:string

role xsd:string
schema xsd:string
schemaVersion xsd:string
description xsd:string
dataBytes xsd:base64Binary
dataString xsd:string

The attachment is the value of dataBytes or dataString.

Packaging header business object

This business object holds the transport-level headers. The x-aux transport headers
are described in [“Transport-level header content” on page 24.| This business object
must have the following attributes.

Table 34. Packaging header business object attributes

Attribute Type

x-aux-sender-id string
x-aux-receiver-id string
x-aux-protocol string
x-aux-protocol-version string
X-aux-process-type string
X-aux-process-version string
x-aux-create-datetime string
x-aux-msg-id string
x-aux-production string
x-aux-system-msg-id string
x-aux-payload-root-tag string
x-aux-process-instance-id string
x-aux-event-status-code string
x-aux-third-party-bus-id string
x-aux-transport-retry-count string
x-aux-SyncResponse string
x-aux-IntelligibleCheckRequired string
x-aux-TimeToAccept string
x-aux-role string
x-aux-role-schema string
x-aux-role-schema-version string
x-aux-description string
content-type string
content-length string

66 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Creating business objects for RosettaNet service content

Backend Integration packaging data binding requires a top-level object. You can
create the top level object as described in [“Top-level business object” on page 63
WebSphere Partner Gateway expects RosettaNet service content XML as the
payload of the Backend Integration packaging message. To create the payload
container object, you need a payload business object that represents the RosettaNet
service content XML. You can create the RosettaNet service content business object
using one of the following approaches:

e If the structure of the PIP service content provided by RosettaNet is in XML
schema format, this XML schema can be used as your payload business object.

* If the structure of the PIP service content provided by RosettaNet is in DTD
format, you need to convert this DTD into XML schema. To convert PIP service
content DTD into XML schema, follow the procedure in WebSphere Partner
Gateway Hub Configuration Guide. This XML schema can be used as your payload
business object.

* Alternatively, if the PIP is in DTD format and a WebSphere Partner
Gateway-provided PIP package exists for the PIP, follow this procedure to create
the PIP service content business object.

1. Navigate to the RosettaNet service content PIP package for the RNIF version
you are interested in. For example, if you want to create a
PIP3A4PurchaseOrderRequest business object, you can use the
BCG_Package_RNSC1.0_RNIFV02.02.zip file in the WebSphere Partner
Gateway product directory.

2. Using WebSphere Integration Developer, import the ZIP file into the
WebSphere Process Server modules you have set up for the PIP.

3. Expand the Data Types folder and right-click the business object that
corresponds to the root element of your service content. For example, in the
case of a PIP 3A4 request, right-click the Pip3A4PurchaseOrder from the
Data Types folder; then select Open with the Text Editor.

4. In the text editor, change the includes as follows.

../../common/

to
./

5. Save your changes, and close the text editor.

How the Backend Integration packaging data binding works

This section provides a description of how Backend Integration data binding
creates a Backend Integration packaging message from a business object or creates
a business object from an incoming message.

Backend Integration packaging message to top-level object
conversion

This section describes how a Backend Integration packaging message is converted
to a business object that can be used by services on WebSphere Process Server.

As mentioned in [“Top-level and child business objects” on page 63 |Backend
Integration packaging data binding works with a specific type of top-level business
object. You must create this business object before you can use the data binding.

The top-level business object is described in [“Top-level business object” on page 63

Chapter 3. Introduction to WebSphere Process Server integration 67

Types of messages: The way the Backend Integration packaging message from
WebSphere Partner Gateway is converted depends upon the type of message. The
message can be one of three types:

* An XML message with a root tag of <transport envelope> and a URI of
“http:/ /www.ibm.com/websphere /bcg/2003/v1.1/wbipackaging” or
"http:/ /www.ibm.com/websphere/bcg/2003/v1.0/wbipackaging” .

An example of a message inside a transport envelope is:

<transport-envelope
xmins="http://www.ibm.com/websphere/bcg/2003/v1.1/wbipackaging">
<payload encoding="base64" contentType="application/xml"
contentId="111111111111">
...base64 encoded XML message...
</payload>
<attachment encoding="base64" contentType="text/xml"
content1d="2222222222222">
...base64 encoded XML attachment...
</attachment>
<attachment encoding="base64" contentType="application/pdf"
contentId="3333333333">
...base64 encoded PDF attachment...
</attachment>
</transport-envelope>

e Any other XML message
* A non-XML message

Methods used to convert the message: To convert a Backend Integration
packaging JMS message into a top-level object, you use the read method of
BCGBackEndIntegration]MSDataBindingImpl.

To convert a Backend Integration packaging message into a top-level object, you
can use the following methods of BCGBackEndIntegrationDataBindingUtil:

e read():

If your Backend Integration packaging message is contained in an input stream,
you can use this method.

¢ setFromByteArray:

If your Backend Integration packaging message is contained in a byte array, you
can use this method.

* setFromString

If your backend integration packaging is contained in a string, you can use this
method.

Before calling any of these methods, you can customize the processing of data
binding by calling the following methods:

* setTLOTypeName()
You can use setTLOTypeName on the object to name it and to specify its URL
* setBOPrefix()

You can use setBOPrefix to specify the business object prefix. If you have not
done this, the default prefix of TLO_ is used.

— If the payload business object type can be determined, the top-level object is:
<BOPrefix><PayloadBOTypeName>.

— If the payload business object is not determined (for non-XML payloads), the
name is BCG_TLO_BackendPackaging (the default).

If you specify both setTLOTypeName and setBOPrefix, setBOPrefix is ignored.

68 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

For non-XML payloads, if you do not specify the top-level object name by calling
setTLOTypeName before calling the read method, the default top-level object is
used. The payload is not converted into a payload business object. Instead, the
data bytes are set as is in the default top-level object. The default top-level object is

shown in [Figure 19

—

payload
attachment

- BCG_TLO_BackendPackaging

BCG_PayloadContainer
BCG_AttachmentContainer []

packagingHeaders BCG_PackagingHeaders

- |_] BCG_PayloadContainer

—>
contentType string
encoding string
role string
schema string

schemaVersion string

descripion string
dataBytes base64Binary
dataString string

Figure 19. Default top-level business object

= |_] BCG_AttachmentContainer

contentID string
contentType string
encoding string
role string
schema string

schemaVersion string

description string
dataBytes base64Binary
dataString string

P

= [_J BCG_PackagingHeaders

x-aux-sender-id
x-aux-receiver-id
x-aux-protocol
X-aux-protocol-version
X-aux-process-type
X-aux-process-version
x-aux-create-datetime
X-aux-msg-id
x-aux-production
x-aux-system-msg-id

x-aux-payload-root-tag

X-aux-process-instance-id

x-aux-event-status-code

x-aux-third-party-bus-id

X-aux-transport-retry-count

x-aux-SyncResponse

x-aux-IntelligibleCheckRequired

x-aux-TimeToAccept
x-aux-role

x-aux-role-schema

x-aux-role-schema-version

x-aux-role-description
content-type
content-length

string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string

string

i

If the message has transport headers, you need to read those transport headers and
set them using setxAuxHeaders (). The setxAuxHeaders method must be called

before calling read(). The setxAuxHeaders method does not apply to the
BCGBackEndIntegration]MSDataBindingImpl data binding, because the JMS

transport headers will be read from the given JMS message in the read method.

How messages are converted: The following section describes how the read,
setFromByteArray, and setFromString methods of
BCGBackEndIntegrationDataBindingUtil and the read method of
BCGBackEndIntegration]MSDataBindingImpl work. The method:

1.

available in the message). For example:

Content-Type: application/xml

Determines the XML content type from the Content-type header (if it is

If the contentType is not available, the method inspects the first few bytes of
the message to determine its type.

The method obtains the payload based on the content type, as follows:

* For an XML message, it deserializes the message to obtain the payload
business object.

Chapter 3. Introduction to WebSphere Process Server integration

69

¢ For an XML message that has a root tag of <transport envelope>, it Base64
decodes the payload to obtain the payload bytes, and parses the message to
determine whether it is XML or non-XML.

— If the message is XML, it deserializes the payload bytes to obtain the
payload business object.

— If the message is not XML, it does not deserialize the payload bytes. The
payload bytes are used as is.

For each attachment contained within the transport envelope, it Base64
decodes the attachment to obtain the attachment bytes. The attachment bytes
are used as is; they are not deserialized.

e For an XML message that has a root tag of <EventNotification>, it
deserializes the message to obtain the event-notification business object.

* For a message that is not XML, it does not deserialize the message. The bytes
are used as is.

2. Determines the name of the top-level business object.
* If the payload is XML:

— If setTLOTypeName was invoked before calling read, setFromByteArray,
or setFromString, the name specified in the method is directly used to
create the top-level name.

— If you use setBOPrefix, the top-level object name is made up of the prefix
you specify plus the XML root element of the payload. The URI is also
obtained from the payload.

— If you do not use setTLOTypeName or setBOPrefix, the top-level object
name is made up of the default prefix TLO_ plus the XML root element of
the payload.

* If the payload is not XML:
— The default top-level object can be used.

— The setTLOTypeName method can be used, but it must conform to the
top-level object you created or to the default top-level object
(BCG_TLO_BackendPackaging).

3. Instantiates the top-level object.

4. Instantiates the payload container business object and set its values. The way
the values are set depends upon the type of message.

e For an XML message with a root tag of <transport envelope>, the attributes
are set as follows:

— contentType

The value of the contentType attribute of the <payload> tag.
- encoding

The value of the encoding attribute of the <payload> tag.
- payload

The name of the payload business object.

* For an XML message or an XML message with a root tag of <event
notification>, the attributes are set as follows:

— contentType is not set
- encoding is not set
- payload
The name of the payload business object.
¢ For a non-XML message, the attributes are set as follows:
— contentType is not set

70 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

- encoding is not set
- dataBytes

If the incoming message is received as bytes, the entire set of bytes is set
as the value of this attribute.

- dataString

If the incoming message is received as a string, the entire string is set as
the value of this attribute.

- payload is not set.
5. Instantiates the attachment business objects and set their values as follows:
* contentType
The value of the contentType attribute of the <attachment> tag.
¢ encoding
The value of the encoding attribute of the <attachment> tag.
* contentld
The value of the contentld attribute of the <attachment> tag.
* dataBytes
The Base64-decoded attachment bytes.

6. Instantiates the transport headers business object and sets the transport headers
read from the message. The name of this business object is set as the value of
the packagingHeaders attribute in the top-level object.

shows how the methods are used.

Top-level object to Backend Integration packaging message
conversion

This section describes how a business object from WebSphere Process Server is
serialized into a Backend Integration packaging message. The data binding puts
the content and any attachments into a transport envelope in Base64 format. It also
puts the transport headers from the top-level object into the envelope as a string.

Before invoking backend integration packaging data binding, a service has to
create a top-level object, as described in [“Top-level business object” on page 63

Methods used to convert the object: A WebSphere Process Server service invokes
the Backend Integration packaging data binding, sending it the top-level object. To
convert the object into a Backend Integration packaging JMS message, you use the
write method of BCGBackEndIntegration]MSDataBindingImpl. To convert the
object into a Backend Integration packaging message, you use the write,
getAsByteArray, or getAsString method of
BCGBackEndIntegrationDataBindingUtil.

Before calling one of these methods, you can call:

* The|setPackagingSchema method]

This method specifies which packaging schema to use in constructing the
Backend Integration packaging message.

* The|setOptions method|

This method provides information (such as the root tag of the payload) that can
be used to serialize the message. For the options you can set, see

[method” on page 76.

Chapter 3. Introduction to WebSphere Process Server integration 71

72

How objects are converted: The following section describes how the write,
getAsByteArray, and getAsString methods of
BCGBackEndIntegrationDataBindingUtil and the write method of
BCGBackEndIntegration]MSDataBindingImpl work. The method:

1.

Determines the content type of the payload. This information is obtained from

the payload container business object. The way the payload is processed is

based on its content type, as follows:

¢ XML payload
The dataBytes or dataString attribute of the payload container (if present)
must be null and the payload container business object should have at least
one attribute that is of complex type. This is a reference to the payload
business object. The business object is serialized and is used as the XML
payload. If there are more attributes of complex type set, the first complex
type attribute is considered to be the XML payload.

¢ EventNotification

The first non-null attribute should be of type EventNotification. This is a
reference to the event notification business object. The business object is
serialized and is used as the XML payload.

* Non-XML

If the dataBytes attribute is not null, the value of the attribute is used as the
payload.

If the dataString attribute is not null, the value of the attribute is used as the
payload.
Serializes the payload business object if it is of type XML or EventNotification.
Base64 encodes the payload, based on its type:

If the payload container business object has a non-null value for the dataByte
attribute, that value (the payload bytes) is Base64 encoded.

If the payload container business object has a non-null value for the dataString
attribute, the bytes are extracted based on the contentType attribute of the
business object. The bytes are then Base64 encoded.

If the payload was serialized from a business object, the bytes are extracted
based on the contentType attribute of the business object. The bytes are then
Base64 encoded.

Constructs an XML document based on the packaging schema specified.
a. The <transport envelope> root tag is added.

b. The <payload> tag, which is a child element of the <transport envelope>
tag, is set with the base64-encoded string from step @

Processes any attachments.

If the attachment container object has a dataByte attribute that is not null, the
bytes are base64-encoded, and the string is set as the value of the <attachment>
tag.

If the attachment container object has a dataString attribute that is not null, the
bytes are extracted based on the contentType attribute of the business object.
The bytes are then base-64-encoded, and the string is set as the value of the
<attachment> tag.

IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Serialized 2 Backend Integration 1 Payload

— — A
and Base-64 Packaging Data Binding Business
encoded string Object
3 <payload>
! <payload>
6 <attachment>
‘ > <attachment>
Base-64 . 4 Attachment
encoded string /5 Backend Integration — Business
Packaging Data Binding Object

Figure 20. How data binding adds converted business objects to the Backend Integration
packaging message

shows how the methods are used.

BCGBackEndIntegrationDataBindingUtil class

This section describes the BCGBackEndIntegrationDataBindingUtil class and the
methods of the class. You can use this class as it is, or, if you want to customize
the processing of the data binding, you can create a new data binding class.

DataBinding interface

BCGBackEndIntegrationDataBindingUtil implements the following DataBinding
interface:

DataBinding
public interface commonj.connector.runtime.DataBinding extends Serializable {
public DataObject getDataObject()throws
commonj.connector.runtime.DataBindingException;
public void setDataObject(DataObject dataObject) throws
commonj.connector.runtime.DataBindingException;

}
Methods

The BCGBackEndIntegrationDataBindingUtil methods are described in this section.

The BCGBackEndIntegrationDataBindingUltil class has two types of methods:
e Those that create a data object from a byte array, string, or data stream:

read(InputStream)

— setFromByteArray(byte[])

— setFromString(String)

- setxAuxHeaders(HashMap)

— setBOPrefix(String)

- setTLOTypeName(String, String)
— getDataObject()

Chapter 3. Introduction to WebSphere Process Server integration

73

Notes:

1. You can use one of the following methods to create the data object:
- read(InputStream)
— setFromByteArray(byte[])
— setFromString(String)

Before calling the method to create the data object, the program can invoke
any of the following methods:

— setxAuxHeaders
— setBOPrefix
— setTLOTypeName

2. If the setTLOTypeName method is used, the setBOPrefix method has no
significance and is ignored.

3. Use the getDataObject method to obtain the top-level business object.
e Those that convert a data object into a byte, string, or data stream:

— setDataObject(DataObject)

- setPackagingSchema(String)

- setOptions(HashMap)

— getAsString|()

— getAsByteArray/()

— write(OutputStream)

— getxAuxHeaders()

getAsByteArray method
This method returns the byte[] obtained from the top-level object.

Syntax:
public byte[] getAsByteArray()

getAsString method

This method returns a string form of the top-level object.

Syntax:
protected java.lang.String getAsString()

getDataObject method

This method returns the data object, if it has already been instantiated.

Syntax:
public commonj.sdo.DataObject getDataObject()

getxAuxHeader method

This method returns the x-aux headers from the transport envelope. See
[“Transport-level header content” on page 24| for information about the x-aux
headers.

Syntax:
public java.util.HashMap getxAuxHeaders ()

74 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

read method

This method takes an input stream, reads this stream, and converts it to a top-level
business object. The actions taken by the read method are described in detail in
“Backend Integration packaging message to top-level object conversion” on page|

67]

Syntax:

public void read(java.io.InputStream inputStream)
throws commonj.connector.runtime.DataBindingException

Parameter:

inputStream
The input stream from which the data will be read.

setBOPrefix method
If the top-level object was not specified, you may specify a prefix by calling

setBOPrefix (). If you do not specify a prefix, TLO_ is used as the default prefix.
Notes:

1. In the case of an XML payload, the namespace of the XML payload is used as
the namespace of the top-level object.

2. In the case of a non-XML payload, the default namespace "http://ibm.com/
websphere/bcg/2005/wbi/bo” is used as the namespace for the top-level
object.

Syntax:
public void setBOPrefix(java.lang.String prefix)

setDataObject method
This method sets the data object.

Syntax:

public void setDataObject(commonj.sdo.DataObject topLevelbo)
throws commonj.connector.runtime.DataBindingException

Parameter:

topLevelbo
The top-level business object. See ["Top-level business object” on page 63| for
information.

setDebuglLevel method
By default, the debug level is set to error. Use this method to change the level.

Syntax:
public static void setDebuglLevel(int debuglLevel)

Parameter:
debugLevel
Possible values for the debug level are:
* BCG_LOG_DEBUG
* BCG_LOG_ERROR
¢ BCG_LOG_WARNING
* BCG_LOG_INFO

Chapter 3. Introduction to WebSphere Process Server integration 75

setFromByteArray method

This method takes the payload data bytes or transport-envelope data bytes and
creates a top-level object. Before calling this method, you may call one or more of
the following methods:

* |setTLOTypeName method|
* |setBOPrefix method|
* [setxAuxHeader method|

Syntax:

public void setFromByteArray(byte[] dataBytes)
throws commonj.connector.runtime.DataBindingException

Parameter:

dataBytes
The payload in the form of bytes.

setFromString method
This method takes a string as a parameter and converts it to a top-level object.
Before calling this method, you may call one or more of the following methods:

+ |setTLOTypeName method|
* |setBOPrefix method)|
+ |setOptions method|

Syntax:

public void setFromString(java.lang.String fromString)
throws commonj.connector.runtime.DataBindingException

Parameter:

fromString
The string form of the top-level data object or payload.

setOptions method
This method sets the required options.

Syntax:

public void setOptions(java.util.HashMap options)
throws commonj.connector.runtime.DataBindingException

Parameter:
Hashmap
Hashmap can have the following key values:
* BCG_ROOT_NODE_NAME
This is the root name to be used to generate the payload.
* BCG_APPEND_DTD

This attribute indicates whether to append a DTD tag to the payload. The
value can be BCG_APPEND_DTD_TRUE or BCG_APPEND_DTD_FALSE.
The default is BCG_APPEND_DTD_FALSE.

* BCG_SYSTEM_ID

This is the system ID for the DTD. If the value of BCG_APPEND_DTD is
BCG_APPEND_DTD_TRUE, this value may be set. If the value of
BCG_APPEND_DTD is BCG_APPEND_DTD_FALSE, this value is ignored.

e BCG_PUBLIC_ID

76 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

This is the public ID for the DTD. If the value of BCG_APPEND_DTD is
BCG_APPEND_DTD_TRUE, this value is optional. If the value of
BCG_APPEND_DTD is BCG_APPEND_DTD_FALSE, this option is ignored.

setPackagingSchema method
This method defines the packaging schema to use when generating Backend
Integration packaging. You can specify one of the following packaging schemas:

http:/ /www.ibm.com/websphere/bcg/2003/v1.0/wbipackaging
http:/ /www.ibm.com /websphere/bcg /2003 /v1.1/wbipackaging
http:/ /www.ibm.com/websphere /bcg /2004 /v1.2/wbipackaging

If the packaging schema is not specified, http://www.ibm.com/websphere /bcg/
2003/v1.1/wbipackaging is used.

The packaging schema is used when you call the write method.

Syntax:

public void setPackagingSchema(java.lang.String packagingSchema)

Parameter:

packagingSchema

The schema name for the top-level business object.

setTLOTypeName method

This method sets the top-level object name and its name space.

If the payload is not XML and setTLOTypeName is not used, the default
top-level object name is used.

If the payload is an XML document, the top-level object name is derived as
follow:

boPrefix + < RootTag of the XML Payload >.

