
WebSphere Process Server for z/OS

Developing and Deploying Modules
Version 7.0.0

���

30 April 2010

This edition applies to version 7, release 0, modification 0 of WebSphere Process Server for z/OS (product number
5655-N53) and to all subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, send an e-mail message to doc-comments@us.ibm.com. We look
forward to hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2006, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables v

Part 1. Developing applications . . . 1

Developing business process
management solutions 3
Business integration architecture and patterns . . . 5

Business integration scenarios 5
Roles, products, and technical challenges 6

Bindings 9
Export and import binding overview 11
Export and import binding configuration 14

Data format transformation in imports and
exports 15
Function selectors in export bindings 19
Fault handling 21

Interoperability between SCA modules and Open
SCA services 26
Binding types. 29

Selecting appropriate bindings 29
SCA bindings. 31
Web service bindings 31
HTTP bindings 49
EJB bindings 57
EIS bindings 64
JMS bindings 70
Generic JMS bindings 79
WebSphere MQ JMS bindings 86
WebSphere MQ bindings 93
Limitations of bindings 102

Programming guides and techniques 105
Service Component Architecture programming . . 105

Service Component Definition Language . . . 105
SCA programming model fundamentals . . . 114
SCA programming techniques 142

Business objects programming. 147
Programming model 147
Programming using business object services . . 171
Programming techniques 174

Business rule management programming 197
Programming model 198
Examples 225
Common operations classes 291

Widget programming. 300

Developing client applications for
business processes and tasks 301
Comparison of the programming interfaces for
interacting with business processes and human
tasks 301
Queries on business process and task data . . . 303

Comparison of the programming interfaces for
retrieving process and task data 303
Query tables in Business Process Choreographer 305
Business Process Choreographer EJB query API 358

Developing EJB client applications for business
processes and human tasks 374

Accessing the EJB APIs 375
Developing applications for business processes 381
Developing applications for human tasks . . . 404
Developing applications for business processes
and human tasks 421
Handling exceptions and faults 426

Developing Web services API client applications
for business processes and human tasks 429

Web service components and sequence of
control 430
Web service API requirements for business
processes and human tasks 431
JAX-WS-based Business Process Choreographer
Web services APIs 431
Business Process Choreographer Web services
API: Standards 432
Publishing and exporting artifacts from the
server environment for Web services client
applications 432
Developing client applications in the Java Web
services environment 436
Adding security 440
Adding transaction support 440

Developing client applications using the Business
Process Choreographer JMS API 441

Requirements for business processes. 441
Authorization for JMS renderings 441
Accessing the JMS interface 442
Copying artifacts for JMS client applications . . 446
Checking the response message for business
exceptions 446
Example: executing a long running process
using the Business Process Choreographer JMS
API. 447

Developing Web applications for business
processes and human tasks, using JSF components . 448

Business Process Choreographer Explorer
components 450
Error handling in JSF components 452
Default converters and labels for client model
objects. 453
Adding the List component to a JSF application 453
Adding the Details component to a JSF
application 460
Adding the CommandBar component to a JSF
application 462
Adding the Message component to a JSF
application 466

Developing JSP pages for task and process
messages 469

© Copyright IBM Corp. 2006, 2010 iii

User-defined JSP fragments. 470
Creating plug-ins to customize human task
functionality. 471

Creating API event handlers for Business
Process Choreographer 471
Creating notification event handlers for Business
Process Choreographer 474
Installing API event handler and notification
event handler plug-ins for human tasks . . . 475
Registering API event handler and notification
event handler plug-ins with task templates, task
models, and tasks 476
Using a plug-in to post-process people query
results 477

Part 2. Deploying applications. . . 479

Overview of preparing and installing
modules 481
Libraries and JAR files overview 481
EAR file overview 483
Preparing to deploy to a server 483
Considerations for installing service applications
on clusters 485

Deploying a module 487
Installing versioned SCA modules in a production
environment. 488

Installing an SCA module with the console . . . 489
Creating an installable EAR file using
serviceDeploy 490
Deploying applications using Apache Ant tasks 491

Installing business process and
human task applications 493
How business process and human task applications
are installed in a network deployment environment 493
Deployment of business processes and human
tasks 494
Installing business process and human task
applications interactively 494

Configuring process application data source and
set reference settings 495

Uninstalling business process and human task
applications, using the administrative console . . 496
Uninstalling business process and human task
applications, using an administrative command . . 497

Adapters and their installation 501

Troubleshooting a failed deployment 503
Deleting JCA activation specifications 504
Deleting SIBus destinations. 505

Part 3. Appendixes 507

iv Developing and deploying

Tables

1. Predefined data handlers 16
2. Predefined data bindings for JMS bindings 17
3. Predefined data bindings for WebSphere MQ

bindings 18
4. Predefined data bindings for HTTP bindings 19
5. Predefined function selectors for JMS bindings 20
6. Predefined function selectors for WebSphere

MQ bindings 21
7. Predefined function selectors for HTTP

bindings 21
8. Prepackaged fault selectors 25
9. How security headers are passed 34

10. How the attachment is generated 44
11. How the attachment is generated 44
12. Supplied HTTP header information 52
13. Return values 63
14. Primary artifacts that make up an SCA

service module 105
15. Summary of key methods and interfaces for

dynamic client invocation 129
16. Summary of qualifiers 138
17. WSDL type to Java class conversion 144
18. Data abstractions and the corresponding

implementations 147
19. XSD artifact support 156
20. WSDL artifact support 157
21. Runtime artifact support 157
22. Business object services 171
23. Business Rule Group problems. 223
24. Rule set and Decision Table problems 224
25. Properties of predefined query tables 306
26. Predefined query tables containing instance

data. 307
27. Predefined query tables containing template

data. 308
28. Properties of supplemental query tables 310
29. Valid contents of a composite query table 315
30. Invalid contents of a composite query table 315
31. Properties of composite query tables 315
32. Query table development steps 319
33. Attributes for query table expressions 323
34. Types of authorization for query tables 328
35. Work item types 330
36. Work items and people assignment criteria 331
37. Attribute types 332
38. Database type to attribute type mapping 333
39. Database types to attribute types mapping

example 334
40. Attribute type to literal values mapping 334
41. Attribute type to user parameter values

mapping 335
42. Attribute type to Java object type mapping 336
43. Attribute type compatibility. 337

44. Methods for queries run on query tables 338
45. Parameters of the query table API 340
46. Query table API parameters: Filter options 341
47. Query table API parameters: Authorization

option defaults for instance-based
authorization 343

48. Query table API parameters:
AdminAuthorizationOptions 344

49. User parameters for the query table API 345
50. Entity result set properties of a query table

API entity. 346
51. Entity properties of a query table API entity 346
52. Row result set properties of a query table API

row 347
53. Methods for meta data retrieval on query

tables 348
54. Meta data related to query table structure 349
55. Meta data related to query table

internationalization 349
56. Query performance impact of composite

query table options 353
57. Query performance impact of query table API

options 354
58. Query table performance: Other

considerations 355
59. Query syntax for different object types 359
60. API methods for process templates 402
61. API methods that are related to starting

process instances 402
62. API methods for controlling the life cycle of

process instances 402
63. API methods for controlling the life cycle of

activity instances 403
64. API methods for variables and custom

properties 404
65. API methods for task templates 419
66. API methods for task instances 420
67. API methods for working with escalations 420
68. API methods for variables and custom

properties 421
69. File artifacts and XML definition namespaces

for the JAX-WS-based Web services 431
70. Mapping of the reference bindings to JNDI

names 450
71. How Business Process Choreographer

interfaces are mapped to client model objects . 453
72. bpe:list attributes 459
73. bpe:column attributes 459
74. bpe:details attributes 461
75. bpe:property attributes 462
76. bpe:commandbar attributes 465
77. bpe:command attributes 466
78. bpe:form attributes. 468

© Copyright IBM Corp. 2006, 2010 v

vi Developing and deploying

Part 1. Developing applications

© Copyright IBM Corp. 2006, 2010 1

2 Developing and deploying

Developing business process management solutions

This section discusses the fundamentals of the business process management
(BPM) programming model. It introduces the Service Component Architecture
(SCA) and discusses patterns related to business integration.

BPM is the discipline that enables companies to identify, consolidate, and optimize
business processes. The objective is to improve productivity and maximize
organizational effectiveness. Interest in BPM has become more acute as companies
merge and consolidate, and as they grow a library of disparate information assets.
These assets often lack consistency and coordination, thus giving rise to “islands of
information.”

BPM has strong links to Service-Oriented Architecture (SOA). Depending on the
nature of the company and the extent of the integration needs, BPM poses different
requirements for IT departments. Some projects deal with only a few aspects,
whereas some larger projects encompass many of these requirements. Here are
some of the most common aspects of BPM projects:
v Application integration is a common requirement. The complexity of

application integration projects varies from simple cases, in which you need to
ensure that few applications can share information, to more complex situations,
in which transactions and data exchanges need to be reflected simultaneously on
multiple back-end applications. Complex application integration often requires
complex unit-of-work management as well as transformation and mapping.

v Process automation is another key aspect that ensures that activities performed
by an individual or organization systematically trigger consequential activities
elsewhere. This ensures the successful completion of the overall business
process. For example, when a company hires an employee, payroll information
has to be updated, appropriate actions need to be taken by the security
department, the necessary tools need to be given to the employee, and so on.
Some activities in a process might capture human input and interaction, whereas
others might invoke scripts on back-end systems and other services in the
environment.

v Connectivity is an abstract, yet critical, aspect both in a company and in terms
of business partners. Connectivity refers to both the flow of information between
organizations or companies and the ability to access distributed IT services.

Some of the technical challenges of business integration implementations can be
summarized as follows:
v Dealing with different data formats and therefore not being able to perform

efficient data transformation
v Dealing with different protocols and mechanisms for accessing IT services that

have been developed using different technologies
v Orchestrating different IT services that may be geographically distributed or

offered by different organizations
v Providing rules and mechanisms to classify and manage the services that are

available (governance)

As such, BPM encompasses many of the themes and elements that are also
common to SOA. IBM®'s vision of BPM builds on many of the same foundational
concepts that are found in SOA. One of the immediate consequences of this vision

© Copyright IBM Corp. 2006, 2010 3

is that BPM solutions require various products for their realization. IBM provides a
portfolio of tools and runtime platforms to support all the various stages and
operational aspects.

To paraphrase IBM's vision of BPM, it enables companies to define, create, merge,
consolidate, and streamline business processes using applications that run on a
SOA IT infrastructure. BPM work is truly role-based. At the macro level, it involves
modeling, developing, governance, managing, and monitoring business process
applications. With the help of proper tools and procedures, it enables you to
automate business processes involving people and heterogeneous systems, both
inside and outside the enterprise. One of the key aspects of BPM is the ability to
optimize your business operations so that they are efficient, scalable, reliable, and
flexible enough to handle change.

BPM requires development tools, runtime servers, monitoring tools, a service
repository, toolkits, and process templates. Because there are so many aspects to
BPM, you will find that you have to use more than one development tool to
develop a solution. These tools enable integration developers to assemble complex
business solutions. A server is a high-performance business engine or service
container that runs complex applications. Management always wants to know who
is doing what in the organization, and that is where monitoring tools come into
play. As enterprises create these business processes or services, governance,
classification, and storage of these services becomes critical. That function is served
by a service repository. Specific toolkits to create specialized parts of the solution,
such as connectors or adapters to existing systems, are often required.

BPM is not based on a single product. It involves almost everybody and all
business aspects within an organization and across organizations. BPM
encompasses many of the services and elements in the SOA reference architecture.

For more details about these concepts, along with programming examples, see:
v WebSphere® Business Integration Primer: Process Server, BPEL, SCA, and SOA, IBM

Press, 2008.

Figure 1. IBM tools span the entire BPM life cycle, enabling you to model, assemble, deploy,
and manage your processes.

4 Developing and deploying

v Getting Started with IBM WebSphere Process Server and IBM WebSphere Enterprise
Service Bus Part 1: Development, IBM Redbooks®, SG24-7608-00, June 2008.

v IBM Business Process Management Reviewer's Guide, IBM Redpapers,
REDP-4433-01, April 2009.

Business integration architecture and patterns
A typical business management project involves coordinating several different IT
assets, potentially running on different platforms, and having been developed at
different times using different technologies. Being able to easily manipulate and
exchange information with a diverse set of components is a major technical
challenge. It is best addressed by the programming model used to develop
business integration solutions.

This section introduces the Service Component Architecture (SCA) and discusses
patterns related to business integration. Patterns seem to permeate our lives.
Sewing patterns, think-and-learn patterns for children, home construction patterns,
wood-carving patterns, flight patterns, wind patterns, practice patterns in
medicine, customer buying patterns, workflow patterns, design patterns in
computer science, and many more exist.

Patterns have proven successful in helping solution designers and developers.
Therefore, it is not surprising that we now have business integration patterns and
enterprise integration patterns. There is a wide array of patterns that are applicable
to business integration, including patterns for request and response routing,
channel patterns (such as publish/subscribe), and many more. Abstract patterns
provide a template for resolving a certain category of problems, whereas concrete
patterns provide more specific indications of how to implement a specific solution.
This section focuses on patterns that deal with data and service invocation, which
are at the foundation of the programming model of the IBM software strategy for
WebSphere business integration.

Business integration scenarios
Enterprises have many different software systems that they use to run their
business. In addition, they have their own ways of integrating these business
components.

The two most prevalent business integration scenarios are as follows:
v Integration broker: In this scenario, the business integration solution acts as an

intermediary located among various back-end applications. For example, you
might have to ensure that when a customer places an order using the online
order management application, the transaction updates relevant information in
your Customer Relationship Management (CRM) back end. In this scenario, the
integration solution must be able to capture and possibly transform the
necessary information from the order management application and invoke the
appropriate services in the CRM application.

v Process automation: In this scenario, the integration solution acts as the glue
among different IT services that would otherwise be unrelated. For example,
when a company hires an employee, the following sequence of actions must
occur:
– The information for the employee is added to the payroll system.
– The employee must be granted physical access to the facilities, and a badge

must be provided.

Developing business process management solutions 5

– The company might have to assign a set of physical assets to the employee
(office space, a computer, and so on).

– The IT department must create a user profile for the employee and grant
access to a series of applications.
Automating this process is also a common use case in a business integration
scenario. In this scenario, the solution implements an automated flow that is
triggered by the addition of the employee to the payroll system. After, the
flow triggers the other steps by creating work items for the people who are
responsible for taking action or by calling the appropriate services.

In both scenarios, the integration solution must:
1. Work with disparate sources of information and different data formats, and be

able to convert information between different formats
2. Be able to invoke various services, potentially using different invocation

mechanisms and protocols.

Roles, products, and technical challenges
Successful business integration projects depend on the blending of specialized
development roles, programming techniques, and tool suites.

Business integration projects require a few basic ingredients:
v A clear separation of roles in the development organization to promote

specialization, which typically improves the quality of the individual
components that are developed

v A common business object (BO) model that enables business information to be
represented in a common logical model

v A programming model that strongly separates interfaces from implementations
and that supports a generic service invocation mechanism that is totally
independent of the implementation and that only involves dealing with
interfaces

v An integrated set of tools and products that supports development roles and
preserves their separation

The following sections elaborate on each of these ingredients.

Clear separation of roles

A business integration project requires people in four collaborative, but distinctly
separate, roles:
v Business analyst: Business analysts are domain experts responsible for capturing

the business aspects of a process and for creating a process model that
adequately represents the process itself. Their focus is to optimize the financial
performance of a process. Business analysts are not concerned with the technical
aspects of implementing processes.

v Component developer: Component developers are responsible for implementing
individual services and components. Their focus is the specific technology used
for the implementation. This role requires a strong programming background.

v Integration specialist: This relatively new role describes the person who is
responsible for assembling a set of existing components into a larger business
integration solution. Integration developers do not need to know the technical
details of each of the components and services they reuse and wire together.
Ideally, integration developers are concerned only with understanding the

6 Developing and deploying

interfaces of the services that they are assembling. Integration developers should
rely on integration tools for the assembly process.

v Solution deployer: Solution deployers and administrators are concerned with
making business integration solutions available to end users. Ideally, a solution
deployer is primarily concerned with binding a solution to the physical
resources ready for it to function (databases, queue managers, and so on) and
not with having a deep understanding of the internals of a solution. The
solution deployer's focus is quality of service (QoS).

A common business object model

As we discussed, the key aspects of a business integration project include the
ability to coordinate the invocation of several components and the ability to handle
the data exchange among those. In particular, different components can use
different techniques to represent business items such as the data in an order, a
customer's information, and so on. For example, you might have to integrate a
Java™ application that uses entity Enterprise Java Beans (EJBs) to represent
business items and a legacy application that organizes information in COBOL
copybooks. Therefore, a platform that aims to simplify the creation of integration
solutions should also provide a generic way to represent business items,
irrespective of the techniques used by the back-end systems for data handling. This
goal is achieved in WebSphere Process Server and WebSphere Enterprise Service
Bus thanks to the business object framework.

The business object framework enables developers to use XML Schemas to define
the structure of business data and access and manipulate instances of these data
structures (business objects) via XPath or Java code. The business object framework
is based on the Service Data Object (SDO) standard.

The Service Component Architecture (SCA) programming model

The SCA programming model represents the foundation for any solution to be
developed on WebSphere Process Server and WebSphere Enterprise Service Bus.
SCA provides a way for developers to encapsulate service implementations in
reusable components. It enables you to define interfaces, implementations, and
references in a way that is independent of which technology you use. This
approach gives you the opportunity to bind the elements to whichever technology
you choose. There is also an SCA client programming model that enables the
invocation of those components. In particular, it enables runtime infrastructures
based on Java to interact with non-Java runtimes. SCA uses business objects as the
data items for service invocation.

Tools and products

IBM WebSphere Integration Developer is the integrated development environment
that has all the necessary tools to create and compose business integration
solutions based on the technologies just mentioned. These solutions typically are
deployed to the WebSphere Process Server or, in some cases, to the WebSphere
Enterprise Service Bus.

Developing business process management solutions 7

8 Developing and deploying

Bindings

At the core of a service-oriented architecture is the concept of a service, a unit of
functionality accomplished by an interaction between computing devices. An export
defines the external interface (or access point) of a module, so that Service
Component Architecture (SCA) components within the module can provide their
services to external clients. An import defines an interface to services outside a
module, so the services can be called from within the module. You use
protocol-specific bindings with imports and exports to specify the means of
transporting the data into or out of the module.

Exports

External clients can invoke SCA components in an integration module over a
variety of protocols (such as HTTP, JMS, MQ, and RMI/IIOP) with data in a
variety of formats (such as XML, CSV, COBOL, and JavaBean). Exports are
components that receive these requests from external sources and then invoke
WebSphere Process Server components using the SCA programming model.

For example, in the following figure, an export receives a request over the HTTP
protocol from a client application. The data is transformed into a business object,
the format used by the SCA component. The component is then invoked with that
data object.

Imports

An SCA component might want to invoke a non-SCA external service that expects
data in a different format. An import is used by the SCA component to invoke the
external service using the SCA programming model. The import then invokes the
target service in the way that the service expects.

For example, in the following figure, a request from an SCA component is sent, by
the import, to an external service. The business object, which is the format used by
the SCA component, is transformed to the format expect by the service, and the
service is invoked.

Module

Component
with HTTP

binding

Header

Body

Business
object

Export

Figure 2. An export with HTTP binding

© Copyright IBM Corp. 2006, 2010 9

List of bindings

You use WebSphere Integration Developer to generate a binding for an import or
export and to configure the binding. The types of bindings that are available are
described in the following list.
v SCA

The SCA binding, which is the default, lets your service communicate with
services in other SCA modules. You use an import with an SCA binding to
access a service in another SCA module. You use an export with an SCA binding
to offer a service to other SCA modules.

v Web service
A Web service binding lets you access an external service using interoperable
SOAP messages and qualities of service. You can also use Web service bindings
to include attachments as part of the SOAP message.
The Web service binding can use a transport protocol of either SOAP/HTTP
(SOAP over HTTP) or SOAP/JMS (SOAP over JMS). Regardless of the transport
(HTTP or JMS) used to convey the SOAP messages, Web service bindings always
handle request/response interactions synchronously.

v HTTP
The HTTP binding lets you access an external service using the HTTP protocol,
where non-SOAP messages are used, or where direct HTTP access is required.
This binding is used when you are working with Web services that are based on
the HTTP model (that is, services that use well-known HTTP interface
operations such as GET, PUT, DELETE, and so on).

v Enterprise JavaBeans™ (EJB)
The EJB bindings let SCA components interact with services provided by Java
EE business logic running on a Java EE server.

v EIS
The EIS (enterprise information system) binding, when used with a JCA resource
adapter, lets you access services on an enterprise information system or make
your services available to the EIS.

v JMS bindings
Java Message Service (JMS), generic JMS, and WebSphere MQ JMS (MQ JMS)
bindings are used for interactions with messaging systems, where asynchronous
communication through message queues is critical for reliability.
An export with one of the JMS bindings watches a queue for the arrival of a
message and asynchronously sends the response, if any, to the reply queue. An
import with one of the JMS bindings builds and sends a message to a JMS
queue and watches a queue for the arrival of the response, if any.
– JMS

Module

Component with HTTP
binding

Header

Body

Business
object

Import

Figure 3. An import with HTTP binding

10 Developing and deploying

The JMS binding lets you access the WebSphere-embedded JMS provider.
– Generic JMS

The generic JMS binding lets you access a non-IBM vendor messaging system.
– MQ JMS

The MQ JMS binding lets you access the JMS subset of a WebSphere MQ
messaging system. You would use this binding when the JMS subset of
functions is sufficient for your application.

v MQ
The WebSphere MQ binding lets you communicate with MQ native applications,
bringing them into the service oriented architecture framework and providing
access to MQ-specific header information. You would use this binding when you
need to use MQ native functions.

Export and import binding overview
An export lets you make services in an integration module available to external
clients, and an import makes it possible for your SCA components in an
integration module to call external services. The binding associated with the export
or import specifies the relationship between protocol messages and business
objects. It also specifies the way that operations and faults are selected.

Flow of information through an export

An export receives a request, which is intended for the component to which the
export is wired, over a specific transport determined by the associated binding (for
example, HTTP).

When the export receives the request, the following sequence of events occurs:
1. For WebSphere MQ bindings only, the header data binding transforms the

protocol header into a header data object.

Figure 4. Flow of a request through the export to a component

Bindings 11

2. The function selector determines the native method name from the protocol
message. The native method name is mapped by the export configuration to
the name of an operation on the interface of the export.

3. The request data handler or data binding on the method transforms the request
to a request business object.

4. The export invokes the component method with the request business object.
v The HTTP export binding, the Web service export binding, and the EJB

export binding invoke the SCA component synchronously.
v The JMS, Generic JMS, MQ JMS, and WebSphere MQ export bindings invoke

the SCA component asynchronously.

Note that an export can propagate the headers and user properties it receives over
the protocol, if context propagation is enabled. Components that are wired to the
export can then access these headers and user properties. See the “Propagation”
topic in the WebSphere Integration Developer information center for more
information.

If this is a two-way operation, the component returns a response.

The following sequence of steps occurs:
1. If a normal response message is received by the export binding, the response

data handler or data binding on the method transforms the business object to a
response.
If the response is a fault, the fault data handler or data binding on the method
transforms the fault to a fault response.
For HTTP export bindings only, if the response is a runtime exception, the
runtime exception data handler, if configured, is called.

2. For WebSphere MQ bindings only, the header data binding transforms the
header data objects into protocol headers.

Figure 5. Flow of a response back through the export

12 Developing and deploying

3. The export sends the service response over the transport.

Flow of information through an import

Components send requests to services outside the module using an import. The
request is sent, over a specific transport determined by the associated binding.

The component invokes the import with a request business object.

Note:

v The HTTP import binding, the Web service import binding, and the EJB import
binding should be invoked synchronously by the calling component.

v The JMS, Generic JMS, MQ JMS, and WebSphere MQ import binding should be
invoked asynchronously.

After the component invokes the import, the following sequence of events occurs:
1. The request data handler or data binding on the method transforms the request

business object into a protocol request message.
2. For WebSphere MQ bindings only, the header data binding on the method sets

the header business object in the protocol header.
3. The import invokes the service with the service request over the transport.

If this is a two-way operation, the service returns a response, and the following
sequence of steps occurs:

Figure 6. Flow from a component through the import to a service

Bindings 13

1. For WebSphere MQ bindings only, the header data binding transforms the
protocol header into a header data object.

2. A determination is made about whether the response is a fault.
v If the response is a fault, the fault selector inspects the fault to determine

which WSDL fault it maps to. The fault data handler on the method then
transforms the fault to a fault response.

v If the response is a runtime exception, the runtime exception data handler, if
configured, is called.

3. The response data handler or binding on the method transforms the response
to a response business object.

4. The import returns the response business object to the component.

Export and import binding configuration
One of the key aspects of export and import bindings is data format
transformation, which indicates how data is mapped (deserialized) from a native
wire format to a business object or how it is mapped (serialized) from a business
object to a native wire format. For bindings associated with exports, you can also
specify a function selector to indicate which operation should be performed on the
data. For bindings associated with exports or imports, you can indicate how faults
that occur during processing should be handled.

In addition, you specify transport-specific information on bindings. For example,
for an HTTP binding, you specify the endpoint URL. You can find more
information in the WebSphere Integration Developer information center. For
example, for the HTTP binding, the transport-specific information is described in
the “Generating an HTTP import binding” and “Generating an HTTP export
binding” topics.

Import

Request
data handler

Protocol
Request
Message

Component Business
object

1.

Header

Body

Header
data binding

Creates:
Header

Data
Object

2.

4.

OR

Fault
data handler

Runtime exception
data handler

Creates:

Creates:

Creates:

3.

Fault
Data

Object

Exception
Data

Object

Figure 7. Flow of a response back through the import

14 Developing and deploying

Data format transformation in imports and exports
When an export or import binding is configured in WebSphere Integration
Developer, one of the configuration properties that you specify is the data format
used by the binding.
v For export bindings, in which a client application sends requests to and receives

responses from an SCA component, you indicate the format of the native data.
Depending on the format, the system selects the appropriate data handler or
data binding to transform the native data to a business object (which is used by
the SCA component) and conversely to transform the business object to native
data (which is the response to the client application).

v For import bindings, in which an SCA component sends requests to and receives
responses from a service outside the module, you indicate the data format of the
native data. Depending on the format, the system selects the appropriate data
handler or data binding to transform the business object to native data and vice
versa.

WebSphere Process Server provides a set of predefined data formats and
corresponding data handlers or data bindings that support the formats. You can
also create your own custom data handlers and register the data format for those
data handlers. For more information, see the “Developing data handlers” topic in
the WebSphere Integration Developer information center.
v Data handlers are protocol-neutral and transform data from one format to

another. In WebSphere Process Server, data handlers typically transform native
data (such as XML, CSV, and COBOL) to a business object and a business object
to native data. Because they are protocol-neutral, you can reuse the same data
handler with a variety of export and import bindings. For example, you can use
the same XML data handler with an HTTP export or import binding or with a
JMS export or import binding.

v Data bindings also transform native data to a business object (and vice versa), but
they are protocol-specific. For example, an HTTP data binding can be used with
an HTTP export or import binding only. Unlike data handlers, an HTTP data
binding cannot be reused with an MQ export or import binding.

Note: Three HTTP data bindings (HTTPStreamDataBindingSOAP,
HTTPStreamDataBindingXML, and HTTPServiceGatewayDataBinding) are
deprecated as of WebSphere Process Server Version 7.0. Use data handlers
whenever possible.

As noted earlier, you can create custom data handlers, if necessary. You can also
create custom data bindings; however, it is recommended that you create custom
data handlers because they can be used across multiple bindings.

Data handlers
Data handlers are configured against export and import bindings to transform data
from one format to another in a protocol-neutral fashion. Several data handlers are
provided as part of the product, but you can also create your own data handler, if
necessary. You can associate a data handler with an export or import binding at
one of two levels: you can associate it with all operations in the interface of the
export or import, or you can associate it with a specific operation for the request or
response.

Predefined data handlers

You use WebSphere Integration Developer to specify the data handler that you
want to use.

Bindings 15

The data handlers that are predefined for your use are listed in the following table,
which also describes how each data handler transforms inbound and outbound
data.

Note: Except where noted, these data handlers can be used with JMS, Generic
JMS, MQ JMS, WebSphere MQ, and HTTP bindings.
See the “Data handlers” topic in the WebSphere Integration Developer information
center for more detailed information.

Table 1. Predefined data handlers

Data handler
Native data to business
object

Business object to native
data

ATOM Parses ATOM feeds into an
ATOM feed business object.

Serializes an ATOM feed
business object to ATOM
feeds.

Delimited Parses delimited data into a
business object.

Serializes a business object to
delimited data, including
CSV.

Fixed Width Parses fixed-width data into
a business object.

Serializes a business object to
fixed-width data.

Handled by WTX Delegates data format
transformation to the
WebSphere Transformation
Extender (WTX). The WTX
map name is derived by the
data handler.

Delegates data format
transformation to the
WebSphere Transformation
Extender (WTX). The WTX
map name is derived by the
data handler.

Handled by WTX Invoker Delegates the data format
transformation to the
WebSphere Transformation
Extender (WTX). The WTX
map name is supplied by the
user.

Delegates the data format
transformation to the
WebSphere Transformation
Extender (WTX). The WTX
map name is supplied by the
user.

JAXB Serializes Java beans to a
business object using the
mapping rules defined by
the Java Architecture for
XML Binding (JAXB)
specification.

Deserializes a business object
to Java beans using the
mapping rules defined by
the JAXB specification.

JAXWS
Note: The JAXWS data
handler can be used only
with the EJB binding.

Used by an EJB binding to
transform a response Java
object or exception Java
object to a response business
object using the mapping
rules defined by the Java API
for XML Web Services
(JAX-WS) specification.

Used by an EJB binding to
transform a business object
to the outgoing Java method
parameters using the
mapping rules defined by
the JAX-WS specification.

JSON Parses JSON data into a
business object.

Serializes a business object to
JSON data.

Native body Parses the native bytes, text,
map, stream, or object into
one of five base business
objects (text, bytes, map,
stream, or object).

Transforms the five base
business objects into byte,
text, map, stream, or object.

16 Developing and deploying

Table 1. Predefined data handlers (continued)

Data handler
Native data to business
object

Business object to native
data

SOAP Parses the SOAP message
(and the header) into a
business object.

Serializes a business object to
a SOAP message.

XML Parses XML data into a
business object.

Serializes a business object to
XML data.

UTF8XMLDataHandler Parses UTF-8 encoded XML
data into a business object.

Serializes a business object
into UTF-8 encoded XML
data when sending a
message.

Creating a data handler

Detailed information about creating a data handler can be found in the
“Developing data handlers” topic in the WebSphere Integration Developer
information center.

Data bindings
Data bindings are configured against export and import bindings to transform data
from one format to another. Data bindings are specific to a protocol. Several data
bindings are provided as part of the product, but you can also create your own
data binding, if necessary. You can associate a data binding with an export or
import binding at one of two levels–you can associate it with all operations in the
interface of the export or import, or you can associate it with a specific operation
for the request or response.

You use WebSphere Integration Developer to specify which data binding you want
to use or to create your own data binding. A discussion of creating data bindings
can be found in the “Overview of JMS, MQ JMS and generic JMS bindings” section
of the WebSphere Integration Developer information center.

JMS bindings

The following table lists the data bindings that can be used with:
v JMS bindings
v Generic JMS bindings
v WebSphere MQ JMS bindings

The table also includes a description of the tasks that the data bindings perform.

Table 2. Predefined data bindings for JMS bindings

Data binding
Native data to business
object

Business object to native
data

Serialized Java object Transforms the Java
serialized object into a
business object (which is
mapped as the input or
output type in the WSDL).

Serializes a business object to
the Java serialized object in
the JMS object message.

Bindings 17

Table 2. Predefined data bindings for JMS bindings (continued)

Data binding
Native data to business
object

Business object to native
data

Wrapped bytes Extracts the bytes from the
incoming JMS bytes message
and wraps them into the
JMSBytesBody business
object.

Extracts the bytes from the
JMSBytesBody business
object and wraps them into
the outgoing JMS bytes
message

Wrapped map entry Extracts the name, value, and
type information for every
entry in the incoming JMS
map message and creates a
list of MapEntry business
objects. It then wraps the list
into the JMSMapBody
business object

Extracts the name, value, and
type information from the
MapEntry list in the
JMSMapBody business object
and creates the
corresponding entries in the
outgoing JMS map message.

Wrapped object Extracts the object from the
incoming JMS object message
and wraps it into the
JMSObjectBody business
object.

Extracts the object from the
JMSObjectBody business
object and wraps it into the
outgoing JMS object
message.

Wrapped text Extracts the text from the
incoming JMS text message
and wraps it into the
JMSTextBody business object.

Extracts the text from the
JMSTextBody business object
and wraps it into the
outgoing JMS text message.

WebSphere MQ bindings

The following table lists the data bindings that can be used with WebSphere MQ
and describes the tasks that the data bindings perform.

Table 3. Predefined data bindings for WebSphere MQ bindings

Data binding
Native data to business
object

Business object to native
data

Serialized Java object Transforms the Java
serialized object from the
incoming message into a
business object (which is
mapped as the input or
output type in the WSDL).

Transforms a business object
to the Java serialized object
in the outgoing message

Wrapped bytes Extracts the bytes from the
unstructured MQ bytes
message and wraps them
into the JMSBytesBody
business object.

Extracts the bytes from a
JMSBytesBody business
object and wraps the bytes
into the outgoing
unstructured MQ bytes
message.

Wrapped text Extracts the text from an
unstructured MQ text
message and wraps it into a
JMSTextBody business object.

Extracts text from a
JMSTextBody business object
and wraps it in an
unstructured MQ text
message.

18 Developing and deploying

Table 3. Predefined data bindings for WebSphere MQ bindings (continued)

Data binding
Native data to business
object

Business object to native
data

Wrapped stream entry Extracts the name and type
information for every entry
in the incoming JMS stream
message and creates a list of
the StreamEntry business
objects. It then wraps the list
into the JMSStreamBody
business object.

Extracts the name and type
information from the
StreamEntry list in the
JMSStreamBody business
object and creates
corresponding entries in the
outgoing JMSStreamMessage.

In addition to the data bindings listed in Table 3 on page 18, WebSphere MQ also
uses header data bindings. See the WebSphere Integration Developer information
center for details.

HTTP bindings

The following table lists the data bindings that can be used with HTTP and
describes the tasks that the data bindings perform.

Table 4. Predefined data bindings for HTTP bindings

Data binding
Native data to business
object

Business object to native
data

Wrapped bytes Extracts the bytes from the
body of the incoming HTTP
message and wraps them
into the HTTPBytes business
object.

Extracts the bytes from the
HTTPBytes business object
and adds them to the body
of the outgoing HTTP
message.

Wrapped text Extracts the text from the
body of the incoming HTTP
message and wraps it into
the HTTPText business
object.

Extracts the text from the
HTTPText business object
and adds it to the body of
the outgoing HTTP message.

Function selectors in export bindings
A function selector is used to indicate which operation should be performed on the
data for a request message. Function selectors are configured as part of an export
binding.

Consider an SCA export that exposes an interface. The interface contains two
operations–Create and Update. The export has a JMS binding that reads from a
queue.

When a message arrives on the queue, the export is passed the associated data, but
which operation from the export's interface should be invoked on the wired
component? The operation is determined by the function selector and the export
binding configuration.

The function selector returns the native function name (the function name in the
client system that sent the message). The native function name is then mapped to
the operation or function name on the interface associated with the export. For
example, in the following figure, the function selector returns the native function
name (CRT) from the incoming message, the native function name is mapped to

Bindings 19

the Create operation, and the business object is sent to the SCA component with
the Create operation.

If the interface has only one operation, there is no need to specify a function
selector.

Several prepackaged function selectors are available and are listed in the sections
that follow.

JMS bindings

The following table lists the function selectors that can be used with:
v JMS bindings
v Generic JMS bindings
v WebSphere MQ JMS bindings

Table 5. Predefined function selectors for JMS bindings

Function selector Description

JMS function selector for simple JMS data
bindings

Uses the JMSType property of the message
to select the operation name.

JMS header property function selector Returns the value of the JMS String
Property, TargetFunctionName, from the
header.

JMS service gateway function selector Determines if the request is a one-way or
two-way operation by examining the
JMSReplyTo property set by the client.

WebSphere MQ bindings

The following table lists the function selectors that can be used with WebSphere
MQ bindings.

Export

Function
selector

Create

JMS queue
Native function name

(CRT)

ComponentBusiness
object

Figure 8. The function selector

20 Developing and deploying

Table 6. Predefined function selectors for WebSphere MQ bindings

Function selector Description

MQ handleMessage function selector Returns handleMessage as a value, which is
mapped using the export method bindings
to the name of an operation on the interface.

MQ uses JMS default function selector Reads the native operation from the
TargetFunctionName property of the folder
of an MQRFH2 header.

MQ uses message body format as native
function

Finds the Format field of the last header and
returns that field as a String.

MQ type function selector Creates a method in your export binding by
retrieving a URL containing the Msd, Set,
Type and Format properties found in the
MQRFH2 header.

MQ service gateway function selector Uses the MsgType property in the MQMD
header to determine the operation name.

HTTP bindings

The following table lists the function selectors that can be used with HTTP
bindings.

Table 7. Predefined function selectors for HTTP bindings

Function selector Description

HTTP function selector based on the
TargetFunctionName header

Uses the TargetFunctionName HTTP header
property from the client to determine which
operation to invoke at runtime from the
export.

HTTP function selector based on the URL
and HTTP method

Uses the relative path from the URL
appended with the HTTP method from the
client to determine the native operation
defined on the export.

HTTP service gateway function selector
based on URL with an operation name

Determines the method to invoke based on
the URL if "operationMode = oneWay" has
been appended to the request URL.

Note: You can also create your own function selector, using WebSphere Integration
Developer. Information about creating a function selector is provided in the
WebSphere Integration Developer information center. For example, a description of
creating a function selector for WebSphere MQ bindings can be found in
“Overview of the MQ function selectors”.

Fault handling
You can configure your import and export bindings to handle faults (for example,
business exceptions) that occur during processing by specifying fault data
handlers. You can set up a fault data handler at three levels–you can associate a
fault data handler with a fault, with an operation, or for all operations with a
binding.

A fault data handler processes fault data and transforms it into the correct format
to be sent by the export or import binding.

Bindings 21

v For an export binding, the fault data handler transforms the exception business
object sent from the component to a response message that can be used by the
client application.

v For an import binding, the fault data handler transforms the fault data or
response message sent from a service into an exception business object that can
be used by the SCA component.

For import bindings, the binding calls the fault selector, which determines whether
the response message is a normal response, a business fault, or a runtime
exception.

You can specify a fault data handler for a particular fault, for an operation, and for
all operations with a binding.
v If the fault data handler is set at all three levels, the data handler associated with

a particular fault is called.
v If fault data handlers are set at the operation and binding levels, the data

handler associated with the operation is called.

Two editors are used in WebSphere Integration Developer to specify fault handling.
The interface editor is used to indicate whether there will be a fault on an
operation. After a binding is generated with this interface, the editor in the
properties view lets you configure how the fault will be handled. For more
information, see the “Fault selectors” topic in the WebSphere Integration Developer
information center.

How faults are handled in export bindings
When a fault occurs during the processing of the request from a client application,
the export binding can return the fault information to the client. You configure the
export binding to specify how the fault should be processed and returned to the
client.

You configure the export binding using WebSphere Integration Developer.

During request processing, a client invokes an export with a request, and the
export invokes the SCA component. During the processing of the request, the SCA
component can either return a business response or can throw a service business
exception or a service runtime exception. When this occurs, the export binding
transforms the exception into a fault message and sends it to the client, as shown
in the following figure and described in the sections that follow.

You can create a custom data handler or data binding to handle faults.

Export ComponentClient

Service business
exception

OR
Service runtime

exception

Response
message

Figure 9. How fault information is sent from the component through the export binding to the
client

22 Developing and deploying

Business faults

Business faults are business errors or exceptions that occur during processing.

Consider the following interface, which has a createCustomer operation on it. This
operation has two business faults defined: CustomerAlreadyExists and
MissingCustomerId.

In this example, if a client sends a request to create a customer (to this SCA
component) and that customer already exists, the component throws a
CustomerAlreadyExists fault to the export. The export needs to propagate this
business fault back to the calling client. To do so, it uses the fault data handler that
is set up on the export binding.

When a business fault is received by the export binding, the following processing
occurs:
1. The binding determines which fault data handler to invoke for handling the

fault. If the service business exception contains the fault name, the data handler
that is set up on the fault is called. If the service business exception does not
contain the name of the fault, the fault name is derived by matching the fault
types.

2. The binding calls the fault data handler with the data object from the service
business exception.

3. The fault data handler transforms the fault data object to a response message
and returns it to the export binding.

4. The export returns the response message to the client.

If the service business exception contains the fault name, the data handler that is
set up on the fault is called. If the service business exception does not contain the
name of the fault, the fault name is derived by matching the fault types.

Runtime exceptions

A runtime exception is an exception that occurs in the SCA application during the
processing of a request that does not correspond to a business fault. Unlike
business faults, runtime exceptions are not defined on the interface.

In certain scenarios, you might want to propagate these runtime exceptions to the
client application so that the client application can take the appropriate action.

For example, if a client sends a request (to the SCA component) to create a
customer and an authorization error occurs during processing of the request, the

Figure 10. Interface with two faults

Bindings 23

component throws a runtime exception. This runtime exception has to be
propagated back to the calling client so it can take the appropriate action regarding
the authorization. This is achieved by the runtime exception data handler
configured on the export binding.

Note: You can configure a runtime exception data handler only on HTTP bindings.

The processing of a runtime exception is similar to the processing of a business
fault. If a runtime exception data handler was set up, the following processing
occurs:
1. The export binding calls the appropriate data handler with the service runtime

exception.
2. The data handler transforms the fault data object to a response message and

returns it to the export binding.
3. The export returns the response message to the client.

Fault handling and runtime exception handling are optional. If you do not want to
propagate faults or runtime exceptions to the calling client, do not configure the
fault data handler or runtime exception data handler.

How faults are handled in import bindings
A component uses an import to send a request to a service outside the module.
When a fault occurs during the processing of the request, the service returns the
fault to the import binding. You can configure the import binding to specify how
the fault should be processed and returned to the component.

You configure the import binding using WebSphere Integration Developer. You can
specify a fault data handler (or data binding), and you also specify a fault selector.

Fault data handlers

The service that processes the request sends, to the import binding, fault
information in the form of an exception or a response message that contains the
fault data.

The import binding transforms the service exception or response message into a
service business exception or service runtime exception, as shown in the following
figure and described in the sections that follow.

You can create a custom data handler or data binding to handle faults.

Import Service

Service business
exception

OR
Service runtime

exception

Business
response

OR
Business fault

OR
Runtime fault

Component

Figure 11. How fault information is sent from the service through the import to the component

24 Developing and deploying

Fault selectors

When you configure an import binding, you can specify a fault selector. The fault
selector determines whether the import response is an actual response, a business
exception, or a runtime fault. It also determines, from the response body or header,
the native fault name, which is mapped by the binding configuration to the name
of a fault in the associated interface.

Two types of prepackaged fault selectors are available for use with JMS, MQ JMS,
Generic JMS, WebSphere MQ, and HTTP imports:

Table 8. Prepackaged fault selectors

Fault selector type Description

Header-based Determines whether a response message is a
business fault, a runtime exception, or a
normal message based on the headers in the
incoming response message.

SOAP Determines whether the response SOAP
message is a normal response, business
fault, or runtime exception.

The following shows examples of header-based fault selectors and the SOAP fault
selector.
v Header-based fault selector

If an application wants to indicate that the incoming message is a business fault,
there must be two headers in the incoming message for business faults, which is
shown as follows:
Header name = FaultType, Header value = Business
Header name = FaultName, Header value = <user defined native fault name>

If an application wants to indicate that the incoming response message is a
runtime exception, then there must be one header in the incoming message,
which is shown as follows:
Header name = FaultType, Header value = Runtime

v SOAP fault selector
A business fault can be sent as part of the SOAP message with the following
custom SOAP header. "CustomerAlreadyExists" is the name of the fault in this
case.
<ibmSoap:BusinessFaultName
xmlns:ibmSoap="http://www.ibm.com/soap">CustomerAlreadyExists
<ibmSoap:BusinessFaultName>

The fault selector is optional. If you do not specify a fault selector, the import
binding cannot determine the type of response. The binding therefore treats it as a
business response and calls the response data handler or data binding.

You can create a custom fault selector. The steps for creating a custom fault selector
are provided in the “Developing a custom fault selector” topic of the WebSphere
Integration Developer information center.

Business faults

A business fault can occur when there is an error in the processing of a request.
For example, if you send a request to create a customer and that customer already
exists, the service sends a business exception to the import binding.

Bindings 25

When a business exception is received by the binding, the processing steps depend
on whether a fault selector has been set up for the binding.
v If no fault selector was set up, the binding calls the response data handler or

data binding.
v If a fault selector was set up, the following processing occurs:

1. The import binding calls the fault selector to determine whether the response
is business fault, business response, or runtime fault.

2. If the response is a business fault, the import binding calls the fault selector
to provide the native fault name.

3. The import binding determines the WSDL fault corresponding to the native
fault name returned by the fault selector.

4. The import binding determines the fault data handler that is configured for
this WSDL fault.

5. The import binding calls this fault data handler with the fault data.
6. The fault data handler transforms the fault data to a data object and returns

it to the import binding.
7. The import binding constructs a service business exception object with the

data object and the fault name.
8. The import returns the service business exception object to the component.

Runtime exceptions

A runtime exception can occur when there is a problem in communicating with the
service. The processing of a runtime exception is similar to the processing of a
business exception. If a fault selector was set up, the following processing occurs:
1. The import binding calls the appropriate runtime exception data handler with

the exception data.
2. The runtime exception data handler transforms the exception data to a service

runtime exception object and returns it to the import binding.
3. The import returns the service runtime exception object to the component.

Interoperability between SCA modules and Open SCA services
The IBM WebSphere Application Server V7.0 Feature Pack for Service Component
Architecture (SCA) provides a simple, yet powerful programming model for
constructing applications based on the Open SCA specifications. The SCA modules
of WebSphere Process Server use import and export bindings to interoperate with
Open SCA services developed in a Rational® Application Developer environment
and hosted by the WebSphere Application Server Feature Pack for Service
Component Architecture.

An SCA application invokes an Open SCA application by way of an import
binding. An SCA application receives a call from an Open SCA application by way
of an export binding. A list of supported bindings is shown in “Invoking services
over interoperable bindings” on page 28.

Invoking Open SCA services from SCA modules

SCA applications developed with WebSphere Integration Developer can invoke
Open SCA applications developed in a Rational Application Developer
environment. This section provides an example of invoking an Open SCA service
from an SCA module using an SCA import binding.

26 Developing and deploying

No special configuration is required to invoke an Open SCA service.

To connect to an Open SCA service by way of an SCA import binding, you provide
the component name and service name of the Open SCA service in the import
binding.
1. To obtain the name of the target component and service from the Open SCA

composite, perform the following steps:
a. Ensure that the Properties tab is open by clicking Window → Show View →

Properties.
b. Open the composite editor by double-clicking the composite diagram that

contains the component and service. For example, for a component named
customer, the composite diagram is customer.composite_diagram.

c. Click the target component.
d. In the Name field of the Properties tab, note the name of the target

component.
e. Click the service icon associated with the component.
f. In the Name field of the Properties tab, note the name of the service.

2. To configure the WebSphere Process Server import to connect it to the Open
SCA service, perform the following steps:
a. In WebSphere Integration Developer, navigate to the Properties tab of the

SCA import that you want to connect to the Open SCA service.
b. In the Module name field, enter the component name from step 1d.
c. In the Export name field, enter the service name from step 1f.
d. Save your work by pressing Ctrl+S.

Invoking SCA modules from Open SCA services

Open SCA applications developed in a Rational Application Developer
environment can invoke SCA applications developed with WebSphere Integration
Developer. This section provides an example of invoking an SCA module (by way
of an SCA export binding) from an Open SCA service.

Open SCA Service
Created in Rational

Application Developer

ComponentServiceComponent Import

SCA Module
Created in WebSphere
Integration Developer

Figure 12. Component in SCA module invoking Open SCA service

Bindings 27

To connect to an SCA component by way of an Open SCA reference binding, you
provide the module name and export name.
1. To obtain the name of the target module and export, perform the following

steps:
a. In WebSphere Integration Developer, open the module in the assembly

editor by double-clicking the module.
b. Click the export.
c. In the Name field of the Properties tab, note the name of the export.

2. Configure the Open SCA reference that you want to connect to the WebSphere
Process Server module and export:
a. In Rational Application Developer, open the composite editor by

double-clicking the composite diagram that contains the component and
service.

b. Click the reference icon of the component reference to display the reference
properties in the Properties tab.

c. Click the Binding tab on the left side of the page.
d. Click Bindings and then click Add.
e. Select the SCA binding.
f. In the Uri field, enter the WebSphere Process Server module name, followed

by a slash (“/”), followed by the export name (which you determined in
step 1c).

g. Click OK.
h. Save your work by pressing Ctrl+S.

Invoking services over interoperable bindings

The following bindings are supported for interoperability with an Open SCA
service.
v SCA binding

When a WebSphere Process Server SCA module invokes an Open SCA service
by way of an SCA import binding, the following invocation styles are supported:
– Asynchronous (one-way)
– Synchronous (request/response)
The SCA import interface and the Open SCA service interface must use a Web
services interoperability (WS-I) compliant WSDL interface.
Note that the SCA binding supports transaction and security context
propagation.

Open SCA Service
Created in Rational

Application Developer

Component Reference ComponentExport

SCA Module
Created in WebSphere
Integration Developer

Figure 13. Open SCA service invoking component in SCA module

28 Developing and deploying

v Web service (JAX-WS) binding with either the SOAP1.1/HTTP or
SOAP1.2/HTTP protocol
The SCA import interface and the Open SCA service interface must use a Web
services interoperability (WS-I) compliant WSDL interface.
In addition, the following qualities of service are supported:
– Web Services Atomic Transaction
– Web Services Security

v EJB binding
A Java interface is used to define the interaction between an SCA module and an
Open SCA service when the EJB binding is used.
Note that the EJB binding supports transaction and security context propagation.

v JMS bindings
The SCA import interface and the Open SCA service interface must use a Web
services interoperability (WS-I) compliant WSDL interface.
The following JMS providers are supported:
– WebSphere Platform Messaging (JMS Binding)
– WebSphere MQ (MQ JMS Binding)

Note: Business Graphs are not interoperable across any SCA bindings and,
therefore, are not supported in interfaces used to interoperate with the WebSphere
Application Server Feature Pack for Service Component Architecture.

Binding types
You use protocol-specific bindings with imports and exports to specify the means of
transporting data into or out of a module.

Selecting appropriate bindings
There are various bindings that are available to suit the needs of your application.

The bindings available in WebSphere Integration Developer provide a range of
choices. This list helps you identify when one type of binding could be more
suitable for the needs of your application.

Consider an SCA binding when these factors are applicable:
v All services are contained in WebSphere Integration Developer modules; that is,

there are no external services.
v You want to separate function into different SCA modules that interact directly

with each other.
v The modules are tightly coupled.

Consider a Web Service binding when these factors are applicable:
v You need to access an external service over the Internet or provide a service over

the Internet.
v The services are loosely coupled.
v Synchronous communication is preferred; that is, a request from one service can

wait for a response from another.
v The protocol of the external service you are accessing or the service you want to

provide is SOAP/HTTP or SOAP/JMS.

Consider an HTTP binding when these factors are applicable:

Bindings 29

v You need to access an external service over the Internet or provide a service over
the Internet and you are working with other Web services based on the HTTP
model (that is, using well-known HTTP interface operations such as GET, PUT,
DELETE, and so on).

v The services are loosely coupled.
v Synchronous communication is preferred; that is, a request from one service can

wait for a response from another.

Consider an EJB binding when these factors are applicable:
v The binding is for an imported service that is itself an EJB or that needs to be

accessed by EJB clients.
v The imported service is loosely coupled.
v Stateful EJB interactions are not required.
v Synchronous communication is preferred; that is, a request from one service can

wait for a response from another.

Consider an EIS binding when these factors are applicable:
v You need to access a service on an EIS system using a resource adapter.
v Synchronous data transmission is preferred over asynchronous.

Consider a JMS binding when these factors are applicable:

Note: There are several types of JMS bindings. If you expect to exchange SOAP
messages using JMS, consider the Web service binding with the SOAP/JMS
protocol. See “Web service bindings” on page 31.
v You need to access a messaging system.
v The services are loosely coupled.
v Asynchronous data transmission is preferred over synchronous.

Consider a Generic JMS binding when these factors are applicable:
v You need to access a non-IBM vendor messaging system.
v The services are loosely coupled.
v Reliability is more important than performance; that is, asynchronous data

transmission is preferred over synchronous.

Consider an MQ binding when these factors are applicable:
v You need to access a WebSphere MQ messaging system and need to use the MQ

native functions.
v The services are loosely coupled.
v Reliability is more important than performance; that is, asynchronous data

transmission is preferred over synchronous.

Consider an MQ JMS binding when these factors are applicable:
v You need to access a WebSphere MQ messaging system but can do so within a

JMS context; that is, the JMS subset of functions is sufficient for your application.
v The services are loosely coupled.
v Reliability is more important than performance; that is, asynchronous data

transmission is preferred over synchronous.

30 Developing and deploying

SCA bindings
A Service Component Architecture (SCA) binding lets a service communicate with
other services in other modules. An import with an SCA binding lets you access a
service in another SCA module. An export with an SCA binding lets you offer a
service to other modules.

You use WebSphere Integration Developer to generate and configure SCA bindings
on imports and exports in SCA modules.

If modules are running on the same server or are deployed in the same cluster, an
SCA binding is the easiest and fastest binding to use.

After the module that contains the SCA binding is deployed to the server, you can
use the administrative console to view information about the binding or, in the
case of an import binding, to change selected properties of the binding.

Web service bindings
A Web service binding is the means of transmitting messages from a Service
Component Architecture (SCA) component to a Web service (and vice versa).

Web service bindings overview
A Web service import binding allows you to call an external Web service from your
Service Component Architecture (SCA) components. A Web service export binding
allows you to expose your SCA components to clients as Web services.

With a Web service binding, you access external services using interoperable SOAP
messages and qualities of service (QoS).

You use WebSphere Integration Developer to generate and configure Web service
bindings on imports and exports in SCA modules. The following types of Web
service bindings are available:
v SOAP1.2/HTTP and SOAP1.1/HTTP

These bindings are based on Java API for XML Web Services (JAX-WS), a Java
programming API for creating Web services.
– Use SOAP1.2/HTTP if your Web service conforms to the SOAP 1.2

specification.
– Use SOAP1.1/HTTP if your Web service conforms to the SOAP 1.1

specification.
When you select one of these bindings, you can send attachments with your
SOAP messages.
The Web service bindings work with standard SOAP messages. Using one of the
Web service JAX-WS bindings, however, you can customize the way that SOAP
messages are parsed or written. For example, you can handle nonstandard
elements in SOAP messages or apply additional processing to the SOAP
message. When you configure the binding, you specify a custom data handler
that performs this processing on the SOAP message.

v SOAP1.1/HTTP
Use this binding if you want to create Web services that use a SOAP-encoded
message based on Java API for XML-based RPC (JAX-RPC).

v SOAP1.1/JMS
Use this binding to send or receive SOAP messages using a Java Message
Service (JMS) destination.

Bindings 31

Regardless of the transport (HTTP or JMS) that is used to convey the SOAP
message, Web service bindings always handle request/response interactions
synchronously. The thread making the invocation on the service provider is
blocked until a response is received from the provider. See “Synchronous
invocation” for more information about this invocation style.

Important: The following combinations of Web service bindings cannot be used on
exports in the same module. If you need to expose components using more than
one of these export bindings, you need to have each in a separate module and then
connect those modules to your components using the SCA binding:
v SOAP 1.1/JMS and SOAP 1.1/HTTP using JAX-RPC
v SOAP 1.1/HTTP using JAX-RPC and SOAP 1.1/HTTP using JAX-WS
v SOAP 1.1/HTTP using JAX-RPC and SOAP 1.2/HTTP using JAX-WS

After the SCA module that contains the Web service binding is deployed to the
server, you can use the administrative console to view information about the
binding or to change selected properties of the binding.

Note: Web services allow applications to interoperate by using standard
descriptions of services and standard formats for the messages they exchange. For
example, the Web service import and export bindings can interoperate with
services that are implemented using Web Services Enhancements (WSE) Version 3.5
and Windows® Communication Foundation (WCF) Version 3.5 for Microsoft® .NET.
When interoperating with such services, you must ensure that:
v The Web Services Description Language (WSDL) file that is used to access a Web

service export includes a non-empty SOAP action value for each operation in the
interface.

v The Web service client sets either the SOAPAction header or the wsa:Action
header when sending messages to a Web service export.

SOAP header propagation
When handling SOAP messages, you might need to access information from
certain SOAP headers in messages that are received, ensure that messages with
SOAP headers are sent with specific values, or allow SOAP headers to pass across
a module.

When you configure a Web service binding in WebSphere Integration Developer,
you can indicate that you want SOAP headers to be propagated.
v When requests are received at an export or responses received at an import, the

SOAP header information can be accessed, allowing logic in the module to be
based on header values and allowing those headers to be modified.

v When requests are sent from an export or responses sent from an import, SOAP
headers can be included in those messages.

The form and presence of the propagated SOAP headers might be affected by
policy sets configured on the import or export, as explained in Table 9 on page 34.

To configure the propagation of SOAP headers for an import or export, you select
(from the Properties view of WebSphere Integration Developer) the Propagate
Protocol Header tab and select the options you require.

WS-Addressing header

The WS-Addressing header can be propagated by the Web service (JAX-WS)
binding.

32 Developing and deploying

When you propagate the WS-Addressing header, be aware of the following
information:
v If you enable propagation for the WS-Addressing header, the header will be

propagated into the module in the following circumstances:
– When requests are received at an export
– When responses are received at an import

v The WS-Addressing header is not propagated into outbound messages from
WebSphere Process Server (that is, the header is not propagated when requests
are sent from an import or when responses are sent from the export).

WS-Security header

The WS-Security header can be propagated by both the Web service (JAX-WS)
binding and the Web service (JAX-RPC) binding.

The Web services WS-Security specification describes enhancements to SOAP
messaging to provide quality of protection through message integrity, message
confidentiality, and single message authentication. These mechanisms can be used
to accommodate a wide variety of security models and encryption technologies.

When you propagate the WS-Security header, be aware of the following
information:
v If you enable propagation for the WS-Security header, the header will be

propagated across the module in the following circumstances:
– When requests are received at an export
– When requests are sent from an import
– When responses are received at an import

v The header will not, by default, be propagated when responses are sent from the
export. However, if you set the JVM property WSSECURITY.ECHO.ENABLED to true,
the header will be propagated when responses are sent from the export. In this
case, if the WS-Security header on the request path is not modified, WS-Security
headers might be automatically echoed from requests into responses.

v The exact form of the SOAP message sent from an import for a request or from
an export for a response might not exactly match the SOAP message that was
originally received. For this reason, any digital signature should be assumed to
become invalid. If a digital signature is required in messages that are sent, it
must be established using the appropriate security policy set, and WS-Security
headers relating to digital signature in received messages should be removed
within the module.

To propagate the WS-Security header, you must include the WS-Security schema
with the application module. See “Including the WS-Security schema in an
application module” on page 34 for the procedure to include the schema.

How headers are propagated

The way that headers are propagated depends on the security policy setting on the
import or export binding, as shown in the Table 9 on page 34:

Bindings 33

Table 9. How security headers are passed

Export binding with no
security policy

Export binding with
security policy

Import binding with no
security policy

Security headers are passed
as-is through the module.
They are not decrypted.

The headers are sent
outbound in the same form
in which they were received.

The digital signature might
become invalid.

Security headers are
decrypted and passed
though the module with
signature verification and
authentication.

The decrypted headers are
sent outbound.

The digital signature might
become invalid.

Import binding with
security policy

Security headers are passed
as-is through the module.
They are not decrypted.

The headers should not be
propagated to the import.
Otherwise, an error occurs
because of duplication.

Security headers are
decrypted and passed
though the module with
signature verification and
authentication.

The headers should not be
propagated to the import.
Otherwise, an error occurs
because of duplication.

Configure appropriate policy sets on the export and import bindings, because this
isolates the service requester from changes to the configuration or QoS
requirements of the service provider. Having standard SOAP headers visible in a
module can then be used to influence the processing (for example, logging and
tracing) in the module. Propagating SOAP headers across a module from a
received message to a sent message does mean that the isolation benefits of the
module are reduced.

Standard headers, such as WS-Security headers, should not be propagated on a
request to an import or response to an export when the import or export has an
associated policy set that would normally result in the generation of those headers.
Otherwise, an error will occur because of a duplication of the headers. Instead, the
headers should be explicitly removed or the import or export binding should be
configured to prevent propagation of protocol headers.

Accessing SOAP headers

When a message that contains SOAP headers is received from a Web service
import or export, the headers are placed in the headers section of the service
message object (SMO). You can access the header information, as described in
“Accessing SOAP header information in the SMO”.

Including the WS-Security schema in an application module

The following procedure outlines the steps for including the schema in the
application module:
v If the computer on which WebSphere Integration Developer is running has

access to the Internet, perform the following steps:
1. In the Business Integration perspective, select Dependencies for your project.

34 Developing and deploying

2. Expand Predefined Resources and select either WS-Security 1.0 schema files
or WS-Security 1.1 schema files to import the schema into your module.

3. Clean and rebuild the project.
v If a computer on which WebSphere Integration Developer is running does not

have Internet access, you can download the schema to a second computer that
does have Internet access. You can then copy it to the computer on which
WebSphere Integration Developer is running.
1. From the computer that has Internet access, download the remote schema:

a. Click File → Import → Business Integration → WSDL and XSD.
b. Select Remote WSDL or XSD file.
c. Import the following schemas:

http://www.w3.org/2003/05/soap-envelope/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-
schema.xsd
http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd

2. Copy the schemas to the computer that does not have Internet access.
3. From the computer that has no Internet access, import the schema:

a. Click File → Import → Business Integration → WSDL and XSD.
b. Select Local WSDL or XSD file.

4. Change the schema locations for oasis-wss-wssecurity_secext-1.1.xsd:
a. Open the schema at workplace_location/module_name/

StandardImportFilesGen/oasis-wss-wssecurity-secext-1.1.xsd.
b. Change:

<xs:import namespace=’http://www.w3.org/2003/05/soap-envelope’
schemaLocation=’http://www.w3.org/2003/05/soap-envelope/’/>

to:
<xs:import namespace=’http://www.w3.org/2003/05/soap-envelope’
schemaLocation=’../w3/_2003/_05/soap_envelope.xsd’/>

c. Change:
<xs:import namespace=’http://www.w3.org/2001/04/xmlenc#’
schemaLocation=’http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd’/>

to:
<xs:import namespace=’http://www.w3.org/2001/04/xmlenc#’
schemaLocation=’../w3/tr/_2002/rec_xmlenc_core_20021210/xenc-schema.xsd’/>

5. Change the schema location for oasis-200401-wss-wssecurity-secext-1.0.xsd:
a. Open the schema at workplace_location/module_name/

StandardImportFilesGen/oasis-200401-wss-wssecurity-secext-1.0.xsd.
b. Change:

<xsd:import namespace="http://www.w3.org/2000/09/xmldsig#"
schemaLocation="http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd"/>

to:
<xsd:import namespace="http://www.w3.org/2000/09/xmldsig#"
schemaLocation="../w3/tr/_2002/rec_xmldsig_core_20020212/xmldsig-core-schema.xsd"/>

6. Clean and rebuild the project.

Attachments in SOAP messages
You can send and receive SOAP messages that include binary data (such as PDF
files or JPEG images) as attachments. Attachments can be referenced (that is,
represented explicitly as message parts in the service interface) or unreferenced (in
which arbitrary numbers and types of attachments can be included).

Bindings 35

A referenced attachment can be represented in one of the following ways:
v As a wsi:swaRef-typed element in the message schema

Attachments defined using the wsi:swaRef type conform to the Web Services
Interoperability Organization (WS-I) Attachments Profile Version 1.0
(http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html), which defines how
message elements are related to MIME parts.

v As a top-level message part, using a binary schema type
Attachments represented as top-level message parts conform to the SOAP
Messages with Attachments (http://www.w3.org/TR/SOAP-attachments)
specification.

An unreferenced attachment is carried in a SOAP message without any
representation in the message schema.

In all cases, the WSDL SOAP binding should include a MIME binding for
attachments to be used, and the maximum size of the attachments should not
exceed 20 MB.

Note: To send or receive SOAP messages with attachments, you must use one of
the Web service bindings based on the Java API for XML Web Services (JAX-WS).

Referenced attachments: swaRef-typed elements:

You can send and receive SOAP messages that include attachments represented in
the service interface as swaRef-typed elements.

An swaRef-typed element is defined in the Web Services Interoperability
Organization (WS-I) Attachments Profile Version 1.0 (http://www.ws-i.org/Profiles/
AttachmentsProfile-1.0.html), which defines how message elements are related to
MIME parts.

Note: The SOAP messages produced or consumed are not guaranteed to conform
to the WS-I Attachments Profile. In particular, the “content-id part encoding,” as
described in section 3.8 of the WS-I Attachments Profile 1.0, is not supported.

In the SOAP message, the SOAP body contains an swaRef-typed element that
identifies the content ID of the attachment.

The WSDL for this SOAP message contains an swaRef-typed element within a
message part that identifies the attachment.

<element name="sendPhoto">
<complexType>

<sequence>

<soap:Envelope>
<soap:Body>

.

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpg
Content-ID: Photo

... binary data ...

<Photo>cid:Photo</Photo>

Attachment

swaRef element

Figure 14. A SOAP message with an swaRef element

36 Developing and deploying

http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.w3.org/TR/SOAP-attachments
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html

<element name="Photo" type="wsi:swaRef"/>
</sequence>

</complexType>
</element>

The WSDL should also contain a MIME binding that indicates MIME multipart
messages are to be used.

Note: The WSDL does not include a MIME binding for the specific swaRef-typed
message element, because MIME bindings apply only to top-level message parts.

Attachments represented as swaRef-typed elements can be propagated only across
mediation flow components. If an attachment must be accessed by or propagated
to another component type, use a mediation flow component to move the
attachment to a location that is accessible by that component.

Inbound processing of attachments

You use WebSphere Integration Developer to configure an export binding to
receive the attachment. You create a module and its associated interface and
operations, including an element of type swaRef. You then create a Web service
(JAX-WS) binding.

Note: See the “Working with attachments” topic in the WebSphere Integration
Developer information center for more detailed information.

When a client passes a SOAP message with an swaRef attachment to a Service
Component Architecture (SCA) component, the Web service (JAX-WS) export
binding first removes the attachment. It then parses the SOAP part of the message
and creates a business object. Finally, the binding sets the content ID of the
attachment in the business object.

Accessing attachment metadata in a mediation flow component

As shown in Figure 16 on page 38, when swaRef attachments are accessed by
components, the attachment content identifier appears as an element of type
swaRef.

Business object

Component
Web service
(JAX-WS)

export

<soap:Envelope>
<soap:Body>

.

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpeg
Content-ID:

... binary data ...

<Photo >>cid:Photo</Photo

cid:Photo

Photo
type wsi:swaRef
value cid:Photo

Figure 15. How the Web service (JAX-WS) export binding processes a SOAP message with
an swaRef attachment

Bindings 37

Each attachment of a SOAP message also has a corresponding attachments element
in the SMO. When using the WS-I swaRef type, the attachments element includes
the attachment content type and content ID as well as the actual binary data of the
attachment.

To obtain the value of an swaRef attachment, it is therefore necessary to obtain the
value of the swaRef-typed element, and then locate the attachments element with
the corresponding contentID value. Note that the contentID value typically has the
cid: prefix removed from the swaRef value.

Outbound processing

You use WebSphere Integration Developer to configure a Web service (JAX-WS)
import binding to invoke an external Web service. The import binding is
configured with a WSDL document that describes the Web service to be invoked
and defines the attachment that will be passed to the Web service.

When an SCA message is received by a Web service (JAX-WS) import binding,
swaRef-typed elements are sent as attachments if the import is wired to a
mediation flow component and the swaRef-typed element has a corresponding
attachments element.

For outbound processing, swaRef-typed elements are always sent with their
content ID values; however the mediation module must ensure that there is a
corresponding attachments element with a matching contentID value.

Business object

SMO

<smo:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<headers>

...
</headers>
<body>

...

</body>

</smo:smo>

...
<Photo>cid:Photo</Photo>

<attachments>
<contentID>Photo</contentID>
<contentType>image/jpeg</contentType>

</attachments>
< binary data >data> </data

Component

Photo
type wsi:swaRef
value cid:Photo

Figure 16. How swaRef attachments appear in the SMO

38 Developing and deploying

Setting attachment metadata in a mediation flow component

If, in the SMO, there is an swaRef-typed element value and an attachments
element, the binding prepares the SOAP message (with the attachment) and sends
it to a recipient.

The attachments element is present in the SMO only if a mediation flow
component is connected directly to the import or export; it does not get passed
across other component types. If the values are needed in a module that contains
other component types, a mediation flow component should be used to copy the

Component

Web service
(JAX-WS)

import

Business object

Photo
type wsi:swaRef
value cid:Photo

<soap:Envelope>
<soap:Body>

.

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpeg
Content-ID:

... binary data ...

<Photo >>cid:Photo</Photo

cid:Photo

Figure 17. How the Web service (JAX-WS) import binding generates a SOAP message with
an swaRef attachment

Web service
(JAX-WS)

import

SMO

<soap:Envelope>
<soap:Body>

.

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpeg
Content-ID:

... binary data ...

<Photo >>cid:Photo</Photo

cid:Photo

<smo:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<headers>

...
</headers>
<body>

...

</body>

</smo:smo>

...
<Photo>cid:Photo</Photo>

<attachments>
<contentID>Photo</contentID>
<contentType>image/jpeg</contentType>
<data>

</attachments>
binary data ></data

Figure 18. How an swaRef attachment in the SMO is accessed to create the SOAP message

Bindings 39

values into a location where they can then be accessed in the module, and another
mediation flow component used to set the correct values before an outbound
invocation by way of a Web service import.

Important: As described in “XML representation of SMO,” the XSL Transformation
mediation primitive transforms messages using an XSLT 1.0 transformation. The
transformation operates on an XML serialization of the SMO. The XSL
Transformation mediation primitive allows the root of the serialization to be
specified, and the root element of the XML document reflects this root.

When you are sending SOAP messages with attachments, the root element you
choose determines how attachments are propagated.
v If you use “/body” as the root of the XML map, all attachments are propagated

across the map by default.
v If you use “/” as the root of the map, you can control the propagation of

attachments.

Referenced attachments: top-level message parts:

You can send and receive SOAP messages that include binary attachments that are
declared as parts in your service interface.

In a MIME multipart SOAP message, the SOAP body is the first part of the
message, and the attachments are in subsequent parts. References to the
attachments are included in the SOAP body.

What is the advantage of sending or receiving a referenced attachment in a SOAP
message? The binary data that makes up the attachment (which is often quite
large) is held separately from the SOAP message body so that it does not need to
be parsed as XML. This results in more efficient processing than if the binary data
were held within an XML element.

Inbound processing of referenced attachments

You use WebSphere Integration Developer to configure the export binding. You
create a module and its associated interface and operations. You then create a Web
service (JAX-WS) binding. The Referenced attachments page displays all the binary
parts from the created operation, and you select which parts will be attachments.

Note: Only top-level message parts (that is, elements defined in the WSDL
portType as parts within the input or output message) that have a binary type
(either base64Binary or hexBinary) or can be sent or received as referenced
attachments.

<soap:Envelope>
<soap:Body>

.
<Photo href="cid:attach1">

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpeg
Content-ID: attach1

... <binary data>...

Reference to the attachment

Attachment

Figure 19. A SOAP message with a referenced attachment

40 Developing and deploying

See the “Working with attachments” topic in the WebSphere Integration Developer
information center for more detailed information.

When a client passes a SOAP message with an attachment to a Service Component
Architecture (SCA) component, the Web service (JAX-WS) export binding first
removes the attachment. It then parses the SOAP part of the message and creates a
business object. Finally, the binding sets the attachment binary in the business
object.

Accessing attachment metadata in a mediation flow component

As shown in Figure 20, when referenced attachments are accessed by components,
the attachment data appears as a byte array.

Each referenced attachment of a SOAP message also has a corresponding
attachments element in the SMO. The attachments element includes the
attachment content type and the path to the message body element where the
attachment is held.

Business object

Component
Web service
(JAX-WS)

export

<soap:Envelope>
<soap:Body>

.

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpeg
Content-ID: attach1

... <binary data>...

<Photo href="cid:attach1">

.

.

.
Photo byte []

Figure 20. How the Web service (JAX-WS) export binding processes a SOAP message with
a referenced attachment

Bindings 41

Important: The path to the message body element is not automatically updated if
the message is transformed and the attachment moved. You can use a mediation
flow to update the attachments element with the new path (for example, as part of
the transform or using a separate message element setter).

Outbound processing of referenced attachments

You use WebSphere Integration Developer to configure a Web service (JAX-WS)
import binding to invoke an external Web service. The import binding is
configured with a WSDL document that describes the Web service to be invoked
and defines which message parts should be passed as attachments.

Note: The part that represents an attachment, as defined in the WSDL, must be a
simple type (either base64Binary or hexBinary). If a part is defined by a
complexType, that part is not treated as an attachment.

The import binding uses information in the SMO to determine how the binary
top-level message parts are sent as attachments.

Business object

Component

.

.

.
Photo byte []

SMO

<smo:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<headers>

...
</headers>
<body>

...

</body>

</smo:smo>

... ...<Photo> binary data </Photo>
...

<attachments>
<contentID>attach1</contentID>
<bodyPath>Photo</bodyPath>
<contentType>image/jpeg</contentType>

</attachments>

Figure 21. How referenced attachments appear in the SMO

42 Developing and deploying

The attachments element is present in the SMO only if a mediation flow
component is connected directly to the import or export; it does not get passed
across other component types. If the values are needed in a module that contains
other component types, a mediation flow component should be used to copy the
values into a location where they can then be accessed in the module, and another
mediation flow component used to set the correct values before an outbound
invocation by way of a Web service import.

The binding uses a combination of the following conditions to determine how (or
whether) the message is sent:
v Whether there is a WSDL MIME binding for the top-level binary message part

and, if so, how the content type is defined
v Whether there is an attachments element in the SMO whose bodyPath value

references a top-level binary part

How attachments are created when an attachment element exists in the SMO

The following table shows how an attachment is created and sent if the SMO
contains an attachment element with a bodyPath that matches a message name
part:

Web service
(JAX-WS)

import

<soap:Envelope>
<soap:Body>

.

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpeg
Content-ID: attach1

... <binary data>...

<Photo href="cid:attach1">

SMO

<smo:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<headers>

...
</headers>
<body>

...

</body>

</smo:smo>

... ...<Photo> binary data </Photo>
...

<attachments>
<contentID>attach1</contentID>
<bodyPath>Photo</bodyPath>
<contentType>image/jpeg</contentType>

</attachments>

Figure 22. How the referenced attachment in the SMO is accessed to create the SOAP
message

Bindings 43

Table 10. How the attachment is generated

Status of WSDL MIME binding for
top-level binary message part How message is created and sent

Present with one of the following:

v No defined content type for the message
part

v Multiple content types defined

v Wildcard content type defined

Message part is sent as an attachment.

Content-Id is set to the value in the
attachments element if present; otherwise,
one is generated.

Content-Type is set to the value in the
attachments element if present; otherwise, it
is set to application/octet-stream.

Present with single, non-wildcard content
for the message part

Message part is sent as an attachment.

Content-Id is set to the value in the
attachments element if present; otherwise,
one is generated.

Content-Type is set to the value in the
attachments element if present; otherwise, it
is set to the type defined in the WSDL
MIME content element.

Not present Message part is sent as an attachment.

Content-Id is set to the value in the
attachments element if present; otherwise,
one is generated.

Content-Type is set to the value in the
attachments element if present; otherwise, it
is set to application/octet-stream.
Note: Sending message parts as attachments
when not defined as such in the WSDL may
break compliance with the WS-I
Attachments Profile 1.0 and so should be
avoided if possible.

How attachments are created when no attachment element exists in the SMO

The following table shows how an attachment is created and sent if the SMO does
not contain an attachment element with a bodyPath that matches a message name
part:

Table 11. How the attachment is generated

Status of WSDL MIME binding for
top-level binary message part How message is created and sent

Present with one of the following:

v No defined content type for the message
part

v Multiple content types defined

v Wildcard content type defined

Message part is sent as an attachment.

Content-Id is generated.

Content-Type is set to application/octet-
stream.

Present with single, non-wildcard content
for the message part

Message part is sent as an attachment.

Content-Id is generated.

Content-Type is set to the type defined in
the WSDL MIME content element.

44 Developing and deploying

Table 11. How the attachment is generated (continued)

Status of WSDL MIME binding for
top-level binary message part How message is created and sent

Not present Message part is not sent as an attachment.

Important: As described in “XML representation of SMO,” the XSL Transformation
mediation primitive transforms messages using an XSLT 1.0 transformation. The
transformation operates on an XML serialization of the SMO. The XSL
Transformation mediation primitive allows the root of the serialization to be
specified, and the root element of the XML document reflects this root.

When you are sending SOAP messages with attachments, the root element you
choose determines how attachments are propagated.
v If you use “/body” as the root of the XML map, all attachments are propagated

across the map by default.
v If you use “/” as the root of the map, you can control the propagation of

attachments.

Unreferenced attachments:

You can send and receive unreferenced attachments that are not declared in the
service interface.

In a MIME multipart SOAP message, the SOAP body is the first part of the
message, and the attachments are in subsequent parts. No reference to the
attachment is included in the SOAP body.

You can send a SOAP message with an unreferenced attachment through a Web
service export to a Web service import. The output message, which is sent to the
target Web service, contains the attachment.

<soap:Envelope>
<soap:Body>

.

.

.
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpg
Content-ID: unreferencedpart

... binary data ...

No reference to the attachment

Attachment

Figure 23. A SOAP message with an unreferenced attachment

Bindings 45

In Figure 24, the SOAP message, with the attachment, passes through without
modification.

You can also modify the SOAP message by using a mediation flow component. For
example, you can use the mediation flow component to extract data from the
SOAP message (binary data in the body of the message, in this case) and create a
SOAP with attachments message. The data is processed as part of the attachments
element of a service message object (SMO).

Conversely, the mediation flow component can transform the incoming message by
extracting and encoding the attachment and then transmitting the message with no
attachments.

Instead of extracting data from an incoming SOAP message to form a SOAP with
attachments message, you can obtain the attachment data from an external source,

Module

Web
service
export

Web
service
import

<soap:Envelope>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpg
Content-ID: unreferencedpart

... binary data ...

<soap:Envelope>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpg
Content-ID: unreferencedpart

... binary data ...

Figure 24. An attachment passing through an SCA module

Mediation
flow

component

<soap:Envelope>
<soap:Body>
<inline binary data>

...
</inline binary data>

</soap:Body>
</soap:Envelope>

<soap:Envelope>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpg
Content-ID: unreferencedpart

... binary data ...

Incoming SOAP message Outgoing SOAP message

SMO

<smo:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<context/>
<headers>

...
</headers>
<body>

...
</body>

</smo:smo>

<attachments>
... binary data ...

</attachments>

Figure 25. A message processed by a mediation flow component

46 Developing and deploying

such as a database.

Conversely, the mediation flow component can extract the attachment from an
incoming SOAP message and process the message (for example, store the
attachment in a database).

Unreferenced attachments can be propagated only across mediation flow
components. If an attachment must be accessed by or propagated to another
component type, use a mediation flow component to move the attachment to a
location that is accessible by that component.

Important: As described in “XML representation of SMO,” the XSL Transformation
mediation primitive transforms messages using an XSLT 1.0 transformation. The
transformation operates on an XML serialization of the SMO. The XSL
Transformation mediation primitive allows the root of the serialization to be
specified, and the root element of the XML document reflects this root.

When you are sending SOAP messages with attachments, the root element you
choose determines how attachments are propagated.
v If you use “/body” as the root of the XML map, all attachments are propagated

across the map by default.
v If you use “/” as the root of the map, you can control the propagation of

attachments.

Use of WSDL document style binding with multipart messages
The Web Services Interoperability Organization (WS-I) organization has defined a
set of rules regarding how Web services should be described by way of a WSDL
and how the corresponding SOAP messages should be formed, in order to ensure
interoperability.

These rules are specified in the WS-I Basic Profile Version 1.1 (http://www.ws-i.org/
Profiles/BasicProfile-1.1.html).

Mediation
flow

component

Database

<smo:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<context/>
<headers>

...
</headers>
<body>

...
</body>

</smo:smo>

<attachments>
... binary data ...

</attachments>

<soap:Envelope>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

--MIME bondary
Content-Type: image/jpg
Content-ID: unreferencedpart

... binary data ...

Outgoing SOAP message

SMO

Figure 26. An attachment obtained from a database and added to the SOAP message

Bindings 47

http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

In particular, for a document style SOAP binding, WS-I profile conformance
requires that, in a WSDL document, for an operation that uses the document style,
only a single message part is ever bound to the SOAP body, and that the SOAP
message corresponding to this contains a single child element matching the part
that was so bound.

This means that, when using a document style SOAP binding for an operation
with messages (input, output, or fault) are defined with multiple parts, only one of
those parts should be bound to the SOAP body in order to be compliant with the
WS-I Basic Profile 1.1.

The following approach is used when WSDL descriptions are generated for exports
with Web service (JAX-WS and JAX-RPC) bindings in this case:
v The first message part is bound to the SOAP body.
v For the JAX-WS binding, all other message parts of type "hexBinary" or

"base64Binary" are bound as referenced attachments. See “Referenced
attachments: top-level message parts” on page 40.

v All other message parts are bound as SOAP headers.

The JAX-RPC and JAX-WS import bindings honor the SOAP binding in an existing
WSDL document with multipart document style messages even if it does bind
multiple parts to the SOAP body; however, you are not able to generate Web
service clients for such WSDL documents in Rational Application Developer.

Note: The JAX-RPC binding does not support attachments.

The recommended pattern when using multipart messages with an operation that
has document style SOAP binding is therefore:
1. Use the document/literal wrapped style. In this case, messages always have a

single part; however, attachments can be unreferenced (as described in
“Unreferenced attachments” on page 45) or swaRef-typed (as described in
“Referenced attachments: swaRef-typed elements” on page 36) in this case.

2. Use the RPC/literal style. In this case, there are no restrictions on the WSDL
binding in terms of number of parts bound to the SOAP body; the SOAP
message that results always has a single child that represents the operation
being invoked, with the message parts being children of that element.

3. For the JAX-WS binding, have the first message part be one that is not of type
"hexBinary" or "base64Binary" and all other parts of one of those two types.
This is then all bound as attachments.

4. Any other cases are subject to the behavior described.

Note: When receiving multipart document-style SOAP messages with referenced
attachments, the JAX-WS binding expects each referenced attachment to be
represented by a SOAP body child element with an href attribute value which
identifies the attachment by its content ID. The JAX-WS binding sends referenced
attachments for such messages in the same way. This behavior is not compliant
with the WS-I Basic Profile. The WS-I Attachments Profile defines a "content-id
part encoding," which allows the child element with the href attribute to be
omitted and therefore makes such messages compliant with the Basic Profile. The
JAX-WS binding does not support sending or receiving messages that use the
content-id part encoding. To ensure that your messages do comply, follow
approach 1 or 2 in the previous list or avoid the use of referenced attachments for
such messages and use unreferenced or swaRef-typed attachments instead.

48 Developing and deploying

HTTP bindings
The HTTP binding is designed to provide Service Component Architecture (SCA)
connectivity to HTTP. Consequently, existing or newly-developed HTTP
applications can participate in Service Oriented Architecture (SOA) environments.

Hypertext Transfer Protocol (HTTP) is a widely-used protocol for transferring
information on the Web. When you are working with an external application that
uses the HTTP protocol, an HTTP binding is necessary. The HTTP binding handles
the transformation of data passed in as a message in a native format to a business
object in an SCA application. The HTTP binding also can transform data passed
out as a business object to the native format expected by the external application.
for an incoming messaging.

Note: If you want to interact with clients and services that use the Web services
SOAP/HTTP protocol, consider using one of the Web service bindings, which
provide additional functionality with respect to handling Web services standard
qualities of service.

Some common scenarios for using the HTTP binding are described in the following
list:
v SCA-hosted services can invoke HTTP applications using an HTTP import.
v SCA-hosted services can expose themselves as HTTP-enabled applications, so

they can be used by HTTP clients, using an HTTP export.
v WebSphere Process Server and WebSphere Enterprise Service Bus can

communicate between themselves across an HTTP infrastructure, consequently
users can manage their communications according to corporate standards.

v WebSphere Process Server and WebSphere Enterprise Service Bus can act as
mediators of HTTP communications, transforming and routing messages, which
improves the integration of applications using a HTTP network.

v WebSphere Process Server and WebSphere Enterprise Service Bus can be used to
bridge between HTTP and other protocols, such as SOAP/HTTP Web services,
Java Connector Architecture (JCA)-based resource adapters, JMS, and so on.

Detailed information about creating HTTP import and export bindings can be
found in the WebSphere Integration Developer information center. See the
Developing integration applications → Accessing external services with HTTP>
topics.

HTTP bindings overview
The HTTP binding provides connectivity to HTTP-hosted applications. It mediates
communication between HTTP applications and allows existing HTTP-based
applications to be called from a module.

HTTP import bindings

The HTTP import binding provides outbound connectivity from Service
Component Architecture (SCA) applications to an HTTP server or applications.

The import invokes an HTTP endpoint URL. The URL can be specified in one of
three ways:
v The URL can be set dynamically in the HTTP headers by way of the dynamic

override URL.
v The URL can be set dynamically in the SMO target address element.
v The URL can be specified as a configuration property on the import.

Bindings 49

This invocation is always synchronous in nature.

Although HTTP invocations are always request-reply, the HTTP import supports
both one-way and two-way operations and ignores the response in the case of a
one-way operation.

HTTP export bindings

The HTTP export binding provides inbound connectivity from HTTP applications
to an SCA application.

A URL is defined on the HTTP export. HTTP applications that want to send
request messages to the export use this URL to invoke the export.

The HTTP export also supports pings.

HTTP bindings at runtime

An import with an HTTP binding at runtime sends a request with or without data
in the body of the message from the SCA application to the external Web service.
The request is made from the SCA application to the external Web service, as
shown in Figure 27.

Optionally, the import with the HTTP binding can receive data back from the Web
application in a response to the request.

With an export, the request is made by a client application to a Web service, as
shown in Figure 28.

