
IBM WebSphere Partner Gateway Enterprise and

Advanced Editions

Programmer Guide

Version 6.0

���

IBM WebSphere Partner Gateway Enterprise and

Advanced Editions

Programmer Guide

Version 6.0

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page 177.

13September2005

This edition applies to WebSphere Partner Gateway Enterprise Edition (5724-L69), Version 6.0, and Advanced

Edition (5724-L68), Version 6.0, and to all subsequent releases and modifications until otherwise indicated in new

editions.

To send us your comments about this documentation, e-mail doc-comments@us.ibm.com. We look forward to

hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document . vii

Audience . vii

Typographic conventions . vii

Related documents . viii

New in this release . ix

New in release 6.0 . ix

New in release 4.2.2 Second Edition . ix

New in release 4.2.2 . ix

Part 1. Customizing WebSphere Partner Gateway: user exits 1

Chapter 1. User exits overview . 3

Receiving a document . 3

Processing a document . 4

Fixed inbound workflow . 4

Variable workflow . 5

Fixed outbound workflow . 5

Sending a document . 6

Chapter 2. Customizing receivers . 7

Overview for creating new receivers . 7

Receiver flow . 7

Receiver types . 10

Multiple box deployment . 10

Overview for creating new receiver handlers . 11

Development and deployment . 11

Development environment . 11

Deployment and packaging (receivers) . 11

Descriptor file definition for a receiver transport . 12

Descriptor file definition for a receiver transport handler 13

Reserved attribute names . 14

Chapter 3. APIs and example code for receivers and receiver handlers 17

ReceiverInterface . 18

ReceiverDocumentInterface . 20

ReceiverFrameworkInterface . 23

ReceiverConfig . 27

ResponseCorrelation . 29

BCGReceiverException . 30

ReceiverPreProcessHandlerInterface . 31

ReceiverSyncCheckHandlerInterface . 32

ReceiverPostProcessHandlerInterface . 34

BCGReceiverUtil . 36

Events . 37

Informational events . 37

Warning events . 37

Error events . 37

Example receiver implementation outline . 38

Chapter 4. Customizing fixed and variable workflow 41

Overview for creating handlers in fixed inbound workflow 42

Protocol unpackaging handlers . 43

Protocol processing handlers . 47

© Copyright IBM Corp. 2004, 2005 iii

Overview for creating actions in variable workflow . 51

Creating steps . 54

Actions supplied by WebSphere Partner Gateway . 56

Overview for creating handlers in fixed outbound workflow 58

Protocol packaging handlers . 58

Development and deployment . 63

Development environment . 63

Deployment and packaging . 64

Chapter 5. APIs and example code for workflow handlers and steps 67

From com.ibm.bcg.bcgdk.workflow . 68

BusinessProcessFactoryInterface . 69

BusinessProcessInterface . 70

BusinessProcessHandlerInterface . 71

AttachmentInterface . 72

BusinessProcessUtil . 75

From com.ibm.bcg.bcgdk.services . 76

SecurityServiceInterface . 77

MapServiceInterface . 83

SignInfo . 85

BCGSecurityException . 87

From com.ibm.bcg.bcgdk.common . 88

Context . 89

Config . 90

BusinessDocumentInterface . 92

BCGException . 98

BCGUtil . 99

EventInfo . 101

BCGDocumentConstants . 105

Events . 110

Events that can be logged from the protocol unpackaging handler 110

Events that can be logged from the protocol processing handler 110

Events that can be logged from user-defined actions and steps 111

Events that can be logged from the protocol packaging handler 112

Security and other events . 112

Example handlers and steps implementation outline . 113

Protocol processing handler . 113

Protocol unpackaging handler . 114

Transformation step . 115

Chapter 6. Customizing senders . 117

Overview for creating new senders . 118

The Sender/Sender Framework flow . 118

Sender architecture . 119

Overview for creating new sender handlers . 119

Development and deployment . 120

Development environment . 120

Deployment and packaging (senders) . 120

Chapter 7. APIs and example code for senders and sender handlers 123

SenderInterface . 124

SenderResult . 126

SenderPreProcessHandlerInterface . 130

SenderPostProcessHandlerInterface . 132

BCGSenderException . 134

Events . 135

Informational events . 135

Warning events . 135

Error events . 135

Implementation outlines for an example sender . 136

iv IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Example sender . 136

Chapter 8. End-to-end flow: an overview for using user exits 139

Synchronous and asynchronous flows . 139

Associated document . 141

Chapter 9. Troubleshooting user exits . 143

Setting up logging . 143

Common sources of error . 143

File location errors . 143

Handler failure errors . 144

Processing mode errors . 144

File update errors . 144

Part 2. Customizing WebSphere Partner Gateway: administrative APIs and

external event delivery . 145

Chapter 10. Using the administrative API . 147

Understanding the administrative API . 147

The administrative API . 148

ParticipantCreate . 149

ParticipantCreateResponse . 149

ParticipantUpdate . 151

ParticipantUpdateResponse . 151

ParticipantSearchByName . 153

ParticipantSearchByNameResponse . 153

ParticipantAddBusinessId . 154

ParticipantAddBusinessIdResponse . 154

ParticipantRemoveBusinessId . 155

ParticipantRemoveBusinessIdResponse . 155

ContactCreate . 156

ContactCreateResponse . 156

ContactUpdate . 158

ContactUpdateResponse . 158

ListParticipantCapabilities . 160

ListParticipantCapabilitiesResponse . 160

ListParticipantConnections . 162

ListParticipantConnectionsResponse . 162

ListTargets . 163

ListTargetsResponse . 163

ListEventDefinitions . 164

ListEventDefinitionsResponse . 164

BCGPublicAPIException . 165

Chapter 11. Using external event delivery . 167

The external event delivery process . 167

The structure of delivered events . 169

The basic CBE document structure . 169

CBE event structure for WebSphere Partner Gateway message events and business document events 169

Index . 175

Notices . 177

Trademarks and service marks . 179

Contents v

vi IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

About this document

IBM(R) WebSphere(R) Partner

 Partner Gateway Enterprise and Advanced

Editions provide a robust, scalable platform for managing business-to-business

(B2B) communication.

This document describes a new set of tools available for the programmatic

customization of the system as well as for the automation of certain aspects of day

to day system administration.

Audience

This document is for consultants, developers, and system administrators for

WebSphere Partner Gateway Enterprise and Advanced Editions.

Typographic conventions

This document uses the following conventions:

 Monospace font Text in this font indicates text that you type, values for

arguments or command options, examples, and code samples, or

information that the system prints on the screen (message text or

prompts).

bold Boldface text indicates graphical user interface controls (for

example, online button names, menu names, or menu options)

and column headings in tables and text.

italic Text in italics indicates emphasis, book titles, new terms and

terms that are defined in the text, or variable names.

italic monospace font Text in italics monospace font indicates variable names within

monospace-font text.

Underlined colored text Underlined colored text indicates a cross-reference. Click the text

to go to the object of the reference.

Text in blue outline (In PDF files only) An outline around text indicates a

cross-reference. Click the outlined text to go to the object of the

reference. This convention is the equivalent for PDF files of the

″Underlined colored text″ convention included in this table.

″″ (quotation marks) (In PDF files only) Quotation marks surround cross-references to

other sections of the document.

{ } In a syntax line, curly brackets surround a set of options from

which you must choose one and only one.

[] In a syntax line, square brackets surround an optional

parameters.

. . . In a syntax line, ellipses indicate a repetition of the previous

parameter. For example, option[,...] means that you can enter

multiple, comma-separated options.

< > Angle brackets surround variable elements of a name to

distinguish them from one another. For example,

<server_name><connector_name>tmp.log.

\,/ Backslashes (\) are used as separators in directory paths in

Windows installations. For UNIX installations, substitute slashes

(/) for backslashes.

ProductDir ProductDir represents the directory where the product is installed.

When necessary, another variable word is added to ProductDir to

indicate the type of directory. For example, ReceiverProductDir.

© Copyright IBM Corp. 2004, 2005 vii

Related documents

The complete set of documentation available with this product includes

comprehensive information about installing, configuring, administering, and using

WebSphere Partner Gateway Enterprise and Advanced Editions.

You can download, install, and view the documentation at the following site:

http://www.ibm.com/software/integration/wspartnergateway/library/infocenter

Note: Important information about this product may be available in Technical

Support Technotes and Flashes issued after this document was published. These

can be found on the WebSphere Support Web site,

http://www.ibm.com/software/integration/websphere/support/

viii IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

http://www.ibm.com/software/integration/wspartnergateway/library/infocenter
http://www.ibm.com/software/integration/websphere/support/

New in this release

New in release 6.0

WebSphere Partner Gateway, version 6.0 contains the following new features:

v WebSphere Business Integration Connect has been renamed WebSphere Partner

Gateway.

v WebSphere Partner Gateway, version 6.0 does not support the RC5 algorithm.

v A fourth method, getDTDOrXSD, has been added to MapServiceInterface.

v FTP scripting receiver support for targets and gateways has been added. This

new transport can be used to communicate with value added networks (VANS).

See the Hub Configuration Guide for information about FTP scripting.

New in release 4.2.2 Second Edition

Version 4.2.2, Second Edition fixes technical errors.

New in release 4.2.2

Version 4.2.2 is the first release of the Programmer Guide.

© Copyright IBM Corp. 2004, 2005 ix

x IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Part 1. Customizing WebSphere Partner Gateway: user exits

WebSphere Partner Gateway is a business-to-business (B2B) community

management solution. With WebSphere Partner Gateway, you exchange data and

processes within a trading community, crossing enterprise boundaries and

extending business integration beyond the enterprise and into the community. A

trading community typically revolves around a hub—an enterprise that acts as the

community manager. Community participants send documents to the hub, where

they are processed and then routed to the appropriate destination.

WebSphere Partner Gateway provides users who have needs that fall outside the

range of options delivered with the product, to customize the process at a number

of crucial stages. You can develop and deploy plug-in modules that support

additional transports, business protocols and so forth, based on a newly developed

set of APIs. The points in the process where these plug-in modules can be invoked

are called user exits.

The following chapters document how to customize WebSphere Partner Gateway

by using these user exits.

© Copyright IBM Corp. 2004, 2005 1

2 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Chapter 1. User exits overview

To understand WebSphere Partner Gateway user exits, it is useful to divide the

hub processing flow into three stages:

v “Receiving a document”

v “Processing a document” on page 4

v “Sending a document” on page 6

This chapter provides a brief description of the WebSphere Partner Gateway

components that perform these tasks and the aspects of the process that can be

customized.

Receiving a document

Documents enter the hub processing system through components known as

receivers. Receivers are responsible for monitoring transports for inbound

documents, retrieving the documents that arrive, performing some basic processing

on them, and then placing them in a storage queue from which the main

processing engine can retrieve them.

Receivers are transport-specific. WebSphere Partner Gateway ships with receivers

designed to handle FTP/S, JMS, File, SMTP, FTP/S Scripting, and HTTP/S

transports. All these receivers support the user exit framework, which allows

modification of the transports. WebSphere Partner Gateway includes an API so you

can develop your own receivers, based on your specific needs.

Receivers are associated with transport configurations called targets. A target

designates the entry point for documents coming into WebSphere Partner Gateway.

Targets are configured through the Community Console. A user-developed receiver

can have one or more targets in the same manner as a provided receiver does. For

more information on using the Community Console to configure targets and

associate them with receivers, see the Hub Configuration Guide.

In addition to developing completely new receivers, you can develop user exit

plug-in modules to customize how receivers process incoming documents. These

modules are called handlers. There are three places in the receiver processing

sequence where user exit handlers can be called to do additional processing:

preprocessing, sync checking (determining whether a document is to be processed

synchronously or asynchronously), and postprocessing. At each of these places,

also called configuration points, you can use the Community Console to specify one

or more handlers.

Preprocessing handlers are used to perform any necessary preprocessing of

documents before they are sent to the Document Manager, where the main

processing takes place. For example, in some situations multiple records can be

sent in one wrapper message. Preprocessing can separate the individual messages

before they are sent on for actual processing.

Documents can be processed either synchronously or asynchronously by

WebSphere Partner Gateway. In synchronous processing, the sending partner

expects business-protocol-level response (in addition to transport-level response) in

the same connection as the one in which it sent the request. In asynchronous

© Copyright IBM Corp. 2004, 2005 3

processing, the sending partner expects transport-level response. You can use a

specialized handler to check whether a partner is expecting a synchronous

response. WebSphere Partner Gateway ships with two default sync-check handlers,

DefaultSynchronousSyncCheckHandler and

DefaultAsynchrounousSyncCheckHandler; however, you can supply your own.

This is particularly useful in the case of some document types in which defining

dedicated synchronous and asynchronous targets, using default handlers, can

increase throughput.

Postprocessing handlers are used to deal with the response documents that

WebSphere Partner Gateway returns to initiating partners when WebSphere Partner

Gateway is synchronously processing a request document.

Processing a document

WebSphere Partner Gateway processes the business documents so that it can route

them to the business partners in the business protocol that trading partners are

expecting. The Business Processing Engine (BPE), the core of the Document

Manager component, is responsible for this processing. The BPE processes the

documents by executing a series of workflows in sequence: fixed inbound

workflow, variable workflow, and fixed outbound workflow. Each workflow

consists of a series of steps. The BPE executes the steps in sequence. User exits

allow user-defined processes to be plugged into each of the workflows.

Fixed inbound workflow

Fixed inbound workflow consists of the standard set of processing steps done to all

documents coming into the Document Manager from a receiver. The workflow is

fixed because the number and type of steps are always the same. Through user

exits, however, you can provide customized handlers for processing the following

steps: protocol unpackaging and protocol processing. The last step of fixed

inbound workflow performs trading partner connection lookup, which determines

the variable workflow that executes for this business document.

All messages that come into WebSphere Partner Gateway are packaged according

the specification of a specific business protocol. For example, a RosettaNet

document is packaged according to the RosettaNet Implementation Framework

(RNIF) specification. During protocol unpackaging, the message is unpackaged so

that it can be further processed. This process can include decryption,

decompression, signature verification, extraction of routing information, user

authentication, or business document parts extraction. WebSphere Partner Gateway

provides handlers for RNIF, AS2, Backend Integration, and NONE packaging. If

handlers for other packaging types are necessary, they can be developed as user

exits.

Protocol processing involves determining protocol-specific information, which

might include parsing the message to determine routing information (such as the

sender ID and the receiver ID), protocol information (the business protocol and

version, such as RosettaNet Partner Interface Processes (PIPs) version V02.02), and

Document Flow Process information (such as 3A4 version V02.02). WebSphere

Partner Gateway provides processing for XML, RosettaNet, and EDI protocols.

Processing for other protocols such as CSV (comma-separated value), can be

provided through a user exit.

4 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

If user exits are used to set up new packaging types or new protocol types, new

packaging or new protocol information must also be set up in the Community

Console. See the Hub Configuration Guide for more information.

Variable workflow

As mentioned above, the last step of fixed inbound workflow determines which

variable workflow executes for this business document. The business-protocol-
specific processing in the BPE takes place in Variable Workflow. Variable workflow

consists of a configured sequence of steps, which is also called an action. Actions

are specified in the Community Console as part of the process of creating

Participant Connections. WebSphere Partner Gateway ships with seventeen

pre-defined actions. You can use user exits to create new actions either by

developing an entirely new set of steps placed into a new sequence or by copying

an existing action and modifying it either by substituting a user-defined step for a

pre-existing one or by inserting a user-defined stop into an existing sequence.

Note: Not all steps delivered with WebSphere Partner Gateway can be used in

new, user-defined actions, as they can be used for internal WebSphere Partner

Gateway specific purposes. See “Actions supplied by WebSphere Partner Gateway”

on page 56 for more information.

Actions consist of sequences of steps. User exits can be used to create those steps.

Typically, steps include the following types:

v Validation Checking the form of the business document. For example, an XML

document can be validated against an XML schema.

v Transformation Changing the form of the business document. An XML

document can be transformed into a different XML document by using XSLT.

v Translation Changing the entire format of a business document from one type to

another.

Note: These steps are typical examples only. Variable workflow is designed to

implement business processing logic. The logic dictates the actual steps required.

Once steps have been defined, the sequence in which they are to be executed must

be specified in actions. For example, if the defined steps are validation and

transformation, they can be sequenced into an action consisting only of validation,

another of validation followed by transformation, and a third of validation

followed by transformation followed by validation of the transformed document.

Sequences of steps are linked together as actions in the Community Console. See

the Hub Configuration Guide for more information.

Fixed outbound workflow

After a document has been processed by the appropriate variable workflow, it

must be packaged for transmission to its destination. WebSphere Partner Gateway

provides handlers for RNIF, Backend Integration, AS, and NONE packaging, and

for cXML and SOAP protocols. if other packaging handlers are required, they can

be developed as user exit steps. Typically these steps will take care of one or more

of the following processes:

v Assembling or enveloping

v Encrypting

v Signing

v Compressing

v Setting business protocol specific transport headers

Chapter 1. User exits overview 5

Once the business document is packaged, it is picked up by Delivery Manager.

Delivery Manager then invokes the configured sender to deliver the business

document to the trading partner.

Sending a document

WebSphere Partner Gateway sends the processed documents to the trading partner

(or community manager). Delivery Manager sends the processed documents to

their respective destinations as given by the gateway to the trading partner or

community manager. Senders use the gateway configuration specified by you to

obtain the parameters required for sending the document.

You can customize the sending of documents by either creating entirely new

senders to support new transports or creating preprocessing and postprocessing

handlers to customize the processing of senders delivered with WebSphere Partner

Gateway. Sender preprocessing handlers can be used to customize the processing

of the document before it is sent out; sender postprocessing handlers can be used

to customize processing of the document after it is sent.

6 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Chapter 2. Customizing receivers

The receiver handles the first stage in the WebSphere Partner Gateway data flow. It

picks up documents from the transport, performs some basic processing on them,

and places them in a storage queue to be picked up by the main processing

component, Document Manager. In synchronous requests, it also returns the

response document to the initiating participant. You can customize the receiver

stage of processing in two ways, by creating new receivers or by creating and

configuring new receiver handlers. This chapter covers both ways of customizing

receivers in the following sections:

v “Overview for creating new receivers”

v “Overview for creating new receiver handlers” on page 11

An additional section, “Development and deployment” on page 11, covers

development and deployment issues.

The API list and the code and pseuocode example outlines follow in the next

chapter.

Overview for creating new receivers

Receivers are transport-specific. WebSphere Partner Gateway ships with receivers

for FTP directory, JMS, File directory, SMTP (POP3), FTP/S Scripting, and HTTP/S

transports. To add a new transport to the WebSphere Partner Gateway system, you

can write your own receivers, using an API provided with WebSphere Partner

Gateway. Use the Community Console to configure your new receivers, and then

integrate them into the processing flow in the normal way. This section describes

the process of developing a new receiver. It covers the following topics:

v “Receiver flow”

v “Receiver types” on page 10

v “Multiple box deployment” on page 10

Receiver flow

The nature of the processing flow inside a receiver is in part dictated by the needs

of the particular transport, but there are basic tasks that all receivers must

accomplish. This section describes those tasks in a high level, general way.

1. Detect message arrival on transport

Receivers use one of two methods to detect request message arrival:

polling the targets defined for this transport, as the provided JMS receiver

does, or receiving callbacks from the transport, as the provided HTTP/S

receiver does.

2. Retrieve message from transport

The receiver retrieves the request message and any transport attributes,

like headers, from the transport. This might require the creation of

temporary files on the file system.

3. Generate headers required by WebSphere Partner Gateway

WebSphere Partner Gateway uses special metadata to further process the

document. The metadata comprises headers that the receiver constructs

© Copyright IBM Corp. 2004, 2005 7

from the request message or the transport headers. The receiver sets one or

more of following headers on the request document:

v BCGDocumentConstants.BCG_RCVR_DESTINATION A destination

type (such as production or test) associated with a target and set by

receivers on a ReceiverDocumentInterface object upon receiving the

document from the target. The destination type configured for the target

can be read from the receiver configuration by using the

BCGDocumentConstants.BCG_TARGET_DESTINATION attribute.

v BCGDocumentConstants.BCG_RCVD_IPADDRESS The host IP

address where the document is received.

v BCGDocumentConstants.BCG_INBOUND_TRANSPORT_CHARSET

The character set that is obtained from the transport headers.

v BCGDocumentConstants.BCG_REQUEST_URI The URI of the target

where the request is received.

v BCGDocumentConstants.BCG_RCVD_DOC_TIMESTAMP The time

when the document was received.

v BCGDocumentConstants.BCG_RCVD_CONTENT_LENGTH The size

of the received content.

v BCGDocumentConstants.BCG_RCVD_MSG_LNGTH_INC_HDRS The

size of the received content including headers.

v BCGDocumentConstants.BCG_RCVD_CONTENT_TYPE The content

type of the request.

The receiver request document that will be forwarded to Document Manager

for further processing consists of the transport message, transport headers,

and the above WebSphere Partner Gateway headers.

Note: You can execute steps, 4 and 5 in either order.

4. Do preprocessing

The receiver calls a WebSphere Partner Gateway component, the Receiver

Framework, to actually do the preprocessing. The Framework executes the

handlers, either supplied by WebSphere Partner Gateway or user-defined,

that have been specified for this target via the Community Console, in the

order they are shown in the Community Console configuration page. The

Receiver Framework invokes the configured list of handlers for the target

one handler after the other until one of the handlers accepts the received

request document.This handler is invoked to process the receiver

document. This handler can return one or more documents, and all

receivers must be designed to handle multiple returns.

5. Check whether synchronous or asynchronous

The receiver calls the Receiver Framework to determine whether the

received request is synchronous or not. The Framework invokes a

configured list of handlers for this target, one after the other, until one of

the handlers accepts the request receiver document. The Receiver

Framework executes this handler to determine whether this is a

synchronous request or an asynchronous request. If the handler determines

that the request is asynchronous, path A will be followed. If the request is

synchronous, path B will be followed.

6A. Process asynchronous request

If the request is asynchronous, (meaning that it does not require a response

document to be returned to the originating trading partner) the receiver

8 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

calls the Framework to process the request document. The Framework

takes care of storing the information in a place from which Document

Manager will retrieve it.

6B. Process synchronous request

If the request is synchronous (meaning that it requires a response

document to be returned to the originating trading partner) the receiver

calls the Framework to process the request document. There are two

possible types of synchronous requests: blocking and nonblocking. In

blocking mode, the receiver’s calling thread will be blocked until the

Framework returns the response document to it from Document Manager.

In nonblocking mode, the receiver’s calling thread will return immediately.

When the Framework receives the response document at a later time, it

will call the processResponse method on the receiver to pass the response

document back. A correlation object is used to synchronize the originating

request with this response.

 Note that the JMS receiver has been migrated to the user-exit Receiver

Framework and enhanced to support the handling of synchronous

request-responses. Perform the following steps to use the synchronous

behavior in the JMS receiver.

1. Configure the back-end application to set the ReplyTo queue and

Correlation ID in the JMS headers. When the JMS receiver receives the

synchronous response from the Document Manager, it writes the

response to the ReplyTo queue and the Correlation ID in the JMS

headers.

2. Configure the SyncCheck handler, either a WebSphere Partner Gateway

default sync-check handler or a user-defined sync-check handler, for the

JMS receiver target in the Community Console. When invoked, the

configured handler returns true or false based on the received request.

If the handler is the default sync check handler, it always returns true.

7. Do postprocessing

In the case of a synchronous request, the receiver calls the Receiver

Framework to execute postprocessing on the response document before it

is returned to the originating partner. The Receiver Framework invokes a

configured list of handlers for this target one after the other until one of

the handlers accepts the response receiver document. The Receiver

Framework executes this handler to process the response receiver

document.

8. Complete processing

In case of a synchronous request, the response document is returned to the

originating trading partner over the transport. The receiver calls the

setResponseStatus method on the Framework to report on the success or

failure of the response delivery. The receiver removes the request message

from the transport.

Exceptions

Errors can occur in the following circumstances:

v Retrieval of the message from the transport fails

v Call to preprocess fails

v Sync check fails

v Call to carry out asynchronous or synchronous processing fails

v Call to postprocess the response document fails

v Attempt to return response document on transport fails

Chapter 2. Customizing receivers 9

If any of these failures occurs, the receiver can perform the following actions:

Reject the message from the transport

The message must be removed from the transport. In the case of a JMS

receiver, for example, the message is removed from the queue. In the case

of an HTTP receiver, a 500 status code is returned to the trading partner.

Archive the rejected message

This is an optional step. The message is archived, either in a queue to be

resubmitted later or in a folder for rejected messages on the local file

system.

Generate an event

This is an optional step. Receiver developers can choose to have receivers

produce events, alerts, or both in the case of error conditions. For example,

if in a synchronous request the receiver is unable to return a response

document it has received from the Framework to the originating trading

partner, an error event is logged. A list of events available for logging

problems in the receiver stage is presented in the following chapter about

APIs.

Receiver types

There are two general types of receivers, based on how they detect incoming

messages on the transport. Some receivers are polling based. They poll their

transports at regular intervals to determine if new messages have arrived.

WebSphere Partner Gateway-supplied examples of this type of receiver include

JMS, file, POP3, FTP/S Scripting, and FTP. Other receivers are callback based. They

receive notification from the transport when messages arrive. The HTTP receiver is

an example of a callback-based receiver.

Note: Receivers can be deployed in a multiple-box mode. In this case, multiple

receivers and their configured targets might be picking up messages from the same

transport location. In such a deployment model, there must be concurrent

management access coordination built into the receiver.

Multiple box deployment

Receivers can be deployed in a multiple box (multi-box) mode. In this scenario,

multiple receivers and their configured targets can pick up messages from the

same transport location. In such a deployment model, there needs to be concurrent

management access coordination built into the receiver.

In a deployment model where receiver components are deployed on multiple

boxes, all the defined receivers exist on the each of the boxes. These receivers get

the list of configured targets from the database, which are created from the

Community Console. The target configuration must be accessible to each receiver

instance; if it is not, the receiver instances fail to receive the document from that

target. In some cases, the target has to be created in each of the receiver boxes.

For example, if you have a receiver component running on two boxes with a

configured JMS receiver and target (MyJMSTarget) going to a queue, such as

MyQueue, both the JMS receiver instances will poll the target called MyJMSTarget,

which is configured with the queue ’MyQueue’. In this case, the JMS bindings file

that is configured with the target is accessible to both the JMS receiver instances;

for example, the bindings file kept in a shared location or the same bindings file

kept in each of the boxes. This same deployment model is also applicable for the

File and FTP receivers.

10 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Overview for creating new receiver handlers

The receiver can call the Receiver Framework to invoke receiver handlers at three

stages, called configuration points, during the receiver processing flow:

preprocessing, sync checking, and postprocessing. Preprocessing returns one or

more receiver documents. Preprocessing can be used to process the document

before submitting it to WebSphere Partner Gateway for processing. It can also be

used for splitting an incoming document from a trading partner. The sync-check

handler determines whether the document is to be processed as a synchronous or

asynchronous request. Postprocessing provides necessary processing for response

documents that are returned from Document Manager as a result of a synchronous

request.