For example, if setBOPrefix("IBM") is called, and the root element of the payload
is "ABC", the top-level name is "IBM_ABC".

The prefix can be set using the [setBOPrefix method| If the top-level object name
is not set and the payload is an XML doc, you must create a DataType of type
boPrefix + < RootTag >.

Syntax:

public void setTLOTypeName(java.lang.String tns,

java.lang.String typeName)

Parameters:

tns

Namespace of the top-level business object.

typeName

The top-level object type.

setxAuxHeader method

This method sets the transport headers. If no transport headers are set, there are no
transport headers to read. See [“Transport-level header content” on page 24| for
information about the x-aux headers.

Syntax:

public void setxAuxHeaders(java.util.HashMap xAuxHeaders)

Chapter 3. Introduction to WebSphere Process Server integration 77

write method

This method writes the top-level object into the specified output stream. The
actions taken by the write method are described in detail in [“Top-level object to|
[Backend Integration packaging message conversion” on page 71

Syntax:

public void write(java.io.OutputStream outputStream)
throws commonj.connector.runtime.DataBindingException

Parameter:

outputStream
The output stream to which the data object will be written.

Example code
The following code shows how to create a top-level object from an input stream:

BCGBackEndIntegrationDataBindingUtil util = BCGBackEndIntegrationDataBindingUtil ();
util.setTLOTypeName ("TLO_URIName","TLOName");

//util.setBOPrefix ("BO_prefix");

//setBoPrefix is commented because setTLOTypeName () is being used

util.read (inputStream);

DataObject tlo = util.getDataObject ();

The following code shows how to get a stream from a data object:

BCGBackEndIntegrationDataBindingUtil util = BCGBackEndIntegrationDataBindingUtil ();
util.setOptions (options);

util.setDataObject (tlo);

byte [] tlo_bytes = util.getAsByteArray ();

BCGBackEndIntegrationdMSDataBindinglmpl class

This class creates a business object from a JMS message containing a payload or
writes the business object to a JMS message. When it reads the business object
from a JMS message, the JMS transport headers are read before the business object
is created. When it writes the business object to a J]MS message, this class writes
JMS transport headers if the business object has a packaging headers child business
object.

BCGBackEndIntegration]MSDataBindingImpl extends
BCGBackEndIntegrationDataBindingUtil, which is described in
['BCGBackEndIntegrationDataBindingUtil class” on page 73|

JMSDataBinding interface

BCGBackEndIntegration]MSDataBindingImpl implements the JMSDataBinding
interface:

public interface com.ibm.websphere.sca.jms.data.JMSDataBinding extends DataBinding {

public void read(javax.jms.Message message) throws javax.jms.JMSException;
public void write(javax.jms.Message message) throws javax.jms.JMSException;
public int getMessageType();
static public int OBJECT MESSAGE = 0;
static public int TEXT_MESSAGE = 1;
static public int BYTES_MESSAGE = 2;
static public int STREAM_MESSAGE = 3;
static public int MAP_MESSAGE = 4;

78 I1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Methods

The BCGBackEndIntegration]MSDataBindingImpl methods are described in this
section.

getMessageType

This method returns the type of message.

Syntax:
public int getMessageType()

isBusinessException
This method returns an indication of whether there are any business exceptions.

Syntax:
public boolean isBusinessException()

read

This method reads the transport headers and, depending on the message type,
creates the top-level business object. The actions taken by the read method are
described in detail in [“Backend Integration packaging message to top-level object]
fconversion” on page 67|

In this method, there is no need to set the AuxHeaders and read from the message
itself.

Syntax:

public void read(javax.jms.Message jmsMessage)
throws javax.jms.JMSException

Parameter:

jmsMessage
The message containing the payload and transport headers.

setBusinessException
This method sets an indicator of whether a business exception has occurred.

Syntax:
public void setBusinessException(boolean arg0)

write

This method writes the data object to the message, and, depending on the message
type, sets the headers in the message. The actions taken by the write method are
described in detail in [“Top-level object to Backend Integration packaging message|
lconversion” on page 71]

Syntax:

public void write(javax.jms.Message jmsMessage)
throws javax.jms.JMSException

Including data-binding classes in your component implementation

While developing WebSphere Process Server components using WebSphere
Integration Developer, you can use the WebSphere Partner Gateway-provided
BCGBackEndIntegration]MSDataBindingImpl and
BCGBackEndIntegrationDataBindingUtil classes. These classes are available in

Chapter 3. Introduction to WebSphere Process Server integration 79

databinding .jar, which is located in the Integration\WBI\WebSphereProcessServer\
DataBinding directory on the product image.

To use these classes in your Business Integration project, you need to make sure
databinding jar is available in the EAR file of the Business Integration project you
will deploy to WebSphere Process Server. To include the databinding jar file in
your generated EAR file, you can refer to the WebSphere Process Server and
WebSphere Integration Developer information centers, or you can follow the
procedure in this section. Before following this procedure, make sure you are in the
Business Integration Perspective and that you have created the Business Integration
project in which you are trying to import this jar file.

1. From WebSphere Integration Developer, import databinding.jar into your
project. You need to import databindng.jar as "J2EE Utility jars”. After a
successful import, WebSphere Integration Developer will implicitly create a
project for databinding jar

2. Add this project as a dependency to your Business Integration project. To add
the project as a dependency:

Note: The following is an example of one way to add the project as a
dependency. Refer to the WebSphere Process Server documentation for
information on other ways to do to this.

a. Double-click on your business integration project.
This step opens the dependency editor.

b. Expand the Java folder.

c. Click the Add button.
The list of projects is displayed.

d. Select the project that was implicitly created by WebSphere Integration
Developer for databindingjar in step

The project created by WebSphere Integration Developer for databinding.jar
is displayed as a dependency under Java.

e. Select the project.
f. Select the Deploy with Module check box.

3. Close the dependency editor and save the workspace.

After you complete these steps, databindng.jar will be available in your generated
EAR file.

80 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 4. Integrating WebSphere Process Server with HTTP
as transport

This chapter describes how to integrate WebSphere Partner Gateway with
WebSphere Process Server over the HTTP transport protocol. This chapter provides
the following information:

* [“How messages are sent to WebSphere Process Server”|

* ["How messages are sent from WebSphere Process Server” on page 83|

» |“Sending documents to WebSphere Process Server” on page 85|

* [“Sending documents from WebSphere Process Server” on page 86|

This chapter does not describe how SOAP requests sent over HITP are processed.
For information about sending and receiving SOAP requests over HTTP, see
Chapter 6, “Integrating WebSphere Process Server with SOAP/HTTP,” on page|

101

How messages are sent to WebSphere Process Server

This section describes how WebSphere Partner Gateway receives a message from
an external partner and sends the message to WebSphere Process Server over
HTTP.

Notes:

1. All document types except RosettaNet can have a packaging of None when
sent from WebSphere Partner Gateway to WebSphere Process Server.
RosettaNet documents must have Backend Integration packaging.

2. All document types except SOAP (Web service requests) can have a packaging
of Backend Integration when sent from WebSphere Partner Gateway to
WebSphere Process Server. SOAP requests must have a packaging of None
specified.

For information about sending and receiving SOAP documents over HTTP, see
Chapter 6, “Integrating WebSphere Process Server with SOAP/HTTP,” on page|

i01]

In order for WebSphere Process Server to receive a message sent from WebSphere
Partner Gateway, you must write a servlet to retrieve the message and convert it to
a business object.

WebSphere Partner Gateway sends messages to the URL configured in the internal
partner’s "To” HTTP destination in the partner connection. The servlet is listening
on this URL and receives the message. The service that will receive the converted
business document has an SCA export binding. [Figure 21 on page 82{shows how a
message sent from an external partner is processed by WebSphere Partner Gateway
and then sent to the HTTP servlet where, via the export binding, the business
object invokes the service.

© Copyright IBM Corp. 2004, 2008 81

WebSphere Partner Gateway

WebSphere WebSphere I
D Partner Partner D
Gateway Gateway I External
Document <—| HTTP A p— B2B N Partner
Manager I Receiver I Protocol
(HTTP
Destination) I
System

WebSphere Process Server

Service
HTTP
serviet —~ % SCA Service
(User- Export Component
created)

Figure 21. How a message is sent from WebSphere Partner Gateway to the HTTP serviet

The HTTP servlet performs the following tasks:

1. From the request message it receives, the servlet determines which service and
which method of that service need to be invoked.

2. The HTTP servlet constructs a business object from the incoming message, as
described in [‘Creating a servlet” on page 86.
3. The HTTP servlet invokes the service using the appropriate SCA client API:

a. If the SCA service method is request-only, there is no business response
expected. If the HTTP servlet is able to invoke the SCA service, the servlet
returns an HTTP 200 status code to WebSphere Partner Gateway. If the
HTTP servlet is not able to invoke the SCA service, it returns the
appropriate HTTP error status code.

If the SCA service method is request-response, the SCA service returns a
response business object. The HTTP servlet serializes this business object
into a message. The HTTP servlet returns this message to WebSphere
Partner Gateway in an HTTP response. If for some reason the HTTP servlet
is not able to invoke the SCA service successfully, it returns the appropriate
HTTP error status code.

For example, for a cXML synchronous message received from partners,
WebSphere Partner Gateway sends the cXML message to WebSphere
Process Server over HTTP. WebSphere Partner Gateway expects WebSphere
Process Server to provide a synchronous cXML response on the same HTTP
connection.

Note: WebSphere Partner Gateway supports request-only invocations for
Backend Integration packaging. You can, however, develop request-response
flows with Backend Integration packaging data binding (via WebSphere Partner

82 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Gateway user exits). The BCGBackEndIntegrationDataBindingUtil class| can be
used as the basis for converting a response business object into a response
stream.

How messages are sent from WebSphere Process Server

This section describes how WebSphere Partner Gateway receives a message from
WebSphere Process Server over HITP and sends it to an external partner.

Notes:

1.

All document types except RosettaNet and binary can have a packaging of
None when sent from WebSphere Process Server to WebSphere Partner
Gateway. RosettaNet and binary documents must have Backend Integration
packaging.

All document types except SOAP (Web service requests) can have a packaging
of Backend Integration when sent from WebSphere Process Server to
WebSphere Partner Gateway. SOAP requests must have a packaging of None
specified.

For information about sending and receiving SOAP documents over HTTP, see

Chapter 6, “Integrating WebSphere Process Server with SOAP/HTTP,” on pagel

101]

When WebSphere Process Server sends a message to WebSphere Partner Gateway,
it uses a component that does an HTTP POST to a WebSphere Partner Gateway
HTTP receiver. to send an HTTP POST to a WebSphere Partner Gateway HTTP
receiver. You develop the component and expose it as a service.

Chapter 4. Integrating WebSphere Process Server with HTTP as transport 83

WebSphere Process Server
Service Service
; SCA Service
Service SCA
— -F--p —
Component I Import Export L) Component
HTTP WebSphere Partner Gateway
L8 ¢ ¢ o O} o OB O} OB Qo ./}
WebSphere WebSphere External
D Partner Partner Partner

Gateway Gateway

HTTP |—> Document
Receiver 1 Manager

]

File
System

Figure 22. How a message is sent from WebSphere Process Server to the HTTP receiver on
WebSphere Partner Gateway

WebSphere Process Server services send messages to WebSphere Partner Gateway
as follows:

1. A WebSphere Process Server SCA service that needs to send business
documents to WebSphere Partner Gateway over HTTP uses its SCA import
binding to invoke the component that will perform the HTTP POST. The SCA
import binding of the service invokes the component with a business object.

2. The component receives the business object on its export. The component then
serializes the business object into a business document. See |”Creating thel
[component to convert and send the message” on page 87

3. The component sends the message using an HTTP POST to the WebSphere
Partner Gateway HTTP receiver URL.

4. WebSphere Partner Gateway receives this message on its HTTP receiver.

The way WebSphere Partner Gateway responds depends on whether the
message requires a synchronous response or whether it requires only an HTTP
transport-level response. The HTTP receiver has a SyncCheck configuration
point that makes this determination. You can configure SyncCheck when you
create the receiver, or you can modify the receiver to specify it. See the
WebSphere Partner Gateway Hub Configuration Guide for information on the
SyncCheck configuration point.

a. If WebSphere Partner Gateway determines that the message received from
the WebSphere Process Server requires only a transport-level response, the
WebSphere Partner Gateway receiver responds with the appropriate HTTP
status code. It then routes the business document to the external partner.

84 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

b. If WebSphere Partner Gateway determines that the message received from
WebSphere Process Server requires a response business document, it keeps
the HTTP transport connection open. WebSphere Partner Gateway routes
the business document to an external partner. The external partner receives
the request document and sends a response document to WebSphere
Partner Gateway. WebSphere Partner Gateway returns the response business
document as an HTTP response to WebSphere Process Server.

5. The component receives the HTTP response. It determines whether the
response is an HTTP status code only or also a business document:

a. If the response is an HTTP status code indicating success, the component
returns the call. The WebSphere Process Server SCA service (which invoked
the component) continues its processing. However, if the HTTP status code
indicates failure, the component returns the appropriate fault. The
WebSphere Process Server SCA service does the appropriate fault handling.

b. If the response is a business document, the component converts this
business document to a business object. It then returns the business object
to the WebSphere Process Server SCA service, which processes the response
business object.

For example, for cXML synchronous messages received from WebSphere
Process Server and intended for an external partner, WebSphere Partner
Gateway sends the message to the partner and receives the response
synchronously. WebSphere Partner Gateway then returns the response to
WebSphere Process Server as an HTTP response of the same HTTP request
that was originally sent from WebSphere Process server.

Note: WebSphere Partner Gateway supports request-only invocations for
Backend Integration packaging. You can, however, develop request-response
flows with Backend Integration packaging data binding (via WebSphere Partner
Gateway user exits). The [BCGBackEndIntegrationDataBindingUtil class| can be
used as the basis for converting a response business object into a response
stream.

Sending documents to WebSphere Process Server

The section describes the steps you take to enable WebSphere Process Server to
accept documents sent from WebSphere Partner Gateway

Setting up WebSphere Partner Gateway

You configure WebSphere Partner Gateway as described in the WebSphere Partner
Gateway Hub Configuration Guide. Make note of the following as you configure
WebSphere Partner Gateway:

1. Add the com.ibm.bcg.server.sync.SoapSyncHdlr handler to the syncCheck
configuration point of the HTTP receiver (if you will be handling two-way
requests).

2. Make sure the HTTP destination of the internal partner indicates the URL to
which WebSphere Partner Gateway will send messages to WebSphere Process
Server.

The destination should point to the HTTP servlet deployed on WebSphere
Process Server.

Setting up WebSphere Process Server

This section describes how to set up WebSphere Process Server to receive messages
from WebSphere Partner Gateway.

Chapter 4. Integrating WebSphere Process Server with HTTP as transport 85

Creating a business object

If you are using the BCGBackendIntegrationDataBindingUtil class to perform the
conversion from message to business object, you must use the top-level business
object described in [“Top-level and child business objects” on page 63, You can use
the BO Editor to create the business object, or you can import the xsd file
(BCG_TLO_BackendPackaging.xsd) that is available on the installation medium.

If you are not using Backend Integration packaging (in other words, if the
packaging for the document was specified as None), you create the business object
per the requirements of the document exchange.

Creating a servlet

This section describes the servlet you must create so that WebSphere Partner
Gateway can send messages to WebSphere Process Server over the HTTP transport.
Design the servlet to:

* Receive messages from WebSphere Partner Gateway
* Convert the business document to a business object

* Invoke the appropriate service on WebSphere Process Server

If you are using Backend Integration packaging, you can use the
[BCGBackEndIntegrationDataBindingUtil class|to convert an HTTP request message
into a request business object expected by your service. Also you can use
BCGBackEndIntegrationDataBindingUtil to create an HTTP response message from
the response business object returned by your service. An example on how to use
the BCGBackEndIntegrationDataBindingUtil class to convert an HTTP request
message into a request business object follows. This example uses the
and the [getDataObject method} If you know the name of the top level object in
advance, you can also call the setTLOTypeName method}
try{

DataObject rootBO = null;

BCGBackEndIntegrationDataBindingUtil dataBinding = new
BCGBackEndIntegrationDataBindingUtil();

// request.getInputStream() gives the

// backend integration packaging input stream received by servlet
dataBinding.read(request.getInputStream());

rootB0 = dataBinding.getDataObject();

catch(Exception exp){
System.out.printIn("Error occurred while creating request business
object: " + exp);

}

After you create the servlet, deploy it. The URL at which this servlet is receiving
should be specified as the URL in the TO destination configured for the partner
connection in WebSphere Partner Gateway.

Sending documents from WebSphere Process Server

The section describes the steps you take to enable WebSphere Process Server to
send documents to WebSphere Partner Gateway

Setting up WebSphere Partner Gateway

You configure WebSphere Partner Gateway as described in the WebSphere Partner
Gateway Hub Configuration Guide. Make note of the following as you configure
WebSphere Partner Gateway:

86 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

1. Create an HTTP/S receiver on the hub to receive the documents sent from
WebSphere Process Server (if one does not already exist). This receiver
identifies the URL at which the Receiver component of WebSphere Partner
Gateway listens for documents from WebSphere Process Server.

2. Add the com.ibm.bcg.server.sync.SoapSyncHdlr handler to the syncCheck
configuration point of the HTTP receiver (if you will be handling two-way
requests).

Setting up WebSphere Process Server

This section describes how to set up WebSphere Process Server to send messages
to WebSphere Partner Gateway. For a WebSphere Process Service to send a
message over HTTP to WebSphere Partner Gateway, you require a component that
can do an HTTP POST to the URL at which the WebSphere Partner Gateway HTTP
receiver is receiving documents. Whenever a WebSphere Process Server service
sends a business document to an external partner, it will invoke this component.

Creating a business object

If you are using the BCGBackendIntegrationDataBindingUtil class to perform the
conversion from business document to business object, you must use the top-level
business object described in [“Top-level and child business objects” on page 63.| You
can use the BO Editor to create the business object, or you can import the xsd file
(BCG_TLO_BackendPackaging.xsd) that is available on the installation medium.

If you are not using Backend Integration packaging (in other words, if the
packaging was specified as None), you create the business object per the
requirements of the document exchange.

Creating the component to convert and send the message

Create a component that converts the business object into an input stream and
then sends the HTTP message to WebSphere Partner Gateway. This component will
serialize the business object obtained from the service into a business document. It
can then use the JAVA API java.net HTTPURLConnection to perform an HTTP
POST to the URL at which the WebSphere Partner Gateway HTTP receiver is
receiving documents.

The following example illustrates how this component can POST a message to
WebSphere Partner Gateway, if NONE packaging is used.

String wpgHTTPTargetURL; // URL of WebSphere Partner Gateway HTTP Target
byte payload[]; // message that needs to be sent to WebSphere Partner Gateway

// Set wpgHTTPTargetURL
// Set payload bytes. Convert business object received from service into bytes.

try{

java.net.HttpURLConnection uc = (java.net.HttpURLConnection)
new URL(wpgHTTPTargetURL) .openConnection();

uc.setDoInput(true);
uc.setDoOutput (true);
uc.setRequestMethod ("POST");

// Set the content type you want to send
uc.setRequestProperty("Content-Type", "text/xml");

uc.connect();
BufferedOutputStream os = new BufferedOutputStream (uc.getOutputStream());
os.write(payload);

Chapter 4. Integrating WebSphere Process Server with HTTP as transport 87

os.close();

// If you are expecting response business document from WebSphere Partner
// Gateway, then you have to read the response
InputStream is = uc.getInputStream();
if(is !'= null){
BufferedInputStream bis = new BufferedInputStream
(uc.getInputStream());
// Read bytes from BufferedInputStream obtained above
// Convert response business document received from WebSphere
// Partner Gateway into business object

bis.close();
}
1
catch(Throwable ex) {
System.out.printIn("Cannot post: " + ex.getMessage());
ex.printStackTrace();
}
}

Important: If you are using Backend Integration packaging to send documents to
WebSphere Process Server, you can use the
[BCGBackEndIntegrationDataBindingUtil class|to convert business objects received
from the service (or component) into business documents expected by WebSphere
Partner Gateway. If you are expecting a response business document from
WebSphere Partner Gateway, you can also use
BCGBackEndIntegrationDataBindingUtil to create the HTTP response message
from the response business object returned by your service.