The Web service is a Web application running on the server. The export is
implemented in that Web application as a servlet so the client sends its request to a
URL address. The servlet passes the request to the SCA application in the runtime.

Optionally, the export may send data to the client application in response to the
request.

HTTP headers
HTTP import and export bindings allow configuration of HTTP headers and their
values to be used for outbound messages. The HTTP import uses these headers for
requests, and the HTTP export uses them for responses.

Figure 27. Flow of a request from the SCA application to the Web application

Figure 28. Flow of a request from the Web service to the client application.

50 Developing and deploying

Statically configured headers and control information take precedence over values
dynamically set at runtime. However, the dynamic override URL, Version, and
Method control values override the static values, which are otherwise considered
defaults.

The binding supports the dynamic nature of the HTTP import URL by determining
the value of HTTP target URL, Version, and Method at run time. These values are
determined by extracting the value of Endpoint Reference, Dynamic Override URL,
Version, and Method.
v For Endpoint Reference, use

com.ibm.websphere.sca.addressing.EndpointReference APIs or set the
/headers/SMOHeader/Target/address field in the SMO header.

v For Dynamic Override URL, Version, and Method, use the HTTP control
parameters section of the Service Component Architecture (SCA) message. Note
that the Dynamic Override URL takes precedence over the target Endpoint
Reference; however, the Endpoint Reference applies across bindings, so it is the
preferred approach and should be used where possible.

Note: See Related Concepts for information about dynamic invocation and for
specific information about the URL format, syntax, and usage.

The control and header information for outbound messages under HTTP export
and import bindings is processed in the following order:
1. Header and control information excluding HTTP dynamic override URL,

Version, and Method from the SCA Message (lowest priority)
2. Changes from the administrative console on the export/import level
3. Changes from the administrative console on the method level of the export or

import
4. Target address specified by way of the Endpoint Reference or the SMO header
5. Dynamic Override URL, Version, and Method from the SCA message
6. Headers and control information from the data handler or data binding

(highest priority)

The HTTP export and import will populate inbound direction headers and control
parameters with data from the incoming message (HTTPExportRequest and
HTTPImportResponse) only if protocol header propagation is set to True. Inversely,
the HTTP export and import will read and process outbound headers and control
parameters (HTTPExportResponse and HTTPImportRequest) only if protocol
header propagation is set to True.

Note: Data handler or data binding changes to headers or control parameters in
the import response or export request will not alter the processing instructions of
the message inside the import or export binding and should be used only to
propagate modified values to downstream SCA components.

The context service is responsible for propagating the context (including the
protocol headers, such as the HTTP header, and the user context, such as account
ID) along an SCA invocation path. During development in WebSphere Integration
Developer, you can control the propagation of context by way of import and
export properties. For more details, see the import and export bindings information
in the WebSphere Integration Developer information center.

Bindings 51

Supplied HTTP header structures and support

Table 12 itemizes the request/response parameters for HTTP Import and HTTP
Export requests and responses.

Table 12. Supplied HTTP header information

Control name
HTTP Import
request

HTTP Import
response

HTTP Export
request

HTTP Export
response

URL Ignored Not set Read from the
request message.
Note: Query
string is also
part of the URL
control
parameter.

Ignored

Version (possible
values: 1.0, 1.1;
default is 1.1)

Ignored Not set Read from the
request message

Ignored

Method Ignored Not set Read from the
request message

Ignored

Dynamic
Override URL

If set in the data
handler or data
binding,
overrides the
HTTP Import
URL. Written to
the message in
the request line.
Note: Query
string is also
part of the URL
control
parameter.

Not set Not set Ignored

Dynamic
Override Version

If set, overrides
the HTTP
Import Version.
Written to the
message in the
request line.

Not set Not set Ignored

Dynamic
Override
Method

If set, overrides
the HTTP
Import Method.
Written to the
message in the
request line.

Not set Not set Ignored

Media Type
(This control
parameter
carries part of
the value of the
Content-Type
HTTP header.)

If present,
written to the
message as part
of the
Content-Type
header.
Note: This
control element
value should be
provided by the
data handler or
data binding.

Read from the
response
message,
Content-Type
header

Read from the
request message,
Content-Type
header

If present,
written to the
message as part
of Content-Type
header.
Note: This
control element
value should be
provided by the
data handler or
data binding.

52 Developing and deploying

Table 12. Supplied HTTP header information (continued)

Control name
HTTP Import
request

HTTP Import
response

HTTP Export
request

HTTP Export
response

Character set
(default: UTF-8)

If present,
written to the
message as part
of the
Content-Type
header.
Note: This
control element
value should be
provided by the
data binding.

Read from the
response
message,
Content-Type
header

Read from the
request message,
Content-Type
header

Supported;
written to the
message as part
of the
Content-Type
header.
Note: This
control element
value should be
provided by the
data binding.

Transfer
Encoding
(Possible values:
chunked,
identity; default
is identity)

If present,
written to the
message as a
header and
controls how the
message
transformation is
encoded.

Read from the
response
message

Read from the
request message

If present,
written to the
message as a
header and
controls how the
message
transformation is
encoded.

Content
Encoding
(Possible values:
gzip, x-gzip,
deflate, identity;
default is
identity)

If present,
written to the
message as a
header and
controls how the
payload is
encoded.

Read from the
response
message

Read from the
request message

If present,
written to the
message as a
header and
controls how the
payload is
encoded.

Content-Length Ignored Read from the
response
message

Read from the
request message

Ignored

StatusCode
(default: 200)

Not supported Read from the
response
message

Not supported If present,
written to the
message in the
response line

ReasonPhrase
(default: OK)

Not supported Read from the
response
message

Not supported Control value
ignored. The
message
response line
value is
generated from
the StatusCode.

Bindings 53

Table 12. Supplied HTTP header information (continued)

Control name
HTTP Import
request

HTTP Import
response

HTTP Export
request

HTTP Export
response

Authentication
(contains
multiple
properties)

If present, used
to construct the
Basic
Authentication
header.
Note: The value
for this header
will be encoded
only on the
HTTP protocol.
In the SCA, it
will be decoded
and passed as
clear text.

Not applicable Read from the
request message
Basic
Authentication
header. The
presence of this
header does not
indicate the user
has been
authenticated.
Authentication
should be
controlled in the
servlet
configuration.
Note: The value
for this header
will be encoded
only on the
HTTP protocol.
In the SCA, it
will be decoded
and passed as
clear text.

Not applicable

Proxy (contains
multiple
properties: Host,
Port,
Authentication)

If present, used
to establish
connection
through proxy.

Not applicable Not applicable Not applicable

SSL (contains
multiple
properties:
Keystore,
Keystore
Password,
Trustore,
Trustore
Password,
ClientAuth)

If populated and
the destination
url is HTTPS, it
is used to
establish a
connection
through SSL.

Not applicable Not applicable Not applicable

HTTP data bindings
For each different mapping of data between a Service Component Architecture
(SCA) message and an HTTP protocol message, a data handler or an HTTP data
binding must be configured. Data handlers provide a binding-neutral interface that
allows reuse across transport bindings and represent the recommended approach;
data bindings are specific to a particular transport binding. HTTP-specific data
binding classes are supplied; you can also write custom data handlers or data
bindings.

Note: The three HTTP data binding classes described in this topic
(HTTPStreamDataBindingSOAP, HTTPStreamDataBindingXML, and
HTTPServiceGatewayDataBinding) are deprecated as of WebSphere Process Server
Version 7.0. Instead of using the data bindings described in this topic, consider the
following data handlers:

54 Developing and deploying

v Use SOAPDataHandler instead of HTTPStreamDataBindingSOAP.
v Use UTF8XMLDataHandler instead of HTTPStreamDataBindingXML
v Use GatewayTextDataHandler instead of HTTPServiceGatewayDataBinding

Data bindings are provided for use with HTTP imports and HTTP exports: binary
data binding, XML data binding, and SOAP data binding. A response data binding
is not required for one-way operations. A data binding is represented by the name
of a Java class whose instances can convert both from HTTP to ServiceDataObject
and vice-versa. A function selector must be used on an export which, in
conjunction with method bindings, can determine which data binding is used and
which operation is invoked. The supplied data bindings are:
v Binary data bindings, which treat the body as unstructured binary data. The

implementation of the binary data binding XSD schema is as follows:
<xsd:schema elementFormDefault="qualified"

targetNamespace="http://com.ibm.websphere.http.data.bindings/schema"
xmlns:tns="http://com.ibm.websphere.http.data.bindings/schema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="HTTPBaseBody">
<xsd:sequence/>

</xsd:complexType>

<xsd:complexType name="HTTPBytesBody">
<xsd:complexContent>

<xsd:extension base="tns:HTTPBaseBody">
<xsd:sequence>

<xsd:element name="value" type="xsd:hexBinary"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

v XML data bindings, which support the body as XML data. The implementation
of the XML data binding is similar to the JMS XML data binding and has no
restrictions on the interface schema.

v SOAP data bindings, which support the body as SOAP data. The
implementation of the SOAP data binding has no restrictions on the interface
schema.

Implementing custom HTTP data bindings

This section describes how to implement a custom HTTP data binding.

Note: The recommended approach is to implement a custom data handler because
it can be reused across transport bindings.

HTTPStreamDataBinding is the principal interface for handling custom HTTP
messages. The interface is designed to allow handling of large payloads. However,
in order for such implementation to work, this data binding must return the
control information and headers before writing the message into the stream.

The methods and their order of execution, listed below, must be implemented by
the custom data binding.

To customize a data binding, write a class that implements
HTTPStreamDataBinding. The data binding should have four private properties:
v private DataObject pDataObject
v private HTTPControl pCtrl

Bindings 55

v private HTTPHeaders pHeaders
v private yourNativeDataType nativeData

The HTTP binding will invoke the customized data binding in the following order:
v Outbound processing (DataObject to Native format):

1. setDataObject(...)
2. setHeaders(...)
3. setControlParameters(...)
4. setBusinessException(...)
5. convertToNativeData()
6. getControlParameters()
7. getHeaders()
8. write(...)

v Inbound processing (Native format to DataObject):
1. setControlParameters(...)
2. setHeaders(...)
3. convertFromNativeData(...)
4. isBusinessException()
5. getDataObject()
6. getControlParameters()
7. getHeaders()

You need to invoke setDataObject(...) in convertFromNativeData(...) to set the value
of dataObject, which is converted from native data to the private property
"pDataObject".
public void setDataObject(DataObject dataObject)

throws DataBindingException {
pDataObject = dataObject;

}
public void setControlParameters(HTTPControl arg0) {

this.pCtrl = arg0;
}

public void setHeaders(HTTPHeaders arg0) {
this.pHeaders = arg0;

}
/*
* Add http header "IsBusinessException" in pHeaders.
* Two steps:
* 1.Remove all the header with name IsBusinessException (case-insensitive) first.
* This is to make sure only one header is present.
* 2.Add the new header "IsBusinessException"
*/
public void setBusinessException(boolean isBusinessException) {

//remove all the header with name IsBusinessException (case-insensitive) first.
//This is to make sure only one header is present.
//add the new header "IsBusinessException", code example:
HTTPHeader header=HeadersFactory.eINSTANCE.createHTTPHeader();
header.setName("IsBusinessException");
header.setValue(Boolean.toString(isBusinessException));
this.pHeaders.getHeader().add(header);

}
public HTTPControl getControlParameters() {

return pCtrl;

56 Developing and deploying

}
public HTTPHeaders getHeaders() {

return pHeaders;
}
public DataObject getDataObject() throws DataBindingException {

return pDataObject;
}
/*
* Get header "IsBusinessException" from pHeaders, return its boolean value
*/
public boolean isBusinessException() {

String headerValue = getHeaderValue(pHeaders,"IsBusinessException");
boolean result=Boolean.parseBoolean(headerValue);
return result;

}
public void convertToNativeData() throws DataBindingException {

DataObject dataObject = getDataObject();
this.nativeData=realConvertWorkFromSDOToNativeData(dataObject);

}
public void convertFromNativeData(HTTPInputStream arg0){

//Customer-developed method to
//Read data from HTTPInputStream
//Convert it to DataObject
DataObject dataobject=realConvertWorkFromNativeDataToSDO(arg0);
setDataObject(dataobject);

}
public void write(HTTPOutputStream output) throws IOException {

if (nativeData != null)
output.write(nativeData);

}

EJB bindings
Enterprise JavaBeans (EJB) import bindings enable Service Component Architecture
(SCA) components to invoke services provided by Java EE business logic running
on a Java EE server. EJB export bindings allow SCA components to be exposed as
Enterprise JavaBeans so that Java EE business logic can invoke SCA components
otherwise unavailable to them.

EJB import bindings
EJB import bindings allow an SCA module to call EJB implementations by
specifying the way that the consuming module is bound to the external EJB.
Importing services from an external EJB implementation allows users to plug their
business logic into the WebSphere Process Server environment and participate in a
business process.

You use WebSphere Integration Developer to create EJB import bindings. You can
use either of the following procedures to generate the bindings:
v Creating EJB import using the external service wizard

You can use the external service wizard in WebSphere Integration Developer to
build an EJB import based on an existing implementation. The external service
wizard creates services based on criteria that you provide. It then generates
business objects, interfaces, and import files based on the services discovered.

v Creating EJB import using the assembly editor
You can create an EJB import within an assembly diagram using the WebSphere
Integration Developer assembly editor. From the palette, you can use either an
Import or use a Java class to create the EJB binding.

The generated import has data bindings that make the Java-WSDL connection
instead of requiring a Java bridge component. You can directly wire a component

Bindings 57

with a Web Services Description Language (WSDL) reference to the EJB import that
communicates to an EJB-based service using a Java interface.

The EJB import can interact with Java EE business logic using either the EJB 2.1
programming model or the EJB 3.0 programming model.

The invocation to the Java EE business logic can be local (for EJB 3.0 only) or
remote.
v Local invocation is used when you want to call Java EE business logic that

resides on the same server as the import.

v Remote invocation is used when you want to call Java EE business logic that
does not reside on the same server as the import.
For example, in the following figure, an EJB import uses the Remote Method
Invocation over Internet InterORB Protocol (RMI/IIOP) to invoke an EJB method
on another server.

When it configures the EJB binding, WebSphere Integration Developer uses the
JNDI name to determine the EJB programming model level and the type of
invocation (local or remote).

EJB import bindings contain the following major components:
v JAX-WS data handler
v EJB fault selector
v EJB import function selector

If your user scenario is not based on the JAX-WS mapping, you might need a
custom data handler, function selector, and fault selector to perform the tasks
otherwise completed by the components that are part of the EJB import bindings.
This includes the mapping normally completed by the custom mapping algorithm.

EJB
Import

Component EJB

Server A

Figure 29. Local invocation of an EJB (EJB 3.0 only)

EJB
Import

Component EJB
RMI/IIOP

Server A Server B

Figure 30. Remote invocation of an EJB

58 Developing and deploying

EJB export bindings
External Java EE applications can invoke an SCA component by way of an EJB
export binding. Using an EJB export lets you expose SCA components so that
external Java EE applications can invoke those components using the EJB
programming model.

Note: The EJB export is a stateless bean.

You use WebSphere Integration Developer to create EJB bindings. You can use
either of the following procedures to generate the bindings:
v Creating EJB export bindings using the external service wizard

You can use the external service wizard in WebSphere Integration Developer to
build an EJB export service based on an existing implementation. The external
service wizard creates services based on criteria that you provide. It then
generates business objects, interfaces, and export files based on the services
discovered.

v Creating EJB export bindings using the assembly editor
You can create an EJB export using the WebSphere Integration Developer
assembly editor.

You can generate the binding from an existing SCA component, or you can
generate an export with an EJB binding for a Java interface.
v When you generate an export for an existing SCA component that has an

existing WSDL interface, the export is assigned a Java interface.
v When you generate an export for a Java interface, you can select either a WSDL

or a Java interface for the export.

Note: A Java interface used to create an EJB export has the following limitations
with regard to the objects (input and output parameters and exceptions) passed
as parameters on a remote call:
– They must be of concrete type (instead of an interface or abstract type).
– They must conform to the Enterprise JavaBean specification. They must be

serializable and have the default no-argument constructor, and all properties
must be accessible through getter and setter methods.
Refer to the Sun Microsystems, Inc., Web site at http://java.sun.com for
information about the Enterprise JavaBean specification.

In addition, the exception must be a checked exception, inherited from
java.lang.Exception, and it must be singular (that is, it does not support
throwing multiple checked exception types).

Note also that the business interface of a Java EnterpriseBean is a plain Java
interface and must not extend javax.ejb.EJBObject or javax.ejb.EJBLocalObject.
The methods of the business interface should not throw
java.rmi.Remote.Exception.

The EJB export bindings can interact with Java EE business logic using either the
EJB 2.1 programming model or the EJB 3.0 programming model.

The invocation can be local (for EJB 3.0 only) or remote.
v Local invocation is used when the Java EE business logic calls an SCA

component that resides on the same server as the export.

Bindings 59

http://java.sun.com

v Remote invocation is used when the Java EE business logic does not reside on
the same server as the export.
For example, in the following figure, an EJB uses RMI/IIOP to call an SCA
component on a different server.

When it configures the EJB binding, WebSphere Integration Developer uses the
JNDI name to determine the EJB programming model level and the type of
invocation (local or remote).

EJB export bindings contain the following major components:
v JAX-WS data handler
v EJB export function selector

If your user scenario is not based on the JAX-WS mapping, you might need a
custom data handler and function selector to perform the tasks otherwise
completed by the components that are part of the EJB export bindings. This
includes the mapping normally completed by the custom mapping algorithm.

EJB binding properties
EJB import bindings use their configured JNDI names to determine the EJB
programming model level and type of invocation (local or remote). EJB import and
export bindings use the JAX-WS data handler for data transformation. The EJB
import binding uses an EJB import function selector and an EJB fault selector, and
the EJB export binding uses an EJB export function selector.

JNDI names and EJB import bindings:

When it configures the EJB binding on an import, WebSphere Integration
Developer uses the JNDI name to determine the EJB programming model level and
type of invocation (local or remote).

If no JNDI name is specified, the default EJB interface binding is used. The default
names that are created depend on whether you are invoking an EJB 2.1 JavaBean
or an EJB 3.0 JavaBean.

Note: Refer to the WebSphere Application Server information center for more
detailed information about naming conventions: EJB 3.0 application bindings
overview.
v EJB 2.1 JavaBean

The default JNDI name preselected by WebSphere Integration Developer is the
default EJB 2.1 binding, which takes the form ejb/ plus the home interface,
separated by slashes.
For example, for the home interface of an EJB 2.1 JavaBean for
com.mycompany.myremotebusinesshome, the default binding is:

EJB
Export

Component
J2EE

business
logic

RMI/IIOP

Server AServer B

Figure 31. Remote call from a client to an SCA component by way of an EJB export

60 Developing and deploying

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=cejbbindingsejbfp
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=cejbbindingsejbfp

ejb/com/mycompany/myremotebusinesshome

For EJB 2.1, only remote EJB invocation is supported.
v EJB 3.0 JavaBean

The default JNDI name preselected by WebSphere Integration Developer for the
local JNDI is the fully qualified class name of the local interface preceded by
ejblocal:. For example, for the fully qualified interface of the local interface
com.mycompany.mylocalbusiness, the preselected EJB 3.0 JNDI is:
ejblocal:com.mycompany.mylocalbusiness

For the remote interface com.mycompany.myremotebusiness, the preselected EJB
3.0 JNDI is the fully qualified interface:
com.mycompany.myremotebusiness

The EJB 3.0 default application bindings are described at the following location:
EJB 3.0 application bindings overview.
WebSphere Integration Developer will use the "short" name as the default JNDI
location for EJBs using the version 3.0 programming model.

Note: If the deployed JNDI reference of the target EJB is different from the
default JNDI binding location because a custom mapping was used or
configured, the target JNDI name must be properly specified. You can specify
the name in WebSphere Integration Developer before deployment, or, for the
import binding, you can change the name in the administrative console (after
deployment) to match the JNDI name of the target EJB.

For more information on creating EJB bindings, see the section devoted to Working
with EJB bindings in the WebSphere Integration Developer information center.

JAX-WS data handler:

The Enterprise JavaBeans (EJB) import binding uses the JAX-WS data handler to
turn request business objects into Java object parameters and to turn the Java
object return value into the response business object. The EJB export binding uses
the JAX-WS data handler to turn request EJBs into request business objects and to
turn the response business object into a return value.

This data handler maps data from the SCA-specified WSDL interface to the target
EJB Java interface (and vice versa) using the Java API for XML Web Services
(JAX-WS) specification and the Java Architecture for XML Binding (JAXB)
specification.

Note: Current support is restricted to the JAX-WS 2.1.1 and JAXB 2.1.3
specifications.

The data handler specified at the EJB binding level is used to perform request,
response, fault, and runtime exception processing.

Note: For faults, a specific data handler can be specified for each fault by
specifying the faultBindingType configuration property. This overrides the value
specified at the EJB binding level.

The JAX-WS data handler is used by default when the EJB binding has a WSDL
interface. This data handler cannot be used to transform a SOAP message
representing a JAX-WS invocation to a data object.

Bindings 61

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=cejbbindingsejbfp

The EJB import binding uses a data handler to transform a data object into a Java
Object array (Object[]). During outbound communications, the following processing
takes place:
1. The EJB binding sets the expected type, expected element, and targeted method

name in the BindingContext to match those specified in the WSDL.
2. The EJB binding invokes the transform method for the data object requiring

data transformation.
3. The data handler returns an Object[] representing the parameters of the method

(in the order of their definition within the method).
4. The EJB binding uses the Object[] to invoke the method on the target EJB

interface.

The binding also prepares an Object[] to process the response from the EJB
invocation.
v The first element in the Object[] is the return value from the Java method

invocation.
v The subsequent values represent the input parameters for the method.

This is required to support the In/Out and Out types of parameters.

For parameters of type Out, the values must be returned in the response data
object.

The data handler processes and transforms values found in the Object[] and then
returns a response to the data object.

The data handler supports xs:AnyType, xs:AnySimpleType, and xs:Any along with
other XSD data types. To enable support for xs:Any, use the @XmlAnyElement
(lax=true) for the JavaBean property in the Java code, as shown in the following
example:
public class TestType {
private Object[] object;

@XmlAnyElement (lax=true)
public Object[] getObject() {
return object;
)

public void setObject (Object[] object) {
this.object=object;
)
)

This makes the property object in TestType an xs:any field. The Java class value
used in the xs:any field should have the @XmlAnyElement annotation. For example,
if Address is the Java class being used to populate the object array, the Address
class should have the annotation @XmlRootElement.

Note: To customize the mapping from the XSD type to Java types defined by the
JAX-WS specification, change the JAXB annotations to fit your business need. The
JAX-WS data handler supports xs:any, xs:anyType, and xs:anySimpleType.

The following restrictions are applicable for the JAX-WS data handler:
v The data handler does not include support for the header attribute @WebParam

annotation.

62 Developing and deploying

v The namespace for business object schema files (XSD files) does not include
default mapping from the Java package name. The annotation @XMLSchema in
package-info.java also does not work. The only way to create an XSD with a
namespace is to use the @XmlType and @XmlRootElement annotations.
@XmlRootElement defines the target namespace for the global element in
JavaBean types.

v The EJB import wizard does not create XSD files for unrelated classes. Version
2.0 does not support the @XmlSeeAlso annotation, so if the child class is not
referenced directly from the parent class, an XSD is not created. The solution to
this problem is to run SchemaGen for such child classes.
SchemaGen is a command line utility (located in the WPS_Install_Home/bin
directory) provided to create XSD files for a given JavaBean. These XSDs must
be manually copied to the module for the solution to work.

EJB fault selector:

The EJB fault selector determines if an EJB invocation has resulted in a fault, a
runtime exception, or a successful response.

If a fault is detected, the EJB fault selector returns the native fault name to the
binding runtime so the JAX-WS data handler can convert the exception object into
a fault business object.

On a successful (non-fault) response, the EJB import binding assembles a Java
object array (Object[]) to return the values.
v The first element in the Object[] is the return value from the Java method

invocation.
v The subsequent values represent the input parameters for the method.

This is required to support the In/Out and Out types of parameters.

For exception scenarios, the binding assembles an Object[] and the first element
represents the exception thrown by the method.

The fault selector can return any of the following values:

Table 13. Return values

Type Return value Description

Fault ResponseType.FAULT Returned when the passed Object[]
contains an exception object.

Runtime exception ResponseType.RUNTIME Returned if the exception object
does not match any of the declared
exception types on the method.

Normal response ResponseType.RESPONSE Returned in all other cases.

If the fault selector returns a value of ResponseType.FAULT, the native fault name is
returned. This native fault name is used by the binding to determine the
corresponding WSDL fault name from the model and to invoke the correct fault
data handler.

EJB function selector:

Bindings 63

The EJB bindings use an import function selector (for outbound processing) or an
export function selector (for inbound processing) to determine the EJB method to
call.

Import function selector

For outbound processing, the import function selector derives the EJB method type
based on the name of the operation invoked by the SCA component that is wired
to the EJB import. The function selector looks for the @WebMethod annotation on
the WebSphere Integration Developer-generated JAX-WS annotated Java class to
determine the associated target operation name.
v If the @WebMethod annotation is present, the function selector uses the

@WebMethod annotation to determine the correct Java method mapping for the
WSDL method.

v If the @WebMethod annotation is missing, the function selector assumes that the
Java method name is the same as the invoked operation name.

Note: This function selector is valid only for a WSDL-typed interface on an EJB
import, not for a Java-typed interface on an EJB import.

The function selector returns a java.lang.reflect.Method object that represents the
method of the EJB interface.

The function selector uses a Java Object array (Object[]) to contain the response
from the target method. The first element in the Object[] is a Java method with the
name of the WSDL, and the second element in the Object[] is the input business
object.

Export function selector

For inbound processing, the export function selector derives the target method to
be invoked from the Java method.

The export function selector maps the Java operation name invoked by the EJB
client into the name of the operation in the interface of the target component. The
method name is returned as a String and is resolved by the SCA runtime
depending on the interface type of the target component.

EIS bindings
Enterprise information system (EIS) bindings provide connectivity between SCA
components and an external EIS. This communication is achieved using EIS
exports and EIS imports that support JCA 1.5 resource adapters and Websphere
Adapters.

Your SCA components might require that data be transferred to or from an
external EIS. When you create an SCA module requiring such connectivity, you
will include (in addition to your SCA component) an import or export with an EIS
binding for communication with a specific external EIS.

Resource adapters in WebSphere Integration Developer are used within the context
of an import or an export. You develop an import or an export with the external
service wizard and, in developing it, include the resource adapter. An EIS import,
which lets your application invoke a service on an EIS system, or an EIS export,
which lets an application on an EIS system invoke a service developed in

64 Developing and deploying

WebSphere Integration Developer, are created with a particular resource adapter.
For example, you would create an import with the JD Edwards adapter to invoke a
service on the JD Edwards system.

When you use the external service wizard, the EIS binding information is created
for you. You can also use another tool, the assembly editor, to add or modify
binding information. See WebSphere Integration Developer Information Center for
more information.

After the SCA module containing the EIS binding is deployed to the server, you
can use the administrative console to view information about the binding or to
configure the binding.

EIS bindings overview
The EIS (enterprise information system) binding, when used with a JCA resource
adapter, lets you access services on an enterprise information system or make your
services available to the EIS.

The following example shows how an SCA module named ContactSyncModule
synchronizes contact information between a Siebel system and an SAP system.
1. The SCA component named ContactSync listens (by way of an EIS application

export named Siebel Contact) for changes to Siebel contacts.
2. The ContactSync SCA component itself makes use of an SAP application

(through an EIS application import) in order to update the SAP contact
information accordingly.

Because the data structures used for storing contacts are different in Siebel and
SAP systems, the ContactSync SCA component must provide mapping.

The Siebel Contact export and the SAP Contact import have the appropriate
resource adapters configured.

Key features of EIS bindings
An EIS import is a Service Component Architecture (SCA) import that allows
components in the SCA module to use EIS applications defined outside the SCA
module. An EIS import is used to transfer data from the SCA component to an
external EIS; an EIS export is used to transfer data from an external EIS into the
SCA module.

Figure 32. Flow from a Siebel system to an SAP system

Bindings 65

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=welcome_infocenter

Imports

The role of the EIS import is to bridge the gap between SCA components and
external EIS systems. External applications can be treated as an EIS import. In this
case, the EIS import sends data to the external EIS and optionally receives data in
response.

The EIS import provides SCA components with a uniform view of the applications
external to the module. This allows components to communicate with an external
EIS, such as SAP, Siebel, or PeopleSoft, using a consistent SCA model.

On the client side of the import, there is an interface, exposed by the EIS import
application, with one or more methods, each taking data objects as arguments and
return values. On the implementation side, there is a Common Client Interface
(CCI) implemented by a resource adapter.

The runtime implementation of an EIS import connects the client-side interface and
the CCI. The import maps the invocation of the method on the interface to the
invocation on the CCI.

Bindings are created at three levels: the interface binding, which then uses the
contained method bindings, which in turn use data bindings.

The interface binding relates the interface of the import to the connection to the
EIS system providing the application. This reflects the fact that the set of
applications, represented by the interface, is provided by the specific instance of
the EIS and the connection provides access to this instance. The binding element
contains properties with enough information to create the connection (these
properties are part of the javax.resource.spi.ManagedConnectionFactory instance).

The method binding associates the method with the specific interaction with the
EIS system. For JCA, the interaction is characterized by the set of properties of the
javax.resource.cci.InteractionSpec interface implementation. The interaction element
of the method binding contains these properties, along with the name of the class,
thus providing enough information to perform the interaction. The method binding
uses data bindings describing the mapping of the argument and result of the
interface method to EIS representation.

The runtime scenario for an EIS import is as follows:
1. The method on the import interface is invoked using the SCA programming

model.
2. The request, reaching the EIS import, contains the name of the method and its

arguments.
3. The import first creates an interface binding implementation; then, using data

from the import binding, it creates a ConnectionFactory and associates the two.
That is, the import calls setConnectionFactory on the interface binding.

4. The method binding implementation matching the invoked method is created.
5. The javax.resource.cci.InteractionSpec instance is created and populated; then,

data bindings are used to bind the method arguments to a format understood
by the resource adapter.

6. The CCI interface is used to perform the interaction.
7. When the call returns, the data binding is used to create the result of the

invocation, and the result is returned to the caller.

66 Developing and deploying

Exports

The role of the EIS export is to bridge the gap between an SCA component and an
external EIS. External applications can be treated as an EIS export. In this case, the
external application sends its data in the form of periodic notifications. An EIS
export can be thought of as a subscription application listening to an external
request from an EIS. The SCA component that uses the EIS export views it as a
local application.

The EIS export provides SCA components with a uniform view of the applications
external to the module. This allows components to communicate with an EIS, such
as SAP, Siebel, or PeopleSoft, using a consistent SCA model.

The export features a listener implementation receiving requests from the EIS. The
listener implements a resource adapter-specific listener interface. The export also
contains a component implementing interface, exposed to the EIS through the
export.

The runtime implementation of an EIS export connects the listener with the
component implementing interface. The export maps the EIS request to the
invocation of the appropriate operation on the component. Bindings are created at
three levels: a listener binding, which then uses a contained native method
binding, which in turn uses a data binding .

The listener binding relates the listener receiving requests with the component
exposed through the export. The export definition contains the name of the
component; the runtime locates it and forwards requests to it.

The native method binding associates the native method or the event type received
by the listener to the operation implemented by the component exposed by way of
the export. There is no relationship between the method invoked on the listener
and the event type; all the events arrive through one or more methods of the
listener. The native method binding uses the function selector defined in the export
to extract the native method name from the inbound data and data bindings to
bind the data format of the EIS to a format understood by the component.

The runtime scenario for an EIS export is as follows:
1. The EIS request triggers invocation of the method on the listener

implementation.
2. The listener locates and invokes the export, passing to it all the invocation

arguments.
3. The export creates the listener binding implementation.
4. The export instantiates the function selector and sets it on the listener binding.
5. The export initializes native method bindings and adds them to the listener

binding. For each native method binding, the data bindings are also initialized.
6. The export invokes the listener binding.
7. The listener binding locates exported components and uses the function selector

to retrieve the native method name.
8. This name is used to locate the native method binding, which then invokes the

target component.

The adapter interaction style allows for the EIS export binding to invoke the target
component either asynchronously (the default) or synchronously.

Bindings 67

Resource adapters

You develop an import or an export with the external service wizard and, in
developing it, include a resource adapter. The adapters that come with WebSphere
Integration Developer used to access CICS, IMS, JD Edwards, PeopleSoft, SAP and
Siebel systems are intended for development and test purposes only. This means
you use them to develop and test your applications.

Once you deploy your application, you will need licensed runtime adapters to run
your application. However, when you build your service you can embed the
adapter with your service. Your adapter licensing might allow you to use the
embedded adapter as the licensed runtime adapter. These adapters are compliant
with the Java EE Connector Architecture (JCA 1.5). JCA, an open standard, is the
Java EE standard for EIS connectivity. JCA provides a managed framework; that is,
Quality of Service (QoS) is provided by the application server, which offers
life-cycle management and security to transactions. They are also compliant with
the Enterprise Metadata Discovery specification with the exception of IBM CICS
ECI Resource Adapter and IBM IMS Connector for Java.

The WebSphere Business Integration Adapters, an older set of adapters, are also
supported by the wizard.

Java EE resources

The EIS module, an SCA module that follows the EIS module pattern, can be
deployed to the Java EE platform.

The deployment of the EIS module to the Java EE platform results in an
application that is ready to execute, packaged as an EAR file and deployed to the
server. All Java EE artifacts and resources are created; the application is configured
and ready to be run.

JCA Interaction Spec and Connection Spec dynamic properties
The EIS binding can accept input for the InteractionSpec and ConnectionSpec
specified by using a well-defined child data object that accompanies the payload.
This allows for dynamic request-response interactions with a resource adapter
through the InteractionSpec and component authentication through the
ConnectionSpec.

The javax.cci.InteractionSpec carries information on how the interaction request
with the resource adapter should be handled. It can also carry information on how
the interaction was achieved after the request. These two-way communications
through the interactions are sometimes referred to as conversations.

The EIS binding expects the payload that will be the argument to the resource
adapter to contain a child data object called properties. This property data object
will contain name/value pairs, with the name of the Interaction Spec properties in
a specific format. The formatting rules are:
v Names must begin with the prefix IS, followed by the property name. For

example, an interaction spec with a JavaBeans property called InteractionId
would specify the property name as ISInteractionId.

v The name/value pair represents the name and the value of the simple type of
the Interaction Spec property.

68 Developing and deploying

In this example, an interface specifies that the input of an operation is an Account
data object. This interface invokes an EIS import binding application with the
intention to send and receive a dynamic InteractionSpec property called
workingSet with the value xyz.

The business graph or business objects in the server contain an underlying
properties business object that permits the sending of protocol-specific data with
the payload. This properties business object is built-in and does not need to be
specified in the XML schema when constructing a business object. It only needs to
be created and used. If you have your own data types defined based on an XML
schema, you need to specify a properties element that contains your expected
name/value pairs.
BOFactory dataFactory = (BOFactory) \
serviceManager.locateService("com/ibm/websphere/bo/BOFactory");
//Wrapper for doc-lit wrapped style interfaces,
//skip to payload for non doc-lit
DataObject docLitWrapper = dataFactory.createByElement /
("http://mytest/eis/Account", "AccountWrapper");

Create the payload.
DataObject account = docLitWrapper.createDataObject(0);

DataObject accountInfo = account.createDataObject("AccountInfo");
//Perform your setting up of payload

//Construct properties data for dynamic interaction

DataObject properties = account.createDataObject("properties");

For name workingSet, set the value expected (xyz).
properties.setString("ISworkingSet", "xyz");

//Invoke the service with argument

Service accountImport = (Service) \
serviceManager.locateService("AccountOutbound");
DataObject result = accountImport.invoke("createAccount", docLitWrapper);

//Get returned property
DataObject retProperties = result.getDataObject("properties");

String workingset = retProperties.getString("ISworkingSet");

You can use ConnectionSpec properties for dynamic component authentication.
The same rules apply as above, except that the property name prefix needs to be
CS (instead of IS). ConnectionSpec properties are not two-way. The same
properties data object can contain both IS and CS properties.

To use ConnectionSpec properties, set the resAuth specified on the import binding
to Application. Also, make sure the resource adapter supports component
authorization. See chapter 8 of the J2EE Connector Architecture Specification for
more details.

External clients with EIS bindings
The server can send messages to, or receive messages from, external clients using
EIS bindings.

Bindings 69

http://java.sun.com/j2ee/connector/

An external client, for example a Web portal or an EIS, needs to send a message to
an SCA module in the server or needs to be invoked by a component from within
the server.

The client invokes the EIS import as with any other application, using either the
Dynamic Invocation Interface (DII) or Java interface.
1. The external client creates an instance of the ServiceManager and looks up the

EIS import using its reference name. The result of the lookup is a service
interface implementation.

2. The client creates an input argument, a generic data object, created dynamically
using the data object schema. This step is done using the Service Data Object
DataFactory interface implementation.

3. The external client invokes the EIS and obtains the required results.

Alternatively, the client can invoke the EIS import using the Java interface.
1. The client creates an instance of the ServiceManager and looks up the EIS

import using its reference name. The result of the lookup is a Java interface of
the EIS import.

2. The client creates an input argument and a typed data object.
3. The client invokes EIS and obtains the required results.

The EIS export interface defines the interface of the exported SCA component that
is available to the external EIS applications. This interface can be thought of as the
interface that an external application (such as SAP or PeopleSoft) will invoke
through the implementation of the EIS export application runtime.

The export uses EISExportBinding to bind exported services to the external EIS
application. It allows you to subscribe an application contained in your SCA
module to listen for EIS service requests. The EIS export binding specifies the
mapping between the definition of inbound events as it is understood by the
resource adapter (using Java EE Connector Architecture interfaces) and the
invocation of SCA operations.

The EISExportBinding requires external EIS services to be based on Java EE
Connector Architecture 1.5 inbound contracts. The EISExportBinding requires that
a data handler or data binding be specified either at the binding level or the
method level.

JMS bindings
A Java Message Service (JMS) provider enables messaging based on the Java
Messaging Service API and programming model. It provides Java EE connection
factories to create connections for JMS destinations and to send and receive
messages.

Three JMS bindings are provided:
v Service integration bus (SIB) provider binding compliant with JMS JCA 1.5 (JMS

binding)
v Generic, non-JCA JMS binding, compliant with JMS 1.1 (Generic JMS binding)
v WebSphere MQ JMS binding, providing JMS provider support for WebSphere

MQ and allowing Java EE application interoperability (WebSphere MQ JMS
binding)

The JMS export and import bindings allow a Service Component Architecture
(SCA) module to make calls to, and receive messages from, external JMS systems.

70 Developing and deploying

Also supported are WebSphere MQ bindings (WebSphere MQ binding) which allow
native MQ users to handle arbitrary incoming and outgoing message formats
(WebSphere MQ required).

The JMS import and export bindings provide integration with JMS applications
using the JCA 1.5-based SIB JMS provider that is part of WebSphere Application
Server. Other JCA 1.5–based JMS resource adapters are not supported

JMS bindings overview
JMS bindings provide connectivity between the Service Component Architecture
(SCA) environment and JMS systems.

JMS bindings

The major components of both JMS import and JMS export bindings are:
v Resource adapter: enables managed, bidirectional connectivity between an SCA

module and external JMS systems
v Connections: encapsulate a virtual connection between a client and a provider

application
v Destinations: used by a client to specify the target of messages it produces or the

source of messages it consumes
v Authentication data: used to secure access to the binding

JMS import bindings

JMS import bindings allow you to import an external JMS application to be used
inside your SCA module. JMS import bindings allow components within your SCA
module to communicate with services provided by external JMS applications.

Connections to the associated JMS provider of JMS destinations are created by
using a JMS connection factory. Use connection factory administrative objects to
manage JMS connection factories for the default messaging provider.

Interaction with external JMS systems includes the use of destinations for sending
requests and receiving replies.

Two types of usage scenarios for the JMS import binding are supported, depending
on the type of operation being invoked:
v One-way: The JMS import puts a message on the send destination configured in

the import binding. Nothing is set in the replyTo field of the JMS header.
v Two-way (request-response): The JMS import puts a message on the send

destination and then persists the reply it receives from the SCA component.
The import binding can be configured (using the Response correlation scheme
field in WebSphere Integration Developer) to expect the response message
correlation ID to have been copied from the request message ID (the default), or
from the request message correlation ID. The import binding can also be
configured to use a temporary dynamic response destination to correlate
responses with requests. A temporary destination is created for each request and
the import uses this destination to receive the response.
The receive destination is set in the replyTo header property of the outbound
message. A message listener is deployed to listen on the receive destination, and
when a reply is received, the message listener passes the reply back to the
component.

Bindings 71

For both one-way and two-way usage scenarios, dynamic and static header
properties can be specified. Static properties can be set from the JMS import
method binding. Some of these properties have special meanings to the SCA JMS
runtime.

It is important to note that JMS is an asynchronous binding. If a calling component
invokes a JMS import synchronously (for a two-way operation), the calling
component is blocked until the response is returned by the JMS service.

Figure 33 illustrates how the import is linked to the external service.

JMS export bindings

JMS export bindings provide the means for SCA modules to provide services to
external JMS applications.

The connection that is part of a JMS export is a configurable activation
specification.

A JMS export has send and receive destinations.
v The receive destination is where the incoming message for the target component

should be placed.
v The send destination is where the reply will be sent, unless the incoming

message has overridden this using the replyTo header property.

JMS
Connection

Factory

<my_module>/<my_
import>_CF

SI
bus

JMS

Destination
Send

JMS

Destination
Receive

SIBus JMS

<my_module>/<my_import>_RECEIVE_D

<my_module>/<my_import>_SEND_D

JMS Import

Receive (Response) Resources

Send (Request) Resources

JMS
Connection

Factory
JMS activation spec

<my_module>/<my_import>_AS

Figure 33. JMS import binding resources

72 Developing and deploying

A message listener is deployed to listen to requests incoming to the receive
destination specified in the export binding. The destination specified in the send
field is used to send the reply to the inbound request if the invoked component
provides a reply. The destination specified in the replyTo field of the incoming
message overrides the destination specified in the send.

Figure 34 illustrates how the external requestor is linked to the export.

JMS integration and resource adapters
The Java Message Service (JMS) provides integration through an available JMS JCA
1.5-based resource adapter. Complete support for JMS integration is provided for
the Service Integration Bus (SIB) JMS resource adapter.

Use a JMS provider for JCA 1.5 resource adapter when you want to integrate with
an external JCA 1.5-compliant JMS system. External services compliant with JCA
1.5 can receive messages and send messages to integrate with your service
component architecture (SCA) components using the SIB JMS resource adapter.

The use of other provider-specific JCA 1.5 resource adapters is not supported.

JMS modules cannot be deployed to a Java SE environment. Such modules are
only deployable to a Java EE environment.

JMS
Response

Connection
Factory

<my_module>/<my_export>_CF

SI
bus

JMS

Destination
Send

JMS

Destination
Receive

SIBus JMS

<my_module>/<my_export>
_RECEIVE_D

<my_module>/<my_export>_SEND_D

JMS Export

Receive (Request) Resources

Send (Response) Resources

JMS
Connection

Factory

JMS activation spec

<my_module>/<my_export>_AS

Figure 34. JMS export binding resources

Bindings 73

Key features of JMS bindings
Key features of JMS import and export bindings include headers and created Java
EE resources.

Special headers

Special header properties are used in JMS imports and exports to tell the target
how to handle the message.

For example, TargetFunctionName maps from the native method to the operation
method.

Java EE resources

A number of Java EE resources are created when JMS imports and exports are
deployed to a Java EE environment.

ConnectionFactory
Used by clients to create a connection to the JMS provider.

ActivationSpec
Imports use this for receiving the response to a request; exports use it when
configuring the message endpoints that represent message listeners in their
interactions with the messaging system.

Destinations

v Send destination: on an import, this is where the request or outgoing
message is sent; on an export, this is the destination where the response
message will be sent, if not superseded by the JMSReplyTo header field in
the incoming message.

v Receive destination: where the incoming message should be placed; with
imports, this is a response; with exports, this is a request.

v Callback destination: SCA JMS system destination used to store correlation
information. Do not read or write to this destination.

The installation task creates the ConnectionFactory and three destinations. It also
creates the ActivationSpec to enable the runtime message listener to listen for
replies on the receive destination. The properties of these resources are specified in
the import or export file.

JMS headers
A JMS message contains two types of headers–the JMS system header and multiple
JMS properties. Both types of headers can be accessed either in a mediation
module in the Service Message Object (SMO) or by using the ContextService API.

JMS system header

The JMS system header is represented in the SMO by the JMSHeader element,
which contains all the fields typically found in a JMS header. Although these can
be modified in the mediation (or ContextService), some JMS system header fields
set in the SMO will not be propagated in the outbound JMS message as they are
overridden by system or static values.

The key fields in the JMS system header that can be updated in a mediation (or
ContextService) are:

74 Developing and deploying

v JMSType and JMSCorrelationID – values of the specific predefined message
header properties

v JMSDeliveryMode – values for delivery mode (persistent or nonpersistent;
default is persistent)

v JMSPriority – priority value (0 to 9; default is JMS_Default_Priority)

JMS properties

JMS properties are represented in the SMO as entries in the Properties list. The
properties can be added, updated, or deleted in a mediation or by using the
ContextService API.

Properties can also be set statically in the JMS binding. Properties that are set
statically override settings (with the same name) that are set dynamically.

User properties propagated from other bindings (for example, an HTTP binding)
will be output in the JMS binding as JMS properties.

Header propagation settings

The propagation of the JMS system header and properties either from the inbound
JMS message to downstream components or from upstream components to the
outbound JMS message can be controlled by the Propagate Protocol Header flag on
the binding.

When Propagate Protocol Header is set, header information is allowed to flow to
the message or to the target component, as described in the following list:
v JMS export request

The JMS header received in the message will be propagated to target
components by way of the context service. JMS properties received in the
message will be propagated to target components by way of the context service.

v JMS export response
Any JMS header fields set in the context service will be used in the outbound
message, if not overridden by static properties set on the JMS export binding.
Any properties set in the context service will be used in the outbound message
if not overridden by static properties set on the JMS export binding.

v JMS import request
Any JMS header fields set in the context service will be used in the outbound
message, if not overridden by static properties set on the JMS import binding.
Any properties set in the context service will be used in the outbound message
if not overridden by static properties set on the JMS import binding.

v JMS import response
The JMS header received in the message will be propagated to target
components by way of the context service. JMS properties received in the
message will be propagated to target components by way of the context service.

JMS temporary dynamic response destination correlation
scheme
The temporary dynamic response destination correlation scheme causes a unique
dynamic queue or topic to be created for each request sent.

The static response destination specified in the import is used to derive the nature
of the temporary dynamic destination queue or topic. This is set in the ReplyTo
field of the request, and the JMS import listens for responses on that destination.

Bindings 75

When the response is received it is requeued to the static response destination for
asynchronous processing. The CorrelationID field of the response is not used, and
does not need to be set.

Transactional issues

When a temporary dynamic destination is being used, the response must be
consumed in the same thread as the sent response. The request must be sent
outside the global transaction, and must be committed before it is received by the
backend service, and a response returned.

Persistence

Temporary dynamic queues are short-lived entities and do not guarantee the same
level of persistence associated with a static queue or topic. A temporary dynamic
queue or topic will not survive a server restart and neither will messages. After the
message has been requeued to the static response destination it retains the
persistence defined in the message.

Timeout

The import waits to receive the response on the temporary dynamic response
destination for a fixed amount of time. This time interval will be taken from the
SCA Response Expiration time qualifier, if it is set, otherwise the time defaults to
60 seconds. If the wait time is exceeded the import throws a
ServiceTimeoutRuntimeException.

External clients
The server can send messages to, or receive messages from, external clients using
JMS bindings.

An external client (such as a Web portal or an enterprise information system) can
send a message to an SCA module in the server, or it can be invoked by a
component from within the server.

The JMS export components deploy message listeners to listen to requests
incoming to the receive destination specified in the export binding. The destination
specified in the send field is used to send the reply to the inbound request if the
invoked application provides a reply. Thus, an external client is able to invoke
applications with the export binding.

JMS imports bind to, and can deliver messages to, external clients. This message
might or might not demand a response from the external client.

Working with external clients:

An external client (that is, outside the server) might need to interact with an
application installed in the server.

About this task

Consider a very simple scenario in which an external client wants to interact with
an application on the server. The figure depicts a typical simple scenario.

76 Developing and deploying

The SCA application includes an export with a JMS binding; this makes the
application available to external clients.

When you have an external client in a Java virtual machine (JVM) separate from
your server, there are several steps you must take in order to make a connection
and interact with a JMS export. The client obtains an InitialContext with the correct
values and then looks up the resources through JNDI. The client then uses the JMS
1.1 specification client to access the destinations and the send and receive messages
on the destinations.

The default JNDI names of the resources created automatically by the runtime are
listed in the configuration topic of this section. However, if you have pre-created
resources, use those JNDI names.

Procedure

1. Configure JMS destinations and the connection factory to send the message.
2. Make sure that the JNDI context, the port for the SIB resource adapter, and the

messaging bootstrapping port are correct.
The server uses some default ports, but if there are more servers installed on
that system, alternate ports are created at installation time to avoid conflicts
with other server instances. You can use the administrative console to
determine which ports your server is employing . Go to Servers → Application
Servers → your_server_ name → Configuration and click Ports under
Communication. You can then edit the port being used.

3. The client obtains an initial context with the correct values and then looks up
the resources through JNDI.

4. Using JMS 1.1 specifications, the client accesses the destinations and the send
and receive messages on the destinations.

Troubleshooting JMS bindings
You can diagnose and fix problems with JMS bindings.

Implementation exceptions

In response to various error conditions, the JMS import and export implementation
can return one of two types of exceptions:

Server JVMClient JVM

Service

invocation

Service Service

Figure 35. Simple use-case scenario: external client interacts with server application

Bindings 77

v Service Business Exception: this exception is returned if the fault specified on the
service business interface (WSDL port type) occurred.

v Service Runtime Exception: raised in all other cases. In most cases, the cause
exception will contain the original exception (JMSException).
For example, an import expects only one response message for each request
message. If more than one response arrives, or if a late response (one for which
the SCA response expiration has expired) arrives, a Service Runtime Exception is
thrown. The transaction is rolled back, and the response message is backed out
of the queue or handled by the failed event manager.

Primary failure conditions

The primary failure conditions of JMS bindings are determined by transactional
semantics, by JMS provider configuration, or by reference to existing behavior in
other components. The primary failure conditions include:
v Failure to connect to the JMS provider or destination.

A failure to connect to the JMS provider to receive messages will result in the
message listener failing to start. This condition will be logged in the WebSphere
Application Server log. Persistent messages will remain on the destination until
they are successfully retrieved (or expired).
A failure to connect to the JMS provider to send outbound messages will cause
rollback of the transaction controlling the send.

v Failure to parse an inbound message or to construct an outbound message.
A failure in the data binding or data handler causes rollback of the transaction
controlling the work.

v Failure to send the outbound message.
A failure to send a message causes rollback of the relevant transaction.

v Multiple or unexpected late response messages.
The import expects only one response message for each request message. Also
the valid time period in which a response can be received is determined by the
SCA Response Expiration qualifier on the request. When a response arrives or
the expiration time is exceeded, the correlation record is deleted. If response
messages arrive unexpectedly or arrive late, a Service Runtime Exception is
thrown.

v Service timeout runtime exception caused by late response when using the
temporary dynamic response destination correlation scheme.
The JMS import will timeout after a period of time determined by the SCA
response expiration qualifier, or if this is not set it will default to 60 seconds.

JMS-based SCA messages not appearing in the failed event manager

If SCA messages originated through a JMS interaction fail, you would expect to
find these messages in the failed event manager. If such messages are not
appearing in the failed event manager, ensure that the underlying SIB destination
of the JMS destination has a maximum failed deliveries value greater than 1.
Setting this value to 2 or more enables interaction with the failed event manager
during SCA invocations for the JMS bindings.

Handling exceptions
The way in which the binding is configured determines how exceptions that are
raised by data handlers or data bindings are handled. Additionally, the nature of
the mediation flow dictates the behavior of the system when such an exception is
thrown.

78 Developing and deploying

A variety of problems can occur when a data handler or data binding is called by
your binding. For example, a data handler might receive a message that has a
corrupt payload, or it might try to read a message that has an incorrect format.

The way your binding handles such an exception is determined by how you
implement the data handler or data binding. The recommended behavior is that
you design your data binding to throw a DataBindingException.

When any runtime exception, including a DataBindingException, is thrown:
v If the mediation flow is configured to be transactional, the JMS message , by

default, is stored in the Failed Event Manager for manual replay or deletion.

Note: You can change the recovery mode on the binding so that the message is
rolled back instead of being stored in the Failed Event Manager.

v If the mediation flow is not transactional, the exception is logged and the
message is lost.

The situation is similar for a data handler. Since the data handler is invoked by the
data binding, any data handler exception is wrapped into a data binding
exception. Therefore a DataHandlerException is reported to you as a
DataBindingException.

Generic JMS bindings
The Generic JMS binding provides connectivity to third-party JMS 1.1 compliant
providers. The operation of the Generic JMS bindings is similar to that of JMS
bindings.

The service provided through a JMS binding allows a Service Component
Architecture (SCA) module to make calls or receive messages from external
systems. The system can be an external JMS system.

The Generic JMS binding provides integration with non-JCA 1.5-compliant JMS
providers that support JMS 1.1 and implement the optional JMS Application Server
Facility. The Generic JMS binding supports those JMS providers (including Oracle
AQ, TIBCO, SonicMQ, WebMethods, BEA WebLogic, and WebSphere MQ) that do
not support JCA 1.5 but do support the Application Server Facility of the JMS 1.1
specification. The WebSphere embedded JMS provider (SIBJMS), which is a JCA 1.5
JMS provider, is not supported by this binding; when using that provider, use the
“JMS bindings” on page 70.

Use this Generic binding when integrating with a non-JCA 1.5-compliant
JMS-based system within an SCA environment. The target external applications can
then receive messages and send messages to integrate with an SCA component.

Generic JMS bindings overview
Generic JMS bindings are non-JCA JMS bindings that provide connectivity between
the Service Component Architecture (SCA) environment and JMS systems that are
compliant with JMS 1.1 and that implement the optional JMS Application Server
Facility.

Generic JMS bindings

The major aspects of Generic JMS import and export bindings are:
v Listener port: enables non-JCA-based JMS providers to receive messages and

dispatch them to a Message Driven Bean (MDB)

Bindings 79

v Connections: encapsulate a virtual connection between a client and a provider
application

v Destinations: used by a client to specify the target of messages it produces or the
source of messages it consumes

v Authentication data: used to secure access to the binding

Generic JMS import bindings

Generic JMS import bindings allow components within your SCA module to
communicate with services provided by external non-JCA 1.5-compliant JMS
providers.

The connection part of a JMS import is a connection factory. A connection factory,
the object a client uses to create a connection to a provider, encapsulates a set of
connection configuration parameters defined by an administrator. Each connection
factory is an instance of the ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory interface.

Interaction with external JMS systems includes the use of destinations for sending
requests and receiving replies.

Two types of usage scenarios for the Generic JMS import binding are supported,
depending on the type of operation being invoked:
v One-way: The Generic JMS import puts a message on the send destination

configured in the import binding Nothing is sent to the replyTo field of the JMS
header.

v Two-way (request-response): The Generic JMS import puts a message on the
send destination and then persists the reply it receives from the SCA component.
The receive destination is set in the replyTo header property of the outbound
message. A message driven bean (MDB) is deployed to listen on the receive
destination, and when a reply is received, the MDB passes the reply back to the
component.
The import binding can be configured (using the Response correlation scheme
field in WebSphere Integration Developer) to expect the response message
correlation ID to have been copied from the request message ID (the default) or
from the request message correlation ID.

For both one-way and two-way usage scenarios, dynamic and static header
properties can be specified. Static properties can be set from the Generic JMS
import method binding Some of these properties have special meanings to the SCA
JMS runtime.

It is important to note that Generic JMS is an asynchronous binding. If a calling
component invokes a Generic JMS import synchronously (for a two-way
operation), the calling component is blocked until the response is returned by the
JMS service.

Figure 36 on page 81 illustrates how the import is linked to the external service.

80 Developing and deploying

Generic JMS export bindings

Generic JMS export bindings provide the means for SCA modules to provide
services to external JMS applications.

The connection part of a JMS export is composed of a ConnectionFactory and a
ListenerPort.

A Generic JMS export has send and receive destinations.
v The receive destination is where the incoming message for the target component

should be placed.
v The send destination is where the reply will be sent, unless the incoming

message has overridden this using the replyTo header property.

An MDB is deployed to listen to requests incoming to the receive destination
specified in the export binding.
v The destination specified in the send field is used to send the reply to the

inbound request if the invoked component provides a reply.
v The destination specified in the replyTo field of the incoming message overrides

the destination specified in the send field.
v For request/response scenarios, the import binding can be configured (using the

Response correlation scheme field in WebSphere Integration Developer) to
expect the response to copy the request message ID to the correlation ID field of
the response message (default), or the response can copy the request correlation
ID to the correlation ID field of the response message.

Generic

Connection
Factory

JMS

<my_module>/<my_import>_CF

Third Party
JMS

Provider

Generic
JMS

Destination
Send

Generic
JMS

Destination
Receive

JMS

<my_module>/<my_import>
_RECEIVE_D

<my_module>/<my_
import>_SEND_D

Listener
Port

(Generic) JMS Import

Send (Request)
Resources

Receive (Response)
Resources

Generic
JMS

Connection
Factory

Response

Generic JMS Provider
JNDI containing third-
party JMS resources

<my_module>/<my_import>
_RESP_LP

<my_module>/<my_import>
_RESP_CF

Figure 36. Generic JMS import binding resources

Bindings 81

Figure 37 illustrates how the external requestor is linked to the export.

Key features of Generic JMS bindings
The features of the Generic JMS import and export binding are consistent with
those of the WebSphere embedded JMS and MQ JMS import bindings. Key features
include header definitions and access to existing Java EE resources. However,
because of its generic nature, there are no JMS provider-specific connectivity
options, and this binding has limited capability to generate resources at
deployment and installation.

Generic imports

Like the MQ JMS import application, the Generic JMS implementation is
asynchronous and supports three invocations: one-way, two-way (also known as
request-response), and callback.

When the JMS import is deployed, a message driven bean (MDB) provided by the
runtime environment is deployed. The MDB listens for replies to the request
message. The MDB is associated with (listens on) the destination sent with the
request in the replyTo header field of the JMS message.

Generic exports

Generic JMS export bindings differ from EIS export bindings in their handling of
the return of the result. A Generic JMS export explicitly sends the response to the
replyTo destination specified on the incoming message. If none is specified, the
send destination is used.

Generic

Response
Connection

Factory

JMS

<my_module>/<my_export>_RESP_CF

Third Party
JMS

Provider

Generic
JMS

Destination
Send

Generic
JMS

Destination
Receive

JMS

<my_module>/<my_export>_RECEIVE_D

<my_module>/<my_export>
_SEND_D

Listener
Port

(Generic) JMS Export

Receive (Request) Resources

Send (Response) Resources

Generic
JMS

Connection
Factory

Listener

Generic JMS Provider
JNDI containing third-party
JMS resources

<my_module>/<my_export>_LP

<my_module>/<my_export>_LIST_CF

Figure 37. Generic JMS export binding resources

82 Developing and deploying

When the Generic JMS export is deployed, a message driven bean (a different
MDB than the one used for Generic JMS imports) is deployed. It listens for the
incoming requests on the receive destination and then dispatches the requests to be
processed by the SCA runtime.

Special headers

Special header properties are used in Generic JMS imports and exports to tell the
target binding how to handle the message.

For example, the TargetFunctionName property is used by the default function
selector to identify the name of the operation in the export interface that is being
invoked.

Note: The import binding can be configured to set the TargetFunctionName header
to the operation name for each operation.

Java EE resources

A number of Java EE resources are created when a JMS binding is deployed to a
Java EE environment.
v Listener port for listening on the receive (response) destination (two-way only)

for imports and on the receive (request) destination for exports
v Generic JMS connection factory for the outboundConnection (import) and

inboundConnection (export)
v Generic JMS destination for the send (import) and receive (export; two-way

only) destinations
v Generic JMS connection factory for the responseConnection (two-way only and

optional; otherwise, outboundConnection is used for imports, and
inboundConnection is used for exports)

v Generic JMS destination for the receive (import) and send (export) destination
(two-way only)

v Default messaging provider callback JMS destination used to access the SIB
callback queue destination (two-way only)

v Default messaging provider callback JMS connection factory used to access the
callback JMS destination (two-way only)

v SIB callback queue destination used to store information about the request
message for use during response processing (two-way only)

The installation task creates the ConnectionFactory, the three destinations, and the
ActivationSpec from the information in the import and export files.

Generic JMS headers
Generic JMS headers are Service Data Objects (SDO) that contain all the properties
of the Generic JMS message properties. These properties can be from the inbound
message or they can be the properties that will be applied to the outbound
message.

A JMS message contains two types of headers–the JMS system header and multiple
JMS properties. Both types of headers can be accessed either in a mediation
module in the Service Message Object (SMO) or by using the ContextService API.

The following properties are set statically on the methodBinding:
v JMSType

Bindings 83

v JMSCorrelationID
v JMSDeliveryMode
v JMSPriority

The Generic JMS binding also supports dynamic modification of JMS headers and
properties in the same manner as the JMS and MQ JMS bindings.

Some Generic JMS providers place restrictions on which properties can be set by
the application and in what combinations. You must consult your third-party
product documentation for more information. However, an additional property has
been added to the methodBinding, ignoreInvalidOutboundJMSProperties, which
allows any exceptions to be propagated.

The Generic JMS headers and message properties are used only when the base
service component architecture SCDL binding switch is turned on. When the
switch is turned on, context information is propagated. By default, this switch is
on. To prevent context information propagation, change the value to false.

When context propagation is enabled, header information is allowed to flow to the
message or to the target component. To turn on and off context propagation,
specify true or false for the contextPropagationEnabled attribute of the import
and export bindings. For example:
<esbBinding xsi:type="eis:JMSImportBinding" contextProgagationEnabled="true">

The default is true.

Troubleshooting Generic JMS bindings
You can diagnose and fix problems with Generic JMS binding.

Implementation exceptions

In response to various error conditions, the Generic JMS import and export
implementation can return one of two types of exceptions:
v Service Business Exception: this exception is returned if the fault specified on the

service business interface (WSDL port type) occurred.
v Service Runtime Exception: raised in all other cases. In most cases, the cause

exception will contain the original exception (JMSException).

Troubleshooting Generic JMS message expiry

A request message by the JMS provider is subject to expiration.

Request expiry refers to the expiration of a request message by the JMS provider
when the JMSExpiration time on the request message is reached. As with other
JMS bindings, the Generic JMS binding handles the request expiry by setting
expiration on the callback message placed by the import to be the same as for the
outgoing request. Notification of the expiration of the callback message will
indicate that the request message has expired and the client should be notified by
means of a business exception.

If the callback destination is moved to the third-party provider, however, this type
of request expiry is not supported.

Response expiry refers to the expiration of a response message by the JMS provider
when the JMSExpiration time on the response message is reached.

84 Developing and deploying

Response expiry for the generic JMS binding is not supported, because the exact
expiry behavior of a third-party JMS provider is not defined. You can, however,
check that the response is not expired if and when it is received.

For outbound request messages, the JMSExpiration value will be calculated from
the time waited and from the requestExpiration values carried in the asyncHeader,
if set.

Troubleshooting Generic JMS connection factory errors

When you define certain types of connection factories in your Generic JMS
provider, you might receive an error message when you try to start an application.
You can modify the external connection factory to avoid this problem.

When launching an application, you might receive the following error message:
MDB Listener Port JMSConnectionFactory type does not match
JMSDestination type

This problem can arise when you are defining external connection factories.
Specifically, the exception can be thrown when you create a JMS 1.0.2 Topic
Connection Factory, instead of a JMS 1.1 (unified) Connection Factory (that is, one
that is able to support both point-to-point and publish/subscribe communication).

To resolve this issue, take the following steps:
1. Access the Generic JMS provider that you are using.
2. Replace the JMS 1.0.2 Topic Connection Factory that you defined with a JMS 1.1

(unified) Connection Factory.

When you launch the application with the newly defined JMS 1.1 Connection
Factory, you should no longer receive an error message.

Generic JMS-based SCA messages not appearing in the failed event
manager

If SCA messages originated through a generic JMS interaction fail, you would
expect to find these messages in the failed event manager. If such messages are not
appearing in the failed event manager, ensure that the value of the maximum
retries property on the underlying listener port is equal to or greater than 1. Setting
this value to 1 or more enables interaction with the failed event manager during
SCA invocations for the generic JMS bindings.

Handling exceptions
The way in which the binding is configured determines how exceptions that are
raised by data handlers or data bindings are handled. Additionally, the nature of
the mediation flow dictates the behavior of the system when such an exception is
thrown.

A variety of problems can occur when a data handler or data binding is called by
your binding. For example, a data handler might receive a message that has a
corrupt payload, or it might try to read a message that has an incorrect format.

The way your binding handles such an exception is determined by how you
implement the data handler or data binding. The recommended behavior is that
you design your data binding to throw a DataBindingException.

Bindings 85

The situation is similar for a data handler. Since the data handler is invoked by the
data binding, any data handler exception is wrapped into a data binding
exception. Therefore a DataHandlerException is reported to you as a
DataBindingException.

When any runtime exception, including a DataBindingException exception, is
thrown:
v If the mediation flow is configured to be transactional, the JMS message is stored

in the Failed Event Manager by default for manual replay or deletion.

Note: You can change the recovery mode on the binding so that the message is
rolled back instead of being stored in the failed event manager.

v If the mediation flow is not transactional, the exception is logged and the
message is lost.

The situation is similar for a data handler. Because the data handler is called by the
data binding, a data handler exception is produced inside a data binding
exception. Therefore, a DataHandlerException is reported to you as a
DataBindingException.

WebSphere MQ JMS bindings
The WebSphere MQ JMS binding provides integration with external applications
that use a WebSphere MQ JMS-based provider.

Use the WebSphere MQ JMS export and import bindings to integrate directly with
external JMS or MQ JMS systems from your server environment. This eliminates
the need to use MQ Link or Client Link features of the Service Integration Bus.

When a component interacts with a WebSphere MQ JMS-based service by way of
an import, the WebSphere MQ JMS import binding utilizes a destination to which
data will be sent and a destination where the reply can be received. Conversion of
the data to and from a JMS message is accomplished through the JMS data handler
or data binding edge component.

When an SCA module provides a service to WebSphere MQ JMS clients, the
WebSphere MQ JMS export binding utilizes a destination where the request can be
received and the response can be sent. The conversion of the data to and from a
JMS message is done through the JMS data handler or data binding.

The function selector provides a mapping to the operation on the target component
to be invoked.

WebSphere MQ JMS bindings overview
The WebSphere MQ JMS binding provides integration with external applications
that use the WebSphere MQ JMS provider.

WebSphere MQ administrative tasks

The WebSphere MQ system administrator is expected to create the underlying
WebSphere MQ Queue Manager, which the WebSphere MQ JMS bindings will use,
before running an application containing these bindings.

WebSphere MQ JMS import bindings

The WebSphere MQ JMS import allows components within your SCA module to
communicate with services provided by WebSphere MQ JMS-based providers. You

86 Developing and deploying

must be using a supported version of WebSphere MQ. Detailed hardware and
software requirements can be found on the IBM support pages.

Two types of usage scenarios for WebSphere MQ JMS import bindings are
supported, depending on the type of operation being invoked:
v One-way: The WebSphere MQ JMS import puts a message on the send

destination configured in the import binding. Nothing is sent to the replyTo field
of the JMS header.

v Two-way (request-response): The WebSphere MQ JMS import puts a message on
the send destination.
The receive destination is set in the replyTo header field. A message-driven bean
(MDB) is deployed to listen on the receive destination, and when a reply is
received, the MDB passes the reply back to the component.
The import binding can be configured (using the Response correlation scheme
field in WebSphere Integration Developer) to expect the response message
correlation ID to have been copied from the request message ID (the default) or
from the request message correlation ID.

For both one-way and two-way usage scenarios, dynamic and static header
properties can be specified.Static properties can be set from the JMS import method
binding. Some of these properties have special meanings to the SCA JMS runtime.

It is important to note that WebSphere MQ JMS is an asynchronous binding. If a
calling component invokes a WebSphere MQ JMS import synchronously (for a
two-way operation), the calling component is blocked until the response is
returned by the JMS service.

Figure 38 illustrates how the import is linked to the external service.

MQ JMS
Connection

Factory

MQ JMS
Response

Connection
Factory

<my_module>/<my_import>_MQ_CF

<my_module>/<my_import>_RESP_CF

WebSphere
MQ

MQ JMS

Destination
Receive

MQ JMS

Destination
Send

WebSphere MQ
JMS

Listener
Port

<my_module / my_import>_> < MQ_SEND_D

_MQ_RECEIVE_D
<my_module>/<my_import>

<my_module>/<my
_import>_RESP_LP

MQ JMS Import

Figure 38. WebSphere MQ JMS import binding resources

Bindings 87

http://www.ibm.com/support/docview.wss?uid=swg27006205

WebSphere MQ JMS export bindings

The WebSphere MQ JMS export binding provides the means for SCA modules to
provide services to external JMS applications on the WebSphere MQ-based JMS
provider.

An MDB is deployed to listen to requests incoming to the receive destination
specified in the export binding. The destination specified in the send field is used
to send the reply to the inbound request if the invoked component provides a
reply. The destination specified in the replyTo field of the response message
overrides the destination specified in the send field.

Figure 39 illustrates how the external requestor is linked to the export.

Note: Figure 38 on page 87 and Figure 39 illustrate how an application from a
previous version of WebSphere Process Server is linked to an external service. For
applications developed for WebSphere Process Server Version 7.0, the Activation
specification is used instead of the Listener Port and Connection Factory.

Key features of WebSphere MQ JMS bindings
Key features of WebSphere MQ JMS bindings include headers, Java EE artifacts,
and created Java EE resources.

Headers

A JMS message header contains a number of predefined fields containing values
used by both clients and providers to identify and to route messages. You can use
binding properties to configure these headers with fixed values, or the headers can
be specified dynamically at runtime.

MQ JMS
Listener

Connection
Factory

MQ JMS
Response

Connection
Factory

<my_module>/<my_export>_LIST_CF

<my_module>/<my_export>
_RESP_CF

WebSphere
MQ

MQ JMS

Destination
Send

MQ JMS

Destination
Receive

WebSphere MQ
JMS Export

Listener
Port

<my_module>/<my_export>
_MQ_RECEIVE_D

<my_module>/<my_export>
_MQ_SEND_D

<my_module>/<my_export>_LP

MQ JMS Export

Figure 39. WebSphere MQ JMS export binding resources

88 Developing and deploying

JMSCorrelationID
Links to a related message. Typically, this field is set to the message identifier
string of the message that is being replied to.

TargetFunctionName
This header is used by one of the supplied function selectors to identify the
operation being invoked. Setting the TargetFunctionName JMS header property
in messages sent to a JMS export allows this function selector to be used. The
property can be set directly in JMS client applications or when connecting an
import with a JMS binding to such an export. In this case, the JMS import
binding should be configured to set the TargetFunctionName header for each
operation in the interface to the name of the operation.

Correlation schemes

The WebSphere MQ JMS bindings provide various correlation schemes that are
used to determine how to correlate request messages with response messages.

RequestMsgIDToCorrelID
The JMSMessageID is copied to the JMSCorrelationID field. This is the default
setting.

RequestCorrelIDToCorrelID
The JMSCorrelationID is copied to the JMSCorrelationID field.

Java EE resources

A number of Java EE resources are created when an MQ JMS import is deployed
to a Java EE environment.

Parameters

MQ Connection Factory
Used by clients to create a connection to the MQ JMS provider.

Response Connection Factory
Used by the SCA MQ JMS runtime when the send destination is on a different
Queue Manager than the receive destination.

Activation specification
An MQ JMS activation specification is associated with one or more
message-driven beans and provides the configuration necessary for them to
receive messages.

Destinations

v Send destination:
– Imports: Where the request or outgoing message is sent.
– Exports: Where the response message will be sent if it is not superseded

by the JMSReplyTo header field of the incoming message.
v Receive destination:

– Imports: Where the response or incoming message should be placed.
– Exports: Where the incoming or request message should be placed.

JMS headers
A JMS message contains two types of headers–the JMS system header and multiple
JMS properties. Both types of headers can be accessed either in a mediation
module in the Service Message Object (SMO) or by using the ContextService API.

Bindings 89

JMS system header

The JMS system header is represented in the SMO by the JMSHeader element,
which contains all the fields typically found in a JMS header. Although these can
be modified in the mediation (or ContextService), some JMS system header fields
set in the SMO will not be propagated in the outbound JMS message as they are
overridden by system or static values.

The key fields in the JMS system header that can be updated in a mediation (or
ContextService) are:
v JMSType and JMSCorrelationID – values of the specific predefined message

header properties
v JMSDeliveryMode – values for delivery mode (persistent or nonpersistent;

default is persistent)
v JMSPriority – priority value (0 to 9; default is JMS_Default_Priority)

JMS properties

JMS properties are represented in the SMO as entries in the Properties list. The
properties can be added, updated, or deleted in a mediation or by using the
ContextService API.

Properties can also be set statically in the JMS binding. Properties that are set
statically override settings (with the same name) that are set dynamically.

User properties propagated from other bindings (for example, an HTTP binding)
will be output in the JMS binding as JMS properties.

Header propagation settings

The propagation of the JMS system header and properties either from the inbound
JMS message to downstream components or from upstream components to the
outbound JMS message can be controlled by the Propagate Protocol Header flag on
the binding.

When Propagate Protocol Header is set, header information is allowed to flow to
the message or to the target component, as described in the following list:
v JMS export request

The JMS header received in the message will be propagated to target
components by way of the context service. JMS properties received in the
message will be propagated to target components by way of the context service.

v JMS export response
Any JMS header fields set in the context service will be used in the outbound
message, if not overridden by static properties set on the JMS export binding.
Any properties set in the context service will be used in the outbound message
if not overridden by static properties set on the JMS export binding.

v JMS import request
Any JMS header fields set in the context service will be used in the outbound
message, if not overridden by static properties set on the JMS import binding.
Any properties set in the context service will be used in the outbound message
if not overridden by static properties set on the JMS import binding.

v JMS import response

90 Developing and deploying

The JMS header received in the message will be propagated to target
components by way of the context service. JMS properties received in the
message will be propagated to target components by way of the context service.

External clients
The server can send messages to, or receive messages from, external clients using
WebSphere MQ JMS bindings.

An external client (such as a Web portal or an enterprise information system) can
send a message to an SCA component in the application by way of an export or it
can be invoked by an SCA component in the application by way of an import.

The WebSphere MQ JMS export binding deploys message driven beans (MDBs) to
listen to requests incoming to the receive destination specified in the export
binding. The destination specified in the send field is used to send the reply to the
inbound request if the invoked application provides a reply. Thus, an external
client is able to invoke applications via the export binding.

WebSphere MQ JMS imports bind to, and can deliver message to, external clients.
This message might or might not demand a response from the external client.

More information on how to interact with external clients using WebSphere MQ
can be found at the WebSphere MQ information center.

Troubleshooting WebSphere MQ JMS bindings
You can diagnose and fix problems with WebSphere MQ JMS bindings.

Implementation exceptions

In response to various error conditions, the MQ JMS import and export
implementation can return one of two types of exceptions:
v Service Business Exception: this exception is returned if the fault specified on the

service business interface (WSDL port type) occurred.
v Service Runtime Exception: raised in all other cases. In most cases, the cause

exception will contain the original exception (JMSException).
For example, an import expects only one response message for each request
message. If more than one response arrives, or if a late response (one for which
the SCA response expiration has expired) arrives, a Service Runtime Exception is
thrown. The transaction is rolled back, and the response message is backed out
of the queue or handled by the failed event manager.

WebSphere MQ JMS-based SCA messages not appearing in the failed
event manager

If SCA messages originated through a WebSphere MQ JMS interaction fail, you
would expect to find these messages in the failed event manager. If such messages
are not appearing in the failed event manager, ensure that the value of the
maximum retries property on the underlying listener port is equal to or greater
than 1. Setting this value to 1 or more enables interaction with the failed event
manager during SCA invocations for the MQ JMS bindings.

Misusage scenarios: comparison with WebSphere MQ bindings

The WebSphere MQ JMS binding is designed to interoperate with JMS applications
deployed against WebSphere MQ, which exposes messages according to the JMS

Bindings 91

http://www-306.ibm.com/software/integration/wmq/library/

message model. The WebSphere MQ import and export, however, are principally
designed to interoperate with native WebSphere MQ applications and expose the
full content of the WebSphere MQ message body to mediations.

The following scenarios should be built using the WebSphere MQ JMS binding, not
the WebSphere MQ binding:
v Invoking a JMS message-driven bean (MDB) from an SCA module, where the

MDB is deployed against the WebSphere MQ JMS provider. Use a WebSphere
MQ JMS import.

v Allowing the SCA module to be called from a Java EE component servlet or EJB
by way of JMS. Use a WebSphere MQ JMS export.

v Mediating the contents of a JMS MapMessage, in transit across WebSphere MQ.
Use a WebSphere MQ JMS export and import in conjunction with the
appropriate data handler or data binding.

There are situations in which the WebSphere MQ binding and WebSphere MQ JMS
binding might be expected to interoperate. In particular, when you are bridging
between Java EE and non-Java EE WebSphere MQ applications, use a WebSphere
MQ export and WebSphere MQ JMS import (or vice versa) in conjunction with
appropriate data bindings or mediation modules (or both).

Handling exceptions
The way in which the binding is configured determines how exceptions that are
raised by data handlers or data bindings are handled. Additionally, the nature of
the mediation flow dictates the behavior of the system when such an exception is
thrown.

A variety of problems can occur when a data handler or data binding is called by
your binding. For example, a data handler might receive a message that has a
corrupt payload, or it might try to read a message that has an incorrect format.

The way your binding handles such an exception is determined by how you
implement the data handler or data binding. The recommended behavior is that
you design your data binding to throw a DataBindingException.

The situation is similar for a data handler. Since the data handler is invoked by the
data binding, any data handler exception is wrapped into a data binding
exception. Therefore a DataHandlerException is reported to you as a
DataBindingException.

When any runtime exception, including a DataBindingException exception, is
thrown:
v If the mediation flow is configured to be transactional, the JMS message is stored

in the Failed Event Manager by default for manual replay or deletion.

Note: You can change the recovery mode on the binding so that the message is
rolled back instead of being stored in the failed event manager.

v If the mediation flow is not transactional, the exception is logged and the
message is lost.

The situation is similar for a data handler. Because the data handler is called by the
data binding, a data handler exception is produced inside a data binding
exception. Therefore, a DataHandlerException is reported to you as a
DataBindingException.

92 Developing and deploying

WebSphere MQ bindings
The WebSphere MQ binding provides Service Component Architecture (SCA)
connectivity with WebSphere MQ applications.

Use the WebSphere MQ export and import bindings to integrate directly with a
WebSphere MQ-based system from your server environment. This eliminates the
need to use MQ Link or Client Link features of the Service Integration Bus.

When a component interacts with a WebSphere MQ service by way of an import,
the WebSphere MQ import binding uses a queue to which data will be sent and a
queue where the reply can be received.

When an SCA module provides a service to WebSphere MQ clients, the WebSphere
MQ export binding uses a queue where the request can be received and the
response can be sent. The function selector provides a mapping to the operation on
the target component to be invoked.

Conversion of the payload data to and from an MQ message is done through the
MQ body data handler or data binding. Conversion of the header data to and from
an MQ message is done through the MQ header data binding.

For information about the WebSphere MQ versions supported, see the WebSphere
Process Server system requirements Web site.

WebSphere MQ bindings overview
The WebSphere MQ binding provides integration with native MQ-based
applications.

WebSphere MQ administrative tasks

The WebSphere MQ system administrator is expected to create the underlying
WebSphere MQ Queue Manager, which the WebSphere MQ bindings will use,
before running an application containing these bindings.

WebSphere administrative tasks

You must set the Native library path property of the MQ resource adapter in
Websphere to the WebSphere MQ version supported by the server, and restart the
server. This ensures that the libraries of a supported version of WebSphere MQ are
being used. Detailed hardware and software requirements can be found on the
IBM support pages

WebSphere MQ import bindings

The WebSphere MQ import binding allows components within your SCA module
to communicate with services provided by external WebSphere MQ-based
applications. You must be using a supported version of WebSphere MQ. Detailed
hardware and software requirements can be found on the IBM support pages.

Interaction with external WebSphere MQ systems includes the use of queues for
sending requests and receiving replies.

Two types of usage scenarios for the WebSphere MQ import binding are
supported, depending on the type of operation being invoked:

Bindings 93

http://www.ibm.com/support/docview.wss?uid=swg27006205
http://www.ibm.com/support/docview.wss?uid=swg27006205
http://www.ibm.com/support/docview.wss?uid=swg27006205
http://www.ibm.com/support/docview.wss?uid=swg27006205

v One-way: The WebSphere MQ import puts a message on the queue configured
in the Send destination queue field of the import binding. Nothing is sent to
the replyTo field of the MQMD header.

v Two-way (request-response): The WebSphere MQ import puts a message on the
queue configured in the Send destination queue field
The receive queue is set in the replyTo MQMD header field. A message driven
bean (MDB) is deployed to listen on the receive queue, and when a reply is
received, the MDB passes the reply back to the component.
The import binding can be configured (using the Response correlation scheme
field) to expect the response message correlation ID to have been copied from
the request message ID (the default) or from the request message correlation ID.

It is important to note that WebSphere MQ is an asynchronous binding. If a calling
component invokes a WebSphere MQ import synchronously (for a two-way
operation), the calling component is blocked until the response is returned by the
WebSphere MQ service.

Figure 40 illustrates how the import is linked to the external service.

WebSphere MQ export bindings

The WebSphere MQ export binding provides the means for SCA modules to
provide services to external WebSphere MQ-based applications.

An MDB is deployed to listen to requests incoming to the Receive destination
queue specified in the export binding. The queue specified in the Send destination
queue field is used to send the reply to the inbound request if the invoked
component provides a reply. The queue specified in the replyTo field of the
response message overrides the queue specified in the Send destination queue
field.

WebSphere
MQ

Generated
MQ

Destination

_JMS
Send

Generated
MQ JMS

Destination
Receive

to WebSphereMQ

<my_module>/<my_import>_MQ_RECEIVE_D

<my_module>/<my_import>
_MQ_SEND_D

Listener
Port

MQ Import

Receive (Response) Resources

Send (Request) Resources

Generated
MQ JMS

Connection
Factory

<my_module>/<my_import>_RESP_LP

<my_module>/<my_import>
_MQIMPORT_CF

Figure 40. WebSphere MQ import binding resources

94 Developing and deploying

Figure 41 illustrates how the external requestor is linked to the export.

Note: Figure 40 on page 94 and Figure 41 illustrate how an application from a
previous version of WebSphere Process Server is linked to an external service. For
applications developed for WebSphere Process Server Version 7.0, the Activation
specification is used instead of the Listener Port and Connection Factory.

Key features of a WebSphere MQ binding
Key features of a WebSphere MQ binding include headers, Java EE artifacts, and
created Java EE resources.

Correlation schemes

A WebSphere MQ request/reply application can use one of a number of techniques
to correlate response messages with requests, built around the MQMD MessageID
and CorrelID fields. In the vast majority of cases, the requestor lets the queue
manager select a MessageID and expects the responding application to copy this
into the CorrelID of the response. In most cases, the requestor and responding
application implicitly know which correlation technique is in use. Occasionally the
responding application will honor various flags in the Report field of the request
that describe how to handle these fields.

Export bindings for WebSphere MQ messages can be configured with the following
options:

WebSphere
MQ

Generated
MQ

Destination

_JMS
Send

Generated
MQ JMS

Destination
Receive

WMQ

<my_module>/<my_export>
_MQ_RECEIVE_D

<my_module>/<my_export>_MQ_SEND_D

Listener
Port

MQ Export

Receive (Request) Resources

Send (Response) Resources

Generated
MQ JMS

Connection
Factory

<my_module>/<my_export>_LP

<my_module>/<my_export>
_MQEXPORT_CF

Figure 41. WebSphere MQ export binding resources

Bindings 95

Response MsgId options:

New MsgID
Allows the queue manager to select a unique MsgId for the response (default).

Copy from Request MsgID
Copies the MsgId field from the MsgId field in the request.

Copy from SCA message
Sets the MsgId to be that carried in WebSphere MQ headers in the SCA
response message, or lets the queue manager define a new Id if the value does
not exist.

As Report Options
Inspects the Report field of the MQMD in the request for a hint as to how to
handle the MsgId. The MQRO_NEW_MSG_ID and MQRO_PASS_MSG_ID
options are supported and behave like New MsgId and Copy from Request
MsgID, respectively

Response CorrelId options:

Copy from Request MsgID
Copies the CorrelId field from the MsgId field in the request (default).

Copy from Request CorrelID
Copies the CorrelId field from the CorrelId field in the request.

Copy from SCA message
Sets the CorrelId to be carried in WebSphere MQ headers in the SCA response
message or leaves it blank if the value does not exist.

As Report Options
Inspects the Report field of the MQMD in the request for a hint as to how to
handle the CorrelId. The MQRO_COPY_MSG_ID_TO_CORREL_ID and
MQRO_PASS_CORREL_ID options are supported and behave like Copy from
Request MsgID and Copy from Request CorrelID, respectively

Import bindings for WebSphere MQ messages can be configured with the
following options:

Request MsgId options:

New MsgID
Allows the queue manager to select a unique MsgId for the request (default)

Copy from SCA message
Sets the MsgId to be carried in WebSphere MQ headers in the SCA request
message or lets the queue manager define a new Id if the value does not exist.

Response correlation options:

Response has CorrelID copied from MsgId
Expects the response message to have a CorrelId field set, per the MsgId of the
request (default).

Response has MsgID copied from MsgId
Expects the response message to have a MsgId field set, per the MsgId of the
request.

Response has CorrelID copied from CorrelId
Expects the response message to have a CorrelId field set, per the CorrelId of
the request.

96 Developing and deploying

Java EE resources

A number of Java EE resources are created when a WebSphere MQ binding is
deployed to a Java EE environment.

Parameters

MQ Connection Factory
Used by clients to create a connection to the WebSphere MQ provider.

Response Connection Factory
Used by the SCA MQ runtime when the send destination is on a different
Queue Manager than the receive destination.

Activation specification
An MQ JMS activation specification is associated with one or more
message-driven beans and provides the configuration necessary for them to
receive messages.

Destinations

v Send destination: where the request or outgoing message is sent (import);
where the response message will be sent (export), if not superseded by the
MQMD ReplyTo header field in the incoming message.

v Receive destination: where the response/request or incoming message
should be placed.