The Framework relies on handlers to execute these processing requests. You can

develop handlers to satisfy your specific needs, using APIs that ship with

WebSphere Partner Gateway. After you write and deploy the handlers, you need to

configure them by using the Community Console. For further information about

this process, see the Hub Configuration Guide.

Development and deployment

The following sections describe development and deployment for user-created

receivers and handlers.

Development environment

The receiver and receiver handler development API relies on classes and interfaces

from two packages:

v com.ibm.bcg.bcgdk.receiver

v com.ibm.bcg.bcgdk.common

These packages are part of the bcgsdk.jar file, which is found among the installable

WebSphere Partner Gateway files in the following directories:

v ProductDir\router\lib

v ProductDir\receiver\lib

v ProductDir\console\lib

In all deployed instances, the bcgsdk.jar file is installed in the application server

classpath.

For development, the bcgsdk.jar file must be included in the build path of the

project that contains the user exit classes, that is, in the classpath.

Deployment and packaging (receivers)

All user-created code needs to be made available to the run-time environment.

Package and deploy user-created code in one of the following ways for use during

runtime:

v Placed in a JAR file in \<receiver>\lib\userexits

v Added as classes in \<receiver>\lib\userexits\classes

Adding the JAR or class files to the run-time environment makes them available

only if the transport or handler is configured to be used by the run-time library.

Receiver transports and handlers are configured for use like the other

product-provided transports and handlers. In order to configure them you must

Chapter 2. Customizing receivers 11

first make them known to the Community Console. You do this by importing their

definitions into the Community Console by means of an XML descriptor file.

To import a Receiver transport, click Hub Admin > Hub Configuration > Targets

> Manage Transport Types.

To import a Receiver transport handler, click Hub Admin > Hub Configuration >

Handlers > Target > Import. One of the descriptors is the Handler Type. Only

defined Handler Types are allowed and are based on the transport target

configuration points. For user-defined transports, the transport descriptor file must

be imported first in order to provide the handler type.

Descriptor file definition for a receiver transport

The receiver transport descriptor file uses the bcgtarget.xsd schema. Following is a

brief outline for each of the elements in the descriptor file based on the following

example:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Copyright (c) 2004 IBM Corp. - All Rights Reserved.-->

<!-- IBM makes no representations or warranties about the suitability of -->

<!-- this program, either express or implied, including but not limited to -->

<!-- the implied warranties of merchantability, fitness for a particular -->

<!-- purpose, or non-infringement. -->

<tns:TargetDefinition

 xmlns:tns="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external"

 xmlns:tns2="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external/types"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external

 bcgtarget.xsd http://www.ibm.com/websphere/bcg/2004/v0.1/import/external/types

 bcgimport.xsd">

<tns:TargetClassName>com.mycompany.MyHTTPTransport</tns:TargetClassName>

<tns:Description>My company HTTP Transport</tns:Description>

<tns:TransportTypeName>MYHTTP</tns:TransportTypeName><tns:TransportAttributes>

<tns2:ComponentAttribute>

<tns2:AttributeName>URI</tns2:AttributeName>

<tns2:AttributeDefaultValue>localhost</tns2:AttributeDefaultValue>

</tns2:ComponentAttribute>

<tns2:ComponentAttribute>

<tns2:AttributeName>Timeout</tns2:AttributeName>

</tns2:ComponentAttribute>

</tns:TransportAttributes>

<tns:TargetConfigurationPoints>

<tns:Preprocess>RECEIVER.PREPROCESS.MYHTTP</tns:Preprocess>

<tns:SyncCheck>RECEIVER.SYNCCHECK.MYHTTP</tns:SyncCheck>

</tns:TargetConfigurationPoints>

</tns:TargetDefinition>

A description of the XML elements follows:

TargetClassName

The full class name of the Receiver implementation

Description

General description for the transport

TransportTypeName

The name that appears in the Transport drop down list in the Console Target

List page

TransportAttributes (optional)

Any attributes that this transport can have

12 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

ComponentAttribute

An attribute name and default value that are used to provide configuration

information to the target at runtime

AttributeName

The name of a specific attribute

AttributeDefaultValue (optional)

The attribute’s default value

TargetConfigurationPoints (optional)

The names of the configuration points that this transport has

Preprocess

A preprocess configuration point, RECEIVER.PREPROCESS.xxx where xxx is the

value of the TransportTypeName

SyncCheck

A SyncCheck configuration point, RECEIVER.SYNCCHECK.xxx where xxx is the

value of the TransportTypeName

SyncResponseProcess

A SyncResponseProcess configuration point,RECEIVER.SYNCRESPONSEPROCESS.xxx

where xxx is the value of the TransportTypeName

 Any handlers defined for this receiver transport must match one of these

TargetConfigurationPoints values.

Descriptor file definition for a receiver transport handler

The receiver transport handler descriptor file uses the bcghandler.xsd schema.

Following is a brief outline for each of the elements in the descriptor file based on

the following example:

<?xml version="1.0" encoding="UTF-8"?>

<tns:HandlerDefinition

 xmlns:tns="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external"

 xmlns:tns2="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external/types"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external

 bcghandler.xsd http://www.ibm.com/websphere/bcg/2004/v0.1/import/external/types

 bcgimport.xsd ">

<tns:HandlerClassName>com.mycompany.RecvHandler</tns:HandlerClassName>

<tns:Description>My companies handler for my business protocol and multiple

 transports.</tns:Description>

<tns:HandlerTypes>

<tns:HandlerTypeValue>RECEIVER.PREPROCESS.MYHTTP</tns:HandlerTypeValue>

<tns:HandlerTypeValue>RECEIVER.PREPROCESS.JMS</tns:HandlerTypeValue>

</tns:HandlerTypes>

<tns:HandlerAttributes>

<tns2:ComponentAttribute>

<tns2:AttributeName>Attribute 1</tns2:AttributeName>

</tns2:ComponentAttribute>

<tns2:ComponentAttribute>

<tns2:AttributeName>Attribute 2</tns2:AttributeName>

<tns2:AttributeDefaultValue>Attribute2DefaultValue</tns2:AttributeDefaultValue>

</tns2:ComponentAttribute>

</tns:HandlerAttributes>

</tns:HandlerDefinition>

A description of the XML elements follows:

HandlerClassName

The full class name of the handler implementation.

Chapter 2. Customizing receivers 13

Description

General description for the handler.

HandlerTypes

The handler types with which this handler can be used. For transports, the

handler type corresponds to the TargetConfigurationPoints value defined for

that transport. To see a list of the currently defined transport Handler Types,

click Hub Admin > Hub Configuration > Handlers > Target > HandlerTypes.

HandlerTypeValue

The HandlerType value that corresponds to the TargetConfigurationPoints

value. A handler can be associated with more than one transport type.

HandlersAttributes (optional)

The attributes, if any, for this handler.

ComponentAttribute

An attribute’s name and default values that are used to provide configuration

information to the handler at runtime.

AttributeName

The name of a specific attribute.

AttributeDefaultValue (optional)

The attribute’s default value.

Reserved attribute names

Every target configuration has the following two reserved attribute names:

ACTIVESTATUSCD

An attribute whose value indicates whether the target of a receiver

is enabled or disabled. You can enable or disable a target from the

Community Console. If a target is enabled, this attribute has a

value of 1. Do not obtain the value of this attribute at runtime

from the configuration of the target by using the constant

BCGDocumentConstants.BCG_TARGET_STATUS. While

developing a receiver, do not define ACTIVESTATUSCD as an

attribute in the receiver’s deployment descriptor.

DESTNAME An attribute whose value indicates the gateway type associated

with the target. Every target has a gateway type associated with it.

The gateway type can be configured from the Community Console

while configuring a target. A gateway type is required for

determining the participant connection. You can obtain the value of

this attribute at runtime from the configuration of the target by

using the constant

BCGDocumentConstants.BCG_TARGET_DESTINATION. While

developing a receiver, make sure that you do not define

DESTNAME as an attribute in the deployment descriptor of the

receiver. For every business document received by a target, the

receiver creates an object of type ReceiverDocumentInterface, also

referred to as a receiver document. The receiver sets the

BCGDocumentConstants.BCG_RCVR_DESTINATION attribute on

the receiver document. The value of this attribute should be same

as the value of the

BCGDocumentConstants.BCG_TARGET_DESTINATION attribute

from the target configuration. If

BCGDocumentConstants.BCG_RCVR_DESTINATION is not set on

14 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

the receiver document, the Document Manager cannot determine

the participant connection for this document.

Chapter 2. Customizing receivers 15

16 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Chapter 3. APIs and example code for receivers and receiver

handlers

The following chapter provides an annotated list of the APIs provided for

developing custom receivers and receiver handlers. The following classes and

interfaces are documented:

v “ReceiverInterface” on page 18

v “ReceiverDocumentInterface” on page 20

v “ReceiverFrameworkInterface” on page 23

v “ReceiverConfig” on page 27

v “ResponseCorrelation” on page 29

v “BCGReceiverException” on page 30

v “ReceiverPreProcessHandlerInterface” on page 31

v “ReceiverSyncCheckHandlerInterface” on page 32

v “ReceiverPostProcessHandlerInterface” on page 34

v “BCGReceiverUtil” on page 36

v “Events” on page 37

A brief example of code and pseudo code for a custom receiver implementation is

included in “Example receiver implementation outline” on page 38.

© Copyright IBM Corp. 2004, 2005 17

ReceiverInterface

Each receiver must implement this interface. It has the following methods:

v init

v refreshConfig

v startReceiving

v processResponse

v stopReceiving

Method

init

Method description

Initializes the receiver, based on the contents of the ReceiverConfig object

Syntax

public void init (Context context, ReceiverConfig config)

 throws BCGReceiverException

Parameters

context Run-time context information for this receiver

config Configuration details as specified in the Community Console

Method

refreshConfig

Method description

Called by the Receiver Framework if it detects changes in the configuration of this

receiver

Note: The target of a receiver can be enabled or disabled from the Community

Console. The target status can be read from the target configuration attribute

BCGDocumentConstants.BCG_TARGET_STATUS. The value of this attribute

returns 1 if the target is enabled.

Syntax

public void refreshConfig(ReceiverConfig config)

 throws BCGReceiverException

Parameters

config An object that carries configuration details as specified in the

Community Console

Method

startReceiving

18 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Method description

Called by the Receiver Framework in its thread. After this method is called, the

receiver can receive documents on its active targets. If the receiver is of the

callback type, it processes callbacks in its own thread only after this point. The

receiver receives documents in its own threads. This method returns quickly.

Note: The receiver is responsible for its own thread management.

Syntax

public void startReceiving()

 throws BCGReceiverException

Parameters

None

Method

processResponse

Method description

In the case of nonblocking synchronous requests, called by the Receiver

Framework when the response document has returned from Document Manager.

The call comes on a Receiver Framework (or internal class) thread. The receiver

returns this call quickly.

Syntax

public void processResponse(ResponseCorrelation respCorr,

 ReceiverDocumentInterface response)

 throws BCGReceiverException

Parameters

respCorr An object that contains the information needed to synchronize the

response document to the original request document

response The response document

Method

stopReceiving

Method description

This method is called by the Receiver Framework in its thread. This method

returns quickly. After this method is called, the receiver stops receiving the

documents, and cleanup is performed. After this method is called, all references to

the receiver are removed. This method is called when the Receiver Framework

receivers a request to terminate.

Syntax

public void stopReceiving()

 throws BCGReceiverException

Parameters

None

Chapter 3. APIs and example code for receivers and receiver handlers 19

ReceiverDocumentInterface

Represents the document. This object will be created by the receiver before it

invokes the Framework. It has the following methods:

v getTempObject

v setTempObject

v getAttribute

v setAttribute

v getAttributes

v getTransportHeaders

v setTransportHeaders

v getDocument

v setDocument

v getDocumentUUID

Method

getTempObject

Method description

Retrieves temporary information for passing among handlers

Syntax

public Object getTempObject(String objectName)

Parameters

objectName The name of the object holding the temporary information

Method

setTempObject

Method description

Sets temporary information for passing among handlers

Syntax

public void setTempObject(String objectName, Object objectValue)

Parameters

objectName The name of the object holding the temporary information

objectValue The temporary information

Method

getAttribute

Method description

Retrieves a console-defined attribute

20 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Syntax

public Object getAttribute(String name)

Parameters

name The name of the attribute

Method

setAttribute

Method description

Sets console-defined attribute

Syntax

public void setAttribute(String name, Object value)

Parameters

name The name of the attribute

value The value to be set on the attribute

Method

getAttributes

Method description

Retrieves the entire attribute map

Syntax

public Map getAttributes()

Parameters

None

Method

getTransportHeaders

Method description

Retrieves transport headers

Syntax

public HashMap getTransportHeaders()

Parameters

None

Method

setTransportHeaders

Chapter 3. APIs and example code for receivers and receiver handlers 21

Method description

Sets transport headers

Syntax

public setTransportHeaders(Hashmap transportHeaders)

Parameters

transportHeaders

The transport headers

Method

getDocument

Method description

Retrieves the document content as a file

Syntax

public File getDocument()

Parameters

None

Method

setDocument

Method description

Sets the document content in the file object

Syntax

public void setDocument(File document)

Parameters

document The name of the file object that contains the document

Method

getDocumentUUID

Method description

Gets the unique reference ID for this document. Every document is assigned a

unique ID.

Syntax

String getDocumentUUID()

Parameters

None

22 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

ReceiverFrameworkInterface

This interface specifies the methods available in the Receiver Framework, which

are as follows:

v remove

v preProcess

v syncCheck

v postProcess

v process

v setResponseStatus

Method

remove

Method description

Called by the receiver when it detects a nonrecoverable condition. The receiver

calls this method only if it cannot continue receiving. The framework marks this

receiver for removal and returns immediately. Later the stopReceiving method will

be called on the receiver object.

Syntax

public void remove(String transportType)

 throws BCGReceiverException

Parameters

transportType

A string identifying the receiver by the transport it supports

Method

preProcess

Method description

Called by the receiver to preprocess the document. The Receiver Framework

invokes preprocessing handlers configured in the Community Console for this

target. The framework invokes the applies method of the handlers (by passing the

request document as input) one after the other (in the same sequence as they are

configured in the Community Console), until a handler’s applies method returns

true. The Receiver Framework executes this handler’s process method to process

the request document. This method returns an array of receiver documents.

Syntax

public ReceiverDocumentInterface[] preProcess(

 String transportType,

 String target,

 ReceiverDocumentInterface request)

 throws BCGReceiverException

Parameters

transportType

A string identifying the receiver by the transport it supports

Chapter 3. APIs and example code for receivers and receiver handlers 23

target A string identifying the target

request The request document to be processed

Method

syncCheck

Method description

Called by the receiver to determine whether the received document can be

processed synchronously or asynchronously. The Receiver Framework invokes

syncCheck handlers configured in the Community Console for this target. The

framework invokes the applies method of each handler one after the other (in the

same sequence as they are configured in Community Console), until a handler’s

applies method returns true. The Receiver Framework executes this handler’s

syncCheck method to determine whether the request document can be processed

synchronously or asynchronously. A value of true indicates that the request is

synchronous. A value of false indicates that the request is configured to be

asynchronous or that there are no syncCheck handlers configured for this receiver;

the request is handled asynchronously.

Syntax

public boolean syncCheck(String transportType, String target,

 ReceiverDocumentInterface request)

 throws BCGReceiverException

Parameters

transportType

A string identifying the receiver by the transport it supports

target A string identifying the target

request The request document to be processed

Method

postProcess

Method description

In the case of a synchronous request, the receiver calls the Receiver Framework to

postprocess the response document. The Receiver Framework invokes

postprocessing handlers configured in the Community Console for this target. The

framework invokes each handler’s applies method by passing the response

document as input one after the other (in the same sequence that they are

configured in the Community Console), until the applies method of a handler

returns true. The Receiver Framework executes this handler’s process method to

process the response document.

Syntax

public ReceiverDocumentInterface[] postProcess(

 String receiverType,

 String target,

 ReceiverDocumentInterface request)

 throws BCGReceiverException

24 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Parameters

receiverType A string identifying the receiver

target A string identifying the target

request The response document to be processed

Method

process

Method description

When this method is called, the framework checks for the Universal Unique ID

(UUID) in the request document. If the UUID has not been set, the framework

generates the UUID. The framework checks the router_in and sync_in folders for a

pre-existing file with the same name as the newly generated UUID (<UUID>.vcm).

If the framework finds a pre-existing file with that UUID, it regenerates the UUID.

The receiver document is then introduced into the WebSphere Partner Gateway

Document Manager. The method has three distinct signatures, depending on the

type of processing required: asynchronous, blocking synchronous, or nonblocking

synchronous.

Note: The method takes only one request document at a time. If multiple

documents exist as a result of preprocessing, the receiver can call this method for

each received document.

Syntax

Asynchronous request

public void process(String transportType, ReceiverDocumentInterface request)

 throws BCGReceiverException

This method returns immediately after introducing the document into WebSphere

Partner Gateway Document Manager.

Blocking synchronous request

public void process(String transportType,

 ReceiverDocumentInterface request,

 ReceiverDocumentInterface response)

 throws BCGReceiverException

This method introduces the document into the WebSphere Partner Gateway

Document Manager. The method does not return until a response is available.

Nonblocking synchronous request

public void process(String transportType,

 ReceiverDocumentInterface request,

 ResponseCorrelation responseCorr)

 throws BCGReceiverException

This method returns immediately after introducing the document into the

WebSphere Partner Gateway Document Manager. When a response is available, the

Receiver Framework invokes the processResponse method on the receiver that

made the process call. The Receiver Framework passes the correlation object that

was passed in the process method. The receiver can use the response correlation

object to correlate the request with the response document.

Chapter 3. APIs and example code for receivers and receiver handlers 25

Parameters

transportType

A string identifying the receiver

request The input document

response The blank document to hold the response from Document Manager

responseCorr The response correlation object that holds information allowing the

receiver to synchronize the original request document with the

response document to be returned from Document Manager.

Method

setResponseStatus

Method description

Notifies the Receiver Framework of the status of the synchronous response

document after it has been returned to the trading partner

Syntax

public void setResponseStatus(String documentUUID,

 boolean status, String statusMessage)

 throws BCGReceiverException

Parameters

documentUUID The document’s unique ID

status A Boolean value that represents the state of the response document

statusMessage

Information related to the status of the response document

26 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

ReceiverConfig

This object stores receiver configuration information. It provides the following

methods:

v getTransportType

v getConfigs

v getAttribute

v setAttribute

v getTargetConfig

v getTargetConfigs

Method

getTransportType

Method description

Retrieves the type of receiver

Syntax

public String getTransportType()

Parameters

None

Method

getConfigs

Method description

Retrieves the configuration properties of a receiver

Syntax

public Map getConfigs()

Parameters

None

Method

getAttribute

Method description

Retrieves the value of a configuration property

Syntax

public Object getAttribute(String configName)

Parameters

configName The name of the property

Chapter 3. APIs and example code for receivers and receiver handlers 27

Method

setAttribute

Method description

Sets the value of a configuration property

Syntax

public void setAttribute(String configName, Object value)

Parameters

configName The name of the property

value The value to be set on the property

Method

getTargetConfig

Method description

Retrieves the target configuration

Syntax

public Config getTargetConfig(String targetName)

Parameters

targetName The name of the target

Method

getTargetConfigs

Method description

Retrieves the configuration of all targets

Syntax

public List getTargetConfigs()

Parameters

None

28 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

ResponseCorrelation

This interface provides a generic way to persist information needed to synchronize

a request with a response when nonblocking synchronous processing has been

invoked.

For example, a JMS receiver stores the JMS correlation ID, so the call looks like:

ResponseCorrelation respCorrel = new ResponseCorrelation()

respCorrel.set (CORREL_ID_STRING, correlID);

Multiple types of information might need to be stored, depending on the transport

type.

The interface provides the following methods:

v set

v get

Method

set

Method description

Sets serializable key and data

Syntax

public Object set(Serializable key, Serializable value)

 throws NullPointerException

Parameters

key The key for the correlation-enabling data

value The value to be set

Method

get

Method description

Gets serializable data of the serializable key

Syntax

public Object get(Serializable key)

Parameters

key The serializable key for retrieving serializable data

Chapter 3. APIs and example code for receivers and receiver handlers 29

BCGReceiverException

Exception class for the receiver

Examples

public class BCGReceiverException extends

com.ibm.bcg.bcgdk.common.exception.BCGException {

}

30 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

ReceiverPreProcessHandlerInterface

This interface describes the methods that all preprocess handlers must implement:

v init

v applies

v process

Method

init

Method description

Initializes the handler

Syntax

public void init(Context context, Config handlerConfig)

 throws BCGReceiverException

Parameters

context The context in which the handler executes

handlerConfig

Handler configuration

Method

applies

Method description

The handler returns true if it can process the request document. Otherwise it

returns false.

Syntax

public boolean applies(ReceiverDocumentInterface request)

 throws BCGReceiverException

Parameters

request The request document

Method

process

Method description

Performs preprocessing. Returns an array of documents

Syntax

public ReceiverDocumentInterface[] process(

 ReceiverDocumentInterface request) throws BCGReceiverException

Parameters

request The request document

Chapter 3. APIs and example code for receivers and receiver handlers 31

ReceiverSyncCheckHandlerInterface

This interface describes the methods that all syncCheck handlers must implement:

v init

v applies

v syncCheck

Sync-check handlers are configured in the Community Console just as other

handlers are.

Method

init

Method description

Initializes the handler

Syntax

public void init(Context context, Config handlerConfig)

 throws BCGReceiverException

Parameters

context The context in which the handler executes

handlerConfig

Handler configuration

Method

applies

Method description

The handler returns true if it can process the request document. Otherwise it

returns false.

Syntax

public boolean applies(ReceiverDocumentInterface request)

 throws BCGReceiverException

Parameters

request The request document

Method

syncCheck

Method description

Checks to see whether the document is to be processed synchronously. The method

returns true if the request is synchronous, false if asynchronous.

32 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Syntax

public boolean syncCheck(ReceiverDocumentInterface request)

 throws BCGReceiverException

Parameters

request The request document

 Sync-check handlers are configured in the Community Console just as other

handlers are.

Chapter 3. APIs and example code for receivers and receiver handlers 33

ReceiverPostProcessHandlerInterface

This interface describes the methods that all postprocessing handlers must

implement:

v init

v applies

v process

Method

init

Method description

Initializes the handler

Syntax

public void init(Context context, Config handlerConfig)

 throws BCGReceiverException

Parameters

context The context in which the handler executes

handlerConfig

Handler configuration

Method

applies

Method description

The handler returns true if it can process the request document. Otherwise it

returns false.

Syntax

public boolean applies(ReceiverDocumentInterface request response)

 throws BCGReceiverException

Parameters

request The request document

Method

process

Method description

Postprocesses the response document. Returns an array of a receiver document.

Syntax

public ReceiverDocumentInterface[] process(

 ReceiverDocumentInterface request response)

 throws BCGReceiverException

34 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Parameters

request The request document

Chapter 3. APIs and example code for receivers and receiver handlers 35

BCGReceiverUtil

This static class provides essential utility methods used for business document

storage and management.

v createReceiverDocument

v getReceiverFramework

v getTempDir

v getRejectDir

Method

createReceiverDocument

Method description

Creates the receiver document (an instance of the ReceiverDocumentInterface

class), which can be used as a request or a response receiver document

Syntax

public static ReceiverDocumentInterface createReceiverDocument()

Method

getReceiverFramework

Method description

Returns a reference to the Receiver Framework so that document processing can

begin

Syntax

public static ReceiverFrameworkInterface getReceiverFramework()

Method

getTempDir

Method description

Gets a location for temporary storage

Syntax

public static File getTempDir()

Method

getRejectDir

Method description

Gets a location for archiving rejected messages

Syntax

public static File getRejectDir()

36 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Events

A list of events available for the receiver execution flow follows.

Informational events

BCG103207 - Receiver Entrance

Event text: Receiver ({0}) entrance.

{0} Receiver class name

BCG103208 - Receiver Exit

Event text: Receiver ({0}) exit.

{0} Receiver class name

Warning events

BCG103204 - Target Processing Warning

Event text: Target ’{0},{1}’ processing document warning, reason: {2}.

{0} Target name

{1} Target (receiver) type

{2} Warning reason specific to target

(Target Processing Warning is a general warning, such as an error in closing the

queue connection)

Error events

BCG103203 - Target Processing Error

Event text: Target ’{0},{1}’ failed to processing document, error: {2}.

{0} Target name

{1} Target (receiver) type

{2} Exception message

BCG103205 - Target Error

Event text: Target ’{0},{1}’ failed to process target: {2}.

{0} Target name

{1} Target (receiver) type

{2} Exception message

 (An example of a Target Error event is a failure in opening a queue

connection)

Chapter 3. APIs and example code for receivers and receiver handlers 37

Example receiver implementation outline

The following code and pseudocode outlines an example implementation for a JMS

receiver.

public class CustomJMSReceiver implements ReceiverInterface {

private Context m_context = null;

private ReceiverConfig m_rcvConfig = null;

String receiverType = "CustomJMS";

 public void init(Context context, ReceiverConfig receiverConfig) {

 this.m_context = context;

 this.m_rcvConfig = receiverConfig;

 return;

 }

 public void refreshConfig(ReceiverConfig rcvconfig) throws BCGReceiverException {

 this.m_rcvConfig = rcvconfig;

 // Check which receiver targets are updated, added newly, or deleted

 // If new target is added, create a new thread and start polling the target.

 // If current target is updated, stop the thread that is polling the

 // target, and, using the updated configuration information, start polling.

 // If the current target is deleted, stop the thread which is polling the

 // target and delete the thread that is responsible for polling the target.

 ...

 return;

 }

 public void startReceiving() throws BCGReceiverException {

 // Read the list of targets in the ReceiverConfig object.

 // For each target, create a UserJMSThread and start the thread.

 ...

 return;

 }

 public void processResponse(ResponseCorrelation respCorr,

 ReceiverDocumentInterface response) throws BCGReceiverException {

 ReceiverDocumentInterface responseDocs[];

 responseDocs = rcvFramework.postProcess(receiverType, target, response);

 // Process the responseDocs.

 // Get the correlation information, for example, reply-to-queue

 // and correlation ID, and send the responses to the reply-to-queue queue.

 ...

 return;

 }

 public void stopReceiving() throws BCGReceiverException {

 // Get the list of UserJMSReceiverThreads associated with each target.

 // Call the stop method.

 ...

 return;

 }

 private class UserJMSReceiverThread extends Thread {

 String target; // Name of the target

 String receiverType = "CustomJMS";

38 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Config targetConfig;

 public UserJMSReceiverThread(Config targetConfig) {

 target = targetConfig.getName();

 this.targetConfig = targetConfig;

 // Create the queue session, connection, queue receiver

 // for this target.