88 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 5. Integrating WebSphere Process Server with JMS

as transport

This chapter describes how to integrate WebSphere Partner Gateway with
WebSphere Process Server over the JMS transport protocol. It contains procedures
for configuring WebSphere Partner Gateway for JMS, when Websphere Platform
Messaging (default messaging provider) and a service integration bus are used as
the JMS provider and WebSphere Partner Gateway is installed on WebSphere
Application Server.

This chapter provides the following information on how to send and receive
documents between WebSphere Partner Gateway and WebSphere Process Server
using the JMS transport protocol:

« |“Sending documents using the JMS transport protocol”]

+ |[“Receiving documents using the JMS transport protocol” on page 90|

* [“Setting up the WebSphere Process Server environment on WebSphere|
Application Server” on page 92|

+ |[“Configuring JMS when WebSphere Partner Gateway is installed on WebSphere]
Application Server” on page 95|

Sending documents using the JMS transport protocol

For WebSphere Partner Gateway to send a document to WebSphere Process Server
using the JMS transport protocol, JMS Export binding must be used to invoke the
WebSphere Process Server component over JMS. Service Component Architecture
(SCA) components can receive JMS messages from the JMS queue configured in
their JMS Export binding. [Figure 23 on page 90| provides an overview of how
WebSphere Partner Gateway sends a document to WebSphere Process Server over
the JMS transport protocol.

© Copyright IBM Corp. 2004, 2008 89

WebSphere Partner Gateway

WebSphere
Partner WebSphere

Gateway g:tret\r;veary
Document
JMS

Manager
(JMg Receiver
Destination)

File
System

Trading
Partner

Protocol
(AS, RNIF, etc)

WebSphere Process Server

Service

I JMS Service
< 4 _’ —
Export 1 component

Figure 23. JMS Export to invoke SCA services over JMS

The following steps describe how SCA JMS Export bindings are used to invoke
SCA services over JMS:

1. Trading partner sends a business document to WebSphere Partner Gateway
using a B2B protocol.

2. WebSphere Partner Gateway receives the business document from the trading
partner.

3. Using the configured partner connection for this business document,
WebSphere Partner Gateway routes the document to WebSphere Process Server.

For JMS based integration, it is expected that the "To” destination of the partner
connection is a JMS destination.

This JMS destination is configured to send JMS messages to an SI Bus destination.

The SI Bus destination is the JMS queue configured in the SCA JMS Export binding
of the SCA component.

Receiving documents using the JMS transport protocol

For WebSphere Partner Gateway to receive a document from WebSphere Process
Server using the JMS transport protocol, JMS Import binding must be used to
invoke external services over JMS. Service Component Architecture (SCA)
components can send JMS messages to the JMS queue configured in their JMS
Import binding. [Figure 24 on page 91| provides an overview of how WebSphere

90 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Partner Gateway receives a document from WebSphere Process Server over the

JMS transport protocol.

WebSphere Process Server

Service

Service -1 JMS
component Import

JMS queue

WebSphere Partner Gateway

WebSphere
WebSphere Partner
|:7| Partner Gateway

—
Gateway |—> Document
JMS 1 Manager

Receiver (IMS
Destination)

File
System

Figure 24. JMS Import to receive a document over JMS

Protocol
(AS, RNIF, etc)

D Trading

— Partner

The following steps describe how SCA JMS Import bindings are used to receive a
document from WebSphere Process Server:

1. WebSphere Partner Gateway JMS Receiver receives a business document from
WebSphere Process Server.

2. Using the configured partner connection for this business document,
WebSphere Partner Gateway routes this document to the trading partner.

3. Trading partner receives business document from WebSphere Partner Gateway
over mutually agreed upon B2B protocol.

For JMS based integration, it is expected that the JMS queue configured in the JMS
receiver of WebSphere Partner Gateway Receiver is the JMS destination on which
WebSphere Process Server Services will send JMS messages.

This JMS queue destination is the JMS queue destination configured in the SCA

JMS Import binding of the SCA component.

Chapter 5. Integrating WebSphere Process Server with JMS as transport

91

Setting up the WebSphere Process Server environment on WebSphere
Application Server
This section provides the steps for setting up the WebSphere Process Server

environment for the JMS transport on WebSphere Application Server. This includes
creating and configuring the WebSphere Process Server artifacts.

This section provides the following information:
» |“Creating an SCA service with WSDL’|
+ [“Customizing JMS Import and Export bindings”]

» |[“Implementing JMS data binding” on page 93|

+ [“Customizing a Function Selector” on page 93|

Creating an SCA service with WSDL

An SCA service, combined with Export and Import bindings, is used to leverage
WebSphere Partner Gateway’s B2B and trading partner interaction capabilities. For
instructions on how to use the Web Services Description Language (WSDL) to
create and define an SCA service, see the WebSphere Process Server information
center.

Customizing JMS Import and Export bindings

JMS Import binding of a component is used to invoke external services over JMS.
SCA components can send JMS messages to the JMS queue configured in their JMS
Import binding. To enable SCA components to send messages to the queue
configured in the WebSphere Partner Gateway JMS receiver:

1. Provide JMS data binding required by SCA JMS Import of the component.
Refer to|“Implementing JMS data binding” on page 93|

2. Specify JMS Import binding attributes specific to your environment. J]MS
Import of component places messages on the JMS destination specified in the
JMS Import binding. The JMS destination you specify in J]MS Import binding
should refer to the J]MS queue configured in WebSphere Partner Gateway JMS
receiver. For more details on JMS Import binding attributes, see the WebSphere
Process Server information center.

JMS Export binding of a component is used to invoke the WebSphere Process

Server component over JMS. To enable SCA components to receive JMS messages

from the JMS destination configured in their JMS Export binding:

1. Provide JMS data binding as required by SCA JMS Export binding of the
component. Refer to [‘Implementing JMS data binding” on page 93]

2. Provide function selector as required by SCA JMS Export binding of the
component. Refer to [“Customizing a Function Selector” on page 93|

3. Specify JMS Export binding attributes specific to your environment. JMS Export
of a component retrieves the JMS message from the JMS destination specified
in the JMS export binding. The JMS destination you specify in J]MS Export
binding should refer to the JMS queue configured in WebSphere Partner
Gateway JMS destination. For more details of JMS Import binding attributes,
see the WebSphere Process Server information center.

92 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Implementing JMS data binding

WebSphere Process Server SCA JMS Import and Export components provide
configuration information for specifying JMS data binding. JMS data binding is
used by SCA JMS Import and Export to convert business objects into JMS messages
and JMS messages into business objects:

¢ SCA JMS Export: SCA JMS Export of a service leverages a configured JMS data
binding to convert a JMS message received from WebSphere Partner Gateway
into business object as expected by the method of the service. This business
object is used to invoke the method of a service.

¢ SCA JMS Import: SCA JMS Import of a service leverges a configured JMS data
binding to convert a business object into a JMS message as expected by
WebSphere Partner Gateway.

To develop and implement JMS data binding, see the WebSphere Process Server
information center.

When JMS is used for backend integration, WebSphere Partner Gateway supports
NONE packaging and backend integration packaging.

If NONE packaging is used, you can leverage the WebSphere Process
Server-provided default J]MS data binding or you can implement your own data
binding. Typically you will have to write your own data binding if the format of
JMS messages exchanged between WebSphere Partner Gateway and WebSphere
Process Server is other than XML.

If backend integration packaging is used, WebSphere Partner Gateway provided
com.ibm.bcg.dataBinding.BCGBackEndIntegration]MSDataBindingImpl can be
leveraged. To customize the processing, you can implement data binding by
utilizing com.ibm.bcg.dataBinding. BCGBackEndIntegrationDataBindingUtil or
com.ibm.bcg.dataBinding. BCGBackEndIntegration]MSDataBindingImpl provided
by WebSphere Partner Gateway. For more information on these classes please refer
to ["'BCGBackEndIntegration]MSDataBindingImpl class” on page 78 and
[‘BCGBackEndIntegrationDataBindingUltil class” on page 73.|

To implement the JMS data binding interface for Backend Integration Packaging,
create user-specified read and write methods.

Customizing a Function Selector

A Function Selector is required for SCA JMS Export binding. It is used to
determine what service method will be invoked for a business document that is
received at the JMS destination.

Implement a function selector using one of the following techniques:

* NONE packaging: If WebSphere Partner Gateway is sending JMS message to
WebSphere Process Server using NONE packaging, the user must determine
what method of their SCA service to invoke. With NONE packaging, the only
way to determine the type of business document is to parse the document. You
can use one of the following techniques to parse the document:

— Dispatcher: For NONE packaging, IBM recommends that you do not parse
the document using the function selector. This is redundant and expensive as
documents need to be parsed in the data binding also. IBM recommends that
you develop a dispatcher or function-selector component which will be the
front end to the actual WebSphere Process Server component interested in the
business document. JMS Export binding of this dispatcher component will

Chapter 5. Integrating WebSphere Process Server with JMS as transport 93

receive the business document from WebSphere Partner Gateway. This
dispatcher component will have one method on which it can receive all
possible business documents. J]MS Export binding will un-marshal JMS
messages into business objects. The dispatcher module will then determine
which component of the service is interested in this business object and
invoke the component with this business object.

— Minimal Parsing: If a SCA JMS Export binding has multiple method bindings,
the function selector can be implemented perform minimal parsing of the
business document to determine the type of business document (for example
PO, POConfirm, Invoice etc). The function selector can then return the type of
business document as a native method name. At configuration time, the
native method name in the method binding of the SCA JMS Export binding
can be specified as a business document type. Using the method binding,
SCA JMS Export can resolve which method of the service needs to be
invoked.

Note: Data binding performs a full parsing of the business document to
construct the business object. Therefore, the function selector should do a very
minimal parsing of the business document. If parsing in the function selector
is too expensive, you should not use this technique.

— Trivial function selector: If the user is expecting only one type of business
document, you can develop a trivial function selector which will not parse the
document and that will always return the same native method name. At
configuration time, the native method name in the method binding of the
SCA JMS Export binding can be specified as this method name. Using the
method binding, SCA JMS Export will be able to determine which method of
the service needs to invoke. An advantage of this technique is that no parsing
of incoming an business document is required. However, the limitation of this
approach is that there can be only one type of business document on the JMS
queue.

* Backend integration packaging: If WebSphere Partner Gateway is sending a JMS
message to WebSphere Process Server using backend integration packaging, the
user can leverage backend integration packaging JMS headers to develop a
function selector. The JMS properties can be read by the function selector from
the JMS message input. The function selector can use the value of one of the
backend integration packaging JMS headers to compose a native method name.
For example, for a RosettaNet message, the x-aux-payload- root-tag JMS
property can be read to determine the type of business document. The function
selector can then compose the native method name to match the native method
name in method binding of J]MS Export.

Using the WebSphere Integration Developer, create a custom a function selector by
implementing the commonj.connector.runtime.FunctionSelector interface. For
example:
public class PurchaseOrderSelector implements FunctionSelector {

public String generateEISFunctionName(Object[] arg0)

throws SelectorException {
return "receiveMessage";

94 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Configuring JMS when WebSphere Partner Gateway is installed on
WebSphere Application Server

This section provides the steps for setting up the WebSphere Partner Gateway
environment for the JMS transport on WebSphere Application Server when using
WebSphere Platform Messaging as the messaging provider. This section assumes
that WebSphere Partner Gateway is installed on WebSphere Application Server.

The information in this section assumes that the user is familiar with WebSphere
Platform Messaging and service integration buses.

This section provides the following information:

* [“Creating and configuring buses, JMS queues, and Connection Factories” on
page 96|

+ |“Creating the JMS receiver” on page 97|

« |“Creating the JMS destination” on page 98

+ |“Creating a destination queue” on page 99|

Using the message engine (ME) and JNDI from the WebSphere Partner Gateway
component’s application server may restrict the bus topologies for the customer.
Therefore, IBM recommends that WebSphere Partner Gateway components (JMS
Receiver and JMS destination) connect to the ME on a different application server,
which may or may not be running WebSphere Process Server. See .Fiéure 25| for an
overview of this topology.

WebSphere Partner
Gateway
Document Manager
(WebSphere Partner
Gateway Doc Manager
running on WebSphere
Application Server
6.0)

WebSphere Partner
Gateway Receiver
(WebSphere Partner

Gateway receiver
running on WebSphere
Application Server
6.0)

JMS Gateway looks up JMS
objects from JNDI and then
uses them to connect to ME

May be running WebSphere Process Server
or any other application that wants to integrate

with WebSphere Partner Gateway

L4
WebSphere Application Server 6.0 or
WebSphere Application Server ND

to JMS connection factory

| and JMS queue object
JNDI

ME provides connection
ME point to SI Bus.

Sl Bus queues may or

may not reside on

this ME

JNDI stores references J

JMS Receiver looks up JMS
objects from JNDI and then
uses them to connect to ME

Figure 25. Accessing the ME and JNDI from another WebSphere Application Server instance

Chapter 5. Integrating WebSphere Process Server with JMS as transport 95

Creating and configuring buses, JMS queues, and Connection
Factories

This section describes how to create and configure buses, J]MS queues, and
Connection Factories that will be used by WebSphere Partner Gateway to send and
receive messages.

Creating a service integration bus

A service integration bus supports applications using message-based and
service-oriented architectures. A bus is a group of interconnected servers and
clusters that have been added as members of the bus. Applications connect to a
bus at one of the messaging engines associated with its bus members.

Using the WebSphere Administrative Console:
1. Create and name a bus.
a. Click Service integration > Buses.
b. Click New and provide a bus name. For example, SIBUS.
c. Click Apply.
d. Save the configuration by clicking Save in the Messages window that

displays. This message is to confirm that you want to apply the changes to
the master configuration.

e. Click Save again when asked to update the master repository with your
changes.

2. Add bus members to the bus.

a. Click on the name of the newly created bus.

b. In the Additional Properties pane, click Bus members.
c. Click Add and select the server or cluster to be added.
d

. Click Next and then click Finish to confirm the addition of the new bus
members.

e. Save the configuration by clicking Save in the Messages window that
displays. This message is to confirm that you want to apply the changes to
the master configuration.

f. Click Save again when asked to update the master repository with your
changes.

3. Create a destination queue:

a. In the WebSphere Application Server default Console, click on System
Integration in the left panel.

Click on Buses < SIBUS (or the name of the bus created in step 1).
In the Additional Properties pane, click Destinations. Click New.
Select the Queue radio button for the destination type and click Next.

® oo o

Enter an Identifier. For example, Request. This will create the destination
queue on the bus.

4. Save the configuration by clicking Save in the Messages window that displays.
This message is to confirm that you want to apply the changes to the master
configuration.

5. Click Save again when asked to update the master repository with your
changes.

Creating a JMS Queue Connection Factory
A JMS queue connection factory is used to create connections to the associated JMS
provider of JMS queues, for point-to-point messaging.

96 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Using the WebSphere Administrative Console:

1.

Create a Queue Connection Factory by populating the Name and JNDI name
fields using the following syntax:
* Name: SIBUS.JMSTargetQCF
¢ JNDI name: SIBUS/JMSTargetQCF

Where SIBUS is the name of the bus created in the previous steps.
Select the bus. For example, SIBUS.
In the resulting window;, click on the Queue Connection Factory that you just
created and input the Provider endpoints as:
IPaddress/Name:7276:BootstrapBasicMessaging
Where IPaddress is the IP address or the name of the machine on which
WebSphere Application Server is running. It is expected that the Message
Engine for this service integration bus is running on this machine. 7276 is the
port number specified for SIB_ENDPOINT_ADDRESS for the WebSphere
instance. If your Messaging Engine is running on the system with the IP
address 9.26.234.100 and SIB_ENDPOINT_ADDRESS for the WebSphere
instance running on this server is specified as 7276, you will specify Provider
endpoints as follows:
9.26.234.100:7276:BootstrapBasicMessaging
Save the configuration by clicking Save in the Messages window that displays.
This message is to confirm that you want to apply the changes to the master
configuration.
Click Save again when asked to update the master repository with your
changes.

Creating a JMS queue

A JMS queue is used as a destination for point-to-point messaging.

Using the WebSphere Administrative Console:

1.

Expand the Resources menu and click JMS Providers > Default messaging.

2. Click JMS queues in the Destinations section of the resulting page.
3.
4. Input a queue name in both the Name and JNDI name fields using the

Click New.

following syntax:
* Name: Request.JMSTarget
¢ JNDI name: Request/JMSTarget

Select the Bus Name (For example, SIBUS) and Queue name from the
drop-down lists.

Click OK.
Save the configuration by clicking Save in the Messages window that displays.

This message is to confirm that you want to apply the changes to the master
configuration.

Click Save again when asked to update the master repository with your
changes.

Creating the JMS receiver

This section provides directions for creating a receiver in WebSphere Partner
Gateway.

Using the WebSphere Partner Gateway Community Console:

Chapter 5. Integrating WebSphere Process Server with JMS as transport 97

. Click Hub Admin > Hub Configuration > Receivers to display the Receiver

9.

List.
From the Receiver List page, click Create Receiver.
In the Receiver Details section, perform the following steps:

a. Type a name for the receiver. For example, you might call the receiver
JMSTarget. This is a required field. The name you enter here will be
displayed on the Receivers list.

b. Optionally indicate the status of the receiver. Enabled is the default. A
receiver that is enabled is ready to accept documents. A receiver that is
disabled cannot accept documents.

c. Optionally enter a description of the receiver.

Select JMS from the Transport list.

Enter the JMS provider URL. For example,

iiop://systemip:2809/

Where systemip is the IP address of the system where WebSphere Platform

Messaging is running and 2809 is the default port where the BOOTSTRAP
server is running.

Enter a value for JMS queue name. This is a required field. This name should
match the JNDI name of the JMS queue created in the previous section. For
example, Request/JMSTarget.

Enter a value for the JMS factory name. This is a required field. This name
should match the Queue Connection Factory name created earlier. For example,
SIBUS/JMSTargetQCF.

Enter the JNDI factory name as follows:
com.ibm.websphere.naming.WsnInitialContextFactory

Click Save.

Creating the JMS destination

This section provides directions for creating the destination in WebSphere Partner
Gateway.

Using the WebSphere Partner Gateway Community Console, create a JMS

destination:

1. Click Account Admin > Profiles > Partner.

2. Enter search criteria and click Search, or click Search without entering any
search criteria to display a list of all partners.

3. Click the View details icon to display the partner’s profile.

4. Click Destinations.

5. Click Create.

6. From the Destination List page, type a name to identify the destination. This
is a required field.

7. Select JMS from the Transport type list.

8. In the Address field, enter the URI where the document will be delivered. For

example:

iiop//systemip:2809
Where systemip is the IP address of the system on which WebSphere Platform
Messaging is running.

98 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

9.

10.

11.

12.

Creating

In the JMS Factory Name field, enter the name of the Java class that the JMS
provider uses to connect to the JMS queue. This will be the JNDI name for the
JMS factory we created earlier. For example:

SIBUS/JMSTargetQCF

In the JMS Queue Name field, enter the name of the J]MS queue where
documents are to be sent. This will be the JNDI name for the queue where
messages must be placed. For example:

Response/JMSTarget

In the JMS JNDI Factory Name field, enter the following factory:
com.ibm.websphere.naming.WsnInitialContextFactory

Click Save.

a destination queue

Using the WebSphere Administrative Console, create a destination queue on the
WebSphere Application Server:

1.
2.

Click on System Integration in the left panel.

Click on Buses < SIBUS (or the name of the bus created in the previous
section).

In the Additional Properties pane, click Destinations. Click New.
Select the Queue radio button for the destination type and click Next.

Enter an Identifier. For example, Response. This will create the destination
queue on the bus.

Chapter 5. Integrating WebSphere Process Server with JMS as transport 99

100 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 6. Integrating WebSphere Process Server with
SOAP/HTTP

This chapter describes how to integrate WebSphere Partner Gateway with
WebSphere Process Server using SOAP over the HTTP transport protocol. It
includes the following information:

» |“How SOAP messages are exchanged over the HTTP protocol”]|

* [“Invoking Web services hosted by WebSphere Process Server” on page 103|

“Invoking Web services hosted by external partners” on page 104

How SOAP messages are exchanged over the HTTP protocol

When an external partner requests a Web service from WebSphere Process Server,
or when WebSphere Process Server requests a Web service from an external
partner, the associated SOAP message is sent to a receiver on WebSphere Partner
Gateway. WebSphere Partner Gateway acts as a proxy, passing the request through
to the URL where the service is located.