WebSphere MQ headers
WebSphere MQ headers incorporate certain conventions for conversion to the
service component architecture (SCA) messages.

WebSphere MQ messages consist of a system header (the MQMD), zero or more
other MQ headers (system or custom), and a message body. If multiple message
headers exist in the message, the order of the headers is significant.

Each header contains information describing the structure of the following header.
The MQMD describes the first header.

How MQ headers are parsed

An MQ Header data binding is used to parse MQ headers. The following headers
are supported automatically:
v MQRFH
v MQRFH2
v MQCIH
v MQIIH

Headers that start with MQH are handled differently. Specific fields of the header are
not parsed; they remain as unparsed bytes.

For other MQ headers, you can write custom MQ header data bindings to parse
those headers.

How MQ headers are accessed

MQ headers can be accessed in the product in one of two ways:
v Through the service message object (SMO) in a mediation

Bindings 97

v Through the ContextService API

MQ headers are represented internally with the SMO MQHeader element.
MQHeader is a container of header data that extends MQControl but contains a
value element of anyType. It contains the MQMD, MQControl (MQ message body
control information), and a list of other MQ headers.
v MQMD represents the contents of the WebSphere MQ message description,

except for information determining the structure and encoding of the body.
v MQControl contains information determining the structure and encoding of a

message body.
v MQHeaders contain a list of MQHeader objects.

The MQ header chain is unwound so that, inside the SMO, each MQ header
carries its own control information (CCSID, Encoding, and Format). Headers can
be added or deleted easily, without altering other header data.

Setting fields in the MQMD

You can update the MQMD using the Context API or through the service message
object (SMO) in a mediation. The following fields are automatically propagated to
the outbound MQ message:
v Encoding
v CodedCharacterSet
v Format
v Report
v Expiry
v Feedback
v Priority
v Persistence
v CorrelId
v MsgFlags

Configure the MQ binding on an Import or Export to propagate the following
properties to the outbound MQ message:

MsgID
Set Request Message ID to copy from SCA message.

MsgType
Clear the Set message type to MQMT_DATAGRAM or MQMT_REQUEST
for request-response operation check box.

ReplyToQ
Clear the Override reply to queue of request message check box.

ReplyToQMgr
Clear the Override reply to queue of request message check box.

From version 7.0 onwards, context fields can be overridden using a custom
property on the JNDI destination definition. Set the custom property MDCTX with
value SET_IDENTITY_CONTEXT on the send destination to propagate the following
fields to the outbound MQ message:
v UserIdentifier
v AppIdentityData

98 Developing and deploying

Set the custom property MDCTX with value SET_ALL_CONTEXT on the send
destination to propagate the following properties to the outbound MQ message:
v UserIdentifier
v AppIdentityData
v PutApplType
v PutApplName
v ApplOriginData

Some fields are not propagated to the outbound MQ message. The following fields
are overridden during the send of the message:
v BackoutCount
v AccountingToken
v PutDate
v PutTime
v Offset
v OriginalLength

Adding MQCIH statically in a WebSphere MQ binding
WebSphere Process Server supports adding MQCIH header information statically
without using a mediation module.

There are various ways to add MQCIH header information to a message (for
example, by using the Header Setter mediation primitive). It might be useful to
add this header information statically, without the use of an additional mediation
module. Static header information, including the CICS® program name, the
transaction ID, and other data format header details, can be defined and added as
part of the WebSphere MQ binding.

WebSphere MQ, the MQ CICS Bridge, and CICS must be configured for MQCIH
header information to be added statically.

You can use WebSphere Integration Developer to configure the WebSphere MQ
import with the static values that are required for the MQCIH header information.

When a message arrives and is processed by the WebSphere MQ import, a check is
made to see if MQCIH header information is already present in the message. If the
MQCIH is present, the static values defined in the WebSphere MQ import are used
to override the corresponding dynamic values in the message. If the MQCIH is not
present, one is created in the message and the static values defined in the
WebSphere MQ import are added.

The static values defined in the WebSphere MQ import are specific to a method.
You can specify different static MQCIH values for different methods within the
same WebSphere MQ import.

This facility is not used to provide default values if the MQCIH does not contain
specific header information because a static value defined in the WebSphere MQ
import will override a corresponding value provided in the incoming message.

External clients
WebSphere Process Server can send messages to, or receive messages from,
external clients using WebSphere MQ bindings.

Bindings 99

An external client (for example, a Web portal or an enterprise information system)
can send a message to an SCA component in the application by way of an export
or it can be invoked by an SCA component in the application by way of an import.

The WebSphere MQ export binding deploys message driven beans (MDBs) to listen
to requests incoming to the receive destination specified in the export binding. The
destination specified in the send field is used to send the reply to the inbound
request if the invoked application provides a reply. Thus, an external client is able
to invoke applications by way of the export binding.

WebSphere MQ imports bind to, and can deliver message to, external clients. This
message might or might not demand a response from the external client.

More information on how to interact with external clients using WebSphere MQ
can be found at the WebSphere MQ information center.

Troubleshooting WebSphere MQ bindings
You can diagnose and fix faults and failure conditions that occur with WebSphere
MQ bindings.

Primary failure conditions

The primary failure conditions of WebSphere MQ bindings are determined by
transactional semantics, by WebSphere MQ configuration, or by reference to
existing behavior in other components. The primary failure conditions include:
v Failure to connect to the WebSphere MQ queue manager or queue.

A failure to connect to WebSphere MQ to receive messages will result in the
MDB Listener Port failing to start. This condition will be logged in the
WebSphere Application Server log. Persistent messages will remain on the
WebSphere MQ queue until they are successfully retrieved (or expired by
WebSphere MQ).
A failure to connect to WebSphere MQ to send outbound messages will cause
rollback of the transaction controlling the send.

v Failure to parse an inbound message or to construct an outbound message.
A failure in the data binding causes rollback of the transaction controlling the
work.

v Failure to send the outbound message.
A failure to send a message causes rollback of the relevant transaction.

v Multiple or unexpected response messages.
The import expects only one response message for each request message. If more
than one response arrives, or if a late response (one for which the SCA response
expiration has expired) arrives, a Service Runtime Exception is thrown. The
transaction is rolled back, and the response message is backed out of the queue
or handled by the failed event manager.

Misusage scenarios: comparison with WebSphere MQ JMS bindings

The WebSphere MQ import and export are principally designed to interoperate
with native WebSphere MQ applications and expose the full content of the
WebSphere MQ message body to mediations. The WebSphere MQ JMS binding,
however, is designed to interoperate with JMS applications deployed against
WebSphere MQ, which exposes messages according to the JMS message model.

100 Developing and deploying

http://www-306.ibm.com/software/integration/wmq/library/

The following scenarios should be built using the WebSphere MQ JMS binding, not
the WebSphere MQ binding:
v Invoking a JMS message-driven bean (MDB) from an SCA module, where the

MDB is deployed against the WebSphere MQ JMS provider. Use a WebSphere
MQ JMS import.

v Allowing the SCA module to be called from a Java EE component servlet or EJB
by way of JMS. Use a WebSphere MQ JMS export.

v Mediating the contents of a JMS MapMessage, in transit across WebSphere MQ.
Use a WebSphere MQ JMS export and import in conjunction with the
appropriate data binding.

There are situations in which the WebSphere MQ binding and WebSphere MQ JMS
binding might be expected to interoperate. In particular, when you are bridging
between Java EE and non-Java EE WebSphere MQ applications, use a WebSphere
MQ export and WebSphere MQ JMS import (or vice versa) in conjunction with
appropriate data bindings or mediation modules (or both).

Undelivered messages

If WebSphere MQ cannot deliver a message to its intended destination (because of
configuration errors, for example), it sends the messages instead to a nominated
dead-letter queue.

In doing so, it adds a dead-letter header to the start of the message body. This
header contains the failure reasons, the original destination, and other information.

MQ-based SCA messages not appearing in the failed event manager

If SCA messages originated because of a WebSphere MQ interaction failure, you
would expect to find these messages in the failed event manager. If these messages
are not showing in the failed event manager, check that the underlying WebSphere
MQ destination has a maximum failed deliveries value greater than 1. Setting this
value to 2 or more allows interaction with the failed event manager during SCA
invocations for the WebSphere MQ bindings.

MQ failed events are replayed to the wrong queue manager

When a predefined connection factory is to be used for outbound connections, the
connection properties must match those defined in the activation specification used
for inbound connections.

The predefined connection factory is used to create a connection when replaying a
failed event and must therefore be configured to use the same queue manager
from which the message was originally received.

Handling exceptions
The way in which the binding is configured determines how exceptions that are
raised by data handlers or data bindings are handled. Additionally, the nature of
the mediation flow dictates the behavior of the system when such an exception is
thrown.

A variety of problems can occur when a data handler or data binding is called by
your binding. For example, a data handler might receive a message that has a
corrupt payload, or it might try to read a message that has an incorrect format.

Bindings 101

The way your binding handles such an exception is determined by how you
implement the data handler or data binding. The recommended behavior is that
you design your data binding to throw a DataBindingException.

The situation is similar for a data handler. Since the data handler is invoked by the
data binding, any data handler exception is wrapped into a data binding
exception. Therefore a DataHandlerException is reported to you as a
DataBindingException.

When any runtime exception, including a DataBindingException exception, is
thrown:
v If the mediation flow is configured to be transactional, the JMS message is stored

in the Failed Event Manager by default for manual replay or deletion.

Note: You can change the recovery mode on the binding so that the message is
rolled back instead of being stored in the failed event manager.

v If the mediation flow is not transactional, the exception is logged and the
message is lost.

The situation is similar for a data handler. Because the data handler is called by the
data binding, a data handler exception is produced inside a data binding
exception. Therefore, a DataHandlerException is reported to you as a
DataBindingException.

Limitations of bindings
The bindings have some limitations in their use that are listed here.

Limitations of the MQ binding
The MQ binding has some limitations in its use that are listed here.

No publish-subscribe message distribution

The publish-subscribe method of distributing messages is not currently supported
by the MQ binding though WMQ itself supports publish-subscribe. However, the
MQ JMS binding does support this method of distribution.

Shared receive queues

Multiple WebSphere MQ export and import bindings expect that any messages
present on their configured receive queue are intended for that export or import.
Import and export bindings should be configured with the following
considerations:
v Each MQ import must have a different receive queue because the MQ import

binding assumes all messages on the receive queue are responses to requests
that it sent. If the receive queue is shared by more than one import, responses
could be received by the wrong import and will fail to be correlated with the
original request message.

v Each MQ export should have a different receive queue, because otherwise you
cannot predict which export will get any particular request message.

v MQ imports and exports can point to the same send queue.

Limitations of the JMS, MQ JMS, and generic JMS bindings
The JMS and MQ JMS bindings have some limitations.

102 Developing and deploying

Implications of generating default bindings

The limitations of using the JMS, MQ JMS, and generic JMS bindings are discussed
in the following sections:
v Implications of generating default bindings
v Response correlation scheme
v Bidirectional support

When you generate a binding, several fields will be filled in for you as defaults, if
you do not choose to enter the values yourself. For example, a connection factory
name will be created for you. If you know that you will be putting your
application on a server and accessing it remotely with a client, you should at
binding creation time enter JNDI names rather than take the defaults since you
will likely want to control these values through the administrative console at run
time.

However, if you did accept the defaults and then find later that you cannot access
your application from a remote client, you can use the administrative console to
explicitly set the connection factory value. Locate the provider endpoints field in
the connection factory settings and add a value such as <server_hostname>:7276 (if
using the default port number).

Response correlation scheme

If you use the CorrelationId To CorrelationId response correlation scheme, used to
correlate messages in a request-response operation, you must have a dynamic
correlation ID in the message.

To create a dynamic correlation ID in a mediation module using the mediation
flow editor, add an XSLT node before the import with the JMS binding. Open the
XSLT mapping editor. The known service component architecture headers will be
available in the target message. Drag and drop a field containing a unique ID in
the source message onto the correlation ID in the JMS header in the target
message.

Bidirectional support

Only ASCII characters are supported for Java Naming and Directory Interface
(JNDI) names at runtime.

Shared receive queues

Multiple export and import bindings expect that any messages present on their
configured receive queue are intended for that export or import. Import and export
bindings should be configured with the following considerations:
v Each import binding must have a different receive queue because the import

binding assumes all messages on the receive queue are responses to requests
that it sent. If the receive queue is shared by more than one import, responses
could be received by the wrong import and will fail to be correlated with the
original request message.

v Each export should have a different receive queue, because otherwise you
cannot predict which export will get any particular request message.

v Imports and exports can point to the same send queue.

Bindings 103

104 Developing and deploying

Programming guides and techniques

This section includes programming guides and examples.

The following subtopics provide information for programming various
components, applications, and business integration solutions.

Important: See the Reference section of the infocenter for details of the application
programming interfaces (APIs) and system programming interfaces (SPIs) that are
supported by WebSphere Process Server and WebSphere Enterprise Service Bus.

Service Component Architecture programming
Service Component Architecture (SCA) provides a simple, yet powerful
programming model for constructing applications based on service-oriented
architecture (SOA).

Service Component Definition Language
Service Component Definition Language (SCDL) is an XML-based language used
to describe Service Component Architecture (SCA) elements such as modules,
components, references, imports, and exports.

The various artifact types that exist in SCA were designed to support some of the
basic requirements of this service-oriented architecture. To start with, SCA needs a
mechanism for defining a basic service component. Once there is a mechanism for
defining service components, it is important to be able to make these services
available to clients both inside or outside of the current SCA module. In addition
to this, a construct designed to import and reference services external to the
current SCA module must exist. Finally, SCA provides constructs for composing
services and modules into larger applications.

SCDL definitions are organized across several files. For example, in a credit
approval application, we can store the SCDL for the interface and implementation
in a file called CreditApproval.component. References can be included in the
CreditApproval.component file (inline) or in a separate sca.references file located
in the module root. Any stand-alone reference is placed in the sca.references file.
Stand-alone references can be used by non-SCA artifacts (JSP) within the same SCA
module to invoke the SCA component.

Table 14. Primary artifacts that make up an SCA service module

Artifact SCDL Definition

Module Definition v Contained in the sca.module file at the
root SCA project JAR

Service Components v A module can contain 0..n service
definitions

v Each component definition is contained in
a <SERVICE_NAME>.component file

© Copyright IBM Corp. 2006, 2010 105

Table 14. Primary artifacts that make up an SCA service module (continued)

Artifact SCDL Definition

Imports v A module can contain 0..n import
definitions

v Each import definition is contained in a
<IMPORT_NAME>.import file

Exports v A module can contain 0..n export
definitions

v Each export definition is contained in a
<EXPORT_NAME>.export file

References v Two types of references

– Inline (contained within a service
component definition)

– Stand-alone

v Each component definition is contained in
a <SERVICE_NAME>.reference file

Other Artifacts v Other artifacts include: Java Classes,
WSDL files, Other Artifacts XSD files,
BPEL.

When building an SCA application, WebSphere Integration Developer takes care of
generating the appropriate SCDL definitions. However, a basic familiarity with
SCDL can help you to understand the overall architecture and assist when
debugging applications.

Module definition
Service Component Architecture (SCA) defines a standard deployment model for
packaging components into a service module. The sca.module file contains the
definition of the module.

An SCA module is not just another type of package. In WebSphere Process Server,
an SCA service module is equivalent to a Java EE EAR file and several other Java
EE sub-modules. Java EE elements, such as a WAR file, can be packaged along
with the SCA module. Non-SCA artifacts (JSPs, and others) can also be packaged
together with an SCA service module, enabling them to invoke SCA services
through the SCA client programming model using a special type of reference called
a stand-alone reference.

Here is an example of a sca.module file:
<?xml version="1.0" encoding="UTF-8"?>
<scdl:module xmlns:scdl="http://www.ibm.com/xmlns/prod/websphere/scdl/7.0.0"
name="CreditApproval"/>

The diagram shows a module in WebSphere Integration Developer along with its
associated SCDL module definition that you can view in an editor. In this example,
the module type is a mediation module.

106 Developing and deploying

Component definition
The service component definition is included in a file called
<SERVICE_NAME>.component. SCA components with their associated dependencies
can be defined and packaged together into deployable units.

This figure provides a more detailed look at the service component definition. Each
service component must have a unique name within the SCA module and it must
match the file path relative to the module root. As noted on the previous slide, the
service component definition is included in a file called <SERVICE_NAME>.component.

<? ?>
<

< />
</ >

>

xml
scdl:module

mt:moduleType
Scdl:module

= =
=

=
= =

=

version encoding
xmlns:mt

Xmlns:scdl
type version

name

"1.0" "UTF-8"
"http://www.ibm.com/xmlns/prod/websphere/scdl/moduletype/7.0.0"

"http://www.ibm.com/xmlns/prod/websphere/scdl/7.0.0"
"com.ibm.ws.sca.scdl.moduletype.mediation" "1.0.0"

"StockQuote"

Figure 42. Showing the relationship between a module in WebSphere Integration Developer and the module definition

Programming guides and techniques 107

Each service component must have a unique name within the SCA module and it
must match the file path relative to the module root. Next, each service component
can have one or more interfaces associated with it, which can be either Java or
WSDL port type interface definitions. The interfaces associated with a service
component can support either a synchronous or asynchronous interaction style
with clients calling the service.

Each service component can be implemented in various ways, specified by the
implementation definition. Finally, service components can invoke other service
components or imports defined in the current service module. In this case, the
appropriate reference must be defined to indicate which service is used. Often this
type of reference is in lined in the service component definition, although it may
alternatively be placed in the stand-alone references file. Each service component
definition can have zero or more references to other services called by the service
component being defined.

Here is an example that shows the definition for the StockQuote_MediationFlow
component. Notice that the component includes definitions for a WSDL interface,
two references, and an implementation.

Figure 43. Service component definition including component name, implementation, interfaces, and references

108 Developing and deploying

<? ?>
<

>
< >
< />

</ >
< >
< >
< >
< />

</ >
< />

</ >
< >
< >
< />

</ >
< />

</ >
</ >
< />

</ >

xml
scdl:component

interfaces
interface
interfaces
references
reference
interface
method
interface
wire
reference
reference
interface
Method
interface
wire
reference

references
implementation
Scdl:component

= =
=

=
=
=
=
=
=

= =

= =

=
= =

=

=

=
= =

=

=

= =

version encoding
xmlns:xsi

xmlns:mfc
xmlns:ns1
xmlns:ns2
xmlns:ns3
xmlns:scdl
Xmlns:wsdl
DisplayName name

xsi:type portType

name
xsi:type portType
name

target

name
xsi:type portType
name

target

xsi:type mfcFile

"1.0" "UTF-8"
"http://www.w3.org/2001/XMLSchema-instance"

"http://www.ibm.com/xmlns/prod/websphere/scdl/mfc/7.0.0"
"http://Resources/StockQuoteService"
"http://stockquote.samp.sibx.websphere.ibm.com/DelayedService/"
"http://stockquote.samp.sibx.websphere.ibm.com/RealtimeService/"
"http://www.ibm.com/xmlns/prod/websphere/scdl/7.0.0"
"http://www.ibm.com/xmlns/prod/websphere/scdl/wsdl/7.0.0"

"StockQuote_MediationFlow" "StockQuote_MediationFlow"

"wsdl:WSDLPortType" "ns1:StockQuoteService"

"DelayedServicePortTypePartner"
"wsdl:WSDLPortType" "ns2:DelayedServicePortType"

"getQuote"

"DelayedService"

"RealtimeServicePortTypePartner"
"wsdl:WSDLPortType" "ns3:RealtimeServicePortType"

"getQuote"

"RealtimeService"

"mfc:MediationFlowImplementation" "StockQuote_MediationFlow.mfc"

Figure 44. Example of a component definition in Service Component Definition Language

Programming guides and techniques 109

Import definition
The import definition is included in a file called <IMPORT_NAME>.import. SCA
imports allow clients in an SCA module to access services that are outside the
current SCA module.

Like service components, imports have a name and a set of 1..N interfaces with
which they are associated. Imports also have a binding attribute, which is used to
describe how the external service is bound to the current module. The common
binding types are indicated in the diagram.

Imports can be thought of as a special type of service component in an SCA
module. Imports are valid targets in a wire definition for a service reference. This
means that to a client invoking a target service the client programming model is
the same whether the reference points to an import or another service component.

110 Developing and deploying

<? ?>
<

>
< >
< >
< />

</ >
</ >
<

/>
</ >

xml
scdl:import

interfaces
interface
method
interface

interfaces
esbBinding

scdl:import

= =
=

=
=

=
=

= =

= =
=

=
=

= =

version encoding
xmlns:xsi

xmlns:ns1
xmlns:scdl
xmlns:webservice
xmlns:wsdl
displayName name

xsi:type portType
name

xsi:type
endpoint
port service

"1.0" "UTF-8"
"http://www.w3.org/2001/XMLSchema-instance"

"http://stockquote.samp.sibx.websphere.ibm.com/DelayedService/"
"http://www.ibm.com/xmlns/prod/websphere/scdl/7.0.0"

"http://www.ibm.com/xmlns/prod/websphere/scdl/webservice/7.0.0"
"http://www.ibm.com/xmlns/prod/websphere/scdl/wsdl/7.0.0"

"DelayedService" "DelayedService"

"wsdl:WSDLPortType" "ns1:DelayedServicePortType"
"getQuote"

"webservice:WebServiceImportBinding"
"http://localhost:9080/DelayedService/services/DelayedServiceSOAP"

"ns1:DelayedServiceSOAP" "ns1:DelayedService"

Figure 45. Example of an import definition in Service Component Definition Language

Programming guides and techniques 111

Export definition
The export definition is included in a file called <EXPORT_NAME>.export. SCA
exports provide access to service components defined in an SCA module for use by
clients outside of the current SCA module.

Export components include a name and a target attribute, which names the service
component that is to be exported. Like import components, exports have a binding
attribute that indicates how the service is bound externally. The common binding
types are indicated in the diagram.

<? ?>
<

>
< >
< >
< />

</ >
</ >

xml
scdl:export

interfaces
interface
method
interface

interfaces

= =
=

=
=

=
=

=
= = =

= =
=

version encoding
xmlns:xsi

xmlns:_
xmlns:ns1

xmlns:scdl
xmlns:webservice
Xmlns:wsdl
displayName name target

xsi:type portType
name

"1.0" "UTF-8"
"http://www.w3.org/2001/XMLSchema-instance"

"http://Resources/StockQuoteService/Binding"
"http://Resources/StockQuoteService"

"http://www.ibm.com/xmlns/prod/websphere/scdl/7.0.0"
"http://www.ibm.com/xmlns/prod/websphere/scdl/webservice/7.0.0"

"http://www.ibm.com/xmlns/prod/websphere/scdl/wsdl/7.0.0"
"StockQuoteService" "StockQuoteService" "StockQuote_MediationFlow"

"wsdl:WSDLPortType" "ns1:StockQuoteService"
"getQuote"

Figure 46. Example of an export definition in Service Component Definition Language

112 Developing and deploying

Reference definition
SCA and non-SCA clients calling a service component need a reference to that
service in order to invoke it. References can be defined either as stand-alone in the
sca.reference file or as inline within a service composition definition.

Each reference has a name, used to look up the appropriate service by a client
using the client programming model. In addition to the name, a reference also
includes an interface element. The multiplicity for a reference indicates how many
wire definitions can name this reference as the source. Finally, the wire definition
specifies the name of the target service component or import that resolves the
reference.

There are two ways to define references. The first way is to inline the reference in
the service component definition. Using this approach, the references are only
available to the service component in which the references are included. Another
approach is to include reference definitions within the stand-alone references file.
For this approach, the references can be used by a non-SCA client or by another
component within the module. An example of a non-SCA component that uses a
reference in the stand-alone references file is a user interface component such as a
JSP that needs the ability to invoke a particular service. In order to invoke a service
component, the client needs a reference so that it can use the SCA runtime to look
up the appropriate service to invoke.

Here is an example that shows the definition for the component that includes two
inline references: DelayedServicePortTypePartner and
RealtimeServicePortTypePartner. Notice that the component includes definitions for
a WSDL interface, two references, and an implementation.

Import

I

I

I

Service
Component

Service
Component

Implementation

Implementation

Java

Java

Used by a non-SCA component or
another component within the module

Identifies the target service component
or import for the reference definition

Stand-alone Reference

Wire

R

R

R

Stand-alone
Reference

Used only by the component in which
the reference is defined

Inline Reference

Figure 47. Clients can call a service component using either stand-alone or inline references

Programming guides and techniques 113

SCA programming model fundamentals
The concept of a software component forms the basis of the Service Component
Architecture (SCA) programming model. A component is a unit that implements
some logic and makes it available to other components through an interface. A
component may also require the services made available by other components. In
that case, the component exposes a reference to these services.

In SCA, every component must expose at least one interface. The assembly
diagram shown in Figure 49 on page 115 has three components. Each component
has an interface that is represented by the letter I in a circle. A component can also
refer to other components. References are represented by the letter R in a square.
References and interfaces are then linked in an assembly diagram. Essentially, the
integration developer “resolves” the references by connecting them with the
interfaces of the components that implement the required logic.

<? ?>
<

>
< >
< />

</ >
< >
< >
< >
< />

</ >
< />

</ >
< >
< >
< />

</ >
< />

</ >
</ >
< />

</ >

xml
scdl:component

Interfaces
interface
Interfaces
references
reference
interface
method
interface
wire
reference
reference
interface
Method
interface
wire
reference

references
implementation
Scdl:component

= =
=

=
=
=
=
=
=

= =

= =

=
= =

=

=

=
= =

=

=

= =

version encoding
xmlns:xsi

Xmlns:mfc
Xmlns:ns1
xmlns:ns2
xmlns:ns3
Xmlns:scdl
Xmlns:wsdl
DisplayName name

xsi:type portType

name
xsi:type portType
name

target

name
xsi:type portType
name

target

xsi:type mfcFile

"1.0" "UTF-8"
"http://www.w3.org/2001/XMLSchema-instance"

"http://www.ibm.com/xmlns/prod/websphere/scdl/mfc/7.0.0"
"http://Resources/StockQuoteService"
"http://stockquote.samp.sibx.websphere.ibm.com/DelayedService/"
"http://stockquote.samp.sibx.websphere.ibm.com/RealtimeService/"
"http://www.ibm.com/xmlns/prod/websphere/scdl/7.0.0"
"http://www.ibm.com/xmlns/prod/websphere/scdl/wsdl/7.0.0"

"StockQuote_MediationFlow" "StockQuote_MediationFlow"

"wsdl:WSDLPortType" "ns1:StockQuoteService"

"DelayedServicePortTypePartner"
"wsdl:WSDLPortType" "ns2:DelayedServicePortType"

"getQuote"

"DelayedService"

"RealtimeServicePortTypePartner"
"wsdl:WSDLPortType" "ns3:RealtimeServicePortType"

"getQuote"

"RealtimeService"

"mfc:MediationFlowImplementation" "StockQuote_MediationFlow.mfc"

Figure 48. Example of inline reference definitions

114 Developing and deploying

Invoking SCA Components

To provide access to the services to be invoked, the SCA programming model
includes a ServiceManager class, which enables developers to look up available
services by name. Here is a typical Java code fragment illustrating service lookup.
The ServiceManager is used to obtain a reference to the BOFactory service, which
is a system-provided service:
//Get service manager singleton
ServiceManager smgr = new ServiceManager();
//Access BOFactory service
BOFactory bof =(BOFactory)

smgr.locateService("com/ibm/websphere/bo/BOFactory");

Note: The package for ServiceManager is com.ibm.websphere.sca.

Developers can use a similar mechanism to obtain references to their own services
by specifying the name of the service referenced in the locateService method. After
you have obtained a reference to a service using the ServiceManager class, you can
invoke any of the available operations on that service in a way that is independent
of the invocation protocol and the type of implementation.

SCA components can be called using three different invocation styles:
v Synchronous invocation: When using this invocation style, the caller waits

synchronously for the response to be returned. This style is the classic invocation
mechanism.

v Asynchronous invocation: This mechanism allows the caller to invoke a service
without waiting for the response to be produced right away. Instead of getting
the response, the caller gets a “ticket,” which can be used later to retrieve the
response. The caller retrieves the response by calling a special operation that
must be provided by the callee for this purpose.

v Asynchronous invocation with callback: This invocation style is like the
preceding one, but it delegates the responsibility of returning the response to the
callee. The caller needs to expose a special operation (the callback operation) that
the callee can invoke when the response is ready.

v Asynchronous invocation with deferred response: In this invocation style, the
client invokes a service and then continues processing until some later time
when the client makes a request to capture the response.

IExport Component 1

I Component 2

R

R

R

I

ImportI

Component 3

Figure 49. Assembly diagram

Programming guides and techniques 115

Imports

Sometimes, business logic is provided by components or functions that are
available on external systems, such as legacy applications, or other external
implementations. In those cases, the integration developer cannot resolve the
reference by connecting a reference to a component containing the implementation
he or she needs to connect the reference to a component that “points to” the
external implementation. Such a component is called an import. When you define
an import, you need to specify how the external service can be accessed in terms
of location and the invocation protocol.

Exports

Similarly, if your component has to be accessed by external applications, which is
often the case, you must make it accessible. You make it accessible by using a
special component that exposes your logic to the “outside world.” Such a
component is called an export. Exports can also be invoked synchronously or
asynchronously.

Stand-alone references

In WebSphere Process Server, an SCA service module is packaged as a Java EE
EAR file that contains several other Java EE submodules. Java EE elements, such as
a WAR file, can be packaged along with the SCA module. Non-SCA artifacts such
as JSPs can also be packaged together with an SCA service module. This packaging
lets them invoke SCA services through the SCA client programming model using a
special type of component called a stand-alone reference.

The SCA programming model is strongly declarative. Integration developers can
configure aspects such as transactional behavior of invocations, propagation of
security credentials, whether an invocation should be synchronous or
asynchronous in a declarative way, directly in the assembly diagram. The SCA
runtime, not the developers, is responsible for taking care of implementing the
behavior specified in these modifiers. The declarative flexibility of SCA is one of
the most powerful features of this programming model. Developers can
concentrate on implementing business logic, rather than focusing on addressing
technical aspects, such as being able to accommodate asynchronous invocation
mechanisms. All these aspects are automatically taken care of by the SCA runtime.

Qualifiers

The qualifiers govern the interaction between a service client and a target service.
Qualifiers can be specified on service component references, interfaces, and
implementations and are typically external to an implementation.

The different categories of qualifiers include the following:
v Transaction, which specifies the way transactional contexts are handled in an

SCA invocation
v Activity session, which specifies how Activity Session contexts are propagated.
v Security, which specifies the permissions
v Asynchronous reliability provides rules for asynchronous message delivery

SCA allows these quality of service (QoS) qualifiers to be applied to components
declaratively (without requiring programming or a change to the services
implementation code). You can add service qualifiers using WebSphere Integration

116 Developing and deploying

Developer. Typically, you apply QoS qualifiers when you are ready to consider
solution deployment.

Client programming model
The SCA client programming model is designed to locate a service, to create data
objects, to invoke a service, and to handle exceptions that are raised by the
invoked component.

The SCA client programming model provides two primary functions for clients.
The programming model exposes an interface that allows clients to locate services
within the current module, and once a service is located the client programming
model provides a way for the client to invoke operations on that service.

Clients locate services by using the ServiceManager class. There are a few ways to
instantiate the ServiceManager class, depending on the wanted lookup scope for
the service.

The key interface that clients should be aware of for locating services is
com.ibm.websphere.sca.ServiceManager. This interface includes a locateService
method that returns a reference to the service implementation for the service
requested. The string parameter that is passed into the locateService method
represents the reference name for the service that the client wants to locate. The
Java documentation for the SCA programming model is included in the WebSphere
Process Server information center, and is also included if you choose to install the
Java documentation as part of the WebSphere Process Server installation.

Once a client has located the appropriate service, there are two types of invocation
models that can be used to make a call to an operation or method offered by the
service. First, there is a dynamic invocation style of interaction. The key interface for
this style of interaction is com.ibm.websphere.sca.Service. The invoke() method on
this interface takes the name of the operation that you are going to invoke, along
with the parameters needed to call that operation.
public Interface MyService {
public String someMethod(String input);

Service myService = (Service) serviceManager.locateService(“myService”);
DataObject input = ...
DataObject result = (DataObject) myService.invoke(“someMethod”, input);

Clients can also use a static (type-safe) invocation method to call a particular
operation associated with a service. This type of invocation only works for
interface definitions that are specified as Java. In this situation, the client casts the
return from the locateService() call to the appropriate interface and can proceed
calling the appropriate type safe method calls on that interface.
public Interface MyService {
public String someMethod(String input);

MyService myService = (MyService) serviceManager.locateService(“myService”);
String input = ...
String result = myService.someMethod(input);

Interfaces
A service component has one or more interfaces with which it is associated. The
interfaces associated with a service component advertise the business operations
associated with this service.

Programming guides and techniques 117

All components have interfaces of the WSDL type. Only Java components support
Java-type interfaces. If a component, import or export, has more than one interface,
all interfaces must be the same type.

These interfaces can be specified as either Java interfaces or WSDL port type
interfaces. However, you can not mix Java and WSDL port type interfaces on the
same service component definition. The arguments and return types for these
interfaces are specified as simple Java types, Java classes, Service DataObjects, or
XML Schema (for WSDL port type interfaces).

A component can be called synchronously or asynchronously; this is independent
of whether the implementation is synchronous or asynchronous. The component
interfaces are defined in the synchronous form and asynchronous support is also
generated for them. You can specify a preferred interaction style as synchronous or
asynchronous. The asynchronous type advertises to users of the interface that it
contains at least one operation that can take a significant amount of time to
complete. As a consequence, the calling service must avoid keeping a transaction
open while waiting for the operation to complete and send its response. The
interaction style applies to all the operations in the interface.

Components in different modules can be wired together by publishing the services
as exports that have their interfaces and dragging the exports into the required
assembly diagram to create imports. When wiring components, you can also
specify quality of service qualifiers on the implementations, partner references, and
interfaces of the component.

Imports have interfaces that are the same as or a subset of the interfaces of the
remote service that they are associated with so that those remote services can be
called. Imports are used in an application in exactly the same way as local
components. This provides a uniform assembly model for all functions, regardless
of their locations or implementations. The import binding does not have to be
defined at development time; it can be done at deployment time.

<? ?>
<

>
< >
< >
< />

</ >
</ >
< >
< >
< />
< />
< />
< />
< />

</ >
</ >
< >
< />7

xml
scdl:component

Interfaces
interface
scdl:interfaceQualifier
Interface

interfaces
references
reference
interface
scdl:referenceQualifier
scdl:referenceQualifier
scdl:referenceQualifier
wire
Reference

references
implementation
scdl:implementationQualifier

= =
=

=
= =
=
=

= =

= =
= =

=
= =

= =
=
= =

=

= =
= =

version encoding
xmlns:xsi

xmlns:mfc
xmlns:ns1 xmlns:ns2
xmlns:scdl
Xmlns:wsdl
displayName name

xsi:type portType
xsi:type value

name
xsi:type portType

xsi:type value
xsi:type
xsi:type value

target

xsi:type mfcFile
xsi:type value

"1.0" "UTF-8"
"http://www.w3.org/2001/XMLSchema-instance"

"http://www.ibm.com/xmlns/prod/websphere/scdl/mfc/7.0.0"
"http://HelloWorldLibrary/HelloWorld" "http://HelloService/HelloService"
"http://www.ibm.com/xmlns/prod/websphere/scdl/7.0.0"
"http://www.ibm.com/xmlns/prod/websphere/scdl/wsdl/7.0.0"

"HelloWorldMediation" "HelloWorldMediation"

"wsdl:WSDLPortType" "ns1:HelloWorld"
"scdl:JoinTransaction" "true"

"HelloServicePartner"
"wsdl:WSDLPortType" "ns2:HelloService"

"scdl:SuspendTransaction" "false"
"scdl:Reliability"
"scdl:DeliverAsyncAt" "commit"

"HelloServiceImport"

"mfc:MediationFlowImplementation" "HelloWorldMediation. "
"scdl:Transaction" "global"

mfc

Figure 50. Example of an interface definition within a SCDL component definition

118 Developing and deploying

Exports have interfaces that are the same as or a subset of the interfaces of the
component that they are associated with so that the published service can be
called. An export dragged from another module into an assembly diagram
automatically creates an import.

Developing service modules
A service component must be contained in a service module. Developing service
modules to contain service components is key to providing services to other
modules.

Before you begin

This task assumes that an analysis of requirements shows that implementing a
service component for use by other modules is beneficial.

About this task

After analyzing your requirements, you might decide that providing and using
service components is an efficient way to process information. If you determine
that reusable service components would benefit your environment, create a service
module to contain the service components.

Procedure
1. Identify service components other modules can use.

After you have identified the service components, continue with “Developing
service components”.

2. Identify service components in an application that could use service
components in other service modules.
After you have identified the service components and their target components,
continue with “ Invoking components” or “Dynamically invoking components”

3. Connect the client components with the target components through wires.

Overview of developing modules:

A module is a basic deployment unit for a WebSphere Process Server application.
A module can contain components, libraries, and staging modules used by the
application.

Developing modules involves ensuring that the components, staging modules, and
libraries (collections of artifacts referenced by the module) required by the
application are available on the production server.

WebSphere Integration Developer is the main tool for developing modules for
deployment to WebSphere Process Server. Although you can develop modules in
other environments, it is best to use WebSphere Integration Developer.

WebSphere Process Server supports modules for business services and mediation
modules. Both modules and mediation modules are types of Service Component
Architecture (SCA) module. A mediation module allows communication between
applications by transforming the service invocation to a format understood by the
target, passing the request to the target and returning the result to the originator. A
module for a business service implements the logic of a business process. However,
a module can also include the same mediation logic that can be packaged in a
mediation module.

Programming guides and techniques 119

The following sections address how to implement and update modules for
WebSphere Process Server.

Components

SCA modules contain components, which are the basic building blocks to
encapsulate reusable business logic. Components provide and consume services
and are associated with interfaces, references, and implementations. The interface
defines a contract between a service component and a calling component.

With WebSphere Process Server, a module can either export a service component
for use by other modules or import a service component for use. To invoke a
service component, a calling module references the interface to the service
component. The references to the interfaces are resolved by configuring the
references from the calling module to their respective interfaces.

To develop a module you must do the following activities:
1. Define or identify interfaces for the components in the module.
2. Define or manipulate business objects used by components.
3. Define or modify components through their interfaces.

Note: A component is defined through its interface.
4. Optional: Export or import service components.
5. Create an enterprise archive (EAR) file to deploy to the run time. You create the

file using either the export EAR feature in WebSphere Integration Developer or
the serviceDeploy command.

Development types

WebSphere Process Server provides a component programming model to facilitate
a service-oriented programming paradigm. To use this model, a provider exports
interfaces of a service component so that a consumer can import those interfaces
and use the service component as if it were local. A developer uses either
strongly-typed interfaces or dynamically-typed interfaces to implement or invoke
the service component. The interfaces and their methods are described in the
References section within this information center.

After installing service modules to your servers, you can use the administrative
console to change the target component for a reference from an application. The
new target must accept the same business object type and perform the same
operation that the reference from the application is requesting.

Service component development considerations

When developing a service component, ask yourself the following questions:
v Will this service component be exported and used by another module?

If so, make sure the interface you define for the component can be used by
another module.

v Will the service component take a relatively long time to run?
If so, consider implementing an asynchronous interface to the service
component.

v Is it beneficial to decentralize the service component?

120 Developing and deploying

If so, consider having a copy of the service component in a service module that
is deployed on a cluster of servers to benefit from parallel processing.

v Does your application require a mixture of 1-phase and 2-phase commit
resources?
If so, make sure you enable last participant support for the application.

Note: If you create your application using WebSphere Integration Developer or
create the installable EAR file using the serviceDeploy command, these tools
automatically enable the support for the application. See the topic, “Using
one-phase and two-phase commit resources in the same transaction” in the
WebSphere Application Server for z/OS® information center.

Developing service components:

Develop service components to provide reusable logic to multiple applications
within your server.

Before you begin

This task assumes that you have already developed and identified processing that
is useful for multiple modules.

About this task

Multiple modules can use a service component. Exporting a service component
makes it available to other modules that refer to the service component through an
interface. This task describes how to build the service component so that other
modules can use it.

Note: A single service component can contain multiple interfaces.

Procedure

1. Define the data object to move data between the caller and the service
component.
The data object and its type is part of the interface between the callers and the
service component.

2. Define an interface that the callers will use to reference the service component.
This interface definition names the service component and lists any methods
available within the service component.

3. Generate the class that implements calling the service.
4. Develop the implementation of the generated class.
5. Save the component interfaces and implementations in files with a .java

extension.
6. Package the service module and necessary resources in a JAR file.

See “Deploying a module to a production server” in this information center for
a description of steps 6 through 8.

7. Run the serviceDeploy command to create an installable EAR file containing
the application.

8. Install the application on the server node.
9. Optional: Configure the wires between the callers and the corresponding

service component, if calling a service component in another service module.

Programming guides and techniques 121

The “Administering” section of this information center describes configuring
the wires.

Examples of developing components

This example shows a synchronous service component that implements a single
method, CustomerInfo. The first section defines the interface to the service
component that implements a method called getCustomerInfo.
public interface CustomerInfo {
public Customer getCustomerInfo(String customerID);
}

The following block of code implements the service component.
public class CustomerInfoImpl implements CustomerInfo {
public Customer getCustomerInfo(String customerID) {
Customer cust = new Customer();

cust.setCustNo(customerID);
cust.setFirstName("Victor");
cust.setLastName("Hugo");
cust.setSymbol("IBM");
cust.setNumShares(100);
cust.setPostalCode(10589);
cust.setErrorMsg("");

return cust;
}
}

x

The following section is the implementation of the class associated with
StockQuote.
public class StockQuoteImpl implements StockQuote {

public float getQuote(String symbol) {

return 100.0f;
}
}

What to do next

Invoke the service.

Invoking components:

Components with modules can use components on any node of a WebSphere
Process Server cluster.

Before you begin

Before invoking a component, make sure that the module containing the
component is installed on WebSphere Process Server.

122 Developing and deploying

About this task

Components can use any service component available within a WebSphere Process
Server cluster by using the name of the component and passing the data type the
component expects. Invoking a component in this environment involves locating
and then creating the reference to the required component.

Note: A component in a module can invoke a component within the same module,
known as an intra-module invocation. Implement external calls (inter-module
invocations) by exporting the interface in the providing component and importing
the interface in the calling component.

Important: When invoking a component that resides on a different server than the
one on which the calling module is running, you must perform additional
configurations to the servers. The configurations required depend on whether the
component is called asynchronously or synchronously. How to configure the
application servers in this case is described in related tasks.

Procedure

1. Determine the components required by the calling module.
Note the name of the interface within a component and the data type that
interface requires.

2. Define a data object.
Although the input or return can be a Java class, a service data object is
optimal.

3. Locate the component.
a. Use the ServiceManager class to obtain the references available to the

calling module.
b. Use the locateService() method to find the component.

Depending on the component, the interface can either be a Web Service
Descriptor Language (WSDL) port type or a Java interface.

4. Invoke the component synchronously.
You can either invoke the component through a Java interface or use the
invoke() method to dynamically invoke the component.

5. Process the return.
The component might generate an exception, so the client has to be able to
process that possibility.

Example of invoking a component

The following example creates a ServiceManager class.
ServiceManager serviceManager = new ServiceManager();

The following example uses the ServiceManager class to obtain a list of
components from a file that contains the component references.
InputStream myReferences = new FileInputStream("MyReferences.references");
ServiceManager serviceManager = new ServiceManager(myReferences);

The following code locates a component that implements the StockQuote Java
interface.
StockQuote stockQuote = (StockQuote)serviceManager.locateService("stockQuote");

Programming guides and techniques 123

The following code locates a component that implements either a Java or WSDL
port type interface. The calling module uses the Service interface to interact with
the component.

Tip: If the component implements a Java interface, the component can be invoked
through either the interface or the invoke() method.
Service stockQuote = (Service)serviceManager.locateService("stockQuote");

The following example shows MyValue, code that calls another component.
public class MyValueImpl implements MyValue {

public float myValue throws MyValueException {

ServiceManager serviceManager = new ServiceManager();

// variables
Customer customer = null;
float quote = 0;
float value = 0;

// invoke
CustomerInfo cInfo =

(CustomerInfo)serviceManager.locateService("customerInfo");
customer = cInfo.getCustomerInfo(customerID);

if (customer.getErrorMsg().equals("")) {

// invoke
StockQuote sQuote =
(StockQuote)serviceManager.locateService("stockQuote");
Ticket ticket = sQuote.getQuote(customer.getSymbol());

// ... do something else ...
quote = sQuote.getQuoteResponse(ticket, Service.WAIT);

// assign
value = quote * customer.getNumShares();

} else {

// throw
throw new MyValueException(customer.getErrorMsg());

}
// reply

return value;
}
}

What to do next

Configure the wires between the calling module references and the component
interfaces.

Dynamically invoking a component:

When an module invokes a component that has a Web Service Descriptor
Language (WSDL) port type interface, the module must invoke the component
dynamically using the invoke() method.

Before you begin

This task assumes that a calling component is invoking a component dynamically.

124 Developing and deploying

About this task

With a WSDL port type interface, a calling component must use the invoke()
method to invoke the component. A calling module can also invoke a component
that has a Java interface this way.

Procedure

1. Determine the module that contains the component required.
2. Determine the array required by the component.

The input array can be one of three types:
v Primitive uppercase Java types or arrays of this type
v Ordinary Java classes or arrays of the classes
v Service Data Objects (SDOs)

3. Define an array to contain the response from the component.
The response array can be of the same types as the input array.

4. Use the invoke() method to invoke the required component and pass the array
object to the component.

5. Process the result.

Examples of dynamically invoking a component

In the following example, a module uses the invoke() method to call a component
that uses primitive uppercase Java data types.
Service service = (Service)serviceManager.locateService("multiParamInf");

Reference reference = service.getReference();

OperationType methodMultiType =
reference.getOperationType("methodWithMultiParameter");

Type t = methodMultiType.getInputType();

BOFactory boFactory = (BOFactory)serviceManager.locateService
("com/ibm/websphere/bo/BOFactory");

DataObject paramObject = boFactory.createbyType(t);

paramObject.set(0,"input1")
paramObject.set(1,"input2")
paramObject.set(2,"input3")

service.invoke("methodMultiParamater",paramObject);

The following example uses the invoke method with a WSDL port type interface as
the target.
Service serviceOne = (Service)serviceManager.locateService("multiParamInfWSDL");

DataObject dob = factory.create("http://MultiCallWSServerOne/bos", "SameBO");
dob.setString("attribute1", stringArg);

DataObject wrapBo = factory.createByElement
("http://MultiCallWSServerOne/wsdl/ServerOneInf", "methodOne");
wrapBo.set("input1", dob); //wrapBo encapsulates all the parameters of methodOne
wrapBo.set("input2", "XXXX");
wrapBo.set("input3", "yyyy");

DataObject resBo= (DataObject)serviceOne.invoke("methodOne", wrapBo);

Programming guides and techniques 125

Invocation styles
With SCA, you can invoke service components using synchronous and
asynchronous programming styles. You can assemble modules into overall
solutions where asynchronous channels between service components and modules
can increase the overall throughput and flexibility of the system.

A component exposes business-level interfaces to its application business logic so
that the service can be used or invoked. The interface of a component defines the
operations that can be called and the data that is passed, such as input arguments,
returned values, and exceptions. An import and export also has interfaces so that
the published service can be invoked.

All components have interfaces of the WSDL type. Only Java components support
Java-type interfaces. If a component, import or export, has more than one interface,
all interfaces must be the same type.

A component can be called synchronously or asynchronously; independent of
whether the implementation is synchronous or asynchronous. The component
interfaces are defined in the synchronous form and asynchronous support is also
generated for them. You can specify a preferred interaction style as synchronous or
asynchronous. The asynchronous type advertises to users of the interface that it
contains at least one operation that can take a significant amount of time to
complete. As a consequence, the calling service must avoid keeping a transaction
open while waiting for the operation to complete and send its response. The
interaction style applies to all the operations in the interface.

When authoring applications in WebSphere Integration Developer, it is a best to
explicitly set the invocation style that each of your components use to call each
other. At a minimum, you want to know what invocation styles are used
throughout your application while you do performance analysis or develop your
error handling strategy. You certainly need to understand the interactions in your
application when you consider/set your transaction boundaries. Users are often
surprised to find that setting or determining invocation styles between components
is not as easy a task as it seems. This section explains how to set or determine
which invocation style is used at runtime, based on specific characteristics of your
application.

The invocation styles that SCA provides are:
v Synchronous
v Asynchronous using one-way operation
v Asynchronous with callback
v Asynchronous with deferred response

The SCA API that is used in the Java implementation to make the invocation
determines what the invocation style is at runtime:
v invoke(): Synchronous
v invokeAsync(): Asynchronous
v invokeAsyncWithCallback(): Asynchronous

In general, when considering an interaction from one component (source or client)
to another (target), the service client determines what type of invocation is used.
For example, if your source component is a Java™ component, the invocation style
from source to target is determined by the particular SCA invocation API you use
in the implementation, such as invoke(), invokeAsync(), or

126 Developing and deploying

invokeAsyncWithCallback(). Each of the other components provided in WebSphere
Process Server has a set of rules that it uses to determine whether an invocation is
synchronous or asynchronous.

Some components/imports are considered asynchronous:
v Long running BPEL
v Human tasks
v MQ/MQ imports
v JMS/Generic imports
v JMS/JMS imports

All invocations to components or imports of these types must be asynchronous
invocations. If the calling component (or source) initiates the interaction
synchronously, SCA switches the interaction to be asynchronous.

Synchronous invocation:

Service component interfaces (SCA) are always defined in the synchronous form.
For each synchronous interface, one or more asynchronous interfaces can be
generated.

When a service component is invoked synchronously, both the client (consumer)
and the service provider execute in the same thread. The calling component within
WebSphere Process Server is blocked until a response is received from the
provider.

Asynchronous invocation:

WebSphere Process Server delivers a powerful programming model for developing
asynchronous applications. With asynchronous invocation in SCA, there are three
types of asynchronous interaction styles available: one way, deferred response, and
request with callback. With all three types of asynchronous invocation, the client
receives control back immediately from the SCA runtime upon an invokeAsync()
call.

In addition to its published APIs and tools to develop asynchronous programs
using Java, WebSphere Process Server also comes with a number of built-in
asynchronous messaging bindings and built-in asynchronous components.

There are three different ways that the client can capture the response at a later
time. First, the client can choose to discard the response entirely or if it is a call to
a void method. In this case, the asynchronous invocation is said to be one way.
Another option is for the client to call invokeAsync() and then continue processing
until some later time when the client makes a request to capture the response. This
scenario is termed deferred response. Finally, the client also has the option of doing

Figure 51. Synchronous invocation

Programming guides and techniques 127

an asynchronous request with callback. To do this, the client must first implement
the ServiceCallback interface. Then, after calling invokeAsync(), the SCA runtime
provides a callback to the ServiceCallback handler to provide the response to the
client.

SCA interfaces are always defined in the synchronous form. For each synchronous
interface, one or more asynchronous interfaces can be generated. When a callback
mechanism is chosen by the client, the client component needs to implement a
class: <interface name>.Callback.java. The interface of this class is derived from
the interface of the actual component that the client wants to use.

SCA interactions:

SCA supports synchronous and asynchronous invocation of modules. Developers
have the option of selecting the appropriate interfaces and invocation methods for
their SCA interactions.

The diagram summarizes the different interface types, the supported invocation
methods and models, and how data is passed between client and service.

For synchronous invocation, data is passed by reference within the same SCA
module, while for asynchronous calls the data is passed by value. The table also
summarizes when it is possible to use either type safe or dynamic invocation based
upon the interface type. The dynamic invocation methods are always available for
either WSDL port type or Java interfaces. However, in order to have type safe
invocation methods available to the client a Java interface type must be used for
the interface definition on the appropriate client reference.

Figure 52. Asynchronous invocation models

128 Developing and deploying

Dynamic client invocation

There are a number of key methods and interfaces needed to support both
synchronous and asynchronous interaction when using dynamic client invocation.

Table 15. Summary of key methods and interfaces for dynamic client invocation

Interface Methods Description

Service Object invoke(Service String,
Object)

Used to invoke synchronous service requests

Ticket invokeAsync(String, Object) Used to invoke one-way or deferred response
asynchronous service requests

Ticket
invokeAsyncWithCallback(String,
Object)

Used to invoke request with callback asynchronous
service requests. The client must implement the
ServiceCallback interface

Object invokeResponse(Ticket, long) Used to get response in the case of deferred response
invocation

ServiceCallback void onInvokeResponse(Ticket,
Object, Exception)

Callback interface must be implemented by the client
using a request with callback asynchronous service
invocation

Exception handling for synchronous invocation:

When a service component is invoked synchronously, both the client and the
service provider execute in the same thread. The target can return a response
message, an exception, or nothing (in a one-way operation) to the client. If the
result is an exception, it can be either a business exception or a system exception.
The client in this case can be either application code or some form of system code.

Here is a sample client that invokes a Java component declared with a JType
interface. The interface has one method declared as follows:

Interface Type

WSDL
Port Type

Invocation Model Invocation Methods

Java
Interface
Java
Interface

Synchronous One Way Deferred
Response

Dynamic

YES NO

YES YES

Request
with
Callback

Type Safe

Data passed by reference in the same SCA module

Data passed by value

Figure 53. Summary of invocation models along with supported methods for passing data

Programming guides and techniques 129

public interface StockQuote {
float getQuote(String symbol) throws InvalidSymbolException;
}

The client code looks like this:
try {
float quote = StockQuoteService.getQuote(String symbol);
} catch (InvalidSymbolException s) {
System.out.println(This is business exception declared in the Java interface.);
} catch (ServiceRuntimeException e) {
System.out.println(Unchecked system exception detected);
}

In the scenario, the first exception InvalidSymbolException indicates that the
request has reached the service provider, which does not recognize the client input.
The service provider then throws a business exception stating that the symbol
supplied is invalid. This business exception is the only one declared by the method
signature.

JType exceptions like InvalidSymbolException are only caught with clients using a
JType reference.

In addition to the business exception declared, the client can receive system
exceptions. For example, if the stock exchange system runs into a problem, the
service might fail to obtain the quote with some unchecked exceptions. When such
an exception is thrown by the service, a ServiceRuntimeException is returned to
the client, and the client might then want to determine the underlying cause. The
following code snippet shows how it can obtain this information:
try {
float quote = StockQuoteService.getQuote(String symbol);
} catch (ServiceRuntimeException e) {
Throwable t = e.getCause();
if (t instanceof RemoteException) {
system.out.println(System ran into RemoteException. Details as follows: + e.toString());
}

Exception handling for asynchronous invocation:

When a service component is invoked asynchronously, the client and service
provider are executed in different threads, and error conditions can occur in either
thread. The client may experience a system exception during the invocation, or the
service provider may experience a business or system exception while servicing the
request.

In WebSphere Process Server, there is always an asynchronous counterpart of the
synchronous interface.

Here is an example of an asynchronous interface:
public interface StockQuoteAsync {
public Ticket getQuoteAsync(String arg0);
public Ticket getQuoteAsyncWithCallback(String arg0);
public float getQuoteResponse(Ticket ticket, long timeout) throws InvalidSymbolException;
}

Here is the client code for a call using the invocation pattern for deferred response:
Ticket ticket = stockQuote.getQuoteAsync(symbol);
try {
quote = stockQuote.getQuoteResponse(ticket, Service.WAIT);
} catch (InvalidSymbolException s) {

130 Developing and deploying

System.out.println(This is business exception declared in the interface.);
} catch (ServiceRuntimeException e) {
System.out.println(Unchecked system exception detected);
}

Like a synchronous invocation, InvalidSymbolException indicates that the request
has reached the service provider, which has thrown a business exception stating
that the symbol is invalid. This business exception is the only one declared by the
interface. JType exceptions like InvalidSymbolException are caught only with
clients using a JType reference.

In addition to the business exception declared, the client can receive system
exceptions such as connection error that happens while sending the message. The
client cannot receive system exceptions that happen in the service thread (the
thread on the service side of the asynchronous invocation). According to the SCA
asynchronous programming model, runtime exceptions that occur at the target
component are not returned to the source component.

Exception case on asynchronous exception handling

There is one exception to the SCA asynchronous programming model rule that
runtime exceptions that occur at the target component are not returned to the
source component. If the source component is a Business Process component or
Staff Process, system exceptions that occur in the target service component are
returned to the caller. This capability lets business process designers model and
catch system exceptions, and execute error logic if a BPEL client returns a system
exception.

Considerations when invoking services on different servers:

One of the benefits of service-oriented architecture is the ability for consumers to
use services that exist in other service modules. To balance the workload equitably,
you should install applications on different servers in a cell and those applications
should reside on different physical servers.

One of the advantages of WebSphere Process Server is the ability to distribute the
application workload across multiple servers in a cell. This distribution allows for
better workload balancing among the various servers in the cell and maximizes the
maintainability of the computing resources because there is only one copy of an
application or service in the server. Thus, an application on server A could require
a service installed in server B in the cell. To use services in this manner, you must
configure communications between the servers. The type of configuration you
perform depends on whether the calling service component invokes the service
asynchronously or synchronously.

Related topics describe how to configure the systems for both asynchronous and
synchronous invocations.

Configuring servers to invoke services asynchronously:

To enable service components on different servers to communicate, you have to
configure the servers similarly. This topic describes the configuration you perform
to enable the communication for applications that asynchronously invoke services
on a different server.

Programming guides and techniques 131

Before you begin

The task assumes that you have already installed WebSphere Process Server on the
systems for which you are configuring the communications but have not yet
installed the applications involved. You are using an administrative console that
can examine and change the configuration for both servers involved.

About this task

Before installing an application that requires the services of a service component
installed on another system, you must configure the systems so they can
communicate the requests. For service modules that use asynchronous invocations,
the process involves foreign buses and Service Integration Bus (SIB) mediations.

Note: For the purposes of this task, the invoking service module resides on system
A and the target resides on system B.

For the purposes of this task, Figure 54 on page 133 contains the information to use
in the configuration.

132 Developing and deploying

Note: For simplicity, only the servers involved in this communication in each cell
is shown and each server resides on a different physical machine.

Procedure

1. Collect information about each server involved in the communication. You need
the following information for both the originator and target servers:
v Host IP address
v Cell
v Node
v Server
v Bus name
v Messaging engine
v Failed Event Queue name

2. Install the applications.
3. Create a foreign bus on each server pointing to the other server and set the

routing definition type to Direct, service integration bus link.
See the Connecting service integration buses to use point-to-point messaging
topic in the WebSphere Application Server Network Deployment, version 7
information center for more information.

Figure 54. Invoking a service on a different system

Programming guides and techniques 133

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=tjj2004_

From the example, the configuration of the foreign bus and SIB mediation link
on System A would be:
Name of Service integration bus to connect to (the foreign bus):
SCA.SYSTEM.ABCNode01Cell.Bus
Gateway messaging engine in the foreign bus:
ABCNode01.server1-SCA.SYSTEM.ABCNode01Cell.Bus
Service integration bus link name: TestCrossCell
Bootstrap service integration bus provider endpoints:
9.26.237.144:7277:BootstrapBasicMessaging

The configuration of the foreign bus and SIB mediation link on System B would
be:
Name of Service integration bus to connect to (the foreign bus):
SCA.SYSTEM.WBINode01Cell.Bus
Gateway messaging engine in the foreign bus:
WPSNode.server1-SCA.SYSTEM.WBINode01Cell.Bus
Service integration bus link name: TestCrossCell
Bootstrap service integration bus provider endpoints:
9.26.237.118:7276:BootstrapBasicMessaging

Attention: The port number in the bootstrap is the SIB endpoint address port.
If you enabled security, you must use the secure SIB endpoint address port.

4. Synchronize the SIB mediation links by restarting the servers.
You should see messages like:
[9/25/09 8:04:23:406 CDT] 00000034 SibMessage I [:] CWSIT0032I:
The service integration bus link TestCrossCell from messaging engine
WPSNode01.server1-SCA.SYSTEM.WPSNode01Cell.Bus in bus SCA.SYSTEM.WPSNode01Cell.Bus
to messaging engine ABCNode01.server1-SCA.SYSTEM. ABCNode01Cell.Bus in bus SCA.SYSTEM.
ABCNode01Cell.Bus started.

5. Display the destinations for each service module.
6. Modify the default forwarding path of outgoing destinations of the invoking

service module that must be wired to targets on the other system.
Select Applications > SCA modules, choose module and then click on SCA
system bus destinations.
The destination to wire has importlink in the destination name, for example on
System A the destination would be sca/AppA/importlink/test/sca/cros/
simple/custinfo/CustomerInfo. Modify the path by prefixing the foreign bus
name to the destination name. From the example, the foreign bus name for the
second system is SCA.SYSTEM.ABCNode01Cell.Bus. The result is
SCA.SYSTEM.ABCNode01Cell.Bus:sca/AppA/importlink/
test/sca/cros/simple/custinfo/CustomerInfo

7. Optional: Add sender roles to the foreign buses, if you enabled security on the
systems. Make sure to define the user each application uses on both systems
from the operating system command prompt. The command to add the role is:
wsadmin $AdminTask addUserToForeignBusRole -bus busName

-foreignBus foreignBusName -role roleName -user userName

Where:

busName
Is the name of the bus on the system you enter the command.

foreignBusName
Is the foreign bus to which you are adding the user.

userName
Is the userid to add to the foreign bus.

134 Developing and deploying

What to do next

Start the applications.

Configuring servers to invoke services synchronously:

When a service component invokes another service component synchronously, you
must configure the invoking service component to point to the system running the
target so the target service can communicate results to the invoking service
component.

Before you begin

The task assumes that you have already installed WebSphere Process Server on the
systems for which you are configuring the communications but have not yet
installed the applications involved. You are using an administrative console that
can examine and change the configuration for both servers involved.

About this task

A service component invoking another service synchronously can communicate
with the target only by configuring the export Java Naming and Directory Interface
(JNDI) name on the target system to a JNDI name on the invoking system.

Note: For the purposes of this task, the invoking service module resides on system
A and the target resides on system B.

For the purposes of this task, Figure 55 on page 136 contains the information to use
in the configuration.

Programming guides and techniques 135

Note: For simplicity, only the servers involved in this communication in each cell
is shown and each server resides on a different physical machine.

Procedure

1. Install the applications on each server.
2. Create a new namespace binding on the invoking system (System A, in the

example) pointing to the export on the target system.
On the Name Space Bindings panel, select a scope of Cell and click Apply.
With the changed scope, click New in the display to create the new binding.
In the wizard, specify the following (the values are appropriate for the example
configuration):
a. Binding type is CORBA
b. The basic properties are:

v Binding identifier is a unique string, in our example:
sca_import_test_sca_cross_simple_custinfo_CustomerInfo

v Name in Name space is the JNDI name of the enterprise Java bean (EJB)
you are invoking on the target system, for example:
sca/AppB/export/test/sca/cros/simple/custinfo/CustomerInfo

Figure 55. Invoking a service on a different system

136 Developing and deploying

This names the export interface on the target system.
v Corbaname URL is the IP address and port number of the naming service

on the target system:
corbaname:iiop:host:port/NameServiceServerRoot#<package.qualified.interface>

Note: For WebSphere Process Server, the port is the BOOTSTRAP_ADDRESS.
For example:
corbaname:iiop:9.26.237.144:2809/NameServiceServerRoot#sca/

AppB/export/test/sca/cros/simple/custinfo/CustomerInfo

When finished, click Next and verify the values on the Summary page.
After verifying, click Finish.

Your system displays your new binding.
3. Save your changes by clicking Save.
4. If your cross cell configuration consists of servers on the same host with the

same name and you encounter JNDI lookup failures with a
NameNotFoundException, then you need to set a system property.
Follow the directions in the Application access problems under the subheading
Two servers with the same name running on the same host are being used to
interoperate.

What to do next

Start the applications. The service component on System A can now synchronously
invoke the service on System B.

Qualifiers
Qualifiers are an important part of SCA because they allow developers to place
quality of service requirements on the WebSphere Process Server runtime.

There are several different categories of qualifiers available in SCA. These
categories of qualifiers are transaction, activity session, security, and asynchronous
reliability.

Each SCA qualifier has a particular scope within the SCDL definition for a
component where the qualifier can be specified. For example, some qualifiers can
be specified at the references level, while others may only be valid at the interfaces
or implementation level. The table lists the various qualifiers that are available and
the valid scope for each. The qualifiers are sorted by the type of quality of service
they provide, such as transaction or security.

Programming guides and techniques 137

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-nd-mp&topic=rtrb_namingprobs

Table 16. Summary of qualifiers

Type Qualifier Scope Description

Transaction transaction Implementation global – A global
transaction must be
present to run the
component

local – A global
transaction must not
exist to run the
component

any – Component is
unaffected by
transactional state

local application –
Component
processing occurs
within a WebSphere
local transaction
containment that is
managed by the
application

joinTransaction Interface true – Hosting
container joins client
transaction

false (default) –
Hosting container
does not join client
transaction

suspendTransaction Reference true – Synchronous
invocations of target
component do not
run within client
global transaction.

false – Synchronous
invocations of target
component run
within client global
transaction

deliverAsyncAt Reference call – Asynchronous
invocations of a
target service occur
immediately

commit –
Asynchronous
invocations of a
target service occur
as part of a global
transaction

138 Developing and deploying

Table 16. Summary of qualifiers (continued)

Type Qualifier Scope Description

Asynchronous
Response

reliability Reference Specifies the quality
of service level for
asynchronous
message delivery.
Reliability can be one
of the following
values: bestEffort or
assured

requestExpiration Reference Specifies the length
of time (milliseconds)
after which an
asynchronous request
is to be discarded if
not delivered

responseExpiration Reference Specifies the duration
(milliseconds)
between the time a
request is sent and
the time a response
or callback is
received

Security securityIdentity Implementation The permission
specifies a logical
name for the identity
under which the
implementation
executes at runtime.

securityPermission Interfaces, Interface,
Method

The caller identity
must have the role
specified from this
qualifier in order to
have permission to
run the interface or
method

Programming guides and techniques 139

Table 16. Summary of qualifiers (continued)

Type Qualifier Scope Description

Activity Session activitySession Implementation true – There must be
an ActivitySession
established in order
to run this
component

false – The
component runs
under no Activity
Sessionany – The
component does not
depend on the
presence or absence
of an ActivitySession

joinActivitySession Interface true – Hosting
container joins client
ActivitySession

false – Hosting
container does not
join client
ActivitySession

suspendActivitySessionReference true – Methods on
target component
does NOT run as
part of any client
ActivitySession

false – Methods on
target component run
as part of any client
ActivitySession

Transaction qualifiers

Transaction qualifiers allow developers to request a particular transactional
environment for the service components in an SCA module. The following is a
summary of these qualifiers:

transaction
The transaction qualifier is set at the implementation scope of n service
component. This qualifier can be set to either 'global', 'local' (default), or
'any'. When set to global, the component runs in the context of a global
transaction. If a global transaction is present on invocation, the component
is added to this global transaction scope. If set to local, the component
runs in the context of a local transaction. Finally, if the value is set to any
then if a global transaction is present the component joins the current
global transaction scope. However, if a global transaction is not present,
the component runs in the context of a local transaction.

joinTransaction
The joinTransaction qualifier is set at the interface scope of a service
component. This qualifier can be set to either true or false (false being the
default). If set to true, it instructs the runtime not to suspend a global
transaction (if present) at the interface boundary. If set to false, it instructs
the runtime to suspend a global transaction (if present) at the interface

140 Developing and deploying

boundary. Exposing the joinTransaction transactional qualifier on an
interface provides metadata that can be used by assemblers and deployers
to ensure that the assembled application behaves as required. It is up to
the assembler and deployer in addition to dynamic runtimes to reason
about whether a target component federates with a propagated transaction.

suspendTransaction
The suspendTransaction qualifier is set at the reference level of a service
component and identifies whether a global transaction should be
suspended before invoking the target service associated with the reference.
This qualifier can be set to either true or false (default).

deliveryAsyncAt
The deliveryAsyncAt qualifier is like the suspendTransaction qualifier,
except that it pertains to asynchronous interactions rather than
synchronous types as is the case with suspendTransaction. The
deliverAsyncAt qualifier can have the value of call (default) or commit. If
set to call, it indicates to the runtime that the message for the
asynchronous interaction should be committed to the queue immediately
when the call has been made. The value of commit indicates that the
message should be committed to the queue as part of a transaction
associated with the current unit of work.

Asynchronous response qualifiers

There are three qualifiers available for indicating quality of service for
asynchronous response. Each of the asynchronous response qualifiers are specified
at the reference scope. The following is a summary of asynchronous response
qualifiers:

reliability
The reliability qualifier is used to specify the quality of service level for
asynchronous message delivery. The reliability can be set to either
bestEffort or assured (default).

requestExpiration
The requestExpiration qualifier is used to specify the length of time the
runtime should hold onto an asynchronous request if it has not yet been
delivered. After the time indicated for this qualifier, given in milliseconds,
this request is discarded.

responseExpiration
The responseExpiration qualifier is used to specify the length of time that
the runtime must retain an asynchronous response or must provide a
callback. The value for this qualifier is given in milliseconds.

Security qualifiers

There are two qualifiers available for indicating quality of service related to
security. The following is a summary of these qualifiers:

securityIdentity
The securityIdentity qualifier is used to specify the security identity under
which the implementation for the service component should run at
runtime. This qualifier must be placed at the implementation scope for the
service component and the value given must match the logical name for
the identity under which the component will run.

Programming guides and techniques 141

securityPermission
The securityPermission qualifier is specified at the interfaces level,
including interface, or method level. The value for this qualifier indicates
that a caller of this service must have the role that is specified in order to
invoke the service.

For both the securityPermission and the securityIndentity, the underlying
implementation for these qualifiers is based on existing Java EE concepts.

Activity session qualifiers

The set of activity session qualifiers are similar to the transaction qualifiers
introduced earlier. The ActivitySession service is a WebSphere programming model
extension that can provide an alternative unit of work when compared with global
transactions. In fact, an activity session context can be longer lived than a global
transaction and can even include global transactions. The following is a summary
of the activity session qualifiers:

joinActivitySession
The joinActivitySession qualifier is set at the interface level, and indicates
whether or not the component should join the activity session of a client
caller. There are two values for this qualifier, true and false (default). If set
to true it indicates that the runtime should not suspend an activity session
if present when the component is invoked. If set to false it indicates that an
activity session should be suspended before invoking the component.

activitySession
The activitySession qualifier is specified at the implementation level and is
used to indicate whether or not an activity session should or should not
exist in order to run the service component with which it is associated.
This qualifier can be set to either ‘true', ‘false', or 'any‘ (default). If set to
true, it indicates that the component will run as part of an activity session.
If set to false, the component should not run as part of an activity session.
This means that the joinActivitySession should also be set to false for any
interfaces specified for the component. Finally, if this qualifier is set to any,
the component will run as part of an activity session if it is present,
otherwise it will not.

suspendActivitySession
The suspendActivitySession qualifier is set at the reference level and is
used to indicate whether or not a target service associated with a reference
will get called as part of the calling activity session or not. If set to true,
the activity session is suspended and the methods on the target component
will not run as part of the client activity session. If set to false (default) the
activity session is not suspended and methods on the target component
will run as part of the client ActivitySession.

SCA programming techniques
This section provides examples of Service Component Architecture programming
techniques.

Runtime rules used for Java to Service Data Objects conversion
To correctly override generated code, or to determine possible runtime exceptions
related to Java to Service Data Object (SDO) conversions, an understanding of the
rules involved is important. The majority of the conversions are straightforward,
but there are some complex cases where the runtime provides the best possibility
when it converts the generated code.

142 Developing and deploying

Basic types and classes

The runtime performs a straightforward conversion between Service Data Objects
and basic Java types and classes. Basic types and classes include:
v Char or java.lang.Character
v Boolean
v Java.lang.Boolean
v Byte or java.lang.Byte
v Short or java.lang.Short
v Int or java.lang.Integer
v Long or java.lang.Long
v Float or java.lang.Float
v Double or java.lang.Double
v Java.lang.String
v Java.math.BigInteger
v Java.math.BigDecimal
v Java.util.Calendar
v Java.util.Date
v Java.xml.namespace.QName
v Java.net.URI
v Byte[]

User-defined Java classes and arrays

When converting from a Java class or array to an SDO, the runtime creates a data
object that has a URI that is generated by inverting the package name of the Java
type and has a type equal to the name of the Java class. For example, the Java class
com.ibm.xsd.Customer is converted to an SDO and URI http://xsd.ibm.com with
type Customer. The runtime then inspects the contents of the Java class members
and assigns the values to properties in the SDO.

When converting from an SDO to a Java type, the runtime generates the package
name by inverting the URI and the name of the type equals the type of the SDO.
For example, the data object with type Customer and URI http://xsd.ibm.com
generates an instance of the Java package com.ibm.xsd.Customer. The runtime then
extracts values from the properties of the SDO and assign those properties to fields
in the instance of the Java class.

When the Java class is a user-defined interface, you must override the generated
code and provide a concrete class that the runtime can instantiate. If the runtime
cannot create the concrete class, an exception occurs.

Java.lang.Object

When a Java type is java.lang.Object the generated type is xsd:anyType. A module
can invoke this interface with any SDO. The runtime attempts to instantiate a
concrete class the same way it does for user-defined Java classes and arrays, if the
runtime can find that class. Otherwise, the runtime passes the SDO to the Java
interface.

Even if the method returns a java.lang.Object type, the runtime converts to an SDO
only if the method returns a concrete type. The runtime uses a similar conversion
to that for converting user-defined Java classes and arrays to SDOs, as described
by the next paragraph.

Programming guides and techniques 143

When converting from a Java class or array to an SDO, the runtime creates a data
object that has a URI that is generated by inverting the package name of the Java
type and has a type equal to the name of the Java class. For example, the Java class
com.ibm.xsd.Customer is converted to an SDO and URI http://xsd.ibm.com with
type Customer. The runtime then inspects the contents of the Java class members
and assigns the values to properties in the SDO.

In either case, if the runtime is unable to complete the conversion an exception
occurs.

Java.util container classes

When converting to a concrete Java container class such as Vector, HashMap,
HashSet and the like, the runtime instantiates the appropriate container class. The
runtime uses a method similar to that used for user-defined Java classes and arrays
to populate the container class. If the runtime cannot locate a concrete Java class,
the runtime populates the container class with the SDO.

When converting concrete Java container classes to SDOs, the runtime uses the
generated schemas shown in “Java to XML conversion.”

Java.util interfaces

For certain container interfaces in the java.util package, the runtime instantiates
the following concrete classes:

Table 17. WSDL type to Java class conversion

Interface Default concrete classes

Collection HashSet

Map HashMap

List ArrayList

Set HashSet

Overriding a Service Data Object to Java conversion
Sometimes, the conversion the system creates between a Service Data Object (SDO)
and a Java type object may not meet your needs. Use this procedure to replace the
default implementation with your own.

Before you begin

Make sure that you have generated the WSDL to Java type conversion using either
WebSphere Integration Developer or the genMapper command.

About this task

You override a generated component that maps a WSDL type to a Java type by
replacing the generated code with code that meets your needs. Consider using
your own map if you have defined your own Java classes. Use this procedure to
make the changes.

Procedure
1. Locate the generated component. The component is named

java_classMapper.component.

144 Developing and deploying

2. Edit the component using a text editor.
3. Comment out the generated code and provide your own method.

Do not change the file name that contains the component implementation.

Example

This is an example of a generated component to replace:
private Object datatojava_get_customerAcct(DataObject myCustomerID,

String integer)
{

// You can override this code for custom mapping.
// Comment out this code and write custom code.

// You can also change the Java type that is passed to the
// converter, which the converter tries to create.

return SDOJavaObjectMediator.data2Java(customerID, integer) ;

}

What to do next

Copy the component and other files to the directory in which the containing
module resides, and either wire the component in WebSphere Integration
Developer or generate an enterprise archive (EAR) file using the serviceDeploy
command.

Overriding the generated Service Component Architecture
implementation
Sometimes, the conversion the system creates between a Java code and a Service
Data Object (SDO) may not meet your needs. Use this procedure to replace the
default Service Component Architecture (SCA) implementation with your own.

Before you begin

Make sure that you have generated the Java to Web Services Definition Language
(WSDL) type conversion using either WebSphere Integration Developer or the
genMapper command.

About this task

You override a generated component that maps a Java type to a WSDL type by
replacing the generated code with code that meets your needs. Consider using
your own map if you have defined your own Java classes. Use this procedure to
make the changes.

Procedure
1. Locate the generated component. The component is named

java_classMapper.component.
2. Edit the component using a text editor.
3. Comment out the generated code and provide your own method.

Do not change the file name that contains the component implementation.

Programming guides and techniques 145

Example

This is an example of a generated component to replace:
private DataObject javatodata_setAccount_output(Object myAccount) {

// You can override this code for custom mapping.
// Comment out this code and write custom code.

// You can also change the Java type that is passed to the
// converter, which the converter tries to create.

return SDOJavaObjectMediator.java2Data(myAccount);

}

What to do next

Copy the component and other files to the directory in which the containing
module resides, and either wire the component in WebSphere Integration
Developer or generate an enterprise archive (EAR) file using the serviceDeploy
command.

Protocol header propagation from non-SCA export bindings
The context service is responsible for propagating the context (including the
protocol headers, such as the JMS header, and the user context, such as account ID)
along a Service Component Architecture (SCA) invocation path. The context service
offers a set of APIs and configurable settings.

When the context service propagation is bi-directional, the response context always
overwrites the current context. When you are running an invocation from one SCA
component to another, a response contains a different context. A service component
has an incoming context, but when you invoke another service, the other service
overwrites the original outgoing context. The response context becomes the new
context.

When the context service propagation is one way, the original context remains the
same.

The lifecycle of the context service is associated with an invocation. A request has
associated context, and the lifecycle of that context is bound to the processing of
that particular request. When that request is finished processing, then the lifecycle
of that context ends.

For a short-running Business Process Execution Language (BPEL) process, the
response context overwrites the request context. It takes back the response context
from the first request and pushes it to the next request. For a long-running BPEL
process, the response context is discarded by the BPEL framework. It stores the
original context and uses that context when making other outgoing calls.

Context services have configurable rules and tables that dictate the binding
behavior. For more information, see the Generated API and SPI documentation that
is available in the Reference section. During development in WebSphere®

Integration Developer, you can set the context service on import-export properties.
For more details, see the import and export bindings information in the WebSphere
Integration Developer information center.

146 Developing and deploying

Business objects programming
Business objects are containers for application data, such as a customer or an
invoice. Data is exchanged between components by way of business objects. The
underlying structure of a business object is an XML schema definition (XSD), and
programmatic access to business objects is provided via business object interfaces
in WebSphere. Collectively, these aspects of the business object, its structural
representation, its programmatic interfaces, and its behavior and manipulation
within the service component architecture (SCA), are the business object
framework, which provides a powerful, consistent means for describing and
delivering business data in your solution.

This guide provides information about programming business objects, including
descriptions of problem areas in handling the schema constructs for some features.
For information about how a business object is defined, business object
development guidelines, and how to use business object programming APIs, refer
to the articles in the "Related information" section.
Related information

Web Services Description Language (WSDL) 1.1

Introduction to Service Data Objects

Examining business objects in WebSphere Process Server

Programming model
The business object programming model section describes how the basic types of
data are encapsulated within the IBM business object framework. To facilitate the
creation and manipulation of business objects, the business object framework
extends Service Data Objects specifications by providing a set of Java services.

Working with the IBM business object framework
The business object framework describes how data in the run time is modeled by
applications, integrated into the run time, and represented in memory.

Table 1 summarizes how the basic types of data are implemented in the business
object framework.

Table 18. Data abstractions and the corresponding implementations

Data Abstraction Implementation Description

Instance data Business object Business objects are the
primary mechanism for
representing business
entities, or document literal
message definitions, enabling
everything from a simple
basic object with scalar
properties to a large complex
hierarchy or graph of objects.
A business object is a direct
corollary to the SDO
DataObject concept.

Programming guides and techniques 147

http://www.w3.org/TR/wsdl
http://www.ibm.com/developerworks/java/library/j-sdo/
http://www.ibm.com/developerworks/websphere/library/techarticles/0603_tung/0603_tung.html

Table 18. Data abstractions and the corresponding implementations (continued)

Data Abstraction Implementation Description

Instance metadata Business graph Business graphs are
wrappers that are added
around a simple business
object or a hierarchy of
business objects to provide
additional capabilities, such
as carrying change summary
and event summary
information related to the
business objects in the
business graph. A business
graph is a direct corollary of
the SDO DataGraph concept,
except that it provides more
than just the single change
summary header.

Type metadata Enterprise metadata

Business object type
metadata

Business object type
metadata is the metadata
that can be added to
business object definitions to
enhance their value in the
runtime. These metadata
items are added to the
business object's XML
schema definition as well
known xs:annotation and
xs:appinfo elements.

Services Business object services
(APIs)

Business object services are a
set of capabilities provided
on top of the basic
capabilities provided by
Service Data Objects.
Examples are services such
as create, copy, equality, and
serialization. These APIs are
found in the
com.ibm.websphere.bo
package.

The WebSphere Process Server business object framework is an extension of the
SDO standard. Therefore, business objects exchanged between WebSphere Process
Server components are instances of the commonj.sdo.DataObject class. However,
the WebSphere Process Server business object framework adds several services and
functions that simplify and enrich the basic DataObject functionality.

To facilitate the creation and manipulation of business objects, the WebSphere
business object framework extends SDO specifications by providing a set of Java
services. These services are part of the package named com.ibm.websphere.bo.
v BOFactory: The key service that provides various ways to create instances of

business objects.
v BOXMLSerializer: Provides ways to "inflate" a business object from a stream or

to write the content of a business object, in XML format, to a stream.
v BOCopy: Provides methods that make copies of business objects ("deep" and

"shallow" semantics).

148 Developing and deploying

v BODataObject: Gives you access to the data object aspects of a business object,
such as the change summary, the business graph, and the event summary.

v BOXMLDocument: The front end to the service that lets you manipulate the
business object as an XML document.

v BOChangeSummary and BOEventSummary: Simplifies access to and
manipulation of the change summary and event summary portion of a business
object.

v BOEquality: A service that enables you to determine whether two business
objects contain the same information. It supports both deep and shallow
equality.

v BOType and BOTypeMetaData: These services materialize instances of the
commonj.sdo Type and let you manipulate the associated metadata. Instances of
Type can then be used to create business objects "by type".

v BOInstanceValidator: Validates the data in a business object to see if it conforms
to the XSD.

Modeling business objects
Business object data that flows through the WebSphere Process Server runtime is
modeled using XML schemas. XML schemas are an alternative to document type
definitions (DTDs) and can be used to extend functionality in the areas of data
typing, inheritance, and presentation. XML schema provides a form for modeling
the data types that is industry standard, widely adopted, and is platform and
language neutral.

Target namespace definition:

Most business and communications problems that XML can solve require a
combination of several XML vocabularies. XML has a mechanism for qualifying
names to be allocated into different namespaces, such as namespaces that apply to
different industries. In XML, a uniform resource identifier (URI) provides a unique
name to associate with the element, attribute, and type definitions in an XML
schema.

There are two requirements for the business object target namespace:
v The business process management run time and tools prefer target namespaces

to look like http://www.foo.com/xyz versus urn:foo:com:xyz.
v The business object framework requires a target namespace for business objects.

Business object definition:

WebSphere Process Server provides a flexible mechanism for defining or importing
business objects.

There are essentially three different forms of XML schema that WebSphere Process
Server recognizes as a business object definition:
v A top-level complex type definition
v A top-level anonymous complex type definition
v A top-level element that references a named complex type

Top-level complex type definition

This is an example of a top-level complex type definition:

Programming guides and techniques 149

<complexType name="ProductType">
<sequence>
<element name="name" type="string"/>
<element name="color" type="string" maxOccurs="unbounded"/>
</sequence>
</complexType>

Importing or defining business objects that are all defined using complex type
definitions only is the most flexible and manageable scheme. The upside of this
model is a type library that enables reuse. Reuse can be by three different methods.
v First, new types can be created using the complex type derivation model (of

extension or restriction).
v Second, new aggregate types can be created using the existing complex types

and available simple types as primitives.
v Third, new complex document definitions can be created, like the aggregate

complex types.

The other implication of business objects defined as complex types is that when
the complex type is used by the JService component kinds to transfer data within
the runtime, in order to maintain WS-I compliance, an element needs to be created
that references the named complex type.

Top-level anonymous complex type definition

This is an example of a top-level anonymous complex type definition:
<element name="Product">
<complexType>
<sequence>
<element name="name" type="string"/>
<element name="color" type="string" maxOccurs="unbounded"/>
</sequence>
</complexType>
</element>

If the imported business objects are all anonymous element definitions, they are
ready made to be included in JService invocations. However, they are not
inherently reusable.

Top-level element referencing a named type

This is an example of a top-level element referencing a named type:
<element name="product" type="prod:ProdType"/>

Business objects that reference named complex types might be frequent in an
environment that has already defined WSDL operations that require element
definitions. In this scenario, it is important to consider the possible disposition of
the complex type and element definitions:
v Elements can cohabitate with their complex type definitions in the same XML

schema file.
v Elements can cohabitate with their complex type definitions embedded in a

WSDL file.
v Elements can be defined in XML schema A.xsd, while their complex type

definition is defined in XML schema file B.xsd.
v Elements can be embedded in a WSDL file, referencing a complex type

definition defined in an XML schema file.

150 Developing and deploying

Example

The example demonstrates all the mechanisms for defining a business object
combined together.
<schema
targetNamespace="http://www.app.com/Address"
xmlns:addr="http://www.app.com/Address"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema">

<complexType name="Address">
<sequence>
<element name="street1" type="string"/>
<element name="street2" type="string"/>
<element name="city" type="string"/>
<element name="state" type="string"/>
<element name="zip" type="string"/>
</sequence>
</complexType>

<element name="homeAddress" type="addr:Address"/>
<element name="workAddress" type="addr:Address"/>
<element name="otherAddress" type="addr:Address"/>

<element name="individualContact">
<complexType>
<sequence>
<element name="firstName" type="string"/>
<element name="lastName" type="string"/>
<element ref="addr:HomeAddress"/>
<element ref="addr:WorkAddress"/>
<element ref="addr:OtherAddress"/>
</sequence>
</complexType>
</element>

<element name="businessContact">
<complexType>
<sequence>
<element name="name" type="string"/>
<element ref="addr:WorkAddress"/>
</sequence>
</complexType>
</element>

<element name="chairmanOfTheBoard">
<complexType>
<sequence>
<element name="startDate" type="date"/>
<element ref="addr:IndividualContact"/>
<element ref="addr:BusinessContact"/>
</sequence>
</complexType>
</element>
</schema>

The following guidelines are the preferred way to define business objects:
v Elements are defined using named types; anonymous types are discouraged.
v Elements and complex type definitions do not cohabitate the same XML schema

or WSDL file. This practice discourages type reuse.
v Complex types are defined in XML schema files, not WSDL definitions, creating

a type library like concept. Again, this type of definition enables and encourages
complex type reuse.