 ...

 }

 public void run() {

 while (true) {

 try {

 // Call the receive method on the queue.

 // If a message is available, read the message and process the

 // document.

 ...

 processDocument(data);

 ...

 // else continue to poll the queue.

 ...

 } catch(Exception e) {

 ...

 }

 }

 }

 // Upon receiving the document from the queue, start processing the

 // documenting by using Receiver FrameWork APIs.

 public void processDocument(byte[] data) throws BCGReceiverException {

 // Get the temporary location where data can be written.

 File tempDir = BCGReceiverUtil.getTempDir();

 // Now create the temp file and write the data into it.

 File fileLocation = new File(tempDir, fileStr);

 FileOutputStream fos = new FileOutStream(fileLocation);

 fow.write(data);

 fos.close();

 // Create the ReceiverDocument object.

 ReceiverDocumentInterface request = BCGReceiverUtil.createReceiverDocument();

 // Set document, transport headers, and BCG headers in the request.

 request.setDocument(fileLocation);

 String destination = targetConfig.getAttribute(

 BCGDocumentConstants.BCG_TARGET_DESTINATION)

 request.setAttribute(BCGDocumentConstants.BCG_RCVR_DESTINATION, destination);

 ...

 // Now start processing the document using ReceiverFrameWork APIs.

 ReceiverFrameWorkInterface rcvFramework =

 BCGReceiverUtil.getReceiverFramework();

 ReceiverDocumentInterface requestDocs[] =

 rcvFramework.preprocess(receiverType, target, request);

 // Check whether the requestDocs length is 1; if yes, document is not.

 // Split into multiple documents. In this example, it is assumed

 // that there is no splitting.

Chapter 3. APIs and example code for receivers and receiver handlers 39

ReceiverDocumentInterface requestDoc = requestDocs[0];

 boolean sync = rcvFramework.syncCheck(receiverType, target, requestDoc);

 ...

 if (!sync) {

 // Request is not synchronous.

 rcvFramework.process(receiverType, target, requestDoc);

 } else {

 // Request is synchronous. Your receiver can make a blocking

 // or nonblocking process call to the framework. The flow in

 // this example is for illustration purpose only.

 // Depending on your requirements, your receiver can make

 // only one type of synchronous process call.

 if (isRequestBlocking(requestDoc)) {

 ReceiverDocumentInterface responseDoc;

 ReceiverDocumentInterface responseDocs[];

 rcvFramework.process(receiverType, requestDoc, responseDoc);

 responseDocs =

 rcvFramework.postProcess(receiverType, target, responseDoc);

 // Process the responseDocs.

 // Get the correlation information, for example, reply-to-queue and

 // correlation ID, and send the responses to reply-to-queue queue.

 ...

 } else {

 ResponseCorrelation respCorr;

 // Create response correlation by using the information that

 // you can use later in CustomJMSReceiver.processResponse

 // to correlate response with the request.

 ...

 rcvFramework.process(receiverType, requestDoc, responseCorr)

 ...

 // In case of nonblocking process, whenever response is

 // available, Receiver Framework calls

 // CustomJMSReceiver.processResponse.

 }

 }

 }

 public void isRequestBlocking(ReceiverDocumentInterface request) {

 // Return true if you want to invoke Receiver Framework

 // by using blocking process call for this request.

 // Return false if you want to use nonblocking one.

 ...

 return true;

 }

 }

}

40 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Chapter 4. Customizing fixed and variable workflow

WebSphere Partner Gateway processes the business documents so that it can route

them to the business partners in the business protocol that the trading partners are

expecting. As described earlier, the Business Processing Engine (BPE), the core

component of the Document Manager component, is responsible for running the

flow as the business document flows through Document Manager. The entire

business document flow in the BPE is divided into three units, also referred to as

workflows: fixed inbound workflow, variable workflow, and fixed outbound

workflow. Each workflow consists of series of steps, which the BPE runs in

sequence.

Fixed inbound and fixed outbound workflow refer to the standard processing that

all documents undergo as they flow into and out of the main processing stage.

They are called fixed because the number and type of processing steps are always

the same. Figure 1 illustrates Document Manager and the workflow.

 In variable workflow, the number and type of processing steps depend completely

on the requirements of the business protocol. You can customize the business

document processing in two ways:

v By creating custom handlers for steps in fixed inbound and fixed outbound

workflows

v By defining new actions (steps and their sequence) in the variable workflow

stage

This chapter covers both ways of customizing the workflow:

v “Overview for creating handlers in fixed inbound workflow” on page 42

v “Overview for creating actions in variable workflow” on page 51

v “Overview for creating handlers in fixed outbound workflow” on page 58

Console
(Administration)

Participant Participant
Receiver
(Target)

Inbound
Fixed

Workflow

Action
(Variable
Workflow)

Outbound
Fixed

Workflow

Document Manager

BPE

Delivery
Manager
(Gateway
Sender)

Figure 1. Document Manager and workflow

© Copyright IBM Corp. 2004, 2005 41

An additional section covers development and deployment issues.

v “Development and deployment” on page 63

The API and some example code are provided in the next chapter. Information on

a number of utility, security, and classes common to all WebSphere Partner

Gateway components are also provided.

Overview for creating handlers in fixed inbound workflow

Business documents received by WebSphere Partner Gateway are packaged

according to the packaging requirements of the business protocol. WebSphere

Partner Gateway uses the following terminology:

Packaging A type of document packaging such as RNIF, AS2, or Backend

Integration.

Protocol The business protocol that the contents of the document follow; for

example, RosettaNet, XML, or EDI.

Document flow

A particular document type such as RosettaNet 3A4.

 To process the business document, the BPE determines the packaging, protocol,

and document flow associated with the incoming business document. The protocol

unpackaging and protocol processing steps of fixed inbound workflow provide this

information. When running fixed inbound workflow, the BPE first runs the

protocol unpackaging step followed by the protocol processing step. These steps

generate meta-information defined by WebSphere Partner Gateway that is used by

fixed inbound workflow to determine the participant connection that can be used

to route this business document. Note that the participant connection determines

which variable workflow will run for this business document.

Each step invokes a series of handlers, the sequence of which is configured in the

WebSphere Partner Gateway Community Console. While running the steps, the

BPE runs these handlers one after the other, until one of the handlers determines

that it can handle the business document. If a handler determines that it can

handle the business document, the BPE invokes the handler to process the business

document. If there is no such handler, the BPE fails the flow of this business

document. After the process method of the handler runs, the BPE logs the events

generated by this process method. The BPE checks the status of business

document. The BPE fails the flow of a business document if its status is marked as

failed.

For the business protocols that it supports, WebSphere Partner Gateway delivers

handlers for these steps. With the user exit support and APIs available in

WebSphere Partner Gateway, you can develop handlers for these steps. The

handlers implement all the methods of BusinessProcessHandlerInterface.

BusinessDocumentInterface represents the business document processed by these

handlers. BusinessDocumentInterface consists of following components:

v Business data stored in a file object

v Transport headers associated with the business document

v Metadata specific to WebSphere Partner Gateway associated with this business

document flow

42 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Protocol unpackaging handlers

WebSphere Partner Gateway provides RNIF, AS2, backend integration, and NONE

packaging. If you are required to support packaging not currently supported by

WebSphere Partner Gateway, you can develop a new protocol unpackaging

handler.

The protocol unpackaging handler is expected to unpackage business documents.

Depending on business protocol requirements and the TPA (trading partner

agreement) between the sending and receiving business partners, the incoming

business document might be encrypted, signed, or compressed. The protocol

unpackaging handler determines whether it can handle the incoming business

document. If it can, it unpackages the business document so that the following

fixed inbound workflow steps, and the BPE workflows can process it. Additionally,

this handler extracts package-level meta-information from the incoming business

document.

Depending on the business protocol requirements, the protocol unpackaging

handler might perform one or more of the following steps:

Decryption

Decrypt the message if it is encrypted

Decompression

Decompress the message if it is compressed

Signature verification

Verify the signature if the message is signed

Routing information extraction

Extract package-level business IDs for sending to and receiving from a

trading partner, if the packaging provides them

Form packaging and versions

Use a packaging code and version to identify the packaging; for example,

RNIF v02.00

Business document parts extraction

Extract the location of various message parts such as payload and

attachments, if the packaging specifies them

 These steps are not exhaustive and might not apply to all business protocols.

Important:

v WebSphere Partner Gateway provides a security service API that you can

leverage to decrypt messages and verify signatures.

v Define the packaging and version associated with this handler in the WebSphere

Partner Gateway Community Console on the Manage Document Flow

Definitions page.

To implement a protocol unpackaging handler:

1. Create a handler class that implements BusinesProcessHandlerInterface.

2. Implement a BusinessProcessHandlerInterface.init method. Use this method

to initialize your handler. The handler can have configuration properties that

can be configured in the Community Console.

3. Implement a BusinessProcessHandlerInterface.applies method. In this

method, the handler determines whether it can process the business document.

(The business document is passed as an argument of type

Chapter 4. Customizing fixed and variable workflow 43

BusinessDocumentInterface to this method.) You can make the handler

determine this by making the handler look at transport-level headers, quickly

scan the business document, or take any other protocol-specific approach. If the

handler can handle this document, the applies method returns true; otherwise,

it returns false.

4. Implement a BusinessProcessHandler.process method. The business document

is passed as an argument of type BusinessDocumentInterface to this method.

This method performs the following tasks:

v Unpackage the business document so that other steps and workflows can

process it. If the handler is changing the contents of the business document,

update BusinessDocumentInterface by calling the setDocument method.

v Set the metadata required by WebSphere Partner Gateway on the

BusinessDocumentInterface object by calling the setAttribute method. These

constants, defined in the BCGDocumentConstants class, are described in the

following table:

 Attribute name Description

BCGDocumentConstants.BCG_PKG_FRBUSINESSID The “From” business ID at the package

level. For example, for AS2 the “From”

business ID is available in the AS2-From

HTTP header.

BCGDocumentConstants.BCG_PKG_TOBUSINESSID The “To” Business ID at the package

level. For example, for AS2 the “To”

business ID is available in the AS2-To

HTTP header.

BCGDocumentConstants.BCG_PKG_INITBUSINESSID The initiating business ID at the package

level. Set it the same as

BCG_PKG_FRBUSINESSID or set it as

the business ID that belongs to the same

partner as BCG_PKG_FRBUSINESSID.

BCGDocumentConstants.BCG_FRPACKAGINGCD The attribute to which the code of the

received packaging is set when

WebSphere Partner Gateway receives a

document. Use the WebSphere Partner

Gateway Community Console to define

this code for the packaging document

flow.

BCGDocumentConstants.BCG_FRPACKAGINGVER The version to which the received

packaging is set when WebSphere

Partner Gateway receives a document.

Use the WebSphere Partner Gateway

Community Console to define this

version for the packaging document

flow.

v Add events to the BusinessDocumentInterface object. You can add events to

this object by calling the addEvent method. These events will be visible in the

Community Console with this business document. For a list of events that

you can add in this step, see “Events” on page 110.

v Update the status of the BusinessDocumentInterface object. If there were any

errors, mark this object as failed by calling the setDocumentState method

with the BCGDocumentConstants.BCG_DOCSTATE_FAILED argument.

44 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

5. Define the packaging implemented by this handler, as shown in Figure 2.

6. Create a deployment descriptor for this handler. See the section “Development

and deployment” on page 63.

Figure 2. Defining a package for a protocol unpackaging handler

Chapter 4. Customizing fixed and variable workflow 45

7. Use the Community Console to upload your handler, as shown in Figure 3.

Figure 3. Uploading the protocol unpackaging handler

46 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

8. Configure your handler. Specify the sequence in which to call your handler as

shown in Figure 4.

Protocol processing handlers

WebSphere Partner Gateway provides processing for the XML, RosettaNet, and

EDI protocols. If you are required to support a protocol not currently supported by

WebSphere Partner Gateway, you can develop a protocol processing handler.

A protocol processing handler is responsible for parsing the business document to

determine meta-information required by WebSphere Partner Gateway. Depending

on business protocol, this handler can provide one or more of following items:

Routing information

Business IDs of the sending and receiving trading partners

″From″ protocol and version

The protocol code and version that WebSphere Partner Gateway uses to

identify the protocol; for example RosettaNet PIP V02.02

Document flow and version

The document flow code and version that WebSphere Partner Gateway

uses to identify the document flow, for example, 3A4, V02.00 (for

RosettaNet)

Important:

1. Define the protocol and version associated with this handler in the WebSphere

Partner Gateway Community Console on the Manage Document Flow

Definitions page.

Figure 4. Configuring the protocol unpackaging handler

Chapter 4. Customizing fixed and variable workflow 47

2. Define the document flow and version associated with this handler in the

WebSphere Partner Gateway Community Console on the Manage Document

Flow Definitions page.

To implement a protocol processing handler:

1. Create a handler class that implements BusinesProcessHandlerInterface.

2. Implement a BusinessProcessHandlerInterface.init method. In this method

initialize your handler. The handler can have configuration properties that can

be configured in the Community Console.

3. Implement a BusinessProcessHandlerInterface.applies method. In this

method the handler determines whether it can process the business document,

whose name is passed to the method as an argument of type

BusinessDocumentInterface. You can determine this by looking at

transport-level headers, quickly scanning the business document, or by using

any other protocol-specific approach. If the handler can handle this document,

the applies method returns true; otherwise, it returns false.

4. Implement a BusinessProcessHandler.process method. The business document

is passed to this method as an argument of type BusinessDocumentInterface.

This method s performs the following actions:

v Set metadata required by WebSphere Partner Gateway on the

BusinessDocumentInterface object by calling the setAttribute method. These

constants, defined in the BCGDocumentConstant class, are described in the

following table:

 Protocol attribute name Description

BCGDocumentConstants.BCG_FRBUSINESSID The “From” business ID obtained from the

protocol.

BCGDocumentConstants.BCG_TOBUSINESSID The “To” business ID obtained from the

protocol.

BCGDocumentConstants.BCG_INITBUSINESSID The initiating business ID obtained from

the protocol.

BCGDocumentConstants.BCG_FRPROTOCOLCD The protocol code associated with the

incoming business document. This must be

a valid process name as defined in the

Community Console, for example,

RosettaNet.

BCGDocumentConstants.BCG_FRPROTOCOLVER The protocol version associated with the

incoming business document. This must be

a valid process version as defined in the

Community Console, for example, V02.00.

BCGDocumentConstants.BCG_FRPROCESSCD The process code associated with the

incoming business document. This must be

a valid code as defined in the Community

Console, for example, 3A4.

BCGDocumentConstants.BCG_FRPROCESSVER The process version associated with the

incoming business document. This must be

a valid process version as defined in the

Community Console, for example, V02.00.

v Add events to the BusinessDocumentInterface object by calling the addEvent

method. These events will be visible in the Community Console with this

business document. For a list of events that you can add in this step, see

“Events” on page 110.

48 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

v Update the status of the BusinessDocumentInterface object. If there were any

errors, mark BusinessDocumentInterface as failed by calling the

setDocumentState method with a

BCGDocumentConstants.BCG_DOCSTATE_FAILED argument.
5. Define the protocol implemented by this handler as shown in Figure 5.

6. Create a deployment descriptor for this handler. For information on how to

deploy your handler, see “Development and deployment” on page 63.

Figure 5. Defining the protocol for a protocol processing handler

Chapter 4. Customizing fixed and variable workflow 49

7. Use the Community Console to upload your handler as shown in Figure 6.

Figure 6. Uploading a protocol processing handler

50 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

8. Configure your handler. Specify the sequence in which your handler is called

as shown in Figure 7.

Overview for creating actions in variable workflow

When the inbound workflow is completed, the appropriate variable workflow path

is determined by the participant connection. This variable workflow, or action, is

specified in the Community Console by the hub administrator while creating the

interactions. For more information on using the Community Console to configure

participant connections and variable workflows, see the Hub Configuration Guide.

An action is a number of steps, arranged in a sequence. WebSphere Partner

Gateway ships with eleven predefined actions. If other options are required, you

can customize a variable workflow by defining new actions. You can do this in

either of two ways:

v Develop an entirely new set of steps, placed into a new sequence

v Copy an existing action and modify it by adding a step, deleting or replacing a

pre-existing step, or modifying the order of the steps

Note: Not all steps delivered by WebSphere Partner Gateway can be used in new,

user-defined actions. Some are used by WebSphere Partner Gateway for internal

purposes. For more detailed information, see “Actions supplied by WebSphere

Partner Gateway” on page 56

Figure 7. Configuring a protocol processing handler

Chapter 4. Customizing fixed and variable workflow 51

Actions consist of a series of steps, the sequence of which is configured in the

Community Console, as shown in Figure 8 and Figure 9 on page 53. The steps can

be reused across the actions.

Figure 8. Creating an action by configuring a sequence of steps

52 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

You can also create multiple actions by using the same set of steps but by

specifying a different sequence. Note that reusability of steps depends on their

intended use and their dependency on other steps.

While running the action (the variable workflow), the BPE runs these steps one

after the other in the sequence these steps are specified for this action. Steps of an

action implement the BusinessProcessInterface class. The BPE runs the process

method of the steps. After running each step, the BPE logs the events generated by

this process method. The BPE checks the status of the business document. If its

status is marked as failed, the BPE fails the flow of business document. The next

step is run only if the business document status is not marked as failed.

Typically steps include the following types:

Validation Checking the form of the business document. For example, an

XML document can be validated against an XML schema.

Transformation

Changing the form of the business document. For example, an

XML document can be transformed into a different XML document

using XSLT.

Translation Changing the entire format of a business document from one type

to another. For example, an XML document can be transformed

into CSV (comma separated value) format.

Figure 9. Creating an action by configuring a sequence of steps

Chapter 4. Customizing fixed and variable workflow 53

Note: These steps are typical examples only. The actual steps depend on your

business protocol requirements.

Creating steps

To create a step:

1. Create a class that implements BusinessProcessFactoryInterface. This class is

factory class for constructing objects of type BusinessProcessInterface, which

represents the steps of variable workflow.

2. Implement the BusinessProcessFactoryInterface.getBusinessProcess method.

This method constructs an object of type BusinessProcessInterface, which can

process the business document.

3. Implement the BusinessProcessFactoryInterface.returnBusinessProcess

method. This factory can reuse or discard the BusinessProcessInterface object

that is being returned.

4. Create a class that implements BusinessProcessInterface. This class is the

actual step.

5. Implement the BusinessProcessInterface.process method. Implement the

processing logic of the step here. This method also performs the following

actions:

a. Add events to the BusinessDocumentInterface object. You can do this by

calling the addEvent method. These events will be visible in the Community

Console with this business document. For a list of events that you can add

in this step, see “Events” on page 110.

b. Update the status of the BusinessDocumentInterface object. If there were

any errors, mark BusinessDocumentInterface as failed by calling the

setDocumentState method with the

BCGDocumentConstants.BCG_DOCSTATE_FAILED argument.
6. Implement the BusinessProcessInterface.reset method. If this factory is

caching BusinessProcessInterface objects, it can call this method to reset the

state of a BusinessProcessInterface object. You can then reuse the

BusinessProcessInterface object.

7. Create a deployment descriptor for this step. For information on how to deploy

your step, see “Development and deployment” on page 63.

8. Use the Community Console to upload your step. Click Import on the Handler

List page as shown in Figure 10 on page 55, and then upload the step on the

Import Handler page as shown in Figure 11 on page 56.

54 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Figure 10. Opening the Import Handler page

Chapter 4. Customizing fixed and variable workflow 55

Now you can use this step for creating your actions.

Actions supplied by WebSphere Partner Gateway

WebSphere Partner Gateway ships with seventeen predefined actions. Some, but

not all, of these actions and the steps that make them up are available for you to

customize. A list of the supplied actions and the degree they can be utilized for

user-customized actions follows.

Pass through

This action can be copied and modified. Steps can be pre-pended or appended to

the action sequence.

HubOwner cancellation of RN process

This action cannot be copied and modified. It is specific to the RosettaNet protocol.

RN pass through with process logging

This action can be copied and modified. You can append steps to the action

sequence.

Bidirectional translation of RN and RNSC

This action cannot be copied and modified. It is used for RNIF messages.

Figure 11. Uploading a step

56 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Bidirectional translation of RN and XML

This action cannot be copied and modified. It is used for RNIF messages.

Bidirectional translation of custom XML with validation

This action can be copied and modified. User-defined steps can be substituted for

the following three supplied steps: ValidationFactory, XSLTTranslationFactory, and

OutboundValidationFactory. Additional steps can be pre-pended or appended. The

supplied steps perform the following actions:

ValidationFactory Validates the received custom XML document

XSLTTranslationFactory Transforms the received XML document into its

outbound XML format

OutboundValidationFactory Validates the transformed document

 The steps cannot be used in other user actions outside the context of a copied

action.

Bidirectional translation of custom XML with duplicate check and

validation

This action can be copied and modified. User-defined steps can be substituted for

the following three supplied steps: ValidationFactory, XSLTTranslationFactory, and

OutboundValidationFactory. Additional steps can be pre-pended or appended. The

supplied steps perform the following actions:

ValidationFactory Validates the received custom XML document.

XSLTTranslationFactory Transforms the received XML document into its

outbound XML format.

OutboundValidationFactory Validates the transformed document.

 The steps cannot be used in other user actions outside of the context of a copied

action.

Bidirectional translation of owner custom XML to RN with

duplicate check and validation

This action cannot be copied or modified. It is specific to RNIF messages.

Custom XML pass through with duplicate check and validation

This action can be copied and modified. Additional steps can be pre-pended or

appended.

Custom XML pass through with duplicate check

This action cannot be copied and modified. Additional steps can be pre-pended or

appended.

Custom XML pass through with validation

This action can be copied and modified. A user-defined step can be substituted for

the ValidationFactory step.

The ValidationFactory step validates the received custom XML document.

EDI Interchange De-envelope

This action cannot be copied and modified. The supplied steps perform the

following actions:

de-enveloper De-envelopes an EDI Interchange.

Chapter 4. Customizing fixed and variable workflow 57

EDI Validate and Transform

These actions can be copied and modified. The supplied steps perform the

following actions:

SourceEDIValidation Validates an EDI transaction.

EDITransformation Transforms an EDI transaction.

XML Transform and EDI Validate

These actions can be copied and modified. The supplied steps perform the

following actions:

XMLTransformation Transforms an XML document into an EDI

document.

TargetEDIValidation Validates the EDI document.

ROD Transform and EDI Validate

These actions can be copied and modified. The supplied steps perform the

following actions:

RODTransformation Transforms an ROD document into an EDI

document.

TargetEDIValidation Validates the EDI document.

Overview for creating handlers in fixed outbound workflow

The last step of fixed inbound workflow determines the connection. The

connection gives the variable workflow to run on this business document and the

“To” packaging and protocol to be used to send the business document to the

destination trading partner.

After running the variable workflow, the BPE runs the fixed outbound workflow.

The protocol packaging step in the fixed outbound workflow packages the

business document in the “To” packaging as determined by the connection.

The protocol packaging step consists of a series of handlers, the sequence of which

is configured in the WebSphere Partner Gateway Community Console. While

running the steps, the BPE runs these handlers one after the other until one of the

handlers determines that it can process the business document. The BPE invokes

this handler to process the business document. After the process method runs, the

BPE logs the events generated by this process method, and then checks the status

of the business document. If its status is marked as failed, the BPE fails the flow of

business document.

After running the fixed outbound workflow, the BPE gives the packaged business

document to the Delivery Manager. The Delivery Manager sends the business

document to the partner as configured in the “To” gateway of the connection.

Protocol packaging handlers

A protocol packaging handler packages a business document. Depending on

business protocol requirements and the trading partner agreement (TPA) between

the sending and receiving trading partners, the outgoing business document might

have to be assembled, encrypted, signed, or compressed. The protocol packaging

handler determines whether it can handle the business document. If it can, it

packages the business document as expected by the business protocol for which it

58 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

is designed. Additionally, if the business protocol requires transport headers, it can

also specify them in metadata defined by WebSphere Partner Gateway.

WebSphere Partner Gateway provides handlers for this step for RNIF, backend

integration, AS, and NONE packaging. If a requirement exists to support a

packaging protocol not currently supported by WebSphere Partner Gateway, you

can develop a protocol packaging handler.

Depending on business protocol requirements, the protocol packaging handler

might perform one or more of the steps:

Assembling If the business protocol requires the message to be packaged as

different parts, such as payload, attachments, and so forth

Encrypting If the packaging type requires encryption

Signing If the packaging type requires signatures

Compressing If the packaging type requires compression

 These steps are not exhaustive and might not apply to all the business protocols.

Important::

v WebSphere Partner Gateway provides a security service API that you can use for

decryption and signature verification.

v Define the packaging and version associated with this handler in the WebSphere

Partner Gateway Community Console on the Manage Document Flow

Definitions page.

Implementing protocol packaging handlers

To implement a protocol packaging handler:

1. Create a handler class that implements BusinesProcessHandlerInterface.

2. Implement the BusinessProcessHandlerInterface.init method. Use this

method to initialize your handler. Note that the handler can have configuration

properties that can be configured in the Community Console.

3. Implement the BusinessProcessHandlerInterface.applies method. The

business document is passed as an argument of type

BusinessDocumentInterface to this method. In this method, the handler

determines whether it can process the business document. To determine this,

look at the following metadata defined by WebSphere Partner Gateway:

v BCGDocumentConstant.BCG_TOPackageCD

v BCGDocumentConstant.BCG_TOPackageVersion

v BCGDocumentConstant.BCG_TOProtocolCD

v BCGDocumentConstant.BCG_TOProtocolVersion

To obtain the metadata, use the BusinessDocumentInterface.getAttribute

method.

Notes:

v The handler can use various mechanisms to determine whether it can process

this business document. For example, it can do a quick scan of business

document.

v Define the packaging and protocol being processed by this handler in the

Community Console on the Manage Document Flow Definitions page.

Chapter 4. Customizing fixed and variable workflow 59

If the handler can process this document, the applies method returns true;

otherwise it returns false.

4. Implement the BusinessProcessHandler.process method. The business document

is passed as an argument of type BusinessDocumentInterface to this method.

This method performs the following actions:

a. Package the business document so that other steps and workflows can

process it. If the handler is changing the contents of business document, the

BusinessDocumentInterface class is updated by calling the setDocument

method.

b. Set metadata required by WebSphere Partner Gateway on the

BusinessDocumentInterface object by calling the setAttribute method. The

following constants are defined in the BCGDocumentConstant class:

 Protocol attribute name Description

BCGDocumentConstants.BCG_OUTBOUNDTRANSPORTHEADERS Outbound transport

headers that are used by

the sender, when it

transfers the document

over a specified transport.

The value for this attribute

is a HashMap object that

contains the list of

transport headers. For

example, HTTP Sender uses

this attribute to set the

HTTP headers.

c. Add events to the BusinessDocumentInterface object by calling the addEvent

method. These events will be visible in the Community Console with this

business document. For a list of events that you can add in this step, see

“Events” on page 110.

d. Update the status of the BusinessDocumentInterface object. If there were

any errors, mark BusinessDocumentInterface as failed by calling the

setDocumentState method with

BCGDocumentConstants.BCG_DOCSTATE_FAILED.
5. Define the packaging implemented by this handler as shown in Figure 12 on

page 61.