How Web services hosted by WebSphere Process Server are
invoked

When an external partner invokes a Web Service hosted on WebSphere Process
Server, the following flow occurs:

© Copyright IBM Corp. 2004, 2008 101

WebSphere Partner Gateway
SOAP SOAP
WebSphere WebSphere
D Partner Partner I D
Gateway Gateway I External
Document <—| HTTP ! Partner
Manager I Receiver I
(HTTP
Gateway) I
System
WebSphere Process Server
Service
SOAP
, Web Service Service
" Export — I Component

Figure 26. External partner invoking a Web service

WebSphere Partner Gateway routes the Web service request to WebSphere Process
Server, where the Web Service Export binding is used to invoke the service.

You provide your external partner with the public WSDL, which has the URL of
WebSphere Partner Gateway specified as the end point. See
|WebSphere Process Server” on page 105|for information on specifying this URL.
WebSphere Partner Gateway acts as a proxy. It receives a SOAP message from the
partner and figures out the corresponding private Web service. It then invokes the
private Web service on WebSphere Process Server using the same SOAP message.
The HTTP response returned by the WebSphere Process Server (both the
transport-level response and the Web service response) is then returned to the
partner

How Web services hosted by partners are invoked

When WebSphere Process Server invokes a Web service from an external partner,
the following flow occurs:

102 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

WebSphere Process Server
Service
Service — (T /Web Services
Component Import SOAP
HTTP WebSphere Partner Gateway
SOAP

SOAP WebSphere WebSphere I
D Partner Partner D External

Gateway Gateway | Partner

HTTP j I—' Document m——
Receiver Manager

(] |

File
System

Figure 27. Service on WebSphere Process Server invoking a Web service

WebSphere Process Server uses its Web Services Import binding to invoke the Web
service. WebSphere Partner Gateway routes the Web service request from
WebSphere Process Server to the appropriate external partner.

WebSphere Partner Gateway makes the Web service available to WebSphere
Process Server at the Web service URL specified when the Web service is uploaded
in the Community Console. Additionally the service on WebSphere Process Server
must provide the URL parameter to identify “To Partner”. Refer to the WebSphere
Partner Gateway Hub Configuration Guide for more details. WebSphere Partner
Gateway acts as a proxy. It receives a SOAP message from WebSphere Process
Server and figures out the corresponding Web service and the “To Partner”. It then
invokes the Web service provided by the external partner using the same SOAP
message. The HTTP response returned by the external partner (both the
transport-level response and the Web service response) is returned to WebSphere
Process Server.

The response received from the external partner is returned to WebSphere Process
Server in the same HTTP connection as the request. The behavior is the same for
both request-only and request-response Web services.

Invoking Web services hosted by WebSphere Process Server

This section describes how an external partner invokes a Web service hosted on
WebSphere Process Server.

Chapter 6. Integrating WebSphere Process Server with SOAP/HTTP 103

An external partner sends the request to an HTTP receiver on the WebSphere
Partner Gateway hub. WebSphere Partner Gateway authenticates the user, looks up
the connection between the external partner and internal partner, and forwards the
request to a destination defined at the internal partner.

Note: When the external partner sends the SOAP message, the external partner
must authenticate itself to WebSphere Partner Gateway. The external partner can
use HTTP Basic Authentication, supplying the partner’s Business ID, console name,
and console password. Alternatively, the partner can present an SSL client
certificate that has been previously set up in WebSphere Partner Gateway. See the
WebSphere Partner Gateway Hub Configuration Guide for more information on
certificates.

Configuring WebSphere Partner Gateway

You configure WebSphere Partner Gateway for Web services as described in the
WebSphere Partner Gateway Hub Configuration Guide. Make note of the following as
you configure WebSphere Partner Gateway:

1. Add the com.ibm.bcg.server.sync.SoapSyncHdlr handler to the syncCheck
configuration point of the HTTP receiver (if you will be handling two-way
requests).

2. From WebSphere Process Server, obtain the WSDL generated by the Web
Service Export binding of your component.

3. Make sure the HTTP destination of the internal partner indicates the URL to
which WebSphere Partner Gateway will send messages to WebSphere Process
Server. This destination points to the EndPointURL specified in the WSDL you
uploaded in step EI

Configuring WebSphere Process Server

Set up components on WebSphere Process Server per the documentation in the
WebSphere Process Server information center. When you create an export for the
component, be sure to select Web Service Binding.

Invoking Web services hosted by external partners

104

When a service on WebSphere Process Server makes a SOAP request to a URL on
WebSphere Partner Gateway, WebSphere Partner Gateway identifies the partner
capable of processing the SOAP request. It uses the basic authentication supplied
by WebSphere Process Server against its partner profile. If the SOAP request is
two-way, WebSphere Partner Gateway gets the response from the external partner
and sends the response back to WebSphere Process Server.

Configuring WebSphere Partner Gateway

You configure WebSphere Partner Gateway for Web services as described in the
WebSphere Partner Gateway Hub Configuration Guide. Make note of the following as
you configure WebSphere Partner Gateway:

1. Add the com.ibm.bcg.server.sync.SoapSyncHdlr handler to the syncCheck
configuration point of the HTTP receiver (if you will be handling two-way
requests).

2. Make sure the HTTP destination of the external partner indicates the URL to
which WebSphere Partner Gateway will send messages. This destination points
to the EndPointURL specified in the WSDL you upload as part of the
configuration process.

IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Configuring WebSphere Process Server

Set up components on WebSphere Process Server per the documentation in the
WebSphere Process Server information center. Note that you must obtain the
WSDL file that describes the Web service from the provider of the service. You
import the WSDL file into the module for the components.

WebSphere Partner Gateway makes the external partner-provided Web services
available at its URL. Therefore, WebSphere Process Server must invoke the service
at the URL of the WebSphere Partner Gateway HTTP receiver. WebSphere Partner
Gateway also requires the internal partner to provide a user name and password
as part of HTTP basic authentication. See the WebSphere Partner Gateway Hub
Configuration Guide for information on the user name and password. To enable
WebSphere Process Server to provide HTTP basic authentication and also to
change the end point of the Web service that will be invoked by WebSphere
Process Server, follow these steps:

To change the end-point address:
1. Log in to the WebSphere Process Server administrative console

2. Navigate to the Web service client bindings of the service you are invoking
from WebSphere Partner Gateway. You can locate it by following this path:
Enterprise Applications > <your_application> > EJB Modules > <your_JAR_file>
> Web service client bindings

3. Specify the Overridden Endpoint URL for the service port you want to invoke
from WebSphere Partner Gateway. Specify the URL of the WebSphere Partner
Gateway HTTP receiver that will receive the Web service request from
WebSphere Process Server. The endpoint URL takes the form:

<IP_address:port_number>bcgreceiver/<target_name>
4. Click Apply, and then click OK.

To specify the user name and password required for basic authentication, perform
the following steps:
1. Log in to the WebSphere Process Server administrative console

2. Navigate to the Web service client bindings of the service you are invoking
from WebSphere Partner Gateway. You can locate it by following this path:
Enterprise Applications > <your_application> > EJB Modules >
<your_[AR_files> > Web services:Client security bindings > HTTP basic
authentication

3. Specify the Basic authentication ID and Basic authentication password.
The authentication ID takes the form:

BusinessID/username

For example, if the business ID of the internal partner is 987654321, and the
user name of the internal partner is admin, the authentication ID would be:

987654321/admin
4. Click Apply and then click OK.

Chapter 6. Integrating WebSphere Process Server with SOAP/HTTP 105

106 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 7. Integrating WebSphere Process Server with
File-system as transport

This chapter describes how to integrate WebSphere Partner Gateway with
WebSphere Process Server using the File-system protocol.

The File-system protocol enables WebSphere Partner Gateway to send messages by
placing them in a defined directory structure. WebSphere Partner Gateway receives
messages by reading them from the directory structure. The file-system protocol
supports the None packaging type.

This chapter provides the following information:

* |“Sending documents using the File-system protocol”]

+ |[“Receiving documents using the File-system protocol”]

« |“Setting up the WebSphere Process Server environment”

+ |“Setting up the WebSphere Partner Gateway environment” on page 109

Sending documents using the File-system protocol

WebSphere Process Server components leverage the Service Component
Architecture (SCA) J2C import binding to send business data to the WebSphere
Adapter for Flat Files. The adapter writes the business data to a directory in the
File-system. WebSphere Partner Gateway’s File-system receiver reads this business
document from the directory on the File-system and routes it to the appropriate
trading partner.

Receiving documents using the File-system protocol

WebSphere Partner Gateway receives a business document from the trading
partner. WebSphere Partner Gateway’s Document Manager writes the document to
the File-system directory. The WebSphere Adapter for Flat Files polls events from
this directory and reads the business document. It then invokes the Service
Component Architecture (SCA) service export that is expecting events form the
adapter. The SCA service receives the business document.

Note: The WebSphere Adapter for Flat Files expects a string or raw data that it can
read from or write to a file. Therefore, the WebSphere Process Server environment
must serialize the business object into either a string or raw data. WebSphere
Process Server services must create a component that will serialize a business
object into a business document and vice versa.

Setting up the WebSphere Process Server environment

This section provides the steps for setting up the WebSphere Process Server
environment for the File-system transport on WebSphere Application Server. This
includes creating and configuring the WebSphere Process Server artifacts.

This section contains the following information:

* ["Deploying and configuring the WebSphere Adapter for Flat Files” on page 108

« |“Creating SCA components” on page 109

© Copyright IBM Corp. 2004, 2008 107

Deploying and configuring the WebSphere Adapter for Flat
Files
For File-system based integration WebSphere Process Server leverages the

WebSphere Adapter for Flat Files, a bi-directional adapter which can read and
write business data from the File-system.

For inbound communication, the adapter supports the Read function.

For outbound communication, the adapter supports the following functions:
* Create

* Append

e Delete

* Overwrite

* Retrieve

e List

* Exists

The WebSphere Adapter for Flat Files installation provides a Resource Adapter
Archive (RAR) file that is deployable on the WebSphere Process Server. The RAR
file contains the files that are shipped with the adapter. Before you deploy the
WebSphere Adapter for Flat Files, you must import the adapter RAR file and create
the project in WebSphere Integration Developer.

The following sections contain an overview of the steps that need to be completed
to deploy and configure the WebSphere Adapter for Flat Files. Please refer to the
WebSphere Integration Developer documentation for detailed information.

Importing the RAR file:
1. Switch to the J2EE perspective and import the RAR file.

2. Specify the location from where you will import the RAR file (the same
location where you copied your adapter file during installation), and specify a
project name.

This creates a new J2EE Connector project in the workspace.
Adding external dependencies to the project:

Copy the external dependencies into the connectorModule in your WebSphere
Integration Developer project and add them to the project as internal libraries. This
is necessary to bundle the dependencies into the EAR file, which will be exported.
For details, refer to the WebSphere Integration Developer documentation.

Configuring the adapter:

The configuration process is done using the Enterprise Service Discovery wizard in
the WebSphere Integration Developer. This process allows you to enter all the
information necessary to configure the adapter for the first time. The output from
the Enterprise Service Discovery wizard is saved to a business integration module,
which contains the business objects, the import file (which describes outbound
processing, as defined by the ActivationSpec), the export file (which describes
inbound event processing, as defined by the InteractionSpec), and the Web Services
Description Language (WSDL) file. This results in a component in your module
which you can use to read and write from file system.

108 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Creating SCA components

If you want your SCA component to receive business documents from WebSphere
Partner Gateway the File-system protocol, you can leverage the Enterprise Service
Discovery tool to generate the required import bindings for the flat file adapter. To
generate the required import bindings, you must specify the service type as
Inbound in the Enterprise Service Discovery wizard. The method name is READ
for inbound. Wire your SCA component export to the import binding generated by
the Enterprise Service discovery tool.

If you want your SCA component to send business documents to WebSphere
Partner Gateway the File-system protocol, you can leverage the Enterprise Service
Discovery tool to generate the required export binding for the flat file adapter. To
generate the required export binding, you must specify the service type as
Outbound in the Enterprise Service Discovery wizard. Wire the export binding
generated by the Enterprise Service discovery tool to the import binding of your
SCA component.

Setting up the WebSphere Partner Gateway environment

This section provides the steps for setting up the WebSphere Partner Gateway
environment for the File-system transport on WebSphere Application Server.

Using the WebSphere Partner Gateway Community Console:

1.

Create a File-system receiver on the hub to receive documents sent to the hub
from WebSphere Process Server or from external partners.

Create an Internal Partner profile (if one does not already exist), including a
File-system destination that WebSphere Partner Gateway will use to send
documents to WebSphere Process Server.

Create External Partner profiles, including File-system destinations that
WebSphere Partner Gateway will use to send documents to the partners.

Import any WSDL files, transformation maps, RosettaNet packages, or other
document definition mechanisms so that a document definition for the type of
document you are exchanging displays on the Document Flow Definition page
of the WebSphere Partner Gateway Community Console.

Create interactions between the types of document the hub will receive (from
WebSphere Process Server or from an external partner) and the types of
document the hub will send (to WebSphere Process Server or to the external
partners).

Create B2B capabilities in the profiles of the internal partner and external
partners to indicate the types of documents they are able to send and receive.

Create interactions between the types of document the hub will receive (from
WebSphere Process Server or from an external partner) and the types of
document the hub will send (to WebSphere Process Server or to the external
partners).

Create partner connections between the internal partner and external partners
to indicate the source partner (the sender of the document), the target partner
(the recipient of the document), and the action that the hub should take (if any)
to transform the document.

Chapter 7. Integrating WebSphere Process Server with File-system as transport 109

110 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Part 3. Integrating with WebSphere InterChange Server

The following chapters details the procedure to integrate WebSphere Partner
Gateway with WebSphere InterChange Server.

© Copyright IBM Corp. 2004, 2008 111

112 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 8. Introduction to InterChange Server integration

This chapter describes how to integrate WebSphere Partner Gateway with
WebSphere InterChange Server.

Notes:

1. For a description of the general process used to integrate WebSphere Partner
Gateway with a back-end system, see [Chapter 2, “Planning for back-end)
[integration,” on page 9.|

2. This chapter assumes that you are familiar with WebSphere InterChange Server
and associated components, such as collaborations, business objects, and
adapters.

Often integration of WebSphere Partner Gateway with a back-end system is done
by two separate people or roles. Each role configures a particular component, for
which that role has expertise. Therefore, this chapter separates the integration with
WebSphere InterChange Server into the configuration of WebSphere Partner
Gateway and the configuration of InterChange Server. lists these
configuration roles along with the places in this chapter to obtain the associated
configuration information.

Table 35. Roles for InterChange Server integration

Configuration role For more information
Configuration of WebSphere Partner 1. [“Planning for integration with|
Gateway [InterChange Server.”|

2.|"Configuring WebSphere Partner Gateway]|
[for InterChange Server” on page 116.|

Configuration of WebSphere InterChange 1. |“Planning for integration with|
Server [InterChange Server.”|

2.["Configuring InterChange Server” on|

Lr_)age 119.|

Note: While each of these configuration roles can be performed separately, each
also requires common information so that the two components can communicate.

This chapter provides the following information:

+ |“Planning for integration with InterChange Server”|

* [“Configuring WebSphere Partner Gateway for InterChange Server” on page 116|
+ |“Configuring InterChange Server” on page 119)

+ |“Handling documents with attachments” on page 123

Planning for integration with InterChange Server

To plan for your integration to WebSphere InterChange Server, follow the steps
outlined in [Chapter 2, “Planning for back-end integration,” on page 9|[Table 36|
summarizes the integration steps to integrate WebSphere Partner Gateway with
InterChange Server (ICS).

© Copyright IBM Corp. 2004, 2008 113

Table 36. Planning for integration with WebSphere InterChange Server

Integration step For more information

1. Confirm that you have a supported Chapter 3} |“InterChange Server versions that]
version of WebSphere InterChange Server WebSphere Partner Gateway supports”|
installed and available to WebSphere Partner

Gateway.

2. Determine the business protocol of the Chapter 2t |“Which business protocol are you]
WebSphere Partner Gateway document. using?” on page 9

3. Determine the packaging type for the Chapter 2t |"Which packaging will you use?”|
document: None or Backend Integration. on page 23

4. Determine the transport protocol to use Chapter 3t|"Message transports that]
between WebSphere Partner Gateway and InterChange Server supports”|
WebSphere InterChange Server.

5. Configure WebSphere Partner Gateway. Chapter 3t |“Configuring WebSphere Partner
Gateway for InterChange Server” on pagel
11

6. Configure WebSphere InterChange Server |[Chapter 3t |“Configuring InterChangd
components for use over the chosen Server” on page 119
transport protocol.

InterChange Server versions that WebSphere Partner Gateway
supports

Version 6.1 of WebSphere Partner Gateway supports integration with the following
versions of InterChange Server:

* 43.0

InterChange Server is available on several platforms including Windows 2000 and
several UNIX-based platforms. For more information, consult your installation
guide for InterChange Server in the WebSphere InterChange Server documentation
set.

WBI Adapters are used to integrate WebSphere Partner Gateway to Interchange
Server. The supported Adapter versions are:

* WBIA HTTP Adapter v1.3
* WBIA JMS Adapter v2.8.x
* WBIA web services adapter v3.4.x

WBI Data handlers are used with the adapters. For processing XML messages,
make sure you are using the WebSphere Business Integration Data Handler for
XML Version 2.3.1 or later. For cXML messages, you must use the Data Handler for
XML, Version 2.4.1 or later.

Message transports that InterChange Server supports

When WebSphere Partner Gateway sends your message to InterChange Server over
a particular message transport protocol, it sends that message to the appropriate
adapter, which understands the particular transport protocol and routes the
message to InterChange Server. Similarly when InterChange Server sends a
message to WebSphere Partner Gateway, it sends the message to the appropriate
adapter for routing to WebSphere Partner Gateway over the appropriate transport
protocol.

114 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

The adapter works with a data handler, which handles the actual conversion from
serialized data to business object, or from business object to serialized data. The
data handler appropriate for the payload type is used to perform these
conversions.

The following two message-transport protocols are supported by InterChange
Server:

e HTTP transport protocol

Note: The exchange of Web Services over HTTP is handled in a separate section
because Web Services are exchanged in a manner that is different from other
documents transmitted over HTTP. See [‘Sending SOAP documents over]
[HTTP/S” on page 156/

* JMS transport protocol

Note: InterChange Server provides other types of integration options, such as
file-based integration. Refer to the WebSphere InterChange Server documentation
for details on enabling the exchange of documents through file-based integration.

Use the transport protocol that best suits the needs of your business. Consider the

following:

* First and foremost, determine that the transport protocol you are using between
the external partner and WebSphere Partner Gateway is available with the
integration mechanism used. See [“Which message transport will you use?” on|
—

* Sending SOAP documents to and receiving SOAP documents from the
WebSphere InterChange Server requires use of the HTTP transport protocol. For
more information, see [“Sending SOAP documents over HTTP/S” on page 156

HTTP

Which adapters are required to send and receive documents between WebSphere
Partner Gateway and InterChange Server over HTTP depends on the following:

* The type of document you are sending

¢ The version of InterChange Server with which you are integrating.
Note: All references to the HTTP transport protocol apply to HTTPS as well.

summarizes where to find information on how to configure adapters for
use with InterChange Server.

Table 37. Configuring for HTTP transport with InterChange Server

Condition For more information

If you are transferring non-SOAP documents ‘Using HTTP transport protocol with ICS”]|

with InterChange Server on page 143]
If you are sending SOAP documents ‘Sending SOAP documents over HTTP/S”|

pn page 156

JMS

The components required to send and receive documents between WebSphere
Partner Gateway and InterChange Server over JMS are summarized in [Table 63 o
Basically, support for JMS involves the use of the WebSphere Business

Integration Adapter for J]MS. The Adapter for JMS invokes collaborations within
InterChange Server asynchronously.

Chapter 8. Introduction to InterChange Server integration ~ 115

Benefits of using each transport
As you decide which message transport to use with InterChange Server, consider
the following benefits of each transport:

* The Adapter for HTTP supports synchronous communication. If you require
synchronous transactions, you must use the HTTP transport protocol.

* The Adapter for JMS can provide "guaranteed event delivery” from WebSphere
Partner Gateway to the WebSphere InterChange Server.

Guaranteed event delivery ensures that events are never lost or sent twice.

Support for InterChange Server integration

WebSphere Partner Gateway provides samples to assist you in the integration
process with InterChange Server. These samples reside in the following
subdirectory of the WebSphere Partner Gateway product directory:

Integration/WBI/WICS/samples

lists the subdirectories of the samples directory for the different transport
protocols that InterChange Server supports.