Programming guides and techniques 151

v Element definitions are built as necessary to reference a single complex type
definition. For example, the definition of an element inside the WSDL is a
pattern that is encouraged.

v Element definitions typically use the same target namespace as their complex
type definition.

Business object property definition:

XML schema provides complex types, simple types, and attributes, which are used
to build business objects.

Complex type definitions, anonymous complex type definitions, and elements
referencing complex type definitions are used to define the outer business objects.
The term property is used to define the data inside a business object. The term is
derived from the Service Data Object term property, and is defined by the
commonj.sdo.Property interface. It is synonymous with the concept of an attribute.

A property can either be simple or complex. A simple property can be defined
either as an XML schema attribute, or as an XML schema element with a type that
is an XML schema simple type. A complex property can either reference another
business object, or it can define a complex structure within the current business
object.

The full XML schema type system is supported.

152 Developing and deploying

Supported XSD and WSDL artifacts:

When a WSDL or a schema is imported into a project in WebSphere Integration
Developer, the business objects rendered from the WSDL or schema can then be
used to develop a module. It is important to note however, that only certain
artifacts from a schema are rendered as business objects (for example, root/top level
elements and named complex types). Certain artifacts, such as nested anonymous
complex types, are not rendered as business objects. These restrictions are a result
of which artifacts are accessible in the XML schema. For example, if you import a
schema which resulted in only one business object, it is most likely that the rest of
the elements were anonymous complex types. The following information details
which XSD and WSDL artifacts result in business objects.

Business objects from imported XSD definitions

When an XML schema is imported into a project, only certain artifacts are rendered
as business objects. The following lists show which artifacts are supported at
authoring time and at runtime:

XSD artifacts resulting in business objects at authoring time:
v Complex types defined at the root level
v Elements defined at the root level with anonymous complex types

Figure 56. XML schema simple types

Programming guides and techniques 153

These artifacts result in user-defined simple types at authoring time which can be
referenced by business objects:
v Simple types defined at the root level
v Elements defined at the root level with anonymous simple types

Business objects from imported WSDL files

When a WSDL definition that includes an inline XSD schema is imported into a
project, only certain artifacts are rendered as business objects. The following lists
show which artifacts are supported at authoring time and at runtime:

Inline XSD artifacts resulting in business objects at authoring time:
v Complex types defined at the root level
v Elements defined at the root level with anonymous complex types AND the

name of the element does not contain the names of any operations/messages (as
these elements could be doc-lit-wrapped elements which WebSphere Integration
Developer unwraps automatically)

These artifacts result in user-defined simple types at authoring time which can be
referenced by business objects:
v Simple types defined at the root level
v Elements defined at the root level with anonymous simple types

Runtime business objects from XSD artifacts

These artifacts result in business objects at runtime:
v Complex types defined at the root level
v Elements defined at the root level with anonymous complex types
v Elements defined at the root level which reference a complex type

Runtime business objects from WSDL files

These artifacts result in business objects at runtime:
v Complex types defined at the root level
v Elements defined at the root level with anonymous complex types AND the

name of the element does not contain the names of any operations/messages (as
these elements could be doc-lit-wrapped elements which WebSphere Integration
Developer unwraps automatically)

v Elements defined at the root level which reference a complex type

Examples

1. XSD example (supported at authoring time)

This example shows a project (XSDExamples) in the Business Integration view
with the business objects shown:

154 Developing and deploying

This shows the Customer.xsd file in the XSD Schema editor:

The above examples illustrate the following support:

Programming guides and techniques 155

Table 19. XSD artifact support

XSD support XSD artifact in the above example

Complex types defined at the root level Customer

Elements defined at the root level with
anonymous complex types

Address

Elements defined at the root level with
user-defined simple types

addressNumber

2. WSDL example (supported at authoring time)

This example shows a project (WSDL_XSDExamples) in the Business
Integration view with the business objects shown:

This screen capture shows the CustomerInterface.wsdl file opened in the WSDL
editor:

156 Developing and deploying

The above examples illustrate the following support:

Table 20. WSDL artifact support

WSDL support Inline XSD Artifact in the above example

Complex types defined at the root level Customer

Elements defined at the root level with
anonymous complex types AND the name
of the element does not contain the names of
any operations/messages (as these could be
doc-lit-wrapped elements which WebSphere
Integration Developer will unwrap
automatically)

Address

Elements defined at the root level with
user-defined simple types

addressNumber

3. Runtime example

The above examples illustrate the following runtime support:

Table 21. Runtime artifact support

Runtime support
XSD or Inline XSD artifact in the above
examples

All the above in examples 1 and 2 (except
for addressNumber as simple types are not
business objects)

See above (examples 1 and 2)

Elements defined at the root level which
reference a complex type

ACMECustomer (shown in examples 1 and
2)

Flat and hierarchical business objects:

Programming guides and techniques 157

Business objects can be modeled as flat or as hierarchical.

Flat business object

A flat business object contains one or more simple attributes and a list of supported
verbs. A simple attribute represents one value, such as a String or Integer or Date.
All simple attributes have single cardinality. If the business object is an
application-specific business object, a flat business object can represent one entity
in an application or in a technology standard.

Hierarchical business object

Hierarchical business object definitions define the structure of multiple related
entities, encapsulating not only each individual entity but also aspects of the
relationship between entities. In addition to containing at least one simple
attribute, a hierarchical business object has one or more attributes that are complex
(that is, the attribute itself contains one or more business objects, called child
business objects). The business object that contains the complex attribute is called
the parent business object.

There are two types of relationships between parent and child business objects:
v Single cardinality - When an attribute in a parent business object represents a

single child business object. The type of the attribute is set to the name of the
child business object, and the cardinality is set to one.

v Multiple cardinality - When an attribute in the parent business object represents
an array of child business objects. The type of the attribute is set to the name of
the child business object, and the cardinality is set to n.

In turn, each child business object can contain attributes that contain a child
business object, or an array of business objects, and so on. The business object at
the top of the hierarchy, which itself does not have a parent, is called the top-level
business object. Any single business object, independent of its child business objects
that it might contain (or that might contain it), is called an individual business object.

Example

The following example helps illustrate the difference between a flat business object
and hierarchical business object. The diagram contains a flat business object,
named Product. The business object is represented in memory with the Service
Data Object type commonj.sdo.DataObject (unless it was statically generated). This
flat business object has a set of attributes that are modeled as XML schema simple
types as well as an attribute that is modeled as a list of simple types.

The diagram also illustrates a Product business object, in combination with the
ProductCategory business object, to create a more complex hierarchical business
object. This business object has both a top-level business object (ProductCategory),
as well as a contained business object (Product).

158 Developing and deploying

Here is example of the flat business object definition for the Product business
object. The Product business object defines two properties, Name and Inventory, that
are typed by the XML schema simple types xs:string and xs:int. In addition,
Product also demonstrates the definition of List property Color, which is a List of
xs:string simple types.
<schema>
targetNamespace="http://www.scm.com/ProductTypes"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema">

<complexType name="Product">
<sequence>
<element name="name" type="string"/>
<element name="inventory" type="int"/>
<element name="color" type="string" maxOccurs="unbounded"/>
</sequence>
</complexType>
</schema>

Here is example of the hierarchical business object ProductCategory. The definition
defines two different business objects, ProductCategory and Product. The
hierarchical ProductCategory business object defines the property, Name and also
defines a List of business objects of type Product or ProductCategory.
<schema>
targetNamespace="http://www.scm.com/ProductCategoryTypes"
xmlns:pc="http://www.scm.com/ProductCategoryTypes"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema">
elementFormDefault="qualified">

<complexType name="ProductCategory">
<sequence>
<element name="name" type="string"/>
<choice>
<element name=="productCategory"
type="pc:ProductCategory"
maxOccurs="unbounded"/>
<element name=="product"
type="pc:Product"
maxOccurs="unbounded"/>

</choice>
</sequence>

ProductCategory

Product

0..n

0..n

1

Product

1

Figure 57. Comparison of flat and hierarchical business objects

Programming guides and techniques 159

</complexType>

<complexType name="Product">
<sequence>
<element name="name" type="string"/>
<element name=="inventory" type="int"/>
<element name=="color" type="string" maxOccurs="unbounded"/>
</sequence>
</complexType>

</schema>

Business object characteristics:

Business objects have inherent characteristics that enhance their use within the
business object framework.

Cardinality

The cardinality of properties is defined by standard XML schema minOccurs and
maxOccurs facets for simple and complex types and the use attribute for attributes.

Default property values

The capability to provide default values in XML schema for attributes and simple
types in a business object is supported by the business object framework. This
support is visible at creation time when the simple property types of a business
object reflect their default values.

Nillable

An element can be defined in XML schema to be nillable. The business object
framework enables properties that are nillable to have their value set to Null at
runtime.

Key definition

Business object key information can be used by multiple subsystems, such as
relationship, sequencing, and isolation. However, each of these subsystems can
define their own key mechanism independent of the business object's key
definition. Since the underlying model language leveraged by business objects is
XML schema, first class support for key definitions exists within the modeling
language. However, this support within the modeling language is not fully
supported in the SDO runtime.

xs:ID, xs:IDREF, and xs:IDREFS
These types were added to XML schema primarily to provide an upgrade
path for DTDs. Each complex type can have 0 or 1 elements/attributes
typed as an xs:ID. IDs must be unique to an entire document, as opposed
to a primary key in a database, for example, that must be unique with
respect to the scope of the table. As an example, a conformant document
cannot use the same ID value to identify both a Product and a
ProductCategory. Often elements get around this restriction by prepending
the complex type name to the key value. An attribute typed IDREF must
contain a value that matches one of the ID values in the current document.
In addition, XML schema provides for a construct which is an element that
can be typed to contain a list of ID references, xs:IDREFs.

160 Developing and deploying

xs:unique, xs:key, xs:keyref
XML schema introduced a new style enabling key definitions and key
references. The xs:unique construct enables a user to define that 1 or more
fields in an element that must be unique within a particular scope of the
element (which represent the entire document). The xs:key construct is a
variant of xs:unique with the additional constraint that the elements
referenced are required. The xs:keyref construct is used to identify that
the value of an element must be named key or unique construct.

The unique, key, and keyref constructs have several advantages over the ID, IDREF,
and IDREFS set, including:
v They can define compound keys.
v They can define unique constraints that are relative to a portion of the

document.

Although a business object is not required to have a defined key, it is highly
recommended. Business objects that do not define a key can be used by
applications. This scenario is a common use model in many Java EE centric
applications use models, where JavaBeans are passed back and forth between the
servlet and EJB containers without the specification of a key. However, those
business objects that do not define a key are unable to interact with the subsystems
that require a key. This situation limits their ability to take advantage of
WebSphere Process Server qualities of service.

Modeling business graphs
Business graphs relate to business objects in much the same way SDO DataGraphs
relate to SDO DataObjects. When a top-level business object requires enrichment to
be able to use the services provided by WebSphere Process Server, it is wrapped
with a business graph. The business graph wrapper provides the additional value
add by adding data headers for storing information logically in memory, or
physically when the business graph is serialized.

Note: If you are migrating an application from WebSphere InterChange Server or
migrating adapters, you may need to use business graphs.

Business graph use models:

Two primary use models represent the fundamental capabilities provided by the
business graph: delta support and after image.

Delta support is the capability enabled by the SDO 1.0, where changes to a business
object graph are captured in a special header called the change summary.

An after image is a business graph that captures the current state of business data
in an EIS system, typically as a result of a change to that data in the EIS. An after
image enables changes in EIS systems to be captured and published to the
runtime.

To provide these two fundamental concepts, business graphs introduce and
provide for the following concepts:
v Templated business graph is a business graph that is typed specifically for a type of

business object graph that it wraps.
v Change summary is provided to capture implicit changes, explicit changes, for

both Delta, as well as After Image use models.

Programming guides and techniques 161

v Explicit change summary support is provided by the business graph programming
interfaces enabling BPM component, such as adapters, mediators, maps, and
relationships to explicitly modify the Change Summary header.

v Event summary is provided to support capturing instance-based annotations
about data in the business object graph, and specifically, to contain object event
identifiers

v Verb support is provided by the business graph enabling the components in the
runtime to key off the event type to perform value added function.

v Supported verbs is the notion of constraining and extending the set of allowable
verbs that can be specified for a business graph.

v Object event identifiers are supported by the business graph enabling all the
objects in a graph to be uniquely identified. This capability is required by some
of the components that provide value added features.

Business graph model definition:

To remain non-intrusive to an externally developed model of a business object, the
business graph capability is wrapped around the original business object. A pattern
named the templated business graph is used to wrap the original business object
with the enriched business graph schema.

The templated business graph is created by extending the business graph complex
type that is provided by the business object framework runtime and adding an
element delegating to the original business object. The diagram shows a UML
model for the business graph. The business graph is abstract, providing just the
standard set of headers that are added to the top-level business object.

The XML schema model for the abstract business graph XML schema complex
type:
<schema
targetNamespace="http://www.ibm.com/xmlns/prod/websphere/bo/6.0.0"
xmlns:bo="http://www.ibm.com/xmlns/prod/websphere/bo/6.0.0"
xmlns:sdo="commonj.sdo"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

Figure 58. Business graph complex type

162 Developing and deploying

<import namespace="commonj.sdo" schemaLocation="DataGraph.xsd"/>

<complexType name="BusinessGraph" abstract="true">
<sequence>
<element name="changeSummary" type="sdo:ChangeSummaryType"
minOccurs="0" maxOccurs="1"/>
<element name="eventSummary" type="bo:EventSummary"
minOccurs="0" maxOccurs="1"/>
<element name="property" type="bo:ValuesType"
minOccurs="0"/>

</sequence>
<anyAttribute namespace="##other" processContents="lax"/>
</complexType>

<complexType name="EventSummary">
<sequence>
<any namespace="##any" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>

<complexType name="ValuesType">
<complexContent>
<extension base="ecore:EClass"/>
</complexContent>
</complexType>

<attribute name="name" type="string"/>
</schema>

Business graphs are only a top-level concept because they exist to add a set of
headers to an existing top-level business object, and cannot be modeled in a
recursive design pattern like business objects can. Business graphs can be applied
to any business object, but upon application, that business object becomes a
top-level business object.

This is an example of a business graph that wraps a business object named
ProductCategory, ProductCategory is a hierarchical business object that contains a
child business object named Product.
<schema
targetNamespace="http://www.scm.com/ProductCategoryTypes/ProductCategoryBG"
xmlns:pcbg="http://www.scm.com/ProductCategoryTypes/ProductCategoryBG"
xmlns:pc="http://www.scm.com/ProductCategoryTypes"
xmlns:bo="http://www.ibm.com/xmlns/prod/websphere/bo/6.0.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<import namespace="http://www.ibm.com/xmlns/prod/websphere/bo/6.0.0"
schemaLocation="BusinessGraph.xsd"/>

<import namespace="http://www.scm.com/ProductCategoryTypes"
schemaLocation="ProductCategoryTypes.xsd"/>

<complexType name="ProductCategoryBG">
<complexContent>
<extension base="bo:BusinessGraph">
<sequence>
<element name="verb" minOccurs="0" maxOccurs="1"/>
<element name="productCategory"
type="pc:ProductCategory"
minOccurs="0" maxOccurs="1"/>

</sequence>

Programming guides and techniques 163

</extension>
<complexContent>
<complexType>
</schema>

The recommended pattern for a generated templated business graph is:
v The templated business graph are defined using a named complex type that

extends the bo:BusinessGraph schema by restriction (this pattern provides
restrictions on the allowable Verb value).

v The name of the templated business graph is the name of the top-level business
object, with the string “BG” appended.

v The target namespace of the templated business graph is composed of the target
namespace of the business object being wrapped, followed by a “/”, named by
the complex type of the templated business graph.

v The templated business graph complex type definition are placed in its own
XML schema file whose name corresponds to the name of the complex type.

Business graph model instance:

The top-level business graph is represented in memory much the same as a
business object, by an SDO 1.0 DataObject, specifically, the class
commonj.sdo.DataObject.

The business graph is composed of more than just the business graph containment
object. It also contains two headers, plus the top-level business object. None of the
headers is represented in memory as a DataObject, and neither of the headers
enables a DataObject API access mechanism.

Change summary header

A capability provided by business graphs is the ability to implicitly track changes
to the business object in the business graph as the business graph is passed
between several different business processes. As each process changes the business
graph, a change log is generated in memory. Once the business graph is serialized,
the change log is written out in a format that enables the next process to see the
types of changes that have been made to the business graph. This technique
enables adapter and Data Mediator services to efficiently update their persistence
data stores by optimizing the data they have to focus on.

In addition, the change summary is also used when an adapter generates an After
Image event to describe data that was updated in an EIS system. In particular, the
ability of the change summary to annotate object and property changes is used in
the After Image use model (as well as the verb for the business graph).

Implicit change summary usage

When applications cause changes to the business object, the applications can turn
on change logging so change events are automatically logged to the change
summary. The change summary is included in the business graph at a peer level of
the top-level business object. Change events are defined at two levels, for business
objects, and for business object properties. Business objects have create, update,
and delete change types, while properties have set and unset change types. Change
events are only tracked for modifications to the business object portion of the
business graph. A change in the event summary does not result in an implicit
update of the change summary for the business graph.

164 Developing and deploying

Explicit change summary modification

There are several use models in the WebSphere Process Server components that
require the ability to explicitly write to the change summary header. For example,
an adapter that generates an EIS event explicitly creates the object change types,
and potentially the property change types. An application-specific business
object/general business object (ASBO/GBO) map transforms the change summary
from one business graph to another, creating a new version of the change
summary in an output business graph. This capability is provided by the business
object framework.

Event summary header

The event summary provides the ObjectEventID, which is the mechanism used to
uniquely identify an instance of an object that appears in the runtime. This
information is carried in the event summary, where the unique identifier is
associated with a given DataObject in the business object hierarchy of the business
graph.

Event information can also be carried in the event summary. This information is a
string that can be used to add additional metadata associated with each object in
the business object hierarchy for the business graph. One potential use model for
event information is to mark up contained business objects with a verb other than
the standard Create, Update, and Delete verbs supported by change summary.

Verb header

If the verb is set on the business graph, then the business object data portion of the
business graph carries an EIS After Image data set. If the verb contains a value,
there are three possibilities with respect to the granularity of the after image event:
v The change summary is empty. This situation occurs when an EIS knows about

the type of update to a set of data, but does not have specifics on which objects
in the graph have been created, updated, or deleted. The result is that a
downstream mediation, map, relationship, or adapter, must use the information
in the business graph plus additional data to determine the actual update to
perform.

v The change summary has object level change event annotations. This case is
typical where the EIS system recognizes what has happened to each object in the
business graph, but lacks the granularity to determine whether specific
properties of the objects have been updated.

v The change summary has object level change event annotations and property
level get/set annotations. This situation is the most granular case, and all
adapters strive to obtain this level of an After Image if their EIS system makes
the appropriate data available. The advantage of a fully specified After Image is
that it enables property level implicit property change event management to
occur. Therefore, it much easier for After Image business graphs to interoperate
with the disconnected Delta-based Business Graphs.

Modeling business object type metadata
Business object type metadata can be added to business object definitions to
enhance their value in the runtime. The business object framework allows you to
design, annotate, and convert business object type metadata.

The business object framework provides a mechanism that enables:

Programming guides and techniques 165

v Metadata to be mixed into a business object in a consistent, and relatively
non-intrusive fashion

v A prescriptive policy for developers to define complex annotation structures
v A prescriptive policy for business object developers and deployers to annotate a

business object with instance metadata that conforms to the predefined complex
annotation structures

v A set of APIs for transforming the annotations at runtime into a simple to use
DataObject structure

This process involves at least three different roles:
v The first role is that of the business object type metadata designer. This role

designs the metadata structure. For example, the business object framework
plays this role and defines a couple of metadata characteristics for annotating a
business object. It is expected that adapters such as PeopleSoft, Siebel, and SAP,
play the role of the metadata designer to annotate the business object with
application-specific information.

v The second role is the business object designer or deployer. This role uses the
structure of the business object type metadata, and the policy defined by the
business object type metadata framework, to annotate the business object
definitions with metadata.

v If the business object is annotated correctly, the third role can use the business
object metadata APIs to validate and inspect the metadata at runtime, and turn
it into a navigable and useful DataObject graph structure.

In addition, the business object framework provides for the following metadata
features:
v Compound primary key and foreign key property definitions
v Top-level supported verb metadata annotations

For more details, refer to these other topics.

Representing business object type metadata:

The business object framework defines a mechanism by which business object type
metadata can be mixed into either a top down, or externally developed, imported
schema.

The mechanism that is used to mix in the business object type metadata, is XML
schema annotations and the appInfo structure. This policy, although it requires
modification of the original schema definition, does so in a way that enables the
annotations and appinfo to be easily view toggled, or removed completely. This
identification scheme is done by using the source attribute on the xs:appinfo tag
whose value is the target namespace that defines the business object type
metadata.

For example, assume that the following schema was imported into the runtime.
The schema describes a business object, named Product, that includes customer
annotations.
<schema>
targetNamespace="http://www.scm.com/ProductTypes"
xmlns:p="http://www.scm.com/ProductTypes"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified

166 Developing and deploying

<complexType name="Product">
<annotation>
<appInfo>
<SCMEditor value="Bottom" type="Anchor"/>
</appInfo>
<documentation>
Describes the SCM Product
</documentation>
</annotation>

<sequence>
<element name="id" type="ID"/>
<element name="description" type="string" default="DefaultDescription"/>
<element name="sku" type="p:Sku"/>
</sequence>
</complexType>

<simpleType name="Sku">
<restriction base="string">
<pattern value="\d{3}-[A-Z]{2}"/>
</restriction>
</simpleType>
</schema>

Designing business object type metadata:

You can design a metadata structure to house the business object metadata.

About this task

To design the metadata structure follow these steps.

Procedure

1. Create an XML schema file with a valid target namespace. This step is used
when the instance metadata is added to the business object definition.

2. Define a named complex type to define each separate piece of metadata that
can be added to a business object. The complex type definition is used to define
the structure of the dynamically typed DataObject that is used to read the
instance metadata. The name of the complex type is used when the instance
metadata is added to the business object definition.

Example

This example shows a portion of business object type metadata developed for a
PeopleSoft adapter.
<schema>
targetNamespace="http://www.ibm.com/xmlns/prod/websphere/adapter/psft/
PSFTBODefinitionASI/7.0.0"
xmlns:psft="http://www.ibm.com/xmlns/prod/websphere/adapter/psft/
PSFTBODefinitionASI/7.0.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<complexType name="PSFTBODefinitionASI">
<sequence>
<element name="hostname" type="string"/>
<element name="ipaddress" type="string"/>
</sequence>
</complexType>
</schema>

Programming guides and techniques 167

Annotating a business object definition:

You can use the syntax supported by the business object framework to annotate a
business object definition.

About this task

The business object framework does not attempt to define the mechanism by
which instance metadata data is attached to the business object definition.
However, it does define the syntax of the instance metadata.

To annotate the business object definition follow these guidelines.

Procedure

1. If the part of the business object definition that the instance metadata is to be
attached to does not already have an annotation, add one. If it already has an
annotation, utilize the existing one.

2. Create a separate xs:appinfo tag within the xs:annotation tag, and define the
source attribute to the namespace defined by the business object type metadata
being added.

3. Inside the xs:appinfo tag, define a QName, using a target namespace prefix,
followed by the name of the complex type definition. Append the attribute
QName defined with xmlns: followed by the previously used target namespace
prefix. Set the value of this QName attribute to the target namespace of the
business object type metadata being used.

4. Add the structure and instance data mandated by the business object type
metadata definition. Close all tags as appropriate.

Example

Once the object is imported in, it is identified to need a set of PeopleSoft
annotations. This example shows the same business object definition with the
PeopleSoft metadata added.
<schema>
targetNamespace="http://www.scm.com/ProductTypes"
xmlns:p="http://www.scm.com/ProductTypes"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified

<complexType name="Product">
<annotation>
<appinfo source="http://www.ibm.com/xmlns/prod/websphere/Adapter/PSFT">
<psft:PSFTMetadata
xmlns:psft="http://www.ibm.com/xmlns/prod/websphere/Adapter/PSFT">
<hostname>mumbai</hostname>
<ipaddress>9.29.1.1</ipaddress>
<psft:PSFTMetadata>
</appInfo>
<appInfo>
<SCMEditor value="Bottom" type="Anchor"/>
</appInfo>
<documentation>
Describes the SCM Product
</documentation>
</annotation>

<sequence>
<element name="id" type="ID"/>

168 Developing and deploying

<element name="description" type="string" default="DefaultDescription"/>
<element name="sku" type="p:Sku"/>
</sequence>
</complexType>

<simpleType name="Sku">
<restriction base="string">
<pattern value="\d{3}-[A-Z]{2}"/>
</restriction>
</simpleType>
</schema>

Converting annotation into DataObjects:

The business object framework provides the capability to transform annotations
into a usable DataObject structure.

About this task

The annotations associated with a business object definition can be read at runtime
by using the SDO implementation-specific set of APIs. However, the problem with
these APIs is that they return a binary large object (BLOB). However, the business
object framework provides a utility that, if the recommended annotation patterns
have been followed, reads the BLOB, validates it, and transforms it into a usable
DataObject structure.

To convert an annotation into a DataObject.

Procedure

1. Obtain an annotation.
2. Use the BOTypeMetadata to convert that annotation into an SDO DataObject.

The BOTypeMetadata implementation is available as a singleton using the
BOTypeMetadata.INSTANCE instance.

Example

The following example demonstrates how to use the APIs to obtain an annotation
and then the use the BOTypeMetadata API to convert that annotation into an SDO
DataObject. The metadata is defined in BOTypeMetadata.xsd.
<schema>
targetNamespace="http://www.ibm.com/xmlns/prod/websphere/botm/7.0.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<complexType name="VerbInfo">
<sequence>
<element name="verbInfo" type="string"/>
</sequence>
</complexType>
</schema>

One of the capabilities of the business object framework is the ability to add
additional supported verbs and accompanying metadata to enable meta-driven
capabilities at runtime. The capability is supported through the use of verbs and
the VerbInfo metadata to annotate the verbs with additional metadata. The
following example demonstrates the places where the VerbInfo metadata would be
added for each of the possible Verb values.

Programming guides and techniques 169

<schema
targetNamespace="http://www.scm.com/ProductCategoryTypes/ProductCategoryBG"
xmlns:pcbg="http://www.scm.com/ProductCategoryTypes/ProductCategoryBG"
xmlns:pc="http://www.scm.com/ProductCategoryTypes"
xmlns:sdo="commonj.sdo"
xmlns:bo="http://www.ibm.com/xmlns/prod/websphere/bo/7.0.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<import namespace="http://www.ibm.com/xmlns/prod/websphere/bo/7.0.0"
schemaLocation="BusinessGraph.xsd"/>

<import namespace="commonj.sdo"
schemaLocation="DataGraph.xsd"/>

<import namespace="http://www.scm.com/ProductCategoryTypes"
schemaLocation="ProductCategoryTypes.xsd"/>

<complexType name="ProductCategoryBG">
<complexContent>
<extension base="bo:BusinessGraph">
<sequence>

<element name="verb"
minOccurs="0" maxOccurs="1">
<simpleType>
<restriction base="string">
<enumeration value="Create">
<annotation>
<appinfo source="http://www.ibm.com/xmlns/prod/websphere/botm/7.0.0">
<botm:VerbInfo
xmlns:botm="http://www.ibm.com/xmlns/prod/websphere/botm/7.0.0">
<verbInfo>Metadata relating to Create</verbInfo>
</botm:VerbInfo>
</appinfo>
</annotation>
</enumeration>
<enumeration value="Retrieve">
<annotation>
<appinfo source="http://www.ibm.com/xmlns/prod/websphere/botm/7.0.0">
<botm:VerbInfo
xmlns:botm="http://www.ibm.com/xmlns/prod/websphere/botm/7.0.0">
<verbInfo>Metadata relating to Retrieve</verbInfo>
</botm:VerbInfo>
</appinfo>
</annotation>
</enumeration>
</restriction>
</simpleType>
</element>

<element name="productCategory" type="pc:ProductCategory"
minOccurs="0" maxOccurs="1"/>

</sequence>
</extension>
</complexContent>
</complexType>

<element name="productCategoryBG" type="pcbg:ProductCategoryBG"/>

</schema>

170 Developing and deploying

Programming using business object services
To facilitate the creation and manipulation of business objects, the business object
framework extends SDO specifications by providing a set of Java services. These
services are part of the package named com.ibm.websphere.bo.

This is a brief description of the business object services.

Table 22. Business object services

Service Description

BOChangeSummary Provides enhancements to the SDO change
summary interface to manage the business
graph's change summary header.

BOCopy Facilitates copying a graph of business
objects or a business graph that contains a
graph of business objects.

BODataObject Provides enhancements to the SDO Data
Object interface.

BOEquality Provides the ability to determine if two
business graphs or business objects are
equivalent.

BOEventSummary Provides the interface for managing the
content of the business graph's event
summary header.

BOFactory Provides the capability to create a business
graph or a business object.

BOType Provides a mechanism to obtain the SDO
type of a business graph or business object
that mirrors what Class.forName() provides
for Java class names.

BOTypeMetadata Provides the capability of taking an
annotation binary large object (BLOB) that
conforms to the BO Type Metadata pattern
and transforms it into a set of SDO
DataObjects (and performs the reserve
transform).

BOXMLDocument/BOXMLSerializer Provides the mechanisms for creating and
representing an XML Document in memory,
and for serializing and de-serializing an
XML document.

Programming guides and techniques 171

Table 22. Business object services (continued)

Service Description

BOInstanceValidator Provides a facility to validate a business
object instance against its XSD definition.
Business objects can be present with various
forms. They can be simple business objects
or wrapped by the enriched business graph
model. In certain business integration
scenarios, the business objects are in the
deleted section of change summary. These
business objects drive the downstream
business logics. The accuracy of the business
objects need to be ensured in all cases. There
are two supported styles for
BOInstanceValidator:

v Explicit Programmatic Validation: A
system service is provided to validate
business objects via a set of programming
APIs.

v Implicit Interface Validation: This
validation is enabled/disabled via
WebSphere Integration Developer on the
target interfaces via a SCA interface
qualifier.

XML document validation
XML documents and business objects can be validated using the validation service.

In addition, other services require certain minimum standards or they throw a
runtime exception. One of these is BOXMLSerializer.

You can use the BOXMLSerializer to validate XML documents before they are
processed by a service request. The BOXMLSerializer validates the structure of
XML documents to determine if any of the following types of errors are present:
v Invalid XML documents, such as those that are missing certain element tags.
v Not well-formed XML documents, such as those that contain missing closing

tags.
v Documents containing parsing errors, such as errors in entity declaration.

When an error is discovered by the BOXMLSerializer, an exception will be thrown
with problem details.

The validation can be performed for import and/or export of XML documents for
the following services:
v HTTP
v JAXRPC web services
v JAX-WS web services
v JMS services
v MQ services

For the HTTP, JAXRPC, and JAX-WS services, the BOXMLSerializer will generate
exceptions in the following manner:
v Imports –

1. The SCA component invokes the service.

172 Developing and deploying

2. The service invokes a destination URL.
3. The destination URL responds with an invalid XML exception.
4. The service fails with a runtime exception and message.

v Exports –
1. The service client invokes the service export.
2. The service client sends an invalid XML
3. The export fails for the service and generates an exception and message.

For the JMS and MQ messaging services, the exceptions are generated in the
following manner:
v Imports –

1. The import invokes the JMS or MQ service.
2. The service returns a response.
3. The service returns an invalid XML exception.
4. The import fails and generates a message.

v Exports –
1. The MQ or JMS client invokes an export.
2. The client sends invalid XML.
3. The export fails and generates an exception and message.

You can view the logs for any messages generated by an XML validation
exception. The examples below are messages generated by improper XML coding
that was validated by the BOXMLSerializer

v JAXWS import
javax.xml.ws.WebServiceException: org.apache.axiom.om.OMException:
javax.xml.stream.XMLStreamException: Element type "TestResponse" must be
followed by either attribute specifications, ">" or "/>".

javax.xml.ws.WebServiceException: org.apache.axiom.soap.SOAPProcessingException:
First Element must contain the local name, Envelope

v JAXRPC import
[9/11/08 15:16:27:417 CDT] 0000003e ExceptionUtil E
CNTR0020E: EJB threw an unexpected (non-declared)
exception during invocation of method
"transactionNotSupportedActivitySessionNotSupported" on bean
"BeanId(WSXMLValidationApp#WSXMLValidationEJB.jar#Module, null)".
Exception data: WebServicesFault
faultCode: {http://schemas.xmlsoap.org/soap/envelope/}Server.generalException
faultString: org.xml.sax.SAXParseException: Element type "TestResponse"

must be followed by either
attribute specifications, ">" or "/>". Message being parsed:

<?xml version="1.0"?><TestResponse
xmlns="http://WSXMLValidation"<firstName>Bob</firstName>

<lastName>Smith</lastName></TestResponse>
faultActor: null
faultDetail:
[9/11/08 15:16:35:135 CDT] 0000003f ExceptionUtil E CNTR0020E: EJB threw an

unexpected (non-declared) exception during invocation of method
"transactionNotSupportedActivitySessionNotSupported" on bean
"BeanId(WSXMLValidationApp#WSXMLValidationEJB.jar#Module, null)".
Exception data: WebServicesFault
faultCode: {http://schemas.xmlsoap.org/soap/envelope/}Server.generalException
faultString: org.xml.sax.SAXException: WSWS3066E: Error: Expected ’envelope’

but found TestResponse
Message being parsed: <?xml version="1.0"?><TestResponse
xmlns="http://WSXMLValidation">

Programming guides and techniques 173

<firstName>Bob</firstName><middleName>John</middleName>
<lastName>Smith</lastName>
</TestResponse>

faultActor: null
faultDetail:

v JAXRPC/JAXWS export
[9/11/08 15:35:13:401 CDT] 00000064 WebServicesSe E

com.ibm.ws.webservices.engine.transport.http.WebServicesServlet
getSoapAction WSWS3112E:
Error: Generating WebServicesFault due to missing SOAPAction.

WebServicesFault
faultCode: Client.NoSOAPAction
faultString: WSWS3147E: Error: no SOAPAction header!
faultActor: null
faultDetail:

For more information about validation services, see the BOInstanceValidator
interface in the Generated API and SPI documentation in the Reference section.

Programming techniques
These techniques illustrate how to effectively program business objects using the
business object framework.

Arrays in business objects
You can define arrays for an element in a business object so that the element can
contain more than one instance of data.

You can use a List type to create an array for a single named element in a business
object. This will allow you to use that element to contain multiple instances of
data. For example, you can use an array to store several telephone numbers within
an element named telephone that is defined as a string in its business object
wrapper. You can also define the size of the array by specifying the number of data
instances using the maxOccurs value. The following example code shows how you
would create such an array that will hold three instances of data for that element:
<xsd:element name="telephone" type="xsd:string" maxOccurs="3"/>

This will create a list index for the element telephone that can hold up to three
data instances. You may also use the value minOccurs if you are only planning to
have one item in the array.

The resulting array consists of two items:
v the contents of the array
v the array itself.

In order to create this array, however, you need perform an intermediate step by
defining a wrapper. This wrapper, in effect, replaces the property of the element
with an array object. In the example above, you can create an ArrayOfTelephone
object to define the element telephone as an array. The following code example
shows how you accomplish this task:
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="Customer">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="ArrayOfTelephone" type="ArrayOfTelephone"/>

</xsd:sequence>
</xsd:complexType>

174 Developing and deploying

</xsd:element>

<xsd:complexType name="ArrayOfTelephone">
<xsd:sequence maxOccurs="3">

<xsd:element name="telephone" type="xsd:string" nillable="true"/>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

The telephone element now appears as a child of the ArrayOfTelephone wrapper
object.

Note that in the example above, the telephone element contains a property named
nillable. You can set this property to true if you want to certain items in the
array index to contain no data. The following example code shows how the data in
an array may be represented:
<Customer>

<name>Bob</name>
<ArrayOfTelephone>

<telephone>111-1111</telephone>
<telephone xsi:nil="true"/>
<telephone>333-3333</telephone>

</ArrayOfTelephone>
</Customer>

In this case, the first and third items in the array index for the telephone element
contain data, while the second item does not contain any data. If you had not used
the nillable property for the telephone element, then you would have had to
have the first two elements contain data.

You can use the Service Data Object (SDO) Sequence APIs in WebSphere Process
Server as an alternative method to handle sequences in business object arrays. The
following example code will create an array for the telephone element with data
identical to that shown above:
DataObject customer = ...
customer.setString("name", "Bob");

DataObject tele_array = customer.createDataObject("ArrayOfTelephone");
Sequence seq = tele_array.getSequence(); // The array is sequenced
seq.add("telephone", "111-1111");
seq.add("telephone", null);
seq.add("telephone", "333-3333");

You can return the data for a given element array index by using code similar to
the example below:
String tele3 = tele_array.get("telephone[3]"); // tele3 = "333-3333"

In this example, a string named tele3 will return the data "333-3333".

You can enter the data items for the array in the list index by using fixed width or
delimited data placed in a JMS or MQ message queue. You can also accomplish
this task by using a flat text file that contains the properly formatted data

Creating nested business objects
You can use the setWithCreate function to create nested business objects within a
parent business object.

You can create nested business objects from a parent business object without
having to write code that details intermediate child objects. For instance, you can

Programming guides and techniques 175

set a nested business object two levels below the parent object without having to
define a dependent business object one level below the parent object. Use the
setWithCreate function to accomplish this task for:
v a single instance
v multiple instances
v a wildcard value
v a model group

The following topics describe how you can do each of these.

Single instance of a nested business object:

Use the setWithCreate function to create a single instance of nested business
object.

Before you begin

The example code below shows how you would normally have to create code for
an intermediate (child) object from a higher level (parent) object in order to create
a third-level (grandchild) object. The XSD file would look like this:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="Parent">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="child" type="Child"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Child">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="grandChild" type="GrandChild"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="GrandChild">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

About this task

If you used the traditional "top-down" method to set the business object data, you
would have to process the following code specifying the child and grandchild
objects before setting the data in the grandchild object:
DataObject parent = ...
DataObject child = parent.createDataObject("child");
DataObject grandchild = child.createDataObject("grandChild");
grandchild.setString("name", "Bob");

You can use a more efficient method by using the setWithCreate function to
simultaneously define the grandchild object and set its data, without having to
specify the intermediate child object. The following example code shows how you
would accomplish this task:

176 Developing and deploying

DataObject parent = ...
parent.setString("child/grandchild/name", "Bob");

Results

The lower-level business object data is set without having to reference the
intermediate-level business object. An exception occurs if the path is not valid.

Creating multiple instances of nested business objects:

Use the setWithCreate function to create a multiple instances of nested business
object.

Before you begin

The example XSD file below contains nested objects one (child) and two
(grandchild) levels below the top (parent) business object:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="Parent">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="child" type="Child" maxOccurs="5"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Child">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="grandChild" type="GrandChild"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="GrandChild">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Note that the parent object can have up to five child objects, as specified in the
maxOccurs value.

About this task

You can create a list with a more stringent policy that will not allow for missing
sequences in an array. You can use the setWithGet method, and at the same time
specify the data that will appear in a particular list index item:
DataObject parent = ...
parent.setString("child[3]/grandchild/name", "Bob");

In this case, the resulting array would be of size three, but the values for child[1]
and child[2] list index items are undefined. You may want the items to either be a
null value or have an associated data value. In the scenario above, an exception
will be thrown because the values for the first two array index items are
undefined.

Programming guides and techniques 177

You can remedy this situation by defining the values in the index of the list. If the
index item refers to an existing element in the array and if that element is not null
(that is, it contains data), it will be used. If it is null, it will be created and used. If
the index of the list is one greater than the size of the list, a new value will be
created and added. The following example code shows what will happen in a list
that of size two, where child[1] is designated null and child[2] contains data:
DataObject parent = ...
// child[1] = null
// child[2] = existing Child
// This code will work because child[1] is null and will be created.
parent.setString("child[1]/grandchild/name", "Bob");

// This code will work because child[2] exists and will be used.
parent.setString("child[2]/grandchild/name", "Dan");

// This code will work because the child list is of size 2, and adding
// one more list item will increase the list size.
parent.setString("child[3]/grandchild/name", "Sam");

Results

You have overridden the values for the two existing items and added a third item
to the list index. If, however, you then add another item that is not of size four, or
which is greater than the size specified in maxOccurs, then an exception will be
thrown. The more stringent policy of this method is demonstrated in the following
example code.

Note: The code below is assumed to be appended to the existing code above:
// This code will throw an exception because the list is of size 3
// and you have not created an item to increase the size to 4.
parent.setString("child[5]/grandchild/name", "Billy");

Using a nested business object defined by a wildcard:

You can specify the type xsd:any in a parent object to specify a child object, but
only if the child object already exists.

About this task

The setWithCreate function used to define nested business objects for single and
multiple instances does not work if you are using a wildcard value of xsd:any in
the Service Data Object. This is illustrated in the following example code:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="Parent">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="child" type="xsd:anyType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Results

An exception will be thrown if the child data object does not exist.

Using business objects in model groups:

178 Developing and deploying

You create the model group path patterns when working with nested business
objects that are part of a model group.

About this task

Model groups use the tag xsd:choice that you can use to create business objects
from a parent business object. The business object framework, however, can cause
naming conflicts that can generate an exception. The following example code
illustrates how naming conflicts can occur:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://MultipleGroup">
<xsd:complexType name="MultipleGroup">

<xsd:sequence>
<xsd:choice>

<xsd:element name="child1" type="Child"/>
<xsd:element name="child2" type="Child"/>

</xsd:choice>
<xsd:element name="separator" type="xsd:string"/>
<xsd:choice>

<xsd:element name="child1" type="Child"/>
<xsd:element name="child2" type="Child"/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Note: there can be multiple instances of the elements named "child1" and "child2",

Use the Service Data Object (SDO) path patterns for model groups to resolve these
conflicts.

Results

You would get arrays that use the SDO path pattern that is used to handle model
groups, as shown in the following example code:
set("child1/grandchild/name", "Bob");

set("child11/grandchild/name", "Joe");

Differentiating identically named elements
You must provide unique names for business object elements and attributes.

In the Service Data Object (SDO) framework, elements and attributes are created as
properties. In the following code examples, the XSDs create types that have one
property named foo:
<xsd:complexType name="ElementFoo">

<xsd:sequence>
<xsd:element name="foo" type="xsd:string" default="elem_value"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="AttributeFoo">
<xsd:attribute name="foo" type="xsd:string" default="attr_value"/>

</xsd:complexType>

In these cases, you can access the property using the XML Path Language (XPath).
However, valid schema types can have an attribute and element of the same name,
as in the following example:

Programming guides and techniques 179

<xsd:complexType name="DuplicateNames">
<xsd:sequence>

<xsd:element name="foo" type="xsd:string" default="elem_value"/>
</xsd:sequence>
<xsd:attribute name="foo" type="xsd:string" default="attr_value"/>

</xsd:complexType>

In XPath, you must be able to differentiate identically named elements from
attributes. This is achieved by beginning one of the names with an at sign (@). The
following snippet shows how to access the identically named element and
attribute:
1 DataObject duplicateNames = ...

2 // Displays "elem_value"
3 System.out.println(duplicateNames.get("foo"));

4 // Displays "attr_value"
5 System.out.println(duplicateNames.get("@foo"));

Use this naming scheme for all methods that take a String value that is an SDO
XPath.

Model group support (all, choice, sequence, and group references):

The SDO specification requires model groups (all, choice, sequence, and group
references) to be expanded in place and not describe types or properties.

Basically, this means that any of those structures that are within the same
containing structures are "flattened". This "flattening" puts all the child structures
at the same level, which can produce duplicate naming issues in an SDO whose
structure is derived from the flattened data. When an XSD does not flatten the
groups, there is still a separation of duplicates that are contained by different
parents.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://MultipleGroup">
<xsd:complexType name="MultipleGroup">

<xsd:sequence>
<xsd:choice>

<xsd:element name="option1" type="xsd:string"/>
<xsd:element name="option2" type="xsd:string"/>

</xsd:choice>
<xsd:element name="separator" type="xsd:string"/>
<xsd:choice>

<xsd:element name="option1" type="xsd:string"/>
<xsd:element name="option2" type="xsd:string"/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Since the multiple occurrences of option1 and option2 are contained in different
choice blocks and even have a separating element between them, XSD and XML
have no problem distinguishing between them. But when SDO flattens these
groups, all the option properties are now under the same container of
MultipleGroup.

Even without duplicate names, there is also the semantic issue that the flattening
of these groups cause. Take the following XSD for example:

180 Developing and deploying

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://SimpleChoice">
<xsd:complexType name="SimpleChoice">

<xsd:sequence>
<xsd:choice>

<xsd:element name="option1" type="xsd:string"/>
<xsd:element name="option2" type="xsd:string"/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Asking the user to rename duplicate names or add special annotations to XSDs is
impractical because in many cases, like standards and industry schemas, the user
does not control the XSDs they are working with.

To create consistency for all properties, business objects include a method to access
each individual occurrence of the duplicate named properties through XPath.
Following the business object framework naming convention, any duplicate
property names encountered have the next unused digit appended to their name
So for example, the following XSD:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://TieredGroup">
<xsd:complexType name="TieredGroup">

<xsd:sequence>
<xsd:choice minOccurs="0">

<xsd:sequence>
<xsd:element name="low" minOccurs="1"

maxOccurs="1" type="xsd:string"/>
<xsd:choice minOccurs="0">

<xsd:element name="width" minOccurs="0"
maxOccurs="1" type="xsd:string"/>

<xsd:element name="high" minOccurs="0"
maxOccurs="1" type="xsd:string"/>

</xsd:choice>
</xsd:sequence>
<xsd:element name="high" minOccurs="1"

maxOccurs="1" type="xsd:string"/>
<xsd:sequence>

<xsd:element name="width" minOccurs="1"
maxOccurs="1" type="xsd:string"/>

<xsd:element name="high" minOccurs="0"
maxOccurs="1" type="xsd:string"/>

</xsd:sequence>
<xsd:sequence>

<xsd:element name="center" minOccurs="1"
maxOccurs="1" type="xsd:string"/>

<xsd:element name="width" minOccurs="0"
maxOccurs="1" type="xsd:string"/>

</xsd:sequence>
</xsd:choice>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

The preceding XSD produces the following DataObject model:
DataObject - TieredGroup
Property[0] - low - string
Property[1] - width - string
Property[2] - high - string
Property[3] - high1 - string

Programming guides and techniques 181

Property[4] - width1 - string
Property[5] - high2 - string
Property[6] - center - string
Property[7] - width2 - string

Where width, width1, and width2 are the names of the properties named width
starting from the first one in the XSD going down, likewise with high, high1,
high2.

These new property names are just the names used for reference and XPath and do
not affect serialized content. The "true" names of each of these properties that
appear in the serialized XML are the values given in the XSD. So for the XML
instance:
<?xml version="1.0" encoding="UTF-8"?>
<p:TieredGroup xsi:type="p:TieredGroup"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://TieredGroup">

<width>foo</width>
<high>bar</high>

</p:TieredGroup>

In order to access those properties you would use the following code:
DataObject tieredGroup = ...

// Displays "foo"
System.out.println(tieredGroup.get("width1"));

// Displays "bar"
System.out.println(tieredGroup.get("high2"));

Differentiating identically named properties
When multiple XSDs with the same namespace define the same named types, an
incorrect type can be accidentally referenced.

Address1.xsd:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="Address">
<xsd:sequence>

<xsd:element minOccurs="0" name="city" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Address2.xsd:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="Address">
<xsd:sequence>

<xsd:element minOccurs="0" name="state" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Business objects do not support duplicate names for any global XSD structures
(such as complexType, simpleType, element, attribute, and so on) through the
BOFactory.create() APIs. These duplicate global structures can still be created as the
child to other structures if the proper APIs are used, as shown in the following
examples

Customer1.xsd:

182 Developing and deploying

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://Customer1"
targetNamespace="http://Customer1">
<xsd:import schemaLocation="./Address1.xsd"/>
<xsd:complexType name="Customer">

<xsd:sequence>
<xsd:element minOccurs="0" name="address" type="Address"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Customer2.xsd:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://Customer2"
targetNamespace="http://Customer2">
<xsd:import schemaLocation="./Address2.xsd"/>
<xsd:complexType name="Customer">

<xsd:sequence>
<xsd:element minOccurs="0" name="address" type="Address"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

When populating both of the Customer address fields and then calling
BOFactory.create() to make the Address, the resulting child business object types
can be incorrectly set. You can avoid this by calling the createDataObject("address")
API on the Customer DataObject. This will be guaranteed to produce a child of the
correct type because business objects will follow the import's schemaLocation.
DataObject customer1 = ...

// Incorrect way to create Address child
// This may create a type of Address1.xsd Address or maybe Address2.xsd Address
DataObject incorrect = boFactory.create("", "Address");
customer1.set("address", incorrect);

// Correct way to create Address child
// This is guaranteed to create a type of Address1.xsd Address
customer1.createDataObject("address");

Resolving property names that contain periods
Property names in an XSD may contain a period (".") as one of many valid
characters, while in a SDO they are also used to show indexing in a property of
multiple cardinality. This may cause resolution problems in certain situations.

Property names in Service Data Objects (SDOs) are based on the names of the
elements and attribute that are generated from in the XSD. Business objects will
handle the "." character properly, with one exception: if an XSD has a single
cardinality property named "<name>.<#>" and a multiple cardinality property
named "<name>".

An XPath such as "foo.0" would not resolve properly if there is a single cardinality
property named "foo.0" and multiple cardinality property named "foo". In this case,
the single cardinality Property named "foo.0" would be the one resolved. Although
this should be a rare occurrence, you can avoid it entirely if you use the "foo[1]"
syntax to access their multiple cardinality property. SDOs will not support the "."
syntax for indexing, so you should use the "[]" for indexing.

Serializing and deserializing unions with xsi:type:

Programming guides and techniques 183

In XSD, a union is a way to merge the lexical spaces of several simple datatypes
known as members.

The following example XSD shows a union that has the members of an integer and
a date.
<xsd:simpleType name="integerOrDate">
<xsd:union memberTypes="xsd:integer xsd:date"/>
</xsd:simpleType>

This multiple typing can cause confusion during deserialization and when
manipulating the data.

Business objects support SDO's using xsi:type for serialization and will follow the
same algorithm for determining the type on a deserialization if the xsi:type is not
present in the XML data.

So to guarantee that the data (the number "42" in this example) would be
deserialized as an integer, you can use the xsi:type specified in the input XML. You
can also order the member list of the union in the XSD so that the integer comes
before the string. The following example shows how both methods are
implemented:
<integerOrString xsi:type="xsd:integer">42</integerOrString>

<xsd:simpleType name="integerOrString">
<xsd:union memberTypes="xsd:integer xsd:string"/>
</xsd:simpleType>

Likewise, if the user wanted the data to be deserialized as a string, then either of
the following changes would cause that behavior:
<integerOrString xsi:type="xsd:string">42</integerOrString>

<xsd:simpleType name="integerOrString">
<xsd:union memberTypes="xsd:string xsd:integer"/>
</xsd:simpleType>

Note that if a string type is the first member of the union, it never has any
information loss. It can also hold any data that will always be chosen by the no
xsi:type algorithm. If you want to use a type other than string, you must either use
xsi:type in the XML or reorder the member types in the XSD to give the other
members a chance to accept the data.

Support for null business objects
This scenario involves an outside system communicating with WebSphere Process
Server through XML wrapped inside of a SOAP message. When the enclosed
element is nillible and has xsi:nil="true", then the resulting DataObject which is
created in WebSphere Process Server is null.

Here is an example which illustrates an XML message with a nillible element.
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope">
<soap:Body>
<p:Employee xmlns:p="http://www.mycompany.com" xmlns:xsi="http://www.w3.org"
xsi:nil="true"/>

</soap:Body>
</soap:Envelope>

Where Employee is defined as:

184 Developing and deploying

<element name="Employee" nillable="true">
...
</element>

The business object that is generated and sent from the export is null in this case.
For example, if any downstream components have operations invoked on them,
the input to that operation is null.

Note: These objects cannot be passed into business object maps because business
object maps are unable to map fields from a null object.

Using the Sequence object to set data order
Some XSDs are defined in a way that makes the order that the data occurs in the
XML have special significance.

One example of order significance in XSDs is mixed content. If the text data
appears before or after an element, it may have different meaning than if it occurs
in a different location. For these situations, SDO generates an object known as a
Sequence, which is used to set the data in an ordered fashion.

SDO Sequences should not be confused with XSD sequences. XSD sequences are
just model groups that are flattened out before SDO model generation. The
presence of an XSD sequence does not relate to the presence of an SDO Sequence.

The following conditions in an XSD cause an SDO Sequence to be generated:

A complexType with mixed content:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://MixedContent"
targetNamespace="http://MixedContent">
<xsd:complexType name="MixedContent" mixed="true">

<xsd:sequence>
<xsd:element name="element1" type="xsd:string" minOccurs="0"/>
<xsd:element name="element2" type="xsd:string" minOccurs="0"/>
<xsd:element name="element3" type="xsd:string" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="MixedContent" type="tns:MixedContent"/>

</xsd:schema>

A schema that has 1 or more <any/> tags:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://AnyElemAny"
targetNamespace="http://AnyElemAny">
<xsd:complexType name="AnyElemAny">

<xsd:sequence>
<xsd:any/>
<xsd:element name="marker1" type="xsd:string"/>
<xsd:any/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

A model group array (an all, choice, sequence, or group reference with
maxOccurs > 1):
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://ModelGroupArray">

Programming guides and techniques 185

<xsd:complexType name="ModelGroupArray">
<xsd:sequence maxOccurs="3">

<xsd:element name="element1" type="xsd:string"/>
<xsd:element name="element2" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

An <all/> tag of maxOccurs <= 1 that contains more than one element:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://All">
<xsd:complexType name="All">

<xsd:all>
<xsd:element name="element1" type="xsd:string"/>
<xsd:element name="element2" type="xsd:string"/>

</xsd:all>
</xsd:complexType>

</xsd:schema>

Specific information about using <any/> and sequence together will be discussed
in the topic listed at the bottom of this page.. The general information that follows
in the remainder of this section will describe how to work with the other Sequence
conditions, but will still apply to <any/> as well.

How do I know if my DataObject has a sequence?:

There are two simple APIs to choose from that can determine if a DataObject is
sequenced: DataObject noSequence and DataObject withSequence.

You would use DataObject noSequence and DataObject withSequence as shown in
the following example:
DataObject noSequence = ...
DataObject withSequence = ...

// Displays false
System.out.println(noSequence.getType().isSequenced());

// Displays true
System.out.println(withSequence.getType().isSequenced());

// Displays true
System.out.println(noSequence.getSequence() == null);

// Displays false
System.out.println(withSequence.getSequence() == null);

Why do I need to know a DataObject has a Sequence?:

If you are working on a DataObject that has a Sequence, it is important to know
the order in which the data is set. Because of this, care must be taken in the order
in which the values are set.

A DataObject that is not sequenced allows random order set access. This functions
like a Map where all the keys are set to the same values. It does not matter in
what order the keys were set, the data in the map is the same, and would be
serialized to XML identically.

When a DataObject is sequenced, the order in which the data was set is recorded
in the Sequence, much like adding data to a List. This provides two ways to access
the data, by name/value pairs (the DataObject APIs) and by order in which it was

186 Developing and deploying

set (the Sequence APIs). You can use the DataObject set(...) or Sequence add(...)
APIs to preserve the structure. This ordering affects the way that the XML is
serialized.

Take for example, the <all/> tag XSD. When the set methods are called in the
following order it produces the following XML when serialized:
DataObject all = ...
all.set("element1", "foo");
all.set("element2", "bar");

<?xml version="1.0" encoding="UTF-8"?>
<p:All xsi:type="p:All"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:p="http://All">
<element1>foo</element1>
<element2>bar</element2>

</p:All>

If instead, the set methods are called in the opposite order, then the following XML
is produced when the business object is serialized:
DataObject all = ...
all.set("element2", "bar");
all.set("element1", "foo");

<?xml version="1.0" encoding="UTF-8"?>
<p:All xsi:type="p:All"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:p="http://All">
<element2>bar</element2>
<element1>foo</element1>

</p:All>

If the order of the Sequence is ever changed, then the Sequence class has basic add,
remove, and move methods to allow the user to alter the order of Sequence.

How do I work with mixed content?:

For mixed content, Sequence has a specific API for adding text: addText(...).

All other APIs work equally with text as they do with Properties. The
getProperty(int) API will return null for mixed content text data. The following
example of mixed content code can be used to print all the mixed content text
from a DataObject:
DataObject mixedContent = ...
Sequence seq = mixedContent.getSequence();

for (int i=0; i < seq.size(); i++)
{

Property prop = seq.getProperty(i);
Object value = seq.getValue(i);

if (prop == null)
{

System.out.println("Found mixed content text: "+value);
}
else
{

System.out.println("Found Property "+prop.getName()+": "+value);
}

}

How do I work with a model group array?:

Programming guides and techniques 187

A model group array is created when a model group has a value for maxOccurs >
1.

Since model groups are flattened and not expressed in a DataObject, the properties
inside of the model group become multiple cardinality properties so that their
isMany() methods return true if they are not already true. Their minOccurs and
maxOccurs facets become multiplied by that of the containing model group.
Choice will multiply the maxOccurs facet in the same way as the other model
groups, but will always use 0 as the multiplication value for minOccurs because
any data in a choice may not be selected.

For example, the following XSD has a model group array:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://ModelGroupArray">
<xsd:complexType name="ModelGroupArray">

<xsd:sequence minOccurs="2" maxOccurs="5">
<xsd:element name="element1" type="xsd:string"/>
<xsd:element name="element2" type="xsd:string"

minOccurs="0" maxOccurs="3"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

As stated, element1 and element2 will now be multiple cardinality so that a get(...)
accessor would return a List. Element1 has a default minOccurs of 1 and a default
maxOccurs of 1. Element2 has a minOccurs of 0 and a maxOccurs of 3. In the
following example, their new minOccurs and maxOccurs will be as follows:
DataObject - ModelGroupArray
Property[0] - element1 - minOccurs=(2*1)=2 - maxOccurs=(5*1)=5
Property[1] - element2 - minOccurs=(2*0)=0 - maxOccurs=(5*3)=15

If the type were Choice:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://ModelGroupArray">
<xsd:complexType name="ModelGroupArray">

<xsd:choice minOccurs="2" maxOccurs="5">
<xsd:element name="element1" type="xsd:string"/>
<xsd:element name="element2" type="xsd:string"

minOccurs="0" maxOccurs="3"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Would generate the following minOccurs due to the exclusion of choice that only
element1 can be picked each time or only element2 could be picked each time, so
to pass validation both need to be able to have 0 occurrences:
DataObject - ModelGroupArray
Property[0] - element1 - minOccurs=(0*1)=0 - maxOccurs=(5*1)=5
Property[1] - element2 - minOccurs=(0*0)=0 - maxOccurs=(5*3)=15

Using Any data types
This section provides programming techniques for using Any data types.

Using AnySimpleType for simple types:

AnySimpleType is handled no differently from any other simple type (string, int,
boolean, and so on) by the SDO APIs.

188 Developing and deploying

The only differences between anySimpleType and the other simple types are in its
instance data and serialization/deserialization. These should be internal concepts
to business object only, and used to determine if data being mapped to or from the
field is valid. If a string type were to have a set(...) method called on it, the data
would first be converted to a string and the original data type would be lost:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://StringType">
<xsd:complexType name="StringType">

<xsd:sequence>
<xsd:element name="foo" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

DataObject stringType = ...

// Set the data to a String
stringType.set("foo", "bar");

// The instance data will always be type String, regardless of the data set
// Displays "java.lang.String"
System.out.println(stringType.get("foo").getClass().getName());

// Set the data to an Integer
stringType.set("foo", new Integer(42));

// The instance data will always be type String, regardless of the data set
// Displays "java.lang.String"
System.out.println(stringType.get("foo").getClass().getName());

An anySimpleType instead does not loose the original data type of what is being
set:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://AnySimpleType">
<xsd:complexType name="AnySimpleType">

<xsd:sequence>
<xsd:element name="foo" type="xsd:anySimpleType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

DataObject anySimpleType = ...

// Set the data to a String
stringType.set("foo", "bar");

// The instance data will always be of the type of date used in the set
// Displays "java.lang.String"
System.out.println(stringType.get("foo").getClass().getName());

// Set the data to an Integer
stringType.set("foo", new Integer(42));

// The instance data will always be of the type of date used in the set
// Displays "java.lang.Integer"
System.out.println(stringType.get("foo").getClass().getName());

This data type is also preserved across serialization and deserialization by xsi:type.
Consequently, any time you serialize an anySimpleType element, it will have an
xsi:type that matches that defined in the SDO specification based on its Java type:

Programming guides and techniques 189

In the following example, you serialize the business object above so that the data
would look like this:
<?xml version="1.0" encoding="UTF-8"?>
<p:StringType xsi:type="p:StringType"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:p="http://StringType">
<foo xsi:type="xsd:int">42</foo>

<p:StringType></p:StringType>

The xsi:type will be used during deserialization to load the data as the appropriate
Java instance class. If no xsi:type is specified, then the default deserialization type
will be string.

For the other simple types, determining mappability is a constant. For instance, A
boolean can always map to a string. AnySimpleType can contain any of the simple
types, however, so a mapping may or may not be possible based on the instance
data in the field.

Use the property Type's URI and Name to determine if a property is of type
anySimpleType. They will be "commonj.sdo" and "Object". To determine if data is
valid to be inserted into anySimpleType, check to see if it is not an instance of a
DataObject. All data that can be represented as a String and is not a DataObject is
allowed to be set into an anySimpleType field.

This leads to the following mapping rules:
v anySimpleType can always map to anySimpleType.
v any other simple type can always map to anySimpleType.
v anySimpleType can always map to string because all simple types must be able

to be converted into a string.
v anySimpleType may or may not be able to map to any of the other simple types

depending on its value in the business object. This means that this mapping
cannot be determined at design time, only at runtime.

Related information

Assigning from and to xs:any

Using AnyType for complex types:

The anyType tag is not handled differently from any other complex type by the
SDO APIs.

The only differences between anyType and any other complex types are in its
instance data and serialization/deserialization, which should be internal concepts
to business object only, and determining if data being mapped to or from the field
is valid.Complex types are limited to a single type: Customer, Address, and so on.
The anyType, however, allows any DataObject regardless of type. If maxOccurs >
1, then each DataObject in the list can of a different type.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://AnyType">
<xsd:complexType name="AnyType">

<xsd:sequence>
<xsd:element name="person" type="xsd:anyType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

190 Developing and deploying

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=welcome_infocenter

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://Customer">
<xsd:complexType name="Customer">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://Employee" targetNamespace="http://Employee">
<xsd:complexType name="Employee">

<xsd:sequence>
<xsd:element name="id" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

DataObject anyType = ...
DataObject customer = ...
DataObject employee = ...

// Set the person to a Customer
anyType.set("person", customer);

// The instance data will be a Customer
// Displays "Customer"
System.out.println(anyType.getDataObject("person").getName());

// Set the person to an Employee
anyType.set("person", employee);

// The instance data will be an Employee
// Displays "Employee"
System.out.println(anyType.getDataObject("person").getName());

Just like anySimpleType, anyType uses xsi:type during serialization to assure that
the intended type of DataObject is maintained when deserialized. So when you set
to "Customer," the XML would look like:
<?xml version="1.0" encoding="UTF-8"?>
<p:AnyType xsi:type="p:AnyType"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:customer="http://Customer"
xmlns:p="http://AnyType">

<person xsi:type="customer:Customer">
<name>foo</name>

</person>
</p:AnyType>

And when set to "Employee":
<?xml version="1.0" encoding="UTF-8"?>
<p:AnyType xsi:type="p:AnyType"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:employee="http://Employee"
xmlns:p="http://AnyType">

<person xsi:type="employee:Employee">
<id>foo</id>

</person>
</p:AnyType>

AnyType also allows for the setting of simple type values through wrapper
DataObjects. These wrapper DataObjects have a single property named "value"

Programming guides and techniques 191

(element) that holds the simple type value. The SDO APIs have been overridden to
automatically wrap and unwrap these simple types and wrapper DataObjects
when using the get<Type>/set<Type> APIs. The non-type casting get/set APIs will
not perform this wrapping.
DataObject anyType = ...

// Calling a set<Type> API on an anyType Property causes automatic
// creation of a wrapper DataObject
anyType.setString("person", "foo");

// The regular get/set APIs are not overridden, so they will return
// the wrapper DataObject
DataObject wrapped = anyType.get("person");

// The wrapped DataObject will have the "value" Property
// Displays "foo"
System.out.println(wrapped.getString("value"));

// The get<Type> API will automatically unwrap the DataObject
// Displays "foo"
System.out.println(anyType.getString("person"));

When the wrapper DataObject is serialized, it will be serialized just like
anySimpleType mapping of Java instance classes to XSD types in the xsi:type field.
So this setting would serialize as:
<?xml version="1.0" encoding="UTF-8"?>
<p:AnyType xsi:type="p:AnyType"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd=" http://www.w3.org/2001/XMLSchema"
xmlns:p="http://AnyType">
<person xsi:type="xsd:string">foo</person>

</p:AnyType>

If no xsi:type is given or if an incorrect xsi:type is given, then an exception will be
thrown. In addition to automatic wrapping, the wrapper can be manually created
for use with the set() API through BOFactory createDataTypeWrapper(Type, Object)
where Type is the SDO simple type of the data to be wrapped and Object is the
data to be wrapped.
Type stringType = boType.getType("http://www.w3.org/2001/XMLSchema", "string");
DataObject stringType = boFactory.createByMessage(stringType, "foo");

To determine if a DataObject is a wrapper type, the BOType
isDataTypeWrapper(Type) can be called.
DataObject stringType = ...
boolean isWrapper = boType.isDataTypeWrapper(stringType.getType());

For the other complex types, in order to move data from one field to another, the
data must be of the same type. AnyType can contain any complex types, however,
so a direct move with no mapping may or may not be possible based on the
instance data in the field.

You can use the property Type's URI and Name to determine if a property is of
type anyType. They will be "commonj.sdo" and "DataObject". All data is valid to be
inserted into an anyType. This leads to the following mapping rules:
v anyType can always map to anyType.
v any complex type can always map to anyType.
v any simple type can always map to anyType.

192 Developing and deploying

v anyType may or may not be able to map to any of the other simple or complex
types depending on its value in the BO instance. This means that this mapping
cannot be determined at design time, only at runtime.

Using Any to set global elements for complex types:

You can use the <any/> tag to set global elements to a complex type.

An occurrence of the any tag makes the DataObject Type isOpen() method and the
isSequenced() method return true. If the value for maxOccurs is > 1 on an any tag,
it has no effect on the structure of the DataObject; it is only used as information
during validation. Similarly, the occurrence of multiple any tags in a type does not
change the structure of the DataObject; they are used only for validating the
location of open data that was set.

How do I know if my DataObject has an any tag?:

You can easily determine if instances of a DataObject have any values set within
them by checking the instance properties to see if any of the open properties are
attributes.

DataObject does not provide a mechanism for determining if a DataObject Type
has an any tag. DataObjects only have the concept of "open" that applies to both
any and anyAttribute and allows the free additional of any properties. While the
presence of an any tag causes a DataObject to have isOpen() = true and
isSequenced() = true, it might just have an anyAttribute tag and one of the reasons
for being sequenced discussed in the Sequences topics. The following example
demonstrates these concepts:
DataObject dobj = ...

// Check to see if the type is open, if it isn’t then it can’t have
// any values set in it.
boolean isOpen = dobj.getType().isOpen();

if (!isOpen) return false; // Does not have any values set

// Open Properties are added to the Instance Property list, but not
// the Property list, so comparing their sizes can easily determine
// if any open data is set
int instancePropertyCount = dobj.getInstanceProperties().size();
int definedPropertyCount = dobj.getType().getProperties().size();

// If equal, does not have any open content set
if (instancePropertyCount == definedPropertyCount) return false;

// Check the open content Properties to determine if any are Elements
for (int i=definedPropertyCount; i < instancePropertyCount; i++)
{

Property prop = (Property)dobj.getInstanceProperties().get(i);
if (boXsdHelper.isElement(prop))
{

return true; // Found an any value
}

}

return false; // Does not have any values set

How do I get/set any values?:

Performing a get on data that was set in an any field can be done in the same
manner as any other element value if the name is known.

Programming guides and techniques 193

You can perform a get with the XPath "<name>" and it will be resolved. If the
name is unknown, then the value can be found by checking the instance properties
as in above. If there are multiple any tags, or an any tag with maxOccurs > 1, then
the DataObject sequence will have to be used instead if it is important to
determine which any tag the data originated from.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://AnyElemAny"
targetNamespace="http://AnyElemAny">
<xsd:complexType name="AnyElemAny">

<xsd:sequence>
<!-- Handle all these any one way -->
<xsd:any maxOccurs="3"/>
<xsd:element name="marker1" type="xsd:string"/>
<!-- Handle this any in another -->
<xsd:any/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Because the <any/> tag causes the DataObject to be sequenced determining which
any value was set can be done by checking the Sequence for the position of the
any properties.

You can determine which any tag the instance data for the following XSD belongs
to by using the following code:
DataObject anyElemAny = ...
Seqeuence seq = anyElemAny.getSequence();

// Until we encounter the marker1 element, all the open data
// found belongs to the first any tag
boolean foundMarker1 = false;

for (int i=0; i<seq.size(); i++)
{

Property prop = seq.getProperty(i);

// Check to see if the property is an open property
if (prop.isOpenContent())
{

if (!foundMarker1)
{

// Must be the first any because it occurs
// before the marker1 element
System.out.println("Found first any data: "+seq.getValue(i));

}
else
{

// Must be the second any because it occurs
// after the marker1 element
System.out.println("Found second any data: "+seq.getValue(i));

}
}
else
{

// Must be the marker1 element
System.out.println("Found marker1 data: "+seq.getValue(i));
foundMarker1 = true;

}
}

Setting an <any/> value is done by creating a global element property and adding
that value to the sequence.

194 Developing and deploying

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://GlobalElems"
targetNamespace="http://GlobalElems">
<xsd:element name="globalElement1" type="xsd:string"/>
<xsd:element name="globalElement2" type="xsd:string"/>

</xsd:schema>

DataObject anyElemAny = ...
Seqeuence seq = anyElemAny.getSequence();

// Get the global element Property for globalElement1
Property globalProp1 = boXsdHelper.getGlobalProperty(http://GlobalElems,
"globalElement1", true);

// Get the global element Property for globalElement2
Property globalProp2 = boXsdHelper.getGlobalProperty(http://GlobalElems,
"globalElement2", true);

// Add the data to the sequence for the first any
seq.add(globalProp1, "foo");
seq.add(globalProp1, "bar");

// Add the data for the marker1
seq.add("marker1", "separator"); // or anyElemAny.set("marker1", "separator")

// Add the data to the sequence for the second any
seq.add(globalProp2, "baz");

// The data can now be accessed by a get call
System.out.println(dobj.get("globalElement1"); // Displays "[foo, bar]"
System.out.println(dobj.get("marker1"); // Displays "separator"
System.out.println(dobj.get("globalElement2"); // Displays "baz"

What are valid mappings for data in an any?:

An <any/> tag is a set of name/value pairs. The only valid mapping that can be
determined at design time for <any/> is another <any/> or anyType that has the
same maxOccurs value.

Individually, the values contained in an instance of a DataObject for any are basic
complex types that follow all the rules of complex type mapping. Some of these
complex types may be wrapped simple types, so these will follow the rules of
simple type mapping.

Using AnyAttribute to set global attributes for complex types:

The <anyAttribute/> tag allows a complex type to have any number of global
attributes set to it.

Similar to the <any/> tag, the occurrence of the <anyAttribute/> tag makes the
DataObject Type isOpen() method return true. Unlike the <any/> tag, however, the
<anyAttribute/> tag does not cause a DataObject to be sequenced because
attributes in XSD are not ordered constructs.

How do I tell if my DataObject has an anyAttribute tag?:

You can easily determine if instances of a DataObject have anyAttribute values set
within them by checking the instance properties to see if any of the open
properties are attributes.

Programming guides and techniques 195

DataObject does not provide a mechanism for determining if a DataObject Type
has an anyAttribute tag. DataObjects only have the concept of "open" that applies
to both any and <anyAttribute/> and allows the free additional of any Properties.
While it is true that if a DataObject has isOpen() = true and isSequenced() = false,
then it must have an anyAttribute tag, if isOpen() = true and isSequenced() = true,
the DataObject Type might or might not have an anyAttribute tag.

DataObject provides metadata query methods to programmatically answer this and
other questions about the XSD structure that was used to generate the DataObject.
The InfoSet model can be queried if it is necessary to know if the anyAttribute tag
is present. Because anyAttribute is singular and either is or is not true, business
objects will also provide a BOXSDHelper hasAnyAttribute(Type) method to allow
determination as to if setting an open attribute on this DataObject would produce
a valid result. The following example code demonstrates these concepts:
DataObject dobj = ...

// Check to see if the type is open, if it isn’t then it can’t have
// anyAttribute values set in it.
boolean isOpen = dobj.getType().isOpen();

if (!isOpen) return false; // Does not have anyAttribute values set

// Open Properties are added to the Instance Property list, but not
// the Property list, so comparing their sizes can easily determine
// if any open data is set
int instancePropertyCount = dobj.getInstanceProperties().size();
int definedPropertyCount = dobj.getType().getProperties().size();

// If equal, does not have any open content set
if (instancePropertyCount == definedPropertyCount) return false;

// Check the open content Properties to determine if any are Attributes
for (int i=definedPropertyCount; i<instancePropertyCount; i++)
{

Property prop = (Property)dobj.getInstanceProperties().get(i);
if (boXsdHelper.isAttribute(prop))
{

return true; // Found an anyAttribute value
}

}

return false; // Does not have anyAttribute values set

How do I get/set anyAttribute values?:

Setting an <anyAttribute/> value is done in the same way as setting an <any/>,
but instead of a global element a global attribute is used.

Performing a get on data that was set in an anyAttribute field can be done in the
same manner as any other attribute value if the name is known. You can perform a
get with the XPath "@<name>" and it will be resolved. If the name is unknown,
using the above code the values can be iterated and accessed one by one. The
example code below shows this:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://AnyAttrOnlyMixed"
targetNamespace="http://AnyAttrOnly">
<xsd:complexType name="AnyAttrOnly">

<xsd:sequence>
<xsd:element name="element" type="xsd:string"/>

</xsd:sequence>
<xsd:anyAttribute/>

196 Developing and deploying

</xsd:complexType>
</xsd:schema>

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://GlobalAttrs">
<xsd:attribute name="globalAttribute" type="xsd:string"/>

</xsd:schema>

DataObject dobj = ...

// Get the global attribute Property that is going to be set
Property globalProp = boXsdHelper.getGlobalProperty(http://GlobalAttrs,
"globalAttribute", false);

// Set the value on the dobj, just like any other data
dobj.set(globalProp, "foo");

// The data can now be accessed by a get call
System.out.println(dobj.get("@globalAttribute")); // Displays "foo"

What are valid mappings for data in an anyAttribute?:

The AnyAttribute tag is similar to the any tag, and is a set of name/value pairs.
Consequently, the only valid mapping for anyAttribute is another anyAttribute.

Individually, the values contained in the anyAttribute data are basic simple types
that follow all the rules of simple type mapping

Business rule management programming
Public business rule management classes are provided for the building of custom
management clients or to automate changes to business rules.

Business rules management classes could be used in a Web application where they
are combined with other management capabilities for things such as business
process or human tasks in order to manage all components from a single client.
Any custom management clients can be used along side the Business Rule
Manager Web application included with WebSphere Process Server. The classes
could also be used to automate changes to business rules within an application.
For example business rules could be changed as the results of a business process
that is using the business rules exceeds some threshold or limit.

The business rule management classes must be used in an application installed on
WebSphere Process Server. The classes do not provide a remote interface, however
they can be wrapped in a facade which is then exposed over a specific protocol for
remote execution.

Programming guides and techniques 197

Business Console

Facade

Custom Business
Rules Management
Client

Business Rules
Ruletime

Business Rule
Manager

Remote
Client

Custom Business
Rules Management
Client

Query,
Modify,
Publish

Query,
Modify,
Publish

This programming guide is composed of two main sections and an appendix. The
first section explains the programming model and how to use the different classes.
Class diagrams are provided to show the relationship between classes. The second
section provides examples on using the classes to perform actions such as
searching for business rule groups, scheduling a new rule destination, and
modifying a rule set or decision table. The appendix contains additional classes
that were used in the examples to simplify common operations and additional
examples of creating complex queries for searching for business rule groups using
wildcards.

Besides this programming guide information on the classes is also available in
Javadoc HTML format included with both the WebSphere Process Server v6.1 and
test environment included with WebSphere Integration Developer v6.1. This
Javadoc documentation is available at ${WebSphere Process Server Install
Directory}\web\apidocs or ${WebSphere Integration Developer Install
Directory}\runtimes\bi_v61\web\apidocs. The packages
com.ibm.wbiserver.brules.mgmt.* contain all of the information.

Programming model
WebSphere Business Integration Business Rules are authored with two different
authoring tools and issued by the rule runtime. All three share the same model for
the business rule artifacts.

Sharing of the model was deemed critical for not only ease of future maintenance,
but for a consistent programming model for the end user. Sharing this model
required compromises between the needs of desktop tooling and runtime execution
and authoring -- all have clear sets of requirements to meet for their respective
environments and these requirements at times conflicted with each other. The
artifacts described below as part of the overall programming model represent a
balance in meeting the requirements of these different environments.

Modification of business rules is limited to only those items that are defined with
templates in the rule sets and decision tables as well as the operation selection
table (effective dates and targets). Creation of new rule sets and decision tables is
only supported through the copy of an existing rule set or decision table. The
business rule group component itself is not eligible for dynamic authoring in the

198 Developing and deploying

runtime with the exception of the user defined properties and description values.
Changes that need to be made to the component (for example, adding a new
operation) must be done using WebSphere Integration Developer and then
redeployed or reinstalled in the server.

Business Rule Group
The BusinessRuleGroup class represents the business rule group component. The
BusinessRuleGroup class can be considered the root object which contains rule sets
and decision tables.

Rule sets and decision tables can only be reached through the business rule group
that they are associated with. Methods are provided on the class to retrieve
information about the business rule group and to reach the rule sets and decision
tables. Through the methods the following information can be retrieved:
v Target name space
v Name of business rule group
v Display name
v Name/Display name synchronization
v Description
v Presentation time zone which indicates whether dates should be displayed in

UTC format or local to the system
v Operations defined in the interface associated with the business rule group
v Custom properties defined on the business rule group

The different rule sets and decision tables associated with the business rule group
can be reached through the business rule group's operation.

There are also methods that allow for information to be updated on the business
rule group. Through the methods, the following information can be updated:
v Description
v Display name
v Name/Display name synchronization
v Custom properties defined on the business rule group

The Display name for the business rule group can be set explicitly or it can be set
to the value of the Name using the setDisplayNameIsSynchronizedToName
method.

Other values cannot be modified as these are part of the business rule group
component definition and changes to these values would require a redeploy as
well as reinstallation.

The business rule group class also provides a refresh method. This method will
make a call to the persistent storage or repository where the business rules are
stored and return the business rule group and all of the associated rule sets and
decision tables with the persisted information. The returned business rule group is
the latest copy and the previous object is obsolete.

The isShell method can be used to tell if a business rule group instance is of a
version that is not supported by the current runtime. For example, if a web client
was created with the current business rule management classes, and in the future
new capabilities are added to the business rule group that are not supported by
the classes, a shell business rule group will be created when the business rule

Programming guides and techniques 199

group is retrieved. This allows the web client to continue to work with business
rules that are supported and still retrieve business rule groups with limited
attributes and capabilities. When isShell is true, only the methods getName,
getTargetNameSpace, getProperties, getPropertyValue, and getProperty will return
values. All other methods will result in an UnsupportedOperationException.
Besides using the isShell method, the type of the BusinessRuleGroup can also be
checked if it is an instance of BusinessRuleGroupShell in order to determine if it is
of a supported version.

Business Rule Group Properties
The properties on business rule groups are intended to be used for management of
business rule groups. Properties set on business rule groups can be used in queries
to return only a subset of business rule groups which are to be displayed and then
modified.

All properties are of type string and defined as name-value pairs. Each property
can only be defined once in a business rule group. For each property defined, it
must have a value also defined. The property value can be an empty string or zero
in length, but not null. Setting a property to null is the same as deleting the
property.

The properties on a business rule group can also be accessed in a rule set or
decision table at runtime. This allows a single value to be set at the business rule

Figure 59. Class diagram of BusinessRuleGroup and related classes

200 Developing and deploying

group to be used within multiple rule sets or decision tables in the business rule
group. Only those properties defined on the business rule group are available to
enclosed rule sets and decision tables.

There are two types of properties, system and user-defined. The number of system
or user-defined properties is not limited on a business rule group. The system
properties are used to hold specific component information such as the version of
the rule model used in defining the rule logic. This system information is exposed
in properties to allow for query across these fields. The system properties begin
with a prefix IBMSystem and are read-only through the business rule group and
property classes. System properties can not be added, changed or deleted. An
example of a system property is:

Property Name Property Value

IBMSystemVersion 6.2.0

Note: The values of name, namespace and display name for a business rule group
are treated as system properties for query purposes, and will be part of the list of
properties that can be retrieved for a business rule group with the getProperties
method. These properties are not however, defined as actual property elements in
the business rule group artifact and are not seen as properties in WebSphere
Integration Developer as they are defined with separate and unique elements on
the business rule group. They are solely provided to offer more query options.

User-defined properties are available to be used for holding any customer specific
information and can also be used in queries for business rule groups. User-defined
properties are available for read-write.

The properties for a business rule group can be retrieved either individually or as
a list (PropertyList object). With the PropertyList, methods are provided for
retrieving individual properties and adding and removing user-defined properties.

Programming guides and techniques 201

Operation
Operations are starting points for reaching individual rule sets and decision tables
to modify. The operations of a business rule group match the operations listed in
the WSDL which is associated with the business rule group component.

For each operation, there are different targets, each of which is a business rule (rule
set or decision table):
v Default target (optional)
v List of targets scheduled by date/time ranges (OperationSelectionRecord)
v List of all available targets that can be used for that operation

Each operation must have at least one business rule target specified. This target
can be an OperationSelectionRecord with a specific start date and end date when
the target should be scheduled to be active. The operation can also have a single
default target set which is used during execution when no matching scheduled
business rule target is found. The Operation class provides methods for retrieving
and setting the default business rule target as well as retrieving the list
(OperationSelectionRecordList) of scheduled business rule targets. Besides the
default business rule target and the scheduled business rule targets, there is a list
of all available business rule targets for the operation. This list will include those
business rules targets which are scheduled and the default business rule target as

Figure 60. Class diagram of Property and related classes

202 Developing and deploying

well as any other rule sets or decision tables which are not scheduled for this
operation. An unscheduled rule set or decision table is associated with the
operation through the available target list by the fact that it implicitly shares the
operation information. All business rule targets must support the input and output
messages for their operation. With each operation unique on an interface, the rule
sets and decision tables for an operation are unique from those rule sets and
decision tables of another operation.

Any of the different rule sets and decision tables in the available targets list can be
scheduled to be active through the creation of an OperationSelectionRecord. Along
with the particular rule set or decision table from the available targets list, a start
date and end date must be specified. The start date must be before the end date.
The dates can be for a time which covers the current date as well as the past and
the future. The time span of the dates cannot overlap with any other
OperationSelectionRecords once it is added to the OperationSelectionRecordList
and published. The start date and end date values are of type java.util.Date. Any
values which are specified will be treated as UTC values according to the
java.util.Date class. With the OperationSelectionRecord complete, it can be added
to the OperationSelectionRecordList to be scheduled along with other business rule
targets. Gaps may exist between the time spans of different
OperationSelectionRecords. When a gap is encountered during execution, the
default target is used. If no default target has been specified, an exception will be
thrown. It is recommended to always specify a default business rule target.

A scheduled business rule target can be removed from the list of scheduled targets
by removing the OperationSelectionRecord from the OperationSelectionRecordList.
Removing an OperationSelectionRecord will not remove the business rule target
from the list of available business rule targets and it will not remove any other
OperationSelectionRecords which have the same business rule target scheduled.

Besides retrieving a rule set or decision table through the
OperationSelectionRecordList or list of available targets, the Operation class also
allows for business rule targets to be retrieved by name and target namespace
property values. Through the methods on the Operation class, those rule sets and
decision tables which are listed in the available targets for that operation can be
queried. Rule sets and decision tables which might have matching name and target
namespace values, but are part of the available target lists of other operations, will
not be included in the result set. As a convenience, the getBusinessRulesByName,
getBusinessRulesByTNS, and getBusinessRulesByTNSAndName methods are
provided to simplify retrieving specific rule sets and decision tables.

The Operation class provides methods that support the following:
v Retrieve the operation name
v Retrieve the operation description
v Retrieve and set the default business rule target
v Retrieve the scheduled business rule targets (OperationSelectionRecordList)
v Retrieve the list of all available business rule targets
v Retrieve a rule set or decision table from the list of all available targets by name

or target namespace
v Retrieve the business rule group with which the operation is associated

The OperationSelectionRecordList class provides methods that support the
following:
v Retrieve a specific OperationSelectionRecord by index value

Programming guides and techniques 203

v Remove a specific OperationSelectionRecord by index value
v Add a new OperationSelectionRecord to the list

The OperationSelectionRecord class provides methods that support the following:
v Retrieve and set the start date
v Retrieve and set the end date
v Retrieve and set the business rule target
v Retrieve the operation with which the OperationSelectionRecord is associated

Business Rule
The RuleSet and DecisionTable classes are based off a generic BusinessRule class
with methods that provide information that is available on both rule sets and
decision tables.

Similar to business rule group artifacts, rule sets and decision tables have a name
and a target namespace. The combination of these values must be unique when
compared to other rule sets and decision tables. For example, two rule sets can
share the same target namespace value, but must have different names or a rule set
and decision table could have the same name, but have different target namespace
values.

A copy of a business rule can be made from an existing business rule for situations
where a similar rule is required to be scheduled at a specific time with different

Figure 61. Class diagram for Operation and related classes

204 Developing and deploying

parameter values for rules constructed from templates. New rules cannot be fully
created from scratch as there must be a backing Java class to provide the
implementation for the business rule. The backing Java class is only created at
deploy time. When a new rule is created, it is added to the list of available targets
for the operation which is associated with the original rule. The additional rule is
not persisted however, until the business rule group with which the operation is
associated is published.