60 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

6. Create a deployment descriptor for this handler. See “Development and

deployment” on page 63.

Figure 12. Defining a protocol packaging handler

Chapter 4. Customizing fixed and variable workflow 61

7. Use the Community Console to upload your handler as shown in Figure 13.

Figure 13. Uploading the protocol packaging handler

62 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

8. Configure your handler. Specify the sequence in which to call your handler, as

shown in Figure 14.

Development and deployment

The following sections describe development and deployment for both user-created

handlers in fixed workflows and user-created steps in variable workflow.

Development environment

The workflow development API relies on classes and interfaces from three

packages:

v com.ibm.bdg.bcgdk.workflow

v com.ibm.bcg.bcgdk.common

v com.ibm.bcg.bcgdk.services

These packages are part of the bcgsdk.jar file, which is found among the

WebSphere Partner Gateway installable files in the following directories:

v ProductDir\router\lib

v ProductDir\receiver\lib

v ProductDir\console\lib

In all deployed instances, the bcgsdk.jar file must be available in the application

server classpath and not in the module classpath.

Figure 14. Configuring the protocol packaging handler

Chapter 4. Customizing fixed and variable workflow 63

For development, the bcgsdk.jar file must be included in the build path of the

project that contains the user exit classes, that is, in the classpath.

Deployment and packaging

Make all user-created code available to the run-time environment. Package and

deploy user-created code in one of the following ways:

v Placed in a JAR file in \<receiver or router>\lib\userexits

v Added as classes in \<receiver or router>\lib\userexits\classes

Adding the JAR or class files to the run-time environment makes the handler

available only if the Fixed Workflow or Variable Workflow (Action) is configured

to be used by the run-time environment. Handlers are configured for use like the

other product-provided handlers. To configure them you must first make them

known to the Community Console by importing their definitions in the

Community Console through an XML descriptor file.

To import a Fixed Workflow handler, click Hub Admin > Hub Configuration >

Handlers > Fixed Workflow > Import.

To import a Variable Workflow (Action) handler, click Hub Admin > Hub

Configuration > Handlers > Action > Import. One of the descriptors is the

handler type. Only defined handler types are allowed. To view a list of allowed

handler types, click Hub Admin > Hub Configuration > Handlers > Handler

Types >.

Descriptor file definition for a workflow handler

The workflow handler descriptor file uses the bcghandler.xsd schema. The

following example presents a brief outline for each of the elements in the

descriptor file:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Copyright (c) 2004 IBM Corp. - All Rights Reserved.-->

<!-- IBM makes no representations or warranties about the suitability of -->

<!-- this program, either express or implied, including but not limited to -->

<!-- the implied warranties of merchantability, fitness for a particular -->

<!-- purpose, or non-infringement. -->

<tns:HandlerDefinition

 xmlns:tns="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external"

 xmlns:tns2="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external/types"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external

 bcghandler.xsd http://www.ibm.com/websphere/bcg/2004/v0.1/import/external/types

 bcgimport.xsd">

<tns:HandlerClassName>com.mycompany.WorkHandler</tns:HandlerClassName>

<tns:Description>My companies handler.</tns:Description>

<tns:HandlerTypes>

<tns:HandlerTypeValue>ACTION.VALIDATION</tns:HandlerTypeValue>

</tns:HandlerTypes>

<tns:HandlerAttributes>

<tns2:ComponentAttribute>

<tns2:AttributeName>Attribute 1</tns2:AttributeName>

</tns2:ComponentAttribute>

<tns2:ComponentAttribute>

<tns2:AttributeName>Attribute 2</tns2:AttributeName>

<tns2:AttributeDefaultValue>Attribute2DefaultValue</tns2:AttributeDefaultValue>

</tns2:ComponentAttribute>

</tns:HandlerAttributes>

</tns:HandlerDefinition>

HandlerClassName

The full class name of the handler implementation.

64 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Description

General description for the handler.

HandlerTypes

The handler types for the workflow step that this handler can be used

with.

HandlerTypeValue

The HandlerType value that corresponds to the workflow step type. For

Fixed Inbound Workflow the allowable types are:

v FIXEDWORKFLOW.PROTOCOL.UNPACKAGING

v FIXEDWORKFLOW.PROTOCOL.PARSE

For Fixed Outbound Workflow the allowable type is:

v FIXEDWORKFLOW.PROTOCOL.PARSE

For Variable Workflow the allowable types are:

v ACTION.VALIDATION

v ACTION.TRANSFORMATION

v ACTION.DUPLICATECHECK

HandlersAttributes (optional)

Any attributes that this handler can have.

ComponentAttribute

An attributes name and default values that are used to provide

configuration information to the handler at runtime.

AttributeName

The name of a specific attribute.

AttributeDefaultValue (optional)

The attribute’s default value.

Chapter 4. Customizing fixed and variable workflow 65

66 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Chapter 5. APIs and example code for workflow handlers and

steps

This chapter provides an annotated list of the APIs provided for developing

custom handlers for fixed inbound and outbound workflow and for steps that can

be assembled into actions for variable workflow. It also includes lists for utility,

security, and other common classes shared across components.

The following classes and interfaces are documented:

From com.ibm.bcg.bcgdk.workflow

v “BusinessProcessFactoryInterface” on page 69

v “BusinessProcessInterface” on page 70

v “BusinessProcessHandlerInterface” on page 71

v “AttachmentInterface” on page 72

v “BusinessProcessUtil” on page 75

From com.ibm.bcg.bcgdk.services

v “SecurityServiceInterface” on page 77

v “MapServiceInterface” on page 83

v “SignInfo” on page 85

v “BCGSecurityException” on page 87

From com.ibm.bcg.bcgdk.common

v “Context” on page 89

v “Config” on page 90

v “BusinessDocumentInterface” on page 92

v “BCGException” on page 98

v “BCGUtil” on page 99

v “EventInfo” on page 101

v “BCGDocumentConstants” on page 105

And for workflow events

v “Events” on page 110

Brief examples of code and pseudocode outlining the implementation of sample

protocol processing and protocol unpackaging handlers, and validation and

transformation steps are also included. More complete code examples of validation

and transformation steps are available in the delivery image in the

DevelopmentKits/UserExits/samples/ directory. More information about these

examples can be found in the product readme file.

© Copyright IBM Corp. 2004, 2005 67

From com.ibm.bcg.bcgdk.workflow

These classes and interfaces are directly associated with the workflow stage of

processing:

v “BusinessProcessFactoryInterface” on page 69

v “BusinessProcessInterface” on page 70

v “BusinessProcessHandlerInterface” on page 71

v “AttachmentInterface” on page 72

v “BusinessProcessUtil” on page 75

68 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

BusinessProcessFactoryInterface

Each variable workflow step must implement this factory interface. It has the

following methods:

v getBusinessProcess

v returnBusinessProcess

Method

getBusinessProcess

Method description

Gets an instance of BusinessProcessInterface. The factory class constructs the

BusinessProcess instance by calling the appropriate constructor, based on the

configuration information that is passed in. The factory might cache

BusinessProcess objects, which this method returns the from the cache.

Syntax

public BusinessProcessInterface getBusinessProcess(

 Context context,

 Config workflowConfig,

 BusinessDocumentInterface bDoc)

Parameters

context The context associated with this flow

workflowConfig

Configuration details as specified in the Community Console

bDoc The business document being processed

Method

returnBusinessProcess

Method description

Returns a BusinessProcessInterface object to the factory. This method is called by

the BPE. The factory resets BusinessProcess. For subsequent getBusinessProcess

calls, the factory can cache instances of BusinessProcessInterface.

Syntax

public void returnBusinessProcess(BusinessProcessInterface bp)

Parameters

bp The business process to be returned

Chapter 5. APIs and example code for workflow handlers and steps 69

BusinessProcessInterface

Each variable workflow step must implement this interface. The factory produces

an instance of the BusinessProcess class. This class runs the actual business logic

on the document. It has the following methods:

v process

v reset

Method

process

Method description

Runs the business logic on the business document that is passed in.

Syntax

public BusinessDocumentInterface process(

 Context context,

 BusinessDocumentInterface bDoc)

Parameters

context The context associated with this flow

bDoc The business document being processed

Method

reset

Method description

Resets the BusinessProcess class. This method is called by

BusinessProcessFactory.

Syntax

public boolean reset()

Parameters

None

70 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

BusinessProcessHandlerInterface

Handlers for fixed inbound and fixed outbound workflow must implement this

interface. It has the following three methods:

v init

v applies

v process

Method

init

Method description

Initializes the handler by reading the configuration properties in the Config object.

Syntax

public void init(Context context,

 Config config)

Parameters

context The context associated with this flow

config Configuration information set by the Community Console

Method

applies

Method description

Determines whether the handler can process the business document. If it can

process it, the handler returns true; otherwise, it returns false.

Syntax

public boolean applies(BusinessDocumentInterface bDoc)

Parameters

bDoc The business document being processed

Method

process

Method description

This method is called only if the applies method returned true. In this method,

the handler performs its respective processing.

Syntax

public BusinessDocumentInterface process(BusinessDocumentInterface bDoc)

Parameters

bDoc The business document being processed

Chapter 5. APIs and example code for workflow handlers and steps 71

AttachmentInterface

This is a utility interface for handling attachments. It has the following ten

methods:

v setContentType

v getContentType

v setDescription

v getDescription

v setURI

v getURI

v setEncoding

v getEncoding

v setFile

v getFile

Method

setContentType

Method description

Sets the content type of the attachment

Syntax

public void setContentType(String contentType)

Parameters

contentType The content type

Method

getContentType

Method description

Retrieves the content type of the attachment

Syntax

public String getContentType()

Parameters

None

Method

setDescription

Method description

Sets a string describing the attachment

Syntax

public void setDescription(String desc)

72 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Parameters

desc The description of the attachment

Method

getDescription

Method description

Retrieves the description

Syntax

public String getDescription()

Parameters

None

Method

setURI

Method description

Sets a URI for the attachment

Syntax

public void setURI(String URI)

Parameters

URI The Uniform Resource Identifier (URI)

Method

getURI

Method description

Retrieves the URI

Syntax

public String getURI()

Parameters

None

Method

setEncoding

Method description

Sets the attachment’s character encoding

Syntax

public void setEncoding(String encoding)

Chapter 5. APIs and example code for workflow handlers and steps 73

Parameters

encoding The encoding of the attachment

Method

getEncoding

Method description

Retrieves the attachment’s character encoding

Syntax

public String getEncoding()

Parameters

None

Method

setFile

Method description

Sets a file for the attachment

Syntax

public void setFile(File file)

Parameters

file The name of the file that will contain the attachment

Method

getFile

Method description

Retrieves the file

Syntax

public File getFile()

Parameters

None

74 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

BusinessProcessUtil

This is a utility class provided by WebSphere Partner Gateway. It has the following

methods:

v getSecurityService

v getMapService

Method

getSecurityService

Method description

Retrieves a security service implementation of WebSphere Partner Gateway

Syntax

public SecurityServiceInterface getSecurityService()

Parameters

None

Method

getMapService

Method description

Retrieves a map service implementation of WebSphere Partner Gateway

Syntax

public MapServiceInterface getMapService()

Parameters

None

Chapter 5. APIs and example code for workflow handlers and steps 75

From com.ibm.bcg.bcgdk.services

The following interfaces and classes allow general access to security and mapping

services:

v “SecurityServiceInterface” on page 77

v “MapServiceInterface” on page 83

v “SignInfo” on page 85

v “BCGSecurityException” on page 87

76 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

SecurityServiceInterface

This interface provides utility methods for the following security features:

v Encryption (encryptBytes method)

v Decryption (decryptBytes method)

v Digital signature generation (signMessage method)

v Digital signature verification (verifySignature method)

v Message digest generation (generateDigest method)

You can obtain an instance of the implementation of this interface as follows:

SecurityServiceInterface securityService =

com.ibm.bcg.bcgdk.workflow.BusinessProcessUtil.getSecurityService();

Method

encryptBytes

Method description

This method encrypts the given data by using the given algorithm that uses the

currently valid certificate of the to-partner specified in the business document.

Encryption is done in accordance with the PKCS #7 standard described in PKCS

#7: Cryptographic Message Syntax, section 10.

The method has two forms. One takes input as a byte array. The other takes input

as an InputStream object.

Syntax

Byte array input

public byte[]

encryptBytes(BusinessDocumentInterface businessDocument,

 byte[] inBuf,

 String encryptionAlg)

 throws BCGSecurityException

InputStream input

public InputStream

encryptBytes(BusinessDocumentInterface businessDocument,

 InputStream inStream,

 String encryptionAlg)

 throws BCGSecurityException

Parameters

Byte array input

businessDocument

contains the participant’s business ID in the

BCG_PKG_TOBUSINESSID or BCG_TOBUSINESSID attributes.

The participant’s business ID is used to obtain the participant’s

encryption certificates.

inBuf The data to be encrypted.

encryptionAlg

The encryption algorithm to use. The encryption algorithm must be

one of the algorithm names defined in this class. The key length

used for RC2 is 128.

Chapter 5. APIs and example code for workflow handlers and steps 77

http://www.ietf.org/rfc/rfc2315.txt
http://www.ietf.org/rfc/rfc2315.txt

InputStream input

businessDocument

contains the participant’s business ID in the

BCG_PKG_TOBUSINESSID or BCG_TOBUSINESSID attributes.

inStream The InputStream from which to read the data to be encrypted.

encryptionAlg

The encryption algorithm to use. The encryption algorithm must be

one of the algorithm names defined in this class. The key length

used for RC2 is 128.

Returns

Byte array input

Encrypted data that is PKCS7 EnvelopedData in encoded form.

InputStream input

InputStream for the encrypted data. The encrypted data is PKCS7 EnvelopedData

in encoded form.

Throws

com.ibm.bcg.bcgdk.services.BCGSecurityException - if any exception occurs.

Method

decryptBytes

Method description

This method decrypts the given encrypted data. It expects the encrypted data to be

in an encoded form of PKCS #7 EnvelopedData. So encryption must be done in

accordance with the PKCS #7 standard described in PKCS #7: Cryptographic Message

Syntax, section 10.

The method has two forms. One takes input as a byte array. The other takes input

as an InputStream object.

Syntax

Byte array input

public byte[]

decryptBytes(BusinessDocumentInterface businessDocument,

 byte[] inBuf,

 String algName)

 throws BCGSecurityException

InputStream input

public InputStream

decryptBytes(BusinessDocumentInterface businessDocument,

 InputStream inStream,

 String algName)

 throws BCGSecurityException

Parameters

Byte array input

78 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

http://www.ietf.org/rfc/rfc2315.txt
http://www.ietf.org/rfc/rfc2315.txt

businessDocument

The business document.

inBuf The data to be decrypted as an encoded form of PKCS #7

EnvelopedData.

algName The encryption algorithm that is expected to be used for

decryption. This algorithm must match one contained in the

EnvelopedData object.

InputStream input

businessDocument

The business document.

inStream The InputStream from where the data to be decrypted is read.

Encode data to be decrypted in the form of PKCS #7

EnvelopedData.

algName The encryption algorithm that is expected to be used for

decryption. This algorithm must match one contained in the

EnvelopedData object.

Returns

Decrypted data.

Throws

com.ibm.bcg.bcgdk.services.BCGSecurityException - if any exception occurs.

Method

signMessage

Method description

This method generates a signature for the given data. The signature is in the form

of an encoded PKCS #7 ContentInfo object that contains a PKCS #7 SignedData

object.

The method has two forms. One takes input as a byte array. The other takes input

as an InputStream object.

Syntax

Byte array input

public SignInfo

signMessage(BusinessDocumentInterface businessDocument,

 byte[] data,

 String micAlg)

 throws BCGSecurityException

InputStream input

public SignInfo

signMessage(BusinessDocumentInterface businessDocument,

 InputStream inStream,

 String micAlg)

 throws BCGSecurityException

Chapter 5. APIs and example code for workflow handlers and steps 79

Parameters

Byte array input

businessDocument

The business document.

data The data to be signed.

micAlg The digest algorithm to be used: SHA1 or MD5.

InputStream input

businessDocument

The business document.

InputStream The InputStream from which to read the data to be signed.

micAlg The digest algorithm to be used: SHA1 or MD5.

Returns

SignInfo or null if an error occurs. Signature is in the form of encoded PKCS #7

ContentInfo object that contains a PKCS #7 SignedData object.

Throws

com.ibm.bcg.bcgdk.services.BCGSecurityException - if any exception occurs.

Method

verifySignature

Method description

This method verifies the signature for the given message. The signature is verified

by using the signature verification certificate of the sender participant.

The method has two forms. One takes input as a byte array. The other takes input

as an InputStream object.

Syntax

Byte array input

public SignInfo

verifySignature(BusinessDocumentInterface businessDocument,

 byte[] signature,

 byte[] messageContent,

 String senderId,

 String signatureAlgo)

 throws BCGSecurityException

InputStream input

public SignInfo

verifySignature(BusinessDocumentInterface businessDocument,

 byte[] signature,

 InputStream messageStream,

 String senderId,

 String signatureAlgo)

 throws BCGSecurityException

Parameters

Byte array input

businessDocument

The business document.

80 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

signature The signature bytes expected to be encoded in the PKCS #7

SignedData object.

messageContent

The message to verify against.

senderId The business ID of the trading partner that the content is from.

signatureAlgo

The signature algorithm to use.

InputStream input

businessDocument

The business document.

signature The signature bytes expected to be encoded in the PKCS #7

SignedData object.

messageStream

The InputStream from which to read the message to verify against.

senderId The business ID of the trading partner that the content is from.

signatureAlgo

The signature algorithm to use.

Returns

SignInfo or null if an error occurs. Signature is in the form of encoded PKCS #7

ContentInfo object that contains a PKCS #7 SignedData object.

Throws

com.ibm.bcg.bcgdk.services.BCGSecurityException - if any exception occurs.

Method

generateDigest

Method description

This method calculates a digest of a specified message by using a specified

algorithm.

The method has two forms. One takes input as a byte array. The other takes input

as an InputStream object.

Syntax

Byte array input

public byte[] generateDigest(byte[] data,

 String alg)

 throws BCGSecurityException

InputStream input

public byte[] generateDigest(java.io.InputStream inStream,

 String alg)

 throws BCGSecurityException

Parameters

Byte array input

Chapter 5. APIs and example code for workflow handlers and steps 81

data The data whose digest you want to be calculated.

alg The digest algorithm to be used: SHA1 or MD5.

InputStream input

inStream The InputStream from which data whose digest is to be calculated

can be obtained.

alg The digest algorithm to be used: SHA1 or MD5.

Returns

Digest as a byte array.

Throws

com.ibm.bcg.bcgdk.services.BCGSecurityException - if any exception occurs.

Constants

These constants define encryption and signature types:

public final String BCG_ENC_ALG_DES="3des"

public final String BCG_ENC_ALG_RC2 = "RC2"

public final String BCG_ENCRYPT_ALG_DESEDE = "DESede"

public final String BCG_SIGN_ALG_SHA1 = "sha1"

public final String BCG_SIGN_ALG_MD5 = "md5"

Fields

The following fields are used by SecurityServiceInterface methods:

BCG_ENCRYPT_ALG_DES

public static final java.lang.String BCG_ENCRYPT_ALG_DES

Encryption algorithm DES

BCG_ENCRYPT_ALG_DESEDE

public static final java.lang.String BCG_ENCRYPT_ALG_DESEDE

Encryption algorithm DESede

BCG_ENCRYPT_ALG_RC2

public static final java.lang.String BCG_ENCRYPT_ALG_RC2

Encryption algorithm RC2

BCG_ENCRYPT_ALG_AES

public static final java.lang.String BCG_ENCRYPT_ALG_AES

Encryption algorithm AES

BCG_ENCRYPT_ALG_3DES

public static final java.lang.String BCG_ENCRYPT_ALG_3DES

Encryption algorithm 3DES, same as DESede

BCG_SIGN_ALG_SHA1

public static final java.lang.String BCG_SIGN_ALG_SHA1

SHA1 algorithm used for generating digest and signing

BCG_SIGN_ALG_MD5

public static final java.lang.String BCG_SIGN_ALG_MD5

MD5 algorithm used for generating digest and signing

82 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

MapServiceInterface

This interface provides access to validation and transformation maps. There are

four methods, as follows:

v getFromValidationMap

v getToValidationMap

v getTransformationMap

v getDTDOrXSD

Method

getFromValidationMap

Method description

Retrieves the appropriate “From” validation map. The “From” validation map is

the validation map associated with the connection’s “From” document flow

definition. Steps of the action can call this method to obtain the validation map

associated with an incoming document. The “From” validation maps can be

uploaded from the Community Console.

Syntax

public byte[] getFromValidationMap(Context context,

 BusinessDocumentInterface document)

Parameters

context The context associated with this flow

document The business document

Method

getToValidationMap

Method description

Retrieves the appropriate “To” validation map. The “To” validation map is the

validation map associated with the connection’s “To” document flow definition. If

the steps of the action are transforming an incoming business document into

another business document, they can call this method to obtain the validation map

associated with the transformed document. The “To” validation maps can be

uploaded from the Community Console.

Syntax

public byte[] getToValidationMap(Context context,

 BusinessDocumentInterface document)

Parameters

context The context associated with this flow

document The business document

Method

getTransformationMap

Chapter 5. APIs and example code for workflow handlers and steps 83

Method description

Retrieves the appropriate transformation map associated with the connection.

When you create the participant connection in the Community Console, you can

select the transformation map that you want to use for the connection.

Syntax

public byte[] getTransformationMap(Context context,

 BusinessDocumentInterface document)

Parameters

context The context associated with this flow

document The business document

Method

getDTDOrXSD

Method description

Retrieves the appropriate XSD or DTD file. When you want to validate the

document against more than one schema, the action steps can call this method to

obtain the schemas one by one.

All the schemas for an XML document are loaded in WebSphere Partner Gateway.

To validate a document using the parser, you need its schema. This first schema

references additional schemas, which are also loaded in WebSphere Partner

Gateway. To obtain these schemas, pass the schema name to getDTDOrXSD

Syntax

public byte[] getDTDOrXSD(string dtdOrXsdName)

Parameters

dtdOrXsdName The name of the XSD or DTD file

document The business document

84 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

SignInfo

This object holds signature information that is used by SecurityServiceInterface.

The SignInfo object methods are as follows:

v detachedSignature

v getData

v getDigest

v getDigestAlgoName

Method

detachedSignature

Method description

Constructs SignInfo with a detached signature, digest, and the algorithm name.

Syntax

public SignInfo(byte[] detachedSignature, byte[] digest, String digestAlgoName)

Parameters

digestAlgoName

The digest algorithm name

Method

getData getDetachedSignature

Method description

Returns the data contained in this SignInfo object.

Syntax

public byte[] getData()

Parameters

None

Method

getDigest

Method description

Returns the digest contained in this SignInfo.

Syntax

public byte[] getDigest()

Parameters

None

Chapter 5. APIs and example code for workflow handlers and steps 85

Method

getDigestAlgoName

Method description

Returns the digest algorithm name contained in this SignInfo object.

Syntax

public String getDigestAlgoName()

Parameters

None

86 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

BCGSecurityException

If there are any errors, the security service API throws this exception.

Constructor

BCGSecurityException

Constructor description

The constructor has two forms. One constructs an exception object with null as its

detail message. The other constructs an exception object with a specified detail

message.

Syntax

Without a detail message

BCGSecurityException()

With a detail message

BCGSecurityException(String s)

Parameters

Without a detail message

v None

With a detail message

s The detail message

Chapter 5. APIs and example code for workflow handlers and steps 87

From com.ibm.bcg.bcgdk.common

These are general utility classes and interfaces common to all stages of WebSphere

Partner Gateway processing:

v “Context” on page 89

v “Config” on page 90

v “BusinessDocumentInterface” on page 92

v “BCGException” on page 98

v “BCGUtil” on page 99

v “EventInfo” on page 101

v “BCGDocumentConstants” on page 105

88 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Context

This class, which contains information about the context associated with this flow.

has two methods:

v getContext

v setContext

Method

getContext

Method description

Gets the named context

Syntax

public Object getContext(String contextName)

Parameters

contextName The name of the context

Method

setContext

Method description

Sets the named context

Syntax

public void setContext(String contextName, Object context)

Parameters

contextName The name of the context

context The context associated with this flow

Chapter 5. APIs and example code for workflow handlers and steps 89

Config

This class holds configuration information. The class is used in receiver, workflow,

and sender APIs and has four methods:

v getName

v getAttribute

v setAttribute

v getAttributes

Note: This class is not thread safe.

Method

getName

Method description

Retrieves the name. If called on the configuration of the receiver’s target, this

method returns the name of the target.

Syntax

public String getName()

Parameters

None

Method

getAttribute

Method description

Retrieves the value of a configuration property

Syntax

public Object getAttribute(String name)

Parameters

name The name of the property

Method

setAttribute

Method description

Sets the value of a configuration property

Syntax

public void setAttribute(String name, Object value)

Parameters

name The name of the property

value The value to be set

90 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Method

getAttributes

Method description

Retrieves a collection of all the properties

Syntax

public Map getAttributes()

Parameters

None

Chapter 5. APIs and example code for workflow handlers and steps 91

BusinessDocumentInterface

This interface represents the business document that is being processed. It has 18

methods:

v getDocumentUUID

v getDocumentParentUUID

v createFile

v getDocument

v setDocument

v getOriginalFile

v getDocumentState

v setDocumentState

v addEvents

v getEvents

v clearEvents

v getAttribute

v setAttribute

v getTempObject

v setTempObject

v getAttachments

v addAttachment

v getTransportHeaders

Method

getDocumentUUID

Method description

Retrieves the universally unique ID (UUID) associated with this document

Syntax

public String getDocumentUUID()

Parameters

None

Method

getDocumentParentUUID

Method description

Retrieves the universally unique ID (UUID) associated with this document’s parent

Syntax

public String getDocumentParentUUID()

Parameters

None

92 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Method

createFile

Method description

Creates a file. You can call this method if you need to create additional files during

the flow of a business document. For example, in the case of a synchronous

response received by the sender, the sender can call this method to create a file to

store the response.