Table 38. Samples for InterChange Server integration

Transport InterChange Server
protocol version Samples subdirectory
HTTP All supported versions | General samples: HTTP
RosettaNet-specific samples: RosettaNet/HTTP
JMS All supported versions | General samples: JMS
RosettaNet-specific samples: RosettaNet/JIMS

Configuring WebSphere Partner Gateway for InterChange Server

A general overview of how to configure WebSphere Partner Gateway to
communicate with a back-end system is provided in|“Configuring WebSphere]
[Partner Gateway” on page 43 This section summarizes the steps needed to
configure WebSphere Partner Gateway to communicate with InterChange Server.

Configuration of WebSphere Partner Gateway involves the following steps:
* Configuring for support of outgoing documents

For information on sending documents from WebSphere Partner Gateway to
InterChange Server, see|“Providing support for outgoing documents.”|

* Configuring for incoming documents

For information on sending documents from InterChange Server to WebSphere
Partner Gateway, see [“Providing support for incoming documents” on page 118 .|

Providing support for outgoing documents

For WebSphere Partner Gateway to send documents to any back-end system, you
must perform the steps described in [‘Defining where to send the partner|
[document” on page 45] When your back-end system is InterChange Server, you
need to create a destination whose transport type matches the transport protocol
used for messages between WebSphere Partner Gateway and InterChange Server.
When the hub sends a document to InterChange Server, it must know where to
route the document. This location must conform with the transport protocol being

116 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

used. The transport protocol must be one that InterChange Server supports (see
[‘Message transports that InterChange Server supports” on page 114).

The following sections summarize how to create destinations for following
transport protocols, which InterChange Server supports:

« |[“Configuration for sending documents to ICS over the HTTP transport protocol”]

* |“Configuration for sending documents to ICS over the JMS transport protocol”l

Configuration for sending documents to ICS over the HTTP
transport protocol

When the hub sends a document to InterChange Server over the HTTP protocol,
the hub routes the message through the defined destination. This destination
identifies the URL where the document can be received by InterChange Server.
When InterChange Server uses the HTTP protocol, an adapter receives the
document at the appropriate URL, where it can then send it to InterChange Server.

For the hub to be able to send documents through a destination over the HTTP
transport protocol, you must create a destination from the Destination Details page
of the Community Console. This destination must be configured to use the HTTP
1.1. transport protocol and to write to the URL on which the appropriate adapter is
listening.

Note: An overview of how to create a destination is provided in [‘Defining where|
fto send the partner document” on page 45.|

Configuration for sending documents to ICS over the JMS
transport protocol

When the hub sends documents to InterChange Server over the JMS protocol, the
hub routes the document to the appropriate JMS queue, where it can be retrieved
by InterChange Server. For the hub to obtain this JMS location, you must create a
destination in WebSphere Partner Gateway, one that uses the JMS transport
protocol. This destination must be configured to write to the queue on which the
Adapter for JMS polls.

Note: For an overview of how to create a destination, see[“Defining where to send|
fthe partner document” on page 45

For the hub to be able to send documents through a destination over the J]MS
transport protocol, create a destination from the Destination Details page of the
Community Console. If you are using WebSphere MQ Version 6.0 with latest Fix
pack as your JMS provider, refer to the WebSphere Partner Gateway Hub
Configuration Guide for detailed steps. In addition, provide the information
specified in for the JMS protocol in the Destination Details page.

Table 39. JMS values for the Destination Details page for communication with ICS

Destination Details field | Value Notes and restrictions

JMS Message Class TextMessage, BytesMessage,
or StreamMessage

Chapter 8. Introduction to InterChange Server integration ~ 117

Table 39. JMS values for the Destination Details page for communication with
ICS (continued)

Destination Details field | Value Notes and restrictions

JMS Queue Name Same JMS queue name as This queue must be included in
the input queue for the the list of input queues of the
Adapter for JMS Adapter for]MS; that is, the

adapter must poll this queue for
incoming events. For more

information, seel”Identifying thel

IMS queues” on page 166

Providing support for incoming documents

For WebSphere Partner Gateway to receive messages from any back-end system,
you must perform the steps described in [“Defining where to retrieve the back-end]
[document” on page 49| When your back-end system is InterChange Server, you
need to take the following steps in your hub:

1. As part of your partner profile for the internal partner, define the destination
type and provide the associated IP address on which the Receiver will listen.

2. Create a receiver whose transport type matches the transport protocol used for
documents between WebSphere Partner Gateway and InterChange Server.

For the hub to receive a document from InterChange Server, it must know the
location at which to retrieve the messages. This location must conform with the
transport protocol to be used. The transport protocol must be one that
InterChange Server supports (see|“Message transports that InterChange Server
[supports” on page 11

The following sections summarize how to create receivers for transport protocols
that InterChange Server supports.

Configuration for receiving documents from ICS over the HTTP
transport protocol

When the hub receives a document over the HTTP transport protocol, its Receiver
retrieves the document from the defined receiver. This receiver identifies the URL
at which the Receiver listens for documents from InterChange Server. When
InterChange Server uses the HTTP transport protocol, an adapter sends the
document to the appropriate URL, where it can be received by the hub.

For the hub to receive documents through a receiver over the HTTP transport
protocol, you must create a receiver from the Receiver List page of the Community
Console. This receiver must use the HTTP 1.1 transport protocol. The hub
determines this URL as a combination of the following information:

¢ The IP address of the host computer, obtained from within the internal partner’s
profile

e The receiver URL, obtained from the URL field of the receiver definition

Note: An overview of how to create a receiver is provided in[“Defining where to|
fretrieve the back-end document” on page 49

For InterChange Server to be able to send documents to this receiver, its adapter
must be configured to send documents to this URL. Therefore, you must ensure
that this receiver URL is available for the InterChange Server configuration.

118 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Configuration for receiving documents from ICS over the JMS
transport protocol

When the hub receives documents from InterChange Server over the JMS protocol,
the hub obtains the document from the appropriate JMS queue, where InterChange
Server has sent it. For the hub to be able to obtain this JMS location, you must
create a receiver in WebSphere Partner Gateway, one that uses the JMS transport
protocol. Through the receiver, the hub listens for any documents on its input
queue and retrieves them.

Note: For an overview of how to create a receiver, see |“Deﬁning where to retrieve|
lthe back-end document” on page 49

For the hub to receive documents through a receiver over the JMS transport, you
must create a receiver from the Receiver List page of the Community Console. If
you are using WebSphere MQ Version 6.0 with latest Fix pack as your JMS
provider, refer to the WebSphere Partner Gateway Hub Configuration Guide for the
detailed steps. In addition, provide the information specified in for the
JMS protocol in the Receiver Details page.

Table 40. JMS values for the Receiver Details page for communication with ICS

Receiver Details field Value Notes and restrictions

JMS Message Class TextMessage

JMS Queue Name Same JMS queue name as This queue must be listed as the
the output queue for the output queue of the Adapter for
Adapter for JMS JMS; that is, the adapter must

send documents to this queue.
For more information, see
“Identifying the JMS queues” on|

[page 166J

Configuring InterChange Server

For your interactions between WebSphere Partner Gateway and InterChange
Server, you must create an Integration Component Library (ICL) within the System
Manager tool. This ICL will include the following artifacts:

* Business object definitions
* Connector objects
* Collaboration templates and collaboration objects

You must also create a user product and select from the ICL those artifacts
required for your particular interaction between InterChange Server and
WebSphere Partner Gateway.

Note: For more information on how to create ICLs and configure InterChange
Server, see the System Implementation Guide in the WebSphere InterChange Server
documentation set.

Creating business object definitions

WebSphere Partner Gateway sends your message to an adapter, which routes the
message to InterChange Server in the form of one or more business objects. For
InterChange Server to recognize a business object, it must first locate a template,
called a business object definition, to describe the structure of the information in the
business object. Each piece of information in a business object definition is held in

Chapter 8. Introduction to InterChange Server integration ~ 119

an attribute. Therefore, you must create business object definitions to represent the
information in your message. To create business object definitions, use the Business
Object Designer tool.

Note: Business Object Designer is included as part of both the WebSphere
InterChange Server and the WebSphere Business Integration Adapter products. For

more information on the use of this tool, see the Business Object Development Guide.

InterChange Server uses business objects for the following information:

» |“Business object for the document”|

» |“Business objects for configuration information” on page 122

Business object for the document

To hold the payload of the WebSphere Partner Gateway document or message, you
must define a business object definition to represent the payload business object. It is
in the form of a payload business object that the adapter transfers the document
into (or out of) InterChange Server. This section provides the following information
on the payload business object:

+ |“Business object structure”|

+ |“Business object conversion” on page 121

+ |“InterChange Server terminology” on page 122|

Business object structure: The payload business object must be designed so that
each piece of information in the document that you want to transfer has an
attribute in its associated payload business object definition. As shows, the
contents of the payload business object depend on the structure of the document
and the packaging type that the document uses.

Table 41. Relationship of packaging to the structure of the payload business object

Document structure

Packaging type

Payload business object definition

Payload only

None

Holds the payload information of the document.

Payload only

Backend Integration

Holds:
* The payload information of the document

* Transport-level headers

Payload and attachments

None

Not applicable. You must use Backend Integration
packaging if your document contains attachments.

Payload and attachments

The document contains an XML
wrapper, called a transport
envelope, in which both the
payload and attachments are
wrapped.

Backend Integration

Holds:

* The payload information of the document
* Transport-level headers

¢ The attachment container, which holds the

attachment data and any attachment business
objects

A WebSphere Partner Gateway-supplied data handler,
called the Attachment data handler, is required to

process the transport envelope. For more information,
see["Handling documents with attachments” on page|

123

The payload business object must also be designed according to the requirements
f the particular adapter used for integration with WebSphere Partner Gateway.

O

le 42| provides information on where to find details of how to create the
payload business object for transfer over a particular transport protocol.

120 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 42. Creating payload business objects for different transport protocols

Transport protocol Notes and restrictions For more information

HTTP “Creating business object]
definitions for ICS over HTTP”|

on page 149

JMS If document uses Backend “Creating business object]
Integration packaging definitions for J]MS” on page 167]
All If document has attachments “Creating attachment-related|

business object definitions” on|

[page 135|

Business object conversion: Typically, the adapter uses a data handler to convert
between the format of the document and its business-object representation. This
data handler is called the payload data handler. The adapter must be configured to
call the appropriate data handler for the payload’s content type. Typically, the
WebSphere Business Integration Data Handler for XML is configured as the
payload data handler because it converts between XML messages and business
objects. However, you can create custom data handlers for any message formats
that do not have a corresponding data handler provided by WebSphere Business
Integration Server.

Note: For processing XML messages, make sure you are using the WebSphere
Business Integration Data Handler for XML, Version 2.3.1 or later. For cXML
messages, you must use the Data Handler for XML, Version 2.4.1 or later.

You must make sure the payload data handlers you are using can ignore the child
meta-objects that are required by the transport protocol you are using. Before using
a data handler (whether it is supplied by WebSphere Business Integration or
whether it is a custom data handler), make sure it provides support for child
meta-objects. Refer to the section on the cw_mo_label tag in the business object’s

application-specific information in the appropriate section for your transport
protocol (see [Table 42).

To indicate which data handler to use to convert the payload, you must take the
following steps:

1. Identify the MIME type that the data handler must support to convert the
payload and locate a data handler that can handle this MIME type.

The Data Handler Guide in the WebSphere Business Integration Adapter
documentation set describes the data handlers that IBM provides. If none of
these data handlers can work, you can create a custom data handler.

2. In Business Object Designer, create a child meta-object for the data handler you
need to use. If you are using an IBM-provided data handler, refer to the Data
Handler Guide for information on the structure of the child meta-object.

3. In Business Object Designer, update the top-level data-handler meta-object for
connectors to include an attribute for the supported MIME type. The attribute
type for this attribute is the data handler’s child meta-object.

4. In Connector Configurator, set the appropriate connector configuration
properties to identify the data handler to use:
* Set the DataHandlerConfigMO and DataHandlerMimeType properties with the
name of the top-level data-handler meta-object and the supported MIME
type, respectively.

Chapter 8. Introduction to InterChange Server integration 121

* Set the DataHandlerClassName property with the name of the data-handler
class to instantiate.

Note: You set either the DataHandlerConfigM0 and DataHandlerMimeType
properties or the DataHandlerClassName property.

5. In Connector Configurator, include the top-level data-handler meta-object in the
list of supported business objects.

InterChange Server terminology: For InterChange Server, the name of the
payload business object depends on the direction of the communication, as follows:

* When WebSphere Partner Gateway sends a document to InterChange Server, it is
participating in InterChange Server’s event notification.

In this case, the data business object is called the event business object (sometimes
called just an event), which notifies InterChange Server of an event that occurred
in some external partner.

* When WebSphere Partner Gateway receives a document from InterChange Server,
it is participating in InterChange Server’s request processing.

In this case, the data business object is a request business object, which
InterChange Server has sent to request information from some external partner.
In response, InterChange Server might send a response business object back to the
hub community.

Business objects for configuration information
For many of the adapters, you create business object definitions to hold
configuration information. Such business objects are often called meta-objects.

provides information on where to find details of how to create the data
business object for transfer over a particular transport protocol.

Table 43. Sections that describe business-object creation

Transport protocol Related component For more information

HTTP Adapter for HTTP “Creating HTTP|
transport-level header|

information for ICS” on pagel
153]

JMS Adapter for JMS “Creating JMS header|
information” on page 168|

All Attachment data handler “Creating the Attachment|
child meta-object” on page|
130

Creating the connectors

You must create a connector object for the adapter you will be using. This
connector object represents an instance of the adapter at run-time. You create
connector objects within InterChange Server’s System Manager tool.

Note: For information on how to create connector objects, refer to the System
Implementation Guide in the WebSphere InterChange Server documentation set.

summarizes where to find information about how to create connector
objects, based on the transport protocol you are using.

122 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 44. Creating connector objects for different transport protocols

Transport protocol Adapter For more information

HTTP Adapter for HTTP “Creating the HTTP connector|
object” on page 156

JMS Adapter for JMS “Creating the JMS connector|
object” on page 172|

Creating the collaborations

It is the collaboration, within InterChange Server, that performs the actual business
process you need. Therefore, the appropriate collaboration must exist for
InterChange Server to correctly process your WebSphere Partner Gateway
documents. Make sure you take the following steps to make the appropriate
collaboration available at run-time:

1. Ensure that a collaboration template exists that provides the business process
you need:

e If such a collaboration template does not currently exist, you must create one
and compile it.

* If a collaboration template does exist, you must understand how to use it
sufficiently to be able to configure its collaboration object.

2. Create a collaboration object and bind its ports, as follows:

* For request processing, set the "to” port, which sends requests to WebSphere
Partner Gateway, to the adapter.

 For event notification, set the "from” port, which receives events from
WebSphere Partner Gateway, to the adapter.

summarizes where to find information about how to create connector
objects, based on the transport protocol you are using.

Table 45. Collaboration binding for different transport protocols

Transport protocol Adapter For more information

HTTP Adapter for HTTP “Binding collaborations to|
communicate with Adapter for]
HTTP” on page 156

JMS Adapter for JMS “Binding collaborations to|
communicate with Adapter for]
MS” on page 172|

Deploying the project

After your user project contains the artifacts that define the run-time components
needed, you must deploy it to the InterChange Server repository. You deploy a
user project within System Manager.

Handling documents with attachments

WebSphere Partner Gateway provides the Attachment data handler to process
documents that are sent between WebSphere Partner Gateway and InterChange
Server. The Attachment data handler converts a document within the XML
transport envelope (with or without attachments) between its serialized format and
its business-object representation. You should configure the Attachment data
handler as the payload data handler in either of the following cases:

Chapter 8. Introduction to InterChange Server integration ~ 123

¢ The Envelope Flag for Backend Integration packaging has been set to Yes.

When this flag is set to Yes, WebSphere Partner Gateway always wraps a
document in an XML transport envelope, regardless of whether it contains
attachments. You set this flag to Yes for Backend Integration packaging as part of
the profile’s B2B Capabilities page. For more information, see|“Payload” on page]

* The document to be processed can contain attachments.

When a document contains attachments, WebSphere Partner Gateway wraps it
in an XML transport envelope. In any document flow, there is one payload and,
optionally, multiple attachments. If you are sending or receiving documents that
contain attachments, your payload business object needs to contain attachment
information.

Note: The Attachment data handler is not required for SOAP documents that
contain attachments. For information on how SOAP documents are handled, see
[“Sending SOAP documents over HTTP/S” on page 156/

The Attachment data handler is called from a WebSphere Business Integration
adapter.

 If WebSphere Partner Gateway and InterChange Server use the HTTP transport
protocol, it is the Adapter for HTTP that calls the Attachment data handler.

 If WebSphere Partner Gateway and InterChange Server use the JMS transport
protocol, it is the Adapter for JMS that calls the Attachment data handler.

When the adapter receives a document within an XML transport envelope, it calls
the Attachment data handler to convert this document to its appropriate
business-object representation. For example, [Figure 35 on page 161| shows the
Adapter for JMS calling the Attachment data handler to convert the serialized
format of the document to its business-object representation. Conversely, when the
adapter receives a business-object representation for a document within an XML
transport envelope, it calls the Attachment data handler to convert this
business-object structure to its appropriate document format. For example,

[Figure 36 on page 163 shows the Adapter for JMS calling the Attachment data
handler to convert the business-object representation of the document to its
serialized format.

This section provides the following information on the Attachment data handler:

* |"How the Attachment data handler performs the conversion”|

* |“Setting up the environment for the Attachment data handler” on page 129

* |“Configuring the Attachment data handler” on page 130)

+ [“Creating attachment-related business object definitions” on page 135

How the Attachment data handler performs the conversion

The Attachment data handler can interpret the structure of the XML transport
envelope and handle the conversion between the contained data and the
corresponding business-object representation, as described in the following
sections:

“How documents are converted to business objects” on page 125/to send a
document to InterChange Server

+ [“How business objects are converted to documents” on page 127|to receive a
document from InterChange Server

124 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

How documents are converted to business objects

Before WebSphere Partner Gateway sends a document to InterChange Server, it
must determine whether to wrap the contents in an XML transport envelope. If
WebSphere Partner Gateway creates the transport envelope, the payload and any
attachments are Base64-encoded. WebSphere Partner Gateway then sends the XML
transport envelope to the appropriate adapter with the appropriate transport-level
headers. This adapter can be configured to call the Attachment data handler to
handle the conversion of payload and any attachments in an XML-wrapped
document into the corresponding business-object representation.

To convert a document wrapped in an XML transport envelope to its
business-object representation, the calling entity instantiates the Attachment data
handler, passing it the document (in its transport envelope). The Attachment data
handler then takes the following steps:

1. Loads the content-type maps defined in the data handler’s child meta-object.

The content-type maps are defined in the ContentTypeMap_x configuration
properties of the child meta-object. The child meta-object is a business object
that contains configuration information for the Attachment data handler.
Attributes in this business object associate content-type maps with content
tii es. For more information, see [“Creating the Attachment child meta-object”|

2. Checks the document to see whether it is wrapped in an XML transport
envelope.

e If the Attachment data handler does not detect the transport envelope, it does
not need to extract the payload from this envelope structure.

The document contains only a payload, which the Attachment data handler
must convert to its associated business-object representation. For more
information, see [“How documents without a transport envelope are]

|p_rocessed.' |

e If the Attachment data handler does detect the transport envelope, it must
extract the payload and any attachments from this envelope structure.

The document contains a payload and possibly some attachments. Therefore,
the Attachment data handler needs to convert the payload and any
attachments to their associated business-object representation. For more
information, see [“How documents in a transport envelope are processed.”|

3. Sets the resulting payload business object and returns this business object to the
calling entity.

How documents without a transport envelope are processed: If the Attachment
data handler determines that the document is not contained in an XML transport
envelope, it does not need to extract the payload data from the envelope structure.
Therefore, the data handler uses the PayloadDataHandlerMimeType configuration
property (defined in its child meta-object) to obtain the MIME type that identifies
the default payload data handler to instantiate for the document payload. This
data handler converts the payload data to its corresponding payload business
object and returns the resulting payload business object to its calling entity.

How documents in a transport envelope are processed: If the Attachment data
handler determines that the document is contained in an XML transport envelope,
it must extract the payload and any attachments from this envelope structure
before it can process them. Therefore, the data handler takes the following steps to
process and convert the document:

1. Extracts the payload and any attachments from the transport envelope and
decodes the payload data.

Chapter 8. Introduction to InterChange Server integration 125

The payload is contained in the <payload> XML tag. Each attachment is
contained in an <attachment> XML tag.