The new business rule must have either a different target namespace or name from
the original rule. The display name for the new business rule can remain the same
as the original rule as the combination of the name and namespace provide a key
value to identify the business rule. Within the business rule, the different
parameter values which have been defined with a template can be modified.
Scheduling the business rule at a certain time can be done with the
OperationSelectionRecordList or as a default destination with the Operation
associated with the business rule.

The BusinessRule class provides methods that support the following:
v Retrieve the target namespace
v Retrieve the name of the rule set or decision table
v Retrieve and set the display name of the rule set or decision table
v Retrieve the type of the business rule, either rule set or decision table
v Retrieve and set the description for the business rule
v Retrieve the operation that the business rule is associated with.
v Create a copy of the business rule with a different name and/or target

namespace

Figure 62. Class diagram of BusinessRule and related classes

Programming guides and techniques 205

Rule set
A rule set is one type of business rule. Rule sets are typically used when multiple
rules may need to be executed based on different conditional values. Rule sets are
composed of a rule block and rule templates. The rule block (RuleBlock) contains
the different if-then and action rules which make up the logic of the rule set.

The RuleSet class provides methods that support the following:
v Retrieve a list of rule blocks for the rule set
v Retrieve a list of rule templates defined in the rules set

Currently each rule set can only have one rule block, while there can be multiple
rule templates defined in the rule set. The rule block contains the set of rules that
will be executed when the rule set is invoked. The rule block allows for the order
of the rules to be modified. A rule block must have at least one rule defined. The
rules (Rule) can be defined as template instance rules (TemplateInstanceRule) or
hard-coded. If an if-then or action rule has been defined with a template, it can be
removed from the rule block. If a new instance of rule was created with a
template, it can be added to the rule block.

If a rule is hard-coded and was not defined with a template, it cannot be modified
or removed from the rule block. The expectation with these rules is that they have
been designed to always be part of the rule set logic and are not to be changed or
repeated within the logic.

When a new rule is created with a template, it must have a unique name value.
The list of existing rules can be retrieved and checked first before creating the rule.

For hard-coded if-then and action rules, only the name and presentation can be
retrieved. The presentation is a string which can be used to display information
about the rule in client applications. For if-then or action rules that are defined
with a template, the name and presentation can be retrieved as well as additional
information. Specific parameter values can be retrieved and changed. With a
template (RuleSetRuleTemplate) defined in the rule set, another instance of the rule
can be created within the rule set and parameter values can be set. For example, if
you have a rule saying that a customer of a particular status level receives a
discount of a specific amount. This logic could be defined with a single rule
template and then repeated with parameter values changed for the status level
(gold, silver, bronze, and so on) and the discount amount (15%, 10%, 5%, and so
on).

The parameters for a rule defined with a template are specific to the instance of the
rule. The template only defines a standard presentation and the number of
parameters for the rule. Each rule defined with a template can have different
values as explained in the example on discounts for different customer status.

The RuleBlock class provides methods that support the following:
v Retrieve a rule by index
v Add a rule that was defined with a template
v Remove a rule defined with a template
v Modify the order of a rule by one place or to a specific index location

The RuleSetRule class provides methods that support the following:
v Retrieve the name of the rule
v Retrieve the display name of the rule

206 Developing and deploying

v Retrieve the user presentation
v Retrieve the rule block

The RuleSetRuleTemplate class provides methods that support the following:
v Create a rule template instance from this template definition
v Retrieve the parent rule set

The TemplateInstanceRule class provides methods that support the following:
v Retrieve the parameters for the rule
v Retrieve the template definition which defined the rule

The Template class provides methods that support the following:
v Retrieve the template ID
v Retrieve the name
v Retrieve and set the display name
v Retrieve and set the description
v Retrieve the parameters for this template
v Retrieve the user presentation

Decision table
Decision tables are another type of business rule which can be managed and
modified. Decision tables are typically used when there are a consistent number of
conditions which must be evaluated and a specific set of actions to be issued when
the conditions are met.

Figure 63. Class diagram of BusinessRule and related classes

Programming guides and techniques 207

Decision tables are similar to decision trees, however they are balanced. Decision
tables always have the same number of conditions to be evaluated and actions to
be performed no matter what set of branches are resolved to true. A decision tree
may have one branch with more conditions to evaluate than another branch.

Decision tables are structured as a tree of nodes and defined by a TreeBlock. There
are different TreeNodes which make up the TreeBlock. TreeNodes can be condition
nodes or action nodes. Condition nodes are the evaluation branches. At the end of
branches, there are action nodes that have the appropriate tree actions to issue
should all of the conditions evaluate to true. There can be any number of levels of
condition nodes, but only one level of action nodes.

Decision tables might also have an initialization rule (init rule) which can be issued
before the conditions in the table are checked.

The DecisionTable class provides methods that support the following:
v Retrieve the tree block of tree nodes (condition and action nodes)
v Retrieve the init rule instance
v Retrieve the init rule template if defined

TreeBlock

Condition
Node

Condition
Node

Case
Edge

Case
Edge

Case
Edge

Case
Edge

Action
Node

Case
Edge

Case
Edge

Case
Edge

Case
Edge

Case
Edge

Condition
Node

Condition
Node

Action
Node

Action
Node

Action
Node

Action
Node

Action
Node

208 Developing and deploying

The TreeBlock of a decision table contains the different condition and action nodes.
Each condition node (ConditionNode) has a term definition
(TreeConditionTermDefinition) and one to n case edges (CaseEdge). The term
definition contains the left operand for the condition expression. The case edges
contain the value definitions which are the different right operands to be used in
the condition expression. For example, in the expression (status == “gold”) the
term definition would be “status” and “gold” would be the value definition in the
case edge. For all of the case edges in a condition node, they share the term
definition and are only different by the value (TreeConditionValueDefinition).
Continuing with the example, another case edge in the condition node could have
a value “silver”. This would be used in an expression too (status == “silver”). The
only exception to this behavior is if an otherwise has been defined for the
condition node. With an otherwise, there is no value definition as it is used if all
other case edges within the condition node evaluate to false. While an otherwise is
not a case edge, it does have a TreeNode that can be retrieved.

For the term definition, the user presentation can be retrieved and used in client
applications. The presentation for the term definition is typically only a
representation of the left operand (status in our example) and does not contain any
placeholders. For the case edges, a template can be used to define the value
definition (TreeConditionValueTemplate). A template value definition instance
(TemplateInstanceExpression) holds the parameter values which are used for
execution and can be modified. If an attempt is made to retrieve the value

Figure 64. Class diagram of DecisionTable and related classes

Condition
Node

Value
Definition

Term
Definition

Value
Definition

Value
Definition

Case Edge Case EdgeCase Edge

Programming guides and techniques 209

template definition for a TreeConditionValueDefinition that was not defined with
a template, a null value will be returned. If a template has not been used to define
the value condition, a user presentation can still be retrieved and used in client
applications if it was specified at authoring time.

The TreeBlock class provides methods that support the following:
v Retrieve the root node of the tree
v Retrieve the condition term definitions for the tree block
v Retrieve the action term definitions for the tree block

The root node of the tree is of type TreeNode and from here, navigation of the
decision table can occur. The TreeNode class provides methods that support the
following:
v Determine if a node is an otherwise clause
v Retrieve the parent node for the current tree node (condition or action node)
v Retrieve the root node of the tree containing the current tree node

The ConditionNode class provides methods that support the following:
v Retrieve the case edges
v Retrieve the term definition
v Retrieve the otherwise case
v Retrieve the templates for the value conditions of the case edges for the

condition node
v Add a condition value based on a template to the node
v Remove a condition value based on a template

The CaseEdge class provides methods that support the following:
v Retrieve the list of value templates which are available for the value definition
v Retrieve the child node (condition or action node)
v Retrieve the instance of the template definition associated with the value

definition
v Retrieve the value definition directly without retrieving the template
v Set the value for the definition to use a specific template instance definition

The TreeConditionTermDefinition class provides methods that support the
following:
v Retrieve the value definition templates defined for the condition node
v Retrieve the user presentation of the condition term

The TreeConditionDefinition class provides methods that support the following:
v Retrieve the term definition for the condition node
v Retrieve the condition value definitions for the condition node from all of the

case edges
v Retrieve the orientation (row or column)

The TreeConditionValueDefinition class provides methods that support the
following:
v Retrieve the specific template instance expression defined for the value
v Retrieve the user

210 Developing and deploying

The Template class provides methods that support the following:
v Retrieve the system ID for the template
v Retrieve the name of the template
v Retrieve the parameters defined for the template
v Retrieve the presentation for the template

The TreeConditionValueTemplate class provides a method that supports the
following:
v Create a new template condition value instance

The TemplateInstanceExpression class provides methods that support the
following:
v Retrieve the parameters for the template instance
v Retrieve the template (TreeConditionValueTemplate in the case of a case edge in

a decision table) that was used to define the instance

Programming guides and techniques 211

When a new case edge is added to a condition node, the new case edge must use a
template to define the value. For example if a new case edge of “bronze” was to be
added for checking ‘status', the appropriate template
(TreeConditionValueTemplate) would need to be used to create a new
TemplateInstanceExpression, setting the parameter value to “bronze”.

When a new case edge is added, it will also have a child condition node added to
it automatically. This child condition node will contain case edges which are based
on the case edge definitions that have been defined for condition nodes at that
same level. If templates or hard-coded values are used in case edges, they will then
be used in the child condition node's case edges as well. The child condition node
that is added automatically will also have its own child condition nodes created

Figure 65. Class diagram for TreeNode and related classes

212 Developing and deploying

automatically. These child condition nodes will also have child condition nodes
and so on until all levels of condition nodes have been re-created.

Besides the condition nodes, a decision table and more specifically tree block, also
contains a level of action nodes (ActionNode). The action nodes are leaf nodes and
reside at the end of the branch of condition nodes and the case edges. Should all of
the condition values in a line of case edges resolve to true, an action node is
reached. The action node will have at least one action (TreeAction) defined. For the
action, there will be a term definition and value definition. Just as with the
condition nodes, the term definition (TreeActionTermDefinition) is to the left of
the expression and the value definition (TemplateInstanceExpression) is to the
right side of the expression. For example, for the different condition nodes which
were checking on the status, there might be actions to define the discount. If the
condition was (status == “gold”), the action can be (discountValue = 0.90). For the
action the “discountValue” would be the term definition and the “= 0.90” would
be the value definition.

The term definition of a tree action is shared with other tree actions in other action
nodes. Since every branch of case edges reaches an action, the same term
definitions are used. The value definitions however, can be different per tree action
and action node. For example the discountValue for a status of “gold” can be
“0.90”; however the “discountValue” for a status of “silver” can be “0.95”.

Action nodes can have multiple tree actions which have a separate term definition
and separate value definition. For example, if the discount was being determined
for a rental car, besides setting the discountValue, you can also want to assign a
specific level of car. Another tree action could be created to set the “carSize” term
to “full size” if the status was “gold” as well as set the “discountValue” to “0.90”.

The value definition in a tree action can be created from a template
(TreeActionValueTemplate). The template definition contains an expression
(TemplateInstanceExpression) which has the parameters for the expression.

Besides changing the parameters, the entire value definition can be modified with
a new value definition instance which is created with another template which was
defined for the tree action.

If a value definition is not created with a template, it cannot be changed. For client
applications, the user presentation can be used in display if it was specified at
author time.

For term definitions in tree actions, if a user presentation has been specified, it can
also be used by client applications.

When a new case edge is added to a condition node and the different child
condition nodes are created, action nodes will also be created. Unlike the child
condition nodes and case edges which are created based on the definition of the
case edges already defined for that level, action nodes do not automatically inherit
an existing design. Only empty placeholder TreeActions are created in the action
node. A template (TreeActionValueTemplate) must be used to complete the action
definition by creating a TemplateInstanceExpression for at least one term
definition for the action node. Until the tree action is set with a
TemplateInstanceExpression, the tree action will have null values specified for the
user presentation value and template instance value.

Programming guides and techniques 213

When creating a new condition that results in new ActionNodes, the action nodes
will be added to the right of existing actions for the immediate parent condition
node. For example if a status of “ruby” is added to the decision table and should
have a specific discount, the condition to check the status is added at the right of
“gold”, “silver”, and “bronze”. The action node for the discount for “ruby” will be
added to the right of the action nodes that correspond to the “gold”, “silver” and
“bronze” case edges.

When setting new tree actions for action nodes, an algorithm that looks to the
rightmost action node at the lowest case edge will return the action node with an
empty tree action. The tree action can also be checked that it has null values for
the user presentation value and template instance value. Once the tree action is
obtained, it can be set with the correct instance of a TreeActionValueTemplate.

The ActionNode class provides a method that supports the following:
v Retrieve a list of the defined tree actions

The TreeAction class provides methods that support the following:
v Retrieve a list of the available value templates defined for the tree action
v Retrieve the term definition
v Retrieve the value template instance defined for the tree action
v Retrieve the user presentation for the value if a value template was not used
v Check if the action is a SCA service invocation (isValueNotApplicable method)
v Replace the value template instance with a new instance

The TreeActionTermDefinition class provides methods that support the following:
v Retrieve the user presentation for the term value definition
v Retrieve a list of the value templates available for the tree action
v Check if the action is a SCA service invocation (isTermNotApplicable method)

The Template class provides methods that support the following:
v Retrieve the system ID for the template
v Retrieve the name of the template

Action
Node

Term
Definition

Tree Action

Action
Node

Tree Action

Tree ActionTree Action

Value
Definition

Term
Definition

Value
Definition

Term
Definition

Value
Definition

Term
Definition

Value
Definition

214 Developing and deploying

v Retrieve the parameters defined for the template
v Retrieve the presentation for the template

The TreeActionValueTemplate class provides a method that supports the following:
v Create a new value template instance from the template definition

The TemplateInstanceExpression class provides methods that support the
following:
v Retrieve the parameters for the template instance
v Retrieve the template (TreeActionValueTemplate in the case of a tree action in a

decision table) which was used to define the instance

The definition of an init rule for a decision table follows the same structure as a
rule in a rule set. The init rule can be defined with a template
(DecisionTableRuleTemplate).

If an init rule was not created at authoring time, it can not be added once the rule
is deployed.

The Rule class provides methods that support the following:
v Retrieve the name of the rule
v Retrieve the user presentation for the rule
v Retrieve the user presentation for the rule with the different parameters for the

rule filled in

Figure 66. Class diagram of TreeAction and related classes

Programming guides and techniques 215

The DecisionTableRule class provides a method that supports the following:
v Retrieve the tree block containing the init rule

The DecisionTableRuleTemplate class provides a method that supports the
following:
v Retrieve the decision table containing the template

Templates and Parameters
Templates in rule sets and decision tables are based off of a common definition.
Templates have parameters and a user presentation. The template parameter values
are defined to allow for changes to be made to the rule once it has been deployed.

The user presentation value provides a string value which can be used for
displaying the rule and different parameters in a user-friendly manner. The user
presentation, which is a string, has placeholders to allow for the different
parameter values to be replaced and displayed correctly. The placeholders are in
the format {<parameter index>}. For example, if the presentation string for the init
rule is “Base discount is {0} %”, the placeholder {0} could be substituted with the
parameter value. The presentation string cannot be changed for the rule or the
template definition. The placeholder values however, can be modified with the
parameter values in a client application per the definition of the template. The
different templates include a convenience method (getExpandedUserPresentation)
that returns a string which has all of the parameter values correctly placed in the
string.

All parameter values have a specific data type, however when retrieving and
setting a parameter value, a string object is used. The parameter value can be

Figure 67. Class diagram for DecisionTableRule and related classes

216 Developing and deploying

treated as string when substituting the value into the user presentation and also
when setting the parameter with a new value. The parameter is converted to the
correct data type at runtime in order to correctly issue the rule at execution time.
During validation, the parameter value will be compared to the data type to
ensure it is correct. For example, if a parameter is of type boolean and is set to “T”,
validation will not recognize this value and will return a problem.

In the template definition, the parameter values can be restricted by constraints.
The constraints can be defined as a range or an enumeration. The constraints for
the parameter will be enforced when the rule is validated. If a template was not
used to define the value definition, only a user presentation will be available. A
value definition can not have both a template and a user presentation. Should a
template be used, the presentation from the template definition is the only
presentation which is available.

The Template class provides methods that support the following:
v Retrieve the template ID
v Retrieve the name
v Retrieve the parameters
v Retrieve the user presentation

The Parameter class provides methods that support the following:
v Retrieve the parameter name
v Retrieve the parameter data type
v Retrieve the constraint for the parameter
v Retrieve the template defining the parameter
v Create a parameter value

The ParameterValue class provides methods that support the following:
v Retrieve the parameter name
v Retrieve the parameter value
v Set the parameter value

Programming guides and techniques 217

Validation
Many of the main objects have a validate method which allows for the artifacts to
be checked for correctness and completeness before publishing the artifacts.

The validation that occurs when making changes through the API classes is only a
proper subset of the overall validation that occurs during serviceDeploy or when
editing the artifacts in WebSphere Integration Developer. This is due to the
constraints that are already placed on the business rule group in limiting which
aspects are editable at runtime. The user of the classes can validate the business
rule group selection table, rule set or decision table whenever it is needed (the rule
group component itself is not editable at runtime). When a business rule group is
published the rule group selection table, rule sets and decision tables will be
validated before being published to the repository.

If the artifacts are invalid, a ValidationException will be thrown with a list of the
validation problems. The different validation problems are documented in the
Exception Handling section.

Tracking Changes
For all objects, a hasChanges method is available to check if there have been any
modifications which have occurred to the object and any containing objects.

This method can be used to check for changes and only publish a business rule
group if it has items which changed.

Figure 68. Class diagram for Template and Parameter and related classes

218 Developing and deploying

BusinessRuleManager
The BusinessRuleManager class is the main class for working with the business rule
groups, rule sets and decision tables.

The BusinessRuleManager has methods which allow for retrieving business rule
groups by name, target namespace, or custom properties. It also has a method for
publishing changes which have been made to business rule groups, rule sets, or
decision tables.

The BusinessRuleManager class provides methods that support the following:
v Retrieve all of the business rule groups
v Retrieve business rule groups of a specific target namespace
v Retrieve business rule groups of a specific name
v Retrieve business rule groups of a specific name and target namespace
v Retrieve business rule groups which contain a specific property
v Retrieve business rule groups which contain specific properties
v Publish business rule groups

Rule Group Component Query

The rule group component can have user defined properties (name/value pairs)
that can be used to narrow the list of business rule groups returned from the class.
The fields that can be used in the query and in any combination are as follows:
v Business rule group component target name space
v Business rule group component name
v Property name
v Property value

Each property name can only be defined once per business rule group component.

The query function supported by this class is a small subset of the full SQL
language. The user does not provide the SQL statement, but rather provides the
values as parameters for a single property or a tree structure containing the
information for a multi-property query in the form of nodes. There are logical

Figure 69. Class diagram for BusinessRuleManager and package

Programming guides and techniques 219

operator nodes and property query nodes which all implement the QueryNode
interface. The logical operator nodes specify the boolean operators (AND, OR,
NOT). These are created through the QueryNodeFactory. As part of the creation of
these logical operator nodes, the left and right operators must be specified with
additional QueryNode classes. These nodes can either be a property query node or
another logical operator node. If a property query node is passed, it will contain
the property name, value and operator (EQUAL (==), NOT_EQUAL (!=), LIKE, or
NOTLIKE). The overall QueryNode is parsed by the class and a query is performed
on the underlying data in persistent storage.

Wildcard searches are supported when the LIKE and NOTLIKE operators are used.
Both the ‘%’ and ‘_’ characters are supported in wildcard searches. The ‘%’
character is used when there are an infinite number of characters which are not
known or should not be considered when searching. For example if a search was
to be performed for all business rule groups that have a property with a name of
Department and value that begins with “North”, the value would be specified as
“North%”. Another example, suppose that all Departments with a value ending in
“Region” was desired. The value would be “%Region”. The ‘%’ character can also
be used in the middle of a string. For example, if there were business rule groups
with properties that had values of “NorthCentralRegion”, “NorthEastRegion”, and
“NorthWestRegion”, a value of “North%Region” could be specified.

The ‘_’ character is used when there is a single character which is unknown or
should not be considered when searching. For example, if a search for all business
rule groups with Department properties with values of “Dept1North”,
“Dept2North”, “Dept3North”, and “Dept4North” was desired, a value of
“Dept_North” could be specified and all 4 of the business rule groups with these
properties will be returned. The ‘_’ character can be used multiple times in a
search value with each instance indicating a single character to ignore. The ‘_’
character can be used at the beginning or end of a value. For example if two
characters were to be ignored in a value, two ‘_’ could be used such as
“Dept__outh”.

In order to treat ‘%’ and ‘_’ as literal characters and not wildcards a ‘\’ escape
character must be specified preceding the ‘%’ or ‘_’. For example if the property
name was “%Discount”, in order to use this in a query, “\%Discount” would need
to be specified. If the ‘\’ character is to be used as a literal character, another ‘\’
escape character must be used such as “Orders\\Customer”. If a single ‘\’
character is found without a following ‘%’, ‘_’, or ‘\’, an IllegalArgumentException
will be thrown.

Wildcard characters can only be used on the left operator (property value).
Wildcard characters can not be used in property name.

During searches on the value of a specific property or a search for values which do
not match a property, the absence of a property causes the artifact to be ignored
from consideration in the search. For example, if there are 3 business rule groups
(A, B, and C) and only two (A and B) have a property named “Department” with
different values (“Accounting” and “Shipping” respectively) a search for all
business rule groups which do not have a “Department” property of “Accounting”
will only return the business rule group which has the “Department” property
defined but does not equal “Accounting” (business rule group B). The business
rule group (C) which does not have the “Department” property, will not be
returned as it does not have the property defined in any way.

220 Developing and deploying

When using properties for searching, there are two special properties named
IBMSystemName and IBMSystemTargetNameSpace which can be used for searching
based on the name and namespace of an artifact. These values can also be
retrieved with the getName and getTargetNameSpace methods.

The class supports the following methods for query:
List getBRGsByTNS (string tNSName, Operator op, int skip, int threshold)
List getBRGByName(string Name, Operator op, int skip, int threshold)
List getBRGsByTNSAndName (string tNSName, Operator, tNSOp, string
name, Operator nameOp, int skip, int threshold)
List getBRGsBySingleProperty (string propertyName, string propertyValue,
Operator op, int skip, int threshold)
List getBRGsByProperties (QueryNode queryTree, int skip, int threshold)

The ‘skip’ and ‘threshold’ parameters provide the user the capability of fetching a
partial result list up to the specified threshold. A value of zero for both of these
parameters will return the full result list. The cursor is not maintained in the result
set from a query call. If a skip value is used, it is possible that additions or
deletions could have been made to the result set such that a subsequent request
will return business rule groups which were in an earlier result set.

The nodes in the tree allow the user to specify a search expression using the
boolean operators, wild cards (% and escape) and the property/value pair. The
operator is only valid for the values, the operator for the property is always equals
(==).

Figure 70. Class diagram for QueryNodeFactory and related classes

Programming guides and techniques 221

Publishing

Publishing of business rule changes is done at the business rule group component
level. The user can publish 1...n business rule group components. Before a publish
operation is performed, a validate action is performed on the business rule group
and the different objects contained in the business rule group (operation selection
table, rule sets, decision table, and so on). Each publish request will occur within a
single transaction and if any exceptions are encountered during validation or
database publishing the transaction is rolled back and no changes for any business
rule group are published to the repository. This allows changes that are dependent
on each other within a single component (for example, operation selection table
and a rule set) or dependencies between components to occur within one atomic
operation.

At publishing time, a check will be made to ensure that the items which are to be
published have not been changed by another transaction. To reduce the
possibilities of a conflict, the publish method will give the user the ability to
choose to publish all artifacts whether they are changed or not or only those
artifacts that were changed within the business rule group. The default behavior
will be to publish all artifacts. If the option is set to publish all artifacts and
another transaction had changed the artifacts in the meantime, a
ChangeConflictException will be thrown. Specifying to only publish those artifacts
which have changed will reduce the chance of conflict. Publishing only those
artifacts that were changed could result in two users pushing changes to the
repository for two different artifacts within a business rule group (for example, two
rule sets) which could introduce incompatible changes within the business rule
group. Because this potential situation, this option should be used with caution.

Exception Handling
Exceptions can occur when validation is called on an artifact or when an artifact is
published. When a validation error occurs, the ValidationException is thrown
with a list of problems. If there is a problem during publishing due to another
transaction publishing the same artifacts, a ChangeConflictException is thrown.
Anytime another transaction is detected as changing an artifact, the
ChangeConflictException exception is thrown.

There is a SystemPropertyNotChangeableException which is thrown if a property
which duplicates a system property name is attempted to be changed. System
properties cannot be changed.

There is a ChangesNotAllowedException which is thrown if a set operation is
attempted on an artifact as it is being published.

222 Developing and deploying

Business Rule Group problems

Problems which can occur when a business rule group is validated or an attempt
to publish the business rule group is made and a portion of the business rule
group is not valid.

Table 23. Business Rule Group problems

Exception Description

ProblemBusRuleNotInAvailTargetList Problem that occurs when a rule is specified as the default
business rule for an operation selection table but the rule artifact
is not in the list of available targets for that operation. A valid
business rule from the list of available targets on the operation
should be specified to avoid this problem.

ProblemDuplicatePropertyName This problem occurs when a property is attempted to be created
which is a duplicate of a system or user-defined property on a
business rule group. A unique property name should be used to
avoid this problem.

ProblemOperationContainsNoTargets Problem that occurs when an operation does not have a default
rule destination or any scheduled rule destinations set. The
operation should be set with at least one rule destination as either
the default or at a scheduled time to avoid this problem.

ProblemOverlappingRanges Problem that occurs when an operation selection record has a
start date or end date which overlaps with the range of another
operation selection record start date and end date. This overlap in
date ranges prevents the business rule runtime from finding the
correct rule destination to invoke. The start date or end date of
the other operation selection records for an operation should be
checked to ensure there is not an overlap to avoid this problem.

ProblemStartDateAfterEndDate This problem occurs when the start date for an operation
selection record is after the end date for that selection record. This
problem can occur for any operation selection record except the
default record which does not have a start date or end date.
Specify a start date after the end date on an operation selection
record to avoid this problem.

Figure 71. Class diagram for BusinessRuleManagementException and related classes

Programming guides and techniques 223

Table 23. Business Rule Group problems (continued)

Exception Description

ProblemTargetBusRuleNotSet Problem that occurs when an operation selection record has a rule
specified which is not in the list of available target rules. A rule
from the available target list should be specified to avoid this
problem.

ProblemTNSAndNameAlreadyInUse Problem that occurs when a new business rule is created with a
target name space and name which is already in use by a rule set
or decision table. A check is done on all rule sets and decision
tables associated with the current business rule group as well as
any rule artifact stored in the repository. A different target name
space or name should be used to avoid this problem.

ProblemWrongOperationForOpSelectionRecord Problem that occurs when a new operation selection record is
added to an operation selection record list and the operation of
the new record does not match the operation of the records in the
list. A new operation should be created using the
newOperationSelectionRecord method on the correct operation
selection record list object to avoid this problem.

Rule set and Decision Table problems

Table 24. Rule set and Decision Table problems

Exception Description

ProblemInvalidBooleanValue Problem that occurs when a parameter for a rule template in a
rule set or an action value or condition value in decision table
receives a different value than “true” or “false” for a parameter of
type Boolean. Examples of incorrect parameter values would be
“T” or “F”. Use values of “true” or “false” when working with a
parameter of type Boolean to avoid this problem.

ProblemParmNotDefinedInTemplate Problem that occurs when a value is specified for a template
parameter and the parameter is not defined in the list of valid
parameters for the template. The parameters should be checked
before setting in the template. It can occur for RuleTemplate,
TreeActionValueTemplate, or TreeConditionValueTemplate
templates.

ProblemParmValueListContainsUnexpectedValue Problem that occurs when valid parameters are passed with a
template, however, there are too many parameters for the
parameter. The number of parameters should be reduced. It can
occur for RuleTemplate, TreeActionValueTemplate, or
TreeConditionValueTemplate templates.

ProblemRuleBlockContainsNoRules This problem occurs when all rules in a rule block in a rule set
are removed and the rule set is attempted to be validated or
published. The rule block in a rule set must have at least one
rule.

ProblemTemplateNotAssociatedWithRuleSet Problem that occurs when a rule is attempted to be added to a
rule set and the rule was created with a template which is not
defined with that rule set. When creating a new rule, a template
which has been defined in the rule set should be used to avoid
this problem.

ProblemRuleNameAlreadyInUse Problem that occurs when a rule is attempted to be added to a
rule block in a rule set and it has the same name as an existing
rule in the rule block. The names of the rules should be checked
prior to adding a new rule to avoid this problem.

224 Developing and deploying

Table 24. Rule set and Decision Table problems (continued)

Exception Description

ProblemTemplateParameterNotSpecified This problem occurs when a parameter is not included when a
template is updated for a rule in a rule set or action or condition
value in a decision table. All parameters for a template should be
specified to avoid this problem.

ProblemTypeConversionError This problem occurs when a parameter for a template cannot be
converted to the appropriate type All parameters are treated as
string objects and then converted to the parameter type (boolean,
byte, short, int, long, float, and double). If the parameter value
string cannot be converted to the specified type for this
parameter, then this error occurs. To avoid this problem, a string
that can be converted to the parameter's type (boolean, byte,
short, int, long, float, and double) should be specified.

ProblemValueViolatesParmConstraints This problem occurs when a parameter is not within the
enumeration or range of values which have been defined within
the template for that parameter. This problem can occur for
parameters restricted with enumerations or ranges in rule
templates in a rule set or action value or condition value
templates in a decision table. A value which is within the
enumeration should be used to avoid this problem.

ProblemInvalidActionValueTemplate Problem that occurs when a template instance is attempted to be
set on the value definition in a tree action but the corresponding
template is not available to that tree action. Use the correct
template to create a value definition in a tree action in order to
avoid this problem.

ProblemInvalidConditionValueTemplate Problem that occurs when a template instance is attempted to be
set on the condition definition in a case edge but the
corresponding template is not available to that case edge. Use the
correct template to create a condition definition in a case edge in
order to avoid this problem.

ProblemTreeActionIsNull This problem occurs when a new condition value is created and
an action is not set with a template instance. Using a template
from the ActionNode, create a new template instance and set it in
the list of TreeActions.

Authorization
The classes do not support any level of authorization. It is up to the client
application using the classes to add its own form of authorization.

Examples
A number of examples are provided that show how the different classes can be
used to retrieve business rule groups and to make modifications to rule sets and
decision tables. The examples are provided in a project interchange file (ZIP) that
can be imported into WebSphere Integration Developer where they can be browsed
and reused.

The project interchange contains a number of projects.
v BRMgmtExamples – Module project with business rules artifacts that are used

in the various examples.
v BRMgmt – Java project with the examples located in the

com.ibm.websphere.sample.brules.mgmt package.
v BRMgmtDriverWeb – Web project with interface for executing the samples.

Programming guides and techniques 225

The examples are also provided as an EAR file (BRMgmtExamples.ear) that can be
issued once after installed into WebSphere Process Server. A Web interface is
provided with the examples. The Web interface is purposely simple as the
examples focus on using the classes to retrieve artifacts, make modifications, and
publish changes. It is not meant to be a high-functioning Web interface. The classes
can however, be easily used to build robust Web interfaces or used in other Java
applications focused on modifying the business rules.

Note: You can download the example project interchange and EAR file from
Business Rule Management Programming Guide for WebSphere Process Server
V6.1.

The example application can be installed on WebSphere Process Server v6.1 and
the index page can be accessed at:

http://<hostname>:<port>/BRMgmtDriverWeb/

For example, http://localhost:9080/BRMgmtDriverWeb/

As the examples are issued, changes will be made to the rule artifacts. If all
examples are issued, the application will need to be reinstalled to see the same
results for all examples again.

The examples are explained in detail with complete code samples as well as the
result as displayed in a Web browser.

A number of additional classes were created in order to perform common
operations and assist with displaying the information within the example Web
application. See the appendix for more information on the Formatter and
RuleArtifactUtility classes.

To fully understand these examples, a study of the different artifacts within
WebSphere Integration Developer will greatly help.

Example 1: Retrieve and print all business rule groups
This example will retrieve all business rule groups and print out the attributes, the
properties, and the operations for each business rule group.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

For the business rules management classes, be sure to use those classes in the
com.ibm.wbiserver.brules.mgmt package and not the com.ibm.wbiserver.brules
package or other package. These other packages are for IBM internal classes.
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import
com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.Property;
import com.ibm.wbiserver.brules.mgmt.PropertyList;

public class Example1 {
static Formatter out = new Formatter();
static public String executeExample1()

226 Developing and deploying

http://www.ibm.com/support/docview.wss?rs=2307&uid=swg27011687
http://www.ibm.com/support/docview.wss?rs=2307&uid=swg27011687

{
try
{
out.clear();

The BusinessRuleManager class is the main class to retrieve business rule groups
and to publish changes to business rule groups. This includes working with and
changing any rule artifacts such as rule sets and decision tables. There are a
number of methods on the BusinessRuleManager class that simplify the retrieval of
specific business rule groups by name and namespace and properties.
// Retrieve all business rule groups
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBusinessRuleGroups(0, 0);

Iterator<BusinessRuleGroup> iterator = brgList.iterator();

BusinessRuleGroup brg = null;
// Iterate through the list of business rule groups
while (iterator.hasNext())
{

brg = iterator.next();
// Output attributes for each business rule group
out.printlnBold("Business Rule Group");

The basic attributes of the business rule group can be retrieved and displayed.
out.println("Name: " + brg.getName());
out.println("Namespace: " +
brg.getTargetNameSpace());
out.println("Display Name: " +
brg.getDisplayName());
out.println("Description: " + brg.getDescription());
out.println("Presentation Time zone: "

+ brg.getPresentationTimezone());
out.println("Save Date: " + brg.getSaveDate());

The properties for the business rule group can also be retrieved and modified.
PropertyList propList = brg.getProperties();

Iterator<Property> propIterator =
propList.iterator();
Property prop = null;
// Output property names and values
while (propIterator.hasNext())
{
prop = propIterator.next();
out.println("Property Name: " +
prop.getName());
out.println("Property Value: " +
prop.getValue());
}

The operations for the business rule group are also available and are the way to
retrieve the business rule artifacts such as rule sets and decision tables.
List<Operation> opList = brg.getOperations();

Iteration<Operation> opIterator = opList.iterator();
Operation op = null;
// Output operations for the business rule group
while (opIterator.hasNext())
{
op = opIterator.next();
out.println("Operation: " + op.getName());
}

Programming guides and techniques 227

out.println("");}
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());
}
return out.toString();
}
}

Web browser output for example 1.
Executing example1

Business Rule Group
Name: ApprovalValues
Namespace: http://BRSamples/com/ibm/websphere/sample/brules
Display Name: ApprovalValues
Description: null
Presentation Time zone: LOCAL
Save Date: Sun Jan 06 17:56:51 CST 2008
Property Name: IBMSystemVersion
Property Value: 6.2.0
Property Name: Department
Property Value: Accounting
Property Name: RuleType
Property Value: regulatory
Property Name: IBMSystemTargetNameSpace
Property Value: http://BRSamples/com/ibm/websphere/sample/brules
Property Name: IBMSystemName
Property Value: ApprovalValues
Property Name: IBMSystemDisplayName
Property Value: ApprovalValues
Operation: getApprover

Business Rule Group
Name: ConfigurationValues
Namespace: http://BRSamples/com/ibm/websphere/sample/brules
Display Name: ConfigurationValues
Description: null
Presentation Time zone: LOCAL
Save Date: Sun Jan 06 17:56:51 CST 2008
Property Name: IBMSystemVersion
Property Value: 6.2.0
Property Name: Department
Property Value: General
Property Name: RuleType
Property Value: messages
Property Name: IBMSystemTargetNameSpace
Property Value: http://BRSamples/com/ibm/websphere/sample/brules
Property Name: IBMSystemName
Property Value: ConfigurationValues
Property Name: IBMSystemDisplayName
Property Value: ConfigurationValues
Operation: getMessages

Business Rule Group
Name: DiscountRules
Namespace: http://BRSamples/com/ibm/websphere/sample/brules
Display Name: DiscountRules
Description: null
Presentation Time zone: LOCAL
Save Date: Sun Jan 06 17:56:51 CST 2008
Property Name: Department
Property Value: Accounting
Property Name: IBMSystemVersion
Property Value: 6.2.0

228 Developing and deploying

Property Name: RuleType
Property Value: monetary
Property Name: IBMSystemTargetNameSpace
Property Value: http://BRSamples/com/ibm/websphere/sample/brules
Property Name: IBMSystemName
Property Value: DiscountRules
Property Name: IBMSystemDisplayName
Property Value: DiscountRules
Operation: calculateOrderDiscount
Operation: calculateShippingDiscount

Example 2: Retrieve and print business rule groups, rule sets
and decision tables
Besides the function in example 1, this example will print out the selection table
for each operation and then the default business rule destination (either rule set or
decision table) and the other business rules scheduled for the operation. It prints
out both rule sets and decision tables.

The majority of the example is the same, but provided for completeness.
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecord;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecordList;
import com.ibm.wbiserver.brules.mgmt.Property;
import com.ibm.wbiserver.brules.mgmt.PropertyList;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;
public class Example2
{
status Formatter out = new Formatter();
static public String executeExample2()
{
try
{

out.clear();

A specific business rule group is retrieved by name for this example.
// Retrieve all business rule groups
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsByName("DiscountRules",
QueryOperator.EQUAL, 0, 0);

Iterator<BusinessRuleGroup> iterator = brgList.iterator();

BusinessRuleGroup brg = null;
// Iterate through the list of business rule groups
while (iterator.hasNext())
{
brg = iterator.next();
// Output attributes for each business rule group
out.printlnBold("Business Rule Group");
out.println("Name: " + brg.getName());
out.println("Namespace: " +
brg.getTargetNameSpace());
out.println("Display Name: " +
brg.getDisplayName());
out.println("Description: " + brg.getDescription());
out.println("Presentation Time zone: "

Programming guides and techniques 229

+ brg.getPresentationTimezone());
out.println("Save Date: " + brg.getSaveDate());

PropertyList propList = brg.getProperties();

Iterator<Property> propIterator =
propList.iterator();
Property prop = null;
// Output property names and values
while (propIterator.hasNext())
{

prop = propIterator.next();
out.println("Property Name: " +
prop.getName());
out.println("Property Value: " +
prop.getValue());

}

For each operation, a selection table has a list of the different rule artifacts and the
schedule on when they are active. A default business rule can be specified for each
operation. There is no requirement that a default business rule be specified or that
there is a scheduled business rule, however there must be at least a default
business rule or one scheduled business rule. Because of this support, it is best to
check for null before using the default business rule or check the size of the
OperationSelectionRecordList.

List<Operation> opList = brg.getOperations();

Iterator<Operation> opIterator = opList.iterator();
Operation op = null;
out.println("");
out.printlnBold("Operations");
// Output operations for the business rule group
while (opIterator.hasNext())
{

op = opIterator.next();
out.printBold("Operation: ");
out.println(op.getName());

// Retrieve the default business rule for the operation
BusinessRule defaultRule =
op.getDefaultBusinessRule();
// If the default rule is found, print out the business rule
// using the appropriate method for rule type
if (defaultRule != null)
{

out.printlnBold("Default Destination:");

The default business rule is of type RuleSet or DecisionTable and can be cast to
the correct type in order to process the rule artifact.

if (defaultRule instanceof RuleSet)
out.println(RuleArtifactUtility.
intRuleSet(defaultRule));

else
out.print(RuleArtifactUtility.
tDecisionTable(defaultRule));

}
OperationSelectionRecordList
opSelectionRecordList = op

.getOperationSelectionRecordList()
;

Iterator<OperationSelectionRecord>

230 Developing and deploying

opSelRecordIterator = opSelectionRecordList
.iterator();

OperationSelectionRecord record = null;

The OperationSelectionRecord is composed of the rule artifact and the schedule on
when the rule artifact is active.

while (opSelRecordIterator.hasNext())
{

out.printlnBold("Scheduled
Destination:");
record = opSelRecordIterator.next();

out.println("Start Date: " +
record.getStartDate()

+ " - End Date: " +
record.getEndDate());

BusinessRule ruleArtifact = record
.getBusinessRuleTarget();

if (ruleArtifact instanceof RuleSet)
out.println(RuleArtifactUtility.pr
intRuleSet(ruleArtifact));

else
out.print(RuleArtifactUtility.prin
tDecisionTable(ruleArtifact));

}
}

}
out.println("");
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());
return out.toString();
}
}

Example

Web browser output for example 2.
Business Rule Group
Name: DiscountRules
Namespace: http://BRSamples/com/ibm/websphere/sample/brules
Display Name: DiscountRules
Description: null
Presentation Time zone: LOCAL
Save Date: Sun Jan 06 17:56:51 CST 2008
Property Name: Department
Property Value: Accounting
Property Name: IBMSystemVersion
Property Value: 6.2.0
Property Name: RuleType
Property Value: monetary
Property Name: IBMSystemTargetNameSpace
Property Value: http://BRSamples/com/ibm/websphere/sample/brules
Property Name: IBMSystemName
Property Value: DiscountRules
Property Name: IBMSystemDisplayName
Property Value: DiscountRules

Operations
Operation: calculateOrderDiscount
Default Destination:
Rule Set
Name: calculateOrderDiscount

Programming guides and techniques 231

Namespace: http://BRSamples/com/ibm/websphere/sample/brules
Rule: CopyOrder
Display Name: CopyOrder
Description: null
Expanded User Presentation: null
User Presentation: null
Rule: FreeGiftInitialization
Display Name: FreeGiftInitialization
Description: null
Expanded User Presentation: Product ID for Free Gift = 5001AE80 Quantity = 1 Cost =
0.0 Description = Free gift for discounted order
User Presentation: Product ID for Free Gift = {0} Quantity = {1} Cost = {2}
Description = {3}Parameter Name: param0
Parameter Value: 5001AE80
Parameter Name: param1
Parameter Value: 1
Parameter Name: param2
Parameter Value: 0.0
Parameter Name: param3
Parameter Value: Free gift for discounted order
Rule: Rule1
Display Name: Rule1
Description: null
Expanded User Presentation: If customer is gold status, then apply a discount of 20.0
and include a free gift
User Presentation: If customer is {0} status, then apply a discount of {1} and include a
free gift
Parameter Name: param0
Parameter Value: gold
Parameter Name: param1
Parameter Value: 20.0
Rule: Rule2
Display Name: Rule2
Description: null
Expanded User Presentation: If customer.status == silver, then provide a discount of
15.0
User Presentation: If customer.status == {0}, then provide a discount of {1}
Parameter Name: param0
Parameter Value: silver
Parameter Name: param1
Parameter Value: 15.0
Rule: Rule3
Display Name: Rule3
Description: Template for non-gold customers
Expanded User Presentation: If customer.status == bronze, then provide a discount of
10.0
User Presentation: If customer.status == {0}, then provide a discount of {1}
Parameter Name: param0
Parameter Value: bronze
Parameter Name: param1
Parameter Value: 10.0

Operation: calculateShippingDiscount
Default Destination:
Decision Table
Name: calculateShippingDiscount
Namespace: http://BRSamples/com/ibm/websphere/sample/brules

Init Rule: Rule1
Display Name: Rule1
Description: null
Extended User Presentation: null
User Presentation: null

232 Developing and deploying

Example 3: Retrieve business rule groups by multiple properties
with AND
This example is also similar to example 1, but will only retrieve those business rule
groups which have a property named Department and a value of “accounting”
and a property named RuleType and a value of “regulatory”.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Property;
import com.ibm.wbiserver.brules.mgmt.PropertyList;
import com.ibm.wbiserver.brules.mgmt.query.AndNode;
import com.ibm.wbiserver.brules.mgmt.query.PropertyQueryNode;
import com.ibm.wbiserver.brules.mgmt.query.QueryNodeFactory;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example3
{
static Formatter out = new Formatter();
static public String executeExample3()
{

try
{

out.clear();

Queries for business rule groups are composed of query nodes that follow a tree
structure. Each query node has a left side term and a right side term and
condition. Each term and right term can be another query node. For this example
the business rule group is retrieved by the combination of two property values.

// Retrieve business rule groups based on two conditions
// Create PropertyQueryNodes for each one condition
PropertyQueryNode propertyNode1 = QueryNodeFactory

.createPropertyQueryNode("Department",
QueryOperator.EQUAL,"Accounting");

PropertyQueryNode propertyNode2 = QueryNodeFactory
.createPropertyQueryNode("RuleType", QueryOperator.EQUAL,
"regulatory");

// Combine the two PropertyQueryNodes with an AND node
AndNode andNode =
QueryNodeFactory.createAndNode(propertyNode1, propertyNode2);

// Use andNode in search for business rule groups
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsByProperties(andNode, 0, 0);

Iterator<BusinessRuleGroup> iterator = brgList.iterator();

BusinessRuleGroup brg = null;
// Iterate through the list of business rule groups
while (iterator.hasNext())
{

brg = iterator.next();
// Output attributes for each business rule group
out.printlnBold("Business Rule Group");
out.println("Name: " + brg.getName());
out.println("Namespace: " +
brg.getTargetNameSpace());
out.println("Display Name: " + brg.getDisplayName());
out.println("Description: " + brg.getDescription());
out.println("Presentation Time zone: "

Programming guides and techniques 233

+ brg.getPresentationTimezone());
out.println("Save Date: " + brg.getSaveDate());

PropertyList propList = brg.getProperties();

Iterator<Property> propIterator =
propList.iterator();
Property prop = null;
// Output property names and values
while (propIterator.hasNext())
{

prop = propIterator.next();
out.println("\t Property Name: " +
prop.getName());
out.println("\t Property Value: " +
prop.getValue());

}
}

} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());
}
return out.toString();
}
}

Example

Web browser output for example 3.
Executing example3

Business Rule Group
Name: ApprovalValues
Namespace: http://BRSamples/com/ibm/websphere/sample/brules
Display Name: ApprovalValues
Description: null
Presentation Time zone: LOCAL
Save Date: Sun Jan 06 17:56:51 CST 2008
Property Name: IBMSystemVersion
Property Value: 6.2.0
Property Name: Department
Property Value: Accounting
Property Name: RuleType
Property Value: regulatory
Property Name: IBMSystemTargetNameSpace
Property Value: http://BRSamples/com/ibm/websphere/sample/brules
Property Name: IBMSystemName
Property Value: ApprovalValues
Property Name: IBMSystemDisplayName
Property Value: ApprovalValues

Example 4: Retrieve business rule groups by multiple properties
with OR
This example is similar to example 3; however it will only retrieve those business
rule groups which have a property named Department and a value of
“accounting” or a property named RuleType and a value of “monetary”.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;

234 Developing and deploying

import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Property;
import com.ibm.wbiserver.brules.mgmt.PropertyList;
import com.ibm.wbiserver.brules.mgmt.query.OrNode;
import com.ibm.wbiserver.brules.mgmt.query.PropertyQueryNode;
import com.ibm.wbiserver.brules.mgmt.query.QueryNodeFactory;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example4
{
static Formatter out = new Formatter();
static public String executeExample4()
{

try
{

out.clear();

Different properties make up the query and return different business rule groups.
// Retrieve business rule groups based on two conditions
// Create PropertyQueryNodes for each one condition
PropertyQueryNode propertyNode1 = QueryNodeFactory

.createPropertyQueryNode("Department",
QueryOperator.EQUAL,"Accounting");

PropertyQueryNode propertyNode2 = QueryNodeFactory
.createPropertyQueryNode("RuleType",
QueryOperator.EQUAL,"monetary");

// Combine the two PropertyQueryNodes with an OR node
OrNode orNode =
QueryNodeFactory.createOrNode(propertyNode1,

propertyNode2);
// Use orNode in search for business rule groups
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsByProperties(orNode, 0, 0);

Iterator<BusinessRuleGroup> iterator = brgList.iterator();

BusinessRuleGroup brg = null;
// Iterate through the list of business rule groups
while (iterator.hasNext())
{

brg = iterator.next();
// Output attributes for each business rule group
out.printlnBold("Business Rule Group");
out.println("Name: " + brg.getName());
out.println("Namespace: " +
brg.getTargetNameSpace());
out.println("Display Name: " + brg.getDisplayName());
out.println("Description: " + brg.getDescription());
out.println("Presentation Time zone: "

+ brg.getPresentationTimezone());
out.println("Save Date: " + brg.getSaveDate());

PropertyList propList = brg.getProperties();

Iterator<Property> propIterator =
propList.iterator();
Property prop = null;
// Output property names and values
while (propIterator.hasNext())
{

prop = propIterator.next();
out.println("\t Property Name: " +
prop.getName());
out.println("\t Property Value: " +
prop.getValue());

}

Programming guides and techniques 235

out.println("");
}

} catch (BusinessRuleManagementException e)
{

e.printStackTrace();
out.println(e.getMessage());

}
return out.toString();
}
}

Example

Web browser output for example 4.
Executing example4

Business Rule Group
Name: ApprovalValues
Namespace: http://BRSamples/com/ibm/websphere/sample/brules
Display Name: ApprovalValues
Description: null
Presentation Time zone: LOCAL
Save Date: Sun Jan 06 17:56:51 CST 2008
Property Name: IBMSystemVersion
Property Value: 6.2.0
Property Name: Department
Property Value: Accounting
Property Name: RuleType
Property Value: regulatory
Property Name: IBMSystemTargetNameSpace
Property Value: http://BRSamples/com/ibm/websphere/sample/brules
Property Name: IBMSystemName
Property Value: ApprovalValues
Property Name: IBMSystemDisplayName
Property Value: ApprovalValues

Business Rule Group
Name: DiscountRules
Namespace: http://BRSamples/com/ibm/websphere/sample/brules
Display Name: DiscountRules
Description: null
Presentation Time zone: LOCAL
Save Date: Sun Jan 06 17:56:51 CST 2008
Property Name: Department
Property Value: Accounting
Property Name: IBMSystemVersion
Property Value: 6.2.0
Property Name: RuleType
Property Value: monetary
Property Name: IBMSystemTargetNameSpace
Property Value: http://BRSamples/com/ibm/websphere/sample/brules
Property Name: IBMSystemName
Property Value: DiscountRules
Property Name: IBMSystemDisplayName
Property Value: DiscountRules

Example 5: Retrieve business rule groups with a complex query
This example is a combination of examples 3 and 4 and it is meant to show how
more complex queries can be created. In this example a search is performed with a
query that combines 2 query conditions. The first query condition is to retrieve
those business rule groups which have a property named Department and a value
of “General” or a property named MissingProperty and a value of “somevalue”.
This query condition is then combined with an AND to a condition where the
property is named RuleType and a value of “messages”.

236 Developing and deploying

More examples of business rule group queries are available in the appendix.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Property;
import com.ibm.wbiserver.brules.mgmt.PropertyList;
import com.ibm.wbiserver.brules.mgmt.query.AndNode;
import com.ibm.wbiserver.brules.mgmt.query.OrNode;
import com.ibm.wbiserver.brules.mgmt.query.PropertyQueryNode;
import com.ibm.wbiserver.brules.mgmt.query.QueryNodeFactory;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example5
{
static Formatter out = new Formatter();
static public String executeExample5()
{

try
{

out.clear();

// Retrieve business rule groups based on three conditions where
// two of the conditions are combined in an OR node
// Create PropertyQueryNodes for each condition for the OR node
PropertyQueryNode propertyNode1 = QueryNodeFactory

.createPropertyQueryNode("Department",
QueryOperator.EQUAL,"General");

PropertyQueryNode propertyNode2 = QueryNodeFactory
.createPropertyQueryNode("MissingProperty",

QueryOperator.EQUAL, "SomeValue");
// Combine the two PropertyQueryNodes with an OR node
OrNode orNode =
QueryNodeFactory.createOrNode(propertyNode1, propertyNode2);
// Create the third PropertyQueryNode

PropertyQueryNode propertyNode3 = QueryNodeFactory
.createPropertyQueryNode("RuleType",

QueryOperator.EQUAL,"messages");

The left condition is combined to the right condition with an AND node. The
AndNode is the root of the query tree.

// Combine OR node with third PropertyQueryNode with
AndNode AndNode andNode =
QueryNodeFactory.createAndNode(propertyNode3, orNode);

List<BusinessRuleGroup> brgList = BusinessRuleManager
.getBRGsByProperties(andNode, 0, 0);

Iterator<BusinessRuleGroup> iterator = brgList.iterator();

BusinessRuleGroup brg = null;
// Iterate through the list of business rule groups
while (iterator.hasNext())
{

brg = iterator.next();
// Output attributes for each business rule group
out.printlnBold("Business Rule Group");
out.println("Name: " + brg.getName());
out.println("Namespace: " +

brg.getTargetNameSpace());
out.println("Display Name: " + brg.getDisplayName());
out.println("Description: " + brg.getDescription());

Programming guides and techniques 237

out.println("Presentation Time zone: "
+ brg.getPresentationTimezone());

out.println("Save Date: " + brg.getSaveDate());
PropertyList propList = brg.getProperties();

Iterator<Property> propIterator =
propList.iterator();
Property prop = null;
// Output property names and values
while (propIterator.hasNext())
{

prop = propIterator.next();
out.println("\t Property Name: " +
prop.getName());
out.println("\t Property Value: " +
prop.getValue());

}
}
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());
}
return out.toString();
}
}

Example

Web browser output for example 5.
Executing example5

Business Rule Group
Name: ConfigurationValues
Namespace: http://BRSamples/com/ibm/websphere/sample/brules
Display Name: ConfigurationValues
Description: null
Presentation Time zone: LOCAL
Save Date: Sun Jan 06 17:56:51 CST 2008
Property Name: IBMSystemVersion
Property Value: 6.2.0
Property Name: Department
Property Value: General
Property Name: RuleType
Property Value: messages
Property Name: IBMSystemTargetNameSpace
Property Value: http://BRSamples/com/ibm/websphere/sample/brules
Property Name: IBMSystemName
Property Value: ConfigurationValues
Property Name: IBMSystemDisplayName
Property Value: ConfigurationValues

Example 6: Update a business rule group property and publish
In this example, a property in a business rule group is updated and then the
business rule group is published.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.UserDefinedProperty;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

238 Developing and deploying

public class Example6
{
static Formatter out = new Formatter();

static public String executeExample6()
{
try
{

out.clear();
out.printlnBold("Business Rule Group before publish:");
// Retrieve business rule groups by a single property value
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsBySingleProperty("Department",
QueryOperator.EQUAL,"General", 0, 0);

if (brgList.size() > 0)
{

// Get the first business rule group from the list
BusinessRuleGroup brg = brgList.get(0);
// Retrieve the property from the business rule group
UserDefinedProperty userDefinedProperty =
(UserDefinedProperty) brg

.getProperty("Department");

out.println("Business Rule Group: " + brg.getName());
out.println("Department Property value: "
+ brg.getProperty("Department").getValue());

The getProperty method returns a property by reference and changes made to the
property are directly made to the business rule group.

// Modify the property value in the brg
// This updates the property value directly in the
brg object
userDefinedProperty.setValue("GeneralConfig");
// Use the original list or create a new list
// of business rule groups
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();
// Add the changed business rule group to the list
publishList.add(brg);

The BusinessRuleManager class is used to publish the changes made to a business
rule group. To publish the change, a list is passed to the BusinessRuleManager
publish method even if there is only one item is being published.

// Publish the list with the updated business rule group
BusinessRuleManager.publish(publishList, true);

out.println("");

// Retrieve the business rule group again to verify the
// changes were published
out.printlnBold("Business Rule Group after publish:");
brgList = BusinessRuleManager
.getBRGsBySingleProperty("Department",
QueryOperator.EQUAL, "GeneralConfig", 0, 0);

brg = brgList.get(0);

out.println("Business Rule Group: " + brg.getName());
// Display the property value to show the change
out.println("Department Property value: "
+ brg.getProperty("Department").getValue());

}
} catch (BusinessRuleManagementException e)

Programming guides and techniques 239

{
e.printStackTrace();
out.println(e.getMessage());
}
return out.toString();
}
}

Example

Web browser output for example 6.
Executing example6

Business Rule Group before publish:
Business Rule Group: ConfigurationValues
Department Property value: General

Business Rule Group after publish:
Business Rule Group: ConfigurationValues
Department Property value: GeneralConfig

Example 7: Update properties in multiple business rule groups
and publish
In this example, properties in multiple business rule groups are updated before
publish.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.UserDefinedProperty;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example7
{
static Formatter out = new Formatter();

static public String executeExample7()
{

try
{

out.clear();
out.printlnBold("Business Rule Group before publish:");
// Retrieve business rule groups by a single property value
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsBySingleProperty("Department",
QueryOperator.EQUAL, "Accounting", 0, 0);

Iterator<BusinessRuleGroup> iterator = brgList.iterator();

BusinessRuleGroup brg = null;

// Use the original list or create a new list
// of business rule groups
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Iterate through all of the business rule groups and
// modify the property
while (iterator.hasNext())
{

240 Developing and deploying

// Retrieve the property from the business rule group
brg = iterator.next();

out.println("Business Rule Group: " + brg.getName());

// Retrieve the property from the business rule group
UserDefinedProperty prop = (UserDefinedProperty) brg

.getProperty("Department");
out.println("Department Property value: "
+
brg.getProperty("Department").getValue())
;

// Modify the property value in the brg
// This updates the property value directly in the
brg object
prop.setValue("Finance");

Each changed business rule group is added to the list.
// Add the changed business rule group to the list
publishList.add(brg);
}

// Publish the list with the updated business rule
group
BusinessRuleManager.publish(publishList, true);

out.println("");

// Retrieve the business rule groups again to verify the
// changes were published
out.printlnBold("Business Rule Group after
publish:");

brgList = BusinessRuleManager
.getBRGsBySingleProperty("Department",
QueryOperator.EQUAL,
"Finance", 0, 0);

iterator = brgList.iterator();

while (iterator.hasNext())
{

brg = iterator.next();
out.println("Business Rule Group: " +
brg.getName());
out.println("Department Property value: "
+
brg.getProperty("Department").getVa
lue());

}
} catch (BusinessRuleManagementException e)
{

e.printStackTrace();
out.println(e.getMessage());

}
return out.toString();
}
}

Example

Web browser output for example 7.
Executing example7

Business Rule Group before publish:

Programming guides and techniques 241

Business Rule Group: ApprovalValues
Department Property value: Accounting
Business Rule Group: DiscountRules
Department Property value: Accounting

Business Rule Group after publish:
Business Rule Group: ApprovalValues
Department Property value: Finance
Business Rule Group: DiscountRules
Department Property value: Finance

Example 8: Change the default business rule for a business rule
group
In this example, the default business rule is changed with another business rule
that is part of the available targets list for a specific operation.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example8
{
static Formatter out = new Formatter();

static public String executeExample8()
{

try
{

out.clear();

// Retrieve a business rule group by target namespace and name
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"DiscountRules",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)
{

out.printlnBold("Business Rule Group before publish:");
// Get the first business rule group from the list
// This should be the only business rule group in the list as
// the combination of target namespace and name are unique
BusinessRuleGroup brg = brgList.get(0);

out.print("Business Rule Group: ");
out.println(brg.getName());

// Get the operation of the business rule group that
// will have its default business rule updated
Operation op =
brg.getOperation("calculateShippingDiscount");

The default business rule is retrieved before it is updated with another rule that is
part of the available target list for the operation. Rule sets and decision tables are

242 Developing and deploying

specific to operations and only those business rule artifacts that are for an
operation can be set to be default or be scheduled for another time on the
operation.

// Retrieve the default business rule for the operation
BusinessRule defaultRule =
op.getDefaultBusinessRule();
out.print("Default Rule: ");
out.println(defaultRule.getName());

// Get the list of available business rules for this
operation
List<BusinessRule> ruleList =
op.getAvailableTargets();

Iterator<BusinessRule> iterator =
ruleList.iterator();
BusinessRule rule = null;

// Find a business rule that is different from the
current
// default
// business rule
while (iterator.hasNext())
{

rule = iterator.next();
if
(!defaultRule.getName().equals(rule.getName()))
{

The default business rule is set on the operation object. Setting the default business
rule to null will remove any default business rule from the operation, however it is
recommended that every operation have a default business rule specified.

// Set the default business rule to be a
// different business rule
// This change is to the operation object
// directly
op.setDefaultBusinessRule(rule);
break;

}
}
// Use the original list or create a new list
// of business rule groups
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();
// Add the changed business rule group to the list
publishList.add(brg);
// Publish the list with the updated business rule
group
BusinessRuleManager.publish(publishList, true);

out.println("");

// Retrieve the business rule groups again to verify the
// changes were published

out.printlnBold("Business Rule Group after publish:");
brgList = BusinessRuleManager
.getBRGsByTNSAndName(

"http://BRSamples/com/ibm/websphere/sample/brules",
QueryOperator.EQUAL, "DiscountRules",
QueryOperator.EQUAL, 0, 0);

brg = brgList.get(0);
out.println("Business Rule Group: " + brg.getName());
op = brg.getOperation("calculateShippingDiscount");

Programming guides and techniques 243

// Retrieve the default business rule for the operation
defaultRule = op.getDefaultBusinessRule();
out.print("Default Rule: ");
out.println(defaultRule.getName());
}

} catch (BusinessRuleManagementException e)
{

e.printStackTrace();
out.println(e.getMessage());

}
return out.toString();
}
}

Example

Web browser output for example 8.
Executing example8

Business Rule Group before publish:
Business Rule Group: DiscountRules
Default Rule: calculateShippingDiscount

Business Rule Group after publish:
Business Rule Group: DiscountRules
Default Rule: calculateShippingDiscountHoliday

Example 9: Schedule another rule for an operation in a business
rule group
In this example, a business rule is scheduled to be active for 1 hour from the time
of publish for a specific operation.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Date;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecordList;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecord;
import com.ibm.wbiserver.brules.mgmt.problem.Problem;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example9 {
static Formatter out = new Formatter();

static public String executeExample9()
{
try
{

out.clear();

// Retrieve a business rule group by target namespace and name
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"DiscountRules",

244 Developing and deploying

QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)
{

out.println("");
out.printlnBold("Business Rule Group before publish:");
// Get the first business rule group from the list
// This should be the only business rule group in the
list as
// the combination of target namespace and name are unique
BusinessRuleGroup brg = brgList.get(0);

// Get the operation of the business rule group that
// will have a new business rule scheduled
Operation op =
brg.getOperation("calculateShippingDiscount");

printOperationSelectionRecord(op);
// Get the list of available business rules for this operation
List<BusinessRule> ruleList =
op.getAvailableTargets();

// Get the first rule in the list as this will be scheduled
// for the operation
BusinessRule rule = ruleList.get(0);

// Get the list of scheduled business rules
OperationSelectionRecordList opList = op

.getOperationSelectionRecordList();
// Create an end date in the future for the business rule
Date future = new Date();
long futureTime = future.getTime() + 3600000;

For a new scheduled rule, a start date and end date can be specified along with
the rule. If the start date is set to null, this indicates that the rule will be active
immediate upon publish. If an end date is set to null, the rule will not have an end
date. An overlap of schedules is not allowed and can be checked by calling the
validate method on the operation.

// Create the new scheduled business rule with the current
// date which means this rule will become active immediately
// upon
// publish and the future date.
newOperationSelectionRecord(new Date(),

new Date(futureTime), rule);
// Add the new scheduled business rule to the list of
// scheduled rule
opList.addOperationSelectionRecord(newRecord);

Validate operation to ensure that an overlap does not exist.
// Validate the list to insure there isn’t an overlap
List<Problem> problems = op.validate();
if (problems.size() == 0)
{

// Use the original list or create a new list
// of business rule groups
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();
// Add the changed business rule group to the list
publishList.add(brg);
// Publish the list with the updated business
rule group
BusinessRuleManager.publish(publishList, true);
out.println("");

// Retrieve the business rule groups again to

Programming guides and techniques 245

verify the
// changes were published
out.printlnBold("Business Rule Group after
publish:");

brgList =
BusinessRuleManager.getBRGsByTNSAndName(

"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"DiscountRules",
QueryOperator.EQUAL, 0, 0);
brg = brgList.get(0);

op =
brg.getOperation("calculateShippingDiscount");

printOperationSelectionRecord(op);
}
// else handle the validation error

}
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());
}
return out.toString();
}
/*
Method to print the operation selection record for an operation. The
start date and end date are printed as well as the name of the rule
artifact for the scheduled time.
*/
private static void printOperationSelectionRecord(Operation op)
{
OperationSelectionRecordList opSelectionRecordList = op

.getOperationSelectionRecordList();
Iterator<OperationSelectionRecord> opSelRecordIterator =
opSelectionRecordList

.iterator();
OperationSelectionRecord record = null;
while (opSelRecordIterator.hasNext())
{

out.printlnBold("Scheduled Destination:");
record = opSelRecordIterator.next();
out.println("Start Date: " + record.getStartDate()
+ " - End Date: " + record.getEndDate());
BusinessRule ruleArtifact = record.getBusinessRuleTarget();
out.println("Rule: " + ruleArtifact.getName());
}

}
}

Example

Web browser output for example 9.
Executing example9

Business Rule Group before publish:
Scheduled Destination:
Start Date: Thu Dec 01 00:00:00 CST 2005 - End Date: Sun Dec 25 00:00:00 CST 2005
Rule: calculateShippingDiscountHoliday

Business Rule Group after publish:
Scheduled Destination:
Start Date: Thu Dec 01 00:00:00 CST 2005 - End Date: Sun Dec 25 00:00:00 CST 2005

246 Developing and deploying

Rule: calculateShippingDiscountHoliday
Scheduled Destination:
Start Date: Mon Jan 07 21:08:31 CST 2008 - End Date: Mon Jan 07 22:08:31 CST 2008
Rule: calculateShippingDiscount

Example 10: Modify a parameter value in a template in a rule set
In this example a rule instance defined with a template is modified by changing a
parameter value and then publish.
package com.ibm.websphere.sample.brules.mgmt;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRule;
import
com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplateInstanceRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;

public class Example10
{
static Formatter out = new Formatter();

static public String executeExample10()
{

try
{

out.clear();

// Retrieve a business rule group by target namespace and
name
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ApprovalValues",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)
{

// Get the first business rule group from the list
// This should be the only business rule group in the
list as
// the combination of target namespace and name are
unique
BusinessRuleGroup brg = brgList.get(0);
// Get the operation of the business rule group that
// has the business rule that will be modified as
// the business rules are associated with a specific
// operation
Operation op = brg.getOperation("getApprover");

// Get the business rule on the operation that will
be modified
List<BusinessRule> ruleList =
op.getBusinessRulesByName(

"getApprover", QueryOperator.EQUAL, 0,
0);

if (ruleList.size() > 0)

Programming guides and techniques 247

{
out.println("");
out.printlnBold("Rule set before publish:");
// Get the rule to be modified. Rules are
unique by
// target namespace and name, but for this
example
// there is only one business rule named
"getApprover"
RuleSet ruleSet = (RuleSet) ruleList.get(0);
out.print(RuleArtifactUtility.printRuleSet(rule
Set));

All of the rules in a rule set are in a rule block. Only one rule block is supported
and the getFirstRuleBlock method should be used to retrieve the rule block.

// A rule set has all of the rules defined in a
rule block
RuleBlock ruleBlock =
ruleSet.getFirstRuleBlock();

Iterator<RuleSetRule> ruleIterator =
ruleBlock.iterator();

// Iterate through the rules in the rule block
to find the
// rule instance called "LargeOrderApprover"
while (ruleIterator.hasNext())
{

RuleSetRule rule = ruleIterator.next();

If a rule is not defined with a rule template, it only has a Web presentation that
can be retrieved. No updates can be made to a rule that is not defined with a
template. It is best to check if a rule has been defined with a template if the name
of the rule is unknown.

// The rule must have been defined with a
template
// in order for it to be changed. Check
if the current
// rule is even based on a template.
if (rule instanceof
RuleSetTemplateInstanceRule)
{

Use the TemplateInstance object to create the rule.
// Get the rule template instance
RuleSetTemplateInstanceRule
templateInstance =
(RuleSetTemplateInstanceRule) rule;

// Check for the rule instance
which matches
// the rule to modify
if
(templateInstance.getName().equals(

"LargeOrderApprover"))
{

For the template instance, only parameter values can be modified. The parameters
are modified by retrieving the ParameterValue and setting it to the appropriate
value. Because the ParameterValue is passed by reference, the update is made
directly on the rule, rule set, and business rule group.

248 Developing and deploying

// Get the parameter from the
rule instance
ParameterValue parameter =
templateInstance

.getParameterValue("par
am2");

// Modify the value of the
parameter
parameter.setValue("superviso
r");
break;

}
}

}
// Use the original list or create a new list
// of business rule groups
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Add the changed business rule group to the list
publishList.add(brg);

// Publish the list with the updated business rule
group
BusinessRuleManager.publish(publishList, true);

out.println("");
// Retrieve the business rule groups again to verify
the
// changes were published
out.printlnBold("Rule set after publish:");

brgList = BusinessRuleManager
.getBRGsByTNSAndName(

"http://BRSamples/com/ibm/websphere/sample/brules",
QueryOperator.EQUAL, "ApprovalValues",
QueryOperator.EQUAL, 0, 0);

brg = brgList.get(0);
op = brg.getOperation("getApprover");
ruleList = op.getBusinessRulesByName(

"getApprover", QueryOperator.EQUAL, 0,0);

ruleSet = (RuleSet) ruleList.get(0);
out.print(RuleArtifactUtility.printRuleSet(ruleSet));
}

}
} catch (BusinessRuleManagementException e)
{

e.printStackTrace();
out.println(e.getMessage());

}
return out.toString();
}

}

Example

Web browser output for example 10.
Executing example10

Rule set before publish:
Rule Set
Name: getApprover
Namespace: http://BRSamples/com/ibm/websphere/sample/brules

Programming guides and techniques 249

Rule: LargeOrderApprover
Display Name: LargeOrderApprover
Description: null
Expanded User Presentation: If the number of items order is above 10 and
the order is above $5000, then it requires the approval of manager
User Presentation: If the number of items order is above {0} and
the order is above ${1}, then it requires the approval of {2}
Parameter Name: param0
Parameter Value: 10
Parameter Name: param1
Parameter Value: 5000
Parameter Name: param2
Parameter Value: manager
Rule: DefaultApprover
Display Name: DefaultApprover
Description: null
Expanded User Presentation: approver = peer
User Presentation: approver = {0}
Parameter Name: param0
Parameter Value: peer

Rule set after publish:
Rule Set
Name: getApprover
Namespace: http://BRSamples/com/ibm/websphere/sample/brules
Rule: LargeOrderApprover
Display Name: LargeOrderApprover
Description: null
Expanded User Presentation: If the number of items order is above 10 and
the order is above $5000, then it requires the approval of supervisor
User Presentation: If the number of items order is above {0} and the order
is above ${1}, then it requires the approval of {2}
Parameter Name: param0
Parameter Value: 10
Parameter Name: param1
Parameter Value: 5000
Parameter Name: param2
Parameter Value: supervisor
Rule: DefaultApprover
Display Name: DefaultApprover
Description: null
Expanded User Presentation: approver = peer
User Presentation: approver = {0}
Parameter Name: param0
Parameter Value: peer

Example 11: Add a new rule from a template to a rule set
In this example, a new rule is added from a template to a rule set. Before the new
rule instance is created, parameters for the new rule instance are created.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.Parameter;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRuleTemplate;

250 Developing and deploying

import
com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplateInstanceRule;

public class Example11
{
static Formatter out = new Formatter();

static public String executeExample11()
{
try
{
out.clear();
// Retrieve a business rule group by target namespace and
name
List<BusinessRuleGroup> brgList = BusinessRuleManager
.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ApprovalValues",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)
{
// Get the first business rule group from the list
// This should be the only business rule group in the
list as
// the combination of target namespace and name are
unique
BusinessRuleGroup brg = brgList.get(0);
// Get the operation of the business rule group that
// has the business rule that will be modified as
// the business rules are associated with a specific
// operation
Operation op = brg.getOperation("getApprover");

// Get the business rule on the operation that will
be modified
List<BusinessRule> ruleList =
op.getBusinessRulesByName(
"getApprover", QueryOperator.EQUAL, 0,0);

if (ruleList.size() > 0)
{
out.println("");
out.printlnBold("Rule set before publish:");
// Get the rule to be modified. Rules are unique by
// target namespace and name, but for this example
// there is only one business rule named
"getApprover"
RuleSet ruleSet = (RuleSet) ruleList.get(0);
out.print(RuleArtifactUtility.printRuleSet(rule
Set));

In order to add a new rule to the rule set, the appropriate template must be
located in the rule set and an instance created from the template. The template can
be located by name.

// Get the list of rule templates
ListRuleSetRuleTemplate> ruleTemplates =
ruleSet
.getRuleTemplates();

Iterator<RuleSetRuleTemplate> templateIterator
= ruleTemplates
.iterator();

Programming guides and techniques 251

while (templateIterator.hasNext())
{
RuleSetRuleTemplate template =
templateIterator.next();

// Locate the template to use to create a
new rule
if
(template.getName().equals("Template_Larg
eOrder"))
{

For a template instance, a list of parameters must be created.
// Create a list for the parameters
for this template
// rule instance
List<ParameterValue> paramList =
new ArrayList<ParameterValue>();

// From the template definition,
get a specific parameter
// and set the value
Parameter param =
template.getParameter("param0");
ParameterValue paramValue = param
.createParameterValue("
20");

// Add parameter to the list
paramList.add(paramValue);

// Get the next parameter and set
the value
param = template.getParameter("param1");
paramValue =
param.createParameterValue("7500");

// Add parameter to the list
paramList.add(paramValue);

// Get the next parameter and set
the value
param =
template.getParameter("param2");
paramValue = param
.createParameterValue("
2nd-line manager");

// Add parameter to the list
paramList.add(paramValue);

With the parameters created, the template instance can be created.
// Create the template rule
instance with the parameter
// list
RuleSetTemplateInstanceRule
templateInstance = template
.createRuleFromTemplate
("ExtraLargeOrder",
paramList);
// Get the ruleblock for the rule
set
RuleBlock ruleBlock =
ruleSet.getFirstRuleBlock();

252 Developing and deploying

Once the template instance is created, it can be added to the ruleblock. Once it is
added to the rule block it can be ordered among other template rule instances.

// Add the template rule to the
ruleblock
ruleBlock.addRule(templateInstance)
;

break;
}
}

// Use the original list or create a new list
// of business rule groups
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Add the changed business rule group to the
list
publishList.add(brg);

// Publish the list with the updated business
rule group
BusinessRuleManager.publish(publishList, true);

out.println("");

// Retrieve the business rule groups again to
verify the
// changes were published
out.printlnBold("Rule set after publish:");

brgList = BusinessRuleManager
.getBRGsByTNSAndName(

"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ApprovalValues",
QueryOperator.EQUAL, 0, 0);

brg = brgList.get(0);
op = brg.getOperation("getApprover");
ruleList = op.getBusinessRulesByName(

"getApprover", QueryOperator.EQUAL,
0, 0);

ruleSet = (RuleSet) ruleList.get(0);
out.print(RuleArtifactUtility.printRuleSet(rule
Set));
}

}
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());
}
return out.toString();
}
}

Example

Web browser output for example 11.
Executing example11

Rule set before publish:

Programming guides and techniques 253

Rule Set
Name: getApprover
Namespace: http://BRSamples/com/ibm/websphere/sample/brules
Rule: LargeOrderApprover
Display Name: LargeOrderApprover
Description: null
Expanded User Presentation: If the number of items order is above 10 and
the order is above $5000, then it requires the approval of supervisor
User Presentation: If the number of items order is above {0} and the order
is above ${1}, then it requires the approval of {2}
Parameter Name: param0
Parameter Value: 10
Parameter Name: param1
Parameter Value: 5000
Parameter Name: param2
Parameter Value: supervisor
Rule: DefaultApprover
Display Name: DefaultApprover
Description: null
Expanded User Presentation: approver = peer
User Presentation: approver = {0}
Parameter Name: param0
Parameter Value: peer

Rule set after publish:
Rule Set
Name: getApprover
Namespace: http://BRSamples/com/ibm/websphere/sample/brules
Rule: LargeOrderApprover
Display Name: LargeOrderApprover
Description: null
Expanded User Presentation: If the number of items order is above 10 and
the order is above $5000, then it requires the approval of supervisor
User Presentation: If the number of items order is above {0} and the order
is above ${1}, then it requires the approval of {2}
Parameter Name: param0
Parameter Value: 10
Parameter Name: param1
Parameter Value: 5000
Parameter Name: param2
Parameter Value: supervisor
Rule: DefaultApprover
Display Name: DefaultApprover
Description: null
Expanded User Presentation: approver = peer
User Presentation: approver = {0}
Parameter Name: param0
Parameter Value: peer
Rule: ExtraLargeOrder
Display Name:
Description: null
Expanded User Presentation: If the number of items order is above 20 and
the order is above $7500, then it requires the approval of 2nd-line manager
User Presentation: If the number of items order is above {0} and the order
is above ${1}, then it requires the approval of {2}
Parameter Name: param0
Parameter Value: 20
Parameter Name: param1
Parameter Value: 7500
Parameter Name: param2
Parameter Value: 2nd-line manager

Example 12: Modify a template in a decision table by changing a
parameter value and then publish
In this example, a condition and action, both defined with templates, are modified
in a decision table by changing the parameter values before it is published.

254 Developing and deploying

The easiest way to modify conditions and actions in a decision table is to use
unique names for the templates at each condition level and for each action. The
unique names can be searched for and then changes can be made to template
instances defined with the template. When changes are made to a template
instance of a particular template, all of the condition values defined with that
template at that level will be updated. For action expressions, each instance is
unique and a change to one does not change others.

For this example, there are a number of additional methods that were created to
simplify the locating of a specific case edge for update, finding the specific
parameter value, and finding the action expression defined with a specific
template.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Vector;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;
import com.ibm.wbiserver.brules.mgmt.Template;
import com.ibm.wbiserver.brules.mgmt.dtable.ActionNode;
import com.ibm.wbiserver.brules.mgmt.dtable.CaseEdge;
import com.ibm.wbiserver.brules.mgmt.dtable.ConditionNode;
import com.ibm.wbiserver.brules.mgmt.dtable.DecisionTable;
import com.ibm.wbiserver.brules.mgmt.dtable.TemplateInstanceExpression;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeAction;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeBlock;
import
com.ibm.wbiserver.brules.mgmt.dtable.TreeConditionValueDefinition;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeNode;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example12 {
static Formatter out = new Formatter();

static public String executeExample12()
{
try
{

out.clear();
// Retrieve a business rule group by target namespace and
name
List<BusinessRuleGroup> brgList = BusinessRuleManager
.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ConfigurationValues",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)
{
// Get the first business rule group from the list
// This should be the only business rule group in the
list as
// the combination of target namespace and name are
unique
BusinessRuleGroup brg = brgList.get(0);

Programming guides and techniques 255

// Get the operation of the business rule group that
// has the business rule that will be modified as
// the business rules are associated with a specific
// operation
Operation op = brg.getOperation("getMessages");

// Get all business rules available for this
operation
List<BusinessRule> ruleList =
op.getAvailableTargets();

// For this operation there is only 1 business rule
and
// it is the business that we want to update
DecisionTable decisionTable = (DecisionTable)
ruleList.get(0);
out.println("");
out.printlnBold("Decision table before publish:");
out
.print(RuleArtifactUtility
.printDecisionTable(decisionT
able));

The init rule and condition and actions are contained in a tree block. With the tree
block, the root node can be retrieved.

// Get the tree block that contains all of the
conditions
// and actions for the decision table
TreeBlock treeBlock = decisionTable.getTreeBlock();
// From the tree block, get the tree node which is
the
// starting point for navigating through the decision
table
TreeNode treeNode = treeBlock.getRootNode();

The condition to be updated was defined with a template by the name of
“Condition Value Template 2.1”. The method getCaseEdge will recursively search
from the TreeNode down to the appropriate case edge to find the case edge where
the template is defined. The method expects that the level at which the template is
defined is known as well as the current level. This method can be used to find the
case edge with a template by a specific name in case the same name is used at
multiple case edges.

// Find the case edge at level 1 below the root with
// specific template with a parameter value that has
// a specific name. Since we are starting at the top,
// the current depth is 0
CaseEdge caseEdge = getCaseEdge(treeNode, "param0",
"Condition Value Template 2.1", 1, 0);

With the case edge found, the ConditionValueTemplateInstance for the condition
can be retrieved.

if (caseEdge != null)
{
// Case edge was found. Get the value
definition of the
// case edge
TreeConditionValueDefinition condition =
caseEdge
.getValueDefinition();
// Get the condition expression defined with a
template

256 Developing and deploying

TemplateInstanceExpression conditionExpression
= condition
.getConditionValueTemplateInstance(

);

With the ConditionValueTemplateInstance , the appropriate parameter value can
be retrieve and then updated with the getParameterValue method.

// Get the template for the expression
Template conditionTemplate =
conditionExpression
.getTemplate();

// Check that template is correct as it is
possible to have
// multiple templates for a condition value,
but only one
// applied
if (conditionTemplate.getName().equals(
"Condition Value Template 2.1"))
{
// Get the parameter value
ParameterValue parameterValue =
getParameterValue("param0",
conditionExpression);

// Set the new parameter value
parameterValue.setValue("info");
}

The different action expressions defined with templates that need to be updated
can then be retrieved. The getActionExpressions method will return all actions
that are defined with the template by name Action Value Template 1.

ConditionNode conditionNode = (ConditionNode)
treeNode;

// Get the case edges tree node
ListCaseEdge> caseEdges =
conditionNode.getCaseEdges();

// Create a list to hold all of the action
expressions that
// also need to be updated. Because every
action is
// independent of other action even though the
template is
// shared, all must be updated.
List<TemplateInstanceExpression> expressions =
new Vector<TemplateInstanceExpression>();

// Retrieve all of the expressions
for (CaseEdge edge : caseEdges)
{

getActionExpressions("Action Value
Template 1", edge,
expressions);

}

With the list of action expressions, each item can be updated. For action
expressions defined with templates the correct parameter value can be updated.

// Update the correct parameter in each
expression
for (TemplateInstanceExpression expression
expressions)
{

Programming guides and techniques 257

for (ParameterValue parameterValue :
expression
.getParameterValues())
{
// Check for correct parameter
although there is
// only one paramater in our
template
if
(parameterValue.getParameter().getN
ame().equals("param0")) {
String value =
parameterValue.getValue();
parameterValue.setValue("Info
"
+
value.substring(value.
indexOf(":"),
value.length()));

}
}

}
// With the condition value and actions
updated, the
// business rule group can be published.
// Use the original list or create a new list
// of business rule groups
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Add the changed business rule group to the
list
publishList.add(brg);

// Publish the list with the updated business
rule group
BusinessRuleManager.publish(publishList, true);

out.println("");

// Retrieve the business rule groups again to
verify the
// changes were published
out.printlnBold("Decision table after
publish:");

brgList =
BusinessRuleManager.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ConfigurationValues",
QueryOperator.EQUAL, 0, 0);

brg = brgList.get(0);
op = brg.getOperation("getMessages");
ruleList = op.getAvailableTargets();

decisionTable = (DecisionTable)
ruleList.get(0);
out.print(RuleArtifactUtility
.printDecisionTable(decisionTable))
;
}
}

} catch (BusinessRuleManagementException e)
{

258 Developing and deploying

e.printStackTrace();
out.println(e.getMessage());

}
return out.toString();
}

/*
Method to recursively navigate through a decision table and locate a
case
edge that has a template with a specific name and contains a specific
parameter to change. This method assumes that the level(depth) in the
decesion table of the value that is to be changed is known and the
current level(currentDepth) is tracked *
*/
static private CaseEdge getCaseEdge(TreeNode node, String pName,

String templateName, int depth, int currentDepth)
{
// Check if the current node is an action. This is an indication
// that this branch of the decision table has been exhausted
// looking for the case edge
if (node instanceof ActionNode)
{
return null;
}

// Get the case edges for this node
List<CaseEdge> caseEdges = ((ConditionNode) node).getCaseEdges();
for (CaseEdge caseEdge : caseEdges)
{

// Check if the correct level has been reached
if (currentDepth < depth)
{
// Move down one level and then call getCaseEdge
again
// to process that level
currentDepth++;
return getCaseEdge(caseEdge.getChildNode(), pName,
templateName, depth, currentDepth);

} else
{
// The correct level has been reached. Get the
condition in
// order to check the templates on that condition on
whether
// they match the template sought
TreeConditionValueDefinition condition = caseEdge
.getValueDefinition();

// Get the expression for the condition which has
been defined
// with a template
TemplateInstanceExpression expression = condition
.getConditionValueTemplateInstance();
// Get the template from the expression

Template template = expression.getTemplate();

// Check if this is the template sought
if (template.getName().equals(templateName))
{
// The template is found to match
return caseEdge;

} else
caseEdge = null;

}
}
return null;

Programming guides and techniques 259

}

/*
This method will check the different parameter values for an expression
and if the correct one is found, return that parameter value.
*/
private static ParameterValue getParameterValue(String pName,

TemplateInstanceExpression expression)
{
// Check that the expression is not null as null would indicate
// that the expression that was passed in was probably not
defined
// with a template and does not have any parameters to check.
if (expression != null) {
// Get the parameter values for the expression
List<ParameterValue> parameterValues = expression

.getParameterValues();

for (ParameterValue parameterValue : parameterValues)
{
// For the different parameters, check that it
matches the
// parameter value sought

if
(parameterValue.getParameter().getName().equals(pName
))
{
// Return the parameter value that matched

return parameterValue;
}
}
}
return null;
}
/*
This method finds all of the action expressions that are
defined with a specific template. It recursively works through
a case edge and adds action expressions that match to the
expressions parameter.
*/

private static void getActionExpressions(String templateName,
CaseEdge next, List<TemplateInstanceExpression>
expressions)
{
ActionNode actionNode = null;
TreeNode treeNode = next.getChildNode();

// Check if the current node is at the action node level
if (treeNode instanceof ConditionNode)
{
List<CaseEdge> caseEdges = ((ConditionNode) treeNode)
.getCaseEdges();

Iterator<CaseEdge> caseEdgesIterator =
caseEdges.iterator();

// Work through all case edges to find the action
// expressions
while (caseEdgesIterator.hasNext())
{
getActionExpressions(templateName,
caseEdgesIterator.next(),
expressions);

}
} else {

260 Developing and deploying

// ActionNode found
actionNode = (ActionNode) treeNode;

List<TreeAction> treeActions = actionNode.getTreeActions();
// Check that there is at least one treeAction specified
for
// the expression and work through the expressions checking
// if the expressions have been created with the specific
// template.
if (!treeActions.isEmpty())
{

Iterator<TreeAction> iterator =
treeActions.iterator();

while (iterator.hasNext())
{
TreeAction treeAction = iterator.next();
TemplateInstanceExpression expression =
treeAction
.getValueTemplateInstance();

Template template = expression.getTemplate();

if (template.getName().equals(templateName))
{
// Expression found with matching
template
expressions.add(expression);
}
}
}
}
}
}

Example

Web browser output for example 12.
Executing example12

Rule set before publish:
Decision Table
Name: getMessages
Namespace: http://BRSamples/com/ibm/websphere/sample/brules

Decision table after publish:
Decision Table
Name: getMessages
Namespace: http://BRSamples/com/ibm/websphere/sample/brules

Example 13: Add a condition value and actions to a decision
table
In this example, a condition value and action are added to a decision table.
Condition values can be added to a decision table through the use of a template.