Syntax

public File createFile()

Parameters

None

Method

getDocument

Method description

Retrieves a file reference for the business document

Syntax

public File getDocument()

Parameters

None

Method

setDocument

Method description

Sets the file reference for the business document

Syntax

public void setDocument(File document)

Parameters

document The business document

Method

getOriginalFile

Method description

Gets the file reference for the original business document file that created the

business document object

Syntax

public File getOriginalFile()

Chapter 5. APIs and example code for workflow handlers and steps 93

Parameters

None

Method

getDocumentState

Method description

Gets the state of this business document. It can return one of the following states:

v BCGDocumentConstants.BCG_DOCSTATE_FAILED

v BCGDocumentConstants.BCG_DOCSTATE_IN_PROCESS

v BCGDocumentConstants.BCG_DOCSTATE_SENT

Syntax

public String getDocumentState()

Parameters

None

Method

setDocumentState

Method description

Sets the state of the business document object to one of the following states:

v BCGDocumentConstants.BCG_DOCSTATE_FAILED

v BCGDocumentConstants.BCG_DOCSTATE_IN_PROCESS

v BCGDocumentConstants.BCG_DOCSTATE_SENT

Syntax

public String setDocumentState(String state)

Parameters

state The state to be set

Method

addEvents

Method description

Adds events to be associated with this document. These events will be displayed

in the event viewer and the document viewer

Syntax

public void addEvents(EventInfo[] events)

Parameters

events The array of EventInfo objects to be added

94 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Method

getEvents

Method description

Retrieves the array of EventInfo objects associated with this document

Syntax

public EventInfo[] getEvents()

Parameters

None

Method

clearEvents

Method description

Clears the events associated with this business document object

Syntax

public void clearEvents()

Parameters

None

Method

getAttribute

Method description

Gets the named attribute. Used to retrieve information such as packaging name

and version, and so forth. For list of available attributes refer to

“BCGDocumentConstants” on page 105.

Syntax

public Object getAttribute(String attrName)

Parameters

attrName The name of the attribute requested

Method

setAttribute

Method description

Sets the named attribute on this document. For list of available attributes refer to

“BCGDocumentConstants” on page 105.

Syntax

public void setAttribute(String attrName, Object attrValue)

Chapter 5. APIs and example code for workflow handlers and steps 95

Parameters

attrName The name of the attribute to be set

attrValue The value to be set

Method

getTempObject

Method description

Retrieves a temporary object associated with this flow

Syntax

public Object getTempObject(String objectName)

Parameters

objectName The name of the requested object

Method

setTempObject

Method description

Sets a temporary object associated with this flow

Syntax

public void setTempObject(String objectName, Object objectValue)

Parameters

objectName The name of the object to be set

objectValue The value to be set

Method

getAttachments

Method description

Retrieves the list of attachments for this document

Syntax

public ListIterator getAttachments()

Parameters

None

Method

addAttachment

Method description

Adds an attachment to this document

96 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Syntax

public void addAttachment(AttachmentInterface attachment)

Parameters

attachment The attachment to be added

Method

getTransportHeaders

Method description

Retrieves the transport headers that were set by the receiver. The method return

type is java.util.HashMap.

Syntax

public ListIterator getTransportHeaders()

Parameters

None

Chapter 5. APIs and example code for workflow handlers and steps 97

BCGException

This is an exception thrown from various APIs.

Constructor

BCGException

Constructor description

The object can be in initialized in two different ways. The first constructs a new

exception with null as its detail message. The second constructs a new exception

with the specified detail message.

Syntax

public class BCGException extends Exception {}

Without a detail message

public BCGException

With a detail message

public BCGException(String s)

Parameters

Without a detail message

v None

With a detail message

s The detail message

98 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

BCGUtil

This class provides three utility methods and defines some common constants. The

methods include:

v generateUUID()

v logEvent

v trace

The constants include:

v BCG_TRACE_SEVERITY_DEBUG = ″Debug″

v BCG_TRACE_SEVERITY_INFO = ″Info″

v BCG_TRACE_SEVERITY_WARNING = ″Warning″

v BCG_TRACE_SEVERITY_ERROR = ″Error″

v BCG_TRACE_SEVERITY_CRITICAL = ″Critical″

Method

generateUUID()

Method description

Generates a UUID

Syntax

public String generateUUID()

Parameters

None

Method

logEvent

Method description

Logs the event so that it can be viewed from the Community Console

Syntax

public boolean logEvent(EventInfo eventInfo)

Parameters

eventInfo The event information

Method

trace

Method description

Traces a message in WebSphere Partner Gateway log files

Syntax

Without exception object

public void trace(String severity, String category, String msg)

Chapter 5. APIs and example code for workflow handlers and steps 99

With exception object

public void trace(String severity, String category, String msg, Throwable t)

Parameters

Without exception object

severity A constant indicating severity level.

category The affected module name.

msg The trace message.

With exception object

severity A constant indicating severity level.

category The affected module name.

msg The trace message.

t The exception.

Constants

These constants indicate trace severity levels:

public static final String BCG_TRACE_SEVERITY_DEBUG = "Debug"

public static final String BCG_TRACE_SEVERITY_INFO = "Info"

public static final String BCG_TRACE_SEVERITY_WARNING = "Warning"

public static final String BCG_TRACE_SEVERITY_ERROR = "Error"

public static final String BCG_TRACE_SEVERITY_CRITICAL = "Critical"

100 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

EventInfo

This class stores event information that will be logged by the logEvent method.

The event will be associated with a business document and will be visible in the

Community Console. It can be initialized in five ways. It includes the following

methods:

v getEventCode

v getBusinessDocument

v getDocumentParentUUID

v getDocumentUUID

v getParams

v getStackTrace

v getSourceClass

v setSourceClass

v setFaultType

v getFaultType

The class also defines four constants:

v FAULTTYPE_UNKNOWN

v FAULTTYPE_SOURCE

v FAULTTYPE_TARGET

v FAULTTYPE_SYSTEM

Constructors

The object can be initialized in five distinct ways:

v With a business document

This method can be used by workflow handlers, action steps, senders, and their

handlers.

public EventInfo(java.lang.String eventCode,

 BusinessDocumentInterface document,

 java.lang.String[] params)

v With a business document and an exception or error

This method can be used by workflow handlers, action steps, senders, and their

handlers when an exception or error occurs.

public EventInfo(java.lang.String eventCode,

 BusinessDocumentInterface document,

 java.lang.String[] params,

 java.lang.Throwable t)

v With a document UUID

This method can be used by a receiver and its handlers.

public EventInfo(java.lang.String eventCode,

 java.lang.String documentUUID,

 java.lang.String[] params)

v With a document UUID and an error or exception

This method can be used by the receiver and its handlers when an exception or

error occurs.

public EventInfo(String eventCode, String documentUUID, String[] params,

 Throwable t)

v With a document UUID and document parent UUID

Chapter 5. APIs and example code for workflow handlers and steps 101

public EventInfo(java.lang.String eventCode,

 java.lang.String documentUUID,

 java.lang.String documentParentUUID,

 java.lang.String[] params)

Method

getEventCode

Method description

Retrieves the event code

Syntax

public String getEventCode()

Parameters

None

Method

getBusinessDocument

Method description

Retrieves the business document

Syntax

public BusinessDocument getBusinessDocument()

Parameters

None

Method

getDocumentParentUUID

Method description

Retrieves the document parent Universal Unique Identifier (UUID)

Syntax

public java.lang.String getDocumentParentUUID()

Parameters

None

Method

getDocumentUUID

Method description

Retrieves the document UUID

Syntax

public String getDocumentUUID

102 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Parameters

None

Method

getParams

Method description

Retrieves the parameter array

Syntax

public String[] getParams()

Parameters

None

Method

getStackTrace

Method description

Retrieves the stack trace

Syntax

public Throwable getStackTrace()

Parameters

None

Method

getSourceClass

Method description

Retrieves the source class

Syntax

public String getSourceClass()

Parameters

None

Method

setSourceClass

Method description

Sets the source class

Syntax

public void setSourceClass(String sourceClass)

Chapter 5. APIs and example code for workflow handlers and steps 103

Parameters

sourceClass

The source class

Method

setFaultType

Method description

Sets the fault type. See Constants.

Syntax

public void setFaultType(String faultType)

Parameters

faultType

The fault type

Method

getFaultType

Method description

Retrieves the fault type. See Constants.

Syntax

public String getFaultType()

Parameters

None

Constants

These constants are used to define fault types:

 public static final String FAULTTYPE_UNKNOWN = "0"

 public static final String FAULTTYPE_SOURCE = "1"

 public static final String FAULTTYPE_TARGET = "2"

 public static final String FAULTTYPE_SYSTEM = "3"

104 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

BCGDocumentConstants

This class sets constants.

Constants

This section describes the following types of constants:

v Constants used in protocol unpackaging and protocol packaging

v Constants used in protocol processing and protocol packaging

v Sender status constants

v Document state constants

v Receiver constants

Constants used in protocol unpackaging and protocol packaging

steps

The following general constants are used in the protocol unpackaging and protocol

packaging steps:

public static final String BCG_FRPACKAGINGCD = ″FromPackagingName″;

The attribute to which the received packaging name is set when WebSphere

Partner Gateway receives a document. Define the receiving packaging name in

the Community Console. This constant is set in the transport unpackaging step

in the workflow.

public static final String BCG_FRPACKAGINGVER = ″FromPackagingVersion″;

The attribute to which the received content packaging version is set when

WebSphere Partner Gateway receives a document. The received packaging

version must be defined in the Community Console. This constant is set in the

transport unpackaging step in the workflow.

public static final String BCG_TOPACKAGINGCD = ″ToPackagingName″;

The “To” packaging code that is associated with the document flow.

public static final String BCG_TOPACKAGINGVER = ″ToPackagingVersion″;

The “To” packaging version that is associated with the document flow.

public static final String BCG_PKG_INITBUSINESSID =

″PackageInitPartnerBusinessId″;

The initiating business ID at the packaging level. This is set in the transport

protocol unpackaging step in the workflow.

public static final String BCG_PKG_FRBUSINESSID =

″PackageFromPartnerBusinessId″;

The “From” business ID at the package level. For example, for AS2 the “From”

business ID is available in the AS2-From HTTP header. This constant is set in

the transport protocol unpackaging step in the fixed inbound workflow

public static final String BCG_PKG_TOBUSINESSID =

″PackageToPartnerBusinessId″;

The “To” business ID at the package level. For example, for AS2 the “To”

business ID is available in the AS2-To HTTP header. This constant is set in the

transport protocol unpackaging step in the fixed inbound workflow.

Constants used in protocol processing and protocol packaging

steps

The following constants are used in the protocol processing and protocol

packaging steps:

Chapter 5. APIs and example code for workflow handlers and steps 105

public static final String BCG_FRBUSINESSID = ″FromPartnerBusinessId″;

The “From” business ID obtained from the protocol message and set onto

BusinessDocument in the protocol parsing step.

public static final String BCG_INITBUSINESSID =

″InitiatingPartnerBusinessId″;

The initiating-partner business ID that is obtained from the protocol.

public static final String BCG_TOBUSINESSID = ″ToPartnerBusinessId″;

The “To” business ID that is obtained from the protocol message and set onto

BusinessDocument in the protocol parsing step.

public static final String BCG_FRPROTOCOLCD = ″FromProtocolName″;

The received protocol namecode that is obtained from the document, for

example, XML/EDI. Define this namecode in the Community Console. This

constant is set in the protocol processing step in the workflow.

public static final String BCG_FRPROTOCOLVER = ″FromProtocolVersion″;

The received protocol version. Define this version in the Community Console.

This constant is set in the protocol processing step in the workflow.

public static final String BCG_FRPROCESSCD = ″FromProcessCode″;

The “From” process code name. For example, in RNIF this value is set to 3A4,

and the version is set to V02.02. Set this constant in the protocol processing

step in the workflow. Define this constant in the Community Console in the

Document Flow Definitions column of the Manage Document Flow Definitions

page by clicking Package > Protocol > DocumentFlow.

public static final String BCG_FRPROCESSVER = ″FromProcessVersion″;

The “From” process version, which is set in the protocol processing step in the

workflow. Define this constant in the Community Console in the Document

Flow Definitions column of the Manage Document Flow Definitions page by

clicking Package > Protocol > DocumentFlow.

public static final String BCG_TOPROTOCOLCD = ″ToProtocolName″;

The target protocol name. This channel is set by CheckChannel fixed inbound

workflow after it identifies the participant connection and is used by the

handlers protocol packaging step.

public static final String BCG_TOPROTOCOLVER = ″ToProtocolVersion″;

The “To” protocol version.

public static final String BCG_TOPROCESSCD = ″ToProcessCode″;

The “To” process code name. For example, in RNIF this value is set to 3A4 and

the version is set to V02.02. Define this constant in the Community Console in

the Document Flow Definitions column of the Manage Document Flow

Definitions page by clicking Package > Protocol > DocumentFlow.

public static final String BCG_TOPROCESSVER = ″ToProcessVersion″;

The “To” process code version. For example, in RNIF this value is set to 3A4,

and the version is set to V02.02. Define this constant in the Community

Console in the Document Flow Definitions column of the Manage Document

Flow Definitions page by clicking Package > Protocol > DocumentFlow.

public static final String BCG_DESTINATION = ″DestinationType″;

The destination type that will be used in the workflow and in senders.

public static final String BCG_OUTBOUNDTRANSPORTHEADERS =

″OutboundTransportHeaders″;

The outbound transport headers attribute that is used by the sender to set the

transport headers when it transfers the document over a specified transport.

The value for this attribute is a HashMap object that contains the list of

106 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

transport headers. For example, an HTTP sender uses this attribute to set the

HTTP headers. This attribute is set in the handlers that are configured for the

protocol packaging step in the fixed outbound workflow.

Sender status constants

The following constants handle sender status:

public static final String BCG_SENT_STATUS_SUCCESS = ″sent″;

The status that the sender sets in a SenderResult object when the sender

successfully sends a document.

public static final String BCG_SENT_STATUS_FAILED = ″failed″;

The status that the sender sets in a SenderResult object when the sender fails

while sending a document.

Document state constants

The following constants pertain to the document state:

public static final String BCG_DOCSTATE_FAILED = ″Failed″;

The document state, set to ″failed″, if any error occurs while the document is

being processed by the handler in the workflow steps. The document state

when an error occurs while the handler is processing the document in

workflow steps or actions.

public static final String BCG_DOCSTATE_IN_PROCESS = ″In Process″;

The document state, set to ″In Process″, in BusinessDocumentInterface when

the workflow handler or action is processing a document.

public static final String BCG_DOCSTATE_SENT = ″Sent″;

The document state, set to ″Sent″, in the BusinessDocumentInterface in the

workflow steps. If a workflow step sets this state on a business document,

further steps and workflows will not be performed and this business document

will not be sent to Document Manager. Basically, this will end the flow of the

business document and so this document will not be sent to the trading

partner.

Receiver constants

If a sender is introducing a response file into the flow by setting a response

document on SenderResult, the sender can optionally set the attributes described in

this section. The following are receiver constants:

public static final String BCG_RCVD_DOC_TIMESTAMP =

″ReceivedDocumentTimestamp″;

The time stamp of the received document. When a receiver receives a business

document, the receiver sets this attribute on the receiver document. The value

of this attribute gives the time stamp of the received document.

public static final String BCG_RCVD_CONTENT_LENGTH = ″content-length″;

The content length of the received document. When a receiver receives a

business document, the receiver sets this attribute on the receiver document.

The sender also sets this on the business document when it receives the

synchronous response. The value of this attribute gives the content size of the

received document. This attribute is required for the Community Console to

display the document size.

public static final String BCG_RCVD_MSG_LNGTH_INC_HDRS =

″MsgLengthIncHeaders″;

The message length of the received document. When a receiver receives a

business document, the receiver sets this attribute on the received document.

The sender also sets this on the business document when it receives the

Chapter 5. APIs and example code for workflow handlers and steps 107

synchronous response. The value of this attribute gives the size of the content

and headers from the received document. This attribute is required for the

Community Console to display the document size.

public static final String BCG_RCVD_CONTENT_TYPE = ″content-type″;

The content type of the received document. When a receiver receives a

business document, the receiver sets this attribute on the received document.

The sender also sets this on the business document when it receives the

synchronous response. This attribute is required for the Community Console to

display the document size.

public static final String BCG_RCVR_DESTINATION =

″ReceiverDestinationType″;

The attribute that is set by receivers on a ReceiverDocumentInterface object

when a document is received from a target. This target is associated with a

destination type such as production and test. The destination type is

configured for the target, and you can read it from the receiver configuration

by using the BCGDocumentConstants.BCG_TARGET_DESTINATION attribute.

 This attribute might be set by a sender if it is doing a synchronous request

response. If the sender is introducing a response file into the flow by setting

the response document on SenderResult, the sender is required to set the

BCG_RCVR_DESTINATION attribute in SenderResult. If this attribute is not

set, the flow of response document will fail in the Document Manager. This

attribute can be set by copying the BCG_RCVR_DESTINATION attribute from

the request business document that it is sending.

public static final String BCG_TARGET_STATUS = ″ACTIVESTATUSCD″;

The name of a reserved attribute that determines whether the target of a

receiver is enabled or disabled. If enable equals 1, the target is enabled;

otherwise, it is disabled. You can read the target status from the target

configuration by using the BCGDocumentConstants.BCG_TARGET_STATUS

attribute.

public static final String BCG_TARGET_DESTINATION = ″DESTNAME″;

The name of a reserved attribute that determines the target destination type

from a targetConfig object such as production or test.

public static final String BCG_RCVD_IPADDRESS = ″FromIPAddress″;

The host IP address where a document is received. When a receiver receives a

business document, it can set this attribute on the received document.

public static final String BCG_INBOUND_TRANSPORT_CHARSET =

″InboundTransportCharset″;

The character set that is obtained from the transport headers. This is set by the

receiver when it receives the request. For example, the HTTP receiver checks

for charset in the content-type header and sets it on the receiver document as

the value of this attribute.

public static final String BCG_INBOUND_CHARSET = ″InboundCharset″;

The character set that is used for the inbound document.

public static final String BCG_REQUEST_URI = ″requestURI″;

The URI from which the receiver has received the request. When a receiver

receives a business document, it set this attribute on the receiver document.

Targets are configured with this URI in the Community Console and associated

with a destination type such as production or test.

Other constants

Following are other constants:

108 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

public static final String BCG_GET_SYNC_RESPONSE =

″GetSynchronousResponse″;

A flag set by the handler in the protocol unpacking, protocol parsing, or

protocol packaging step. If the handler determines that the received request

requires a synchronous response from the target, it sets this attribute to true.

The sender checks this flag; if it is set to true, the sender retrieves the

synchronous response from the target.

public static final String BCG_RESPONSE_STATUS = ″ResponseStatus″;

If a response needs to be sent synchronously by the receiver to a trading

partner, this contains the one-line response. It can be set by a sender on a

response business document. For example, for an HTTP receiver, the value of

this attribute can be a number such as 200, 404, or 500, which are HTTP

transport status codes. Receivers can either use this response or specify another

response.

public static final String BCG_REPLY_TO_DOC_ID = ″ReplyToDocID″;

The request document ID that is present in the response document. The

response document is considered a response to this request document.

public static final String BCG_REPLY_TO_DOC_UUID = ″ReplyToMessageId″;

The attribute to which SenderFrameWork sets the UUID of the request

business document in the response business document. This is used to

correlate the request-response in the process engine.

public static final String BCG_DOCID = ″DocumentId″;

The document ID from the business document payload.

public static final String BCG_TARGET_TRANSPORTTYPE =

″TargetTransportType″;

This constant can be used to determine the target transport type from a target

configuration object such as JMSReceiver or CustomReceiver.

public static final String BCG_TRUE = ″true″;

This constant can be used to set the value to true for any attribute that requires

a boolean value. For example. the attribute BCG__TRUE can be used to set the

value of BCG_GET_SYNC_RESPONSE to true.

public static final String BCG_FALSE = ″false″;

This constant can be used to set the value to false for any attribute that

requires a boolean value. For example. the attribute BCG__FALSE can be used

to set the value of BCG_GET_SYNC_RESPONSE to false.

public static final String BCG_OUT_DOC_FILENAME = ″X-out-filename″;

This constant can be used to set or access the output file name in the business

document. For example, you can write a pre-process handler, set the output file

name to user defined, and then configure it with the File Sender. When File

Sender writes the document to the target location, it is written with the name

that was set to the OUT_DOC_FILENAME attribute.

Chapter 5. APIs and example code for workflow handlers and steps 109

Events

The following sections list events available for workflow execution flow:

Events that can be logged from the protocol unpackaging

handler

Informational events

BCG240607 - Unpackaging Business Process Entrance

Event text: Packaging business process ({0}) entrance

{0} Unpackaging BusinessProcess class name

BCG240608 - Unpackaging Business Process Exit

Event text: Packaging business process ({0}) exit

{0} Unpackaging BusinessProcess class name

Warning events

BCG240609 - Unpackaging warning

Event text: Unpackaging warning - {0}

{0} Unpackaging warning information

Error events

BCG240610 - Unpackaging Error

Event text: Unpackaging Error - {0}

{0} Unpackaging error information

BCG210014 - Error Unpackaging Mime Message

Event text: Failed to unpackage a MIME multipart document: {0}

{0} Exception message

Events that can be logged from the protocol processing

handler

Informational events

BCG240612 - Protocol Parse Business Process Entrance

Event text: Protocol Parse business process ({0}) entrance

{0} Protocol Parse BusinessProcess class name

BCG240613 - Protocol Parse Business Process Exit

Event text: Protocol parse business process ({0}) exit

{0} BusinessProcess class name

Warning events

BCG240614 - Protocol parse warning

Event text: Protocol parse warning - {0}

{0} Protocol parsing warning information

Error events

BCG240615 - Protocol parse error

Event text: Protocol parse error: - {0}

{0} Protocol parse error message

110 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Events that can be logged from user-defined actions and

steps

Informational events

BCG200002 - Protocol Transformer Entrance

Event text: Protocol transformer business process ({0}) entrance.

{0} Class name

BCG200003 - Protocol Transformer Exit

Event text: Protocol transformer business process ({0}) exit.

{0} Class name

BCG200004 - Document Successfully Transformed

Event text: {0} - Class name.

{0} A string constructed from the “From” protocol name <protocol name,

protocol version> and the “To” protocol <protocol name, protocol

version>

BCG230000 - Validation Business Process Entrance

Event text: Validation business process ({0}) entrance.

{0} Validation class name

BCG230003 - Validation Business Process Exit

Event text: Validation business process ({0}) exit.

{0} Validation class name

BCG230005 - Validation Successful

Event text: Validation {0} successful.

{0} Validation class name

Warning events

BCG230008 - Validation Warning

Event text: {0}.

{0} Any validation-level warning message

Error events

BCG200005 - Document Transformation Failure

Event text: Document failed transformation due to {0}

{0} Exception message

BCG200009 - Failed to parse the document

Event text: Failed to parse: {0}

{0} A list of parser errors

BCG230001 - Field Validation failed

Event text: Field Validation Error: {0}

{0} A field validation error

BCG230007 - Validation Business Process Factory Error

Event text: {0}

{0} The error message that occurred in the validation step

BCG230010 - Data Validation Error

Event text: Document failed data validation: {0}

{0} A list of errors as a String object

Chapter 5. APIs and example code for workflow handlers and steps 111

Events that can be logged from the protocol packaging

handler

Informational events

BCG240603 - Packaging Business Process Entrance

Event text: Packaging business process ({0}) entrance

{0} Packaging BusinessProcess class name

BCG240604 - Packaging Business Process Exit

Event text: Packaging business process ({0}) exit

{0} BusinessProcess class name

Warning events

BCG240605 - Packaging warning

Event text: Packaging warning - {0}

{0} Packaging warning information

Error events

BCG240606 - Packaging Error

Event text: Packaging Error - {0}

{0} Packaging error information

Security and other events

Error events

BCG240417 - Decryption failure

Event text: {0}

{0} Decryption failure message

BCG240418 - Digest Generation Failure

Event text: {0}

{0} Digest failure message

BCG240419 - Unsupported Signature format (signed receipt protocol is not

pkcs7-signature)

Event text: {0}

{0} Exception message containing the signature format

BCG240420 - Unsupported Signature algorithm (the Signature algorithm is not

MD5 or SHA1)

Event text: {0}

{0} Exception message including signature algorithm

BCG240421 - Unexpected Error

Event text: {0}

{0} Exception message

BCG240424 - Insufficient message security error

Event text: {0}

{0} Details of what is missing; for example, a message indicating that the

received document is encrypted but the partner agreement requires it

to be encrypted and signed

112 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Example handlers and steps implementation outline

The following code and pseudocode provide example implementations for

fixed-workflow handlers and variable-workflow steps.

Protocol processing handler

This section provides an outline of a handler implementation for processing a

fixed-inbound protocol; in this case, a handler to support CSV processing. You

must add protocol-specific code.

public class MyCSVProtocolProcess implements BusinessProcessHandlerInterface {

public boolean applies(BusinessDocumentInterface document) {

// do quick scan of the file contents to determine if it is CSV file

// if it is then set from_protocol = "CSV_PROTOCOL"

if (from_protocol.equals("CSV_PROTOCOL"))

return true;

return false;

}

public BusinessDocumentInterface process(BusinessDocumentInterface document) {

try {

String[] params;

// obtain the file contents in a String

StringTokenizer tokenizer = new StringTokenizer(fileContents, ",");

String fromBusinessId = tokenizer.nextToken();

if (fromBusinessId == null) {

params = new String[1];

params[0] = "From business ID not available.";

EventInfo event = new EventInfo("BCG240614", document, params);

document.addEvent(event);

}

String toBusinessId = tokenizer.nextToken();

String customerId = tokenizer.nextToken();

String customerName = tokenizer.nextToken();

String documentType = tokenizer.nextToken();

String documentVersion = tokenizer.nextToken();

...

// trace-obtained information

...

document.setValue(BCGDocumentConstants.BCG_FRBUSINESSID, fromBusinessId);

document.setValue(BCGDocumentConstants.BCG_TOBUSINESSID, toBusinessId);

document.setValue(BCGDocumentConstants.BCG_FRPROTOCOLCD, "CSV_PROTOCOL ");

document.setValue(BCGDocumentConstants.BCG_FRPROTOCOLVER, "1.0");

document.setValue(BCGDocumentConstants.BCG_FRPROCESSCD, documentType);

document.setValue(DocumentConstant.BCG_FRPROCESSVER, documentVersion);

...

} catch (Exception e) {

params = new String[1];

params[0] = "Error in MyCSVProtocolProcess";

EventInfo event = new EventInfo("BCG240615", document, params, e);

document.addEvent(event);

document.setDocumentState(BCGDocumentConstants.BCG_DOCSTATE_FAILED);

}

return document;

}

}

Chapter 5. APIs and example code for workflow handlers and steps 113

Protocol unpackaging handler

This section provides an outline of a fixed inbound protocol unpackaging handler

implementation; in this case a handler to support custom XML packaging from

WebSphere Commerce Business Edition. You must add protocol-specific code.

public class MyProtocolUnPackagingHandler

implements BusinessProcessHandlerInterface {

public boolean applies(BusinessDocumentInterface document) {

// do quick scan of the file contents, transport headers to determine

// if it is "MY_PACKAGE". if it is then set from_package = "MY_PACKAGE"

if (from_package.equals("MY_PACKAGE"))

return true;

return false;

}

public BusinessDocumentInterface process(BusinessDocumentInterface document) {

// from your packaging, obtain package level routing information

try {

String[] params;

// obtain routing information from your packaging

...