2. Searches the content-type maps for a content type that matches that of the
payload.

The Attachment data handler uses the MIME type specified in the matching
content-type map to create an instance of a data handler. This data handler

converts the payload data to its corresponding payload business object and

returns the resulting business object to the Attachment data handler.

3. Creates the content-information business object for the payload.

The Attachment data handler examines the business-object-level
application-specific information of the payload business object definition and
determines the name of the content-information business object, whose attribute
name is specified by the cw_mo_bcg_content_info tag. It then creates an
instance of this content-information business object and sets the values for the
payload content type and encoding.

4. Creates the attachment-container business object for the payload.

The Attachment data handler examines the business-object-level
application-specific information of the payload business object and determines
the name of the attachment-container business object, whose attribute name is
specified by the cw_mo_bcg_attachment tag. It then creates an instance of the
attachment-container business object and saves it in the appropriate attribute of
the payload business object.

If the cw_mo_bcg_attachment tag does not exist (or is empty), assume that the
document does not contain any attachments. Therefore, no further processing
steps are required. The Attachment data handler returns the converted payload
business object.

5. Creates the default attachment business object for the attachment container.

The Attachment data handler examines the business-object-level
application-specific information of the attachment-container business object and
determines the name of the default attachment business object, whose attribute
name is specified by the cw_mo_bcg_default_attribute tag. It then creates an
instance of the default attachment business object and saves it in the
appropriate attribute of the attachment-container business object.

6. Determines whether the attachment needs to be converted to a business object
by searching the content-type maps for a content type that matches that of the
attachment.

The Attachment data handler examines the content type and character-set
encoding from the attachment and checks to see whether there is a
corresponding entry in a content-type map.

* If a corresponding content-type map is not found, the Attachment data
handler does not create a business object for the attachment data.

Therefore, the data handler creates an instance of the default attachment
business object, sets the values for the content type and encoding within its
content-information business object, and sets the base64-encoded attachment
data (as a string) in the attachment attribute.

The Attachment data handler then populates the attachment-container
business object with the default attachment business object.

 If a content-type map is found, the Attachment data handler checks to see
whether the attachment needs to be converted to a business object:

— If the ConvertAttachment configuration property in the matching
content-type map is false, the Attachment data handler creates an instance
of the default attachment business object, sets the values for the content

126 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

type and encoding within its content-information business object, and sets
the base64-encoded attachment data (as a string) in the attachment
attribute.

The Attachment data handler then populates the attachment-container
business object with the default attachment business object.

— If the ConvertAttachment configuration property in the matching
content-type map is true, the Attachment data handler decodes the
attachment data and creates an instance of a data handler to process the
attachment data. This data handler processes the decoded bytes and
returns the corresponding attachment business object.

The Attachment data handler then examines the business-object-level
application-specific information of the attachment business object
definition and determines the name of the content-information business
object, whose attribute name is specified by the cw_mo_bcg_content_info
tag. If this tag exists, the data handler creates the content-information
business object for the attachment and sets the values for attachment’s
content type and encoding.

Finally, the Attachment data handler populates the attachment-container
business object with the attachment business object.

How business objects are converted to documents

Before WebSphere Partner Gateway receives a document from InterChange Server,
an adapter must determine whether to wrap the business-object representation of
the payload and any attachments in the XML transport envelope. InterChange
Server sends the business object to the appropriate data handler, which handles the
actual conversion. This data handler can be configured to call the Attachment data
handler to handle the conversion of payload and any attachment business objects
into the corresponding payload and attachments as well as the creation of an XML
transport envelope.

To convert a payload business object with attachments to its transport-envelope
representation, the calling entity instantiates the Attachment data handler, passing
it the payload business object. The Attachment data handler takes the following
steps:

1. Loads the content-type maps defined in its configuration meta-object.

The content-type maps are defined in the ContentTypeMap_x configuration
properties of the child meta-object. The child meta-object is a business object
that contains configuration information for the Attachment data handler.
Attributes in this business object associate content-type maps with content
types. For more information, see [“Creating the Attachment child meta-object”|

2. Checks the business object to determine whether to create an XML transport
envelope.

* If the Attachment data handler does not determine that the document
requires a transport envelope, it does not need to wrap the payload in this
envelope structure.

The document contains only a payload, which the Attachment data handler
must create from its associated business-object representation. The data
handler does not need to create a transport envelope for the document. For
more information, see ["How documents without a transport envelope are|
[created” on page 128

e If the Attachment data handler does determine that the document requires a
transport envelope, it must wrap the payload and any attachments in this
envelope structure.

Chapter 8. Introduction to InterChange Server integration ~ 127

128

The document contains a payload and possibly some attachments. Therefore,
the Attachment data handler needs to convert the payload business-object
representation to a payload and any attachments and wrap these components
in a transport envelope. For more information, see [‘How documents with a|
[transport envelope are created.”|

3. Sets the resulting payload and any attachment tags in the WebSphere Partner
Gateway document and returns this document to the calling entity.

How documents without a transport envelope are created: If the Attachment
data handler determines that the payload business object does 1ot require an XML
transport envelope, it does not need to wrap the payload data in the envelope
structure. Therefore, the data handler uses the default payload data handler to
convert the payload business object to its corresponding payload document. The
PayloadDataHandlerMimeType configuration property (defined in the Attachment
data handler’s child meta-object) contains the MIME type that identifies the default
payload data handler to instantiate for the payload business object. This data
handler receives the payload business object as an argument and returns the
resulting payload document to its calling entity.

How documents with a transport envelope are created: If the Attachment data
handler determines that the payload business object does require an XML transport
envelope, it must wrap the payload and attachment documents in this envelope
structure. Therefore, the data handler takes the following steps to process and
convert the business object:

1. Gets the content type and character-set encoding for the payload.

The cw_mo_bcg_content_info tag in the business-object-level application-specific
information of the payload business object specifies the name of the
content-information attribute. This attribute contains the content type and
encoding for the payload.

Note: If the content-information attribute does not exist, use the default data
handler (identified by the MIME type contained in the
PayloadDataHandlerMimeType configuration property, in the Attachment data
handler’s child meta-object) to convert the payload business object.

2. Searches the content-type maps for a content type that matches that of the
payload.

The Attachment data handler uses the MIME type specified in the matching
content-type map to create an instance of a payload data handler. This data
handler converts the payload business object to its corresponding payload
document and returns the resulting document to the Attachment data handler.
From the string that is returned by the payload data handler, the Attachment
data handler encodes the bytes using Base64 and stores the result in the
payload tag of the XML transport envelope.

3. Gets the attachment container from the payload business object.

The attachment container resides in the attachment-container attribute of the
payload business object. The business-object-level application-specific
information of the payload business object contains the cw_mo_bcg_attachment
tag, which identifies the attachment-container attribute. This attribute contains
the attachments.

If the cw_mo_bcg_attachment tag does not exist (or is empty), assume that the
document does not contain any attachments. Therefore, no further processing
steps are required. The Attachment data handler returns the converted payload
in its transport envelope.

IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

4. For each attachment, determines whether the attachment is represented as a
business object or just data.

e If the attachment is just attachment data, the business-object-level
application-specific information of the attachment-container business object
contains the cw_mo_bcg_default_attribute tag, which identifies the
default-attachment attribute. This attribute contains the attachment data,
which the Attachment data handler retrieves, extracts the Base64-encoded
data, and stores the result in the document.

¢ If the attachment is represented by a business object, its attribute-level
application-specific information contains the wbic_type tag to indicate that it
contains an attachment business object.

The Attachment data handler takes the following steps to process the
attachment business object:

a. Retrieves the contents of the attachment attribute and gets the content
type and encoding for the attachment.

The business-object-level application-specific information of the
attachment business object contains the cw_mo_bcg_content_info tag,
which identifies the content-information attribute. This attribute contains
the content type and encoding for this attachment. The Attachment data
handler stores this content information in the attachment tag of the
document.

b. Searches the content-type maps for a content type that matches that of
the attachment.

The Attachment data handler uses the MIME type in the matching
content-type map to create an instance of a data handler. This data
handler converts the attachment business object to its corresponding
attachment document and returns the resulting document (as a string) to
the Attachment data handler.

C. Stores the encoded result in the attachment tag of the XML wrapper for
the document.

The Attachment data handler gets the bytes from the returned string
(using the character set, if one was present) and encodes the bytes using
Base64. It then stores the result in the attachment tag.

Setting up the environment for the Attachment data handler

Use of the WebSphere Partner Gateway-supplied Attachment data handler involves
the following steps:

* |“Specifying which schema to use”)

« |"Deploying the Attachment data handler” on page 130|

» |[“Configuring the Attachment data handler” on page 130

Specifying which schema to use

You have the option of using the default schema for the Attachment data handler
or using a schema (wbipackaging v1.1_ns.xsd) that lets you pass the contentld in
the Backend Integration packaging.

To use the wbipackaging v1.1_ns.xsd schema, configure the wbipackaging_version

property in the beg.properties file. (The bcg.properties file is described in the
Administrator Guide.) This property is specified as:

wbipackaging_version=1.n

where 7 is 0 or 1. The default value of this property is 1.0.

Chapter 8. Introduction to InterChange Server integration 129

The meta-object of the Attachment data handler has a wbipackaging version
attribute, which can have a value of 1.0 or 1.1. If you specify 1.1, the Attachment
data handler parses and generates the XML messages containing the contentld of
the attachment.

To specify the content ID of the attachment, the encoding business object uses the
contentld attribute. When the Attachment Data Handler generates the XML from
the business object, it uses this attribute to create the contentld tag for the
attachment. When the Attachment Data Handler generates the business object from
the XML, it sets this attribute, using the value specified in the contentld tag in the
XML message.

Deploying the Attachment data handler

The Attachment data handler and associated repository file are available on the
WebSphere Partner Gateway installation medium, in the locations listed in
fable 49

Table 46. Location of the components for Attachment data handler

Component

Location

Attachment data handler Integration/WBI/WICS/Attachment/

bcgwbiattachmentdh.jar

Repository file

Integration/WBI/WICS/Attachment/
MO_DataHandler DefaultAttachmentConfigVl.0.in

or

Integration/WBI/WICS/Attachment/
MO_DataHandler_DefaultAttachmentConfigVl.1.in

Deploy the files into the Web server according to the documentation for the Web
server.

Specifying the location of the Attachment data handler

WebSphere InterChange Server needs to know the location of the Attachment data
handler, so that it can load it at run-time. To specify the location of the Attachment
data handler, take the following steps:

1. Edit the ICS startup script, start_server.bat, which is located in the bin
subdirectory of the InterChange Server product directory (on the computer
where InterChange Server resides).

2. To the CLASSPATH variable in this file, add the jar file for the Attachment data
handler: bcgwbiattachmentdh. jar

Configuring the Attachment data handler

Configuring the Attachment data handler consists of the following steps to create
the configuration business objects:

+ |“Creating the Attachment child meta-object”]
+ |“Updating the top-level data-handler meta-object” on page 133

Note: You must also create the attachment-related business object definitions for
the Attachment data handler. For more information, see |”Creatina
lattachment-related business object definitions” on page 135,

Creating the Attachment child meta-object
To configure the Attachment data handler, you must create a child meta-object to
provide the class name and configuration properties that the Attachment data

130 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

handler needs. To create this meta-object, you create a business object definition
that contains the attributes listed in . Use Business Object Designer, which
is part of the WebSphere Business Integration Toolset, to create this business object
definition

The child meta-object provides the class name and configuration properties that the
Attachment data handler needs. In the Business Object Designer tool, create a child
meta-object that includes MIME types for the payload and for the types of
attachments you expect to receive.

The attributes of the child meta-object are shown inliable 47I An example of a
ﬂd meta-object for the Attachment data handler is shown in [Figure 28 on page]
133

Note: The sample business objects shown in this chapter do not include the
standard attributes (such as ObjectEventld) required by WebSphere InterChange
Server but not used by the Attachment data handler.

Table 47. Configuration properties in the Attachment child meta-object

Attribute Name Description

ClassName Class name (required), which points to the following data
handler class:

com.ibm.bcg.DataHandlers.AttachmentDataHandler

ContentTypeMap_x The content-type map for the payload and for each type of
attachment you expect to receive in the XML wrapper.

For more information, see [‘Content-type maps.”|

PayloadDataHandlerMimeType |MIME type used to identify the default data handler,
which processes a payload that does not have associated
attachments.

wbipackaging_version This attribute can have a value of 1.0 or 1.1. If you specify
1.1, the Attachment data handler parses and generates the
XML messages containing the contentld of the attachment.

Important: To assign a value to the attributes in set the default value of
the attribute. For example, if the Attachment data handler is to use the XML data
handler for its default data handler, set the Default Value of the
PayloadDataHandlerMimeType attribute to text/xml.

Content-type maps: The content-type map determines the data handler that the
Attachment data handler calls to convert information formatted in the associated
content type. For example, if the content type of the payload is application/xml,
the Attachment data handler looks for a content-type map whose ContentType
attribute contains the value application/xml. If no matching content type can be
found, the data handler assumes that it should not convert the associated
attachment to a business object.

You would create a content-type map for each of these content types, with the
attribute-level application-specific information as shown in [Table 49

When you create an attribute in the child meta-object that represents a content-type
map, keep the following in mind:

¢ The name of the content-type-map attribute has the following format:
ContentTypeMap_x

Chapter 8. Introduction to InterChange Server integration ~ 131

where x is an integer that uniquely identifies the content-type map within the
business object definition.

Note: You must order the ContentTypeMap_x attributes in sequence. For example,
if you have three content-type maps, their attributes must be named
ContentType_1, ContentType 2, and ContentType 3.

¢ The default value of the content-type-map attribute must contain some
combination of valid tags.

Table 48| lists the tags that the default value for this attribute can contain.
Table 48. Valid tags for default value of content-type-map attribute

Tag name

Description

Required

ContentType

Actual content type that comes in the transport
envelope (for example, text/xml).

Yes

MimeType

MIME type used to identify the data handler to
convert the associated content type to a business
object. If you do not specify MimeType, the data
handler uses the value of ContentType to
instantiate the data handler.

No

CharSet

Name of a character set (for example, UTF-8)
that the Attachment data handler uses to convert
bytes to a string or a string to bytes.

If you do not specify CharSet, the Attachment

data handler takes the following actions:

 For inbound data, the data bytes that result
from decoding the message from base64 are
used for the conversion to the business object.

¢ For outbound data, calls are made to the
method of the child data handler that returns
bytes (and not a string).

No

ConvertAttachment

Boolean value to indicate whether the
attachment should be converted to a business
object. The default is false.

The content-type map can also specify the character set for encoding as well as
whether an attachment should be converted to a business object. For a description
of the child meta-object attributes and an example, see [‘Creating the Attachment|

ichild meta-object” on page 130.

For example, suppose you have the following content types in your document:

* application/xml

e text/xml

* application/octet-stream

Table 49. Sample content-type maps

Content type Attribute name Default value

text/xml ContentType_1 ContentType=text/xml;MimeType=myxml; CharSet=UTF-
8;ConvertAttachment=false;

application/xml ContentType_2 ContentType=application/xml;
MimeType=mynewxml ;CharSet=UTF-16;
ConvertAttachment=true;

application/octet-stream ContentType_3 ContentType=application/octet-stream; MimeType=myoctet

132 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Sample child meta-object: WebSphere Partner Gateway provides the following
InterChange Server repository input files, which contains a sample child
meta-object for the Attachment data handler:

ProductDir/Integration/WBI/WICS/Attachment/
MO _DataHandler DefaultAttachmentConfigV1l.0.in

ProductDir/Integration/WBI/WICS/Attachment/
MO_DataHandler_DefaultAttachmentConfigVl.l.in

where ProductDir is the directory of your installed WebSphere Partner Gateway
product. The repository files define a single Attachment data handler whose
associated child meta-object is M0_DataHandler_DefaultAttachmentConfig.
shows the sample child meta-object for the Attachment data handler. This
meta-object defines two content-type maps, ContentTypeMap_1 and
ContentTypeMap_2.

MO_DataHandler_DefaultAttachmentConfig

Name = ClassName
Default Value = com.ibm.bcg.DataHandlers.
AttachmentDataHandler

Name = ContentTypeMap_1

Default Value = ContentType=application/xml;
MimeType=text/xml;CharSet=UTF-8;
ConvertAttachment=true;

Name = ContentTypeMap_2
Default Value = ContentType=text/xml;
MimeType=text/xml;CharSet=UTF-8;

Name = PayloadDataHandlerMimeType
Default Value = text/xml

Figure 28. Sample child meta-object for the Attachment data handler

MO_DataHandler_DefaultAttachmentConfigV1.1.in contains the additional
attribute:

[Attribute]
Name = WBIPackaging Version
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = true
DefaultValue = 1.0
IsRequiredServerBound = false
[End]

Updating the top-level data-handler meta-object

A WebSphere Business Integration Adapter (such as the Adapter for J]MS) uses the
MO_DataHandler Default meta-object to identify the data handlers it can use. Add a
reference to the Attachment data handler in the meta-object.

To the MO_DataHandler_Default meta-object, you make the following modifications:

Chapter 8. Introduction to InterChange Server integration 133

1. Add an attribute whose name identifies the MIME type associated with the
Attachment data handler instance; that is, for a document that contains this
MIME type, the associated data handler can handle its conversion to a business
object.

The attribute type of this attribute is the business object definition for the
Attachment data handler’s child meta-object (see [“Creating the Attachment]
[child meta-object” on page 130).

2. Add an attribute for each of the supported attachment MIME types, if these do
not already exist in the top-level data-handler meta-object.

The attribute type of these attributes would be the child meta-object of the
associated data handler.

For example, suppose you have the Attachment data handler as configured in
[Figure 28 on page 133} [Figure 29| shows the MO_DataHandler Default meta-object
with an attribute that associates the wbic_attachment MIME type with the instance
of the Attachment data handler that is configured by the
MO_DataHandler_DefaultAttachmentConfig child meta-object. This top-level
data-handler meta-object also associates the document MIME type (text/xml) with
the XML data handler’s child meta-object.

MO_DataHandler_Default

Name = text/xml
Type = MO_DataHandler_DefaultXMLConfig

Name = wbic_attachment
Type = MO_DataHandler_DefaultAttachmentConfig

\i
MO_DataHandler_DefaultAttachmentConfig

Name = ClassName
Default Value = com.ibm.bcg.DataHandlers.
AttachmentDataHandler

Name = ContentTypeMap_1

Default Value = ContentType=application/xml;
MimeType=text/xml;CharSet=UTF-8;
ConvertAttachment=true;

Name = ContentTypeMap_2
Default Value = ContentType=text/xml;
MimeType=text/xml;CharSet=UTF-8;

Name = PayloadDataHandlerMimeType
Default Value = text/xml

Figure 29. Associating the wbic_attachment MIME type with the Attachment data handler

For each unique combination of supported content types that you need to support,
repeat the process by adding an attribute in the appropriate top-level data-handler
meta-object, whose attribute name is the MIME type associated with the
Attachment data handler instance and whose type is the name of the associated
child meta-object. Also ensure that the configured MIME types (and their child
meta-objects) exist in the top-level meta-object.

134 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Creating attachment-related business object definitions

If you are sending or receiving documents that are wrapped in an XML transport
envelope, your payload business object needs to contain attachment information. In
any document flow, there is one payload and, optionally, multiple attachments. The
Attachment data handler expects this attachment information to be in
attachment-related business objects. Therefore, you must create business object
definitions to represent this information. A business object definition is the form of
information that InterChange Server uses. You use the Business Object Designer
tool to create business object definitions.

shows the business-object structure for a payload that is wrapped in an
XML transport envelope.

Chapter 8. Introduction to InterChange Server integration 135

WBIC_Payload_BusObj

AppSpecinfo =
cw_mo_bcg_attachments=
attachments

payload attributes

Name = attachments
Type = attachContainer_BusObj

contentinfo_BusObj

Name = contentType
Type = String

Name = encoding
Type = String

Name = contentld
Type = String

defaultAttach_BusObj

A

attachContainer_BusObj

AppSpeclnfo =
cw_mo_bcg_content_info=
contentType_attach

AppSpecinfo =
cw_mo_bcg_default_attribute=
defaultAttach

Name = defaultAttach
Type = defaultAttach_BusObj

Name = attachment
Type = String

Name = contentType_attach

Type = contentinfo_BusObj | |

Name = attachment1
Type = attachment1_BusObj

attachment1_BusObj ||

AppSpecinfo =
cw_mo_bcg_content_info=
contentType_attach1

Name = contentType_attach1
Type = contentinfo_BusObj

contentinfo_BusObj

Name = contentType

Type = String
Name = encoding
Type = String

Name = contentld
Type = String

Figure 30. Relationship of the payload business object to the attachment business objects

As shows, all the attachments are contained in the attachment-container
business object. If there are attachments, the payload business object has an
attribute that corresponds to the attachment-container business object.