When adding a condition value to a condition node, you are adding a case edge.
The new case edge is added at the end of the list of case edges. For the condition
value, you must specify a template instance expression that has the appropriate
parameter values set. In order to specify the template instance expression you will
have to use a specific template. It is recommended to give the template names at
each condition node level unique names in order to retrieve the correct templates

Programming guides and techniques 261

for that type of condition. If a single template definition is used, it may make it
difficult to determine at which level the condition is being added.

When setting the condition value in a condition node, this will add the condition
value with the same template instance to all condition nodes at the same level.
This is done as the decision table is balanced. Also as part of the adding a new
condition value, new action nodes will be added. These action nodes have tree
actions that have null values specified for the user presentation and template
instance expression. Because the condition value can be added to a condition node
that does not have an action node as a child node, the addition of a condition node
may result in a large number of action nodes. The number of action nodes is based
upon the level the condition node is added and the number of condition nodes at
that level and the number of condition nodes at each child level.

In order to find the action nodes that have been created, a search of action nodes
with tree actions that have null user presentation and template instance expression
may be performed. A TreeActionValueTemplate can be used to create an expression
that can be set into the TreeAction. This pattern would need to be repeated for all
new action nodes.

For this example two methods were provided to assist in setting up the new tree
actions. getEmptyActionNode recursively looks for an empty action node from the
current condition node and getParameterValue returns the value of a parameter
that was specified by name.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.Parameter;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;
import com.ibm.wbiserver.brules.mgmt.Template;
import com.ibm.wbiserver.brules.mgmt.ValidationException;
import com.ibm.wbiserver.brules.mgmt.dtable.ActionNode;
import com.ibm.wbiserver.brules.mgmt.dtable.CaseEdge;
import com.ibm.wbiserver.brules.mgmt.dtable.ConditionNode;
import com.ibm.wbiserver.brules.mgmt.dtable.DecisionTable;
import com.ibm.wbiserver.brules.mgmt.dtable.TemplateInstanceExpression;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeAction;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeActionTermDefinition;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeActionValueTemplate;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeBlock;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeConditionValueTemplate;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeNode;
import com.ibm.wbiserver.brules.mgmt.problem.Problem;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;

public class Example13
{
static Formatter out = new Formatter();

static public String executeExample13()
{
try
{
out.clear();

262 Developing and deploying

// Retrieve a business rule group by target namespace
// and name
List<BusinessRuleGroup> brgList = BusinessRuleManager
.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere/sample/brules",

QueryOperator.EQUAL,"ConfigurationValues",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0)
{
// Get the first business rule group from the
// list. This should be the only business
// rule group in the list as the combination
// of target namespace and name are unique
BusinessRuleGroup brg = brgList.get(0);

// Get the operation of the business rule
// group that has the business rule that will
// be modified as the business rules are
// associated with a specific operation
Operation op = brg.getOperation("getMessages");

// Get all business rules available for
// this operation
List<BusinessRule> ruleList =
op.getAvailableTargets();

// For this operation there is only 1 business
// rule and it is the business that we want
// to update

DecisionTable decisionTable = (DecisionTable)
ruleList.get(0);
out.printlnBold("Decision table before
publish:");
out.print(RuleArtifactUtility
.printDecisionTable(decisionTable));

The level at which the condition value is going to be added needs to be located.
This is typically passed as parameter as the user interface or application using the
classes knows where to add the condition.

// Get the tree block that contains all of
// the conditions and actions for the decision
// table
TreeBlock treeBlock =
decisionTable.getTreeBlock();

// From the tree block, get the tree node which
// is the starting point for navigating through
// the decision table
ConditionNode conditionNode = (ConditionNode)
treeBlock.getRootNode();

// Get the case edges for this node which is
// the first level of conditions
List<CaseEdge> caseEdges =
conditionNode.getCaseEdges();

// Get the case edge which will have the new
// condition added
CaseEdge caseEdge = caseEdges.get(0);

// For the case edge get the condition node in
// order to retrieve the templates for the
// condition

Programming guides and techniques 263

conditionNode = (ConditionNode)
caseEdge.getChildNode();

// Get the templates for the condition
List<TreeConditionValueTemplate>
treeValueConditionTemplates = conditionNode
.getAvailableValueTemplates();

Iterator<TreeConditionValueTemplate>
treeValueConditionTemplateIterator =
treeValueConditionTemplates.iterator();

TreeConditionValueTemplate conditionTemplate =
null;

By using unique template names at each condition node level in the decision table,
you can more easily ensure the condition value is being added at the correct
condition node value.

// Find the template that should be used
while
(treeValueConditionTemplateIterator.hasNext())
{
conditionTemplate =
treeValueConditionTemplateIterator
.next();

if (conditionTemplate.getName().equals(
"Condition Value Template
2.1"))
{
// Template found
break;
}
conditionTemplate = null;

}
if (conditionTemplate != null)
{

With the correct template found, an instance can be created and the appropriate
parameter value set before it is added to the condition node.

// Get the parameter definition from the
// template
Parameter conditionParameter =
conditionTemplate.getParameter("param0");

// Create a parameter value instance to
// be used in a new condition template
// instance
ParameterValue conditionParameterValue =

conditionParameter
.createParameterValue("fatal");

List<ParameterValue>
conditionParameterValues = new
ArrayList<ParameterValue>();

// Add the parameter value to a list

conditionParameterValues
.add(conditionParameterValue);

// Create a new condition template
// instance with the parameter value
TemplateInstanceExpression
newConditionValue =
conditionTemplate

264 Developing and deploying

.createTemplateInstanceExpression(c
onditionParameterValues);
// Add the condition template instance to
// this condition node
conditionNode

.addConditionValueToThisLevel(newConditionValue);
// When a condition node is added there
// are new action nodes that are created
// and empty. These must be filled with
// action template instances. By
// searching for each empty action
// node from the parent level, all of the
// new empty action nodes can be found.
conditionNode = (ConditionNode)
conditionNode.getParentNode();

With the condition value added to the condition node, the tree actions in the new
action nodes must be set with a TreeActionValueTemplate. First locate the empty
action node for the case edges. Use the parent condition node to ensure that as you
iterate through the condition nodes, you will pick up all action nodes.

// Get the case edges for the parent node
caseEdges = conditionNode.getCaseEdges();

Iterator<CaseEdge> caseEdgesIterator =
caseEdges.iterator();

while (caseEdgesIterator.hasNext())
{
// For each case edge, retrieve an
// empty action node if it exists
ActionNode actionNode =
getEmptyActionNode(caseEdgesIterator
.next());

// Check if all actions are filled
if (actionNode != null)
{

When an action node is found with empty tree actions, the tree action must be set
with a TreeActionValueTemplate. First locate the template and then specify the
parameters before creating a template instance. With the template instance created,
the tree action can be updated. For this example the parameter was set with a
value from another tree action in another action node under the same condition
node. For other decision tables where another tree action might not have a value
that may be used to create the new parameter values, the value will have to be
passed as a parameter from the application.

// Get the list of tree
// actions. These
// are not the actual
// actions, but the
// placeholders for the
// actions
List<TreeAction>
treeActionList = actionNode
.getTreeActions();

List<TreeActionTermDefinition>
treeActionTermDefinitions =
treeBlock
.getTreeActionTermDefinitions();

List<TreeActionValueTemplate>
treeActionValueTemplates =

Programming guides and techniques 265

treeActionTermDefinitions
.get(0).getValueTemplates();

TreeActionValueTemplate
actionTemplate = null;

for (TreeActionValueTemplate
tempActionTemplate :
treeActionValueTemplates)
{

if
(tempActionTemplate.get
Name().equals(
"Action Value
Template 1"))
{
actionTemplate =
tempActionTemplate;
break;
}
}

if (actionTemplate != null)
{
// Get another action
// that is under
// the parent condition
// node in order
// to use the value as
// the basis for
// the error message in
// the new
// action node. Move up
// to the
// parent condition
// node first
ConditionNode
parentNode =
(ConditionNode)
actionNode
.getParentNode();

// Get the first case
// edge of the
// parent node as this
// action will
// always be filled in
// as new actions
// are added to the end
// of the case
// edge list.
CaseEdge caseE =
parentNode.getCas
eEdges().get(
0);

// The child node is an
// action node
// and at the same
// level as the new
// action node.
ActionNode aNode =
(ActionNode) caseE
.getChildNode();

// Get the list of tree

266 Developing and deploying

// actions
TreeAction
existingTreeAction =
aNode
.getTreeActions()
.get(0);

// Get the template
// instance
// expression for the
// tree action
// from which you can
// retrieve the
// parameter

TemplateInstanceExpression
existingExpression =
existingTreeAction
.getValueTemplateInstance();

ParameterValue
existingParameterValue =
getParameterValue(

"param0",
existingExpression);

String actionValue =
existingParameterValue
.getValue();

// Create the new
// message from the
// message of the
// existing
// tree action
actionValue = "Fatal"

+
actionValue.substring(actionValue
.indexOf(":"), actionValue
.length());
Parameter
actionParameter =
actionTemplate
.getParameter("param0");

// Get the parameter
// from the template
ParameterValue
actionParameterValue =
actionParameter
.createParameterValue(actionValue);

// Add the parameter to
// a list of templates
List<ParameterValue>
actionParameterValues = new
ArrayList<ParameterValue>();

actionParameterValues.add(actionParameterValue);

// Create a new tree
// action instance

TemplateInstanceExpression
treeAction = actionTemplate

.createTemplateInstanceExpression(actionParameterValues);

Programming guides and techniques 267

// Set the tree action
// in the action node
// by setting it in the
// tree action list

Here the tree action in the action node is updated.
treeActionList.get(0)
.setValueTemplateInstance(
treeAction);
}
}

}
}
// With the condition value and actions
// updated, the business rule group can be
// published.
// Use the original list or create a new list
// of business rule groups
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Add the changed business rule group to the
// list
publishList.add(brg);

// Publish the list with the updated business
// rule group

BusinessRuleManager.publish(publishList, true);

brgList =
BusinessRuleManager.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere/sample/brules",
QueryOperator.EQUAL, “ConfigurationValues",
QueryOperator.EQUAL, 0, 0);
brg = brgList.get(0);
op = brg.getOperation("getMessages");
ruleList = op.getAvailableTargets();
decisionTable = (DecisionTable)
ruleList.get(0);
out.printlnBold("Decision table after
publish:");
out
.print(RuleArtifactUtility
.printDecisionTable(decisionTable));

}
} catch (ValidationException e)
{
List<Problem> problems = e.getProblems();

out.println("Problem = " +
problems.get(0).getErrorType().name());

e.printStackTrace();
out.println(e.getMessage());
} catch (BusinessRuleManagementException e)
{
e.printStackTrace();
out.println(e.getMessage());
}
return out.toString();
}

/*
* This method searches from the current case edge for any
* action nodes that have empty tree actions. An empty

268 Developing and deploying

* action node is found by looking at the end of the list
* of case edges and checking if the action node has tree
* actions that have both a null user presentation and
* TemplateInstanceExpression.
*/
private static ActionNode getEmptyActionNode(CaseEdge next)
{
ActionNode actionNode = null;
TreeNode treeNode = next.getChildNode();

if (treeNode instanceof ConditionNode)
{
List<CaseEdge> caseEdges = ((ConditionNode) treeNode)
.getCaseEdges();

if (caseEdges.size() > 1)
{
// Get right-most case-edge as the new
// condition and thus empty actions are at the
// right-end of the case edges
actionNode = getEmptyActionNode(caseEdges
.get(caseEdges.size() - 1));

if (actionNode != null)
{
return actionNode;
}

}
} else
{
actionNode = (ActionNode) treeNode;

List<TreeAction> treeActions =
actionNode.getTreeActions();

if (!treeActions.isEmpty())
{
if
((treeActions.get(0).getValueUserPresentation() == null)
&&
(treeActions.get(0).getValueTemplateInstance() == null))
{
return actionNode;
}
}
`actionNode = null;
}
return actionNode;
}
/*
* This method will check the different parameter values for an
* expression and if the correct one is found, return that
* parameter value.
*/
private static ParameterValue getParameterValue(String pName,

TemplateInstanceExpression expression)
{
ParameterValue parameterValue = null;

// Check that the expression is not null as null would
// indicate that the expression that was passed in was
// probably not defined with a template and does not have
// any parameters to check.
if (expression != null)
{
// Get the parameter vlues for the expression
List<ParameterValue> parameterValues = expression

Programming guides and techniques 269

.getParameterValues();
Iterator<ParameterValue> parameterIterator =
parameterValues
.iterator();

// For the different parameters, check that it
// matches the parameter value sought
while (parameterIterator.hasNext())
{
parameterValue = parameterIterator.next();

if
(parameterValue.getParameter().getName().equals(pName))
{
// Return the parameter value that
// matched
return parameterValue;
}

}
}
return parameterValue;
}
}

Example

Web browser output for example 13.
Executing example13

Decision table before publish:
Decision Table
Name: getMessages
Namespace: http://BRSamples/com/ibm/websphere/sample/brules

Decision table after publish:
Decision Table
Name: getMessages
Namespace: http://BRSamples/com/ibm/websphere/sample/brules

Example 14: Handle errors in a rule set
This example focuses on how to catch problems in a rule set and find out what
problem has occurred such that the appropriate message can be displayed or
action can be taken to correct the situation.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;
import com.ibm.wbiserver.brules.mgmt.ValidationException;
import com.ibm.wbiserver.brules.mgmt.problem.Problem;
import
com.ibm.wbiserver.brules.mgmt.problem.ProblemStartDateAfterEndDate;
import com.ibm.wbiserver.brules.mgmt.problem.ValidationError;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRule;
import

270 Developing and deploying

com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplateInstanceRule;

public class Example14 {
static Formatter out = new Formatter();

static public String executeExample14() {
try {

out.clear();

// Retrieve a business rule group by target namespace and
name
List<BusinessRuleGroup> brgList = BusinessRuleManager

.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ApprovalValues",
QueryOperator.EQUAL, 0, 0);

if (brgList.size() > 0) {
// Get the first business rule group from the list
// This should be the only business rule group in the
list as
// the combination of target namespace and name are
unique
BusinessRuleGroup brg = brgList.get(0);
out.println("Business Rule Group retrieved");

// Get the operation of the business rule group that
// has the business rule that will be modified as
// the business rules are associated with a specific
// operation
Operation op = brg.getOperation("getApprover");

// Retrieve specific rule by name
List<BusinessRule> ruleList =
op.getBusinessRulesByName(

"getApprover", QueryOperator.EQUAL, 0,
0);

// Get the specific rule
RuleSet ruleSet = (RuleSet) ruleList.get(0);
out.println("Rule Set retrieved");

RuleBlock ruleBlock = ruleSet.getFirstRuleBlock();

Iterator<RuleSetRule> ruleIterator =
ruleBlock.iterator();

// Search through the rules to find the rule to
change
while (ruleIterator.hasNext()) {

RuleSetRule rule = ruleIterator.next();

// Check that the rule was defined with a
template
// as it can be changed.
if (rule instanceof
RuleSetTemplateInstanceRule) {
// Get the template rule instance
RuleSetTemplateInstanceRule
templateInstance =
(RuleSetTemplateInstanceRule) rule;
// Check for the correct template rule
instance
if (templateInstance.getName().equals(

"LargeOrderApprover")) {

Programming guides and techniques 271

To cause a problem, this example sets a parameter to a value that is not compatible
for the expression. The parameter is expecting an integer, but a string is passed in.

// Get the parameter from the
template instance
ParameterValue parameter =
templateInstance

.getParameterValue("par
am1");

// Set an incorrect value for this
parameter
// This will cause a validation
error
parameter.setValue("$3500");
out.println("Incorrect parameter
value set");
break;

}
}

}
// This code should never be reached because of the
error
// introduced
// above

// With the condition value and actions updated, the
business
// rule
// group can be published.
// Use the original list or create a new list
// of business rule groups
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Add the changed business rule group to the list
publishList.add(brg);

// Publish the list with the updated business rule
group
BusinessRuleManager.publish(publishList, true);

}

A ValidationException can be caught and from the exception, the problems can be
retrieved. For each problem, the error can be checked to determine which error has
occurred. A message can be printed out or the appropriate action can be taken.

} catch (ValidationException e) {
out.println("Validation Error");

List<Problem> problems = e.getProblems();

Iterator<Problem> problemIterator = problems.iterator();

// Check the list of problems for the appropriate error and
// perform the appropriate action, for example report error

// or correct error
while (problemIterator.hasNext()) {

Problem problem = problemIterator.next();
ValidationError error = problem.getErrorType();

// Check for specific error value
if (error == ValidationError.TYPE_CONVERSION_ERROR) {

// Handle this error by reporting the problem
out

.println("Problem: Incorrect value
entered for a parameter");

272 Developing and deploying

return out.toString();
}
// else if....
// Checks can be done for other errors and the
// appropriate error message or action can be
performed
// correct the problem

}
} catch (BusinessRuleManagementException e) {

out.println("Error occurred.");
e.printStackTrace();

}
return out.toString();
}
}

Example

Web browser output for example 14.
Executing example14

Business Rule Group retrieved
Rule Set retrieved
Validation Error
Problem: Incorrect value entered for a parameter

Example 15: Handle errors in a business rule group
This example is similar to example 14 as it shows how to handle problems that
occur when a business rule group is published. It shows how the problem can be
determined and the correct message can be printed or action performed.
package com.ibm.websphere.sample.brules.mgmt;

import java.util.ArrayList;
import java.util.Date;
import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleGroup;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManagementException;
import com.ibm.wbiserver.brules.mgmt.BusinessRuleManager;
import com.ibm.wbiserver.brules.mgmt.Operation;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecord;
import com.ibm.wbiserver.brules.mgmt.OperationSelectionRecordList;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;
import com.ibm.wbiserver.brules.mgmt.ValidationException;
import com.ibm.wbiserver.brules.mgmt.problem.Problem;
import
com.ibm.wbiserver.brules.mgmt.problem.ProblemStartDateAfterEndDate;
import com.ibm.wbiserver.brules.mgmt.query.QueryOperator;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRule;
import
com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplateInstanceRule;

public class Example15
{
static Formatter out = new Formatter();

static public String executeExample15()
{
try
{
out.clear();

Programming guides and techniques 273

// Retrieve a business rule group by target namespace and
name
List<BusinessRuleGroup> brgList = BusinessRuleManager
.getBRGsByTNSAndName(
"http://BRSamples/com/ibm/websphere
/sample/brules",
QueryOperator.EQUAL,
"ApprovalValues",
QueryOperator.EQUAL, 0, 0);
if (brgList.size() > 0)
{
// Get the first business rule group from the list
// This should be the only business rule group in the
list as
// the combination of target namespace and name are
unique
BusinessRuleGroup brg = brgList.get(0);
out.println("Business Rule Group retrieved");

// Get the operation of the business rule group that
// has the business rule that will be modified as
// the business rules are associated with a specific
// operation
Operation op = brg.getOperation("getApprover");

// Retrieve specific rule by name
List<BusinessRule> ruleList =
op.getBusinessRulesByName(
"getApprover", QueryOperator.EQUAL, 0,
0);

// Get the specific rule
RuleSet ruleSet = (RuleSet) ruleList.get(0);
out.println("Rule Set retrieved");

RuleBlock ruleBlock = ruleSet.getFirstRuleBlock();

Iterator<RuleSetRule> ruleIterator =
ruleBlock.iterator();

// Search through the rules to find the rule to
change
while (ruleIterator.hasNext())
{
RuleSetRule rule = ruleIterator.next();

// Check that the rule was defined with a
template
// as it can be changed.
if (rule instanceof
RuleSetTemplateInstanceRule)
{
// Get the template rule instance
RuleSetTemplateInstanceRule
templateInstance =
(RuleSetTemplateInstanceRule) rule;

// Check for the correct template rule
instance
if (templateInstance.getName().equals(

"LargeOrderApprover"))
{
// Get the parameter from the
template instance
ParameterValue parameter =
templateInstance

274 Developing and deploying

.getParameterValue("par
am1");

// Set the value for this parameter
// This value is in the correct
format and will
// not cause a validation error
parameter.setValue("4000");
out.println("Rule set parameter
value on set correctly");
break;
}

}
}

To ensure a rule set is correct, the validate method can be called. The validate
method is available on all objects and will return a list of problems that can be
checked to determine the problem. When calling validate on an object, the validate
method is called on all contained objects as well.

// Validate the changes made the rule set
List<Problem> problems = ruleSet.validate();
out.println("Rule set validated");

// No errors should occur for this test case, however,
// check if there are problems and then
// perform the correct action to recover or report
// the error
if (problems != null)
{
Iterator<Problem> problemIterator =
problems.iterator();

while (problemIterator.hasNext())
{
Problem problem = problemIterator.next();

if (problem instanceof
ProblemStartDateAfterEndDate)
{
out
.println("Incorrect
value entered for a
parameter");

return out.toString();
}
}
} else
{
out.println("No problems found for the rule
set");
}
// Get the list of available rule targets
List<BusinessRule> ruleList2 =
op.getAvailableTargets();

// Get the first rule that will be scheduled
incorrectly
BusinessRule rule = ruleList2.get(0);

// The error condition will be to set the end time
for a
// scheduled rule to be 1 hour before the start time
// This will cause a validation error
Date future = new Date();
long futureTime = future.getTime() - 360000;

Programming guides and techniques 275

// Get the operation selection list to add the
incorrectly
// scheduled item
OperationSelectionRecordList opList = op
.getOperationSelectionRecordList();

// Create a new scheduled rule instance
// No error is thrown until validated or a publish
// occurs as more changes might be made
OperationSelectionRecord newRecord = opList
.newOperationSelectionRecord(new Date(),
new Date(
futureTime), rule);

When the record is added with an incorrect set of dates, this does not cause an
error. It is possible overlaps might occur or no selection records are set for the
operation as things are in the process of being changed. The error will be found
when the business rule group with the operation selection record is published. The
validate method is called before the objects are published and exceptions will be
thrown if any errors exists.

// Add the scheduled rule instance to the operation
// No error here either
opList.addOperationSelectionRecord(newRecord);
out.println("New selection record added with
incorrect schedule");

// With the condition value and actions updated, the
business
// rule
// group can be published.
// Use the original list or create a new list
// of business rule groups
List<BusinessRuleGroup> publishList = new
ArrayList<BusinessRuleGroup>();

// Add the changed business rule group to the list
publishList.add(brg);

// Publish the list with the updated business rule
group
BusinessRuleManager.publish(publishList, true);
}

} catch (ValidationException e) {
out.println("Validation Error");

List<Problem> problems = e.getProblems();

Iterator<Problem> problemIterator = problems.iterator();
// There might be multiple problems
// Go through the problems and handle each one or
// report the problem
while (problemIterator.hasNext())
{
Problem problem = problemIterator.next();

// Each problem is a different type that can be
compared
if (problem instanceof ProblemStartDateAfterEndDate)
{
out
.println("Rule schedule is
incorrect. Start date is after end
date.");
return out.toString();
}

276 Developing and deploying

// else if....
// Checks can be done for other errors and the
// appropriate error message or action can be
performed
// correct the problem

}
}catch (BusinessRuleManagementException e)
{
out.println("Error occurred.");
e.printStackTrace();
}
return out.toString();
}
}

Example

Web browser output for example 15.
Executing example15

Business Rule Group retrieved
Rule Set retrieved
Rule set parameter value on set correctly
Rule set validated
Validation Error
Rule schedule is incorrect. Start date is after end date.

Additional Query Examples
The following examples are not included with the application containing examples
1-15, however they provide more examples on creating queries to retrieve business
rule groups.

In these examples different properties and wildcard values (‘_’, ‘%’) are used with
different operators (AND, OR, LIKE, NOT_LIKE, EQUAL and NOT_EQUAL).

Example

For the examples, queries will be performed that return between different
combinations of 4 business rule groups. It is important to understand the different
attributes and properties of the business rule groups as these are used in the
queries.
Name: BRG1
Targetnamespace : http://BRG1/com/ibm/br/rulegroup
Properties:
organization, 8JAA
department, claims
ID, 00000567
region: SouthCentralRegion
manager: Joe Bean

Name: BRG2
Targetnamespace : http://BRG2/com/ibm/br/rulegroup
Properties:
organization, 7GAA
department, accounting
ID, 0000047
ID_cert45, ABC
region: NorthRegion

Name: BRG3
Targetnamespace : http://BRG3/com/ibm/br/rulegroup
Properties:
organization, 7FAB

Programming guides and techniques 277

department, finance
ID, 0000053
ID_app45, DEF
region: NorthCentralRegion

Name: BRG4
Targetnamespace : http://BRG4/com/ibm/br/rulegroup
Properties:
organization, 7HAA
department, shipping
ID, 0000023
ID_app45, GHI
region: SouthRegion

Query by a single property:

This is an example of a query by a single property.
List<BusinessRuleGroup> brgList = null;

brgList = BusinessRuleManager.getBRGsBySingleProperty(
"department", QueryOperator.EQUAL,
"accounting", 0, 0);

// Returns BRG2

Query business rule groups by properties and wildcard (%) at the beginning and
at the end of the value:

This is an example of a query of business rule groups by properties and wildcard
(%) at the beginning and at the end of the value.
// Query Prop AND Prop
QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode(

"region", QueryOperator.LIKE,
"%Region");

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode(

"ID", QueryOperator.LIKE,
"000005%");

QueryNode queryNode =
QueryNodeFactory.createAndNode(leftNode,

rightNode);

brgList =
BusinessRuleManager.getBRGsByProperties(queryNode, 0, 0);
// Returns BRG1 and BRG3

Query business rule groups by properties and wildcard (‘_’):

This is an example of a query of business rule groups by properties and wildcard
(%).
brgList = BusinessRuleManager.getBRGsBySingleProperty("ID",
QueryOperator.LIKE, "00000_3", 0, 0);

// Returns BRG3 and BRG4

Query business rule group by properties with multiple wildcards (‘_’ and ‘%’):

This is an example of a query of business rule group by properties with multiple
wildcards (‘_’ and ‘%’).

278 Developing and deploying

brgList =
BusinessRuleManager.getBRGsBySingleProperty("region",
QueryOperator.LIKE, "__uth%Region",

0, 0);

// Returns BRG1 and BRG4

Query business rule groups by NOT_LIKE operator and wildcard (‘_’):

This is an example of a query of business rule group by NOT_LIKE operator and
wildcard (‘_’).
brgList =
BusinessRuleManager.getBRGsBySingleProperty("organization",
QueryOperator.NOT_LIKE,

"7__A", 0, 0);

// Returns BRG1 and BRG3

brgList =
BusinessRuleManager.getBRGsBySingleProperty("organization",
QueryOperator.NOT_LIKE,

"7%", 0, 0);

// Returns BRG1

Query business rule groups by NOT_EQUAL operator:

This is an example of a query of business rule group by the NOT_EQUAL
operator.
brgList =
BusinessRuleManager.getBRGsBySingleProperty("department",
QueryOperator.NOT_EQUAL,

"claims", 0, 0);
// Returns BRG1

Query business rule groups by PropertyIsDefined:

This is an example of a query of business rule groups by PropertyIsDefined.
PropertyIsDefinedQueryNode node =
QueryNodeFactory.createPropertyIsDefinedQueryNode("manager"
);

brgList = BusinessRuleManager.getBRGsByProperties(node, 0,
0);

// Returns BRG1

Query business rule groups by NOT PropertyIsDefined:

This is an example of a query of business rule groups by NOT PropertyIsDefined.
// NOT Prop
QueryNode node =
QueryNodeFactory.createPropertyIsDefinedQueryNode("manager"
);

NotNode notNode = QueryNodeFactory.createNotNode(node);

brgList = BusinessRuleManager.getBRGsByProperties(notNode,
0, 0);

// Returns BRG1

Query business rule groups by multiple properties with a single NOT node:

Programming guides and techniques 279

This is an example of a query of business rule groups by multiple properties with
a single NOT node.
// Prop AND NOT Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.EQUAL, "accounting");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID",

QueryOperator.LIKE, "00000%");

AndNode andNode = QueryNodeFactory.createAndNode(leftNode,
notNode);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG2

Query business rule groups by multiple properties with multiple NOT nodes
combined with AND operator:

This is an example of a query business rule groups by multiple properties with
multiple NOT nodes combined with AND operator.
// NOT Prop AND NOT Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("department",
QueryOperator.EQUAL, "accounting");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE, "cla%");

NotNode notNode2 =
QueryNodeFactory.createNotNode(leftNode);

AndNode andNode = QueryNodeFactory.createAndNode(notNode,
notNode2);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG1 and BRG2

Query business rule groups by multiple properties with multiple NOT nodes
combined with OR operator:

This is an example of a query business rule groups by multiple properties with
multiple NOT nodes combined with OR operator.
// NOT Prop OR NOT Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE, "acc%");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode);

280 Developing and deploying

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode(

"department", QueryOperator.EQUAL,
"claims");

NotNode notNode2 =
QueryNodeFactory.createNotNode(leftNode);

OrNode orNode = QueryNodeFactory.createOrNode(notNode,
notNode2);

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

//Returns BRG1, BRG2, BRG3, and BRG4

Query business rule groups by multiple properties combined with multiple
AND operators:

This is an example of a query business rule groups by multiple properties
combined with multiple AND operators.
// (Prop AND Prop) AND (Prop AND Prop)
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE, "acc%");

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.EQUAL, "7GAA");

AndNode andNodeLeft =
QueryNodeFactory.createAndNode(leftNode,rightNode);

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("ID",
QueryOperator.LIKE,"000004_");

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("region",
QueryOperator.EQUAL,

"NorthRegion");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2, rightNode2);

AndNode andNode =
QueryNodeFactory.createAndNode(andNodeLeft,andNodeRight);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG2

Query business rule groups by multiple properties combined with AND and OR
operators:

This is an example of a query business rule groups by multiple properties
combined with AND and OR operators.
// (Prop AND Prop) OR (Prop AND NOT Prop)
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE, "acc%");

QueryNode leftNode =

Programming guides and techniques 281

QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.EQUAL, "7GAA");

AndNode andNodeLeft =
QueryNodeFactory.createAndNode(leftNode, rightNode);

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.EQUAL, "8JAA");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode2);

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE, "%lRegion");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2, notNode);

OrNode orNode = QueryNodeFactory.createOrNode(andNodeLeft,
andNodeRight);

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

// Returns BRG2 and BRG3

Query business rule groups by multiple properties combined with AND and
NOT operators:

This is an example of a query business rule groups multiple properties combined
with AND and NOT operators.
// Prop AND NOT (Prop AND Prop)
QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID",
QueryOperator.LIKE, "000005%");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.EQUAL,

"8JAA");

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("region",QueryOper
ator.LIKE,

"%lRegion");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2, rightNode2);

NotNode notNode =
QueryNodeFactory.createNotNode(andNodeRight);

AndNode andNode = QueryNodeFactory.createAndNode(leftNode,
notNode);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG3

Query business rule groups by multiple properties combined with NOT and OR
operators:

282 Developing and deploying

This is an example of a query business rule groups by multiple properties
combined with NOT and OR operators.
// NOT (Prop AND Prop) OR Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"8_A_");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7%");

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("region",QueryOper
ator.LIKE,

"%lRegion");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2,rightNode2);

NotNode notNode =
QueryNodeFactory.createNotNode(andNodeRight);

OrNode orNode = QueryNodeFactory.createOrNode(notNode,
rightNode);

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

// Returns BRG3

Query business rule groups by multiple properties combined with nested AND
operators:

This is an example of a query business rule groups by multiple properties
combined with nested AND operators.
// Prop AND (Prop AND (Prop AND Prop))
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"___thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7%");

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2,rightNode2);

AndNode andNodeLeft =
QueryNodeFactory.createAndNode(rightNode,andNodeRight);

PropertyIsDefinedQueryNode node2 =
QueryNodeFactory.createPropertyIsDefinedQueryNode("ID_cert4
5");

AndNode andNode = QueryNodeFactory.createAndNode(node2,
andNodeLeft);

Programming guides and techniques 283

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);
// Returns BRG2

Query business rule groups by multiple properties combined with nested AND
operators:

This is an example of a query business rule groups by multiple properties
combined with nested AND operators.
// (Prop AND (Prop AND Prop)) AND Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",QueryOper
ator.LIKE,
"___thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",
QueryOperator.LIKE,
"7%");

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",
QueryOperator.LIKE,
"%ing");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2,rightNode2);

AndNode andNodeLeft =
QueryNodeFactory.createAndNode(rightNode,andNodeRight);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID_app45",QueryOp
erator.LIKE, "GH_");

AndNode andNode =
QueryNodeFactory.createAndNode(andNodeLeft, leftNode);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG4

Query business rule groups by multiple properties combined with nested AND
operators and a NOT node:

This is an example of a query business rule groups by multiple properties
combined with nested AND operators and a NOT node.
// Prop AND (Prop AND (Prop AND NOT Prop))
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7%");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"%lRegion");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode2);

QueryNode leftNode2 =

284 Developing and deploying

QueryNodeFactory.createPropertyQueryNode("department",
QueryOperator.LIKE,
"%ing");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2,notNode);

AndNode andNodeLeft =
QueryNodeFactory.createAndNode(rightNode,andNodeRight);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID_cert45",

QueryOperator.LIKE,
"AB_");

AndNode andNode = QueryNodeFactory.createAndNode(leftNode,
andNodeLeft);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG2

Query business rule groups by multiple properties combined with nested AND
operators:

This is an example of a query business rule groups by multiple properties
combined with nested AND operators.
// (Prop AND (Prop AND Prop)) AND Prop - Return empty
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"___thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7%");

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

AndNode andNodeRight =
QueryNodeFactory.createAndNode(leftNode2,rightNode2);

AndNode andNodeLeft =
QueryNodeFactory.createAndNode(rightNode,andNodeRight);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID_cert45",

QueryOperator.LIKE,
"GH_");

AndNode andNode =
QueryNodeFactory.createAndNode(andNodeLeft, leftNode);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

//Returns no BRGs

Query business rule groups by multiple properties combined with nested OR
operators:

Programming guides and techniques 285

This is an example of a query business rule groups by multiple properties
combined with nested OR operators.
// (Prop OR (Prop OR Prop)) OR Prop

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"___thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7%");

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

OrNode orNodeRight =
QueryNodeFactory.createOrNode(leftNode2,rightNode2);

OrNode orNodeLeft =
QueryNodeFactory.createOrNode(rightNode,orNodeRight);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID_cert45",

QueryOperator.LIKE,
"GH_");

OrNode orNode = QueryNodeFactory.createOrNode(orNodeLeft,
leftNode);

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

// Returns BRG1

Query business rule groups by multiple properties combined with nested OR
operators:

This is an example of a query business rule groups by multiple properties
combined with nested OR operators.
// (Prop OR (Prop OR NOT Prop)) OR Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"___thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7%");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode2);

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

OrNode orNodeRight =
QueryNodeFactory.createOrNode(leftNode2,notNode);

286 Developing and deploying

OrNode orNodeLeft =
QueryNodeFactory.createOrNode(rightNode,orNodeRight);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("ID_cert45",

QueryOperator.LIKE,
"GH_");

OrNode orNode = QueryNodeFactory.createOrNode(orNodeLeft,
leftNode);

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

// Returns BRG3

Query business rule groups by multiple properties combined with nested OR
operators and a NOT node:

This is an example of a query business rule groups by multiple properties
combined with nested OR operators and a NOT node.
// Prop OR NOT(Prop OR Prop)
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"___thRegion");

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode(

"organization",
QueryOperator.LIKE,
"7%");

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode(

"department",
QueryOperator.LIKE,
"%ing");

OrNode orNodeRight =
QueryNodeFactory.createOrNode(rightNode2,

rightNode);

NotNode notNode =
QueryNodeFactory.createNotNode(orNodeRight);

OrNode orNodeLeft = QueryNodeFactory.createOrNode(leftNode,
notNode);

brgList =
BusinessRuleManager.getBRGsByProperties(orNodeLeft, 0, 0);

// Returns BRG3

Query business rule groups by multiple properties combined with nested OR
operators and a NOT node:

This is an example of a query business rule groups by multiple properties
combined with nested OR operators and a NOT node.
// NOT(Prop OR Prop) OR Prop
QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"%lRegion");

Programming guides and techniques 287

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode(

"organization",
QueryOperator.LIKE,
"7%");

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode(

"department",
QueryOperator.LIKE,
"%ing");

OrNode orNodeRight =
QueryNodeFactory.createOrNode(rightNode2,rightNode);

NotNode notNode =
QueryNodeFactory.createNotNode(orNodeRight);

OrNode orNodeLeft =
QueryNodeFactory.createOrNode(notNode,leftNode);

brgList =
BusinessRuleManager.getBRGsByProperties(orNodeLeft, 0, 0);

// Returns BRG2 and BRG4

Query business rule groups by a list of nodes that are combined with an AND
operator:

This is an example of a query business rule groups by a list of nodes that are
combined with an AND operator.
// AND list
List<QueryNode> list = new ArrayList<QueryNode>();

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"%thRegion");

list.add(rightNode);

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7%");

list.add(rightNode2);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

list.add(leftNode);

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"7H%");

list.add(leftNode2);

AndNode andNode = QueryNodeFactory.createAndNode(list);

288 Developing and deploying

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Returns BRG4

Query business rule groups by a list of nodes and NOT node combined with an
AND operator:

This is an example of a query business rule groups by a list of nodes and NOT
node combined with an AND operator.
// AND list with a notNode
List<QueryNode> list = new ArrayList<QueryNode>();

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"%thRegion");

list.add(rightNode);

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"8%");

NotNode notNode =

QueryNodeFactory.createNotNode(rightNode2);

list.add(notNode);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

list.add(leftNode);

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

list.add(leftNode2);

AndNode andNode = QueryNodeFactory.createAndNode(list);

brgList = BusinessRuleManager.getBRGsByProperties(andNode,
0, 0);

// Return BRG4

Query business rule groups by a list of nodes that are combined with an OR
operator:

This is an example of a query business rule groups by a list of nodes that are
combined with an OR operator.
// OR list
List<QueryNode> list = new ArrayList<QueryNode>();

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"%thRegion");

list.add(rightNode);

Programming guides and techniques 289

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"8%");

list.add(rightNode2);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

list.add(leftNode);

OrNode orNode = QueryNodeFactory.createOrNode(list);

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

//Returns BRG3

Query business rule groups by a list of nodes and Not node combined with an
OR operator:

This is an example of a query business rule groups by a list of nodes and Not
node combined with an OR operator.
// OR list with Not node
List<QueryNode> list = new ArrayList<QueryNode>();

QueryNode rightNode =
QueryNodeFactory.createPropertyQueryNode("region",

QueryOperator.LIKE,
"%thRegion");

list.add(rightNode);

QueryNode rightNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"8%");

NotNode notNode =
QueryNodeFactory.createNotNode(rightNode2);

list.add(notNode);

QueryNode leftNode =
QueryNodeFactory.createPropertyQueryNode("department",

QueryOperator.LIKE,
"%ing");

list.add(leftNode);

QueryNode leftNode2 =
QueryNodeFactory.createPropertyQueryNode("organization",

QueryOperator.LIKE,
"8%");

list.add(leftNode2);

OrNode orNode = QueryNodeFactory.createOrNode(list);

290 Developing and deploying

brgList = BusinessRuleManager.getBRGsByProperties(orNode,
0, 0);

//Returns BRG1, BRG2, BRG3, and BRG4

Common operations classes
This section contains additional classes that were used in the examples to simplify
common operations.

Formatter class
This class provides different methods to help with displaying the different
examples. It adds different HTML tags to format the output.
package com.ibm.websphere.sample.brules.mgmt;

public class Formatter {

private StringBuffer buffer;

public Formatter()
{

buffer = new StringBuffer();
}

public void println(Object o)
{

buffer.append(o);
buffer.append("
\n");
}

public void print(Object o)
{

buffer.append(o);
}

public void printlnBold(Object o)
{

buffer.append("");
buffer.append(o);
buffer.append("<brbr>\n");

}

public void printBold(Object o)
{

buffer.append("");
buffer.append(o);
buffer.append("");

}

public String toString()
{

return buffer.toString();
}

public void clear()
{

buffer = new StringBuffer();
}

}

RuleArtifactUtility class
This utility class has two public methods. The first public method is for printing
out a decision table. This method makes use of a private method that uses
recursion to print out the conditions and actions for the decision table. The second
public method is for printing out a rule set.

Programming guides and techniques 291

package com.ibm.websphere.sample.brules.mgmt;

import java.util.Iterator;
import java.util.List;

import com.ibm.wbiserver.brules.mgmt.BusinessRule;
import com.ibm.wbiserver.brules.mgmt.Parameter;
import com.ibm.wbiserver.brules.mgmt.ParameterValue;
import com.ibm.wbiserver.brules.mgmt.RuleTemplate;
import com.ibm.wbiserver.brules.mgmt.Template;
import com.ibm.wbiserver.brules.mgmt.dtable.ActionNode;
import com.ibm.wbiserver.brules.mgmt.dtable.CaseEdge;
import com.ibm.wbiserver.brules.mgmt.dtable.ConditionNode;
import com.ibm.wbiserver.brules.mgmt.dtable.DecisionTable;
import com.ibm.wbiserver.brules.mgmt.dtable.DecisionTableRule;
import
com.ibm.wbiserver.brules.mgmt.dtable.DecisionTableTemplateInstanceRule;
import com.ibm.wbiserver.brules.mgmt.dtable.TemplateInstanceExpression;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeAction;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeActionTermDefinition;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeBlock;
import
com.ibm.wbiserver.brules.mgmt.dtable.TreeConditionTermDefinition;
import
com.ibm.wbiserver.brules.mgmt.dtable.TreeConditionValueDefinition;
import com.ibm.wbiserver.brules.mgmt.dtable.TreeNode;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleBlock;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSet;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRule;
import com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetRuleTemplate;
import
com.ibm.wbiserver.brules.mgmt.ruleset.RuleSetTemplateInstanceRule;

public class RuleArtifactUtility
{

static Formatter out = new Formatter();

/*
Method to print out a decision table with the conditions and
actions printed out in a HTML tabular format. The conditions
and actions are printed out with a separate method that
recursively works through the case edges of the decision
tables.
*/

public static String printDecisionTable(BusinessRule
ruleArtifact)
{

out.clear();
out.printlnBold("Decision Table");
DecisionTable decisionTable = (DecisionTable)
ruleArtifact;
out.println("Name: " +
decisionTable.getName());
out.println("Namespace: " +
decisionTable.getTargetNameSpace());

// Output the init rule for the decision table
before
// working through the table of conditions and
actions
DecisionTableRule initRule =
decisionTable.getInitRule();
if (initRule != null)
{

out.printBold("Init Rule: ");
out.println(initRule.getName());

292 Developing and deploying

out.println("Display Name: " +
initRule.getDisplayName());
out.println("Description: " +
initRule.getDescription());
// The expanded user presentation
will automatically populate the
// presentation with the parameter
values and can be used for
// display if the init rule was
defined with a template. If no
// template was defined the
expanded user presentation
// is the same as the regular
presentation.
out.println("Extended User
Presentation: "

+
initRule.getExpandedUse
rPresentation());
// The regular user presentation
will have placeholders in the
// string where the
// parameter can be substituted if
the init rule was defined with a
// template
// If the rule was not defined with
a template, the user
// presentation will only
// be a string without
placeholders. The placeholders are
of a
// format of {n} where
// n is the index (zero-based) of
the parameter in the template. This
// value
// can be used to create an
interface for editing where there
are
// fields with
// the parameter values available
for editing
out.println("User Presentation: " +
initRule.getUserPresentation());
// Init rules might be defined with
or without a template
// Check to make sure a template
was used before trying
// to access the parameters
if (initRule instanceof
DecisionTableTemplateInstanceRule)
{

DecisionTableTemplateIn
stanceRule
templateInstance =
(DecisionTableTemplateI
nstanceRule) initRule;

RuleTemplate template =
templateInstance.getRul
eTemplate();

List<Parameter>
parameters =
template.getParameters(
);
Iterator<Parameter>
paramIterator =

Programming guides and techniques 293

parameters.iterator();

Parameter parameter =
null;

while
(paramIterator.hasNext(
)) {
parameter =
paramIterator.next();

out.println("Parameter
Name: " +
parameter.getName());
out.println("Parameter
Value: "
+
templateInstance.getPar
ameterValue(parameter
.getName()));
}

}
}
// For the rest of the decision table, start at
the root and
// recursively work through the different case
edges and
// actions
TreeBlock treeBlock =
decisionTable.getTreeBlock();
TreeNode treeNode = treeBlock.getRootNode();

printDecisionTableConditionsAndActions(treeNode
, 0);
out.println("");
return out.toString();

}
/*Method to recursively work through the case edges and print
out the conditions and actions.

*/
static private void printDecisionTableConditionsAndActions(

TreeNode treeNode, int indent)
{

out.print("<table border=\"1\">");
if (treeNode instanceof ConditionNode)
{

// Get the case edges for the
current TreeNode
// and for each case edge print out
the conditions
ConditionNode conditionNode =
(ConditionNode) treeNode;

List<CaseEdge> caseEdges =
conditionNode.getCaseEdges();
Iterator<CaseEdge> caseEdgeIterator
= caseEdges.iterator();

CaseEdge caseEdge = null;

while (caseEdgeIterator.hasNext())
{

out.print("<tr>");
// If this is the start
of the conditions for the
// condition node,
print out the condition term

294 Developing and deploying

if (indent == 0)
{
out.print("<td>");

TreeConditionTermDefinition
termDefinition =
conditionNode
.getTermDefinition();

out.print(termDefinitio
n.getUserPresentation()
);
out.print("</td>");
indent++;
} else {
// After the condition
term has been printed
for a
// case edge skip for
the rest of the case
edges
out.print("<td></td>");
}

caseEdge =
caseEdgeIterator.next()
;

out.print("<td>");

// Check if the
caseEdge is defined by
a template
if
(caseEdge.getValueDefin
ition() != null)
{
TemplateInstanceExpress
ion templateInstance =
caseEdge
.getValueTemplateInstan
ce();

out.println(templateIns
tance.getExpandedUserPr
esentation());

TreeConditionValueDefin
ition valueDef =
caseEdge
.getValueDefinition();

out.println(valueDef.ge
tUserPresentation());

Template template =
templateInstance.getTem
plate();

// Get the parameters
for the template
definition and
// print out the
parameter names and
values
List<Parameter>
parameters =

Programming guides and techniques 295

template.getParameters(
);
Iterator<Parameter>
paramIterator =
parameters.iterator();

List<ParameterValue>
parameterValues =
templateInstance
.getParameterValues();
Iterator<ParameterValue
> paramValues =
parameterValues
.iterator();

Parameter parameter =
null;
ParameterValue
parameterValue = null;

while
(paramIterator.hasNext(
) &&
paramValues.hasNext())
{
parameter =
paramIterator.next();
parameterValue =
paramValues.next();

out.println("Parameter
Name: " +
parameter.getName());
out.println("Parameter
Value: "

+
parameterValue.getValue
());
}
}

out.print("</td><td>");
// Print the child node
for the caseEdge
printDecisionTableCondi
tionsAndActions(caseEdg
e.getChildNode(),
0);

out.print("</td></tr>")
;
}

// Add Otherwise condition if it
exists
TreeNode otherwise =
conditionNode.getOtherwiseCase();

if (otherwise != null)
{

out.print("<tr><td></td>
<td>Otherwise</td><td>
");
// Print the Otherwise
ConditionNode
printDecisionTableCondi

296 Developing and deploying

tionsAndActions(otherwi
se, 0);
out.print("</td></td>")
;

}
out.print("</table>");

} else {
// ActionNode has been found and
different logic is needed
// to print out the TreeActions
ActionNode actionNode =
(ActionNode) treeNode;
List<TreeAction> treeActions =
actionNode.getTreeActions();

Iterator<TreeAction>
treeActionIterator =
treeActions.iterator();

TreeAction treeAction = null;

// The ActionNode can contain
multiple TreeActions to
// print out
while
(treeActionIterator.hasNext())
{

out.print("<tr>");
treeAction =
treeActionIterator.next
();

TreeActionTermDefinitio
n treeActionTerm =
treeAction
.getTermDefinition();

if (indent == 0) {
out.print("<td>");
out.print(treeActionTer
m.getUserPresentation()
);
out.print("</td>");
}
out.print("<td>");
TemplateInstanceExpress
ion templateInstance =
treeAction
.getValueTemplateInstan
ce();

// Check that a
template was specified
for
// the TreeAction
before working with the
// parameter name and
values
if (templateInstance !=
null) {
out.println(templateIns
tance.getExpandedUserPr
esentation());

Template template =
templateInstance.getTem
plate();

Programming guides and techniques 297

List<Parameter>
parameters =
template.getParameters(
);

Iterator<Parameter>
paramIterator =
parameters.iterator();

List<ParameterValue>
parameterValues =
templateInstance
.getParameterValues();
Iterator<ParameterValue
> paramValues =
parameterValues
.iterator();

Parameter parameter =
null;
ParameterValue
parameterValue = null;

while
(paramIterator.hasNext(
) &&
paramValues.hasNext())
{
{parameter =
paramIterator.next();
parameterValue =
paramValues.next();

out.println(" Parameter
Name: " +
parameter.getName());
out.println(" Parameter
Value: "
+
parameterValue.getValue
());

}
} else
{
// If a template was
not used, the only item
that is
// available is the
UserPresentation if it
was
// specified when the
rule was created
out.print(treeAction.ge
tValueUserPresentation(
));
}

out.print("</td></tr>")
;

}
out.print("</table>");

}
}
/*

Method to print out a rule set

298 Developing and deploying

*/
public static String printRuleSet(BusinessRule
ruleArtifact)
{

out.clear();
out.printlnBold("Rule Set");
RuleSet ruleSet = (RuleSet) ruleArtifact;
out.println("Name: " + ruleSet.getName());
out.println("Namespace: " +
ruleSet.getTargetNameSpace());

// The rules in a rule set are contained in a
rule block
RuleBlock ruleBlock =
ruleSet.getFirstRuleBlock();

Iterator<RuleSetRule> ruleIterator =
ruleBlock.iterator();

RuleSetRule rule = null;

// Iterate through the rules in the rule block.
while (ruleIterator.hasNext())
{

rule = ruleIterator.next();
out.printBold("Rule: ");
out.println(rule.getName());
out.println("Display Name: " +
rule.getDisplayName());
out.println("Description: " +
rule.getDescription());
// The expanded user presentation
will automatically populate the
// presentation with the parameter
values and can be used for
// display if the rule was defined
with a template. If no
// template was defined the
expanded user presentation
// is the same as the regular
presentation.
out.println("Expanded User
Presentation: "

+
rule.getExpandedUserPre
sentation());
// The regular user presentation
will have placeholders in the
// string where the parameter can
be substituted if the rule
// was defined with a template. If
the rule was not defined with
// a template, the user
presentation will only be a string
// without placeholders. The
placeholders are of a format of {n}
// where n is the index (zerobased)
of the parameter in the
// template. This value can be used
to create an interface for
// editing where there are fields
with the parameter values
// available for editing
out.println("User Presentation: " +
rule.getUserPresentation());

// Check if the rule was defined

Programming guides and techniques 299

with a template
if (rule instanceof
RuleSetTemplateInstanceRule) {

RuleSetTemplateInstance
Rule templateInstance =
(RuleSetTemplateInstanc
eRule) rule;

RuleSetRuleTemplate
template =
templateInstance
.getRuleSetRuleTemplate
();

List<Parameter>
parameters =
template.getParameters(
);
Iterator<Parameter>
paramIterator =
parameters.iterator();

Parameter parameter =
null;

// Retrieve all of the
parameters and output
the name and value
while
(paramIterator.hasNext(
))
{
parameter =
paramIterator.next();

out.println("Parameter
Name: " +
parameter.getName());
out.println("Parameter
Value: "

+
templateInstance.getPar
ameterValue(
parameter.getName()).ge
tValue());
}

}
}
out.println("");
return out.toString();

}
}

Widget programming
Business Space provides widgets that are enabled for various business process
management products from IBM. However, you can also create your own widgets,
possibly integrating them with widgets from IBM. The following references explain
why you would create your widgets, how you would create them and provides
references to APIs that you could use in creating your own widgets.

In the Business Space information center, see these topics:
v Overview of developing widgets
v Widget programming guide

300 Developing and deploying

Developing client applications for business processes and
tasks

You can use a modeling tool to build and deploy business processes and tasks.
These processes and tasks are interacted with at runtime, for example, a process is
started, or tasks are claimed and completed. You can use Business Process
Choreographer Explorer to interact with processes and tasks, or the Business
Process Choreographer APIs to develop customized clients for these interactions.

About this task

These clients can be Enterprise JavaBeans (EJB) clients, Web service clients, or Web
clients that exploit the Business Process Choreographer Explorer JavaServer Faces
(JSF) components. Business Process Choreographer provides Enterprise JavaBeans
(EJB) APIs and interfaces for Web services for you to develop these clients. The EJB
API can be accessed by any Java application, including another EJB application.
The interfaces for Web services can be accessed from either Java environments or
Microsoft .Net environments.

Comparison of the programming interfaces for interacting with
business processes and human tasks

Enterprise JavaBeans (EJB), Web service, and Java Message Service (JMS), and
Representational State Transfer Services (REST) generic programming interfaces are
available for building client applications that interact with business processes and
human tasks. Each of these interfaces has different characteristics.

The programming interface that you choose depends on several factors, including
the functionality that your client application must provide, whether you have an
existing end-user client infrastructure, whether you want to handle human
workflows. To help you decide which interface to use, the following table
compares the characteristics of the EJB, Web service, JMS, and REST programming
interfaces.

EJB interface Web service interface JMS message interface REST interface

Functionality This interface is available
for both business processes
and human tasks. Use this
interface to build clients
that work generically with
processes and tasks.

This interface is available
for both business processes
and human tasks. Use this
interface to build clients for
a known set of processes
and tasks.

This interface is available
for business processes only.
Use this interface to build
messaging clients for a
known set of processes.

This interface is available
for both business processes
and human tasks. Use this
interface to build Web
2.0-style clients for a
known set of processes and
tasks.

© IBM Corporation 2005, 2006 © IBM 2006, 2010 301

EJB interface Web service interface JMS message interface REST interface

Data
handling

Supports remote artifact
loading of schemas for
accessing business object
metadata.

If the EJB client application
is running in the same cell
as the WebSphere Process
Server that it connects to,
the schemas that are
needed for the business
objects of the processes and
tasks do not have to be
available on the client, they
can be loaded from the
server using the remote
artifact loader (RAL).

RAL can also be used
cross-cell if the client
application runs in a full
WebSphere Process Server
server installation.
However, RAL cannot be
used in a cross-cell setup
where the client application
runs in a WebSphere
Process Server client
installation.

Schema artifacts for input
data, output data, and
variables, must be available
in an appropriate format
on the client.

Schema artifacts for input
data, output data, and
variables, must be available
in an appropriate format
on the client.

Schema artifacts for input
data, output data, and
variables, must be available
in an appropriate format
on the client.

Client
environment

A WebSphere Process
Server installation or a
WebSphere Process Server
client installation.

Any runtime environment
that supports Web service
calls, including Microsoft
.NET environments.

Any runtime environment
that supports JMS clients,
including SCA modules
that use SCA JMS imports.

Any runtime environment
that supports REST clients.

Security Java Platform, Enterprise
Edition (Java EE) security.

Web services security. Java Platform, Enterprise
Edition (Java EE) security
for the WebSphere Process
Server installation. You can
also secure the queues
where the JMS client
application puts the API
messages, for example,
using WebSphere MQ
security mechanisms.

Client application that call
the REST methods must
use an appropriate HTTP
authentication mechanism.

An operation can be exposed by multiple protocols. Observe the following general
considerations if you use the same operation in different protocols.
v In Web service and REST interfaces, all object identifiers, such as PIID, AIID, and

TKIID are represented by a string type. Only the EJB API interface expects a
type-safe object ID.

v Operation overloading is only used for EJB methods and not for WSDL
operations. In some cases, multiple WSDL operations exist, in other cases, only
one WSDL operation exists that allows all of the parameter variations either by
omission (minOccurs="0"), or null values (nillable="true").

v In some EJB methods, XML namespaces and local names are passed as separate
parameters. Most WSDL operations use the QName XML schema type to pass
these parameters.

v Asynchronous interactions with long-running WSDL request-response
operations, such as the callWithReplyContext operation in the EJB interface or
the callAsync operation in the WSDL interface, are represented by the call
operation in the JMS interface.

302 Developing and deploying

v The EJB interface returns a set of API objects, which expose getter and setter
methods for the contained fields. Web service and REST interfaces return
complex-typed (XML or JSON) documents to the client.

v Some Human Task Manager services operating on human tasks are also
available as Business Flow Manager services operating on activities that call a
human task.

Related tasks

Developing EJB client applications
The EJB APIs provide a set of generic methods for developing EJB client
applications for working with the business processes and human tasks that are
installed on a WebSphere Process Server.
Developing Web service API client applications
You can develop client applications that access business process applications and
human task applications through the Business Process Choreographer Web services
APIs. The client application development process consists of a number of
mandatory and optional steps, including generating a Web service proxy and
adding security and transaction policies to the client application.
Developing JMS client applications
You can develop client applications that access business process applications
asynchronously through the Java Messaging Service (JMS) API.

Queries on business process and task data
Instance data for long-running business processes and human tasks are stored
persistently in the database and are accessible by queries. Also, template data for
business process templates and human task templates can be accessed using a
query interface.

The EJB query interfaces, query API, and query table API, are available with
Business Process Choreographer.

Depending on the clients that access process or task related data, one or more of
the interfaces can be the right choice. REST and Web services APIs are available in
Business Process Choreographer for querying task and process list data. However,
for high volume process list and task list queries, use the Business Process
Choreographer EJB query table API or REST query table API for performance
reasons.

Comparison of the programming interfaces for retrieving
process and task data

Business Process Choreographer provides a query table API and a query API for
retrieving process and task data. Each of these interfaces has different
characteristics.

The query interface that you choose depends on several factors, including the
functionality that your client application must provide, whether you have an
existing end-user client infrastructure, and performance considerations. To help
you decide which interface to use, the following table compares the characteristics
of the query table and the query programming interfaces.

Characteristic query table API query API

Availability The query table API is available for the Business
Flow Manager EJB interface and the REST
programming interface.

The query API is available for EJB, Web service,
JMS, and REST programming interfaces.

Developing client applications for business processes and tasks 303

Characteristic query table API query API

Methods for content
retrieval

The API provides the following methods:

v queryEntities

v queryEntityCount

v queryRows

v queryRowCount

The API provides the following methods:

v query

v queryAll

v queryProcessTemplates

v queryTaskTemplates

Methods for meta data
retrieval

The API provides the following methods:

v getQueryTableMetaData

v findQueryTableMetaData

The API provides the following methods:

v QueryResultSet.getColumnType

Query table name Specifies the query table on which the query table
API is run. Only one query table can be queried at
any one time.

For example, queryEntities("CUST.TASKS", ...).

The SELECT clause specifies the columns and
predefined database views on which the query
runs. This specification is similar to an SQL select
clause.

For example, query("TASK.TKIID, TASK.STATE,
WORK_ITEM.REASON", ...).

SELECT clause and
selected attributes

Use the filter options of the query table API to
specify the attributes that the query is to return.
Because the query is run against one query table,
the attributes are uniquely identifiable by their
names.

Use the SELECT clause to specify attributes. The
syntax of the attribute name is:
view_name.attribute_name. For example, to search
for task states, specify TASK.STATE in your query.

WHERE clause and
filters

Use the queryCondition property on the query
table API to further filter the result of queries.
Query tables provide pre-filtered content if
primary query table filters, authorization filters, or
query table filters have been specified on the
query table definition.

Use the WHERE clause to filter the result of the
query.

WHERE clause and
selection criteria

The WHERE clause of the query API is not needed
in this form on the query table API. Use the
queryCondition property on the query table API
for additional filtering.

Selection criteria in the query table definition
select a particular property of the attached query
table. This is achieved in addition to the filtering
by the WHERE clause on the query API.

Selection criteria are not available for the query
API. However, selection criteria are similar to the
part of the WHERE clause that defines, for
example, the name or locale of
QUERY_PROPERTY, or TASK_CPROP, or
TASK_DESC.

For example, a WHERE clause of
QUERY_PROPERTY.NAME=’xyz’ is the same as
specifying NAME=’xyz’ as a selection criterion on
the query table definition for the
QUERY_PROPERTY attached query table.

Work items and
authorization

Use the WORK_ITEM query table to access work
items. You can customize the use of work items on
the query table definition when the query table is
developed and on the query table API, using the
AuthorizationOptions object or the
AdminAuthorizationOptions object.

For example, to exclude everybody work items
when querying the TASK query table, specify a
queryCondition property WI.EVERYBODY=0 or
specify setUseEverbody(Boolean.FALSE) on the
AuthorizationOptions property.

Use the WORK_ITEM view to access work items.
All four types of work items are considered for the
query result: everybody, individual, groups, and
inherited work items. To filter the work items for a
specific type of work item, customize the WHERE
clause.

For example, to exclude the everybody work
items, specify WORK_ITEM.EVERYBODY=0, in the
WHERE clause.

Parameters You can use parameters in filters and selection
criteria for composite query tables.

Parameters are not available for the query API
unless stored queries are used.

Stored queries and query
tables

The difference between a stored query and a query
table is that stored queries are defined for one
particular query, while a query table is defined for
a particular set of queries. For example, the query
table definition does not allow the specification of
an order-by clause because this information is
typically available only when the query is run.

You can use stored queries to run query that
contains a predefined set of options.

Materialized views Materialized views are not available for the query
table API.

Materialized views use database technologies to
provide performance improvements for queries.

304 Developing and deploying

Characteristic query table API query API

Custom tables Supplemental query tables offer the same
functionality as custom tables.

Custom tables are used to include data in queries
that is external to the Business Process
Choreographer database schema.

queryAll and
authorization options

The queryAll functionality is provided by the
AdminAuthorizationOptions object, which can be
passed to the query table API instead of the
AuthorizationOptions object. The caller must be in
the BPESystemAdministrator,
TaskSystemAdministrator, BPESystemMonitor, or
TaskSystemMonitor.

The queryAll method which can be used by users
that have the BPESystemAdministrator Java EE
role to return all of the objects in the query result
without being restricted by work items for a
particular user or group.

Internationalization For attributes of query tables and for the query
table, localized display names and descriptions are
available when query tables are used.

Names of the columns of the selected views, as
they appear in the database or as they are
specified in the select clause, are returned.

Query tables in Business Process Choreographer
Query tables support task and process list queries on data that is contained in the
Business Process Choreographer database schema. This includes human task data
and business process data that is managed by Business Process Choreographer, and
external business data. Query tables provide an abstraction on the data of Business
Process Choreographer that can be used by client applications. In this way, client
applications become independent of the actual implementation of the query table.
Query table definitions are deployed on Business Process Choreographer
containers, and are accessible using the query table API.

There are three types of query tables:
v Predefined query tables
v Supplemental query tables
v Composite query tables

Query tables are represented using similar models in the query table runtime, and
you can use the query table API to query them. While predefined and

Query table

Composite

CostomBPEDB

Predefined Supplemental

kind
kind

kind

Figure 72. Query tables in Business Process Choreographer

Developing client applications for business processes and tasks 305

supplemental query tables point directly to tables or views in the database,
composite query tables compose parts of this data, which is represented in a single
query table.

Query tables enhance the predefined database views and the existing query
interfaces of Business Process Choreographer, and they:
v Are optimized for running process and task list queries, using performance

optimized access patterns.
v Simplify and consolidate access to the information needed.
v Allow for the fine-grained configuration of authorization and filter options.

You can customize the query tables, for example, you can configure a query table
so that it contains only those tasks or process instances that are relevant in a
particular scenario. It is also recommended that you use query tables where
performance is important, such as with high volume process list and task list
queries.

The Query Table Builder is provided as an Eclipse plug-in to:
v Develop composite and supplemental query tables
v Import and export query table definitions in XML format

You can download the Query Table Builder on the WebSphere Business Process
Management SupportPacs site. Look for PA71 WebSphere Process Server - Query
Table Builder. To access the link, see the related references section of this topic.

Predefined query tables
Predefined query tables provide access to the data in the Business Process
Choreographer database. They are the query table representation of the
corresponding predefined Business Process Choreographer database views, such as
the TASK view or the PROCESS_INSTANCE view. These predefined query tables
enhance the functionality and performance of the predefined database views
because they are optimized for running process and task list queries.

The predefined query tables can be queried directly using the query table API.
When you access the tables using the query table API, you are offered more
options for configuration than when you use the query API.

Properties

Predefined query tables have the following properties:

Table 25. Properties of predefined query tables

Property Description

Name The query table name is the name of one of the predefined
database views, in uppercase, for example, TASK.

306 Developing and deploying

Table 25. Properties of predefined query tables (continued)

Property Description

Attributes Attributes of predefined query tables define the pieces of
information that are available for queries. These attributes are the
names of columns, in uppercase, that are specified by the
predefined database views.

The attributes are defined with a name and a type. The type is one
of the following:

v Boolean: A boolean value

v Decimal: A floating point number

v ID: An object ID, such as TKIID of the TASK query table TASK

v Number: An integer, short, or long

v String: A string

v Timestamp: A timestamp

Authorization Predefined query tables use either instance-based or role-based
authorization.

v Predefined query tables with instance data require
instance-based authorization. This means that only objects with a
work item for the user who performs the query are returned.
However, using the AdminAuthorizationOptions object, this
verification can be reduced to a verification of the existence of a
work item of any user. The user must have the
BPESystemAdministrator Java EE role if the Business Flow
Manager EJB is used or the TaskSystemAdministrator Java EE
role if the Human Task Manager EJB is used for those queries.

v Predefined query tables with template data require role-based
authorization, which means that only users in the
BPESystemAdministrator Java EE role if the Business Flow
Manager EJB is used or the TaskSystemAdministrator Java EE
role if the Human Task Manager EJB is used, can access the
contents of those query tables.

Predefined query tables with instance data

The following table shows the predefined query tables that contain instance data.
These query tables:
v Can be used as the primary query of a composite query table.
v Use instance-based authorization if queried directly. This is accomplished with a

join (SQL-) with the view that stores authorization information, that is, the
predefined WORK_ITEM view or query table.

v Contain instance data, for example data of task instances or process instances.

Table 26. Predefined query tables containing instance data

Instance data Query table name

Information about activities of a process
instance.

ACTIVITY

ACTIVITY_ATTRIBUTE

ACTIVITY_SERVICE

Information about escalations belonging to
human tasks.

ESCALATION

ESCALATION_CPROP

ESCALATION_DESC

Developing client applications for business processes and tasks 307

Table 26. Predefined query tables containing instance data (continued)

Instance data Query table name

Information about process instances. PROCESS_ATTRIBUTE

PROCESS_INSTANCE

QUERY_PROPERTY

Information about human tasks. TASK

TASK_CPROP

TASK_DESC

The WORK_ITEM query table also contains instance data, but this is not available
as the primary query table or an attached query table. Work item information is
available implicitly when querying query tables that use instance-based
authorization. That is, attributes of the WORK_ITEM query table can be used when
querying a query table with instance-based authorization, even though the
attributes are not explicitly specified by the query table.

Predefined query tables with template data

Predefined query tables with template data require role-based authorization. They
can be queried only by administrators using the AdminAuthorizationOptions
object.

The following table shows the predefined query tables that contain template data.
These query tables:
v Can be used as the primary query table of a composite query table.
v Use role-based authorization if queried directly. This means that the caller using

the API query method must be in the BPESystemAdministrator Java EE role if
the Business Flow Manager EJB is used, or the TaskSystemAdministrator Java EE
role if the Human Task Manager EJB is used, and AdminAuthorizationOptions
must be used.

v Contain template data, for example, the template data of task templates or
process templates.

Table 27. Predefined query tables containing template data

Template data Query table name

Information about application components. APPLICATION_COMP

Information about escalation templates. ESC_TEMPL

ESC_TEMPL_CPROP

ESC_TEMPL_DESC

Information about process templates. PROCESS_TEMPLATE

PROCESS_TEMPL_ATTR

Information about task templates. TASK_TEMPL

TASK_TEMPL_CPROP

TASK_TEMPL_DESC

308 Developing and deploying

Related concepts

“Supplemental query tables”
Supplemental query tables in Business Process Choreographer expose to the query
table API business data that is not managed by Business Process Choreographer.
With supplemental query tables, this external data can be used with data from the
predefined query tables when retrieving business process instance information or
human task information.
“Composite query tables” on page 311
Composite query tables in Business Process Choreographer do not have a specific
representation of data in the database; they comprise of a combination of data from
related predefined and supplemental query tables. Use a composite query table to
retrieve the information for a process instance list or task list, such as My To Dos.
“Query table development” on page 318
Supplemental and composite query tables in Business Process Choreographer are
developed during application development using the Query Table Builder.
Predefined query tables cannot be developed or deployed. They are available when
Business Process Choreographer is installed and provide a simple view on the
artifacts in the Business Process Choreographer database schema.
“Query table queries” on page 337
Queries are run on query tables in Business Process Choreographer using the
query table API, which is available on the Business Flow Manager EJB and the
REST API.
“Authorization for query tables” on page 327
You can use instance-based authorization, role-based authorization, or no
authorization when you run queries on query tables.

Supplemental query tables
Supplemental query tables in Business Process Choreographer expose to the query
table API business data that is not managed by Business Process Choreographer.
With supplemental query tables, this external data can be used with data from the
predefined query tables when retrieving business process instance information or
human task information.

Supplemental query tables relate to database tables or database views in the
Business Process Choreographer database. They are query tables that contain
business data that is maintained by customer applications. Supplemental query
tables provide information in a composite query table in addition to information
that is contained in a predefined query table.

Supplemental query tables have the following properties:

Developing client applications for business processes and tasks 309

Table 28. Properties of supplemental query tables

Property Description

Name The query table name must be unique in a Business Process
Choreographer installation. When the query is run, this name is
used to identify the query table that is queried.

A query table is uniquely identified using its name, which is
defined as prefix.name. The maximum length of prefix.name is 28
characters. The prefix must be different to the reserved prefix
'IBM’, for example, ’COMPANY.BUS_DATA’. Do not use a digit at the
end of the table name. If a table is used multiple times within a
query, the name of the table is extended with a number ranging
from 0 to 9. For example, CUSTOM_VIEW0, CUSTOM_VIEW1 and
so on. If there is already a digit at the end of your table name,
Business Process Choreographer will remove this digit, which
causes an QueryUnknownTableException.

Database name The name of the related table or view in the database. Only
uppercase letters may be used.

Database schema The schema of the related table or view in the database. Only
uppercase letters can be used. The database schema must be
different to the database schema of the Business Process
Choreographer database. Nevertheless, the table or view must be
accessible with the same JDBC data source that is used to access
the Business Process Choreographer database.

Attributes Attributes of supplemental query tables define the pieces of
information that are available for queries. These attributes must
match the related name of the columns in the related database
table or view.

The attributes are defined with a name and a type. The name is
defined in uppercase. The type is one of the following:

v Boolean: A boolean value

v Decimal: A floating point number

v ID: An object ID of 16 bytes in length, such as TKIID of the
TASK query table

v Number: An integer, short, or long

v String: A string

v Timestamp: A timestamp

Join Joins must be defined on supplemental query tables if they are
attached in composite query tables. A join defines which attributes
are used to correlate information in the supplemental query table
with the information in the primary query table. When a join is
defined, the source attribute and the target attribute must be of the
same type.

Authorization No authorization is specified for supplemental query tables,
therefore, all authenticated users can see the contents.

310 Developing and deploying

Related concepts

“Predefined query tables” on page 306
Predefined query tables provide access to the data in the Business Process
Choreographer database. They are the query table representation of the
corresponding predefined Business Process Choreographer database views, such as
the TASK view or the PROCESS_INSTANCE view. These predefined query tables
enhance the functionality and performance of the predefined database views
because they are optimized for running process and task list queries.
“Composite query tables”
Composite query tables in Business Process Choreographer do not have a specific
representation of data in the database; they comprise of a combination of data from
related predefined and supplemental query tables. Use a composite query table to
retrieve the information for a process instance list or task list, such as My To Dos.
“Query table development” on page 318
Supplemental and composite query tables in Business Process Choreographer are
developed during application development using the Query Table Builder.
Predefined query tables cannot be developed or deployed. They are available when
Business Process Choreographer is installed and provide a simple view on the
artifacts in the Business Process Choreographer database schema.
“Query table queries” on page 337
Queries are run on query tables in Business Process Choreographer using the
query table API, which is available on the Business Flow Manager EJB and the
REST API.
“Authorization for query tables” on page 327
You can use instance-based authorization, role-based authorization, or no
authorization when you run queries on query tables.

Composite query tables
Composite query tables in Business Process Choreographer do not have a specific
representation of data in the database; they comprise of a combination of data from
related predefined and supplemental query tables. Use a composite query table to
retrieve the information for a process instance list or task list, such as My To Dos.

Composite query tables are designed by client developers and they allow for a
fine-grained configuration of filters and authorization options for optimized data
access when the query is run. They are realized with SQL, which is optimized for
task and process list queries.

It is recommended that you use composite query tables in production scenarios in
place of the standard Business Process Choreographer query APIs, because
composite query tables provide an abstraction over the actual implementation of
the query and thus enable query optimizations.

Furthermore, you can change composite query tables at runtime without
redeploying the client that accesses the query table.

The following figure provides an overview of the content of composite query
tables:

Developing client applications for business processes and tasks 311

All composite query tables are defined with one primary query table and zero or
more attached query tables.

Primary query tables:
v Constitute the main information that is contained in a composite query table.
v Must be one of the predefined query tables.
v Uniquely identify each object in the composite query table by the primary key.

For example, for the TASK predefined query table, this is the task ID TKIID.
v Authorize the contents of a query table using work items which are contained in

the WORK_ITEM query table, if instance-based authorization is used.
v Determine the list of objects that are returned as rows of a table when querying

the composite query table.

Attached query tables:
v Can be predefined query tables and supplemental query tables, which are

already deployed on the system.
v Are available to provide information in addition to the information that is

provided by the primary query table. For example, if TASK is the primary query

...

...

query table query (selected attributes): result set structure

query table definition (defined columns/attributes)

additional
attributes
at query time

defined
attributes

available
attributes

work item
query table

predefined
predefined

supplemental

primary query tableauthorization attached query tables

WORK_ITEM view primary query table attached
query table

attached
query table

Figure 73. Composite query table content

312 Developing and deploying

table, the description of the task provided in the TASK_DESC query table can be
added to the contents of the composite query table.

Typically, the primary query table is chosen based on the purpose of the composite
query table.
v If the composite query table describes a task list, the TASK query table is the

primary query table.
v If the composite query table describes a process list, the PROCESS_INSTANCE

query table is the primary query table.
v Lists of activities are retrieved using the ACTIVITY primary query table.
v Lists of human task escalations are retrieved using the ESCALATION primary

query table.

The relationship between primary and attached query tables

The attached query table and the primary query table must have a one-to-one or
one-to-zero relationship. If the one-to-one or one-to-zero relationship is violated, a
runtime exception occurs when the query is run.

Primary query tables and attached query tables are correlated using a join attribute
that is defined on the attached query table. This join attribute cannot be changed
for predefined query tables, because it describes the relationship between the data
in the various query tables of Business Process Choreographer. The join attribute is
usually sufficient to maintain the one-to-one or one-to-zero relationship. For
example, the CONTAINMENT_CTX_ID attribute is used on the TASK query table
to attach the related process instance information that is identified by the PIID
attribute on the PROCESS_INSTANCE query table.

When a one to many relationship exists, you must specify an additional criterion,
known as selection criterion, in the Query Table Builder when you define the
query table. For example, this could be “LOCALE=’en_US’”. A task can have several
descriptions that are identified using different locales for a single task.

Example 1:

The following figure provides a sample visualization of the selection criteria that is
specified on attached query tables:

Developing client applications for business processes and tasks 313

The composite query table contains the ID, STATE, NAME, CUSTOMER, and
DESCRIPTION attributes.
v ID, STATE, and NAME are provided by the TASK primary query table.
v CUSTOMER is a custom property on TASK. Custom properties are stored in the

TASK_CPROP query table. For a particular task, a custom property is uniquely
identified using its name. This is reflected in the selection criterion
“CUSTOMER=’IBM’”.

v DESCRIPTION is the description of the task, which is stored in TASK_DESC
query table. For each task instance, the task description for a particular task is
uniquely identified by its locale. This is reflected in the selection criterion
“LOCALE=’en_US’”.

Example 2:

The focus of this example is on the relationship between the primary and the
attached query tables, using TASK as the primary query table and TASK_DESC as
the attached query table. When you define your composite query table, the
LOCALE attribute of the TASK_DESC query table must be specified to ensure that
there is a one-to-one or one-to-zero relationship between the primary query table
and the attached query table. The table shows sample contents of a composite
query table with a valid selection criterion for the TASK_DESC attached query
table.

query table definition (defined columns/attributes) with sample values

ID STATE NAME CUSTOMER DESCRIPTION

...

...

...

...

...

............

...

... ...

TK2 2 TSK-2 IBM The Task

TK1

TK2

TK3
TK1

TK2

TK2

TK2

TK3

TK3

TKIID STATE NAME

TKIID NAME VALUE

TKIID LOCALE DESC

3

2

2

TASK_1

TSK_2

TASK_3
DueDate

id

customer

DueDate

id

customer

-
1234

IBM

TASK_CPROP

TASK_DESC

TASK

CUSTOMER=’IBM’

attached

attached

primary

selection criterion

selection criterion

LOCALE=’en_US’

...

...... ...

TK2

TK3

TK3

TK1 en_US

de_DE

de_DE

en_US

The Task

Der Task

Der Task

The Task

TK2 en_US The Task

Figure 74. Composite query table with selection criteria

314 Developing and deploying

Table 29. Valid contents of a composite query table

TASK primary query table
information TASK_DESC attached query table information

NAME LOCALE DESCRIPTION

task_one en_US This is a description.

task_two en_US This is a description.

...

The following table shows hypothetical invalid contents (in bold type) if the
selection criterion is set incorrectly, which means that the one-to-one or one-to-zero
relationship is violated.

Table 30. Invalid contents of a composite query table

Information from TASK
(primary query table) Information from TASK_DESC (attached query table)

NAME LOCALE DESCRIPTION

task_one en_US This is a description.

task_one de_DE Das ist eine Beschreibung.

...

Properties

Composite query tables have the following properties:

Table 31. Properties of composite query tables

Property Description

Name The query table name must be unique within a Business Process
Choreographer installation. When the query is run, this query table
name is used to identify the query table that is queried.

A query table is uniquely identified using its name, which is
defined as prefix.name for composite query tables. The maximum
length of the prefix.name is 28 characters. The prefix must be
different from the reserved prefix ‘IBM', for example,
'COMPANY.TODO_TASK_LIST'. Do not use a digit at the end of
the table name. If a table is used multiple times within a query, the
name of the table is extended with a number ranging from 0 to 9.
For example, CUSTOM_VIEW0, CUSTOM_VIEW1 and so on. If
there is already a digit at the end of your table name, Business
Process Choreographer will remove this digit, which causes an
QueryUnknownTableException.

Developing client applications for business processes and tasks 315

Table 31. Properties of composite query tables (continued)

Property Description

Attributes Attributes of composite query tables define the pieces of
information that are available for queries.

The attributes are defined with a name, in uppercase. The type is
inherited from the referenced attribute, which is one of the
following:

v Boolean: A boolean value

v Decimal: A floating point number

v ID: An object ID, such as TKIID of query table TASK

v Number: An integer, short, or long

v String: A string

v Timestamp: A timestamp

Attributes of composite query tables are defined using a reference
to attributes of the primary query table or the attached query
tables. The attributes of the composite query tables inherit the
types and constants of referenced attributes.

In addition to the attributes that are part of the query table
definition, work item information can be queried at runtime. This
is possible if the primary query table contains instance data, such
as TASK or PROCESS_INSTANCE, and if instance-based
authorization is used on the composite query table. For example,
the query can be defined to return only human tasks of which the
user is a potential owner.

Authorization Each composite query table defines if instance-based, role-based, or
no authorization is used when queries are run on it.

If instance-based authorization is defined, only objects with a work
item for the user who performs the query are returned. However,
using AdminAuthorizationOptions this verification can be reduced
to a verification of the existence of a work item of any user. The
user must be in the BPESystemAdministrator Java EE role if the
Business Flow Manager EJB is used or the
TaskSystemAdministrator Java EE role if the Human Task Manager
EJB is used, for those queries, and AdminAuthorizationOptions
must be passed to the query table API.

If role-based authorization is defined, the user must be in the
BPESystemAdministrator Java EE role if the Business Flow
Manager EJB is used or the TaskSystemAdministrator Java EE role
if the Human Task Manager EJB is used, for those queries, and
AdminAuthorizationOptions must be passed to the query table
API.

If no authorization is defined, the query is run without checks
against the existence of work items of the related objects in the
query table. All authenticated users can see the contents of the
query table.

Instance-based authorization can be defined if the primary query
table contains instance data; role-based authorization can be
defined if the primary query table contains template data. No
authorization can be defined on composite query tables regardless
of which primary query table is used.

316 Developing and deploying

Filters

Filters are used to limit the number of objects, or rows, that are contained in a
composite query table.

Filters in composite query tables can be defined during development on the:
v Primary query table, as the primary query table filter.
v Implicitly available WORK_ITEM query table which is responsible for

authorization if the primary query table contains instance data. This filter is
called the authorization filter, and is available only if the composite query table
is configured to use instance-based authorization.

v Composite query table, as the query table filter.

Filters are defined during query table development. For example, a composite
query table with the TASK primary query table can filter on tasks that are in the
ready state (“STATE=STATE_READY” as the primary query table filter).

Authorization

Authorization for accessing the contents of a composite query table with a primary
query table is similar to the authorization that is used to access the primary query
table. The difference is that composite query tables can be configured to be more
restrictive.
v If instance-based authorization is configured for use, the data contained in the

composite query table is verified for existing work items in the WORK_ITEM
query table. This verification is made against the primary query table.
Everybody, individual, group, and inherited work items are used for the
verification, depending on the configuration of the composite query table. If
inherited work items are specified, objects that have a process instance as parent,
such as a participating human task, with a related everybody, individual, or

...

query table definition (build-time conditions)

work item
query table

predefined
predefined

supplemental

primary query tableauthorization attached query tables

WORK_ITEM view primary query table attached
query table

attached
query table

...additional
attributes
at query time

defined
attributes

work item filter

query table filter

primary query table
filter

Figure 75. Filters in composite query tables

Developing client applications for business processes and tasks 317

group work item as configured, are contained in the composite query table.
Typically, inherited work items are useful only for administrators.

v Composite query tables with a primary query table that contains template data
must not be set to use instance-based authorization. If role-based authorization is
used, queries can be run only by users that are in the BPESystemAdministrator
Java EE role if the Business Flow Manager EJB is used or the
TaskSystemAdministrator Java EE role if the Human Task Manager EJB is used,
and the AdminAuthorizationOptions object must be used.

Related concepts

“Predefined query tables” on page 306
Predefined query tables provide access to the data in the Business Process
Choreographer database. They are the query table representation of the
corresponding predefined Business Process Choreographer database views, such as
the TASK view or the PROCESS_INSTANCE view. These predefined query tables
enhance the functionality and performance of the predefined database views
because they are optimized for running process and task list queries.
“Supplemental query tables” on page 309
Supplemental query tables in Business Process Choreographer expose to the query
table API business data that is not managed by Business Process Choreographer.
With supplemental query tables, this external data can be used with data from the
predefined query tables when retrieving business process instance information or
human task information.

Query table development
Supplemental and composite query tables in Business Process Choreographer are
developed during application development using the Query Table Builder.
Predefined query tables cannot be developed or deployed. They are available when
Business Process Choreographer is installed and provide a simple view on the
artifacts in the Business Process Choreographer database schema.

The Query Table Builder is available as an Eclipse plug-in and can be downloaded
on the WebSphere Business Process Management SupportPacs site. Look for PA71
WebSphere Process Server - Query Table Builder. To access the link, see the related
references section of this topic.

Query tables impact on the way applications are developed and deployed. The
following steps describe the roles involved when you design and develop a
Business Process Choreographer application that uses query tables.

318 Developing and deploying

Table 32. Query table development steps

Step Who Description

1. Analysis Business analyst,
client developer

Analyze which query tables are needed in
the client application. Questions to be
answered are:

v How many task or process lists are
provided to the user? Are there task or
process lists that can share the same
query table?

v What kind of authorization is used?
Instance-based authorization, role-based
authorization, or none?

v Are there other query tables already
defined in the system that can be reused?

v Must the query tables provide the
content in multiple languages? If so, the
selection criteria on attached query tables
should be LOCALE=$LOCALE.

2. Query table
development

Client developer,
business analyst

Develop the query tables that are used in
the client application. Try to specify the
definition of the query tables such that the
best performance is achieved with query
table queries.

3. Query table
deployment

Administrator Query tables must be deployed to the
runtime before they can be used. This step
is done using the manageQueryTable.py
wsadmin command.

4. Query table queries Client developer To run queries against query tables is the
last step of query table development. The
client developer must know the name of the
query table and its attributes.

The following is sample code, which uses the query table API to query a query
table. Examples 1 and 2 are provided to query the predefined query table TASK for
simplicity reasons. Examples 3 and 4 query a composite query table, which is
assumed to be deployed on the system. In application development, you should
use composite query tables rather than directly querying the predefined query
tables.