// trace-obtained information

...

// set routing information on the document

document.setValue(BCGDocumentConstants.BCG_PKG_FRBUSINESSID, fromBusinessId);

document.setValue(BCGDocumentConstants.BCG_PKG_TOBUSINESSID, toBusinessId);

document.setValue(BCGDocumentConstants.BCG_PKG_INITBUSINESSID, customerId);

document.setValue(BCGDocumentConstants.BCG_FRPACKAGINGCD, "MY_PACKAGE");

document.setValue(BCGDocumentConstants.BCG_FRPACKAGINGVER, "1.0");

...

} catch (Exception e) {

params = new String[1];

params[0] = "Error in MyProtocolUnPackagingHandler";

EventInfo event = new EventInfo("BCG240610", document, params, e);

document.addEvent(event);

document.setDocumentState(BCGDocumentConstants.BCG_DOCSTATE_FAILED);

}

return document;

}

}

114 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Transformation step

This section provides an outline of a variable workflow step implementation; in

this case, a step to transform a document from one format to another. The sample

includes code and pseudocode for the BusinessProcessFactory and BusinessProcess

implementation. You must add protocol-specific code.

Factory implementation:

public class MyTransformationBusinessProcessFactory implements

 BusinessProcessFactoryInterface {

 public BusinessDocumentInterface getBusinessProcess(Context context,

 Config config, BusinessDocumentInterface document) {

 // Can use any configuration values from config as necessary. These

 // are set via the Community Console.

 MyTransformationBusinessProcess bp = new MyTransformationBusinessProcess();

 // Set any items in this class as specific to the implementation

 // between the factory and the business process class.

 return bp;

 }

 public void returnBusinessProcess(BusinessProcessInterface bp) {

 // if not reusing Business Processes then do nothing.

 }

}

Business process implementation:

public class MyTransformationBusinessProcess implements BusinessProcessInterface {

 public BusinessDocumentInterface process (BusinessDocumentInterface document,

 Context context) {

 String[] params;

 try {

 // trace relevant information. log relevant events.

 ...

 // obtain transformation map

 MapService mapService = BusinessProcessUtil.getMapService();

 byte[] transformationMap = mapService.getTransformationMap (bDoc, context);

 // Get the Business document file.

 File sourceFile = document.getDocument();

 // create a new file to store your transformed document

 File targetFile = document.createFile();

 // read business data from the source. write your logic to transform

 // the source to target. store your target business data into target file

 ...

 // store the transformed target file into business document.

 document.setDocument(targetFile);

 } catch(Exception ex) {

 params = new String[1];

 params[0] = "Error in MyTransformationBusinessProcess: " + ex.getMessage();

 EventInfo event = new EventInfo("BCG_200005", document, params, e);

 document.addEvent(event);

 document.setDocumentState(BCGDocumentConstants.BCG_DOCSTATE_FAILED);

 }

 return document;

Chapter 5. APIs and example code for workflow handlers and steps 115

}

 public boolean reset() {

 /* reset internal variables. */

 ...

 }

}

116 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Chapter 6. Customizing senders

When a WebSphere Partner Gateway receiver component receives a business

document from a trading partner, the sequence of steps is as follows:

1. The document processor component unpackages the business document in

accordance with the business protocol for that document type.

2. The participant connection determines how the document will be processed

and routed.

3. The document is processed and packaged according to the business protocol

requirements of the “To” protocol and the “To” packaging specified by the

participant connection.

4. The Delivery Manager picks up the business document and sends it to the

trading partner. The “To” gateway determined from the participant connection

gives the configuration to use for sending the packaged business document to

the recipient trading partner.

5. The Delivery Manager invokes the Receiver Framework to send the document.

The Receiver Framework manages the senders and sending of the document.

6. The sender performs the actual sending of the packaged business document to

the target trading partner.

The sender is responsible for sending the packaged business documents to the

target trading partner. If the business protocol requires such action, the sender can

synchronously receive the response business document for the document it is

sending. The sequence is as follows:

1. The sender receives the response business document according to the business

protocol semantics.

2. If the sender obtains the response business document, the sender introduces the

document into the system.

3. After the response document is introduced into the system, the WebSphere

Partner Gateway document processor processes the document like any other

business document.

4. The document processor unpackages the response document, using the

participant connection to look up information for the document.

5. The response business document is processed and packaged according to the

business protocol requirements of the “To” protocol and the “To” packaging

given by the participant connection.

6. The Delivery Manager picks up the business document and sends it to the

trading partner.

7. If the response document is in response to a request document that was

synchronously received by the receiver, the Delivery Manager gives this

document to the receiver. In this case, the receiver sends the response to the

waiting trading partner.

If the request document was not synchronously received, the Delivery Manager

processes the response document the same way that it processed the request

document.

The sender handles the final stage in the data flow of WebSphere Partner Gateway.

It picks up documents from the BPE, packages them, and sends them to their

© Copyright IBM Corp. 2004, 2005 117

destinations, based on information in the Community Console-configured gateway.

In the case of a synchronous request, it can also process the response document.

This chapter describes sender customization and the processing done by senders.

You can customize the sending of documents in either of two ways:

v By creating new senders

v By creating new sender handlers

The chapter describes both ways of customizing senders:

v “Overview for creating new senders”

v “Overview for creating new sender handlers” on page 119

An additional section describes development and deployment issues:

v “Development and deployment” on page 120

The API list and example code follows in the next chapter.

Overview for creating new senders

Senders are transport-specific. WebSphere Partner Gateway ships with senders for

FTP/S, JMS, File, SMTP, and HTTP/S transports. To add a new capability to the

WebSphere Partner Gateway system, such as a WAP transport, you can write your

own senders, using an API provided with WebSphere Partner Gateway. You can

use the Community Console to associate these new senders with transports and

integrate them into the processing flow. This section describes the process of

developing a new sender in the following topics:

v “The Sender/Sender Framework flow”

v “Sender architecture” on page 119

The Sender/Sender Framework flow

The nature of the processing flow on the sender side of WebSphere Partner

Gateway is in part dictated by the needs of the particular situation and transport,

but certain basic tasks must always be done. This section describes those tasks at a

high level.

1. Deliver After processing the document, the Business Processing Engine (BPE)

delivers it to the Delivery Manager. The Delivery Manager determines the

configured “To” gateway for the participant connection associated with this

document flow, and then invokes the Sender Framework to send the document

to the target trading partner.

2. Preprocess From the gateway configuration, the Sender Framework determines

the configured preprocessing handlers. These handlers, which have been

configured for this gateway, can be user-defined or supplied by WebSphere

Partner Gateway. The document is passed as input to the first handler, the

returned processed document is fed as input to the next handler, and so on

until one of the handlers accepts it. This handler is invoked to preprocess the

document.

3. Initialize the sender The Sender Framework determines the sender for this

gateway. It initializes the sender by calling its init method. The sender

initializes itself with the gateway configuration.

4. Send the document The Framework calls the sender’s send method. The sender

creates a SenderResult object to store transmission and status information and

sends the message, using the destination specified in the gateway

configuration.

118 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

5. Set synchronous response The GET_SYNC_RESPONSE attribute can be set on

the business document by any of the workflow steps and the handlers. If the

GET_SYNC_RESPONSE attribute on the business document is set to true, the

sender can obtain the response business document synchronously. It stores the

response business document on the file system. The sender constructs

SenderResult and updates it appropriately with the transmission status,

message, and response details.

6. Postprocess From the gateway configuration, the Sender Framework

determines the configured postprocessing handlers. These handlers, which have

been configured for this gateway, can be user-defined or supplied by

WebSphere Partner Gateway. SenderResult is passed as input to the first

handler, the returned SenderResult document is fed as input to the next

handler, and so on until one of the handlers accepts it. This handler is invoked

to postprocess the response.

7. Process the response The Sender Framework processes the response,

appropriately updating the status of the request business document that was

sent. If the sender obtained a business document response, the Sender

Framework introduces the business document into the system. This business

document flows through the system like any other business document.

Sender architecture

Sender development is based on two major parts:

v The sender itself, represented in the API by the SenderInterface interface

v SenderFramework, a class that WebSphere Partner Gateway supplies to manage

the sender

The sender is responsible for actually sending the message to the destination, and

for creating and initially populating the SenderResult object. In the case of a

synchronous request, the sender also writes the response document to a file and

places a reference to the File object in the SenderResult object. The Framework is

responsible for preprocessing and postprocessing documents and for instantiating

and utilizing the sender.

Overview for creating new sender handlers

The SenderFramework can invoke handlers at two stages during the sender

processing flow: preprocessing and postprocessing. These stages are also referred

to as configuration points. Preprocessing refers to what occurs before the request

document is given to the sender to be sent to its destination and postprocessing

occurs after the request document has been sent to its destination and the

SenderResult object has been created to document the request’s status.

WebSphere Partner Gateway ships with a number of predefined handlers, but you

can also develop your own, if you have specific needs not satisfied by the

delivered handlers. If a request document comes from a preferred trading partner,

for example, a custom preprocessing handler can be written to determine the

partner’s status and set the transport headers accordingly. After the handlers are

written and deployed, you need to configure them by using the Community

Console, just as you configure handlers supplied by WebSphere Partner Gateway.

For further information on this process, see the Hub Configuration Guide.

Chapter 6. Customizing senders 119

Development and deployment

The following sections describe development and deployment for both user-created

senders and user-created handlers.

Development environment

The sender and sender handler development API relies on classes and interfaces

from this package: com.ibm.bcg.bcgdk.gateway

This package is part of the bcgsdk.jar file, which is found among the WebSphere

Partner Gateway installable files in the following directories:

v ProductDir\router\lib

v ProductDir\receiver\lib

v ProductDir\console\lib

In all deployed instances, this JAR file must be available in the application server

classpath and not in the module classpath.

For development, the bcgsdk.jar file must be included in the build path of the

project that contains the user exit classes, that is, in the classpath.

Deployment and packaging (senders)

All user-created code needs to be made available to the run-time environment. For

use during runtime, package and deploy user-created code in one of the following

ways:

v Placed in a JAR file in \<receiver or router>\lib\userexits

v Added as classes in \<receiver or router>\lib\userexits\classes

Adding the JAR or class files to the run-time environment makes them available

only if the transport or handler is configured to be used by the run-time

environment. Sender transports and handlers are configured for use like the other

product-provided transports and handlers. To configure them, you must first make

them known to the Community Console. You do this by importing their definitions

into the Community Console by means of an XML descriptor file.

To import a sender transport, click Account Admin > Profiles > Gateways >

Manage Transport Types.

To import a sender transport handler, click Hub Admin > Hub Configuration >

Handlers > Gateway > Import. One of the descriptors is the handler type. Only

defined handler types are allowed and are based on the transport gateway

configuration points. For user-defined transports, the transport descriptor file must

be imported first to provide the handler type.

Descriptor file definition for a sender transport

The sender transport descriptor file uses the bcggateway.xsd schema. Following is

a brief outline for each of the elements in the descriptor file based on the following

example:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Copyright (c) 2004 IBM Corp. - All Rights Reserved.-->

<!-- IBM makes no representations or warranties about the suitability of -->

<!-- this program, either express or implied, including but not limited to -->

<!-- the implied warranties of merchantability, fitness for a particular -->

<!-- purpose, or non-infringement. -->

120 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

<tns:GatewayDefinition

 xmlns:tns="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external"

 xmlns:tns2="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external/types"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external

 bcggateway.xsd http://www.ibm.com/websphere/bcg/2004/v0.1/import/external/types

bcgimport.xsd ">

<tns:GatewayClassName>com.mycompany.MyHTTPGateway</tns:GatewayClassName>

<tns:Description>My companies HTTP Gateway</tns:Description>

<tns:TransportTypeName>MYHTTP</tns:TransportTypeName>

<tns:TransportAttributes>

<tns2:ComponentAttribute>

<tns2:AttributeName>Timeout</tns2:AttributeName>

<tns2:AttributeDefaultValue>300</tns2:AttributeDefaultValue>

</tns2:ComponentAttribute>

</tns:TransportAttributes>

<tns:GatewayConfigurationPoints>

<tns:Postprocess>GATEWAY.POSTPROCESS.MYHTTP</tns:Postprocess>

</tns:GatewayConfigurationPoints>

</tns:GatewayDefinition>

GatewayClassName

The full class name of the sender implementation

Description General description for the transport

TransportTypeName

The name that will appear in the Transport list in the Console

Target List page

TransportAttributes

(optional) Any attributes that this transport can have

ComponentAttribute

An attribute’s name and default values that are used to provide

configuration information to the target at runtime

AttributeName The name of a specific attribute

AttributeDefaultValue

(optional) The attribute’s default value

GatewayConfigurationPoints

(optional) The names of the configuration points that this transport

might have

Preprocess GATEWAY.PREPROCESS.xxx, the name of a preprocessing

configuration point being defined, where xxx is the value of the

TransportTypeName attribute

Postprocess GATEWAY.POSTPROCESS.xxx, the name of a postprocessing

configuration point being defined, where xxx is the value of the

TransportTypeName attribute

 Any handlers defined for this sender transport must match one of these

GatewayConfigurationPoints values.

Descriptor file definition for a sender transport handler

The sender transport handler descriptor file uses the bcghandler.xsd schema. The

following example presents a brief outline for each of the elements in the

descriptor file:

<?xml version="1.0" encoding="UTF-8"?>

<tns:HandlerDefinition

 xmlns:tns="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external"

 xmlns:tns2="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external/types"

Chapter 6. Customizing senders 121

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ibm.com/websphere/bcg/2004/v0.1/import/external

 bcghandler.xsd http://www.ibm.com/websphere/bcg/2004/v0.1/import/external/types

 bcgimport.xsd ">

<tns:HandlerClassName>com.mycompany.SenderHandler</tns:HandlerClassName>

<tns:Description>My company’s handler for my business protocol and multiple

 transports.</tns:Description>

<tns:HandlerTypes>

<tns:HandlerTypeValue>GATEWAY.POSTPROCESS.MYHTTP</tns:HandlerTypeValue>

<tns:HandlerTypeValue>GATEWAY.POSTPROCESS.JMS</tns:HandlerTypeValue>

</tns:HandlerTypes>

<tns:HandlerAttributes>

<tns2:ComponentAttribute>

<tns2:AttributeName>Attribute 1</tns2:AttributeName>

</tns2:ComponentAttribute>

<tns2:ComponentAttribute>

<tns2:AttributeName>Attribute 2</tns2:AttributeName>

<tns2:AttributeDefaultValue>Attribute2DefaultValue</tns2:AttributeDefaultValue>

</tns2:ComponentAttribute>

</tns:HandlerAttributes>

</tns:HandlerDefinition>

HandlerClassName

The full class name of the handler implementation.

Description General description of the handler.

HandlerTypes The handler types with which the handler can be used. For

transports, the handler type corresponds to the

GatewayConfigurationPoint values defined for that transport. To

see a list of the currently defined transport handler types, click

Hub Admin > Hub Configuration > Handlers > Gateway >

HandlerTypes.

HandlerTypeValue

The HandlerType value that corresponds to the

GatewayConfigurationPoints value. A handler can be associated

with more than one transport type.

HandlersAttributes

(optional) Any attributes that this handler can have.

ComponentAttribute

An attribute’s name and default values that are used to provide

configuration information to the handler at runtime.

AttributeName The name of a specific attribute.

AttributeDefaultValue

(optional) The attribute’s default value.

122 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Chapter 7. APIs and example code for senders and sender

handlers

This chapter provides an annotated listing of the APIs provided for developing

custom senders and sender handlers. The following classes and interfaces are

documented:

v “SenderInterface” on page 124

v “SenderResult” on page 126

v “SenderPreProcessHandlerInterface” on page 130

v “SenderPostProcessHandlerInterface” on page 132

v “BCGSenderException” on page 134

v “Events” on page 135

v See also the listings in the Workflow API chapter for more utility, security, and

other classes shared across components.

Brief examples of code and pseudocode are also included:

v “Implementation outlines for an example sender” on page 136

© Copyright IBM Corp. 2004, 2005 123

SenderInterface

Each sender must implement this interface. It has the following methods:

v init

v send

v cancel

Method

init

Method description

Initializes the sender, based on the contents of the deliveryConfig object, which

contains gateway configuration information

Syntax

public void init (Context context, Config deliveryConfig)

 throws BCGSenderException

Parameters

context Flow information associated with this sender

deliveryConfig

Gateway configuration details as specified in the Community

Console

Method

send

Method description

Called by the SenderFramework. It sends the document to the destination using

the information specified in the deliveryConfig object. It creates and updates the

SenderResult object with delivery status, WebSphere Partner Gateway transport

headers, and, in the case of a synchronous flow, the response document. If delivery

fails, the sender may try transport retries.

Syntax

public SenderResult send(BusinessDocumentInterface document)

Parameters

document The business document being sent

Method

cancel

Method description

Called by the SenderFramework. Stops message delivery and any transport retries.

Syntax

public SenderResult cancel()

124 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Parameters

None

Chapter 7. APIs and example code for senders and sender handlers 125

SenderResult

The SenderResult object is created by the sender, based on this provided class. It

holds meta-information on the status of the request business document, and, in the

case of a synchronous flow, a reference to the File object containing the response

document. It contains the following methods:

v addEvent

v getEvents

v setSendStatus

v getSendStatus

v setResponseDocument

v getResponseDocument

v setTransportStatusCode

v getTransportStatusCode

v setTransportHeaders

v getTransportHeaders

v setAttribute

v getAttribute

v get Attributes

Method

addEvent

Method description

Adds an event to the SenderResult object

Syntax

public void addEvent(EventInfo eventInf)

Parameters

EventInfo A specialized class from the com.ibm.bcg.bcgdk.common package,

used to hold event information throughout the WebSphere Partner

Gateway system. The addEvent method implementation only

accepts EventInfo as a single parameter, not as an array. EventInfo

is documented in the Workflow API chapter under “From

com.ibm.bcg.bcgdk.common” on page 88.

Method

getEvents

Method description

Retrieves the events set in this object

Syntax

public EventInfo[] getEvents()

Parameters

None

126 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Method

setSendStatus

Method description

Sets the delivery status. which can be success or failure based on transmission

status.

Syntax

public void setSendStatus(String status)

Parameters

status The appropriate status

Method

getSendStatus

Method description

Retrieves the delivery status

Syntax

public String getSendStatus()

Parameters

None

Method

setResponseDocument

Method description

Sets the file that holds the response document.

Syntax

public void setResponseDocument(File responseFile)

Parameters

responseFile The File object where the response document is stored

Method

getResponseDocument

Method description

Retrieves the File object which holds the response document

Syntax

public File getResponseDocument()

Chapter 7. APIs and example code for senders and sender handlers 127

Parameters

None

Method

setTransportStatusCode

Method description

Sets the transport return status code (like HTTP 200 OK)

Syntax

public void setTransportStatusCode(Object transportStatusCode)

Parameters

transportStatusCode

The status code

Method

getTransportStatusCode

Method description

Retrieves the transport return status code

Syntax

public Object getTransportStatusCode()

Parameters

None

Method

setTransportHeaders

Method description

Sets these headers upon receiving a synchronous response.

Syntax

public void setTransportHeaders(HashMap transportHeaders)

Parameters

transportHeaders

The HashMap that contains the transport headers

Method

getTransportHeaders

Method description

Retrieves the transport headers set by the sender

128 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Syntax

public HashMap getTransportHeaders()

Parameters

None

Method

setAttribute

Method description

Sets attributes specific to WebSphere Partner Gateway. These attributes contain

headers specific to senders. They are used by the Framework as input into the

metadata file: delivery duration, transport status description, and so forth.

Syntax

public void setAttribute(String name, Object obj)

Parameters

name The name of the object that stores the attributes

obj The object

Method

getAttribute

Method description

Retrieves the attributes specific to WebSphere Partner Gateway

Syntax

public Object getAttribute()

Parameters

None

Method

getAttributes

Method description

Retrieves HashMap of all attributes set

Syntax

 getAttributes()

Parameters

None

Chapter 7. APIs and example code for senders and sender handlers 129

SenderPreProcessHandlerInterface

This interface describes the methods that all preprocessing handlers must

implement:

v init

v applies

v process

Method

init

Method description

Initializes the handler by reading the configuration properties in the Config object

Syntax

public void init(Context context, Config handlerConfig)

 throws BCGSenderException

Parameters

context The name of an object that contains run-time context information

for this interface

handlerConfig

The object that stores configuration information

Method

applies

Method description

Determines whether the handler can process the business document

Syntax

public boolean applies(BusinessDocumentInterface doc)

 throws BCGSenderException

Parameters

doc The business document that is being processed

Method

process

Method description

Called by SenderFramework to preprocess the request. This method updates the

BusinessDocument class.

Syntax

public BusinessDocumentInterface process(BusinessDocumentInterface doc)

 throws BCGSenderException

130 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Parameters

doc The business document that is being processed

Chapter 7. APIs and example code for senders and sender handlers 131

SenderPostProcessHandlerInterface

This interface describes the methods that all postprocessing handlers must

implement:

v init

v applies

v process

Method

init

Method description

Initializes the handler by reading the configuration properties in the Config object

Syntax

public void init(Context context, Config handlerConfig)

 throws BCGSenderException

Parameters

context The name of an object that contains run-time context information

for this interface

handlerConfig

The object that stores configuration information

Method

applies

Method description

Determines whether the handler can process the business document

Syntax

public boolean applies(BusinessDocumentInterface doc)

 throws BCGRSenderException

Parameters

doc The business document that is being processed

Method

process

Method description

SenderFramework calls this method to process the delivery response and updates

the SenderResult object with processing information.

Syntax

public SenderResult process(SenderResult response,

 BusinessDocumentInterface doc)

 throws BCGReceiverException

132 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Parameters

response The SenderResult object to be updated

doc The business document that is being processed

Chapter 7. APIs and example code for senders and sender handlers 133

BCGSenderException

If errors occur, sender APIs generate this exception.

134 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Events

Following is a list of events available for the sender execution flow:

Informational events

BCG240616 - Sender Entrance

Event text: Sender ({0}) entrance

{0} Sender class name

BCG240617 - Sender Exit

Event text: Sender({0}) exit

{0} Sender class name

BCG250007 - Document Delivered

Event text: Document was delivered successfully, response: {0}

{0} Target response status

Warning events

BCG240618 - Sender warning

Event text: Sender warning -{0}

{0} Sender warning information

Error events

BCG250008 - Document Delivery Failed

Event text: Document delivery to participant gateway failed: {0}

{0} Response status and error message

BCG250011 - First Delivery Attempt Failed

Event text: First delivery attempt failed for message {0} due to {1}, on

gateway {2}.

{0} Message ID

{1} Failure reason

{2} Target name

BCG250012 - Delivery Retry Failed

Event text: {0} retry {1} for message {2} failed due to {3}, on gateway {4}.

{0} Transport or gateway

{1} Retry number

{2} Message UUID

{3} Failure reason

{4} Target name

Chapter 7. APIs and example code for senders and sender handlers 135

Implementation outlines for an example sender

The following code and pseudocode outline example implementations for senders.

Example sender

This section contains an outline of a sender handler implementation. You should

add protocol-specific code.

public class CustomJMSSender implements SenderInterface {

SenderResult result = new SenderResult();

Config deliveryConfig;

public CustomJMSSender() {

...

}

public void init(Context context, Config deliveryConfig)

throws BCGSenderException {

// initialization code

// deliveryConfig gives the gateway configuration

this.deiveryConfig = deliveryConfig;

// initialize sender using gateway configuration.

...

}

public SenderResult send(BusinessDocumentInterface document) {

try {

// Obtain configuration information from gateway configuration.

// from the configuration and document, determine destination details

// for sending like queue names, JMS connection details, retries,

// business protocol specific transport headers and so forth.

...

// get the document to send

File documentFile = document.getDocument();

// read the file contents.

// establish transport connection. construct transport message.

// send the transport message. perform retries if error.

...

// check if response is desired

String syncResp = document.getAttribute(

BCGDocumentConstants.BCG_GET_SYNC_RESPONSE);

if (syncResp.compareToIgnoreCase("true")){

// read the response from the response queue

...

// create response file

File responseFile = document.createFile();

// store the response on to file system

...

// set the response in the result

result.setResponse(responseFile);

}

// close transport connection

...

// set the send status

136 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

result.setSendStatus(BCGDocumentConstants.BCG_SENT_STATUS_SUCCESS);

} catch(Exception ex) {

//create an event and add to the sender result

String[] params = new String[1];

params[0] = "CustomJMSSender.send failure: " + ex.getMessage();

EventInfo eventInfo = EventInfo("BCG250008", document, params);

result.addEvent(eventInfo);

result.setSendStatus(BCGDocumentConstants.BCG_SENT_STATUS_FAILED);

}

return result;

}

public SenderResult cancel(){

// if currently sending a document, cancel the sending.

// update the send status appropriately.

...

return result;

}

}

Chapter 7. APIs and example code for senders and sender handlers 137

138 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Chapter 8. End-to-end flow: an overview for using user exits

This chapter describes end-to-end flow of the business document through

WebSphere Partner Gateway when user exits are involved. At a high level, a

WebSphere Partner Gateway receiver receives a document from the sending

trading partner. The receiver introduces the document into the document processor.

The BPE component of the document processor performs business-protocol-specific

processing on this business document by executing the workflows and their steps.

BPE packages the business document and delivers it to the Delivery Manager

component, which invokes the sender to send the business document to the

receiving trading partner.

The user exit capabilities of WebSphere Partner Gateway let you develop business

protocols. Each business protocol can have its unique requirements:

v The business protocol can involve synchronous and asynchronous document

flows. For example, RNIF supports synchronous and asynchronous document

exchange.

v Each business protocol can involve a sequence of one or more business

document flows that can be related or associated to each other. For example, in

cXML a given request document can have multiple asynchronous responses.

Synchronous and asynchronous flows

WebSphere Partner Gateway supports synchronous and asynchronous flows with

sending and receiving trading partners. Synchronous interaction involves response

business documents. This means that if a sending trading partner invokes

WebSphere Partner Gateway synchronously, it expects a business-protocol-level

synchronous response. Similarly, if WebSphere Partner Gateway invokes a

receiving trading partner synchronously, it expects a synchronous

business-protocol-level response. Note that synchronous and asynchronous

interactions are dictated by the business protocol requirements and trading partner

agreements. Synchronous interactions depend on the nature of the transports used

as well. For example, in the case of HTTP, send the response in the same HTTP

connection.

This section explains how you can use the user exit capabilities of WebSphere

Partner Gateway to develop synchronous and asynchronous flows. The following

table lists the various types of document flows that can be supported between a

sending trading partner, WebSphere Partner Gateway, and a receiving trading

partner.

© Copyright IBM Corp. 2004, 2005 139

Table 1. Types of document flows

Sending

trading partner WebSphere Partner Gateway

Receiving

trading partner

A. Sends a

business

document

(asynchronous)

1. WebSphere Partner Gateway receiver receives the

business document. SyncCheck handler returns false

for this business document. Receiver introduces the

document into document processor. (Receiver and

receiver handlers).