Make sure your business-object structure includes attachment-required business

objects by taking the following steps:

1. Create a business object definition to hold the content-type-encoding properties

required by the Backend Integration packaging.
2. Create a business object definition for each type of attachment.

136 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

3. Create a business object definition for the attachment-container business object.

4. Modify the business object definition for your payload business object.

Each of these steps is described in the sections below.

Representing the content information

To store the content type and encoding of the associated payload or attachment,
you create the content-information business object. To create a content-information
business object definition, create the attributes shown in .

Table 50. Attributes of the content-information business object

Attribute Is key
Attribute type Description attribute?
contentType String The content type for the associated payload | Yes

or attachment.

encoding String The character encoding for the associated No
payload or attachment

In [Figure 30 on page 136} the contentInfo_BusObj business object definition
contains attributes for the content type and encoding of the attachment. These
attributes all have attribute-level application-specific information to specify the
name of the related protocol header. For example, the x-aux-sender-id attribute
has the application-specific information set as follows:

name=x-aux-sender-id

You can choose whatever name you want to identify the content-information
business object definition. The application-specific information of the attachment
business object determines if this is a Content Type Encoding business object type.
[Figure 30 on page 136{shows an example of a content-type-encoding business
object definition called contentType_BusObj.

Representing attachment data

For attachment data that is not to be converted into a business object, you create
the default attachment business object. This business object is useful for containing
base64-encoded data that comes from the transport envelope.

To create a default-attachment business object definition, take the following steps:

1. Create the attributes shown in |Table 51

2. If you create a content-information business object, in the application-specific
information for the default attachment business object definition, add the
cw_mo_bcg_content_info tag to identify the attribute that contains the content
information.

This cw_mo_bcg_content_info tag has the following format:
cw_mo_bcg_content_info=contentInfoAttr

where contentInfoAttr is the name of the attribute that contains the
attachment-container business object.

Table 51. Attributes of the default attachment business object

Is key
Attribute Attribute type |Description attribute?
attachment String The piece of attachment data. Yes

Note: This attribute is the key attribute of the business
object definition.

Chapter 8. Introduction to InterChange Server integration ~ 137

Table 51. Attributes of the default attachment business object (continued)

the content information

Is key
Attribute Attribute type |Description attribute?
An attribute to hold Business object | An optional attribute to hold the content-information No

business object, which provides the content type and
encoding for the attachment data. This attribute should
have single cardinality.

Note: If this attribute does not exist, the Attachment data
handler does not set the attachment data in the business
object.

For more information on the format of the
content-information business object, see|“Representing thel

[content information” on page 137)

In [Figure 30 on page 136} the defaultAttach_BusObj business object definition
contains attributes for the piece of attachment data, including a
content-information business object to hold its content type and encoding. The
piece of attachment data that this default attachment business object represents
does have a content-type encoding, represented by the contentType_attach
attribute. Therefore, the default attachment business object definition includes the
following tag in its business-object-level application-specific information:

cw_mo_bcg_content_info=contentType_attach

Representing the attachments

For each kind of attachment in your document that converts to a business object,
you must create a separate attachment business object definition. The attachment
business object definition represents the actual data in a document attachment. To
create an attachment business object definition, take the following steps:

1. Create an attribute for each piece of attachment data.

Possible attribute types can include String (for simple pieces of data) or a
business object definition (for complex data).

2. If the attachment requires content-type encoding:
a. Create a content-type-encoding attribute.

The attribute type for this attribute is the content-type-encoding business
object definition (see [“Representing the content information” on page 137).

b. Add to the business-object-level application-specific information of the
attachment business object definition the cw_mo_bcg_content_info tag, to
identify the attribute that contains the content-type encoding.

This cw_mo_bcg_content_info tag has the following format:
cw_mo_bcg_content_info=contentTypeEncodingAttr

where contentTypeEncodingAttr is the name of the attribute that contains the
content-type-encoding business object.

In [Figure 30 on page 136} the payload document has one attachment, represented
by the attachmentl_BusObj business object definition. This attachment does have a
content-type encoding, represented by contentTypeEncoding attribute. Therefore,
the attachment business object definition includes the following tag in its
business-object-level application-specific information:

cw_mo_bcg_content_info=contentTypeEncoding

138 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Representing the attachment container

The attachment container contains all document attachments in the transport
envelope. To represent the attachment container for InterChange Server, you create
the attachment-container business object. Each attribute in the attachment-container
business object represents one attachment.

To create the attachment-container business object definition, take the following
steps:

1.

Add an attribute for each attachment in the document that is to be converted to
a business object.

The attribute type for each of these attributes is the associated attachment
business object (see [Representing the attachments” on page 138). Each
attribute should have multiple cardinality.

Add to the application-specific information for each attribute the wbic_type tag
to identify the attribute as an attachment.

The wbic_type tag has the following format:
wbic_type=Attachment

Note: An attachment attribute can have multiple cardinality.

If the payload contains attachment data that should not be converted to a

business object:

a. Add an attribute for the default attachment business object.
The attribute type for this attribute is the default attachment business object
(see [“Representing attachment data” on page 137). It is the key attribute for
the attachment-container business object. This attribute does not require the
whic_type tag in its application-specific information.

Note: The attachment-container business object can contain only one default
attachment attribute. However, this attribute can have multiple cardinality.

b. Add to the business-object-level application-specific information of the
attachment business object definition the cw_mo_bcg_default_attribute tag,
to identify the attribute that contains the attachment data.

This cw_mo_bcg_default_attribute tag has the following format:
cw_mo_bcg_content_info=defaultAttachmentAttr

where defaultAttachmentAttr is the name of the attribute that contains the
default attachment business object.

Important: If no default-attachment attribute exists, the Attachment data
handler cannot convert any attachments that do not have an associated
content-type map or attachments that are not converted to business objects.
These attachments will be lost during the conversion to business-object
representation.

In [Figure 30 on page 136 the attachment container is represented by the
attachContainer_BusObj business object definition. This attachment-container
business object definition has the following attributes:

The attachmentl attribute represents the single attachment for the document.
Therefore, the attachment-container business object definition includes the
following tag in its attribute-level application-specific information:

wbic_type=Attachment

This attachment is represented by the attachmentl_BusObj business object
definition.

Chapter 8. Introduction to InterChange Server integration 139

140

e The defaultAttach attribute represents the attachment data that does not require
conversion to the business-object representation. Therefore, the
attachment-container business object definition includes the following tag in its
business-object-level application-specific information:

cw_mo_bcg_default_attribute=defaultAttach

Modifying the payload business object definition

The payload business object definition represents the information in your
document. It contains an attribute for each piece of information you are
transferring between WebSphere Partner Gateway and InterChange Server. For
information on the creation of the payload business object definition, see
bobject for the document” on page 120

If you are sending or receiving documents that contain attachments, your payload
business object needs to contain attachment information. In any document flow,
there is one payload and, optionally, multiple attachments. If the payload of your
document contains attachments, you must modify the payload business object
definition as follows:

1. Create an attribute to hold the payload data.

You might find it easier to use if your actual payload data is stored in a
separate payload business object definition. In this case, the top-level payload
business object contains an attribute for the payload data whose attribute type
is the business object definition of actual payload data.

2. Add an attachment container:
a. Add an attribute to hold the attachment container.

The attribute type of this attribute is the attachment-container business
object definition (see [“Representing the attachment container” on page 139).
This attribute should have single cardinality.

b. In the application-specific information for the payload business object
definition, add the cw_mo_bcg_attachment tag to identify the attribute that
contains the attachment container.

This cw_mo_bcg_attachment tag has the following format:
cw_mo_bcg_attachment=attachContainerAttr

where attachContainerAttr is the name of the attribute that contains the
attachment-container business object.

3. Optionally, you can specify the content type of the payload. The Attachment
data handler uses this content type to determine which data handler to
instantiate to convert the payload data. If it finds a matching content type in
the content-type maps, it instantiates the data handler for this content type.

a. Add a content-information attribute, which is an optional attribute to hold
the content type and encoding for the payload. This attribute should have
single cardinality.

Note: If this attribute does not exist, the Attachment data handler obtains
the data handler to convert the payload from the setting of the
PayloadDataHandlerMimeType configuration property, in its child meta object.

b. In the application-specific information for the payload business object
definition, add the cw_mo_bcg_content_info tag to identify the attribute that
contains the content information.

This cw_mo_bcg_content_info tag has the following format:
cw_mo_bcg _attachment=contentInfoAttr

IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

where contentInfoAttr is the name of the attribute that contains the
content-information business object. For more information on the format of
the content-information business object, see|"Representing the content|
[information” on page 137

4. Add any configuration attributes required for your transport protocol.

For example, if you are using the JMS transport protocol, your payload
business object definition must contain the J]MS dynamic business object. For
more information, see the section on how to create business object definitions in
support of your transport protocol.

Chapter 8. Introduction to InterChange Server integration ~ 141

142 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 9. Integrating InterChange Server over HTTP

This chapter describes how to integrate WebSphere Partner Gateway with
WebSphere InterChange Server over the HTTP transport protocol. It provides
information on how to configure InterChange Server (ICS) and the adapters
required for communication over HTTP.

Note: For information on how to configure WebSphere Partner Gateway to
communicate with InterChange Server over HTTP, see [“Configuring WebSphere
IPartner Gateway for InterChange Server” on page 116./For general information on
how to configure InterChange Server, see [’Configuring InterChange Server” on|
-ae 119

This chapter provides the following information on how to send and receive
documents between WebSphere Partner Gateway and WebSphere InterChange
Server through the use of the HTTP transport protocol:

+ |[“Using HTTP transport protocol with ICS”|

* |“Sending SOAP documents over HTTP/S” on page 156|

Using HTTP transport protocol with ICS

WebSphere Partner Gateway can send and receive documents with WebSphere
InterChange Server (ICS) over the HTTP transport protocol

Note: If you are exchanging SOAP documents over the HTTP transport protocol,
see [“Sending SOAP documents over HTTP/S” on page 156)

This section provides the following information on how to configure InterChange
Server and the appropriate adapters for use with WebSphere Partner Gateway over
HTTP:

+ |["Components required for documents to ICS over HTTP transport”]

* [“Setting up the environment for HTTP transport with ICS” on page 146|

« |“Creating business object definitions for ICS over HTTP” on page 149|
* |“Creating ICS artifacts for HTTP” on page 155|

Components required for documents to ICS over HTTP
transport

For WebSphere Partner Gateway to communicate with InterChange Server using
the HTTP transport protocol requires that these two components be configured.
summarizes these configuration steps.

Table 52. Configuring WebSphere Partner Gateway and InterChange Server

Component Version For more information

WebSphere Partner Gateway | 6.1 “Configuration for sending documents|
to ICS over the HTTP transport|
protocol” on page 117]

“Configuration for receiving|
documents from ICS over the HTTP)
transport protocol” on page 118|

© Copyright IBM Corp. 2004, 2008 143

Table 52. Configuring WebSphere Partner Gateway and InterChange Server (continued)

Component

Version

For more information

Server

WebSphere InterChange

4.3

“Creating ICS artifacts for HTTP” on|

page 155|

In addition, to send or receive a document between WebSphere Partner Gateway

and InterChange Server using the HTTP transport protocol, you use the
components listed in|Table 5

Table 53. Components required to transfer documents with InterChange Server through HTTP

Component

Description

Notes and restrictions

WebSphere Business Integration
Adapter for HTTP

(Adapter for HTTP)

This adapter allows InterChange Server to
exchange business objects with
applications that send or receive data in
the form of HTTP streams.

Use Version 4.2.1 of the Adapter for
HTTP.

A payload data handler

This data handler converts the document
payload between its document format
(typically XML) and its business-object
representation.

This data handler is required and
must support the MIME type of your
payload document.

Attachment data handler

This data handler handles attachment
documents for your document message.

This data handler is required only if
your documents include attachments.

The following sections describe how the components in|Table 53| work together to
send and receive documents between WebSphere Partner Gateway and
InterChange Server over the HTTP transport protocol.

How documents are sent to ICS through HTTP

For WebSphere Partner Gateway to send a document to InterChange Server using
the HTTP transport protocol, you use the Adapter for HTTP to retrieve the
document that WebSphere Partner Gateway has sent as an HTTP stream. The

adapter then routes the document to InterChange Server. provides an
overview of how WebSphere Partner Gateway sends documents to InterChange
Server over the HTTP transport protocol.

144

IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

WebSphere
InterChange Server

Collaboration

Business object

., Payload
Adapter for HTTP « data handler

HTTP request message

WebSphere Partner
Gateway

Document

Figure 31. Message flow from WebSphere Partner Gateway to a collaboration through the
HTTP transport protocol

How documents are received from ICS through HTTP
For WebSphere Partner Gateway to receive a document from InterChange Server
using the HTTP transport protocol, you use the Adapter for HTTP, which sends the

message it receives from InterChange Server as an HTTP stream for WebSphere
Partner Gateway to retrieve. provides an overview of how WebSphere
Partner Gateway receives documents from InterChange Server over the HTTP

transport protocol.

Chapter 9. Integrating InterChange Server over HTTP 145

WebSphere
InterChange Server

Collaboration

Business object

l

——» Payload
Adapter for HTTP data handler
|

HTTP stream

WebSphere Partner
Gateway

Document

Figure 32. Message flow from a collaboration to WebSphere Partner Gateway through the
HTTP transport protocol

Setting up the environment for HTTP transport with ICS

Because the sending and receiving of documents to and from InterChange Server
involves adapters and data handlers, you must perform the setup and
configuration tasks on the Adapter for HTTP. For information on how to configure
WebSphere Partner Gateway for use with InterChange Server over HTTP, see
[“Configuring WebSphere Partner Gateway for InterChange Server” on page 116

146 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

The Adapter for HTTP allows WebSphere Partner Gateway to exchange documents
with InterChange Server in the form of HTTP messages. It supports the following
interactions with InterChange Server:

* For request processing, it receives the request business object from InterChange
Server, converts it to an HTTP stream, and sends it to the specified URL, where
it can be received by WebSphere Partner Gateway.

 For event notification, it listens at a specified URL, where WebSphere Partner
Gateway sends documents. When it receives a document, it converts it to an
event business object (using a data handler) and sends it to InterChange Server.

Important: WebSphere Partner Gateway does not include the WebSphere Business
Integration Adapter for HTTP. You must obtain this product separately and install
it according to the instructions in its Adapter for HTTP User Guide. Refer to the
adapter documentation to ensure that the version of the adapter is compatible with
the version of InterChange Server you are using.

When you have configured the Adapter for HTTP to communicate with
InterChange Server, follow the steps in these sections to configure this adapter to
listen for HTTP messages from WebSphere Partner Gateway:

Specifying the payload data handler

As [Figure 32 on page 146 shows, the Adapter for HTTP uses a data handler to
convert the business objects it receives from InterChange Server into the
appropriate HTTP streams.

Note: The data handler that the Adapter for HTTP calls converts the payload of
the document. If your document is wrapped in an XML transport envelope (it
contains attachments or the Envelope Flag is Yes), configure the Attachment data
handler as the payload data handler. For more information, see
[documents with attachments” on page 123

To indicate which data handler to use to convert the payload, you must take the
steps listed in [“Business object conversion” on page 121]In addition, you must
configure the Adapter for HTTP to use this payload data handler. You can set the
payload data handler in either of the following ways:

* In Connector Configurator, set the DataHandlerMetaObjectName connector
configuration property to specify the name of the top-level data-handler
meta-object that the Adapter for HTTP uses to identify data handlers. Make sure
you include the top-level data-handler meta-object in the list of supported
business objects for the adapter.

* In the top-level business object, use the MimeType attribute to hold the MIME
type to identify the payload data handler. For more information on this business
object, see [“Top-level business object” on page 150.]

Configuring the protocol-handler package name

The Adapter for HTTP uses the JavaProtocolHandTerPackages connector
configuration property to identify the name of the Java Protocol Handler packages.
For integration with WebSphere Partner Gateway, make sure that the
JavaProtocolHandlerPackage property is set to its default value:

com.ibm.net.ssl.internal.www.protocol

Configuring the HTTP protocol listener

The Adapter for HTTP supports hierarchical configuration properties to obtain the
information it needs to configure its protocol listeners. The top-level configuration
property is called ProtocolListenerFramework. Within this top-level property are

Chapter 9. Integrating InterChange Server over HTTP 147

148

several levels of subproperties. To configure the protocol handlers for use with the
Adapter for HTTP, make sure that the properties are configured in the
ProtocolListener property, as described in the following steps:

1. Configure a protocol listener with subproperties under the following

configuration property:

ProtocolListenerFramework
ProtocolListeners
HttpListenerl

To configure your protocol listener, set the subproperties listed in |Table 54

Table 54. Configuring the protocol listener

Property Description Value
Protocol Type of protocol listener: http or https
* HTTP
e HTTPS
Host IP address on which the protocol IP address of the local computer
listener listens on which WebSphere Partner
Gateway is running
Port Port on which the protocol listener | 8080
listens for requests

2. Configure the URL configurations that the protocol listener supports with
subproperties under the following configuration property:

ProtocolListenerFramework
ProtocolListeners
HttpListenerl
URLsConfiguration
URL1

Set the ContextPath property to the URI for the HTTP requests that the

protocol listener receives.

Note: This directory must be the same one that WebSphere Partner Gateway
specifies as its Receiver URL For more information, see|“Configuration for]

[sending documents to ICS over the HTTP transport protocol” on page 117]

3. If your document contains attachments, you must configure a transformation

for the protocol listener by setting subproperties of the following configuration

property:
ProtocolListenerFramework
ProtocolListeners
HttpListenerl
URLsConfiguration
URL1
TransformationRules
TransformationRulel

To configure the attachment transformation for your protocol listener, set the
subproperties listed in You need one transformation rule for each
instance of the Attachment data handler you are using. For more information
on the Attachment data handler, see [“Handling documents with attachments”|

Table 55. Configuring the attachment transformation for the protocol listener

Property

Description

Value

ContentType

Content type of the data to be
transformed with a data handler

Content type associated with the
attachment data

IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 55. Configuring the attachment transformation for the protocol listener (continued)

Property Description Value
MimeType MIME type to use to identify the | MIME type associated with the
data handler to call instance of the Attachment data
handler
Charset Character set to use when Character set for the attachment
transforming data of the specified |data
content type

For more information on these properties, see the Adapter for HTTP User Guide.

Creating business object definitions for ICS over HTTP

The Adapter for HTTP sends and receives your document to InterChange Server in
the form of a payload business object. The Adapter for HTTP invokes the payload
data handler to handle this business object when it receives or sends a WebSphere

Partner Gateway document,

as follows:

* For request processing, the payload data handler converts the request business
object to its corresponding HTTP stream.

* For event notification, the data handler converts the HTTP stream to an event

business object.

Therefore, you must create the business object definitions shown in |Table 56| to
represent the payload business-object structure that the Adapter for HTTP expects.

Table 56. Business object definitions for the Adapter for HTTP

Condition

Business object definition

For more information

If you are using None or
Backend Integration
packaging for your message
and your documents do not
have attachments

Payload business object:

* Top-level business object

* Request business object

* Response business object
(optional)

* Fault business object
(optional)

“Creating the payload|

business-object structure for|

ICS over HTTP”|

If you are using Backend
Integration packaging for
your message

Add to the payload business
object the business objects to
hold the message header
information:

* Dynamic meta-object
* HTTP-properties business
object

“Creating HTTPl

transport-level header

information for ICS” on pagel

53]

If the document includes
attachments

You must also create
additional business objects to
represent the attachments.

“Creating attachment-related|

business object definitions’]

on page 135|

Creating the payload business-object structure for ICS over

HTTP

The Adapter for HTTP expects a payload business-object structure that consists of
the following business objects:

* A top-level business object

* A request business object

* A fault business object (optional)

Chapter 9. Integrating InterChange Server over HTTP 149

* A response business object (optional)

shows a sample business-object structure for a payload business object
definition for use with InterChange Server over the HTTP transport protocol.

Note: For a detailed description of this business-object structure, refer to the
Adapter for HTTP User Guide.