Example 1
// get the naming context and lookup the Business
// Flow Manager Enterprise JavaBeans home; note that the Business Flow
// Manager Enterprise JavaBeans home should be cached for performance
// reasons; also, it is assumed that there’s an Enterprise JavaBeans
// reference to the local business flow manager Enterprise JavaBeans
Context ctx = new InitialContext();
LocalBusinessFlowManagerHome home =
(LocalBusinessFlowManagerHome)
ctx.lookup("java:comp/env/ejb/BFM");

// if the human task manager Enterprise JavaBeans is used, do:
// LocalHumanTaskManagerHome home =
// (LocalHumanTaskManagerHome) ctx.lookup("java:comp/env/ejb/HTM");
// assuming that a EJB reference to the human task manager EJB
// has been defined

// create the business flow manager client-side stub

Developing client applications for business processes and tasks 319

LocalBusinessFlowManager bfm = home.create();
// if the human task manager EJB is used, do:
// LocalHumanTaskManager htm = home.create();
// note that the human task manager Enterprise JavaBeans provides the
// same methods as the business flow manager Enterprise JavaBeans
// ***
// ******************* example 1 *******************
// ***

// execute a query against the TASK predefined query
// table; this relates to a simple My ToDo’s task list
EntityResultSet ers = null;
ers = bfm.queryEntities("TASK", null, null, null);

// print the result to STDOUT
EntityInfo entityInfo = ers.getEntityInfo();
List attList = entityInfo.getAttributeInfo();
int attSize = attList.size();

Iterator iter = ers.getEntities().iterator();
while (iter.hasNext()) {
System.out.print("Entity: ");
Entity entity = (Entity) iter.next();
for (int i = attSize - 1; i >= 0; i--) {
AttributeInfo ai = (AttributeInfo) attList.get(i);
System.out.print(

entity.getAttributeValue(ai.getName()));
}
System.out.println();
}

Example 2
// ***
// ******************* example 2 *******************
// ***

// same example as example 1, but using the row-based
// query approach
RowResultSet rrs = null;
rrs = bfm.queryRows("TASK", null, null, null);

attList = rrs.getAttributeInfo();
attSize = attList.size();

// print the result to STDOUT
while (rrs.next()) {
System.out.print("Row: ");
for (int i = attSize - 1; i >= 0; i--) {
AttributeInfo ai = (AttributeInfo) attList.get(i);
System.out.print(

rrs.getAttributeValue(ai.getName()));
}
System.out.println();
}

Example 3
// ***
// ******************* example 3 *******************
// ***

// execute a query against a composite query table
// that has been deployed on the system before;
// the name is assumed to be COMPANY.TASK_LIST

320 Developing and deploying

ers = bfm.queryEntities(
"COMPANY.TASK_LIST", null, null, null);

^
// print the result to STDOUT ...

Example 4
// ***
// ******************* example 4 *******************
// ***

// query against the same query table as in example 3,
// but with customized options
FilterOptions fo = new FilterOptions();

// return only objects which are in state ready
fo.setQueryCondition("STATE=STATE_READY");

// sort by the id of the object
fo.setSortAttributes("ID");

// limit the number of entities to 50
fo.setThreshold(50);

// only get a sub-set of the defined attributes
// on the query table
fo.setSelectedAttributes("ID, STATE, DESCRIPTION");

AuthorizationOptions ao = new AuthorizationOptions();

// do not return objects that everybody is allowed
// to see
ao.setEverybodyUsed(Boolean.FALSE);

ers = bfm.queryEntities(
"COMPANY.TASK_LIST", fo, ao, null);

// print the result to STDOUT ...

Developing client applications for business processes and tasks 321

Related concepts

“Query table queries” on page 337
Queries are run on query tables in Business Process Choreographer using the
query table API, which is available on the Business Flow Manager EJB and the
REST API.
“Filters and selection criteria of query tables”
Filters and selection criteria are defined during query table development using the
Query Table Builder, which uses a syntax similar to SQL WHERE clauses. Use
these clearly defined filters and selection criteria to specify conditions that are
based on attributes of query tables.
“Predefined query tables” on page 306
Predefined query tables provide access to the data in the Business Process
Choreographer database. They are the query table representation of the
corresponding predefined Business Process Choreographer database views, such as
the TASK view or the PROCESS_INSTANCE view. These predefined query tables
enhance the functionality and performance of the predefined database views
because they are optimized for running process and task list queries.
“Supplemental query tables” on page 309
Supplemental query tables in Business Process Choreographer expose to the query
table API business data that is not managed by Business Process Choreographer.
With supplemental query tables, this external data can be used with data from the
predefined query tables when retrieving business process instance information or
human task information.
“Composite query tables” on page 311
Composite query tables in Business Process Choreographer do not have a specific
representation of data in the database; they comprise of a combination of data from
related predefined and supplemental query tables. Use a composite query table to
retrieve the information for a process instance list or task list, such as My To Dos.

Filters and selection criteria of query tables
Filters and selection criteria are defined during query table development using the
Query Table Builder, which uses a syntax similar to SQL WHERE clauses. Use
these clearly defined filters and selection criteria to specify conditions that are
based on attributes of query tables.

For information about installing the Query Table Builder, see the WebSphere
Business Process Management SupportPacs site. Look for PA71 WebSphere Process
Server - Query Table Builder. To access the link, see the related references section
of this topic.

Attributes

Attributes used in an expression refer to query table attributes. Depending on the
location of the expression, different attributes are available. For the client
developer, query filters passed to the query table API are the only location where
expressions can be used. For developers of composite query tables, various other
locations exist where expressions can be used. The following table describes the
attributes that are available at the different locations.

322 Developing and deploying

Table 33. Attributes for query table expressions

Where Expression Available attributes

Query table API Query filter v All attributes defined on the query table.

v If instance-based authorization is used,
all attributes defined on the
WORK_ITEM query tables, prefixed with
’WI.’ .

Examples:

v STATE=STATE_READY, if the query table
contains a STATE attribute and if a
STATE_READY constant is defined for
this attribute

v STATE=STATE_READY AND
WI.REASON=REASON_POTENTIAL_OWNER, if the
query table contains a STATE attribute
and the query table uses instance-based
authorization

Composite query
table

Query table filter

Primary query table
filter

v All attributes defined for the primary
query table.

Example:

v STATE=STATE_READY, if the query table
contains a STATE attribute and a
STATE_READY constant is defined for
this attribute

Authorization filter v All attributes defined on the
WORK_ITEM predefined query table,
prefixed with ’WI.’ .

Example:

v WI.REASON=REASON_POTENTIAL_OWNER

Selection criterion v All attributes defined on the related
attached query table.

Example:

v LOCALE=’en_US’, if the attached query
table contains a LOCALE attribute, such
as the TASK_DESC query table

The following figure shows the various locations of filters and selection criteria in
expressions, and includes examples:

Developing client applications for business processes and tasks 323

Expressions

Expressions have the following syntax:
expression ::= attribute binary_op value |

attribute unary_op |
attribute list_op list |
(expression) |
expression AND expression |
expression> OR expression

The following rules apply:
v AND takes precedence over OR. Subexpressions are connected using AND and OR.
v Brackets can be used to group expressions and must be balanced.

Examples:
v STATE = STATE_READY

v NAME IS NOT NULL

v STATE IN (2, 5, STATE_FINISHED)

v ((PRIORITY=1) OR (WI.REASON=2)) AND (STATE=2)

query table query (runtime)

query table definition (build-time)

primary query table
predefined

attached query tables

WORK_ITEM view TASK
TASK_
CPROP

TASK_
DESC

authorization

CUSTOMER=’IBM’

FilterOptions fo = new FilterOptions ();
fo. setQueryCondition (”);”CUSTOMER=’IBM’

CUSTOMER=’IBM’ OR CUSTOMER=’OTHER’

query filter

query table filter

primary query table filter

selection criteria

authorization filter

REASONS ID STATE NAME CUSTOMER DISP

WI.REASON=READER STATE=STATE_READY

NAME=’xyz’
LOCALE=’en

_US’

Figure 76. Filters and selection criteria in expressions

324 Developing and deploying

An expression is executed in a certain scope which determines the attributes that
are valid for the expression. Selection criteria, or query filters, are run in the scope
of the query table on which the query is run.

The following example is for a query that is run on the predefined TASK query
table:
’(STATE=STATE_READY AND WI.REASON=REASON_POTENTIAL_OWNER)
OR (WI.REASON=REASON_OWNER)’

Binary operators

The following binary operators are available:
binary_op ::= = | < | > | <> | <= | >= | LIKE | NOT LIKE

The following rules apply:
v The left-side operand of a binary operator must reference an attribute of a query

table.
v The right-side operand of a binary operator must be a literal value, constant

value, or parameter.
v The LIKE and NOT LIKE operators are only valid for attributes of attribute type

STRING.
v The left-side operand and the right-side operand must be of compatible attribute

types.
v User parameters must be compatible to the attribute type of the left-side

attribute.

Examples:
v STATE > 2

v NAME LIKE ’start%’

v STATE <> PARAM(theState)

Unary operators

The following unary operators are available:
unary_op ::= IS NULL | IS NOT NULL

The following rules apply:
v The left-side operand of a unary operator must reference an attribute of a query

table. Valid attributes depend on the location of the filter or selection criterion.
v All attributes can be checked for null values, for example: CUSTOMER IS NOT

NULL.

Example:
DESCRIPTION IS NOT NULL

List operators

The following list operators are available:
list_op ::= IN | NOT IN

The following rules apply:
v The right-side of a list operator must not be replaced by a user parameter.

Developing client applications for business processes and tasks 325

v User parameters can be used within the list on the right-side operand.

Example:
STATE IN (STATE_READY, STATE_RUNNING, PARAM(st), 1)

Lists are represented as follows:
list ::= value [, list]

The following rules apply:
v The right-side of a list operator must not be replaced by a user parameter.
v User parameters can be used within the list on the right-side operand.

Examples:
v (2, 5, 8)

v (STATE_READY, STATE_CLAIMED)

Values

In expressions, a value is one of the following:
v Constant: A constant value, which is defined for the attribute of a predefined

query table. For example, STATE_READY is defined for the STATE attribute of the
TASK query table.

v Literal: Any hardcoded value.
v Parameter: A parameter is replaced when the query is run with a specific value.

Constants are available for some attributes of predefined query tables. For
information about constants that are available on attributes of predefined query
tables, refer to the information about predefined views. Only constants that define
integer values are exposed with query tables. Also, instead of constants, related
literal values, or parameters can be used.

Examples:
v STATE_READY on the STATE attribute of the TASK query table can be used in a

filter to check whether the task is in the ready state.
v REASON_POTENTIAL_OWNER on the REASON attribute of the WORK_ITEM query

table can be used in a filter to check whether the user who runs the query
against a query table is a potential owner.

v Query filter STATE=STATE_READY is the same as STATE=2, if the query is run on the
TASK query table.

Literals can also be used in expressions. A special syntax must be used for
timestamps and for IDs.

Examples:
v STATE=1

v NAME=’theName’

v CREATED > TS (’2008-11-26 T12:00:00’)

v TKTID=ID(’_TKT:801a011e.9d57c52.ab886df6.1fcc0000’)

Parameters in expressions allow for a dynamicity of composite query tables. There
are user parameters and system parameters:

326 Developing and deploying

v User parameters are specified using PARAM (name). This parameter must be
provided when the query is run. It is passed as an instance of the
com.ibm.bpe.api.Parameter class into the query table API.

v System parameters are parameters that are provided by the query table runtime,
without being specified when the query is run. The system parameters $USER
and $LOCALE are available.
– $USER, which is a string, contains the value of the user who runs the query.
– $LOCALE, which is a string, contains the value of the locale that is used when

the query is run. An example for the value of $LOCALE is 'en_US’.

You can specify a parameter in the selection criteria of an attached query table
which selects on a specific locale. For example, if the primary query table is TASK
in a composite query table and an attached query table is TASK_DESC. The
following are examples of parameters:
v STATE=PARAM(theState)

v LOCALE=$LOCALE

v OWNER=$USER

Related concepts

“Query table development” on page 318
Supplemental and composite query tables in Business Process Choreographer are
developed during application development using the Query Table Builder.
Predefined query tables cannot be developed or deployed. They are available when
Business Process Choreographer is installed and provide a simple view on the
artifacts in the Business Process Choreographer database schema.
“Query table queries” on page 337
Queries are run on query tables in Business Process Choreographer using the
query table API, which is available on the Business Flow Manager EJB and the
REST API.
Related tasks

“Creating query tables for Business Process Choreographer Explorer” on page 356
You can use query tables instead of the EJB query API to improve the performance
of Business Process Choreographer Explorer. To create the query tables, use the
Query Table Builder.

Authorization for query tables
You can use instance-based authorization, role-based authorization, or no
authorization when you run queries on query tables.

The authorization type is defined on the query table.
v Instance-based authorization indicates that objects in the query table are

authorized using a work item. This is done by verifying if a suitable work item
exists.

v Role-based authorization is based on Java EE roles. It indicates that the caller
using the API query method must be in the BPESystemAdministrator Java EE
role if the Business Flow Manager EJB is used or the TaskSystemAdministrator
Java EE role if the Human Task Manager EJB is used to see the contents of the
query table. It is available for predefined query tables with template data and
for composite query tables with a primary query table that contains template
data. Objects in those query tables do not have related work items.

v When no authorization is specified, all authenticated users can see all contents of
the query table, after filters are applied.

Developing client applications for business processes and tasks 327

The type of authorization on predefined query tables and the type of authorization
that can be configured on composite and supplemental query tables is outlined in
the following table.

Table 34. Types of authorization for query tables

Query table Instance-based authorization Role-based authorization No authorization

Predefined Required for predefined query
tables with instance data.

Required for predefined query
tables with template data.

N/A

Composite Can be turned off which means
that no authorization is used
and the security constraints are
overridden. That is, every
authenticated user can use the
query table to retrieve data,
independently of whether they
are authorized for the
respective objects.

Composite query tables with a
primary query table that
contains template data must
not be set to use instance-based
authorization.

Can be turned off, for example
for composite query tables with
a primary query table that
contains template data. This
means that no authorization is
used and the security
constraints are overridden. That
is, every authenticated user can
use the query table to retrieve
data, independently of whether
they are authorized for the
respective objects.

Composite query tables with a
primary query table that
contains instance data must not
be set to use role-based
authorization.

All authenticated users can see
all contents of the query table,
after filters are applied.

Supplemental Supplemental query tables
must not be set to use
instance-based authorization
because they are not managed
by Business Process
Choreographer, and therefore it
has no authorization
information for the contents of
these tables.

Supplemental query tables
must not be set to use
role-based authorization.

All authenticated users can see
all contents of the query table,
after filters are applied.

The following figure provides an overview of the available options for the
authorization types, depending on the type of query table. Also, it outlines the
different behaviors and the query table API and its authorization options.

328 Developing and deploying

*) If the onBehalfUser is set, (A) applies

Instance-based authorization for objects in the query result using work items
depend on the authorization parameter that is passed to the query table API and
on the setting of the instance-based authorization flag of the query table.
v (A) Queries on predefined or composite query tables using the

AuthorizationOptions object return entities that correlate with a related work
item for this particular user. This is also the case if the
AdminAuthorizationOptions object is used and onBehalfUser is set. Standard
clients which present task or process lists to users usually use this combination
of query tables and query table API parameters.

Composite
query table

Predefined
query tables

Authorization

Query with

AuthorizationOptions

Supplemental
query tables

Query with

AdminAuthorization
Options*

primary query table
with instance data

instance data

n/a

Instance-based
authorization

(A)
Query result

contains objects
with work items

related to the caller.

(B)
Query result

contains all objects
that are in this
query table.

(C)
Query result

contains all objects
that are in this
query table.

(D)
Query result
contains all

objects that are in
this query table.

n/a

Role-based
authorization

None

business data n/a

n/a template data

all
primary query table
with template data

Figure 77. Instance-based authorization for query tables

Developing client applications for business processes and tasks 329

v (B) The full content of a query table consists of the entities that have a related
work item, as configured with the instance-based authorization of the query
table. Instance-based authorization considers four types of work items:
everybody, individual, group, and inherited. The caller using the API query
method must be in the BPESystemAdministrator Java EE role if the Business
Flow Manager EJB is used or the TaskSystemAdministrator Java EE role if the
Human Task Manager EJB is used. This combination of query tables and query
table API parameters is intended for use in administrative scenarios where the
full list of available tasks or processes must be shown or searched.

v (C) Queries on query tables that do not use instance-based or role-based
authorization return the same result if AdminAuthorizationOptions or
AuthorizationOptions is passed into the query table API. This is available for
supplemental and composite query tables. There is no check on work items or
Java EE roles, therefore all authenticated users see the full content. Clients that
do not want to restrict object visibility by applying the instance-based or
role-based authorization constraints that are provided by Business Process
Choreographer can turn off authorization checks when query table definitions
are developed. When using claim and complete, however, users must have
related work items.

v (D) Template data in predefined query tables or composite query tables with
role-based authorization configured can be accessed only with role-based
authorization. This requires the caller using the API query method to be in the
BPESystemAdministrator Java EE role if the Business Flow Manager EJB is used
or the TaskSystemAdministrator Java EE role if the Human Task Manager EJB is
used. The query table API can be used to access template information instead of
the query API.

Work items and instance-based authorization

Instance-based authorization provided by Business Process Choreographer is based
on work items. Each work item describes who has which rights on what object.
This information is accessible using the WORK_ITEM query table, if instance-based
authorization is used.

The table describes the different types of work items that are considered if
instance-based authorization is used when a query is run against a query table:

Table 35. Work item types

Work item type Description

everybody Allows all users to access a specific object, such as a task or
a process instance. In this case, the EVERYBODY attribute
of the related work item is set to TRUE.

individual Work items that are created for particular users. The
OWNER_ID attribute of the related work item is set to a
specific user. Multiple work items which differ in the
OWNER_ID attribute can exist for an object, such as a task.

group Work items that are created for users of a particular group.
The GROUP_NAME attribute of the related work item is
set to a specific group.

inherited Readers and administrators of process instances are also
allowed to inherit the access to the human tasks which
belong to these process instances, including escalations.
Checks for an inherited work item in task queries are
performed with complex SQL joins at runtime, which
impacts on performance.

330 Developing and deploying

Work items are created by Business Process Choreographer in different situations.
For example, at task creation, work items are created for the different roles, such as
reader and potential owner, if related people assignment criteria were specified.

The following table describes the types of work items that are created, depending
on the people assignment criteria that are defined, if instance-based authorization
is used when a query is run on a query table. Inherited work items do not appear
in the table because they reflect a relationship that is not explicitly modeled during
process application development.

Table 36. Work items and people assignment criteria

Work item type Related people assignment criteria

everybody Everybody

individual All people assignment criteria except verbs Nobody,
Everybody, and Group

group Group

Authorization filter on composite query tables

On composite query tables, you can specify an authorization filter if instance-based
authorization is used. This filter restricts the work items which are used for
authorization, based on certain attributes of work items. For example, the
authorization filter “WI.REASON=REASON_POTENTIAL_OWNER” on a composite query
table with the TASK primary query table restricts the tasks that are returned when
a person runs a query. The result contains only tasks that represent a to-do for that
person, that is, the result is restricted to those tasks the person is authorized to
claim. This filter can also be specified as the query table filter or as the query filter,
but for query performance reasons, it is beneficial to specify these filters as the
authorization filter.

Developing client applications for business processes and tasks 331

Related concepts

“Predefined query tables” on page 306
Predefined query tables provide access to the data in the Business Process
Choreographer database. They are the query table representation of the
corresponding predefined Business Process Choreographer database views, such as
the TASK view or the PROCESS_INSTANCE view. These predefined query tables
enhance the functionality and performance of the predefined database views
because they are optimized for running process and task list queries.
“Supplemental query tables” on page 309
Supplemental query tables in Business Process Choreographer expose to the query
table API business data that is not managed by Business Process Choreographer.
With supplemental query tables, this external data can be used with data from the
predefined query tables when retrieving business process instance information or
human task information.
“Composite query tables” on page 311
Composite query tables in Business Process Choreographer do not have a specific
representation of data in the database; they comprise of a combination of data from
related predefined and supplemental query tables. Use a composite query table to
retrieve the information for a process instance list or task list, such as My To Dos.
“Authorization options for the query table API” on page 342
When you run a query on a query table in Business Process Choreographer,
authorization options can be passed as input parameters to the methods of the
query table API.
Related tasks

“Creating query tables for Business Process Choreographer Explorer” on page 356
You can use query tables instead of the EJB query API to improve the performance
of Business Process Choreographer Explorer. To create the query tables, use the
Query Table Builder.

Attribute types for query tables
Attribute types are needed in Business Process Choreographer when query tables
are defined, when literal values are used in queries, and when values of a query
result are accessed. Rules and mappings are available for each of the attribute
types.

A subset of the types that are available in the Java programming language and
databases is used to define the type of an attribute of a query table. Attribute types
are an abstraction of the concrete Java type or database type. For supplemental
query tables, you must use a valid database type to attribute type mapping.

The following table describes the attribute types:

Table 37. Attribute types

Attribute type Description

ID The ID which is used to identify a human task (TKIID), a
process instance (PIID), or other objects. For example, IDs
are used to claim or complete a particular human task,
which is identified with the specified TKIID.

STRING Task descriptions or query properties can be represented as
a string.

NUMBER Numbers are used for attributes, such as the priority on a
task.

332 Developing and deploying

Table 37. Attribute types (continued)

Attribute type Description

TIMESTAMP Timestamps describe a point in time, such as the time when
a human task is created, or a process instance is finished.

DECIMAL Decimals can be used as the type for query properties, for
example when defining a query property with a variable of
XSD type double.

BOOLEAN Booleans can have one of two values, true or false. For
example, human tasks provide an attribute, autoClaim,
which identifies whether the task is claimed automatically
if only a single user exists as the potential owner for this
task.

Database type to attribute type mapping:

Use attribute types to define query tables in Business Process Choreographer, when
you run queries on the query tables, and to access values of a query result.

The following table describes the database types and their mapping to attribute
types:

Table 38. Database type to attribute type mapping

Database type Attribute type

A binary type with 16 bytes. This is the type used for IDs
such as TKIID on TASK of the Business Process
Choreographer tables.

ID

A character based type. The length depends on the column
in the database table that is referenced by the attribute of
the query table.

STRING

An integer database type, such as integer, short, or long. NUMBER

A timestamp database type. TIMESTAMP

A decimal type, such as float or double. DECIMAL

A type that is convertible to a Boolean value, such as a
number. 1 is interpreted as true, and all other numbers as
false.

BOOLEAN

Supplemental query tables typically refer to existing database tables and views,
such that table or view creation is not necessary.

Example

Consider a table in a DB2 environment, CUSTOM.ADDITIONAL_INFO, which is
to be represented in Business Process Choreographer as a supplemental query
table. The following SQL statement creates the database table:
CREATE TABLE CUSTOM.ADDITIONAL_INFO
(

PIID CHAR(16) FOR BIT DATA,
INFO VARCHAR(220),
COUNT INTEGER

);

The following mapping of database column types to query table attribute types is
used for a supplemental query table for the CUSTOM.ADDITIONAL_INFO table.

Developing client applications for business processes and tasks 333

Table 39. Database types to attribute types mapping example

Database column and type Query table attribute and type

PIID CHAR(16) FOR BIT DATA PIID (ID)

INFO VARCHAR(220) INFO (STRING)

COUNT INTEGER COUNT (NUMBER)

Attribute type to literal representation mapping:

Attribute types are used when query tables are defined in Business Process
Choreographer, when queries are run on the query tables, and when values of a
query result are accessed. Use this topic for information on attribute type to literal
representation mapping.

Literal values can be used in expressions to define filter and selection criteria, such
as in filters of composite query tables, and in filters that are passed to the query
table API.

The following table describes the attribute types and their mapping to literal
values. Placeholders are marked italic. Note that the attribute types ID and
TIMESTAMP, which can be passed to the query table API, use a special syntax,
which is also used by the query API.

Table 40. Attribute type to literal values mapping

Attribute type Syntax and usage as literal value in expressions

ID ID (’string representation of an ID’)

When developing client applications, IDs are represented
either as a string or as an instance of the
com.ibm.bpe.api.OID interface. The string representation
can be obtained from an instance of the
com.ibm.bpe.api.OID interface using the toString method.
The string must be enclosed in single quotation marks.

STRING 'the string’

The string must be enclosed in quotes.

NUMBER number

The number as text, and no quotation marks. Constants are
defined for some number attributes on predefined query
tables, and can be used.

TIMESTAMP TS ('YYYY-MM-DDThh:mm:ss’)

The timestamp must be specified as:

v YYYY is the 4-digit year

v MM is the 2-digit month of the year

v DD is the 2-digit day of the month

v hh is the 2-digit hour of the day (24-hour)

v mm is the 2-digit minutes of the hour

v ss is the 2-digit seconds of the minute The timestamp is
interpreted as defined in the user's time zone.

DECIMAL number.fraction

The decimal number as text and no quotation marks; the
.fraction part is optional.

334 Developing and deploying

Table 40. Attribute type to literal values mapping (continued)

Attribute type Syntax and usage as literal value in expressions

BOOLEAN true, false

The Boolean value as text.

Example

v filterOptions.setQueryCondition(“STATE=2”);

v filterOptions.setQueryCondition(“STATE=STATE_READY”);

v a selection criterion on an attached query table TASK_DESC:
“LOCALE=’en_US’”

v filterOptions.setQueryCondition(
“PTID=ID('_PT:8001011e.1dee8e51.247d6df6.29a60000’)”);

Attribute type to parameter mapping:

Use attribute types when you define query tables in Business Process
Choreographer, when you run queries on the query tables, and to access values of
a query result.

The following table describes the attribute types and their mapping to parameter
values that can be used in expressions to define filter and selection criteria, such as
in filters of composite query tables, and in filters passed to the query table API.

Table 41. Attribute type to user parameter values mapping

Attribute type Usage as parameter value in expressions

ID PARAM(name)

When developing client applications, IDs are represented
either as a string or as an instance of the
com.ibm.bpe.api.OID interface.

As a parameter, both representations are valid. An array of
bytes reflecting a valid OID can also be used (byte).

STRING PARAM(name)

The string representation of the object that is passed to the
query table API at runtime by the toString method.

NUMBER PARAM(name)

A java.lang.Long, java.lang.Integer, java.lang.Short, or a
java.lang.String representation of the number is passed to
the query table API. Names of constants, as defined on
some attributes of predefined query tables, can be also
passed.

TIMESTAMP PARAM(name)

The following representations are valid:

v A java.lang.String representation of the timestamp

v Instances of com.ibm.bpe.api.UTCDate

v Instances of java.util.Calendar

Developing client applications for business processes and tasks 335

Table 41. Attribute type to user parameter values mapping (continued)

Attribute type Usage as parameter value in expressions

DECIMAL PARAM(name)

A java.lang.Long, java.lang.Integer, java.lang.Short,
java.lang.Double, java.lang.Float, or a java.lang.String
representation of the decimal is passed to the query table
API.

BOOLEAN PARAM(name)

Valid values are:

v A java.lang.String representation of the boolean

v A java.lang.Short, java.lang.Integer, java.lang.Long with
appropriate values; 0 (for false), or 1 (for true)

v A java.lang.Boolean object

Example
...
// this example shows a query against a composite query table
// COMP.TASKS with a parameter "customer"
java.util.List params = new java.util.ArrayList();

list.add(new com.ibm.bpe.api.Parameter("customer", "IBM");
// the business flow manager Enterprise JavaBeans or the
// human task manager Enterprise JavaBeans can be used to access query tables
service.bfm.queryEntities("COMP.TASKS", null, null, params);
...

Attribute type to Java object type mapping:

Attribute types are used when query tables are defined in Business Process
Choreographer, when queries are run on the query tables, and when values of a
query result are accessed. Use this topic for information on attribute type to Java
object type mapping.

The following table describes the attribute types and their mapping to Java object
types in query result sets.

Table 42. Attribute type to Java object type mapping

Attribute type Related Java object type

ID com.ibm.bpe.api.OID

STRING java.lang.String

NUMBER java.lang.Long

TIMESTAMP java.util.Calendar

DECIMAL java.lang.Double

BOOLEAN java.lang.Boolean

Example
...
// the following example shows a query against a composite query table
// COMP.TA; attribute "STATE" is of attribute type NUMBER
...
// run the query
// the business flow manager Enterprise JavaBeans or the

336 Developing and deploying

// human task manager Enterprise JavaBeans can be used to access query tables
EntityResultSet rs = bfm.queryEntities("COMP.TA",null,null,params);

// get the entities and iterate over it
List entities = rs.getEntities();
for (int i = 0 ; i < entities.size(); i++) {

// work on a particular entity
Entity en = (Entity) entities.get(i);

// note that the following code could be written
// more generalized using the attribute info objects
// contained in ei.getAttributeInfo()

// get attribute STATE
Long state = (Long) en.getAttributeValue("STATE");
...

}
...

Attribute type compatibility:

Use attribute types when you define query tables in Business Process
Choreographer, when you run queries on the query tables, and to access values of
a query result.

The following table shows the attribute types and their compatible attribute types,
which can be used to define filters and selection criteria in query tables.
Compatible attribute types are marked with X.

Table 43. Attribute type compatibility

Attribute type ID STRING NUMBER TIMESTAMP DECIMAL BOOLEAN

ID X

STRING X

NUMBER X X

TIMESTAMP X

DECIMAL X X

BOOLEAN X

In query table expressions that specify filter and condition criteria, types of
attributes or values that are compared must be compatible. For example,
WI.OWNER_ID=1 is an invalid filter because the left-side operand is of type STRING,
and the right-side operand is of type NUMBER.

Query table queries
Queries are run on query tables in Business Process Choreographer using the
query table API, which is available on the Business Flow Manager EJB and the
REST API.

A query is run on one query table only. Entity-based API methods and row-based
API methods are used to retrieve content from query tables. Input parameters are
passed into the methods of the query table API.

Developing client applications for business processes and tasks 337

Related concepts

“Query table development” on page 318
Supplemental and composite query tables in Business Process Choreographer are
developed during application development using the Query Table Builder.
Predefined query tables cannot be developed or deployed. They are available when
Business Process Choreographer is installed and provide a simple view on the
artifacts in the Business Process Choreographer database schema.
“Predefined query tables” on page 306
Predefined query tables provide access to the data in the Business Process
Choreographer database. They are the query table representation of the
corresponding predefined Business Process Choreographer database views, such as
the TASK view or the PROCESS_INSTANCE view. These predefined query tables
enhance the functionality and performance of the predefined database views
because they are optimized for running process and task list queries.
“Supplemental query tables” on page 309
Supplemental query tables in Business Process Choreographer expose to the query
table API business data that is not managed by Business Process Choreographer.
With supplemental query tables, this external data can be used with data from the
predefined query tables when retrieving business process instance information or
human task information.
“Composite query tables” on page 311
Composite query tables in Business Process Choreographer do not have a specific
representation of data in the database; they comprise of a combination of data from
related predefined and supplemental query tables. Use a composite query table to
retrieve the information for a process instance list or task list, such as My To Dos.
“Filters and selection criteria of query tables” on page 322
Filters and selection criteria are defined during query table development using the
Query Table Builder, which uses a syntax similar to SQL WHERE clauses. Use
these clearly defined filters and selection criteria to specify conditions that are
based on attributes of query tables.

Query table API methods:

Queries are run on query tables in Business Process Choreographer using the
query table API. Entity-based API methods and row-based API methods are
available to retrieve content from query tables.

The following entity-based methods and row-based methods are provided to run
queries on query tables in Business Process Choreographer using the query table
API:

Table 44. Methods for queries run on query tables

Purpose Methods

Query contents v queryEntities

v queryRows

Both methods return contents of the query table. The
queryEntities method returns content based on entities and
queryRows returns content based on rows.

338 Developing and deploying

Table 44. Methods for queries run on query tables (continued)

Purpose Methods

Query the number of objects v queryEntityCount

v queryRowCount

Both methods return the number of objects in the query
table, while the actual number can depend on whether the
entity-based or the row-based approach is taken.

Entity-based queries, using the queryEntities method and the queryEntityCount
method, assume that a query table contains uniquely identifiable entities, as
defined by the primary key on the primary query table.

Row-based queries, using the queryRows method and the queryRowCount
method, return a result set like JDBC, which is row-based, and provides first and
next methods for navigating in it. The result set that is returned when you run a
query on a query table using the query table API can be compared to
QueryResultSet that is returned by the query API. In general, the number of rows
is greater than the number of entities that are contained in a query table. The same
entity, for example, a human task which is identified by its task ID, such as TKIID,
might occur multiple times in the row result set.

A specific instance that is contained in any predefined query table exists only once
in a Business Process Choreographer environment. Examples of instances are
human tasks and business processes. Those instances are uniquely identified using
an ID or a set of IDs. This is the TKIID for instances of human tasks and the PIID
for process instances.

Composite query tables are composed of a primary query table and zero or more
attached query tables. Objects that are contained in composite query tables are
uniquely identified by the unique ID of the objects that are contained in the
primary query table. The primary query table of a composite query table
determines its entity type. For example, a composite query table with the TASK
primary query table contains entities of the TASK type. The one-to-one or
one-to-zero relationship between the primary and attached query tables ensures
that the attached query tables do not result in duplicate entities.

Entity-based queries exploit the uniquely identifiable entities of a query table, as
defined by the primary key on the primary query table. A client application
programmer for user interfaces is typically interested in unique instances without
duplicates, for example, to display a human task once only on the user interface.
Unique instances are returned if the entity-based query table API is used.

Row-based queries can return duplicate rows of the primary query table if
instance-based authorization is used.
v Information from the WORK_ITEM query table is retrieved with the query. For

example, if the WI.REASON attribute is retrieved in addition to the attributes that
are defined on the query table, multiple rows qualify for the result. This is
because there can be multiple reasons why a user can access an entity, such as, a
task or a process instance.

v Instance-based authorization is used, and distinct is not specified. Even though
work item information is not retrieved, multiple rows may be returned if
instance-based authorization is used.

Developing client applications for business processes and tasks 339

If the entity-based query table API is used:
v Entity-based queries are always run with the SQL distinct operator.
v Entity-based queries return a result which allows array values for

work-item-related information.

Query table API parameters:

You use query table API methods to retrieve content when you run queries against
a query table in Business Process Choreographer.

The following input parameters are passed to the methods of the query table API:

Table 45. Parameters of the query table API

Parameter Optional Type and description

Query table name No java.lang.String

The unique name of the query table.

Filter options Yes com.ibm.bpe.api.FilterOptions if the Business
Flow Manager Enterprise JavaBeans is used or
com.ibm.task.api.FilterOptions if the Human Task
Manager Enterprise JavaBeans is used.

Options which can be used to define the query.
For example, a query threshold is set on this
parameter to limit the number of results
returned.

Authorization options Yes com.ibm.bpe.api.AuthorizationOptions or
com.ibm.bpe.api.AdminAuthorizationOptions if
the Business Flow Manager Enterprise JavaBeans
is used. com.ibm.task.api.AuthorizationOptions
or com.ibm.task.api.AdminAuthorizationOptions
if the Human Task Manager Enterprise JavaBeans
is used.

Authorization can be further constrained if
instance-based authorization is used. For query
tables which require role-based authorization, an
instance of AdminAuthorizationOptions must be
passed.

Parameters Yes A java.util.List of com.ibm.bpe.api.Parameter if
the Business Flow Manager Enterprise JavaBeans
is used or com.ibm.task.api.Parameter if the
Human Task Manager Enterprise JavaBeans is
used.

This parameter is used to pass user parameters,
which are specified in a filter or selection
criterion on a composite query table.

A query is run on one specific query table only. The relationship between multiple
query tables is defined with composite query tables. In terms of the query API (as
distinct from the query table API), this corresponds to database views.

You specify filters and selection criteria in expressions during query table
development using the Query Table Builder. For more information, refer to the
information center topic about composite query tables and the topic about filter
and search criteria of query tables. For information about the Query Table Builder,
see the WebSphere Business Process Management SupportPacs site. Look for PA71
WebSphere Process Server - Query Table Builder. To access the link, see the related
references section of this topic.

Query table name:

340 Developing and deploying

When you run a query on a query table in Business Process Choreographer, the
query table name is passed as an input parameter to the methods of the query
table API.

The query table name is the name of the query table on which the query is run.
v For predefined query tables, this is the name of the predefined query table.
v For composite and supplemental query tables, this is the name of the respective

query table that is specified while modeling the query table. The name of a
composite or supplemental query table follows the prefix.name naming
convention, and prefix may not be 'IBM’.

Both the query table name and prefix must be in uppercase. The maximum length
of the query table name is 28 characters.

Filter options for query tables:

When you run a query on a query table in Business Process Choreographer, filter
options can be passed as input parameters to the methods of the query table API.

An instance of the com.ibm.bpe.api.FilterOptions class if the Business Flow
Manager Enterprise JavaBeans is used, or an instance of the
com.ibm.task.api.FilterOptions if the Human Task Manager Enterprise JavaBeans is
used, can be passed to the query table API. The filter options allow a configuration
of the query using:
v A threshold and offset (skipCount)
v Sort attributes (similar to the ORDER BY clause in an SQL query)
v A user-provided query filter
v The set of attributes returned, including work item information
v Other

The result set that can be obtained from a query table is specified by the definition
of the query table. However, you might want to specify additional options when
the query is run. The following table describes the options that can be specified as
filter options using the FilterOptions object.

Table 46. Query table API parameters: Filter options

Option Type Description

Selected attributes java.lang.String v A comma separated list of attributes of the query table that must
be returned in the result set.

v If instance-based authorization is used, work item information
can be retrieved by specifying attributes of the WORK_ITEM
query table, prefixed with WI., for example, WI.REASON.

v If null is specified, all attributes of the query table are returned,
without work item information.

Sort attributes java.lang.String A comma separated list of attributes of the query table, optionally
followed by ASC or DESC, for ascending or descending,
respectively.

This list is similar to the SQL ORDER BY clause: sortAttributes ::=
attribute [ASC|DESC] [, sortAttributes]. If ASC or DESC is not
specified, ASC is assumed. Sorting occurs in the sequence of the
sort attributes. This example sorts tasks in query table TASK in
descending order by state, and within the groups of the same
STATE by NAME, in ascending order: “STATE DESC, NAME ASC”.

Developing client applications for business processes and tasks 341

Table 46. Query table API parameters: Filter options (continued)

Option Type Description

Threshold java.lang.Integer Defines the maximum:

v Number of rows returned if queryRows is used.

v Number of entities returned if queryEntities is used. The actual
number of available entities in the respective query table may
exceed the threshold number of entities for the query even if the
entity result set does not contain as many entities as the
threshold number. This is due to technical reasons if work item
information is selected.

v Count returned if queryRowCount or queryEntityCount is used.

The default is null which means that no threshold is set.

Skip count java.lang.Integer Defines the number of rows (row-based queries) or the number of
entities (entity-based queries) that are skipped. As with the
threshold parameter, skipCount may not be accurate for
entity-based queries.

Skip count is used to allow paging over a large result set. The
default is null which means that no skipCount is set.

Time zone java.util.TimeZone The time zone that is used when converting timestamps. An
example is CREATED on the predefined query table TASK. If not
specified (null), the time zone on the server is used.

Locale java.util.Locale The locale which is used to calculate the value of the $LOCALE
system parameter. An example usage of $LOCALE in a selection
criterion is: ’LOCALE=$LOCALE’.

Distinct rows java.lang.Boolean Used for row-based queries only. If set to true, row-based queries
return distinct rows. This does not imply that unique rows are
returned due to the possible multiplicity of work item information.

Query condition java.lang.String This option performs additional filtering on the result set. All of the
attributes that are defined for the query table can be referenced. If
authorization is required for the query table, columns that are
defined for the WORK_ITEM query table can also be referenced
using the WI prefix, for example,
WI.REASON=REASON_POTENTIAL_OWNER.

Authorization options for the query table API:

When you run a query on a query table in Business Process Choreographer,
authorization options can be passed as input parameters to the methods of the
query table API.

Use an instance of the com.ibm.bpe.api.AuthorizationOptions class or the
com.ibm.bpe.api.AdminAuthorizationOptions if the Business Flow Manager EJB is
used, or an instance of the com.ibm.task.api.AuthorizationOptions class or the
com.ibm.task.api.AdminAuthorizationOptions class if the Human Task Manager
EJB is used, to specify additional authorization options when the query is run.

If instance-based authorization is used, instances of the AuthorizationOptions class
allow the specification of the type of work items used to identify eligible instances
that are returned by the query.

An instance of the AuthorizationOptions class can be passed to the query table API
if the query is run on a predefined query table that contains instance data. It can
also be passed if the query is run on a composite query table with a primary query

342 Developing and deploying

table that contains instance data and instance-based authorization is configured to
be used. If the query is run on a predefined query table with template data or a
composite query table with role-based authorization configured, an
com.ibm.bpe.api.EngineNotAuthorizedException exception is thrown if the
Business Flow Manager EJB is used or com.ibm.task.api.NotAuthorizedException
is thrown if the Human Task Manager EJB is used. In all other cases, the
authorization options passed to the query table API are ignored.

Composite query tables can restrict the types of work items that are considered
when identifying objects (or entities) that are contained in it. For example, if the
authorization options that are passed to the query table API are configured to use
everybody work items, this is only taken into account if everybody work items are
defined for use on the definition of the composite query table. As a simple rule, a
work item type that is not specified to be considered on the query table definition
cannot be overwritten to be considered by the query table API, but a work item
type that is specified to be considered on the query table definition can be
overwritten not to be used. Also, the authorization type of a composite or
predefined query table cannot be overwritten by the query table API.

Depending on the type of query table that is queried, different authorization
option defaults apply if the authorization object is not specified or if the related
attributes (everybody, individual, group, or inherited) are set to null, which is the
default.

The following table shows the authorization option defaults for instance-based
authorization for the query table type and work item type used.

Table 47. Query table API parameters: Authorization option defaults for instance-based
authorization

Query table
type

Everybody work
item

Individual work
item

Group work
item

Inherited work
item

Predefined with
instance data

TRUE TRUE TRUE FALSE

Predefined with
template data

N/A N/A N/A N/A

Composite with
a primary query
table with
instance data

TRUE TRUE TRUE TRUE

Composite with
a primary query
table with
template data

N/A N/A N/A N/A

Supplemental N/A N/A N/A N/A

N/A means that instance-based authorization is not used and, therefore, any
setting on the authorization object with respect to work items is ignored.

If TRUE is specified, the resulting query will only consider the specific work item
type if the query table is defined to use this type of work item. This is true for all
predefined query tables with instance data, but might not be true for a composite
query table. For the group work item, the latter must also be enabled on the

Developing client applications for business processes and tasks 343

human task container. An example of the inherited work item set to TRUE is that
the administrator of a process instance may see participating human task instances
that are created for that process instance.

Specify an instance of the AdminAuthorizationOptions class instead of an instance
of the AuthorizationOptions class if:
v A query is run on a query table with role-based authorization. Predefined query

tables with template data require role-based authorization, and composite query
tables with a primary query table with template data can be configured to
require role-based authorization.

v A query is run on a query table with instance data or on a composite query
table with a primary query table that contains instance data. It should return the
content of that query table, regardless of restrictions due to authorization for a
particular user. This behavior is equivalent to using the queryAll method on the
query API (as distinct from the query table API).

v A query should be executed on behalf of another user.

The following table describes how the various behaviors above are accomplished:

Table 48. Query table API parameters: AdminAuthorizationOptions

Situation Description

onBehalfUser set to null v If the query is run on a query table with role-based
authorization, all contents of that query table are
returned.

v If the query is run on a query table which uses
instance-based authorization, the particular objects
contained in the query table are not checked for work
items for a particular user. All objects that are contained
in the query table are returned.

onBehalfUser set to a
particular user

The query is run with the authority of the specified user,
and the objects in the query table are checked against the
work items for this user, if instance-based authorization is
used.

If you specify AdminAuthorizationOptions, the caller must be in the
BPESystemAdministrator or BPESystemMonitor Java EE role if the Business Flow
Manager EJB is used, or in the TaskSystemAdministrator or TaskSystemMonitor
Java EE role if the Human Task Manager EJB is used.
Related concepts

“Authorization for query tables” on page 327
You can use instance-based authorization, role-based authorization, or no
authorization when you run queries on query tables.

Parameters:

When you run a query on a query table in Business Process Choreographer, you
can pass user parameters as input parameters to the methods of the query table
API. In query table definitions, you can specify parameters in filters on the
primary query table, on the authorization, and on the query table. Parameters can
also be specified in selection criteria on attached query tables.

344 Developing and deploying

The system parameters, $USER and $LOCALE, are replaced at runtime in filters and
selection criteria, and are not required to be passed into the query table API. The
input value for the calculation of the $LOCALE system parameter is provided by
setting the locale in the filter options.

User parameters must be passed into the query table API when the query is run.
This is accomplished by passing a list of instances of the
com.ibm.bpe.api.Parameter class if the Business Flow Manager EJB is used, or an
instance of the com.ibm.task.api.Parameter class if the Human Task Manager EJB is
used.

The following properties must be specified on a parameter object:

Table 49. User parameters for the query table API

Property Description

Name The name of the parameter as used in the query table
definition. The name is case sensitive.

Value The value of the parameter. The type of the parameter must
be compatible with the type of the left-hand operand of all
filters and selection criteria where this parameter is used.
Constants that are defined on some attributes of predefined
query tables can be passed as a string, for example
STATE_READY.

Example
// execute a query against a composite query
// table CUST.CPM with the primary query table filter
// set to ’STATE=PARAM(theState)’
EntityResultSet ers = null;
List parameterList = new ArrayList();
parameterList.add(new Parameter
("theState", new Integer(2)));

// run the query;
// the business flow manager EJB or the
// human task manager EJB can be used to access query tables
ers = bfm.queryEntities
("CUST.CPM", null, null, parameterList);

// work on the result set
// ...

Results of query table queries:

You use query table API methods when you run queries on a query table in
Business Process Choreographer. The result of a queryEntityCount method or
queryRowCount method query is a number. The queryEntities and the queryRows
methods return result sets.

EntityResultSet

An instance of the com.ibm.bpe.api.EntityResultSet class is returned by the method
queryEntities if the Business Flow Manager Enterprise JavaBeans is used. An
instance of the com.ibm.task.api.EntityResultSet class is returned by the method
queryEntities if the Human Task Manager Enterprise JavaBeans is used. An entity
result set has the following properties:

Developing client applications for business processes and tasks 345

Table 50. Entity result set properties of a query table API entity

Property Description

queryTableName Name of the query table on which the query was run.

entityTypeName v If the query was run on a composite query table, this is
the name of the primary query table.

v If the query was run on a predefined query table or on a
supplemental query table, this is the name of the query
table, that is, the same value as the queryTableName
property.

EntityInfo This property contains the meta information of the entities
that are contained in the entity result set. A java.util.List list
of com.ibm.bpe.api.AttributeInfo objects if the Business
Flow Manager EJB is used, or a list of
com.ibm.task.api.AttributeInfo objects if the Human Task
Manager EJB is used, can be retrieved on this object. This
list contains the attribute names and attribute types of the
information contained in the entities of this result set. Meta
information about the attributes which constitute the key
for these entities is also contained.

entities A java.util.List list of com.ibm.bpe.api.Entity objects if the
Business Flow Manager EJB is used, or a list of
com.ibm.task.api.Entity objects if the Human Task Manager
is used.

locale The locale that is calculated for the $LOCALE system
parameter.

Instances of the Entity class contain the information that is retrieved from the
query table query. An entity represents a uniquely identifiable object such as a
task, a process instance, an activity, or an escalation. The following properties are
available for entities:

Table 51. Entity properties of a query table API entity

Property Description

EntityInfo The EntityInfo object which is also contained in the entity
result set. A java.util.List list of
com.ibm.bpe.api.AttributeInfo objects if the Business Flow
Manager EJB is used, or a list of
com.ibm.task.api.AttributeInfo objects if the Human Task
Manager EJB is used, can be retrieved on this object. This
list contains the attribute names and attribute types of the
information contained in the entities of this result set. Meta
information about the attributes which constitute the key
for these entities is also contained.

attributeValue (attributeName) The value of the specified attribute that is retrieved for this
entity. The type is contained in the related AttributeInfo
object of this attribute.

attributeValuesOfArray
(attributeName)

An array of values. Use this property if the attribute info
property array is set to true which is currently the case only
if the attribute refers to work item information.

The number of entities in the entity result set is retrieved using the size method on
the list of entities.

346 Developing and deploying

Example: Entity-based query table API:
...
// the following example shows a query against
// predefined query table TASK, using the entity-based API

...
// run the query
// service is a (Local)BusinessFlowManager object or a
// (Local)HumanTaskManager object
EntityResultSet rs = service.queryEntities("TASK", null, null, null);

// get the entities meta information
EntityInfo ei = rs.getEntityInfo();
List atts = ei.getAttributeInfo();

// get the entities and iterate over it
Iterator entitiesIter = rs.getEntities().iterator();
while (entitiesIter.hasNext()) {

// work on a particular entity
Entity en = (Entity) entitiesIter.next();

for (int i = 0; i < atts.size(); i++) {
AttributeInfo ai = (AttributeInfo) atts.get(i);
Serializable value = en.getAttributeValue(ai.getName()) ;

// process...
}

}
...

RowResultSet

An instance of the com.ibm.bpe.api.RowResultSet class is returned by the method
queryRows if the Business Flow Manager Enterprise JavaBeans is used. An
instance of the com.ibm.task.api.RowResultSet class is returned by the method
queryRows if the Human Task Manager Enterprise JavaBeans is used. This type of
result set is similar to a JDBC result set. A row result set has the following
properties:

Table 52. Row result set properties of a query table API row

Property Description

primaryQueryTableName v If the query was run on a composite query table, this is
the name of the primary query table.

v If the query was run on a predefined query table or on a
supplemental query table, this is the name of the query
table, that is, the same value as property queryTableName.

attributeInfo This property contains a list of
com.ibm.bpe.api.AttributeInfo objects if the Business Flow
Manager Enterprise JavaBeans is used or a list of
com.ibm.task.api.AttributeInfo objects if the Human Task
Manager Enterprise JavaBeans is used. They describe the
meta information for this result set. AttributeInfo objects
contain the attribute names and attribute types of the
information. Meta data about keys is not contained because
row result sets do not have a key.

attributeValue The value of the specified attribute that was retrieved for
this row. The type is contained in the related AttributeInfo
object of this attribute.

Developing client applications for business processes and tasks 347

Table 52. Row result set properties of a query table API row (continued)

Property Description

next, first, last, previous The row result set is navigated using these methods.
Compare its usage to iterators, enumerations, or JDBC
result sets.

The number of rows in the row result set is retrieved using the size method on the
list of rows.

Example: Row-based query table API
...
// the following example shows a query against
// predefined query table TASK, using the entity-based API
...
// run the query
// service is a (Local)BusinessFlowManager object or a
// (Local)HumanTaskManager object
RowResultSet rs = service.queryRows("TASK", null, null, null);

// get the entities meta information
List atts = rs.getAttributeInfo();

// get the entities and iterate over it
while (rs.next()) {

// work on a particular row
for (int i = 0; i < atts.size(); i++) {

AttributeInfo ai = (AttributeInfo) atts.get(i);
Serializable value = rs.getAttributeValue(ai.getName()) ;

// process...
}

}
...

Query table queries for meta data retrieval
Queries are run on query tables in Business Process Choreographer using the
query table API. Methods are available to retrieve meta data from query tables.

The following methods are provided to retrieve meta data when you run queries
on query tables in Business Process Choreographer using the query table API:

Table 53. Methods for meta data retrieval on query tables

Purpose Method

Return the meta data of a specific query
table

getQueryTableMetaData

Return a list of query table meta data with
specific properties

findQueryTableMetaData

Return contents of a query table, based on
entities, and a subset of the meta data for
the selected attributes

queryEntities

Return contents of a query table, based on
rows, and a subset of the meta data for the
selected attributes

queryRows

Meta data of query tables consists of data that relates to structure and data that
relates to internationalization.

348 Developing and deploying

The following table shows the meta data that is related to the structure of a query
table.

Table 54. Meta data related to query table structure

Meta data Description

Returned by
getQuery-
TableMetaData

Returned by
findQuery-
TableMetaData

Returned by
queryEntities

Returned by
queryRows

Query table
name

The name of the query table Yes Yes Yes Yes

Primary query
table name

For supplemental and
predefined query tables, name
of the query table; for
composite query tables the
name of the primary query
table

Yes Yes Yes Yes

Kind The type of query table:
predefined, composite, or
supplemental

Yes Yes No No

Authorization The authorization that is
defined on the query table:

v Use of work items

v Instance-based, role-based,
or no authorization

Yes Yes No No

Defined
attributes

Meta data of the attributes that
are defined on the query table

Yes Yes No. Meta data
of the selected
attributes is
returned.

No. Meta data
of the selected
attributes is
returned.

Key attributes Key attributes of the query
table

Yes Yes Yes No. Not
applicable to
row-based
queries.

The following table shows the meta data that is related to the internationalization
of a query table.

Table 55. Meta data related to query table internationalization

Meta data Description

Returned by
getQuery-
TableMetaData

Returned by
findQuery-
TableMetaData

Returned by
queryEntities

Returned by
queryRows

locales[] Locales for which display
names and descriptions of the
query table and attributes are
defined.

Yes Yes No No

Locale Value of the $LOCALE system
parameter which results from
the locale that is passed to the
API.

Yes Yes Yes Yes

Display name
and description
of the query
table

Display names and
descriptions for the query
table, which are provided for
all defined locales.

Yes Yes No No

Developing client applications for business processes and tasks 349

Table 55. Meta data related to query table internationalization (continued)

Meta data Description

Returned by
getQuery-
TableMetaData

Returned by
findQuery-
TableMetaData

Returned by
queryEntities

Returned by
queryRows

Display names
and
descriptions of
the attributes

Display names and
descriptions for the attributes,
which are provided for all
defined locales.

Yes Yes No No

All EJB query table API methods which return query table meta data accept a
locale parameter, such as FilterOptions.setLocale and
MetaDataOptions.setLocale. This parameter should be set to the Java locale that
the client uses to present information to the user. This locale parameter is used to
calculate the value of the $LOCALE system parameter, which can be used in filters
and selection criteria. The locale that is returned contains the actual Java locale that
is used for $LOCALE.

If the display names and descriptions of a specific query table are retrieved, pass
getLocale to the related methods to get the display names and descriptions in the
same locale as the descriptions of the tasks. For example, these descriptions are
attached using a selection criterion of ’LOCALE=$LOCALE’.

Example
// the following example shows how meta data for a particular
// composite query table can be retrieved

...
// run the query
MetaDataOptions mdo = new MetaDataOptions("TASK", null, false, new Locale("en_US"));
List list = bfm.findQueryTableMetaData(mdo);

// to get the meta data of a specific query table
// use bfm.getQueryTableMetaData(...)

// iterate through the list of query tables that have TASK as primary query table
// => at least one query table is returned: the predefined query table TASK

Iterator iter = list.iterator();
while (iter.hasNext()) {
QueryTableMetaData md = (QueryTableMetaData) iter.next();
Locale effectiveLocale = md.getLocale();
String queryTableDisplayName = md.getDisplayName(effectiveLocale);
System.out.println("found query table: " + queryTableDisplayName);
List attributesList = md.getAttributeMetaData();
Iterator attrIter = attributesList.iterator();
while (attrIter.hasNext()) {
AttributeMetaData amd = (AttributeMetaData) attrIter.next();
String attributeDisplayName = amd.getDisplayName(effectiveLocale);
System.out.println("\tattribute:" + attributeDisplayName);
}
}

Best match locale

When specifying the conditions on an attached query table, using the value
$LOCALE can return unexpected results if the specified locale does not match the
metadata exactly. For example if you pass a locale en_US with a query against a
query table that has metadata specifying the language as en, the result returned
will be null.

350 Developing and deploying

To avoid such cases, you can use LOCALE=$LOCALE_BEST_MATCH, which applies a
best-match algorithm to calculate the actual locale used in the query. For example,
a query with locale en_US against a query table in language en is performed using
en.

You cannot specify any other logical or comparison operators in the condition
LOCALE=$LOCALE_BEST_MATCH. You can only use the best-match locale condition on
attached query tables, specifying it as a condition on other queries results in an
error.

Internationalization for query table meta data
Internationalization is supported for query table meta data.

Display names and descriptions can be provided for composite query tables in
different locales. For example, a composite query table can define a display name
for the query table in the en_US locale, the de locale, and in the default locale. This
is done when the query table is developed using the Query Table Builder. To
deploy query tables with localized display names and descriptions, the -deploy
jarFile option must be used when the query table is deployed on the Business
Process Choreographer container.

In terms of locale handling, the behavior of the query table API methods,
queryEntities and queryRows, and the meta data methods of the query table API,
getQueryTableMetaData and findQueryTableMetaData, is similar to that provided
by Java resource bundles.

To make the display names and descriptions of the query table meta data
consistent with the contents of the query table, the value of the $LOCALE system
parameter depends on the locales for which display names and descriptions are
specified on the query table.

Example

Consider the following scenario of a client which displays task lists or process lists
and creates a request to query a query table.
v The client did not specify the locale it uses to present information to the user. It

is likely that the application is not enabled for different languages.
– A default locale is specified on the query table for display names and

descriptions. This is the case for all composite and supplemental query tables
that are built with the current version of the Query Table Builder. Therefore,
the value of $LOCALE is set to default.

– The query table does not specify display names or descriptions on the query
table for the default locale. This is the case for all predefined query tables and
for all query tables that are deployed using the -deploy qtdFile option. The
value of $LOCALE is based on the Java resource bundle method.

v The client specified the locale to use to present information to the user. For
example, this is the case when the REST API for query tables is used.
– Display names and descriptions are specified on the query table. The Java

resource bundle method is used to calculate the value of $LOCALE, based on
the locale that is passed in by the client.

– Display names and descriptions are not specified on the query table. The
value of $LOCALE is set to the value that is passed in by the client.

Developing client applications for business processes and tasks 351

Best match locale

When specifying the conditions on an attached query table, using the value
$LOCALE can return unexpected results if the specified locale does not match the
metadata exactly. For example if you pass a locale en_US with a query against a
query table that has metadata specifying the language as en, the result returned
will be null.

To avoid such cases, you can use LOCALE=$LOCALE_BEST_MATCH, which applies a
best-match algorithm to calculate the actual locale used in the query. For example,
a query with locale en_US against a query table in language en is performed using
en.

You cannot specify any other logical or comparison operators in the condition
LOCALE=$LOCALE_BEST_MATCH. You can only use the best-match locale condition on
attached query tables, specifying it as a condition on other queries results in an
error.
Related tasks

“Creating query tables for Business Process Choreographer Explorer” on page 356
You can use query tables instead of the EJB query API to improve the performance
of Business Process Choreographer Explorer. To create the query tables, use the
Query Table Builder.

Query tables and query performance
Query tables introduce a clean programming model for developing client
applications that retrieve lists of human tasks and business processes in Business
Process Choreographer. Using query tables improves the performance. Information
is provided about the query table API parameters and other factors that affect the
performance.

Query response times on query tables depend mainly on the authorization options,
filters, and selection criteria that are used. The following are some general
performance tips to consider.
v Authorization options have considerable performance impact. Enable

authorization using as few options as is possible, such as individual and group
work items. Avoid using inherited work items. The authorization options can be
further restricted when the query is run. Also, if not needed, specify that
authorization using work items is not required.

v If authorization using work items is required, specify an authorization filter. For
example, to allow only objects in the query table with a potential owner work
item, use WI.REASON=REASON_POTENTIAL_OWNER.

v Filtering on the primary query table is efficient, for example, to allow only tasks
in the ready state in the query table where TASK is the primary query table.

v Filters on the query table, as well as query filters, which are filters that are
passed when the query is run, are less efficient as primary filters in terms of
performance.

v Avoid, where possible, using parameters in filters and selection criteria.
v Avoid using LIKE operators in filters and selection criteria.

Composite query table definition

The following table provides information about the query performance impact of
options that are defined on composite query tables. It also provides information

352 Developing and deploying

other topics related to composite query table definitions. The impact given in
column Performance Impact is an average performance impact, actual impact
observations may vary.

Table 56. Query performance impact of composite query table options

Object or
topic

Performance
impact Description

Query table
filter

Negative Filters on query tables are the filters with the highest
negative impact on query performance. These filters
typically cannot use any defined indexes in the database.

Primary query
table filter

Positive A filter on the primary query table provides high
performance filtering at a very early stage of the query
result set calculation. It is suggested to restrict the contents
of the query table using a primary query table filter.

Authorization
filter

Positive A filter on authorization can improve the performance of
the query, such as how the primary query table filter
improves it. If possible, an authorization filter should be
applied. For example, if reader work items should not be
considered, specify WI.REASON=REASON_READER.

Selection
criteria

None Some primary query table to attached query table
relationships require the definition of a selection criterion
in order to meet the one-to-one or one-to-zero relationship.
A selection criterion typically has low performance impact
because it is evaluated for a small numbers of rows only.

Parameters None Currently, using parameters in query tables has no
negative performance impact. Nevertheless, parameters
should be used only if needed.

Instance-based
authorization

Negative If instance-based authorization is used, each object in the
query table must be checked against the existence of a
work item. Work items are represented as entries in the
WORK_ITEM query table. This verification affects
performance.

Instance-based
authorization:

v everybody

v individuals

v groups

v inherited

Negative Each type of work item that is specified for use in the
query table has a performance impact. Applications with
high volume queries should only use individual and
group work items, or only one of those. Inherited work
items are usually not required, in particular when defining
task lists that return human tasks representing to-dos.
They should be used only when it is clear that they are
needed, for example, to return lists of tasks that belong to
a business process where a person might have read access
based on the authorization for the enclosing business
process.

Role-based
authorization
or no
authorization

None If role-based authorization or no authorization is used,
checks against work items are not made.

Number of
defined
attributes

Currently
none

Currently, the number of attributes contained in a query
table has no impact on performance. Nevertheless, only
those attributes that are needed should be part of a query
table.

Developing client applications for business processes and tasks 353

Query table API

The following table provides information about the query performance impact of
options that are specified on the query table API. The impact given in the
Performance impact column is an average performance impact; actual impact
observations may vary.

Table 57. Query performance impact of query table API options

Option
Performance
impact Description

Selected
attributes

Negative (less
is better)

The number of attributes that are selected when a query is
run on a query table impacts on the number that need to
be processed both by the database and by the Business
Process Choreographer query table runtime. Also, for
composite query tables, information from attached query
tables need be retrieved only if those are either specified
by the selected attributes or referenced by the query table
filter or by the query filter.

Query filter Negative If specified, the query filter currently has the same
performance impact as the query table filter. However, it is
a good practice if filters are specified on query tables
rather than passed into the query table API.

Sort attributes Negative The sorting of query result sets is an expensive operation,
and database optimizations are restricted if sorting is used.
If not needed, sorting should be avoided. Most
applications require sorting, however.

Threshold Positive The specification of a threshold can greatly improve the
performance of queries. It is a best practice to always
specify a threshold.

Skip count Negative Skipping a particular number of objects in the query result
set is expensive and should be done only if required, for
example when paging over a query result.

Time zone None The time zone setting has no performance impact.

Locale None The locale setting has no performance impact.

Distinct rows Negative Using distinct in queries has some performance impact but
might be necessary in order to retrieve non-duplicate
rows. This option impacts only on row based queries and
is ignored otherwise.

Count queries Positive If only the total number of entities or the number of rows
for a particular query is needed, that is, the contents are
not needed for all entries of the query table, the method
queryEntityCount or queryRowCount should be used. The
Business Process Choreographer runtime can apply
optimizations that are valid only for count queries.

354 Developing and deploying

Other considerations

Other factors to consider with regard to performance are:

Table 58. Query table performance: Other considerations

Item Description

Number of query
tables on the system

The number of query tables which are deployed on a Business
Process Choreographer container does not influence the
performance of query table queries. Also, currently, it does not
influence the navigation of business process instances, nor does it
have impact on claim or complete operations on human tasks. Due
to maintainability, keep the number of query tables at a reasonable
level. Typically, one query table represents one task list or process
list which is displayed on the user interface.

Database tuning Although optimized SQL is used to access the contents of a query
table, database tuning needs to be implemented on a Business
Process Choreographer database:

v Database memory should be set to a maximum, taking into
account other processes that are running on the database server,
as well as hardware constraints.

v Statistics on the database must be up-to-date, and should be
updated on a regular basis. Typically, those procedures are
already implemented in large topologies. For example, collect
database statistics for the optimizer once per week in order to
reflect changes of the data in the database.

v Database systems provide tools to reorganize (or defragment)
the data containers. The physical layout of the data in a database
can also influence query performance and access paths of
queries.

v Optimal indexes are the key for good query performance.
Business Process Choreographer comes with predefined indexes
which are optimized for both process navigation and query
performance of typical scenarios. In customized environments,
additional indexes may be necessary in order to support high
volume task or process list queries. Use tools provided by the
database in order to support the queries which are run on a
query table.

Creating query tables for Business Space
In the Query Table Builder, you can use the composite query table definition that
has predefined properties to create query tables for Business Space.

Before you begin

The Query Table Builder is available as an Eclipse plug-in and can be downloaded
from the WebSphere Business Process Management SupportPacs site. Look for
PA71 WebSphere Process Server - Query Table Builder. To access the link, see the
related references section of this topic.

Procedure
1. In the Query Table Builder, right click your project, then select New →

Composite Query Definition for Business Space. Follow the wizard
instructions to create a query table definition. The new query table definition
consists of the predefined properties. If required, add more properties to the
query table definition and deploy the query table definition file to the
WebSphere Process Server.

Developing client applications for business processes and tasks 355

Note: The names you give the properties in the Query Table Builder are used
as the names for the task properties in Business Space for Choreographer.

2. After the query table definition files have been created and deployed you can
configure them in Business Space. For example, if you have deployed a query
table definition file for the Tasks List widget:
a. Open the widget menu and select Configure, then the Content tab.
b. On the Content tab, open the Select task list to display drop down list to

display the lists that you can make available to the user of the widget.
Select Add task lists. The query table definition you deployed should be
available in this list for selection.

If the query table definition is not available you need to go back to the Query
Table Builder and check whether the definition file was correctly defined and
deployed.

Creating query tables for Business Process Choreographer
Explorer
You can use query tables instead of the EJB query API to improve the performance
of Business Process Choreographer Explorer. To create the query tables, use the
Query Table Builder.

Before you begin

The Query Table Builder is available as an Eclipse plug-in and can be downloaded
from the WebSphere Business Process Management SupportPacs site. Look for
PA71 WebSphere Process Server - Query Table Builder. To access the link, see the
related references section of this topic.

Procedure
1. In the Query Table Builder, right click your project, then select New →

Composite Query Definition for Business Space. This option ensures that all
of the columns that are required for Business Process Choreographer Explorer
are preselected.

2. Follow the wizard instructions to create a query table definition. If required,
add more properties to the query table definition. Consider the following
aspects when you define your query table:

Filter criteria
When you create views in Business Process Choreographer Explorer
based on query tables, you cannot specify additional filter or variables
for your search criteria. You must specify these filter criteria and the
parameters for the variables when you create the query table.

You can use a query table for more than one view in Business Process
Choreographer Explorer by using parameters in the query table
definition. For more flexibility, you can also specify whether the default
values of the parameters can be overwritten when the query for the
custom view is run.

Authorization
When you create views in Business Process Choreographer Explorer
based on query tables, you cannot filter your search criteria based on
the user role. You must set the filter criteria for user roles when you
define the query table. For primary query tables based on template
information, use instance-based authorization as the authorization type

356 Developing and deploying

and not role-based authorization. For primary query tables based on
instance information, specify the appropriate instance-based
authorization filter.

Internationalization
When you define properties in the Query Table Builder, you can also
specify the names and descriptions of these properties in different
languages. When the query for the customized view is run, Business
Process Choreographer Explorer uses the translation that is appropriate
for the language setting of your browser.

Display name and description for the query table definition
In the Query Table Builder, you can provide a display name
and description for all of the languages that are supported by
the view.

Display name and description for the columns
At runtime, Business Process Choreographer Explorer retrieves
the appropriate internationalized column names that are
displayed in a result list. For columns that come from your
primary query table, such as PIID, Business Process
Choreographer Explorer uses the translations that are already
available for all of the supported languages.

For columns that come from an attached query table, such as
QUERY_PROPERTY, you need to provide display names and
descriptions in the Query Table Builder in all of the languages
that are supported by your business.

Task names and description
If you have internationalized task names and descriptions in
WebSphere Integration Developer, they are displayed in
Business Process Choreographer Explorer according to the
language and country settings of your browser. If your browser
settings do not match the settings that are defined in the
process model, the translation of the default language is used.

Sort criteria
When you define sort criteria for a query table definition, be
aware that several properties, for example, process state, are
stored as integer values, while Business Process Choreographer
Explorer displays them as translated strings in the resulting list.
This might produce unexpected sorting results in some
languages.

The new query table definition consists of the predefined properties and any
additional properties that you define.

What to do next

Deploy and test the query definition in the Query Table Builder on an application
server. If this is the server to which Business Process Choreographer Explorer is
connected, you can now use the query table when you customize Business Process
Choreographer Explorer for your own use, or for different user groups. If Business
Process Choreographer Explorer is connected to a different server, you must
deploy the query table on the appropriate server before you can use it to create
customized views.

Developing client applications for business processes and tasks 357

Related concepts

“Authorization for query tables” on page 327
You can use instance-based authorization, role-based authorization, or no
authorization when you run queries on query tables.
“Filters and selection criteria of query tables” on page 322
Filters and selection criteria are defined during query table development using the
Query Table Builder, which uses a syntax similar to SQL WHERE clauses. Use
these clearly defined filters and selection criteria to specify conditions that are
based on attributes of query tables.
“Internationalization for query table meta data” on page 351
Internationalization is supported for query table meta data.

Business Process Choreographer EJB query API
Use the query method or the queryAll method of the service API to retrieve stored
information about business processes and tasks.

The query method can be called by all users, and it returns the properties of the
objects for which work items exist. The queryAll method can be called only by
users who have one of the following Java EE roles: BPESystemAdministrator,
TaskSystemAdministrator, BPESystemMonitor, or TaskSystemMonitor. This method
returns the properties of all the objects that are stored in the database.

All API queries are mapped to SQL queries. The form of the resulting SQL query
depends on the following aspects:
v Whether the query was invoked by someone with one of the Java EE roles.
v The objects that are queried. Predefined database views are provided for you to

query the object properties.
v The insertion of a from clause, join conditions, and user-specific conditions for

access control.

You can include both custom properties and variable properties in queries. If you
include several custom properties or variable properties in your query, this results
in self-joins on the corresponding database table. Depending on your database
system, these query() calls might have performance implications.

You can also store queries in the Business Process Choreographer database using
the createStoredQuery method. You provide the query criteria when you define the
stored query. The criteria are applied dynamically when the stored query runs, that
is, the data is assembled at runtime. If the stored query contains parameters, these
are also resolved when the query runs.

For more information on the Business Process Choreographer APIs, see the Javadoc
in the com.ibm.bpe.api package for process-related methods and in the
com.ibm.task.api package for task-related methods.

Syntax of the API query method
The syntax of the Business Process Choreographer API queries is similar to SQL
queries. A query can include a select clause, a where clause, an order-by clause, a
skip-tuples parameter, a threshold parameter and a time-zone parameter.

The syntax of the query depends on the object type. The following table shows the
syntax for each of the different object types.

358 Developing and deploying

Table 59. Query syntax for different object types

Object Syntax

Process template ProcessTemplateData[] queryProcessTemplates
(java.lang.String whereClause,
java.lang.String orderByClause,
java.lang.Integer threshold,
java.util.TimeZone timezone);

Task template TaskTemplate[] queryTaskTemplates
(java.lang.String whereClause,
java.lang.String orderByClause,
java.lang.Integer threshold,
java.util.TimeZone timezone);

Business-process and
task-related data

QueryResultSet query (java.lang.String selectClause,
java.lang.String whereClause,
java.lang.String orderByClause,
java.lang.Integer skipTuples
java.lang.Integer threshold,
java.util.TimeZone timezone);

Select clause:

The select clause in the query function identifies the object properties that are to be
returned by a query.

The select clause describes the query result. It specifies a list of names that identify
the object properties (columns of the result) to return. Its syntax is similar to the
syntax of an SQL SELECT clause; use commas to separate parts of the clause. Each
part of the clause must specify a column from one of the predefined views. The
columns must be fully specified by view name and column name. The columns
returned in the QueryResultSet object appear in the same order as the columns
specified in the select clause.

The select clause does not support SQL aggregation functions, such as AVG(),
SUM(), MIN(), or MAX().

To select the properties of multiple name-value pairs, such as custom properties
and properties of variables that can be queried, add a one-digit counter to the view
name. This counter can take the values 1 through 9.

Examples of select clauses

v "WORK_ITEM.OBJECT_TYPE, WORK_ITEM.REASON"
Gets the object types of the associated objects and the assignment reasons for the
work items.

v "DISTINCT WORK_ITEM.OBJECT_ID"
Gets all of the IDs of objects, without duplicates, for which the caller has a work
item.

v "ACTIVITY.TEMPLATE_NAME, WORK_ITEM.REASON"
Gets the names of the activities the caller has work items for and their
assignment reasons.

v "ACTIVITY.STATE, PROCESS_INSTANCE.STARTER"
Gets the states of the activities and the starters of their associated process
instances.

v "DISTINCT TASK.TKIID, TASK.NAME"

Developing client applications for business processes and tasks 359

Gets all of the IDs and names of tasks, without duplicates, for which the caller
has a work item.

v "TASK_CPROP1.STRING_VALUE, TASK_CPROP2.STRING_VALUE"
Gets the values of the custom properties that are specified further in the where
clause.

v "QUERY_PROPERTY1.STRING_VALUE, QUERY_PROPERTY2.INT_VALUE
Gets the values of the properties of variables that can be queried. These parts are
specified further in the where clause.

v "COUNT(DISTINCT TASK.TKIID)"
Counts the number of work items for unique tasks that satisfy the where clause.

Where clause:

The where clause in the query function describes the filter criteria to apply to the
query domain.

The syntax of a where clause is similar to the syntax of an SQL WHERE clause.
You do not need to explicitly add an SQL from clause or join predicates to the API
where clause, these constructs are added automatically when the query runs. If
you do not want to apply filter criteria, you must specify null for the where
clause.

The where-clause syntax supports:
v Keywords: AND, OR, NOT
v Comparison operators: =, <=, <, <>, >,>=, LIKE

The LIKE operation supports the wildcard characters that are defined for the
queried database.

v Set operation: IN

The following rules also apply:
v Specify object ID constants as ID(’string-rep-of-oid’).
v Specify binary constants as BIN(’UTF-8 string’).
v Use symbolic constants instead of integer enumerations. For example, instead of

specifying an activity state expression ACTIVITY.STATE=2, specify
ACTIVITY.STATE=ACTIVITY.STATE.STATE_READY.

v If the value of the property in the comparison statement contains single
quotation marks ('), double the quotation marks, for example,
"TASK_CPROP.STRING_VALUE=’d’’automatisation’".

v Refer to properties of multiple name-value pairs, such as custom properties, by
adding a one-digit suffix to the view name. For example:
"TASK_CPROP1.NAME=’prop1’ AND "TASK_CPROP2.NAME=’prop2’"

v Specify time-stamp constants as TS(’yyyy-mm-ddThh:mm:ss’). To refer to the
current date, specify CURRENT_DATE as the timestamp.
You must specify at least a date or a time value in the timestamp:
– If you specify a date only, the time value is set to zero.
– If you specify a time only, the date is set to the current date.
– If you specify a date, the year must consist of four digits; the month and day

values are optional. Missing month and day values are set to 01. For example,
TS(’2003’) is the same as TS(’2003-01-01T00:00:00’).

360 Developing and deploying

– If you specify a time, these values are expressed in the 24-hour system. For
example, if the current date is 1 January 2003, TS(’T16:04’) or TS(’16:04’) is
the same as TS(’2003-01-01T16:04:00’).

Examples of where clauses

v Comparing an object ID with an existing ID
"WORK_ITEM.WIID = ID(’_WI:800c00ed.df8d7e7c.feffff80.38’)"

This type of where clause is usually created dynamically with an existing object
ID from a previous call. If this object ID is stored in a wiid1 variable, the clause
can be constructed as:
"WORK_ITEM.WIID = ID(’" + wiid1.toString() + "’)"

v Using time stamps
"ACTIVITY.STARTED >= TS(’2002-06-1T16.00.00’)"

v Using symbolic constants
"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_OWNER"

v Using Boolean values true and false
"ACTIVITY.BUSINESS_RELEVANCE = TRUE"

v Using custom properties
"TASK_CPROP1.NAME = ’prop1’ AND " TASK_CPROP1.STRING_VALUE = ’v1’ AND
TASK_CPROP2.NAME = ’prop2’ AND " TASK_CPROP2.STRING_VALUE = ’v2’"

Order-by clause:

The order-by clause in the query function specifies the sort criteria for the query
result set.

You can specify a list of columns from the views by which the result is sorted.
These columns must be fully qualified by the name of the view and the column.

The order-by clause syntax is similar to the syntax of an SQL order-by clause; use
commas to separate each part of the clause. You can also specify ASC to sort the
columns in ascending order, and DESC to sort the columns in descending order. If
you do not want to sort the query result set, you must specify null for the
order-by clause.

Sort criteria are applied on the server, that is, the locale of the server is used for
sorting. If you specify more than one column, the query result set is ordered by the
values of the first column, then by the values of the second column, and so on.
You cannot specify the columns in the order-by clause by position as you can with
an SQL query.

Examples of order-by clauses
v "PROCESS_TEMPLATE.NAME"

Sorts the query result alphabetically by the process-template name.
v "PROCESS_INSTANCE.CREATED, PROCESS_INSTANCE.NAME DESC"

Sorts the query result by the creation date and, for a specific date, sorts the
results alphabetically by the process-instance name in reverse order.

v "ACTIVITY.OWNER, ACTIVITY.TEMPLATE_NAME, ACTIVITY.STATE"
Sorts the query result by the activity owner, then the activity-template name,
and then the state of the activity.

Skip-tuples parameter:

Developing client applications for business processes and tasks 361

The skip-tuples parameter specifies the number of query-result-set tuples from the
beginning of the query result set that are to be ignored and not to be returned to
the caller in the query result set.

Use this parameter with the threshold parameter to implement paging in a client
application, for example, to retrieve the first 20 items, then the next 20 items, and
so on.

If this parameter is set to null and the threshold parameter is not set, all of the
qualifying tuples are returned.

Example of a skip-tuples parameter
v new Integer(5)

Specifies that the first five qualifying tuples are not to be returned.

Threshold parameter:

The threshold parameter in the query function restricts the number of objects
returned from the server to the client in the query result set.

Because query result sets in production scenarios can contain thousands or even
millions of items, specify a value for the threshold parameter. If you set the
threshold parameter accordingly, the database query is faster and less data needs
to transfer from the server to the client. The threshold parameter can be useful, for
example, in a graphical user interface where only a small number of items should
be displayed at one time.

If this parameter is set to null and the skip-tuples parameter is not set, all of the
qualifying objects are returned.

Example of a threshold parameter
v new Integer(50)

Specifies that 50 qualifying tuples are to be returned.

Timezone parameter:

The time-zone parameter in the query function defines the time zone for
time-stamp constants in the query.

Time zones can differ between the client that starts the query and the server that
processes the query. Use the time-zone parameter to specify the time zone of the
time-stamp constants used in the where clause, for example, to specify local times.
The dates returned in the query result set have the same time zone that is specified
in the query.

If the parameter is set to null, the timestamp constants are assumed to be
Coordinated Universal Time (UTC) times.

Examples of time-zone parameters
v process.query("ACTIVITY.AIID",

"ACTIVITY.STARTED > TS(’2005-01-01T17:40’)",
(String)null,
(Integer)null,
java.util.TimeZone.getDefault());

Returns object IDs for activities that started later than 17:40 local time on 1
January 2005.

362 Developing and deploying

v process.query("ACTIVITY.AIID",
"ACTIVITY.STARTED > TS(’2005-01-01T17:40’)",
(String)null, (Integer)null, (TimeZone)null);

Return object IDs for activities that started later than 17:40 UTC on 1 January
2005. This specification is, for example, 6 hours earlier in Eastern Standard Time.

Filtering data using variables in queries:

A query result returns the objects that match the query criteria. You might want to
filter these results on the values of variables.

About this task

You can define variables that are used by a process at runtime in its process model.
For these variables, you declare which parts can be queried.

For example, John Smith, calls his insurance company's service number to find out
the progress of his insurance claim for his damaged car. The claims administrator
uses the customer ID to the find the claim.

Procedure

1. Optional: List the properties of the variables in a process that can be queried.
Use the process template ID to identify the process. You can skip this step if
you know which variables can be queried.
List variableProperties = process.getQueryProperties(ptid);
for (int i = 0; i < variableProperties.size(); i++)
{

QueryProperty queryData = (QueryProperty)variableProperties.get(i);
String variableName = queryData.getVariableName();
String name = queryData.getName();
int mappedType = queryData.getMappedType();
...

}

2. List the process instances with variables that match the filter criteria.
For this process, the customer ID is modeled as part of the variable
customerClaim that can be queried. You can therefore use the customer's ID to
find the claim.
QueryResultSet result = process.query

("PROCESS_INSTANCE.NAME, QUERY_PROPERTY.STRING_VALUE",
"QUERY_PROPERTY.VARIABLE_NAME = ’customerClaim’ AND " +
"QUERY_PROPERTY.NAME = ’customerID’ AND " +
"QUERY_PROPERTY.STRING_VALUE like ’Smith%’",
(String)null, (Integer)null,
(Integer)null, (TimeZone)null);

This action returns a query result set that contains the process instance names
and the values of the customer IDs for customers whose IDs start with Smith.

Query results:

A query result set contains the results of a Business Process Choreographer API
query.

The elements of the result set are properties of the objects that satisfy the where
clause given by the caller, and that the caller is authorized to see. You can read
elements in a relative fashion using the API next method or in an absolute fashion
using the first and last methods. Because the implicit cursor of a query result set is

Developing client applications for business processes and tasks 363

initially positioned before the first element, you must call either the first or next
methods before reading an element. You can use the size method to determine the
number of elements in the set.

An element of the query result set comprises the selected attributes of work items
and their associated referenced objects, such as activity instances and process
instances. The first attribute (column) of a QueryResultSet element specifies the
value of the first attribute specified in the select clause of the query request. The
second attribute (column) of a QueryResultSet element specifies the value of the
second attribute specified in the select clause of the query request, and so on.

You can retrieve the values of the attributes by calling a method that is compatible
with the attribute type and by specifying the appropriate column index. The
numbering of the column indexes starts with 1.

Attribute type Method

String getString

OID getOID

Timestamp getTimestamp
getString
getTimestampAsLong

Integer getInteger
getShort
getLong
getString
getBoolean

Boolean getBoolean
getShort
getInteger
getLong
getString

byte[] getBinary

Example:

The following query is run:
QueryResultSet resultSet = process.query("ACTIVITY.STARTED,

ACTIVITY.TEMPLATE_NAME AS NAME,
WORK_ITEM.WIID, WORK_ITEM.REASON",
(String)null, (String)null,
(Integer)null, (TimeZone)null);

The returned query result set has four columns:
v Column 1 is a time stamp
v Column 2 is a string
v Column 3 is an object ID
v Column 4 is an integer

You can use the following methods to retrieve the attribute values:
while (resultSet.next())
{
java.util.Calendar activityStarted = resultSet.getTimestamp(1);

364 Developing and deploying

String templateName = resultSet.getString(2);
WIID wiid = (WIID) resultSet.getOID(3);
Integer reason = resultSet.getInteger(4);
}

You can use the display names of the result set, for example, as headings for a
printed table. These names are the column names of the view or the name defined
by the AS clause in the query. You can use the following method to retrieve the
display names in the example:
resultSet.getColumnDisplayName(1) returns "STARTED"
resultSet.getColumnDisplayName(2) returns "NAME"
resultSet.getColumnDisplayName(3) returns "WIID"
resultSet.getColumnDisplayName(4) returns "REASON"

User-specific access conditions
User-specific access conditions are added when the SQL SELECT statement is
generated from the API query. These conditions guarantee that only those objects
are returned to the caller that satisfy the condition specified by the caller and to
which the caller is authorized.

The access condition that is added depends on whether the user is a system
administrator.

Queries invoked by users who are not system administrators

The generated SQL WHERE clause combines the API where clause with an access
control condition that is specific to the user. The query retrieves only those objects
that the user is authorized to access, that is, only those objects for which the user
has a work item. A work item represents the assignment of a user or user group to
an authorization role of a business object, such as a task or process. If, for example,
the user, John Smith, is a member of the potential owners role of a given task, a
work item object exists that represents this relationship.

For example, if a user, who is not a system administrator, queries tasks, the
following access condition is added to the WHERE clause if group work items are
not enabled:
FROM TASK TA, WORK_ITEM WI
WHERE WI.OBJECT_ID = TA.TKIID
AND (WI.OWNER_ID = ’user’

OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

So, if John Smith wants to get a list of tasks for which he is the potential owner,
the API where clause might look as follows:
"WORK_ITEM.REASON == WORK_ITEM.REASON.REASON_POTENTIAL_OWNER"

This API where clause results in the following access condition in the SQL
statement:
FROM TASK TA, WORK_ITEM WI
WHERE WI.OBJECT_ID = TA.TKIID
AND (WI.OWNER_ID = ’JohnSmith’

OR WI.OWNER_ID = null AND WI.EVERYBODY = true)
AND WI.REASON = 1

This also means that if John Smith wants to see the activities and tasks for which
he is a process reader or a process administrator and for which he does not have a
work item, then a property from the PROCESS_INSTANCE view must be added to
the select, where, or order-by clause of the query, for example,
PROCESS_INSTANCE.PIID.

Developing client applications for business processes and tasks 365

If group work items are enabled, an additional access condition is added to the
WHERE clause that allows a user to access objects that the group has access to.

Queries invoked by system administrators

System administrators can invoke the query method to retrieve objects that have
associated work items. In this case, a join with the WORK_ITEM view is added to
the generated SQL query, but no access control condition for the
WORK_ITEM.OWNER_ID.

In this case, the SQL query for tasks contains the following:
FROM TASK TA, WORK_ITEM WI
WHERE WI.OBJECT_ID = TA.TKIID

queryAll queries

This type of query can be invoked only by system administrators or system
monitors. Neither conditions for access control nor a join to the WORK_ITEM view
are added. This type of query returns all of the data for all of the objects.

Examples of the query and queryAll methods
These examples show the syntax of various typical API queries and the associated
SQL statements that are generated when the query is processed.

Example: Querying tasks in the ready state:

This example shows how to use the query method to retrieve tasks that the
logged-on user can work with.

John Smith wants to get a list of the tasks that have been assigned to him. For a
user to be able to work on a task, the task must be in the ready state. The
logged-on user must also have a potential owner work item for the task. The
following code snippet shows the query method call for this query:
query("DISTINCT TASK.TKIID",

"TASK.KIND IN (TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING)
AND " +

"TASK.STATE = TASK.STATE.STATE_READY AND " +
"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",
(String)null, (String)null, (Integer)null, (TimeZone)null)

The following actions are taken when the SQL SELECT statement is generated:
v A condition for access control is added to the where clause. This example

assumes that group work items are not enabled.
v Constants, such as TASK.STATE.STATE_READY, are replaced by their numeric

values.
v A FROM clause and join conditions are added.

The following code snippet shows the SQL statement that is generated from the
API query:
SELECT DISTINCT TASK.TKIID

FROM TASK TA, WORK_ITEM WI,
WHERE WI.OBJECT_ID = TA.TKIID
AND TA.KIND IN (101, 105)
AND TA.STATE = 2
AND WI.REASON = 1
AND (WI.OWNER_ID = ’JohnSmith’ OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

366 Developing and deploying

To restrict the API query to tasks for a specific process, for example,
sampleProcess, the query looks as follows:
query("DISTINCT TASK.TKIID",

"PROCESS_TEMPLATE.NAME = ’sampleProcess’ AND "+
"TASK.KIND IN (TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING)

AND " +
"TASK.STATE = TASK.STATE.STATE_READY AND " +
"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",
(String)null, (String)null, (Integer)null, (TimeZone)null)

Example: Querying tasks in the claimed state:

This example shows how to use the query method to retrieve tasks that the
logged-on user has claimed.