2. WebSphere Partner Gateway unpackages the

document and parses the document to determine

participant connection. (Un-packaging handler,

protocol processing handler). This also determines

sending and receiving trading partners for this

document.

3. WebSphere Partner Gateway performs business

protocol specific processing on the request business

document. (Actions and their steps).

4. WebSphere Partner Gateway packages the business

document in the packaging determined by the

participant connection, as expected by receiving

trading partner. (Protocol Packaging handler).

5. WebSphere Partner Gateway sends the document to

receiving trading partner asynchronously. (Sender

and handlers).

Receives the

business

document

(asynchronous)

B. Sends a

business

document

(asynchronous)

The processing steps are the same as in A above.

However, the protocol packaging handler sets the

BCGDocumentConstants.BCG_GET_SYNC_RESPONSE

attribute on the business document, which causes the

sender to send the request document synchronously to

the receiving trading partner. The sender waits to

receive the response business document.

The response business document received by the sender

is introduced into the Document Manager by the

Delivery Manager. This document is processed like any

other document.

140 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Table 1. Types of document flows (continued)

Sending

trading partner WebSphere Partner Gateway

Receiving

trading partner

C. Sends the

request

business

document

synchronously

to WebSphere

Partner

Gateway.

Synchronously

receives

response

business

document from

WebSphere

Partner

Gateway.

The processing steps are the same as in A above.

However, the protocol packaging handler sets the

BCGDocumentConstants.BCG_GET_SYNC_RESPONSE

attribute on the business document, making the sender

send the request document synchronously to the

receiving trading partner. The sender waits to receive

the response business document.

Note the following points in this scenario:

v The sending trading partner of the response

document is the trading partner who received the

request business document.

v The receiving trading partner of response document

is the trading partner who sent the request business

document.

After the sender receives the response business

document, it is processed as follows:

1. SenderFramework introduces the response business

document into the Document Manager.

2. The unpackaging handler unpackages the document,

and the protocol processing handler parses the

response document to determine the participant

connection.

3. WebSphere Partner Gateway performs

business-protocol-specific processing (actions and

their steps) on the response business document.

4. The protocol packaging handler packages the

response business document in the packaging as

expected by the receiving trading partner and

determined by the participant connection for this

document.

5. Since the request document was received

synchronously by the WebSphere Partner Gateway

receiver, the response is sent by the receiver (and

postprocessing handler) to the trading partner.

Receives the

business

document

(synchronous).

Responds

synchronously

with business

document.

Note: If an error occurs during the flow of either the request or the response

business document, any of the user exits can set the

BCGDocumentConstants.BCG_RESPONSE_STATUS attribute on the business

document object. Set the value of this attribute with the error status to be sent

synchronously to the trading partner who sent the request document.

Associated document

Each business protocol can involve a sequence of one or more business document

flows that can be related or associated to each other. For example, in cXML a given

request document can have multiple asynchronous responses. WebSphere Partner

Gateway provides the capability to view associated documents. The document

viewer for WebSphere Partner Gateway displays all the business documents that

flow through the system. If a particular document has associated documents, they

are displayed in the associated document section of the document viewer. A

document can have one or more associated documents.

Chapter 8. End-to-end flow: an overview for using user exits 141

Note: A synchronous response for a given document is considered an associated

document. Synchronous responses are also displayed in the associated document

section of the document viewer.

If the business protocol has the concept of associated documents, you can use user

exits to provide information to WebSphere Partner Gateway so that for a given

business document, the WebSphere Partner Gateway document viewer can display

associated documents in the associated document section. The user exits need to

have their own mechanism to determine whether the business document which

they are currently processing is associated with any other business document flow.

If it is, a user exit can set one of the following attributes on the business document:

v BCGDocumentConstants.BCG_REPLY_TO_DOC_ID: Set this attribute to the

document ID of the business document associated with this document flow.

v BCGDocumentConstants.BCG_REPLY_TO_DOC_UUID: Set this attribute to the

UUID (parent UUID) of the business document associated with this document

flow.

These attributes can be set in handlers of the workflow steps or in the steps of the

actions. After executing the flow for this business document, WebSphere Partner

Gateway will see whether any of these attributes are set. If they are, WebSphere

Partner Gateway updates WebSphere Partner Gateway activity logs so that the

document viewer can display the association correctly, as shown in the following

figure:

Figure 15. Document Details window displaying associated documents

142 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Chapter 9. Troubleshooting user exits

This chapter highlights some common situations in setting up and using user exits

where troubleshooting might be necessary.

Setting up logging

The trace method of the BCGUtil class in the com.ibm.bcg.bcgdk.common package is

used to set up logging of internal activity for the entire document flow. Full

documentation of the method is located in “BCGUtil” on page 99. The following is

an example code snippet that sets up logging in an XML translation step in

variable workflow:

BCGUtil bcgUtil = new BCGUtil ();

:

:

:

 bcgUtil.trace(BCGUtil.BCG_TRACE_SEVERITY_DEBUG,

 "CustomXMLTranslation",

 "The Schema is present",

 null)

Receiver logs can be found at:

ProductDir/was/profiles/bcgreceiver/logs/bcg_receiver.log

Fixed and variable workflow and sender logs (grouped together as part of the

Router component) can be found at:

ProductDir/was/profiles/bcgdocmgr/logs/bcg_router.log

By default, debug logging is not enabled. To turn it on, a property in the log4j

properties file must be set. The properties file for receivers can be found at:

ProductDir/receiver/lib/config/receiver-was.logging.properties

The properties files for router components can be found at:

ProductDir/router/lib/config/router-was.logging.properties

In both cases, the property that needs to be set is the log4j.rootCategory property.

By default this is set at error, RollingFile. This value needs to changed to debug,

RollingFile. For the change to be effective, you must restart the server.

Common sources of error

Following are four general types of errors commonly encountered in setting up

user exits, and the steps to take to correct them.

File location errors

It is crucial that the WebSphere Partner Gateway system be able to find the user

exit classes. A Class Not Found exception in either log can occur if:

v The user exit class files are not loaded in the classpath

Or
v The user exit class files are not present as specified in the package hierarchy

designated in the XML file that you must upload through the Community

Console.

© Copyright IBM Corp. 2004, 2005 143

Additional file location problems can arise if, in a multi-box, split topology setup,

the appropriate user exits are not deployed with all instances of receivers or

routers, as necessary.

Resolution Make sure that the class files are properly loaded in the classpath and

that the exact name and location of the user exit class files match the details

specified during the upload of the XML descriptor files through the Community

Console. Make sure all appropriate files exist in all appropriate places.

Handler failure errors

Failure of a preprocessing handler in the receiver component or of either type of

handler in the sender component, or failure in an unpackaging, protocol

processing, or packaging handler in the router component will produce an error in

the appropriate logs and in the Community Console. Turning on Debug mode will

produce a more detailed error report. The error will result in the message or

business document not being processed further, and, in the case of an HTTP

receiver preprocessing failure, a 500 response code being sent back to the initiating

host.

Resolution Correct the problem in the user exit code, reload the class files, and

restart the component

Processing mode errors

When a document protocol supports synchronous processing, the defined target

must have a SyncCheck handler specified. If the protocol does not support

synchronous processing, a postprocess handler must not be specified.

Resolution Make sure that the user exits you specify are appropriate for the

defined processing mode

File update errors

You can update user exit information in the system in either of two ways:

v Update the class files (or JARs) themselves

v Update the XML descriptor files

If you update the class files, restart the appropriate components to make sure that

the changes are effective. Uploading new XML descriptor files for existing user

exits (assuming that the files have the same name and designate the same class)

immediately changes whatever attributes and attribute values that are set. In this

case, any documents that are processed after the new descriptor files are uploaded

will be processed as described in those new files.

Resolution Updating class files requires a component restart to be effective;

updating XML descriptor files takes effect immediately

144 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Part 2. Customizing WebSphere Partner Gateway:

administrative APIs and external event delivery

WebSphere Partner Gateway allows a hub administrator to use a newly established

application program interface (API) to accomplish certain common administrative

tasks programmatically, using a simple XML based HTTP POST mechanism.

WebSphere Partner Gateway allows events, both document-related and general

system-based, to be delivered to an external JMS queue as well as sent to the

internal WebSphere Partner Gateway event store.

The following chapters document these features.

© Copyright IBM Corp. 2004, 2005 145

146 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Chapter 10. Using the administrative API

This chapter describes the administrative APIs, which allow certain Hub

administrative functions to be executed programmatically. It is divided into two

sections:

v “Understanding the administrative API”

v “The administrative API” on page 148

Understanding the administrative API

The administrative API for WebSphere Partner Gateway allows certain common

administrative functions to be carried out without using the Community Console

GUI.

Note: The Community Console must be running for API calls to be processed, and

the API functionality must have been turned on in the GUI before the calls are

made. For more information using the GUI to turn the APIs on, see the WebSphere

Partner Gateway Hub Configuration Guide

A method is called by sending an HTTP POST request with an appropriate XML

document as the body. This request is directed to a servlet running on the console

instance, at the relative URL of /console/bcgpublicapi.

In general, the XML request document includes the following data:

v User information (this is the same information used when logging in the

Community Console and must be provided with every request, as there is no

notion of session management)

– User name

– Password

– Partner login name
v API information

– Method name, usually an action given as a concatenated noun and verb, for

example, ParticipantCreate

– Parameters, usually an item, for example, Partner

The following eleven methods are supported:

v “ParticipantCreate” on page 149

v “ParticipantUpdate” on page 151

v “ParticipantSearchByName” on page 153

v “ParticipantAddBusinessId” on page 154

v “ParticipantRemoveBusinessId” on page 155

v “ContactCreate” on page 156

v “ListTargets” on page 163

v “ListParticipantCapabilities” on page 160

v “ListParticipantConnections” on page 162

v “ListTargets” on page 163

v “ListEventDefinitions” on page 164

© Copyright IBM Corp. 2004, 2005 147

The system processes the request and returns the response (or exception) XML

synchronously, that is, on the same HTTP connection. Each method has a

corresponding response. Using an API produces the same internal process that

using the Community Console does. If a particular operation that is executed in

the Community Console generates events, that operation executed in the API

generates the same events.

“The administrative API” section that follows describes these APIs in detail. More

detail can be gathered by looking in the $(WBICINSTALLROOT)/publicapi directory

at the two provided schemas:

v bcgpublicapi_v0.1.xsd The API signatures

v bcgpublicapi_vocabulary_v0.1.xsd The vocabulary from which the schema is

constructed

In addition to the actual response, the servlet itself also provides standard HTTP

status codes, as specified in Table 2.

 Table 2. Servlet status codes

HTTP status code Situation in which this code is returned

500 v Request XML cannot be parsed.

v There is an error in processing the request.

v There is an internal error.

405 v An HTTP request other than POST has been received. The

servlet supports only the POST method.

200 v The API has been successfully executed.

501 v An unimplemented request has been received.

v The administrative API has not been turned on.

Security is provided by the use of SSL and, optionally, Client Authorization. Data,

but not the elements of the API itself, can be localized, based on the locale, as long

as character encoding is set to UTF-8, which is the standard expected encoding.

The administrative API

This section outlines the structure of the eleven XML method calls and their

responses, and the exception XML that is used to report errors. The general

structure of the XML is as follows:

v The root element is always a BCGPublicAPI element

v The first child of the root in a request document is the <MethodName> element.

– The first child of the <MethodName> element is the UserInfo element. This

element contains your (the user making the request) Community Console

login information. You must have permissions that are adequate for the task

being attempted.

– The second child of the <MethodName> element represents any input

parameters.
v The first child of the root in a response document is the <MethodName>Response

element. This element represents results of the execution of the request API.

v The first child of the root in an exception document is a BCGPublicAPIException

element.

148 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

ParticipantCreate

Adds a participant to the hub community. Participants are the companies that do

business with the community manager through the hub community. Once

connected, participants can exchange electronic business documents with the

community manager.

Root element

BCGPublicAPI

First child element

ParticipantCreate

First child of ParticipantCreate

UserInfo element. This is the same information used to log in the

Community Console. It contains three elements:

v UserName The Community Console login user name

v Password The Community Console login password

v ParticipantLogin The participant (company) login name

Second child of ParticipantCreate

ParticipantCreateInfo element. Contains seven elements:

v ParticipantLogin The participant’s login name

v ParticipantName The name the participant wants displayed to the hub

community

v ParticipantType Defines the participant’s function in the community

Available values are Community Operator, Community Manager, and

Community Participant

v ParticipantStatus Enabled or Disabled. If disabled, the participant is

not visible in search criteria and drop-down lists. The default value is

Enabled

v CompanyURL The URL of the participant’s Web site. This is an optional

element.

v ClassificationId Identifies the participant’s role. Available values are

Supplier, Contract Manufacturer, Distributor, Logistic Provider, and

Other. This is an optional element.

v Password The password this participant will use to access the system

ParticipantCreateResponse

Response document for the ParticipantCreate method.

Root element

BCGPublicAPI

First child element

ParticipantCreateResponse

First child of ParticipantCreateResponse

ParticipantCreateResponseInfo element. Contains seven elements:

v ParticipantId An internal numeric ID that identifies the participant to

the system

v ParticipantLogin The participant’s login name

v ParticipantName The name the participant wants displayed to the hub

community

Chapter 10. Using the administrative API 149

v ParticipantType Defines the participant’s function in the community

Available values are Community Operator, Community Manager, and

Community Participant

v ParticipantStatus Enabled and Disabled. If disabled, the participant is

not visible in search criteria and drop-down lists

v CompanyURL The URL of the participant’s Web site. This is an optional

element.

v ClassificationId Identifies the participant’s role. Available values are

Supplier, Contract Manufacturer, Distributor, Logistic Provider, and

Other. This is an optional element.

150 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

ParticipantUpdate

Updates the participant’s profile in the system.

Root element

BCGPublicAPI

First child element

ParticipantUpdate

First child of ParticipantUpdate

UserInfo element. This is the same information used to log in the

Community Console. It contains three elements:

v UserName The Community Console login user name

v Password The Community Console login password

v ParticipantLogin The participant (company) login name

Second child of ParticipantUpdate

ParticipantUpdateInfo element. Contains 6 elements:

v ParticipantId An internal numeric ID that identifies the participant to

the system

v ParticipantName The name the participant wants displayed to the hub

community

v ParticipantType Defines the participant’s function in the community.

Available values are Community Operator, Community Manager, and

Community Participant.

v ParticipantStatus Available values are Enabled and Disabled. If

disabled, the participant is not visible in search criteria and drop-down

lists.

v CompanyURL The URL of the participant’s Web site. This is an optional

element

v ClassificationId Identifies the participant’s role. Available values are

Supplier, Contract Manufacturer, Distributor, Logistic Provider, and

Other. This is an optional element.

ParticipantUpdateResponse

Response document for the ParticipantUpdate method.

Root element

BCGPublicAPI

First child element

ParticipantUpdateResponse

First child of ParticipantUpdateResponse

ParticipantUpdateResponseInfo element. Contains seven elements:

v ParticipantId An internal numeric ID that identifies the participant to

the system

v ParticipantLogin The participant’s login name

v ParticipantName The name the participant wants displayed to the hub

community

v ParticipantType Defines the participant’s function in the community.

Available values are Community Operator, Community Manager, and

Community Participant.

Chapter 10. Using the administrative API 151

v ParticipantStatus Available values are Enabled and Disabled. If

disabled, the participant is not visible in search criteria and drop-down

lists.

v CompanyURL The URL of the participant’s Web site. This is an optional

element.

v ClassificationId Identifies the participant’s role. Available values are

Supplier, Contract Manufacturer, Distributor, Logistic Provider, and

Other. This is an optional element.

152 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

ParticipantSearchByName

Searches for participant profiles by display name.

Root element

BCGPublicAPI

First child element

ParticipantSearchByName

First child of ParticipantSearchByName

UserInfo element. This is the same information used to log in the

Community Console. It contains three elements:

v UserName The Community Console login user name

v Password The Community Console login password

v ParticipantLogin The participant (company) login name

Second child of ParticipantSearchByName

ParticipantName element The name the participant wants displayed to the

hub community

ParticipantSearchByNameResponse

Response document for the ParticipantSearchByName method.

Root element

BCGPublicAPI

First child element

ParticipantSearchByNameResponse

First child element of ParticipantSearchByNameResponse

Participants element

Zero or more children of Participants

ParticipantInfo. Contains five elements:

v ParticipantId An internal numeric ID that identifies the participant to

the system

v ParticipantLogin The participant’s login name.

v ParticipantName The name the participant wants displayed to the hub

community

v ParticipantType Defines the participant’s function in the community.

Available values are Community Operator, Community Manager, and

Community Participant.

v ParticipantStatus Available values are Enabled and Disabled. If

disabled, the participant is not visible in search criteria and drop-down

lists.

Chapter 10. Using the administrative API 153

ParticipantAddBusinessId

Adds a business ID to the participant’s profile.

Root element

BCGPublicAPI

First child element

ParticipantAddBusinessId

First child of ParticipantAddBusinessId

UserInfo element. This is the same information used to log in the

Community Console. It contains three elements:

v UserName The Community Console login user name

v Password The Community Console login password

v ParticipantLogin The participant (company) login name

Second child of ParticipantAddBusinessId

ParticipantAddBusinessIdInfo element. Contains three elements:

v ParticipantId An internal numeric ID that identifies the participant to

the system

v BusinessId The DUNS, DUNS+4, or Freeform number that the system

uses for routing. DUNS numbers must equal nine digits, and DUNS+4

must equal 13 digits. Freeform ID numbers accept up to 60 alphabetic,

numeric, and special characters.

v BusinessIdType The type of ID being used. Available values are DUNS,

DUNS+4, and Freeform

ParticipantAddBusinessIdResponse

Response document for the ParticipantAddBusinessId method.

Root element

BCGPublicAPI

First child element

ParticipantAddBuinessIdResponse

First child element of ParticipantAddBuinessIdResponse

ParticipantAddBuinessIdResponseInfo Contains four elements

v BusinessIdentifierId An internal numeric ID that identifies the

business ID to the system

v ParticipantId An internal numeric ID that identifies the participant to

the system

v BusinessId The DUNS, DUNS+4, or Freeform number that the system

uses for routing. DUNS numbers must equal nine digits, and DUNS+4

must equal 13 digits. Freeform ID numbers accept up to 60 alphabetic,

numeric, and special characters.

v BusinessIdType The type of ID being used. Available values are DUNS,

DUNS+4, and Freeform

154 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

ParticipantRemoveBusinessId

Removes a business ID from the participant’s profile.

Root element

BCGPublicAPI

First child element

ParticipantRemoveBusinessId

First child of ParticipantRemoveBusinessId

UserInfo element. This is the same information used to log in the

Community Console. It contains three elements:

v UserName The Community Console login user name

v Password The Community Console login password

v ParticipantLogin The participant (company) login name

Second child of ParticipantRemoveBusinessId

BusinessIdentifierId An internal numeric ID that identifies the business

ID to the system

ParticipantRemoveBusinessIdResponse

The response document for the ParticipantRemoveBusinessId method.

Root element

BCGPublicAPI

First child element

ParticipantRemoveBuinessIdResponse

Chapter 10. Using the administrative API 155

ContactCreate

Creates a contact. Contacts are key personnel who receive notification when the

system generates alerts as a result of specified events in the system.

Root element

BCGPublicAPI

First child element

ContactCreate

First child of ContactCreate

UserInfo element. This is the same information used to log in the

Community Console. It contains three elements:

v UserName The Community Console login user name

v Password The Community Console login password

v ParticipantLogin The participant (company) login name

Second child of ContactCreate

ContactCreateInfo Contains thirteen elements:

v ParticipantId An internal numeric ID that identifies the participant to

the system

v GivenName The contact’s given name

v FamilyName The contact’s family name

v Address The contact’s address. This is an optional element.

v ContactType The contact’s role. This is an optional element. Available

values are:

– Project Manager

– Business Lead

– Technical Lead

– B2B Lead

– Data Content Lead

– Backend Application Lead

– Network Firewall Lead

v Email The contact’s e-mail address. This is an optional element.

v Telephone The contact’s telephone number. This is an optional element.

v FaxNumber The contact’s fax number. This is an optional element.

v LanguageLocale The contact’s language locale. This is an optional

element.

v FormatLocale Additional locale information for the contact. This is an

optional element.

v TimeZone The contact’s time zone. This is an optional element.

v AlertStatus Indicates whether the contact will receive alerts. Available

values are Enabled and Disabled. The default is Disabled.

v Visibility Indicates the visibility. Available values are Local (restricted

to the organization) and Global (the organization and the community

manager). The default is Local.

ContactCreateResponse

The response document for the ContactCreate method.

156 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Root element

BCGPublicAPI

First child element

ContactCreateResponse

First child of ContactCreateResponse

ContactCreateResponseInfo element. Contains fourteen elements:

v ContactId An internal numeric ID that identifies the contact to the

system

v ParticipantId An internal numeric ID that identifies the participant to

the system

v GivenName The contact’s given name

v FamilyName The contact’s family name

v Address The contact’s address. This is an optional element.

v ContactType: The contact’s role. This is an optional element. Available

values are:

– Project Manager

– Business Lead

– Technical Lead

– B2B Lead

– Data Content Lead

– Backend Application Lead

– Network Firewall Lead

v Email The contact’s e-mail address. This is an optional element.

v Telephone The contact’s telephone number. This is an optional element.

v FaxNumber The contact’s fax number. This is an optional element.

v LanguageLocale The contact’s language locale. This is an optional

element.

v FormatLocale Additional locale information for the contact. This is an

optional element.

v TimeZone The contact’s time zone. This is an optional element.

v AlertStatus Indicates whether the contact will receive alerts. Available

values are Enabled and Disabled. The default is Disabled.

v Visibility: Indicates the visibility. Available values are Local (restricted

to the organization) and Global (the organization and the community

manager). The default is Local.

Chapter 10. Using the administrative API 157

ContactUpdate

Updates contact information.

Root element

BCGPublicAPI

First child element

ContactUpdate

First child of ContactUpdate

UserInfo element. This is the same information used to log in the

Community Console. It contains three elements:

v UserName The Community Console login user name

v Password The Community Console login password

v ParticipantLogin The participant (company) login name

Second child of ContactUpdate

ContactUpdateInfo element. Contains thirteen elements:

v ContactId An internal numeric ID that identifies the contact to the

system

v GivenName The contact’s given name

v FamilyName The contact’s family name

v Address The contact’s address. This is an optional element.

v ContactType The contact’s role. This is an optional element. Available

values are:

– Project Manager

– Business Lead

– Technical Lead

– B2B Lead

– Data Content Lead

– Backend Application Lead

– Network Firewall Lead

v Email The contact’s e-mail address. This is an optional element.

v Telephone The contact’s telephone number. This is an optional element.

v FaxNumber The contact’s fax number. This is an optional element.

v LanguageLocale The contact’s language locale. This is an optional

element.

v FormatLocale Additional locale information for the contact. This is an

optional element.

v TimeZone The contact’s time zone. This is an optional element.

v AlertStatus Indicates whether the contact will receive alerts. Available

values are Enabled and Disabled. The default is Disabled.

v Visibility Indicates the visibility. Available values are Local (restricted

to the organization) and Global (the organization and the community

manager). The default is Local.

ContactUpdateResponse

The response document for the ContactUpdate method.

Root element

BCGPublicAPI

158 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

First child element

ContactUpdateResponse

First child of ContactUpdateResponse

ContactUpdateResponseInfo element. Contains fourteen elements:

v ContactId An internal numeric ID that identifies the contact to the

system

v ParticipantId An internal numeric ID that identifies the participant to

the system

v GivenName The contact’s given name

v FamilyName The contact’s family name

v Address The contact’s address. This is an optional element.

v ContactType The contact’s role. This is an optional element. Available

values are:

– Project Manager

– Business Lead

– Technical Lead

– B2B Lead

– Data Content Lead

– Backend Application Lead

– Network Firewall Lead

v Email The contact’s e-mail address. This is an optional element.

v Telephone The contact’s telephone number. This is an optional element.

v FaxNumber The contact’s fax number. This is an optional element.

v LanguageLocale The contact’s language locale. This is an optional

element.

v FormatLocale Additional locale information for the contact. This is an

optional element.

v TimeZone The contact’s time zone. This is an optional element.

v AlertStatus Indicates whether the contact will receive alerts. Available

values are Enabled and Disabled. The default is Disabled.

v Visibility Indicates the visibility. Available values are Local (restricted

to the organization) and Global (the organization and the community

manager). The default is Local.

Chapter 10. Using the administrative API 159

ListParticipantCapabilities

Queries a participant’s functional capabilities

Root element

BCGPublicAPI

First child element

ListParticipantCapabilities

First child of ListParticipantCapabilities

UserInfo element. This is the same information used to log in the

Community Console. It contains three elements:

v UserName The Community Console login user name

v Password The Community Console login password

v ParticipantLogin The participant (company) login name

Second child of ListParticipantCapabilities

ParticipantId An internal numeric ID that identifies the participant to the

system

ListParticipantCapabilitiesResponse

The response document for the ListParticipantCapabilities method

Root element

BCGPublicAPI

First child element

ListParticipantCapabilitiesResponse

First child of ListParticipantCapabilitiesResponse

ParticipantCapabilities element.

Zero or more children of ParticipantCapabilities

ParticipantCapability element. Contains eight elements.

v CapabilityId An internal numeric ID that identifies this capability to the

system

v ParticipantId An internal numeric ID that identifies this participant to

the system

v ParticipantName The name the participant wants displayed to the hub

community

v CapabililtyRole The functional role the participant has in the system.

Available values are:

– Source

– Target

– SourceAndTarget

v CapabilityEnabled A Boolean value

v RoutingObjectRefId An internal numeric ID that identifies the routing

object reference associated with this capability to the system

v RoutingObjectRefInfo Routing objects in WebSphere Partner Gateway

are hierarchical. They are defined once, but can be referenced at multiple

places. The routing object reference uniquely identifies where the routing

objects are referenced. This is a complex type holding the following

elements:

160 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

– RoutingObjectRefId An internal numeric ID of the routing object

reference

– RoutingObjectId An internal numeric ID of the routing object

referenced

– RoutingObjectName The name of the routing object

– RoutingObjectVersion The routing object version

– RoutingObjectType The type of this routing object localized into your

(the user’s) locale

– RoutingObjectTypeKey The key to the type of this routing object. For

example: Package, Protocol, and so forth

– RoutingObjectEnabled A Boolean value

– RoutingObjectParentRefId The internal numeric ID of the parent

routing object reference. This is an optional element.
v CapabilityChildren element. This is an optional element. Contains zero

or more CapabilityChild elements. Each CapabilityChild element holds

the same eight elements as the ParticipantCapability element.

Chapter 10. Using the administrative API 161

ListParticipantConnections

Queries the participant’s connections.