Request business object

> WBIC_Request_BusObj

Top-level business object AppSpecinfo =

wbic_mainboname=WBIC_TopLevel_BusObj;

wiElie el s cw_mo_http=HTTPConfigMO
AppSpecinfo = wsmode=synch; Name = XMLDeclaration
Name = MimeType :

Type = String Name = HTTPConfigMO

Name = Charset

Type = String

Response business object

Name = Request

Type = MO_Request_BusObj ™ WBIC_Response_BusObj
AppSpecificinfo = ws_botype=request

_ AppSpecinfo =
#l;pnge:_MROe_sgggsgnse_BusObj wbic_mainboname=WBIC_TopLevel_BusObj;

AppSpecificinfo = ws_botype=response cw_mo_http=HTTPConfigMO

Name = XMLDeclaration

Name = HTTPConfigMO

Figure 33. Business-object structure for the HTTP payload business object for ICS

Top-level business object: The top-level business object is a wrapper for the
request and response business objects. You must create a business object definition
for this business object. summarizes the attributes of the top-level business
object definition.

Table 57. Attributes of top-level business object

Attribute Attribute type Description

MimeType String Defines the content type and format of the
data that is being passed to the URL.

Charset String Used to determine which data handler to
call.

Request Business object Child business object that represents the

request message. The purpose of this
business object depends on whether it
participates in request processing or event
notification. For more information on the
structure of this business object, see
[‘Request business object” on page 151)

150 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Table 57. Attributes of top-level business object (continued)

Attribute Attribute type Description

Response Business object Child business object that represents the
response message (if you are expecting a
response). The purpose of this business
object depends on whether it participates in
request processing or event notification. For
more information on the structure of this
business object, see|“Response businesg
lobject” on page 152

Note: When using the Adapter for HTTP with WebSphere Partner Gateway, you
do not need to include fault business objects in your top-level business object.

summarizes the application-specific information that the top-level business
object definition can have.

Table 58. Application-specific information for the top-level business object definition

Application-specific
information Tag Description

Business-object level ws_mode Defines whether the interaction is
synchronous or asynchronous

Attribute level ws_botype Defines which attribute contains the
request or response business object

For a complete description of the structure of the top-level business object and its
application-specific information, see the Adapter for HTTP User Guide.

Request business object: The request business object contains the data to be
passed to the URL. It represents the HTTP request message. The purpose of this
request business object depends on which InterChange Server task it is
participating in, as follows:

* For event notification (sending a document to InterChange Server), the request
business object contains the request message from WebSphere Partner Gateway,
which is the event to be sent to InterChange Server.

* For request processing (receiving a document from InterChange Server), the
request business object contains the request that InterChange Server is making to
WebSphere Partner Gateway.

Note: The top-level business object identifies its child business objects as its
request and response business objects. However, this structure is used in both
request processing and event notification.

For the basic description of the request business object’s structure, refer to the

Adapter for HTTP User Guide. For use with WebSphere Partner Gateway, there are

two customizations you must make to the structure of the request business object

definition:

* If the document that WebSphere Partner Gateway sends to InterChange Server
uses Backend Integration packaging, you must add to the request business object
definition a special attribute to identify the HTTP protocol-configuration
meta-object.

Chapter 9. Integrating InterChange Server over HTTP 151

This attribute provides configuration information for the transport-level headers
of the message. For more information, see [“Creating HTTP transport-level|
[header information for ICS” on page 153

* To the business-object-level application-specific information of the request
business object definition, add the tags shown in [Table 59

Table 59. Tags in application-specific information of request business object

Application-specific-

information tag Description Required
ws_tToname Gives the name of the top-level Only required if business
business object object definition participates
in event notification
cw_mo_http Specifies the HTTP Only required if you are
protocol-configuration meta-object, | using Backend Integration
which contains the HTTP packaging

transport-level header fields. For
more information, see |”Creating|
HTTP transport-level header]
information for ICS” on page 153/

Note: If you are using the Attachment data handler to process documents
wrapped in an XML transport envelope, you must modify your request business
object to hold the attachments, as described in [‘Creating attachment-related|
bbusiness object definitions” on page 135

Response business object: The response business object contains the data to be
received from the URL. It contains attributes for the various XML tags in the
response message. The purpose of this response business object depends on which
InterChange Server task it is participating in, as follows:

 For event notification, the response business object contains the response
message, which is sent from the collaboration in InterChange Server.

* For request processing, the response business object contains the information
from WebSphere Partner Gateway in response to the request that InterChange
Server sent.

Regardless of whether the response is part of event notification or request
processing, a response business object is sent only if the exchange between
WebSphere Partner Gateway and InterChange Server is synchronous and a business
response is expected in response to your request.

For the basic description of the fault business object’s structure, refer to the Adapter
for HTTP User Guide. For use with WebSphere Partner Gateway, there are
customizations you must make to the structure of the request business object
definition:

* If the document that WebSphere Partner Gateway sends to InterChange Server
uses Backend Integration packaging, you must add to the response business
object definition a special attribute to identify the HTTP protocol-configuration
meta-object.

This attribute provides configuration information for the transport-level headers
of the message. For more information, see [“Creating HTTP transport-level|
[header information for ICS” on page 153/

* To the business-object-level application-specific information of the response
business object definition, add the tags shown in

152 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

* In the top-level business object, add the ws_botype tag to the attribute-level
application-specific information for the attribute that corresponds to the response
business object.

This tag has the following syntax:
ws_botype=response

If the exchange between WebSphere Partner Gateway and InterChange Server is
asynchronous, WebSphere Partner Gateway does not expect a response, so you do
not need to create a response business object.

Creating HTTP transport-level header information for ICS

If you are sending documents with Backend Integration packaging over the HTTP
transport protocol, your request business object needs to contain custom
transport-level header information. The Adapter for HTTP expects this custom
header information to be in a dynamic meta-object.

shows the business-object structure for a request business object that
represents a WebSphere Partner Gateway document with Backend Integration
packaging over the HTTP transport protocol.

WBIC_Request_BusObj

AppSpecinfo = cw_mo_http=HttpConfigMO

Name = HttpConfigMO 1
Type = HitpConfigMO_BusObj

HttpConfigMO_BusObj

Name = UserDefinedProperties
Type = HitpProps_BusObj

HttpProps_BusObj

Name = x-aux-sender-id
AppSpecificlnfo =
WS_prop_name=x-aux-sender-id;

Name = x-aux-receiver-id
AppSpecificlnfo =
WS_prop_name=x-aux-receiver-id;

Figure 34. Relationship of the request business object to the HTTP protocol-configuration
meta-object

Make sure your business-object structure includes an HTTP protocol-configuration
meta-object by taking the following steps:

1. Create a business object definition to hold the HTTP properties required by the
Backend Integration packaging.

Chapter 9. Integrating InterChange Server over HTTP 153

154

2. Create a business object definition for the HTTP protocol-configuration
meta-object.

3. Modify the business object definition for your request business object to include
an attribute for the HTTP protocol-configuration meta-object.

Each of these steps is described in the sections below.

Creating the user-defined-properties business object: The Adapter for HTTP
supports a user-defined-properties business object to hold custom properties in the
HTTP protocol-configuration meta-object. WebSphere Partner Gateway uses this
business object to hold HTTP properties required by the Backend Integration
packaging. It can also contain the Content-Type attribute, which specifies the
content-type header to set in the request message, and the content-length attribute,
which specifies the length of the message, in bytes. [Table 8 on page 24| describes
each of the valid transport-header fields.

To create a user-defined-properties business object definition for the HTTP header

fields, take the following steps:

1. Create an attribute within the business object definition for each of the
transport-header fields.

All attributes should have an attribute type of String. You can name the
attribute with the exact name of the HTTP property (as listed in the Header
field column of [Table 8 on page 24).

2. For each of the attributes in the HTTP-properties business object, add
application-specific information to identify the purpose of the associated
attribute.

This attribute-level application-specific information has the following format:
ws_prop_name=HTTPproperty

where HTTPproperty is one of the values in the Header field column of [Table 8
on page 24

In [Figure 34 on page 153} the HttpProps_BusObj business object definition contains
attributes for the various transport-header fields. These attributes all have
attribute-level application-specific information to specify the name of the related
protocol header. For example, the x-aux-sender-id attribute has the
application-specific information set as follows:

wS_prop_name=x-aux-sender-id

Creating the HTTP protocol-configuration meta-object: For event notification,
the request, response, or fault business object can contain a dynamic meta-object
called the HTTP protocol configuration meta-object to hold configuration information
(such as header information).

For the basic description of the HTTP protocol-configuration business object’s
structure, refer to the Adapter for HTTP User Guide. For use with WebSphere
Partner Gateway, you must make the following customizations to the structure of
the HTTP protocol-configuration business object definition:

1. Create an attribute within the business object definition for any of the fields
you require.

All attributes should have an attribute type of String.

Note: For a complete list of attributes in the HTTP protocol-configuration
meta-object, see the Adapter for HTTP User Guide.

2. Add the UserDefinedProperties attribute to this business object definition.

IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

The attribute type of this attribute is the business object definition for the
user-defined-properties business object (see [’Creating the user-defined
[properties business object” on page 154).

For example, in |[Figure 34 on page 153} the HttpConfigMO_BusObj business object
definition contains the UserDefinedProperties attribute, whose attribute type is
HttpProps_BusObj.

Modify the request business object definition: The request business object
definition represents the information requested from WebSphere Partner Gateway.
For information on how to create the request business object, see |“Request business|
object” on page 151 To incorporate the dynamic meta-object into your payload
business-object structure, you must make the following modifications to your
request business object definition:

1. Add an attribute to your request business object definition to hold the HTTP
protocol-configuration meta-object.
The attribute type for this attribute is the business object definition for the

HTTP protocol-configuration meta-object (see [‘Creating the HTTP|
[protocol-configuration meta-object” on page 154).

2. Add the cw_mo_http tag to the business-object-level application-specific
information of your request business object definition to identify the attribute
that contains the HTTP protocol-configuration meta-object.

The cw_mo_http tag has the following format:
cw_mo_http=HttpConfigMetaObjAttr

where HttpConfigMetaObjAttr is the name of the attribute in the request
business object that holds the HTTP protocol-configuration meta-object.

For example, in [Figure 34 on page 153} an attribute named HttpConfigM0 has been
added to the request business object definition, hub_HttpRequest_BusObj. This
attribute contains the dynamic meta-object, which is a child business object of type
HttpConfigMO_BusObj. In addition, the application-specific information of the
request business object has been modified to include the following cw_mo_http tag
to identify this dynamic meta-object:

cw_mo_http=HttpConfigMO

Creating ICS artifacts for HTTP

To configure InterChange Server for communication with WebSphere Partner

Gateway over the HTTP transport protocol, you must create the InterChange
Server artifacts shown in [Table 60

Table 60. Artifacts for communicating with ICS over the HTTP transport protocol

ICS artifact Purpose For more information
Business object Represent the document "“Creating business object|
definitions definitions for ICS over]
HTTP” on page 149|

Connector object Represents the Adapter for “Creating the HTTP|

HTTP at run-time connector object” on page 156|
Collaboration template Represents the business process |[“Binding collaborations tof
and collaboration object | that InterChange Server uses to |lcommunicate with Adapter|

process the document for HTTP” on page 156

Chapter 9. Integrating InterChange Server over HTTP 155

Creating the HTTP connector object
To obtain an instance of the Adapter for HTTP at run-time, you must take the
following steps within System Manager:

1. Create the connector objects:
¢ Create a connector object to represent an instance of the Adapter for HTTP.

Note: In the Supported Business Objects tab of Connector Configurator,
make sure that you specify all business object definitions you created for use
with the Adapter for HTTP. For a description of these business object
definitions, see [‘Creating business object definitions for ICS over HTTP” on|

|Eage 149.|

* If required by your collaboration, create a connector object for the Port
Connector.

2. Configure the connector objects

For information on how to configure your Adapter for HTTP connector object
for use with WebSphere Partner Gateway, see [“Setting up the environment for]
[HTTP transport with ICS” on page 146.|

Binding collaborations to communicate with Adapter for HTTP

As described in [“Creating the collaborations” on page 123)a collaboration object
must exist at run-time for InterChange Server to know where to receive and send
business objects. When you create the collaboration object for the collaboration that
uses the Adapter for HTTP to send information to and receive it from WebSphere
Partner Gateway, you bind the collaboration ports, as follows:

* For request processing, set the "to” port, which sends requests to WebSphere
Partner Gateway, to the connector object you created for the Adapter for HTTP;
that is, the Adapter for HTTP is the destination adapter.

 For event notification, set the "from” port, which receives events from
WebSphere Partner Gateway, to the connector object you created for the Adapter
for HTTP; that is, the Adapter for HTTP is the source adapter.

Sending SOAP documents over HTTP/S

SOAP documents differ from other types of documents exchanged over HTTP/S.
They use the standard Adapter for Web Services, which calls the SOAP data
handler to transform SOAP messages into business objects and to transform
business objects into SOAP messages. This section describes how to send and
receive SOAP documents between WebSphere Partner Gateway and WebSphere
InterChange Server over the HTTP transport protocol.

Note: To send and receive non-SOAP documents between WebSphere Partner
Gateway and WebSphere InterChange Server over the HTTP transport protocol, see
[“Using HTTP transport protocol with ICS” on page 143)

Refer to the Adapter for Web Services documentation for information on the
business-object structure and on the WSDL Object Discovery Agent (ODA), a
design-time tool you can use to generate SOAP business objects that include
information about the receiver Web services.

As described in the WebSphere Partner Gateway Hub Configuration Guide, you must

have set up a receiver to receive Web service invocations from a back-end system

(the Web services receiver) as well as a receiver to receive Web service invocations
from an external partner (the external Web services receiver).

156 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Components required for sending and receiving

To send a SOAP document from WebSphere Partner Gateway to InterChange
Server using the HTTP transport protocol, you use the component listed in

[[able 61]

Table 61. Components required to send SOAP documents to InterChange Server through HTTP

Component Description Notes and restrictions
WebSphere Business Integration | This adapter allows InterChange 1. This adapter cannot be used with
Adapter for Web Services Server to exchange business objects non-SOAP documents.

with applications that send or receive

data in the form of HTTP messages. 2. Make sure you are using the Adapter

for Web Services 3.4.0 (or later). Refer
to the Adapter for Web Services User
Guide to make sure that the level of
the adapter is compatible with the
version of WebSphere InterChange
Server you are using.

Note: If a SOAP document contains attachments, you do not need to use the
Attachment data handler to handle them.

How external partners invoke Web services

The following steps occur when an external partner sends a request for a
collaboration that is exposed as a Web Service that the internal partner provides:

1. The external partner sends a SOAP request message to the destination specified
in the WSDL document generated for the collaboration. Note that the endpoint
specified in the WSDL is the Web services receiver (URL) of WebSphere Partner
Gateway instead of the actual endpoint.

2. WebSphere Partner Gateway receives and routes the message to the Adapter for
Web services.

3. The Adapter for Web Services sends the SOAP message to the SOAP data
handler to convert the SOAP message to a business object. The adapter invokes
the collaboration exposed as a Web service.

4. If this is a request/response operation, the collaboration returns a SOAP
response (or fault) business object.

5. If the collaboration returned a SOAP response (or fault) business object, the
Adapter for Web Services calls the SOAP data handler to convert the SOAP
response (or fault) business object to a SOAP response message. The adapter
returns the response to WebSphere Partner Gateway. If the collaboration did not
return a SOAP response (or fault) business object, the Adapter for Web Services
returns the appropriate HTTP response status code.

6. WebSphere Partner Gateway routes the response to the Web service.

How the internal partner invokes Web services

The Public WSDL provided by WebSphere Partner Gateway can be used for
creating business objects using WSDL ODA. It is important to note that when the
Web service is provided by an external partner for use by the internal partner, the
public URL used by the internal partner to invoke the Web service should contain
the following query string:

?to=<External Partner Web Service Provider's business ID>

For example, the following address tells WebSphere Partner Gateway that the
provider of the Web service is the partner with business ID 123456789:

Chapter 9. Integrating InterChange Server over HTTP 157

http://<Hub_IP_address>/bcgreceiver/Receiver?to=123456789

The WSDL ODA will not add the query string in the default value of the URL
attribute of the Web Service top-level business object.

The following steps occur when a collaboration sends a request (to the Adapter for
Web Services) to invoke a Web service of an external partner:

1. The collaboration sends a service call request to the adapter, which calls the
SOAP data handler to convert the business object to a SOAP request message.

2. The adapter invokes the Web service by sending the SOAP message to the
external Web services receiver (URL) on WebSphere Partner Gateway:.

3. WebSphere Partner Gateway acts as a proxy, sending the SOAP message to the
endpoint corresponding to the destination (external partner) Web service. This
invokes the Web service.

4. The invoked Web service receives the SOAP request message and performs the
requested processing.

5. The invoked Web service sends a SOAP response (or fault) message. In the case
of a one-way operation, the appropriate HTTP status code is returned.

6. If this is a request/response Web Service, WebSphere Partner Gateway routes
the SOAP response (or fault) message to the adapter, which calls the data
handler to convert it to a response or fault business object. The connector
returns the SOAP response or fault business object to the collaboration.

158 1BM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

Chapter 10. Integrating with InterChange Server over JMS

This chapter describes how to integrate WebSphere Partner Gateway with
WebSphere InterChange Server over the JMS transport protocol. It provides
information on how to configure InterChange Server and the adapters required for
communication over JMS.

Note: For information on how to configure WebSphere Partner Gateway to
communicate with InterChange Server over]MS, see|“Configuring WebSphere|
IPartner Gateway for InterChange Server” on page 116./For general information on
how to configure InterChange Server, see [’Configuring InterChange Server” on|
-ae 119

This chapter provides the following information on how to send and receive
documents between WebSphere Partner Gateway and WebSphere InterChange
Server through the use of the JMS transport protocol:

+ |[“Components required for documents over JMS transport”|

* |“Setting up the environment for JMS transport” on page 164|

* [“Creating business object definitions for JMS” on page 167

Components required for documents over JMS transport

For WebSphere Partner Gateway to communicate with InterChange Server over the

MS transport protocol, the components must be configured to work with JMS.

le 62 summarizes these configuration steps.

Table 62. Configuring WebSphere Partner Gateway and InterChange Server for IMS

transport protocol
Component Version For more information
WebSphere Partner Gateway 6.1 “Configuration for sending documents|

to ICS over the JMS transport protocol”|

on page 112]

“Configuration for receiving documents|
from ICS over the JMS transport]
protocol” on page 119|

WebSphere InterChange Server 4.3 “Creating ICS artifacts for JMS” on|

[page 171|

In addition, to send or receive a document between WebSphere Partner Gateway
and InterChange Server over the JMS transport protocol, you also use the

components listed in|Table 6

© Copyright IBM Corp. 2004, 2008 159

Table 63. Components required to transfer documents to and from InterChange Server through JMS

Component

Description

Notes and restrictions

WebSphere Business
Integration Adapter for JMS

(Adapter for JMS)

This adapter allows InterChange Server
to exchange business objects with
applications that send or receive data in
the form of JMS messages. The Adapter
for JMS and WebSphere Partner Gateway
communicate through JMS queues.

Make sure you are using the Adapter for
JMS, Version 2.7.0 (or later), which
provides support for custom header
properties. Refer to the adapter
documentation to make sure that the
version of the adapter is compatible with
the version of InterChange Server you are
using.

A payload data handler

This data handler converts the payload
between its document format and its
business-object representation.

For more information, see ["Specifying the]

[payload data handler” on page 166,

Attachment data handler

This data handler converts documents
with attachments into business objects.

This data handler is required only if your
documents include attachments. For more
information, see [“Handling documents|
[with attachments” on page 123

The following sections describe how the components in|Table 63| work together to
send and receive documents between WebSphere Partner Gateway and
InterChange Server over the JMS transport protocol.

How documents are sent over the JMS transport

For WebSphere Partner Gateway to send a document to InterChange Server using
the JMS transport protocol, you use the Adapter for JMS to retrieve the message
that WebSphere Partner Gateway has put on a J]MS queue. The adapter then routes

the message to InterChange Server.

Figure 35 provides an overview of how

WebSphere Partner Gateway sends documents to InterChange Server over the J]MS
transport protocol.

160

IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Enterprise Integration Guide

WebSphere
InterChange Server

Collaboration

il

Business object

Adapter for JMS

]

— | Input queue

!

JMS message

WebSphere Partner
Gateway

— Payload
« data handler

Document

Figure