Root element

BCGPublicAPI

First child element

ListParticipantConnections

First child of ListParticipantConnections

UserInfo element. This is the same information used to log in the

Community Console. It contains three elements:

v UserName The Community Console login user name

v Password The Community Console login password

v ParticipantLogin The participant (company) login name

Second child of ListParticipantConnections

SourceParticipantId An internal numeric ID that identifies the participant

as a source to the system

Third child of ListParticipantConnections

TargetParticipantId An internal numeric ID that identifies the participant

as a target to the system

ListParticipantConnectionsResponse

The response document for the ListParticipantCapabilities method

Root element

BCGPublicAPI

First child element

ListParticipantConnectionsResponse

First child of ListParticipantConnectionResponse

ParticipantConnections element.

Zero or more children of ParticipantConnections

ParticipantConnection element. Contains nine elements.

v ConnectionId An internal numeric ID that identifies this connection to

the system

v SourceParticipantId An internal numeric ID that identifies the

participant as a source to the system

v SourceCapabilityId An internal numeric ID identifies the source

capability to the system

v TargetParticipantId An internal numeric ID that identifies the

participant as a target to the system

v TargetCapabilityId An internal numeric ID that identifies the target

capability to the system

v ActionId An internal numeric ID that identifies the action to the system

v ActionName The display name of the action

v TransformMapId An internal numeric ID that identifies the transform

map associated with this action. This is an optional element.

v ConnectionEnabled A Boolean value

162 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

ListTargets

Queries for the targets configured on the system.

Root element

BCGPublicAPI

First child element

ListTargets

First child of ListTargets

UserInfo element. This is the same information used to log in the

Community Console. It contains three elements:

v UserName The Community Console login user name

v Password The Community Console login password

v ParticipantLogin The participant (company) login name

ListTargetsResponse

The response document for the ListTargets method.

Root element

BCGPublicAPI

First child element

ListTargetsResponse

First child of ListTargetsResponse

Targets

Zero or more children of Targets

Target element. Contains six elements.

v TargetId An internal numeric ID that identifies the target to the system

v Description A string describing the target

v ClassName The name of the target class. This is an optional class.

v TransportType Name The transport type

v TargetAttributes A complex type holding zero or more

TargetAttribute complex elements, each holding the following elements:

– AttributeName The target attribute’s name

– AttributeValue The target attribute’s value. This is an optional value.
v TargetConfigPoints There are three target configuration points:

PreProcess, PostProcess, and SyncCheck. Each of them is represented by

a complex type that holds the following elements:

– ConfigPointName A complex type that holds a Handlers element,

which is a complex type that holds zero or more Handler elements,

each of which is a complex type that holds three elements:

- ClassName The name of the handler class

- HandlerType The handler type

- HandlerAttributes A complex type that holds zero or more

HandlerAttribute elements, each of which is a complex type that

holds the following two elements:

v AttributeName The attribute’s name

v AttributeValue The attribute’s value. This is an optional element.

Chapter 10. Using the administrative API 163

ListEventDefinitions

Queries for the events configured on the system.

Root element

BCGPublicAPI

First child element

ListEventDefinitions

First child of ListEventDefinitions

UserInfo element. This is the same information used to log in the

Community Console. It contains three elements:

v UserName The Community Console login user name

v Password The Community Console login password

v ParticipantLogin The participant (company) login name

ListEventDefinitionsResponse

The response document for the ListEventsDefinitions method.

Root element

BCGPublicAPI

First child element

 ListEventsDefinitionsResponse

First child of ListEventsDefinitionsResponse

EventDefinitions

Zero or more children of EventDefinitions

EventDefinition element. A complex type holding the following six

elements. This is an optional element.

v EventCode The code for this event

v Event name The event’s name

v InternalDescription A string with the event’s internal specific

description

v Visibility The event’s visibility in the system. A complex type holding

three elements.

– CommunityManager A Boolean value

– CommunityOperator A Boolean value

– CommunityParticipant A Boolean value
v Severity The event’s severity. Available values are:

– Info

– Debug

– Warning

– Error

– Critical

v Alertable A Boolean value

164 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

BCGPublicAPIException

The response document in the case of an exception.

Root element

BCGPublicAPI

First child element

BCGPublicAPIException

First child of BCGPublicAPIException

ErrorMsg A string containing the error message

Chapter 10. Using the administrative API 165

166 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Chapter 11. Using external event delivery

WebSphere Partner Gateway generates and stores events as a way of monitoring

the activity inside its system. Events are published to an internal queue from

which the WebSphere Partner Gateway event server fetches them. The event server

sends them to the internal event store. Events can also be delivered to an external

JMS queue, where they can be fetched by other processes, such as monitoring

applications. This chapter provides an overview of this process. It consists of two

sections:

v “The external event delivery process”

v “The structure of delivered events” on page 169

The external event delivery process

The WebSphere Partner Gateway system has two different types of events:

document events and message events.

Document events are events directly associated with a business document. The

Business Processing Engine is responsible for publishing these events to a

WebSphere Partner Gateway internal queue. In the case of either a Sent or a Failed

document state, the Delivery Manager also publishes business document events to

this queue.

Message events, on the other hand, are published by all components of WebSphere

Partner Gateway. Message events are not necessarily related to a business

document, although one or more message events can be associated with a business

document.

Events that are published to the internal queue are sent by the event server to

WebSphere Partner Gateway’s event store. You can have events delivered to an

external JMS queue. Turning external delivery on and off and configuring the

external queue are done in the Community Console. See the WebSphere Partner

Gateway Hub Configuration Guide for help in setting up this up.

Events are delivered to the JMS queue in Common Base Event (CBE) XML format.

CBE format is a part of a larger evolving IBM initiative, the Common Event

Infrastructure (CEI), designed to standardize the handling of events across

applications. CBE structure covers three basic types of information:

v CBE standard properties, consisting of details such as creation time, event type,

source, severity, and so forth

v CBE context data, including information about the environment in which the

event was generated

v CBE extended data, holding generic data that is specific to the event type

The specifics of the CBE format as it is used in external event delivery are detailed

in “The structure of delivered events” on page 169.

If external delivery is turned on, all events are delivered to the external queue. The

visibility flag, which limits which type of user can see which type of event in the

© Copyright IBM Corp. 2004, 2005 167

Community Console Event Viewer, is not used in external delivery. Event names

and descriptions in external delivery are localized in the same manner as they are

in the Event Viewer.

Incorrect JMS configuration and JMS provider problems can cause errors in

external event delivery. If they are not detected on startup, and an external

delivery error occurs, the following happens:

v Future event delivery is turned off.

v Events are redelivered upon system restart only if you reinitialize the system in

one of the following ways:

– By correcting and updating the JMS properties on the Event Publishing

Properties window in the Community Console (see the Hub Configuration

Guide and the Community Console online Help for more information)

– By correcting the JMS provider issues and clicking Save on the Event

Publishing Properties window in the Community Console
v An alert-able event is logged, so that the WebSphere Partner Gateway alert

engine can produce an alert. If for some reason the alert event cannot be logged,

however, the event is ignored. No retries for logging this event are made.

v Normal internal event processing continues normally.

168 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

The structure of delivered events

This section covers the CBE document structure of events delivered to the external

JMS queue. Because the CBE event document structure is complex, the description

of it is divided into two parts:

v “The basic CBE document structure”

v “CBE event structure for WebSphere Partner Gateway message events and

business document events”

For the full canonic description of the CBE structure, see the schema file, located at

\B2BIntegrate\events\schemas\commonbaseevent1_0_1.xsd. In the same directory

there is an additional schema file, eventdelivery.xsd. This file defines a

WebSphere Partner Gateway extension to the main schema, which defines the

OtherSituation type of the SituationType type used in the situation element in

the main schema. Further information on CBE and the schema can be found at the

eclipse.org Web site, in the context of the Hyades project:

www.eclipse.org/hyades/

The basic CBE document structure

The root element of a Common Base Event document is a CommonBaseEvent

element. The children of the CommonBaseEvent are as follows:

v contextDataElements: Provides context for the event. It is an optional event.

WebSphere Partner Gateway does not provide it.

v extendedDataElements: Captures information not captured directly by the basic

CBE structure. It is an optional element provided by WebSphere Partner

Gateway.

v associatedEvents: Captures associated events. It is an optional element not

provided by WebSphere Partner Gateway.

v reporterComponentId: Specifies the component that reports the event. It is an

optional element not provided by WebSphere Partner Gateway.

v sourceComponentId: Specifies the component that generated the event. It is a

required element provided by WebSphere Partner Gateway.

v msgDataElement: Represents the data that is used to specify all of the related

information that is associated with the message that this event holds. It is an

optional element. It is generated for CBE events created for message events. For

business document events, this element is not generated. WebSphere Partner

Gateway always generates this element as follows:

 <msgDataElement msgLocale="en-US"></msgDataElement>

v situation: Describes the type of situation that caused the event. It is a required

element provided by WebSphere Partner Gateway.

CBE event structure for WebSphere Partner Gateway message

events and business document events

This section provides an element by element description of the CBE elements

supplied in the event documents generated by the WebSphere Partner Gateway

external event delivery system. It includes a detailed list of the main elements’

attributes. Some descriptions include a brief example of that element as it would

appear in CBE XML for message and business document events, as appropriate.

The CommonBaseEvent element

This is the root element of all CBE event documents. The following table describes

this element and its attributes.

Chapter 11. Using external event delivery 169

http://www.eclipse.org/hyades/

Table 3. The CommonBaseEvent element

Property name Description

Version 1.0.1

WebSphere Partner Gateway supports this version of the schema

localInstanceId Unique identifier in the WebSphere Partner Gateway store:

v Message events: the event ID of the source event

v Business document events: the UUID of the business document

creationTime Creation time of this CBE event:

v Message events: the creation time of the event

v Business document events: since logging time is not stored in

business document, set to current time

severity v Message events:

– Debug: 8

– Information: 10

– Warn: 30

– Error: 50

v Business document events: business documents have no severity

level, so this is set at 10 (Information)

priority WebSphere Partner Gateway has no notion of priority. Always set at 50

msg v Message event: description of this event is localized.

v Business document event: not specified

repeatCount Not specified by WebSphere Partner Gateway

elapsedTime Not specified by WebSphere Partner Gateway

extensionName Used to distinguish message events from business document events

v Message event: BCG_EVENT

v Business document event:

BCG_BUSINESSDOCUMENT

sequenceNumber Not specified by WebSphere Partner Gateway

The following sample illustrates the CommonBaseEvent element for a message event:

<cbe:CommonBaseEvent

 creationTime="2004-06-20T06:26:01"

 extensionName="BCG_EVENT"

 localInstanceId="1087712761674000C766F006F0178601DF89630A39DF6CA"

 msg="ASValidation"

 priority="50"

 severity="10"

 version="1.0.1"

 xsi:schemaLocation=

 "http://www.ibm.com/AC

 /commonbaseevent1_0_1commonbaseevent1_0_1.xsd">

:

:

<cbe:CommonBaseEvent />

This is a sample of the CommonBaseEvent element for a business document event:

<cbe:CommonBaseEvent

 creationTime="2004-06-20T06:26:02"

 extensionName="BCG_BUSINESSDOCUMENT"

 localInstanceId="1087712759944000C766F006F017860B7583EB51E26A336"

 priority="50"

 severity="10"

170 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

version="1.0.1"

 xsi:schemaLocation="http://www.ibm.com/AC

 /commonbaseevent1_0_1 commonbaseevent1_0_1.xsd">

:

:

<cbe:CommonBaseEvent />

The sourceComponentId element

This element specifies the component that generated the event. WebSphere Partner

Gateway fills this in the normal CBE way. Please see the schema for more

information.

The situation element

This element describes the type of situation that generated the event. The following

table describes this element and its attributes.

 Table 4. The situation element

Property name Description

categoryName OtherSituation

reasoningScope INTERNAL

faultType WebSphere Partner Gateway defines this attribute for OtherSituation in

the eventdelivery.xsd file.

Message events:

v SOURCE

v TARGET

v SYSTEM

v UNKNOWN

Business document events:

v UNKNOWN

This is an example of the situation element for a message event:

<cbe:situation categoryName="OtherSituation">

 <cbe:situationType

 reasoningScope="INTERNAL"

 xsi:type="cbe:OtherSituation">

 <bcg:faultType/>

 </cbe:situationType>

</cbe:situation>

The extendedDataElements element

This element captures information not captured directly by the basic CBE structure.

The following three tables describe this element, its attributes, and its specialized

child elements, covering message event extended elements and business document

event extended elements:

 Table 5. The extendedDataElements element

Property name Description

name Used to distinguish message events from business document events

v Message event: BCG_EVENT

v Business document event:

BCG_BUSINESSDOCUMENT

type WebSphere Partner Gateway sets this to noValue

children One or more elements are created, depending on the type (message or

business document) of event. Descriptions are in the following tables.

Chapter 11. Using external event delivery 171

Table 6. Message event extended data elements

Name Value

BCG_EVENTCD Event code from the message event

BCG_HOSTIPADDRESS Host IP address. Specified if available

BCG_PARTNERID1 Internal ID for participant. Specified if available

BCG_PARTNERID2 Internal ID for participant. Specified if available

BCG_STACKTRACE Stack trace. Specified if available

BCG_FRIPADDRESS From: IP address. Specified if available

BCG_PARENTBCGDOCID Unique ID for parent business document. Specified if available

BCG_BCGDOCID The ID of the business document with which this message event is

associated

Note: Monitoring applications can use this element for correlating

this event with any associated business document

BCG_USERID User ID. Specified if available

BCG_BUSINESSID1 From: business ID. Specified if available

BCG_INITBUSINESSID Initiating business ID. Specified if available

BCG_INITASMESSAGEID Initiating AS message ID. Specified if available

BCG_BUSINESSID2 To: business ID. Specified if available

The following example shows a partial example of an extendedDataElements

element in a message event.

<cbe:extendedDataElements name="BCG_EVENT" type="noValue">

 <cbe:values/>

 <cbe:children name="BCG_EVENTTIMESTAMP" type="string">

 <cbe:values>1087712761674</cbe:values>

 </cbe:children>

 <cbe:children name="BCG_PARENTBCGDOCID" type="string">

 <cbe:values>1087712759944000C766F006F017860B7583EB51E26A336

 </cbe:values>

 </cbe:children>

 <cbe:children name="BCG_ARGUMENTSTRING" type="string">

 <cbe:values>ASValidation</cbe:values>

 </cbe:children>

 <cbe:children name="BCG_HOSTIPADDRESS" type="string">

 <cbe:values>127.0.0.1</cbe:values>

 </cbe:children>

 :

 :

 :

</cbe:extendedDataElements>

 Table 7. The business document event extended data elements

Attribute Value

BCG_BCGDOCID Business document’s unique document ID

BCG_PARENTBCGDOCID Document ID for parent business document. Specified if available

BCG_DOCLOCATION Location of business document with complete path. Specified if

available

172 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Table 7. The business document event extended data elements (continued)

Attribute Value

BCG_DOCSTATE Current state of the business document:

v DOC_IN_PROCESS = ″In Process″

v DOC_SENT = ″Sent″

v DOC_RECEIVED = ″Received″

v DOC_FAILED = ″Failed″

BCG_DOCSIZE Obtained from business document. Specified if available

Data related to

business document

In addition, business document events can contain other

information concerning:

v routing related data

v flow related data

v business protocol related data

The name attribute of the child elements is set to one of the

constants specified in the BCGDocumentConstants class. See

“BCGDocumentConstants” on page 105 for further information.

Specified only if available.

A partial example of an extendedDataElements element in a business document

event follows:

<cbe:extendedDataElements name="BCG_BUSINESSDOCUMENT" type="noValue">

 <cbe:values/>

 <cbe:children name="BCG_BCGDOCID" type="string">

 <cbe:values>1087712755684000C766F006F01786046684D6EAC6FAC22

 </cbe:values>

 </cbe:children>

 <cbe:children name="BCG_DOCLOCATION" type="string">

 <cbe:values>

 /opt/IBM/bcghub/common/data/Inbound/process

 /520/D9

 /1087712753565000C766F006F003149F07FF1FC6C41D8D9.ascontent

 </cbe:values>

 </cbe:children>

 <cbe:children name="BCG_PARENTBCGDOCID" type="string">

 <cbe:values>1087712753565000C766F006F003149F07FF1FC6C41D8D9

 </cbe:values>

 </cbe:children>

 <cbe:children name="BCG_DOCSTATE" type="string">

 <cbe:values>In Process</cbe:values>

 </cbe:children>

 <cbe:children name="BCG_DOCRESTARTED" type="string">

 <cbe:values>false</cbe:values>

 </cbe:children>

 <cbe:children name="BCG_FRPARTNERTYPE" type="string">

 <cbe:values>0</cbe:values>

 </cbe:children>

 :

 :

 :

</cbe:extendedDataElements>

Chapter 11. Using external event delivery 173

174 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Index

A
actions

creating 53

definition 5

supplied 56

typical steps 5

B
Business Processing Engine (BPE) 4, 41

C
classes

See also interfaces

BCGDocumentConstants 105

BCGException 98

BCGReceiverException 30

BCGReceiverUtil 36

BCGSecurityException 87

BCGSenderException 134

BCGUtil 99

BusinessProcessUtil 75

Config 90

Context 89

EventInfo 101

ReceiverConfig 27

SenderResult 126

SignInfo 85

Community Console, definition 3

configuration points 119

definition 3

constants
document state 107

other 108

protocol packaging 105

protocol processing 105

protocol unpackaging 105

receiver 107

sender status 107

D
document state constants 107

documents
associated 142

processing 4

receiving 3

sending 6

E
end to end, receiving 139

error conditions, receiver 9

event types, definition (external

delivery) 167

events
for receiver handlers 37

for sender handlers 135

events (continued)
for workflow handlers 110

external event delivery 167

error conditions 168

structure of 169

F
fixed inbound workflow

allowable types 65

creating handlers in 42

definition 4

fixed outbound workflow
allowable types 65

creating handlers in 58

definition 5

G
gateway

console-configured 118

definition 6

H
handlers

creating in fixed inbound

workflow 42

creating in fixed outbound

workflow 58

definition 3

I
interfaces

See also classes

AttachmentInterface 72

BusinessDocumentInterface 92

BusinessProcessFactoryInterface 69

BusinessProcessHandlerInterface 71

BusinessProcessInterface 70

MapServiceInterface 83

ReceiverDocumentInterface 20

ReceiverFrameworkInterface 23

ReceiverInterface 18

ReceiverPostProcessHandler 34

ReceiverPreProcessHandler 31

ReceiverSyncCheckHandler 32

ResponseCorrelation 29

SecurityServiceInterface 77

SenderInterface 124

SenderPostProcessHandler 132

SenderPreProcessHandler 130

L
logging, how to set up 143

P
postprocessing handlers

sender 6

preprocessing handlers
receivers 3

sender 6

processing stages, receiving 3

protocol packaging
constants 105

handlers 58

typical steps 59

protocol processing
constants 105

fixed inbound workflow 4

protocol unpackaging
constants 105

defining package for 45

fixed inbound workflow 4

typical steps 43

R
receiver architecture 10

receiver constants 107

receiver types 10

receivers
creating 7

definition 3

overall flow 7

reserved attribute names 14

RNIF (RosettaNet Implementation

Framework) 4, 42

RosettaNet 4

S
samples

JMS receiver 38

protocol processing handler 113

protocol unpackaging handler 114

sender handler 136

sender architecture 119

sender flow 118

sender status constants 107

senders
APIs for 123

creating 118

creating handlers 119

customizing 117

definition 6

deploying 120

developing 120

example code for 123

sync checking 3

sync-check handlers
configuring 33

receivers 3

© Copyright IBM Corp. 2004, 2005 175

T
targets, definition 3

transformation step 5

translation step 5

U
user exits 3

definition 1

troubleshooting 143

V
validation step 5

variable workflow, definition 5

X
XML descriptor files 12

definition for a receiver transport 12

176 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or program(s) described in this publication

at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Burlingame Laboratory Director

IBM Burlingame Laboratory

577 Airport Blvd., Suite 800

© Copyright IBM Corp. 2004, 2005 177

Burlingame, CA 94010

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not necessarily tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE

This information may contain sample application programs in source language,

which illustrates programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

WebSphere Partner Gateway contains code named ICU4J which is licensed to you

by IBM under the terms of the International Program License Agreement, subject

to its Excluded Components terms. However, IBM is required to provide the

following language to you as a notice:

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2003 International Business Machines Corporation and others

All rights reserved.

178 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the ″Software″), to deal in the

Software without restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, provided that the

above copyright notice(s) and this permission notice appear in all copies of the

Software and that both the above copyright notice(s) and this permission notice

appear in supporting documentation.

THE SOFTWARE IS PROVIDED ″AS IS″, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE

FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL

DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used

in advertising or otherwise to promote the sale, use or other dealings in this

Software without prior written authorization of the copyright holder.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

IBM

the IBM logo

AIX

CrossWorlds

DB2

DB2 Universal Database

Domino

Lotus

Lotus Notes

MQIntegrator

MQSeries

Tivoli

WebSphere

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel

Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Other company, product or service names may be trademarks or service marks of

others.

Notices 179

WebSphere Partner Gateway Enterprise and Advanced Editions includes software

developed by the Eclipse Project (www.eclipse.org)

IBM WebSphere Partner Gateway Enterprise and Advanced Editions Version 6.0.

180 IBM WebSphere Partner Gateway Enterprise and Advanced Editions: Programmer Guide

http://www.eclipse.org/

����

Printed in USA

	Contents
	About this document
	Audience
	Typographic conventions
	Related documents

	New in this release
	New in release 6.0
	New in release 4.2.2 Second Edition
	New in release 4.2.2

	Part 1. Customizing WebSphere Partner Gateway: user exits
	Chapter 1. User exits overview
	Receiving a document
	Processing a document
	Fixed inbound workflow
	Variable workflow
	Fixed outbound workflow

	Sending a document

	Chapter 2. Customizing receivers
	Overview for creating new receivers
	Receiver flow
	Exceptions

	Receiver types
	Multiple box deployment

	Overview for creating new receiver handlers
	Development and deployment
	Development environment
	Deployment and packaging (receivers)
	Descriptor file definition for a receiver transport
	Descriptor file definition for a receiver transport handler
	Reserved attribute names

	Chapter 3. APIs and example code for receivers and receiver handlers
	ReceiverInterface
	ReceiverDocumentInterface
	ReceiverFrameworkInterface
	ReceiverConfig
	ResponseCorrelation
	BCGReceiverException
	ReceiverPreProcessHandlerInterface
	ReceiverSyncCheckHandlerInterface
	ReceiverPostProcessHandlerInterface
	BCGReceiverUtil
	Events
	Informational events
	Warning events
	Error events

	Example receiver implementation outline

	Chapter 4. Customizing fixed and variable workflow
	Overview for creating handlers in fixed inbound workflow
	Protocol unpackaging handlers
	Protocol processing handlers

	Overview for creating actions in variable workflow
	Creating steps
	Actions supplied by WebSphere Partner Gateway
	Pass through
	HubOwner cancellation of RN process
	RN pass through with process logging
	Bidirectional translation of RN and RNSC
	Bidirectional translation of RN and XML
	Bidirectional translation of custom XML with validation
	Bidirectional translation of custom XML with duplicate check and validation
	Bidirectional translation of owner custom XML to RN with duplicate check and validation
	Custom XML pass through with duplicate check and validation
	Custom XML pass through with duplicate check
	Custom XML pass through with validation
	EDI Interchange De-envelope
	EDI Validate and Transform
	XML Transform and EDI Validate
	ROD Transform and EDI Validate

	Overview for creating handlers in fixed outbound workflow
	Protocol packaging handlers
	Implementing protocol packaging handlers

	Development and deployment
	Development environment
	Deployment and packaging
	Descriptor file definition for a workflow handler

	Chapter 5. APIs and example code for workflow handlers and steps
	From com.ibm.bcg.bcgdk.workflow
	BusinessProcessFactoryInterface
	BusinessProcessInterface
	BusinessProcessHandlerInterface
	AttachmentInterface
	BusinessProcessUtil
	From com.ibm.bcg.bcgdk.services
	SecurityServiceInterface
	MapServiceInterface
	SignInfo
	BCGSecurityException
	From com.ibm.bcg.bcgdk.common
	Context
	Config
	BusinessDocumentInterface
	BCGException
	BCGUtil
	EventInfo
	BCGDocumentConstants
	Events
	Events that can be logged from the protocol unpackaging handler
	Informational events
	Warning events
	Error events

	Events that can be logged from the protocol processing handler
	Informational events
	Warning events
	Error events

	Events that can be logged from user-defined actions and steps
	Informational events
	Warning events
	Error events

	Events that can be logged from the protocol packaging handler
	Informational events
	Warning events
	Error events

	Security and other events
	Error events

	Example handlers and steps implementation outline
	Protocol processing handler
	Protocol unpackaging handler
	Transformation step

	Chapter 6. Customizing senders
	Overview for creating new senders
	The Sender/Sender Framework flow
	Sender architecture

	Overview for creating new sender handlers
	Development and deployment
	Development environment
	Deployment and packaging (senders)
	Descriptor file definition for a sender transport
	Descriptor file definition for a sender transport handler

	Chapter 7. APIs and example code for senders and sender handlers
	SenderInterface
	SenderResult
	SenderPreProcessHandlerInterface
	SenderPostProcessHandlerInterface
	BCGSenderException
	Events
	Informational events
	Warning events
	Error events

	Implementation outlines for an example sender
	Example sender

	Chapter 8. End-to-end flow: an overview for using user exits
	Synchronous and asynchronous flows
	Associated document

	Chapter 9. Troubleshooting user exits
	Setting up logging
	Common sources of error
	File location errors
	Handler failure errors
	Processing mode errors
	File update errors

	Part 2. Customizing WebSphere Partner Gateway: administrative APIs and external event delivery
	Chapter 10. Using the administrative API
	Understanding the administrative API
	The administrative API
	ParticipantCreate
	ParticipantCreateResponse
	ParticipantUpdate
	ParticipantUpdateResponse
	ParticipantSearchByName
	ParticipantSearchByNameResponse
	ParticipantAddBusinessId
	ParticipantAddBusinessIdResponse
	ParticipantRemoveBusinessId
	ParticipantRemoveBusinessIdResponse
	ContactCreate
	ContactCreateResponse
	ContactUpdate
	ContactUpdateResponse
	ListParticipantCapabilities
	ListParticipantCapabilitiesResponse
	ListParticipantConnections
	ListParticipantConnectionsResponse
	ListTargets
	ListTargetsResponse
	ListEventDefinitions
	ListEventDefinitionsResponse
	BCGPublicAPIException

	Chapter 11. Using external event delivery
	The external event delivery process
	The structure of delivered events
	The basic CBE document structure
	CBE event structure for WebSphere Partner Gateway message events and business document events
	The CommonBaseEvent element
	The sourceComponentId element
	The situation element
	The extendedDataElements element

	Index
	Notices
	Trademarks and service marks