The user, John Smith, wants to search for tasks that he has claimed and are still in
the claimed state. The condition that specifies "claimed by John Smith" is
TASK.OWNER = ’JohnSmith’. The following code snippet shows the query method
call for the query:
query("DISTINCT TASK.TKIID",

"TASK.STATE = TASK.STATE.STATE_CLAIMED AND " +
"TASK.OWNER = ’JohnSmith’",
(String)null, (String)null, (Integer)null, (TimeZone)null)

The following code snippet shows the SQL statement that is generated from the
API query:
SELECT DISTINCT TASK.TKIID

FROM TASK TA, WORK_ITEM WI,
WHERE WI.OBJECT_ID = TA.TKIID
AND TA.STATE = 8
TA.OWNER = ’JohnSmith’
AND (WI.OWNER_ID = ’JohnSmith’ OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

When a task is claimed, work items are created for the owner of the task. So, an
alternative way of forming the query for John Smith's claimed tasks is to add the
following condition to the query instead of using TASK.OWNER = ’JohnSmith’:
WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_OWNER

The query then looks like the following code snippet:
query("DISTINCT TASK.TKIID",

"TASK.STATE = TASK.STATE.STATE_CLAIMED AND " +
"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_OWNER",
(String)null, (String)null, (Integer)null, (TimeZone)null)

The following actions are taken when the SQL SELECT statement is generated:
v A condition for access control is added to the where clause. This example

assumes that group work items are not enabled.
v Constants, such as TASK.STATE.STATE_READY, are replaced by their numeric

values.
v A FROM clause and join conditions are added.

The following code snippet shows the SQL statement that is generated from the
API query:
SELECT DISTINCT TASK.TKIID

FROM TASK TA, WORK_ITEM WI,
WHERE WI.OBJECT_ID = TA.TKIID

Developing client applications for business processes and tasks 367

AND TA.STATE = 8
AND WI.REASON = 4
AND (WI.OWNER_ID = ’JohnSmith’ OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

John is about to go on vacation so his team lead, Anne Grant, wants to check on
his current work load. Anne has system administrator rights. The query she
invokes is the same as the one John invoked. However, the SQL statement that is
generated is different because Anne is an administrator. The following code
snippet shows the generated SQL statement:
SELECT DISTINCT TASK.TKIID

FROM TASK TA, WORK_ITEM WI,
WHERE TA.TKIID = WI.OBJECT_ID =
AND TA.STATE = 8
AND TA.OWNER = ’JohnSmith’)

Because Anne is an administrator, an access control condition is not added to the
WHERE clause.

Example: Querying escalations:

This example shows how to use the query method to retrieve escalations for the
logged-on user.

When a task is escalated, and escalation receiver work item is created. The user,
Mary Jones wants to see a list of tasks that have been escalated to her. The
following code snippet shows the query method call for the query:
query("DISTINCT ESCALATION.ESIID, ESCALATION.TKIID",

"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_ESCALATION_RECEIVER",
(String)null, (String)null, (Integer)null, (TimeZone)null)

The following actions are taken when the SQL SELECT statement is generated:
v A condition for access control is added to the where clause. This example

assumes that group work items are not enabled.
v Constants, such as TASK.STATE.STATE_READY, are replaced by their numeric

values.
v A FROM clause and join conditions are added.

The following code snippet shows the SQL statement that is generated from the
API query:
SELECT DISTINCT ESCALATION.ESIID, ESCALATION.TKIID

FROM ESCALATION ESC, WORK_ITEM WI
WHERE ESC.ESIID = WI.OBJECT_ID
AND WI.REASON = 10
AND
(WI.OWNER_ID = ’MaryJones’ OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

Example: Using the queryAll method:

This example shows how to use the queryAll method to retrieve all of the activities
that belong to a process template.

The queryAll method is available only to users with system administrator or
system monitor rights. The following code snippet shows the queryAll method call
for the query to retrieve all of the activities that belong to the process template,
sampleProcess:

368 Developing and deploying

queryAll("DISTINCT ACTIVITY.AIID",
"PROCESS_TEMPLATE.NAME = ’sampleProcess’",
(String)null, (String)null, (Integer)null, (TimeZone)null)

The following code snippet shows the SQL query that is generated from the API
query:
SELECT DISTINCT ACTIVITY.AIID

FROM ACTIVITY AI, PROCESS_TEMPLATE PT
WHERE AI.PTID = PT.PTID
AND PT.NAME = ’sampleProcess’

Because the call is invoked by an administrator, an access control condition is not
added to the generated SQL statement. A join with the WORK_ITEM view is also
not added. This means that the query retrieves all of the activities for the process
template, including those activities without work items.

Example: Including query properties in a query:

This example shows how to use the query method to retrieve tasks that belong to
a business process. The process has query properties defined for it that you want
to include in the search.

For example, you want to search for all of the human tasks in the ready state that
belong to a business process. The process has a query property, customerID, with
the value CID_12345, and a namespace. The following code snippet shows the
query method call for the query:
query (" DISTINCT TASK.TKIID, TASK_TEMPL.NAME, TASK.STATE,

PROCESS_INSTANCE.NAME",
" QUERY_PROPERTY.NAME = ’customerID’ AND " +
" QUERY_PROPERTY.STRING_VALUE = ’CID_12345’ AND " +
" QUERY_PROPERTY.NAMESPACE =

’http://www.ibm.com/xmlns/prod/websphere/mqwf/bpel/’ AND " +
" TASK.KIND IN

(TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING) AND " +
" TASK.STATE = TASK.STATE.STATE_READY ",
(String)null, (String)null, (Integer)null, (TimeZone)null);

If you now want to add a second query property to the query, for example,
Priority, with a given namespace, the query method call for the query looks as
follows:
query (" DISTINCT TASK.TKIID, TASK_TEMPL.NAME, TASK.STATE,

PROCESS_INSTANCE.NAME",
" QUERY_PROPERTY1.NAME = ’customerID’ AND " +
" QUERY_PROPERTY1.STRING_VALUE = ’CID_12345’ AND " +
" QUERY_PROPERTY1.NAMESPACE =

’http://www.ibm.com/xmlns/prod/websphere/mqwf/bpel/’ AND " +
" QUERY_PROPERTY2.NAME = ’Priority’ AND " +
" QUERY_PROPERTY2.NAMESPACE =

’http://www.ibm.com/xmlns/prod/websphere/mqwf/bpel/’ AND " +
" TASK.KIND IN

(TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING) AND " +
" TASK.STATE = TASK.STATE.STATE_READY ",
(String)null, (String)null, (Integer)null, (TimeZone)null);

If you add more than one query property to the query, you must number each of
the properties that you add as shown in the code snippet. However, querying
custom properties affects performance; performance decreases with the number of
custom properties in the query.

Example: Including custom properties in a query:

Developing client applications for business processes and tasks 369

This example shows how to use the query method to retrieve tasks that have
custom properties.

For example, you want to search for all of the human tasks in the ready state that
have a custom property, customerID, with the value CID_12345. The following code
snippet shows the query method call for the query:
query (" DISTINCT TASK.TKIID ",

" TASK_CPROP.NAME = ’customerID’ AND " +
" TASK_CPROP.STRING_VALUE = ’CID_12345’ AND " +
" TASK.KIND IN

(TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING) AND " +
" TASK.STATE = TASK.STATE.STATE_READY ",
(String)null, (String)null, (Integer)null, (TimeZone)null);

If you now want to retrieve the tasks and their custom properties, the query
method call for the query looks as follows:
query (" DISTINCT TASK.TKIID, TASK_CPROP.NAME, TASK_CPROP.STRING_VALUE",

" TASK.KIND IN
(TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING) AND " +

" TASK.STATE = TASK.STATE.STATE_READY ",
(String)null, (String)null, (Integer)null, (TimeZone)null);

The SQL statement that is generated from this API query is shown in the following
code snippet:
SELECT DISTINCT TA.TKIID , TACP.NAME , TACP.STRING_VALUE

FROM TASK TA LEFT JOIN TASK_CPROP TACP ON (TA.TKIID = TACP.TKIID),
WORK_ITEM WI

WHERE WI.OBJECT_ID = TA.TKIID
AND TA.KIND IN (101, 105)
AND TA.STATE = 2
AND (WI.OWNER_ID = ’JohnSmith’ OR WI.OWNER_ID IS NULL AND WI.EVERYBODY = 1)

This SQL statement contains an outer join between the TASK view and the
TASK_CPROP view. This means that tasks that satisfy the WHERE clause are
retrieved even if they do not have any custom properties.

Managing stored queries
Stored queries provide a way to save queries that are run often. The stored query
can be either a query that is available to all users (public query), or a query that
belongs to a specific user (private query).

About this task

A stored query is a query that is stored in the database and identified by a name.
A private and a public stored query can have the same name; private stored
queries from different owners can also have the same name.

You can have stored queries for business process objects, task objects, or a
combination of these two object types.
Related concepts

“Parameters in stored queries”
A stored query is a query that is stored in the database and identified by a name.
The qualifying tuples are assembled dynamically when the query is run. To make
stored queries reusable, you can use parameters in the query definition that are
resolved at runtime.

Parameters in stored queries:

370 Developing and deploying

A stored query is a query that is stored in the database and identified by a name.
The qualifying tuples are assembled dynamically when the query is run. To make
stored queries reusable, you can use parameters in the query definition that are
resolved at runtime.

For example, you have defined custom properties to store customer names. You
can define queries to return the tasks that are associated with a particular
customer, ACME Co. To query this information, the where clause in your query
might look similar to the following example:
String whereClause =

"TASK.STATE = TASK.STATE.STATE_READY
AND WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER
AND TASK_CPROP.NAME = ’company’ AND TASK_CPROP.STRING_VALUE = ’ACME Co.’";

To make this query reusable so that you can also search for the customer, BCME
Ltd, you can use parameters for the values of the custom property. If you add
parameters to the task query, it might look similar to the following example:
String whereClause =

"TASK.STATE = TASK.STATE.STATE_READY
AND WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER
AND TASK_CPROP.NAME = ’company’ AND TASK_CPROP.STRING_VALUE = ’@param1’";

The @param1 parameter is resolved at runtime from the list of parameters that is
passed to the query method. The following rules apply to the use of parameters in
queries:
v Parameters can only be used in the where clause.
v Parameters are strings.
v Parameters are replaced at runtime using string replacement. If you need special

characters you must specify these in the where clause or passed-in at runtime as
part of the parameter.

v Parameter names consist of the string @param concatenated with an integer
number. The lowest number is 1, which points to the first item in the list of
parameters that is passed to the query API at runtime.

v A parameter can be used multiple times within a where clause; all occurrences
of the parameter are replaced by the same value.

Related tasks

“Managing stored queries” on page 370
Stored queries provide a way to save queries that are run often. The stored query
can be either a query that is available to all users (public query), or a query that
belongs to a specific user (private query).

Managing public stored queries:

Public stored queries are created by the system administrator. These queries are
available to all users.

About this task

As the system administrator, you can create, view, and delete public stored queries.
If you do not specify a user ID in the API call, it is assumed that the stored query
is a public stored query.

Procedure

1. Create a public stored query.

Developing client applications for business processes and tasks 371

For example, the following code snippet creates a stored query for process
instances and saves it with the name CustomerOrdersStartingWithA.
process.createStoredQuery("CustomerOrdersStartingWithA",

"DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",
"PROCESS_INSTANCE.NAME LIKE ’A%’",
"PROCESS_INSTANCE.NAME",
(Integer)null, (TimeZone)null);

The result of the stored query is a sorted list of all the process-instance names
that begin with the letter A and their associated process instance IDs (PIID).

2. Run the query defined by the stored query.
QueryResultSet result = process.query("CustomerOrdersStartingWithA",

new Integer(0), null);

This action returns the objects that fulfill the criteria. In this case, all of the
customer orders that begin with A.

3. List the names of the available public stored queries.
The following code snippet shows how to limit the list of returned queries to
just the public queries.
String[] storedQuery = process.getStoredQueryNames(StoredQueryData.KIND_PUBLIC);

4. Optional: Check the query that is defined by a specific stored query.
A stored private query can have the same name as a stored public query. If
these names are the same, the private stored query is returned. The following
code snippet shows how to return only the public query with the specified
name. If you use the Human Task Manager API to retrieve information about a
stored query, use StoredQuery for the returned object instead of
StoredQueryData.
StoredQueryData storedQuery = process.getStoredQuery

(StoredQueryData.KIND_PUBLIC, "CustomerOrdersStartingWithA");
String selectClause = storedQuery.getSelectClause();
String whereClause = storedQuery.getWhereClause();
String orderByClause = storedQuery.getOrderByClause();
Integer threshold = storedQuery.getThreshold();
String owner = storedQuery.getOwner();

5. Delete a public stored query.
The following code snippet shows how to delete the stored query that you
created in step 1.
process.deleteStoredQuery("CustomerOrdersStartingWithA");

Managing private stored queries for other users:

Private queries can be created by any user. These queries are available only to the
owner of the query and the system administrator.

About this task

As the system administrator, you can manage private stored queries that belong to
a specific user.

Procedure

1. Create a private stored query for the user ID Smith.
For example, the following code snippet creates a stored query for process
instances and saves it with the name CustomerOrdersStartingWithA for the
user ID Smith.

372 Developing and deploying

process.createStoredQuery("Smith", "CustomerOrdersStartingWithA",
"DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",
"PROCESS_INSTANCE.NAME LIKE ’A%’",
"PROCESS_INSTANCE.NAME",
(Integer)null, (TimeZone)null,
(List)null, (String)null);

The result of the stored query is a sorted list of all the process-instance names
that begin with the letter A and their associated process instance IDs (PIID).

2. Run the query defined by the stored query.
QueryResultSet result = process.query

("Smith", "CustomerOrdersStartingWithA",
(Integer)null, (Integer)null, (List)null);

new Integer(0));

This action returns the objects that fulfill the criteria. In this case, all of the
customer orders that begin with A.

3. Get a list of the names of the private queries that belong to a specific user.
For example, the following code snippet shows how to get a list of private
queries that belongs to the user Smith.
String[] storedQuery = process.getStoredQueryNames("Smith");

4. View the details of a specific query.
The following code snippet shows how to view the details of the
CustomerOrdersStartingWithA query that is owned by the user Smith.
StoredQueryData storedQuery = process.getStoredQuery

("Smith", "CustomerOrdersStartingWithA");
String selectClause = storedQuery.getSelectClause();
String whereClause = storedQuery.getWhereClause();
String orderByClause = storedQuery.getOrderByClause();
Integer threshold = storedQuery.getThreshold();
String owner = storedQuery.getOwner();

If you use the Human Task Manager API to retrieve information about a stored
query, use StoredQuery for the returned object instead of StoredQueryData.

5. Delete a private stored query.
The following code snippet shows how to delete a private query that is owned
by the user Smith.
process.deleteStoredQuery("Smith", "CustomerOrdersStartingWithA");

Working with your private stored queries:

If you are not a system administrator, you can create, run, and delete your own
private stored queries. You can also use the public stored queries that the system
administrator created.

Procedure

1. Create a private stored query.
For example, the following code snippet creates a stored query for process
instances and saves it with a specific name. If a user ID is not specified, it is
assumed that the stored query is a private stored query for the logged-on user.
process.createStoredQuery("CustomerOrdersStartingWithA",

"DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",
"PROCESS_INSTANCE.NAME LIKE ’A%’",
"PROCESS_INSTANCE.NAME",
(Integer)null, (TimeZone)null);

This query returns a sorted list of all the process-instance names that begin
with the letter A and their associated process instance IDs (PIID).

Developing client applications for business processes and tasks 373

2. Run the query defined by the stored query.
QueryResultSet result = process.query("CustomerOrdersStartingWithA",

new Integer(0));

This action returns the objects that fulfill the criteria. In this case, all of the
customer orders that begin with A.

3. Get a list of the names of the stored queries that the logged-on user can access.
The following code snippet shows how to get both the public and the private
stored queries that the user can access.
String[] storedQuery = process.getStoredQueryNames();

4. View the details of a specific query.
The following code snippet shows how to view the details of the
CustomerOrdersStartingWithA query that is owned by the user Smith.
StoredQueryData storedQuery = process.getStoredQuery

("CustomerOrdersStartingWithA");
String selectClause = storedQuery.getSelectClause();
String whereClause = storedQuery.getWhereClause();
String orderByClause = storedQuery.getOrderByClause();
Integer threshold = storedQuery.getThreshold();
String owner = storedQuery.getOwner();

If you use the Human Task Manager API to retrieve information about a stored
query, use StoredQuery for the returned object instead of StoredQueryData.

5. Delete a private stored query.
The following code snippet shows how to delete a private stored query.
process.deleteStoredQuery("CustomerOrdersStartingWithA");

Developing EJB client applications for business processes and human
tasks

The EJB APIs provide a set of generic methods for developing EJB client
applications for working with the business processes and human tasks that are
installed on a WebSphere Process Server.

About this task

With these Enterprise JavaBeans (EJB) APIs, you can create client applications to do
the following:
v Manage the life cycle of processes and tasks from starting them through to

deleting them when they complete
v Repair activities and processes
v Manage and distribute the workload over members of a work group

The EJB APIs are provided as two stateless session enterprise beans:
v BusinessFlowManagerService interface provides the methods for business

process applications
v HumanTaskManagerService interface provides the methods for task-based

applications

For more information on the EJB APIs, see the Javadoc in the com.ibm.bpe.api
package and the com.ibm.task.api package.

The following steps provide an overview of the actions you need to take to
develop an EJB client application.

374 Developing and deploying

Procedure
1. Decide on the functionality that the application is to provide.
2. Decide which of the session beans that you are going to use.

Depending on the scenarios that you want to implement with your application,
you can use one, or both, of the session beans.

3. Determine the authorization authorities needed by users of the application.
The users of your application must be assigned the appropriate authorization
roles to call the methods that you include in your application, and to view the
objects and the attributes of these objects that these methods return. When an
instance of the appropriate session bean is created, WebSphere Application
Server associates a context with the instance. The context contains information
about the caller's principal ID, group membership list, and roles. This
information is used to check the caller's authorization for each call.
The Javadoc contains authorization information for each of the methods.

4. Decide how to render the application.
The EJB APIs can be called locally or remotely.

5. Develop the application.
a. Access the EJB API.
b. Use the EJB API to interact with processes or tasks.

v Query the data.
v Work with the data.

Related concepts

Alternate administration authorization mode
Related reference

“BusinessFlowManagerService interface” on page 401
The BusinessFlowManagerService interface exposes business-process functions that
can be called by a client application.
“HumanTaskManagerService interface” on page 419
The HumanTaskManagerService interface exposes task-related functions that can be
called by a local or a remote client.

Accessing the EJB APIs
The Enterprise JavaBeans (EJB) APIs are provided as two stateless session
enterprise beans. Business process applications and task applications access the
appropriate session enterprise bean through the home interface of the bean.

About this task

The BusinessFlowManagerService interface provides the methods for business
process applications, and the HumanTaskManagerService interface provides the
methods for task-based applications. The application can be any Java application,
including another Enterprise JavaBeans (EJB) application.

Accessing the remote interface of the session bean
An EJB client application for business processes or human tasks accesses the
remote interface of the session bean through the remote home interface of the bean.

About this task

The session bean can be either the BusinessFlowManager session bean for process
applications or the HumanTaskManager session bean for task applications.

Developing client applications for business processes and tasks 375

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=cnot_instance_based_admin

Procedure
1. Add a reference to the remote interface of the session bean to the application

deployment descriptor. Add the reference to one of the following files:
v The application-client.xml file, for a Java Platform, Enterprise Edition

(Java EE) client application
v The web.xml file, for a Web application
v The ejb-jar.xml file, for an Enterprise JavaBeans (EJB) application
The reference to the remote home interface for process applications is shown in
the following example:
<ejb-ref>
<ejb-ref-name>ejb/BusinessFlowManagerHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.ibm.bpe.api.BusinessFlowManagerHome</home>
<remote>com.ibm.bpe.api.BusinessFlowManager</remote>
</ejb-ref>

The reference to the remote home interface for task applications is shown in the
following example:
<ejb-ref>
<ejb-ref-name>ejb/HumanTaskManagerHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.ibm.task.api.HumanTaskManagerHome</home>
<remote>com.ibm.task.api.HumanTaskManager</remote>
</ejb-ref>

If you use WebSphere Integration Developer to add the EJB reference to the
deployment descriptor, the binding for the EJB reference is automatically
created when the application is deployed. For more information on adding EJB
references, refer to the WebSphere Integration Developer documentation.

2. Decide on how you are going to provide definitions of business objects.
To work with business objects in a remote client application, you need to have
access to the corresponding schemas for the business objects (XSD or WSDL
files) that are used to interact with a process or task. Access to these files can be
provided in one of the following ways:
v If the client application does not run in a Java EE managed environment,

package the files with the client application's EAR file.
v If the client application is a Web application or an EJB client in a managed

Java EE environment, either package the files with the client application's
EAR file or leverage remote artifact loading.
a. Use the Business Process Choreographer EJB API createMessage and the

ClientObjectWrapper.getObject methods to load the remote business
object definitions from the corresponding application on the server
transparently.

b. Use the Service Data Object Programming API to create or read a
business object as part of an already instantiated business object. Do this
by using the commonj.sdo.DataObject.createDataObject or getDataObject
methods on the DataObject interface.

c. When you want to create a business object as the value for a business
object's property that is typed using the XML schema any or anyType, use
the Business Object services to create or read your business object. To do
this, you must set the remote artifact loader context to point to the
application that the schemas will be loaded from. Then you can use the
appropriate Business Object services.
For example, create a business object, where "ApplicationName" is the
name of the application that contains your business object definitions.

376 Developing and deploying

BOFactory bofactory = (BOFactory) new
ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");

com.ibm.wsspi.al.ALContext.setContext
("RALTemplateName", "ApplicationName");

try {
DataObject dataObject = bofactory.create("uriName", "typeName");

} finally {
com.ibm.wsspi.al.ALContext.unset();

}

For example, read XML input, where "ApplicationName" is the name of
the application that contains your business object definitions.
BOXMLSerializer serializerService =

(BOXMLSerializer) new ServiceManager().locateService
("com/ibm/websphere/bo/BOXMLSerializer");

ByteArrayInputStream input = new ByteArrayInputStream(<?xml?>..);

com.ibm.wsspi.al.ALContext.setContext
("RALTemplateName", "ApplicationName");

try {
BOXMLDocument document = serializerService.readXMLDocument(input);
DataObject dataObject = document.getDataObject();

} finally {
com.ibm.wsspi.al.ALContext.unset();

}

3. Locate the remote home interface of the session bean through the Java Naming
and Directory Interface (JNDI).
The following example shows this step for a process application:
// Obtain the default initial JNDI context
InitialContext initialContext = new InitialContext();

// Lookup the remote home interface of the BusinessFlowManager bean
Object result =

initialContext.lookup("java:comp/env/ejb/BusinessFlowManagerHome");

// Convert the lookup result to the proper type
BusinessFlowManagerHome processHome =

(BusinessFlowManagerHome)javax.rmi.PortableRemoteObject.narrow
(result,BusinessFlowManagerHome.class);

The remote home interface of the session bean contains a create method for EJB
objects. The method returns the remote interface of the session bean.

4. Access the remote interface of the session bean.
The following example shows this step for a process application:
BusinessFlowManager process = processHome.create();

Access to the session bean does not guarantee that the caller can perform all of
the actions provided by the bean; the caller must also be authorized for these
actions. When an instance of the session bean is created, a context is associated
with the instance of the session bean. The context contains the caller's principal
ID, group membership list, and indicates whether the caller has one of the
Business Process Choreographer Java EE roles. The context is used to check the
caller's authorization for each call, even when administrative security is not set.
If administrative security is not set, the caller's principal ID has the value
UNAUTHENTICATED.

5. Call the business functions exposed by the service interface.
The following example shows this step for a process application:
process.initiate("MyProcessModel",input);

Developing client applications for business processes and tasks 377

Calls from applications are run as transactions. A transaction is established and
ended in one of the following ways:
v Automatically by WebSphere Application Server (the deployment descriptor

specifies TX_REQUIRED).
v Explicitly by the application. You can bundle application calls into one

transaction:
// Obtain user transaction interface
UserTransaction transaction=

(UserTransaction)initialContext.lookup("java:comp/UserTransaction");

// Begin a transaction
transaction.begin();

// Applications calls ...

// On successful return, commit the transaction
transaction.commit();

Tip: To prevent database lock conflicts, avoid running statements similar to the
following in parallel:
// Obtain user transaction interface
UserTransaction transaction=

(UserTransaction)initialContext.lookup("java:comp/UserTransaction");

transaction.begin();

//read the activity instance
process.getActivityInstance(aiid);
//claim the activity instance
process.claim(aiid);

transaction.commit();

The getActivityInstance method and other read operations set a read lock. In
this example, a read lock on the activity instance is upgraded to an update lock
on the activity instance. This can result in a database deadlock when these
transactions are run in parallel.

Example

Here is an example of how steps 3 through 5 might look for a task application.
//Obtain the default initial JNDI context
InitialContext initialContext = new InitialContext();

//Lookup the remote home interface of the HumanTaskManager bean
Object result =

initialContext.lookup("java:comp/env/ejb/HumanTaskManagerHome");

//Convert the lookup result to the proper type
HumanTaskManagerHome taskHome =

(HumanTaskManagerHome)javax.rmi.PortableRemoteObject.narrow
(result,HumanTaskManagerHome.class);

...
//Access the remote interface of the session bean.
HumanTaskManager task = taskHome.create();

...
//Call the business functions exposed by the service interface
task.callTask(tkiid,input);

378 Developing and deploying

Accessing the local interface of the session bean
An EJB client application for business processes or human tasks accesses the local
interface of the session bean through the local home interface of the bean.

About this task

The session bean can be either the BusinessFlowManager session bean for process
applications or the HumanTaskManager session bean for human task applications.

Procedure
1. Add a reference to the local interface of the session bean to the application

deployment descriptor. Add the reference to one of the following files:
v The application-client.xml file, for a Java Platform, Enterprise Edition

(Java EE) client application
v The web.xml file, for a Web application
v The ejb-jar.xml file, for an Enterprise JavaBeans (EJB) application
The reference to the local home interface for process applications is shown in
the following example:
<ejb-local-ref>
<ejb-ref-name>ejb/LocalBusinessFlowManagerHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>com.ibm.bpe.api.LocalBusinessFlowManagerHome</local-home>
<local>com.ibm.bpe.api.LocalBusinessFlowManager</local>
</ejb-local-ref>

The reference to the local home interface for task applications is shown in the
following example:
<ejb-local-ref>
<ejb-ref-name>ejb/LocalHumanTaskManagerHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>com.ibm.task.api.LocalHumanTaskManagerHome</local-home>
<local>com.ibm.task.api.LocalHumanTaskManager</local>
</ejb-local-ref>

If you use WebSphere Integration Developer to add the EJB reference to the
deployment descriptor, the binding for the EJB reference is automatically
created when the application is deployed. For more information on adding EJB
references, refer to the WebSphere Integration Developer documentation.

2. Locate the local home interface of the session bean through the Java Naming
and Directory Interface (JNDI).
The following example shows this step for a process application:
// Obtain the default initial JNDI context
InitialContext initialContext = new InitialContext();

// Lookup the local home interface of the BusinessFlowManager bean

LocalBusinessFlowManagerHome processHome =
(LocalBusinessFlowManagerHome)initialContext.lookup
("java:comp/env/ejb/LocalBusinessFlowManagerHome");

The local home interface of the session bean contains a create method for EJB
objects. The method returns the local interface of the session bean.

3. Access the local interface of the session bean.
The following example shows this step for a process application:
LocalBusinessFlowManager process = processHome.create();

Access to the session bean does not guarantee that the caller can perform all of
the actions provided by the bean; the caller must also be authorized for these
actions. When an instance of the session bean is created, a context is associated

Developing client applications for business processes and tasks 379

with the instance of the session bean. The context contains the caller's principal
ID, group membership list, and indicates whether the caller has one of the
Business Process Choreographer Java EE roles. The context is used to check the
caller's authorization for each call, even when administrative security is not set.
If administrative security is not set, the caller's principal ID has the value
UNAUTHENTICATED.

4. Call the business functions exposed by the service interface.
The following example shows this step for a process application:
process.initiate("MyProcessModel",input);

Calls from applications are run as transactions. A transaction is established and
ended in one of the following ways:
v Automatically by WebSphere Application Server (the deployment descriptor

specifies TX_REQUIRED).
v Explicitly by the application. You can bundle application calls into one

transaction:
// Obtain user transaction interface
UserTransaction transaction=

(UserTransaction)initialContext.lookup("java:comp/UserTransaction");

// Begin a transaction
transaction.begin();

// Applications calls ...

// On successful return, commit the transaction
transaction.commit();

Tip: To prevent database deadlocks, avoid running statements similar to the
following in parallel:
// Obtain user transaction interface
UserTransaction transaction=

(UserTransaction)initialContext.lookup("java:comp/UserTransaction");

transaction.begin();

//read the activity instance
process.getActivityInstance(aiid);
//claim the activity instance
process.claim(aiid);

transaction.commit();

The getActivityInstance method and other read operations set a read lock. In
this example, a read lock on the activity instance is upgraded to an update lock
on the activity instance. This can result in a database deadlock when these
transactions are run in parallel

Example

Here is an example of how steps 2 through 4 might look for a task application.
//Obtain the default initial JNDI context
InitialContext initialContext = new InitialContext();

//Lookup the local home interface of the HumanTaskManager bean
LocalHumanTaskManagerHome taskHome =

(LocalHumanTaskManagerHome)initialContext.lookup
("java:comp/env/ejb/LocalHumanTaskManagerHome");

...
//Access the local interface of the session bean

380 Developing and deploying

LocalHumanTaskManager task = taskHome.create();

...
//Call the business functions exposed by the service interface
task.callTask(tkiid,input);

Developing applications for business processes
A business process is a set of business-related activities that are invoked in a
specific sequence to achieve a business goal. Examples are provided that show
how you might develop applications for typical actions on processes.

About this task

A business process can be either a microflow or a long-running process:
v Microflows are short running business processes that are executed

synchronously. After a very short time, the result is returned to the caller.
v Long-running, interruptible processes are executed as a sequence of activities

that are chained together. The use of certain constructs in a process causes
interruptions in the process flow, for example, invoking a human task, invoking
a service using an synchronous binding, or using timer-driven activities.
Parallel branches of the process are usually navigated asynchronously, that is,
activities in parallel branches are executed concurrently. Depending on the type
and the transaction setting of the activity, an activity can be run in its own
transaction.

Required roles for actions on process instances
Access to the BusinessFlowManager interface does not guarantee that the caller can
perform all of the actions on a process. The caller must be logged on to the client
application with a role that is authorized to perform the action.

The following table shows the actions on a process instance that a specific role can
take.

Action Caller's principal role

Reader Starter Administrator

createMessage x x x

createWorkItem x

delete x

deleteWorkItem x

forceTerminate x

getActiveEventHandlers x x

getActivityInstance x x

getAllActivities x x

getAllWorkItems x x

getClientUISettings x x x

getCustomProperties x x x

getCustomProperty x x x

getCustomPropertyNames x x x

getFaultMessage x x x

getInputClientUISettings x x x

Developing client applications for business processes and tasks 381

Action Caller's principal role

Reader Starter Administrator

getInputMessage x x x

getOutputClientUISettings x x x

getOutputMessage x x x

getProcessInstance x x x

getVariable x x x

getWaitingActivities x x x

getWorkItems x x

restart x

resume x

setCustomProperty x x

setVariable x

suspend x

transferWorkItem x

Note: If process administration is restricted to system administrators, then
instance-based administration is disabled. This means that administrative actions
on processes, scopes, and activities are limited to users in the
BPESystemAdministrator role. In addition, reading, viewing, and monitoring a
process instance or parts of it can only be performed by users in the
BPESystemAdministrator or BPESystemMonitor roles. For more information about
this administration mode, see doc/bpc/cnot_instance_based_admin.dita.

Required roles for actions on business-process activities
Access to the BusinessFlowManager interface does not guarantee that the caller can
perform all of the actions on an activity. The caller must be logged on to the client
application with a role that is authorized to perform the action.

The following table shows the actions on an activity instance that a specific role
can take.

Action Caller's principal role

Reader Editor Potential owner Owner Administrator

cancelClaim x x

claim x x

complete x x

createMessage x x x x x

createWorkItem x

deleteWorkItem x

forceComplete x

forceRetry x

getActivityInstance x x x x x

getAllWorkItems x x x x x

getClientUISettings x x x x x

getCustomProperties x x x x x

382 Developing and deploying

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=cnot_instance_based_admin

Action Caller's principal role

Reader Editor Potential owner Owner Administrator

getCustomProperty x x x x x

getCustomPropertyNames x x x x x

getFaultMessage x x x x x

getFaultNames x x x x x

getInputMessage x x x x x

getOutputMessage x x x x x

getVariable x x x x x

getVariableNames x x x x x

getInputVariableNames x x x x x

getOutputVariableNames x x x x x

getWorkItems x x x x x

setCustomProperty x x x

setFaultMessage x x x

setOutputMessage x x x

setVariable x

transferWorkItem x

To potential
owners or
administrators
only

x

Note: If process administration is restricted to system administrators, then
instance-based administration is disabled. This means that administrative actions
on processes, scopes, and activities are limited to users in the
BPESystemAdministrator role. In addition, reading, viewing, and monitoring a
process instance or parts of it can only be performed by users in the
BPESystemAdministrator or BPESystemMonitor roles. For more information about
this administration mode, see doc/bpc/cnot_instance_based_admin.dita.

Managing the life cycle of a business process
A process instance comes into existence when a Business Process Choreographer
API method that can start a process is invoked. The navigation of the process
instance continues until all of its activities are in an end state. Various actions can
be taken on the process instance to manage its life cycle.

About this task

Examples are provided that show how you might develop applications for the
following typical life-cycle actions on processes.

Starting business processes:

The way in which a business process is started depends on whether the process is
a microflow or a long-running process. The service that starts the process is also
important to the way in which a process is started; the process can have either a
unique starting service or several starting services.

Developing client applications for business processes and tasks 383

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=cnot_instance_based_admin

About this task

Examples are provided that show how you might develop applications for typical
scenarios for starting microflows and long-running processes.

Running a microflow that contains a unique starting service:

A microflow can be started by a receive activity or a pick activity. The starting
service is unique if the microflow starts with a receive activity or when the pick
activity has only one onMessage definition.

About this task

If the microflow implements a request-response operation, that is, the process
contains a reply, you can use the call method to run the process passing the
process template name as a parameter in the call.

If the microflow is a one-way operation, use the sendMessage method to run the
process. This method is not covered in this example.

Procedure

1. Optional: List the process templates to find the name of the process you want
to run.
This step is optional if you already know the name of the process.
ProcessTemplateData[] processTemplates = process.queryProcessTemplates
("PROCESS_TEMPLATE.EXECUTION_MODE =

PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_MICROFLOW",
"PROCESS_TEMPLATE.NAME",
new Integer(50),
(TimeZone)null);

The results are sorted by name. The query returns an array containing the first
50 sorted templates that can be started by the call method.

2. Start the process with an input message of the appropriate type.
When you create the message, you must specify its message type name so that
the message definition is contained.
ProcessTemplateData template = processTemplates[0];
//create a message for the single starting receive activity
ClientObjectWrapper input = process.createMessage

(template.getID(),
template.getInputMessageTypeName());

DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//set the strings in the message, for example, a customer name
myMessage.setString("CustomerName", "Smith");

}

//run the process
ClientObjectWrapper output = process.call(template.getName(), input);
DataObject myOutput = null;
if (output.getObject() != null && output.getObject() instanceof DataObject)
{

myOutput = (DataObject)output.getObject();
int order = myOutput.getInt("OrderNo");

}

384 Developing and deploying

This action creates an instance of the process template, CustomerTemplate, and
passes some customer data. The operation returns only when the process is
complete. The result of the process, OrderNo, is returned to the caller.

Running a microflow that contains a non-unique starting service:

A microflow can be started by a receive activity or a pick activity. The starting
service is not unique if the microflow starts with a pick activity that has multiple
onMessage definitions.

About this task

If the microflow implements a request-response operation, that is, the process
contains a reply, you can use the call method to run the process passing the ID of
the starting service in the call.

If the microflow is a one-way operation, use the sendMessage method to run the
process. This method is not covered in this example.

Procedure

1. Optional: List the process templates to find the name of the process you want
to run.
This step is optional if you already know the name of the process.
ProcessTemplateData[] processTemplates = process.queryProcessTemplates
("PROCESS_TEMPLATE.EXECUTION_MODE =

PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_MICROFLOW",
"PROCESS_TEMPLATE.NAME",
new Integer(50),
(TimeZone)null);

The results are sorted by name. The query returns an array containing the first
50 sorted templates that can be started as microflows.

2. Determine the starting service to be called.
This example uses the first template that is found.
ProcessTemplateData template = processTemplates[0];
ActivityServiceTemplateData[] startActivities =

process.getStartActivities(template.getID());

3. Start the process with an input message of the appropriate type.
When you create the message, you must specify its message type name so that
the message definition is contained.
ActivityServiceTemplateData activity = startActivities[0];
//create a message for the service to be called
ClientObjectWrapper input =

process.createMessage(activity.getServiceTemplateID(),
activity.getActivityTemplateID(),
activity.getInputMessageTypeName());

DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//set the strings in the message, for example, a customer name
myMessage.setString("CustomerName", "Smith");

}
//run the process
ClientObjectWrapper output = process.call(activity.getServiceTemplateID(),

activity.getActivityTemplateID(),
input);

//check the output of the process, for example, an order number
DataObject myOutput = null;

Developing client applications for business processes and tasks 385

if (output.getObject() != null && output.getObject() instanceof DataObject)
{

myOutput = (DataObject)output.getObject();
int order = myOutput.getInt("OrderNo");

}

This action creates an instance of the process template, CustomerTemplate, and
passes some customer data. The operation returns only when the process is
complete. The result of the process, OrderNo, is returned to the caller.

Starting a long-running process that contains a unique starting service:

If the starting service is unique, you can use the initiate method and pass the
process template name as a parameter. This is the case when the long-running
process starts with either a single receive or pick activity and when the single pick
activity has only one onMessage definition.

Procedure

1. Optional: List the process templates to find the name of the process you want
to start.
This step is optional if you already know the name of the process.
ProcessTemplateData[] processTemplates = process.queryProcessTemplates

("PROCESS_TEMPLATE.EXECUTION_MODE =
PROCESS_TEMPLATE.EXECUTION_MODE.EXECUTION_MODE_LONG_RUNNING",

"PROCESS_TEMPLATE.NAME",
new Integer(50),
(TimeZone)null);

The results are sorted by name. The query returns an array containing the first
50 sorted templates that can be started by the initiate method.

2. Start the process with an input message of the appropriate type.
When you create the message, you must specify its message type name so that
the message definition is contained. If you specify a process-instance name, it
must not start with an underscore. If a process-instance name is not specified,
the process instance ID (PIID) in String format is used as the name.
ProcessTemplateData template = processTemplates[0];
//create a message for the single starting receive activity
ClientObjectWrapper input = process.createMessage

(template.getID(),
template.getInputMessageTypeName());

DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//set the strings in the message, for example, a customer name
myMessage.setString("CustomerName", "Smith");

}
//start the process
PIID piid = process.initiate(template.getName(), "CustomerOrder", input);

This action creates an instance, CustomerOrder, and passes some customer
data. When the process starts, the operation returns the object ID of the new
process instance to the caller.
The starter of the process instance is set to the caller of the request. This person
receives a work item for the process instance. The process administrators,
readers, and editors of the process instance are determined and receive work
items for the process instance. The follow-on activity instances are determined.
These are started automatically or, if they are human task, receive, or pick
activities, work items are created for the potential owners.

Starting a long-running process that contains a non-unique starting service:

386 Developing and deploying

A long-running process can be started through multiple initiating receive or pick
activities. You can use the initiate method to start the process. If the starting service
is not unique, for example, the process starts with multiple receive or pick
activities, or a pick activity that has multiple onMessage definitions, then you must
identify the service to be called.

Procedure

1. Optional: List the process templates to find the name of the process you want
to start.
This step is optional if you already know the name of the process.
ProcessTemplateData[] processTemplates = process.queryProcessTemplates

("PROCESS_TEMPLATE.EXECUTION_MODE =
PROCESS_TEMPLATE.EXECUTION_MODE.EXECUTION_MODE_LONG_RUNNING",

"PROCESS_TEMPLATE.NAME",
new Integer(50),
(TimeZone)null);

The results are sorted by name. The query returns an array containing the first
50 sorted templates that can be started as long-running processes.

2. Determine the starting service to be called.
ProcessTemplateData template = processTemplates[0];
ActivityServiceTemplateData[] startActivities =

process.getStartActivities(template.getID());

3. Start the process with an input message of the appropriate type.
When you create the message, you must specify its message type name so that
the message definition is contained. If you specify a process-instance name, it
must not start with an underscore. If a process-instance name is not specified,
the process instance ID (PIID) in String format is used as the name.
ActivityServiceTemplateData activity = startActivities[0];
//create a message for the service to be called
ClientObjectWrapper input = process.createMessage

(activity.getServiceTemplateID(),
activity.getActivityTemplateID(),
activity.getInputMessageTypeName());

DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//set the strings in the message, for example, a customer name
myMessage.setString("CustomerName", "Smith");

}
//start the process
PIID piid = process.sendMessage(activity.getServiceTemplateID(),

activity.getActivityTemplateID(),
input);

This action creates an instance and passes some customer data. When the
process starts, the operation returns the object ID of the new process instance to
the caller.
The starter of the process instance is set to the caller of the request and receives
a work item for the process instance. The process administrators, readers, and
editors of the process instance are determined and receive work items for the
process instance. The follow-on activity instances are determined. These are
started automatically or, if they are human task, receive, or pick activities, work
items are created for the potential owners.

Suspending and resuming a business process:

Developing client applications for business processes and tasks 387

You can suspend long-running, top-level process instance while it is running and
resume it again to complete it.

Before you begin

About this task

You might want to suspend a process instance, for example, so that you can
configure access to a back-end system that is used later in the process. When the
prerequisites for the process are met, you can resume the process instance. You
might also want to suspend a process to fix a problem that is causing the process
instance to fail, and then resume it again when the problem is fixed.

To suspend a process instance, it must be in the running or failing state. The caller
must be a process administrator or a system administrator. However, if Business
Flow Manager is using the alternate process administration authorization mode,
which restricts process administration to system administrators, then only callers in
the BPESystemAdministrator role can perform this action.

Procedure

1. Get the running process, CustomerOrder, that you want to suspend.
ProcessInstanceData processInstance =

process.getProcessInstance("CustomerOrder");

2. Suspend the process instance.
PIID piid = processInstance.getID();
process.suspend(piid);

This action suspends the specified top-level process instance. The process
instance is put into the suspended state. In this state, activities that are started
can still be finished but no new activities are activated. Subprocesses with the
autonomy attribute set to child are also suspended if they are in the running,
failing, terminating, or compensating state. Inline tasks and stand-alone tasks
that are associated with this process instance are not suspended.

3. Resume the process instance.
process.resume(piid);

This action puts the process instance and its subprocesses into the states they
had before they were suspended.

Restarting a business process:

You can restart a process instance that is in the finished, terminated, failed, or
compensated state.

About this task

Restarting a process instance is similar to starting a process instance for the first
time. However, when a process instance is restarted, the process instance ID is
known and the input message for the instance is available.

If the process has more than one receive activity or pick activity (also known as a
receive choice activity) that can create the process instance, all of the messages that
belong to these activities are used to restart the process instance. If any of these
activities implement a request-response operation, the response is sent again when
the associated reply activity is navigated.

388 Developing and deploying

The caller must be a process administrator or a system administrator. However, if
Business Flow Manager is using the alternate process administration authorization
mode, which restricts process administration to system administrators, then only
callers in the BPESystemAdministrator role can perform this action.

Procedure

1. Get the process that you want to restart.
ProcessInstanceData processInstance =

process.getProcessInstance("CustomerOrder");

2. Restart the process instance.
PIID piid = processInstance.getID();
process.restart(piid);

This action restarts the specified process instance.

Terminating a process instance:

Sometimes, a top-level process instance that in an unrecoverable state must be
terminated.

About this task

To perform this action, the caller must be a process administrator or a system
administrator. However, if Business Flow Manager is using the alternate process
administration authorization mode, which restricts process administration to
system administrators, then only callers in the BPESystemAdministrator role can
perform this action.

Because a process instance terminates immediately, without waiting for any
outstanding subprocesses or activities, you should only take this action in
exceptional situations.

Procedure

1. Retrieve the process instance that is to be terminated.
ProcessInstanceData processInstance =

process.getProcessInstance("CustomerOrder");

2. Terminate the process instance.
If you terminate a process instance, you can terminate the process instance with
or without compensation.
To terminate the process instance with compensation:
PIID piid = processInstance.getID();
process.forceTerminate(piid, CompensationBehaviour.INVOKE_COMPENSATION);

To terminate the process instance without compensation:
PIID piid = processInstance.getID();
process.forceTerminate(piid);

If you terminate the process instance with compensation, the compensation of
the process is run as if a fault had occurred on the top-level scope. If you
terminate the process instance without compensation, the process instance is
terminated immediately without waiting for activities, to-do tasks, or inline
invocation tasks to end normally.
Applications that are started by the process and standalone tasks that are
related to the process are not terminated by the force terminate request. If these
applications are to be terminated, you must add statements to your process
application that explicitly terminate the applications started by the process.

Developing client applications for business processes and tasks 389

Deleting process instances:

Completed process instances are automatically deleted from the Business Process
Choreographer database if the corresponding property is set for the process
template in the process model. You might want to keep process instances in your
database, for example, to query data from process instances that are not written to
the audit log. However, stored process instance data does not only impact disk
space and performance but also prevents process instances that use the same
correlation set values from being created. Therefore, you should regularly delete
process instance data from the database.

About this task

To delete a process instance, you need process administrator rights and the process
instance must be a top-level process instance.

The following example shows how to delete all of the finished process instances.

Procedure

1. List the process instances that are finished.
QueryResultSet result =

process.query("DISTINCT PROCESS_INSTANCE.PIID",
"PROCESS_INSTANCE.STATE =

PROCESS_INSTANCE.STATE.STATE_FINISHED",
(String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that lists process instances that are
finished.

2. Delete the process instances that are finished.
while (result.next())
{

PIID piid = (PIID) result.getOID(1);
process.delete(piid);

}

This action deletes the selected process instance and its inline tasks from the
database.

Processing human task activities
Human task activities in business processes are assigned to various people in your
organization through work items. When a process is started, work items are
created for the potential owners.

About this task

When a human task activity is activated, both an activity instance and an
associated to-do task are created. Handling of the human task activity and the
work item management is delegated to Human Task Manager. Any state change of
the activity instance is reflected in the task instance and vice versa.

A potential owner claims the activity. This person is responsible for providing the
relevant information and completing the activity.

Procedure
1. List the activities belonging to a logged-on person that are ready to be worked

on:

390 Developing and deploying

QueryResultSet result =
process.query("ACTIVITY.AIID",

"ACTIVITY.STATE = ACTIVITY.STATE.STATE_READY AND
ACTIVITY.KIND = ACTIVITY.KIND.KIND_STAFF AND
WORK_ITEM.REASON =

WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",
(String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that contains the activities that can be
worked on by the logged-on person.

2. Claim the activity to be worked on:
if (result.size() > 0)
{
result.first();
AIID aiid = (AIID) result.getOID(1);
ClientObjectWrapper input = process.claim(aiid);
DataObject activityInput = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

activityInput = (DataObject)input.getObject();
// read the values
...

}
}

When the activity is claimed, the input message of the activity is returned.
3. When work on the activity is finished, complete the activity. The activity can be

completed either successfully or with a fault message. If the activity is
successful, an output message is passed. If the activity is unsuccessful, the
activity is put into the failed or stopped state and a fault message is passed.
You must create the appropriate messages for these actions. When you create
the message, you must specify the message type name so that the message
definition is contained.
a. To complete the activity successfully, create an output message.

ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper output =

process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null ;
if (output.getObject()!= null && output.getObject() instanceof DataObject)
{

myMessage = (DataObject)output.getObject();
//set the parts in your message, for example, an order number
myMessage.setInt("OrderNo", 4711);

}

//complete the activity
process.complete(aiid, output);

This action sets an output message that contains the order number.
b. To complete the activity when a fault occurs, create a fault message.

//retrieve the faults modeled for the human task activity
List faultNames = process.getFaultNames(aiid);

//create a message of the appropriate type
ClientObjectWrapper myFault =

process.createMessage(aiid, faultNames.get(0));

// set the parts in your fault message, for example, an error number
DataObject myMessage = null ;
if (myFault.getObject()!= null && input.getObject() instanceof DataObject)
{

Developing client applications for business processes and tasks 391

myMessage = (DataObject)myFault.getObject();
//set the parts in the message, for example, a customer name
myMessage.setInt("error",1304);

}

process.complete(aiid, myFault,(String)faultNames.get(0));

This action sets the activity in either the failed or the stopped state. If the
continueOnError parameter for the activity in the process model is set to
true, the activity is put into the failed state and the navigation continues. If
the continueOnError parameter is set to false and the fault is not caught on
the surrounding scope, the activity is put into the stopped state. In this state
the activity can be repaired using force complete or force retry.

Related concepts

Continue-on-error behavior of activities and business processes
When you define a business process, you can specify what should happen if an
unexpected fault is raised and a fault handler is not defined for that fault. You can
use the Continue On Error setting when you define your process to specify that it
is to stop where the fault occurs.

Processing a single person workflow
Some workflows are performed by only one person, for example, ordering books
from an online bookstore. This type of workflow has no parallel paths. The
initiateAndClaimFirst and completeAndClaimSuccessor APIs support the
processing of this type of workflow. This example shows the implementation of a
single person workflow using a client-side page flow.

About this task

A single person workflow is also referred to as a page flow or a screen flow. There
are two kinds of page flows:
v Client-side page flows, where the navigation between the different pages is

realized using client-side technology, such as a multi-page Lotus® Forms form.
v Server-side page flows are realized using a business process and a set of human

tasks that are modeled so that subsequent tasks are assigned to the same person.

Server-side page flows are more powerful than client-side page flows, but they
consume more server resources to process them. Therefore, consider using this
type of workflow primarily in the following situations:
v You need to invoke services between steps carried out in a user interface, for

example, to retrieve or update data.
v You have auditing requirements that require CEI events to be written after a

user interface interaction completes.

A typical example of a single person workflow is the ordering process in an online
bookstore, where the purchaser completes a sequence of actions to order a book.
This sequence of actions can be implemented as a series of human task activities
(to-do tasks). If the purchaser decides to order several books, this is equivalent to
starting an order process, and claiming the next human task activity.

The initiateAndClaimFirst API starts the page flow, that is, it starts the specified
process and claims the first human task activity in the sequence of activities. It
returns information about the claimed activity, including the input message to be
worked on.

392 Developing and deploying

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=cfaulthandling_continueonerror

The completeAndClaimSuccessor API then completes the human task activity and
claims the next one in the same process instance for the logged-on person. It
returns information about the next claimed activity, including the input message to
be worked on. Because the next activity is made available within the same
transaction of the activity that completed, the transactional behavior of all the
human task activities in the process model must be set to participates.

Compare this example with the example that uses both the Business Flow Manager
API and the Human Task Manager API.

Procedure
1. Start the book ordering process and claim the first activity in the sequence of

activities. Start the process with an input message of the appropriate type.
When you create the message, you must specify its message type name so that
the message definition is contained. If you specify a process instance name, it
must not start with an underscore. If a process instance name is not specified,
the process instance ID (PIID) in String format is used as the name.
a. Retrieve the process template to create an input message of the appropriate

type.
ProcessTemplateData template = process.getProcessTemplate("CustomerOrder");
ClientObjectWrapper input = process.createMessage(template.getID(),

template.getInputMessageTypeName());
DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//set the strings in the message, for example, a customer name
myMessage.setString("CustomerName", "Smith");

}

b. Start the process and claim the first human task activity.
InitiateAndClaimFirstResult result =

process.initiateAndClaimFirst("CustomerOrder", "MyOrderProcess", input);
AIID aiid = result.getAIID();
ClientObjectWrapper input = result.getInputMessage();

When the first activity is claimed, the input message and the ID of the claimed
activity is returned.

2. When work on the activity is finished, complete the activity, and claim the next
activity.
To complete the activity, an output message is passed. When you create the
output message, you must specify the message type name so that the message
definition is contained.
ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper output =

process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null ;
if (output.getObject()!= null && output.getObject() instanceof DataObject)
{

myMessage = (DataObject)output.getObject();
//set the parts in your message, for example, an order number
myMessage.setInt("OrderNo", 4711);

}

//complete the activity and claim the next one
CompleteAndClaimSuccessorResult successor =

process.completeAndClaimSuccessor(aiid, output);

This action sets an output message that contains the order number and claims
the next activity in the sequence. If AutoClaim is set for successor activities and

Developing client applications for business processes and tasks 393

if there are multiple paths that can be followed, all of the successor activities
are claimed and a random activity is returned as the next activity. If there are
no more successor activities that can be assigned to this user, Null is returned.
If the process contains parallel paths that can be followed and these paths
contain human task activities for which the logged-on user is a potential owner
of more than one of these activities, a random activity is claimed automatically
and returned as the next activity.

3. Work on the next activity.
String name = successor.getActivityName();

ClientObjectWrapper nextInput = successor.getInputMessage();
if (nextInput.getObject()!=

null && nextInput.getObject() instanceof DataObject)
{

activityInput = (DataObject)input.getObject();
// read the values
...

}

aiid = successor.getAIID();

4. Continue with step 2 to complete the activity.
Related tasks

“Processing a single person workflow that includes human tasks” on page 424
Some workflows are performed by only one person, for example, ordering books
from an online bookstore. This example shows how to implement a single person
workflow using a server-side page flow. Both the Business Flow Manager and the
Human Task Manager APIs are used to process the workflow.

Sending a message to a waiting activity
You can use inbound message activities (receive activities, onMessage in pick
activities, onEvent in event handlers) to synchronize a running process with events
from the "outside world". For example, the receipt of an e-mail from a customer in
response to a request for information might be such an event.

About this task

You can use originating tasks to send the message to the activity.

Procedure
1. List the activity service templates that are waiting for a message from the

logged-on user in a process instance with a specific process instance ID.
ActivityServiceTemplateData[] services = process.getWaitingActivities(piid);

2. Send a message to the first waiting service.
It is assumed that the first service is the one that you want serve. The caller
must be a potential starter of the activity that receives the message, or an
administrator of the process instance.
VTID vtid = services[0].getServiceTemplateID();
ATID atid = services[0].getActivityTemplateID();
String inputType = services[0].getInputMessageTypeName();

// create a message for the service to be called
ClientObjectWrapper message =

process.createMessage(vtid,atid,inputMessageTypeName);
DataObject myMessage = null;
if (message.getObject()!= null && message.getObject() instanceof DataObject)
{

myMessage = (DataObject)message.getObject();

394 Developing and deploying

//set the strings in the message, for example, chocolate is to be ordered
myMessage.setString("Order", "chocolate");

}

// send the message to the waiting activity
process.sendMessage(vtid, atid, message);

}

This action sends the specified message to the waiting activity service and
passes some order data.
You can also specify the process instance ID to ensure that the message is sent
to the specified process instance. If the process instance ID is not specified, the
message is sent to the activity service, and the process instance that is
identified by the correlation values in the message. If the process instance ID is
specified, the process instance that is found using the correlation values is
checked to ensure that it has the specified process instance ID.

Handling events
An entire business process and each of its scopes can be associated with event
handlers that are invoked if the associated event occurs. Event handlers are similar
to receive or pick activities in that a process can provide Web service operations
using event handlers.

About this task

You can invoke an event handler any number of times as long as the
corresponding scope is running. In addition, multiple instances of an event handler
can be activated concurrently.

The following code snippet shows how to get the active event handlers for a given
process instance and how to send an input message.

Procedure
1. Determine the data of the process instance ID and list the active event handlers

for the process.
ProcessInstanceData processInstance =

process.getProcessInstance("CustomerOrder2711");
EventHandlerTemplateData[] events = process.getActiveEventHandlers(

processInstance.getID());

2. Send the input message.
This example uses the first event handler that is found.
EventHandlerTemplateData event = null;
if (events.length > 0)
{

event = events[0];

// create a message for the service to be called
ClientObjectWrapper input = process.createMessage(
event.getID(), event.getInputMessageTypeName());

if (input.getObject() != null && input.getObject() instanceof DataObject)
{

DataObject inputMessage = (DataObject)input.getObject();
// set content of the message, for example, a customer name, order number
inputMessage.setString("CustomerName", "Smith");
inputMessage.setString("OrderNo", "2711");

// send the message
process.sendMessage(event.getProcessTemplateName(),

event.getPortTypeNamespace(),

Developing client applications for business processes and tasks 395

event.getPortTypeName(),
event.getOperationName(),

input);
}

}

This action sends the specified message to the active event handler for the
process.

Analyzing the results of a process
A process can expose Web services operations that are modeled as Web Services
Description Language (WSDL) one-way or request-response operations. The results
of long-running processes with one-way interfaces cannot be retrieved using the
getOutputMessage method, because the process has no output. However, you can
query the contents of variables, instead.

About this task

The results of the process are stored in the database only if the process template
from which the process instance was derived does not specify automatic deletion
of the derived process instances.

Procedure

Analyze the results of the process, for example, check the order number.
QueryResultSet result = process.query

("PROCESS_INSTANCE.PIID",
"PROCESS_INSTANCE.NAME = ’CustomerOrder’ AND
PROCESS_INSTANCE.STATE =

PROCESS_INSTANCE.STATE.STATE_FINISHED",
(String)null, (Integer)null, (TimeZone)null);

if (result.size() > 0)
{

result.first();
PIID piid = (PIID) result.getOID(1);
ClientObjectWrapper output = process.getOutputMessage(piid);
DataObject myOutput = null;
if (output.getObject() != null && output.getObject() instanceof DataObject)
{

myOutput = (DataObject)output.getObject();
int order = myOutput.getInt("OrderNo");

}
}

Repairing activities
A long-running process can contain activities that are also long running. These
activities might encounter uncaught errors and go into the stopped state. An
activity in the running state might also appear to be not responding. In both of
these cases, a process administrator can act on the activity in a number of ways so
that the navigation of the process can continue.

About this task

The Business Process Choreographer API provides the forceRetry and
forceComplete methods for repairing activities. Examples are provided that show
how you might add repair actions for activities to your applications.

Forcing the completion of an activity:

396 Developing and deploying

Activities in long-running processes can sometimes encounter faults. If these faults
are not caught by a fault handler in the enclosing scope and the associated activity
template specifies that the activity stops when an error occurs, the activity is put
into the stopped state so that it can be repaired. In this state, you can force the
completion of the activity.

About this task

You can also force the completion of activities in the running state if, for example,
an activity is not responding.

Additional requirements exist for certain types of activities.

Human task activities
You can pass parameters in the force-complete call, such as the message
that should have been sent or the fault that should have been raised.

Script activities
You cannot pass parameters in the force-complete call. However, you must
set the variables that need to be repaired.

Invoke activities
You can also force the completion of invoke activities that call an
asynchronous service that is not a subprocess if these activities are in the
running state. You might want to do this, for example, if the asynchronous
service is called and it does not respond.

Procedure

1. List the stopped activities in the stopped state.
QueryResultSet result =

process.query("DISTINCT ACTIVITY.AIID",
"ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND
PROCESS_INSTANCE.NAME=’CustomerOrder’",
(String)null, (Integer)null, (TimeZone)null);

This action returns the stopped activities for the CustomerOrder process
instance.

2. Complete the activity, for example, a stopped human task activity.
In this example, an output message is passed.
if (result.size() > 0)
{

result.first();
AIID aiid = (AIID) result.getOID(1);
ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper output =

process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null;
if (output.getObject()!= null && output.getObject() instanceof DataObject)
{

myMessage = (DataObject)output.getObject();
//set the parts in your message, for example, an order number
myMessage.setInt("OrderNo", 4711);

}

boolean continueOnError = true;
process.forceComplete(aiid, output, continueOnError);

}

This action completes the activity. If an error occurs, the continueOnError
parameter determines the action to be taken if a fault is provided with the
forceComplete request.

Developing client applications for business processes and tasks 397

In the example, continueOnError is true. This value means that if a fault is
provided, the activity is put into the failed state. The fault is propagated to the
enclosing scopes of the activity until it is either handled or the process scope is
reached. The process is then put into the failing state and it eventually reaches
the failed state.

Related concepts

Continue-on-error behavior of activities and business processes
When you define a business process, you can specify what should happen if an
unexpected fault is raised and a fault handler is not defined for that fault. You can
use the Continue On Error setting when you define your process to specify that it
is to stop where the fault occurs.

Retrying the execution of a stopped activity:

If an activity in a long-running process encounters an uncaught fault in the
enclosing scope and if the associated activity template specifies that the activity
stops when an error occurs, the activity is put into the stopped state so that it can
be repaired. You can retry the execution of the activity.

About this task

You can set variables that are used by the activity. With the exception of script
activities, you can also pass parameters in the force-retry call, such as the message
that was expected by the activity.

Procedure

1. List the stopped activities.
QueryResultSet result =

process.query("DISTINCT ACTIVITY.AIID",
"ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND
PROCESS_INSTANCE.NAME=’CustomerOrder’",
(String)null, (Integer)null, (TimeZone)null);

This action returns the stopped activities for the CustomerOrder process
instance.

2. Retry the execution of the activity, for example, a stopped human task activity.
if (result.size() > 0)
{

result.first();
AIID aiid = (AIID) result.getOID(1);
ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper input =

process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null;
if (input.getObject()!= null && input.getObject() instanceof DataObject)

{
myMessage = (DataObject)input.getObject();
//set the strings in your message, for example, chocolate is to be ordered
myMessage.setString("OrderNo", "chocolate");

}

boolean continueOnError = true;
process.forceRetry(aiid, input, continueOnError);

}

This action retries the activity. If an error occurs, the continueOnError
parameter determines the action to be taken if an error occurs during
processing of the forceRetry request.

398 Developing and deploying

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=cfaulthandling_continueonerror

In the example, continueOnError is true. This means that if an error occurs
during processing of the forceRetry request, the activity is put into the failed
state. The fault is propagated to the enclosing scopes of the activity until it is
either handled or the process scope is reached. The process is then put into the
failing state and a fault handler on the process level is run before the process
state ends in the failed state.

Related concepts

Continue-on-error behavior of activities and business processes
When you define a business process, you can specify what should happen if an
unexpected fault is raised and a fault handler is not defined for that fault. You can
use the Continue On Error setting when you define your process to specify that it
is to stop where the fault occurs.

Repairing activities that stopped because a join, loop, or counter evaluation
failed:

Activities can stop because an exception occurred when a join or loop condition, or
a forEach counter value was evaluated. The administrator decides not to retry the
execution of the activity, for example, because the evaluation might fail again. In
such cases, the correct values for the expression can be supplied using the Business
Process Choreographer EJB API so that the navigation of the process can continue.

About this task

You can set the value of a join condition for any type of activity, the value of a
loop condition of a while or repeat-until activity. You can also set the values of
start and final counters, and the maximum number of completed branches for a
forEach activity. The value that you set for the completed branches depends on the
definition of the forEach activity in the process model. If an early exit condition is
specified in the model, set a value for the maximum completed branches. If an
early exit condition is not specified, set the value of the maximum completed
branches to null.

The following sample shows how to set the value of a loop condition.

Procedure

1. List the activities that stopped because the evaluation of a loop condition failed.
QueryResultSet result = process.query(

"DISTINCT ACTIVITY.AIID",
"ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND
ACTIVITY.STOP_REASON = ACTIVITY.STOP_REASON.STOP_REASON_IMPLEMENTATION_FAILED AND
(ACTIVITY.KIND = ACTIVITY.KIND.KIND_WHILE OR

ACTIVITY.KIND = ACTIVITY.KIND.KIND_REPEAT_UNTIL) AND
PROCESS_INSTANCE.NAME=’CustomerOrder’",
(String)null, (Integer)null, (TimeZone)null);

Similarly, you can list the activities that stopped because the evaluation of a
join condition or a forEach counter failed.
v For a failed join condition, use the following expression:

ACTIVITY.STOP_REASON.STOP_REASON_ACTIVATION_FAILED

v For a failed forEach counter, use the following expression:
ACTIVITY.STOP_REASON.STOP_REASON_IMPLEMENTATION_FAILED AND
(ACTIVITY.KIND = ACTIVITY.KIND.KIND_FOR_EACH_SERIAL OR

ACTIVITY.KIND = ACTIVITY.KIND.KIND_FOR_EACH_PARALLEL)

This action returns the activities for the CustomerOrder process instance that
stopped because the evaluation of a loop condition failed.

Developing client applications for business processes and tasks 399

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=cfaulthandling_continueonerror

2. Provide the value of the loop condition, for example, true.
if (result.size() > 0)
{

result.first();
AIID aiid = (AIID) result.getOID(1);

process.forceLoopCondition(aiid, true);
}

This action sets the value of the loop condition for the activity to true and the
navigation of the process instance continues.
Similarly, you can set the value of a join condition
(process.forceJoinCondition(aiid, true);) or the values of forEach activity
counters (process.forceForEachCounterValues(aiid, 1, 5, new Integer(2));).

Updating correlation sets associated with stopped activities:

Correlation sets are used to support stateful collaboration between Web services. In
such cases, the correct values for the expression can be supplied using the Business
Process Choreographer EJB API so that the navigation of the process can continue.

About this task

An activity that is in a stopped state can require an update of its associated
correlation set for one of the following reasons:
v An exception occurred when the correlation set was evaluated. The correlation

set is to be initialized but it is already initialized.
v An exception occurred when the correlation set was evaluated. The correlation

set is to not be initialized but its values are not set. This can occur, for example,
because an initializing activity was skipped.

v The activity needs to be retried. If the correlation set is initialized by the activity,
then it can be unitialized or changed before the forceRetry method is called.

v The activity needs to be completed. If the correlation set is initialized by the
activity, then it can be unitialized or changed before the forceComplete method
is called.

You can retrieve the correlation set instances of a process or activity instance. The
following example shows how to initialize or unitialize correlation set instances.

Procedure

1. List the stopped activities in the stopped state.
QueryResultSet result =

process.query("DISTINCT ACTIVITY.AIID",
"ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND
PROCESS_INSTANCE.NAME=’CustomerOrder’",
(String)null, (Integer)null, (TimeZone)null);

This action returns the stopped activities for the CustomerOrder process
instance.

2. Retrieve the correlation set instances that are defined for the activity.
AIID aiid = null;

List correlationSet = null;

if (result.size() > 0)
{

result.first();
AIID aiid = (AIID) result.getOID(1);

ActivityInstanceData activity = process.getActivityInstance(aiid);

400 Developing and deploying

correlationSet = process.getCorrelationSetInstances
(aiid, activity.getInputMessageTypeName());

}

3. Unitialize the correlation set, for example, MyCorrelationSet.
for (int i=0; i<correlationSet.size(); i++)
{

CorrelationSetInstanceData correlationSetInstance =
(CorrelationSetInstanceData)correlationSet.get(i);

if (correlationSetInstance.isInitialized() &&
correlationSetInstance.getCorrelationSetName().equals("MyCorrelationSet"))

{
process.uninitializeCorrelationSet

(activity.getProcessInstanceID(), correlSetInstance.getCorrelationSetName());
}

}

This action uninitializes the correlation set MyCorrelationSet.
4. Initialize the correlation set, for example, MyCorrelationSet. In this example, a

string-valued property of the correlation set is set.
for (int i=0; i<correlationSet.size(); i++)
{

CorrelationSetInstanceData correlationSetInstance =
(CorrelationSetInstanceData)correlationSet.get(i);

if (correlationSetInstance.getCorrelationSetName().equals("MyCorrelationSet"))
{

List correlationSetProperties =
correlationSetInstance.getCorrelationSetProperties();

for (int j=0; j<correlationSetProperties.size(); j++)
{

CorrelationPropertyInstanceData property =
(CorrelationPropertyInstanceData)correlationSetProperties.get(j);

if (property.getPropertyName().equals("MyProperty"))
{

property.setValue("NewValue");

process.initializeCorrelationSet
(activity.getProcessInstanceID(), correlationSetInstance);

}
}

}
}

This action initializes the string-valued property MyProperty in the correlation
set MyCorrelationSet.

BusinessFlowManagerService interface
The BusinessFlowManagerService interface exposes business-process functions that
can be called by a client application.

The methods that can be called by the BusinessFlowManagerService interface
depend on the state of the process or the activity and the authorization of the
person that uses the application containing the method. The main methods for
manipulating business process objects are listed here. For more information about
these methods and the other methods that are available in the
BusinessFlowManagerService interface, see the Javadoc in the com.ibm.bpe.api
package.

Process templates

A process template is a versioned, deployed, and installed process model that
contains the specification of a business process. It can be instantiated and started

Developing client applications for business processes and tasks 401

by issuing appropriate requests, for example, sendMessage(). The execution of the
process instance is driven automatically by the server.

Table 60. API methods for process templates

Method Description

getProcessTemplate Retrieves the specified process template.

queryProcessTemplates Retrieves process templates that are stored
in the database.

Process instances

The following API methods are related to starting process instances.

Table 61. API methods that are related to starting process instances

Method Description

call Creates and runs a microflow.

callWithReplyContext Creates and runs a microflow with a unique
starting service or a long-running process
with a unique starting service from the
specified process template. The call waits
asynchronously for the result.

callWithUISettings Creates and runs a microflow and returns
the output message and the client user
interface (UI) settings.

initiate Creates a process instance and initiates
processing of the process instance. Use this
method for long-running processes. You can
also use this method for microflows that you
want to fire and forget.

initiateAndSuspend Creates a process instance but immediately
suspends the further processing of the
process instance.

initiateAndClaimFirst Creates a process instance and claims the
first inline human task.

sendMessage Sends the specified message to the specified
activity service and process instance. If a
process instance with the same correlation
set values does not exist, it is created. The
process can have either unique or
non-unique starting services.

getStartActivities Returns information about the activities that
can start a process instance from the
specified process template.

getActivityServiceTemplate Retrieves the specified activity service
template.

Table 62. API methods for controlling the life cycle of process instances

Method Description

suspend Suspends the execution of a long-running,
top-level process instance that is in the
running or failing state.

402 Developing and deploying

Table 62. API methods for controlling the life cycle of process instances (continued)

Method Description

resume Resumes the execution of a long-running,
top-level process instance that is in the
suspended state.

restart Restarts a long-running, top-level process
instance that is in the finished, failed, or
terminated state.

forceTerminate Terminates the specified top-level process
instance, its subprocesses with child
autonomy, and its running, claimed, or
waiting activities.

delete Deletes the specified top-level process
instance and its subprocesses with child
autonomy.

query Retrieves the properties from the database
that match the search criteria.

queryEntities Uses query tables to retrieve the properties
from the database that match the search
criteria.

getWaitingActivities Returns information about the activities that
are waiting for a message so that the
processing of these activities can continue.

migrate Migrates a process instance to the specified
newer version of its process model.

Activities

For invoke activities, you can specify in the process model that these activities
continue in error situations. If the continueOnError flag is set to false and an
unhandled error occurs, the activity is put into the stopped state. A process
administrator can then repair the activity. The continueOnError flag and the
associated repair functions can, for example, be used in a long-running process
where an invoke activity fails occasionally, but the effort required to model
compensation and fault handling is too high.

The following methods are available for working with and repairing activities.

Table 63. API methods for controlling the life cycle of activity instances

Method Description

claim Claims a ready activity instance for a user to
work on the activity.

cancelClaim Cancels the claim of the activity instance.

complete Completes the activity instance.

completeAndClaimSuccessor Completes the activity instance and claims
the next one in the same process instance for
the logged-on person.

Developing client applications for business processes and tasks 403

Table 63. API methods for controlling the life cycle of activity instances (continued)

Method Description

forceComplete Forces the completion of the following:

v An activity instance that is in the running
or stopped state.

v A human task activity that is in the state
ready or claimed.

v A wait activity in state waiting.

forceRetry Forces the repetition of the following:

v An activity instance that is in the running
or stopped state.

v A human task activity that is in the state
ready or claimed.

forceNavigate, forceForEach, forceLoop,
forceJoin

These methods force the navigation of a
stopped activity.

skip Skips processing of the activity.

jump Jumps from one activity to the other.

query Retrieves the properties from the database
that match the search criteria.

queryEntities Uses query tables to retrieve the properties
from the database that match the search
criteria.

Variables and custom properties

The interface provides a get and a set method to retrieve and set values for
variables. You can also associate named properties with, and retrieve named
properties from, process and activity instances. Custom property names and values
must be of the java.lang.String type.

Table 64. API methods for variables and custom properties

Method Description

getVariable Retrieves the specified variable.

setVariable Sets the specified variable.

getCustomProperty Retrieves the named custom property of the
specified activity or process instance.

getCustomProperties Retrieves the custom properties of the
specified activity or process instance.

getCustomPropertyNames Retrieves the names of the custom properties
for the specified activity or process instance.

setCustomProperty Stores custom-specific values for the
specified activity or process instance.

Developing applications for human tasks
A task is the means by which components invoke humans as services or by which
humans invoke services. Examples of typical applications for human tasks are
provided.

404 Developing and deploying

About this task

For more information on the Human Task Manager API, see the Javadoc in the
com.ibm.task.api package.

Starting an invocation task that invokes a synchronous interface
An invocation task is associated with a Service Component Architecture (SCA)
component. When the task is started, it invokes the SCA component. Start an
invocation task synchronously only if the associated SCA component can be called
synchronously.

About this task

Such an SCA component can, for example, be implemented as a microflow or as a
simple Java class.

This scenario creates an instance of a task template and passes some customer
data. The task remains in the running state until the two-way operation returns.
The result of the task, OrderNo, is returned to the caller.

Procedure
1. Optional: List the task templates to find the name of the invocation task you

want to run.
This step is optional if you already know the name of the task.
TaskTemplate[] taskTemplates = task.queryTaskTemplates
("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_ORIGINATING",
"TASK_TEMPL.NAME",
new Integer(50),
(TimeZone)null);

The results are sorted by name. The query returns an array containing the first
50 sorted originating templates.

2. Create an input message of the appropriate type.
TaskTemplate template = taskTemplates[0];

// create a message for the selected task
ClientObjectWrapper input = task.createInputMessage(template.getID());
DataObject myMessage = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//set the parts in the message, for example, a customer name
myMessage.setString("CustomerName", "Smith");

}

3. Create the task and run the task synchronously.
For a task to run synchronously, it must be a two-way operation. The example
uses the createAndCallTask method to create and run the task.
ClientObjectWrapper output = task.createAndCallTask(template.getName(),

template.getNamespace(),
input);

4. Analyze the result of the task.
DataObject myOutput = null;
if (output.getObject() != null && output.getObject() instanceof DataObject)
{

myOutput = (DataObject)output.getObject();
int order = myOutput.getInt("OrderNo");

}

Developing client applications for business processes and tasks 405

Starting an invocation task that invokes an asynchronous
interface
An invocation task is associated with a Service Component Architecture (SCA)
component. When the task is started, it invokes the SCA component. Start an
invocation task asynchronously only if the associated SCA component can be called
asynchronously.

About this task

Such an SCA component can, for example, be implemented as a long-running
process or a one-way operation.

This scenario creates an instance of a task template and passes some customer
data.

Procedure
1. Optional: List the task templates to find the name of the invocation task you

want to run.
This step is optional if you already know the name of the task.
TaskTemplate[] taskTemplates = task.queryTaskTemplates

("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_ORIGINATING",
"TASK_TEMPL.NAME",
new Integer(50),
(TimeZone)null);

The results are sorted by name. The query returns an array containing the first
50 sorted originating templates.

2. Create an input message of the appropriate type.
TaskTemplate template = taskTemplates[0];

// create a message for the selected task
ClientObjectWrapper input = task.createInputMessage(template.getID());
DataObject myMessage = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//set the parts in the message, for example, a customer name
myMessage.setString("CustomerName", "Smith");

}

3. Create the task and run it asynchronously.
The example uses the createAndStartTask method to create and run the task.
task.createAndStartTask(template.getName(),

template.getNamespace(),
input,
(ReplyHandlerWrapper)null);

Creating and starting a task instance
This scenario shows how to create an instance of a task template that defines a
collaboration task (also known as a human task in the API) and start the task
instance.

Procedure
1. Optional: List the task templates to find the task template ID (TKTID) of the

collaboration task you want to run.
This step is optional if you already know the task template ID.

406 Developing and deploying

TaskTemplate[] taskTemplates = task.queryTaskTemplates
("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_HUMAN",
"TASK_TEMPL.NAME",
new Integer(50),
(TimeZone)null);

The results are sorted by name. The query returns an array containing the first
50 sorted task templates.

2. Create an input message of the appropriate type.
TaskTemplate template = taskTemplates[0];

// create a message for the selected task
ClientObjectWrapper input = task.createInputMessage(template.getID());
DataObject myMessage = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)input.getObject();
//set the parts in the message, for example, a customer name
myMessage.setString("CustomerName", "Smith");

}

3. Create and start the collaboration task; a reply handler is not specified in this
example.
The example uses the createAndStartTask method to create and start the task.
TKIID tkiid = task.createAndStartTask(template.getName(),

template.getNamespace(),
input,
(ReplyHandlerWrapper)null);

Work items are created for the people concerned with the task instance. For
example, a potential owner can claim the new task instance.

4. Claim the task instance.
ClientObjectWrapper input2 = task.claim(tkiid);
DataObject taskInput = null ;
if (input2.getObject()!= null && input2.getObject() instanceof DataObject)
{

taskInput = (DataObject)input2.getObject();
// read the values
...

}

When the task instance is claimed, the input message of the task is returned.

Processing to-do tasks or collaboration tasks
To-do tasks (also known as participating tasks in the API) or collaboration tasks
(also known as human tasks in the API) are assigned to various people in your
organization through work items. To-do tasks and their associated work items are
created, for example, when a process navigates to a human task activity.

About this task

One of the potential owners claims the task associated with the work item. This
person is responsible for providing the relevant information and completing the
task.

Procedure
1. List the tasks belonging to a logged-on person that are ready to be worked on.

QueryResultSet result =
task.query("TASK.TKIID",

"TASK.STATE = TASK.STATE.STATE_READY AND
(TASK.KIND = TASK.KIND.KIND_PARTICIPATING OR
TASK.KIND = TASK.KIND.KIND_HUMAN)AND

Developing client applications for business processes and tasks 407

WORK_ITEM.REASON =
WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

(String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that contains the tasks that can be worked
on by the logged-on person.

2. Claim the task to be worked on.
if (result.size() > 0)
{

result.first();
TKIID tkiid = (TKIID) result.getOID(1);
ClientObjectWrapper input = task.claim(tkiid);
DataObject taskInput = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

taskInput = (DataObject)input.getObject();
// read the values
...

}
}

When the task is claimed, the input message of the task is returned.
3. When work on the task is finished, complete the task.

The task can be completed either successfully or with a fault message. If the
task is successful, an output message is passed. If the task is unsuccessful, a
fault message is passed. You must create the appropriate messages for these
actions.
a. To complete the task successfully, create an output message.

ClientObjectWrapper output =
task.createOutputMessage(tkiid);

DataObject myMessage = null ;
if (output.getObject()!= null && output.getObject() instanceof DataObject)
{

myMessage = (DataObject)output.getObject();
//set the parts in your message, for example, an order number
myMessage.setInt("OrderNo", 4711);

}

//complete the task
task.complete(tkiid, output);

This action sets an output message that contains the order number. The task
is put into the finished state.

b. To complete the task when a fault occurs, create a fault message.
//retrieve the faults modeled for the task
List faultNames = task.getFaultNames(tkiid);

//create a message of the appropriate type
ClientObjectWrapper myFault =

task.createFaultMessage(tkiid, (String)faultNames.get(0));

// set the parts in your fault message, for example, an error number
DataObject myMessage = null ;
if (myFault.getObject()!= null && input.getObject() instanceof DataObject)
{

myMessage = (DataObject)myFault.getObject();
//set the parts in the message, for example, a customer name
myMessage.setInt("error",1304);

}

task.complete(tkiid, (String)faultNames.get(0), myFault);

408 Developing and deploying

This action sets a fault message that contains the error code. The task is put
into the failed state.

Related concepts

State transition diagrams for collaboration tasks
Collaboration tasks support people when they perform work for other people.
During the life cycle of a collaboration task, certain interactions are possible only in
certain task states, and these interactions, in turn, influence the state of the task.

Suspending and resuming a task instance
You can suspend collaboration task instances (also known as human tasks in the
API) or to-do task instances (also known as participating tasks in the API).

Before you begin

The task instance can be in the ready or claimed state. It can be escalated. The
caller must be the owner, originator, or administrator of the task instance.

About this task

You can suspend a task instance while it is running. You might want to do this, for
example, so that you can gather information that is needed to complete the task.
When the information is available, you can resume the task instance.

Procedure
1. Get a list of tasks that are claimed by the logged-on user.

QueryResultSet result = task.query("DISTINCT TASK.TKIID",
"TASK.STATE = TASK.STATE.STATE_CLAIMED",
(String)null,
(Integer)null,
(TimeZone)null);

This action returns a query result set that contains a list of the tasks that are
claimed by the logged-on user.

2. Suspend the task instance.
if (result.size() > 0)
{

result.first();
TKIID tkiid = (TKIID) result.getOID(1);
task.suspend(tkiid);

}

This action suspends the specified task instance. The task instance is put into
the suspended state.

3. Resume the process instance.
task.resume(tkiid);

This action puts the task instance into the state it had before it was suspended.

Analyzing the results of a task
A to-do task (also known as a participating task in the API) or a collaboration task
(also known as a human task in the API) runs asynchronously. If a reply handler is
specified when the task starts, the output message is automatically returned when
the task completes. If a reply handler is not specified, the message must be
retrieved explicitly.

Developing client applications for business processes and tasks 409

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=ctasklifecycle_collaboration

About this task

The results of the task are stored in the database only if the task template from
which the task instance was derived does not specify automatic deletion of the
derived task instances.

Procedure

Analyze the results of the task.
The example shows how to check the order number of a successfully completed
task.
QueryResultSet result = task.query("DISTINCT TASK.TKIID",

"TASK.NAME = ’CustomerOrder’ AND
TASK.STATE = TASK.STATE.STATE_FINISHED",
(String)null, (Integer)null, (TimeZone)null);

if (result.size() > 0)
{

result.first();
TKIID tkiid = (TKIID) result.getOID(1);
ClientObjectWrapper output = task.getOutputMessage(tkiid);
DataObject myOutput = null;
if (output.getObject() != null && output.getObject() instanceof DataObject)
{

myOutput = (DataObject)output.getObject();
int order = myOutput.getInt("OrderNo");

}
}

Terminating a task instance
Sometimes it is necessary for someone with administrator rights to terminate a task
instance that is known to be in an unrecoverable state. Because the task instance is
terminated immediately, you should terminate a task instance only in exceptional
situations.

Procedure
1. Retrieve the task instance to be terminated.

Task taskInstance = task.getTask(tkiid);

2. Terminate the task instance.
TKIID tkiid = taskInstance.getID();
task.terminate(tkiid);

The task instance is terminated immediately without waiting for any
outstanding tasks.

Deleting task instances
Task instances are only automatically deleted when they complete if this is
specified in the associated task template from which the instances are derived. This
example shows how to delete all of the task instances that are finished and are not
automatically deleted.

Procedure
1. List the task instances that are finished.

QueryResultSet result =
task.query("DISTINCT TASK.TKIID",

"TASK.STATE = TASK.STATE.STATE_FINISHED",
(String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that lists task instances that are finished.

410 Developing and deploying

2. Delete the task instances that are finished.
while (result.next())
{
TKIID tkiid = (TKIID) result.getOID(1);
task.delete(tkiid);
}

Releasing a claimed task
When a potential owner claims a task, this person is responsible for completing the
task. However, sometimes the claimed task must be released so that another
potential owner can claim it.

About this task

Sometimes it is necessary for someone with administrator rights to release a
claimed task. This situation might occur, for example, when a task must be
completed but the owner of the task is absent. The owner of the task can also
release a claimed task.

Procedure
1. List the claimed tasks owned by a specific person, for example, Smith.

QueryResultSet result =
task.query("DISTINCT TASK.TKIID",

"TASK.STATE = TASK.STATE.STATE_CLAIMED AND
TASK.OWNER = ’Smith’",
(String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that lists the tasks claimed by the
specified person, Smith.

2. Release the claimed task.
if (result.size() > 0)
{

result.first();
TKIID tkiid = (TKIID) result.getOID(1);
task.cancelClaim(tkiid, true);

}

This action returns the task to the ready state so that it can be claimed by one
of the other potential owners. Any output or fault data that is set by the
original owner is kept.

Managing work items
During the lifetime of an activity instance or a task instance, the set of people
associated with the object can change, for example, because a person is on
vacation, new people are hired, or the workload needs to be distributed differently.
To allow for these changes, you can develop applications to create, delete, or
transfer work items.

About this task

A work item represents the assignment of an object to a user or group of users for
a particular reason. The object is typically a human task activity instance, a process
instance, or a task instance. The reasons are derived from the role that the user has
for the object. An object can have multiple work items because a user can have
different roles in association with the object, and a work item is created for each of
these roles. For example, a to-do task instance can have an administrator, reader,
editor, and owner work item at the same time.

Developing client applications for business processes and tasks 411

The actions that can be taken to manage work items depend on the role that the
user has, for example, an administrator can create, delete and transfer work items,
but the task owner can transfer work items only.

Procedure
v Create a work item.

// query the task instance for which an additional
// administrator is to be specified
QueryResultSet result = task.query("TASK.TKIID",

"TASK.NAME=’CustomerOrder’",
(String)null, (Integer)null,
(TimeZone)null);

if (result.size() > 0)
{

result.first();
// create the work item
task.createWorkItem((TKIID)(result.getOID(1)),

WorkItem.REASON_ADMINISTRATOR,"Smith");
}

This action creates a work item for the user Smith who has the administrator
role.

v Delete a work item.
// query the task instance for which a work item is to be deleted
QueryResultSet result = task.query("TASK.TKIID",

"TASK.NAME=’CustomerOrder’",
(String)null, (Integer)null,
(TimeZone)null);

if (result.size() > 0)
{

result.first();
// delete the work item
task.deleteWorkItem((TKIID)(result.getOID(1)),

WorkItem.REASON_READER,"Smith");
}

This action deletes the work item for the user Smith who has the reader role.
v Transfer a work item.

// query the task that is to be rescheduled
QueryResultSet result =

task.query("DISTINCT TASK.TKIID",
"TASK.NAME=’CustomerOrder’ AND
TASK.STATE=TASK.STATE.STATE_READY AND
WORK_ITEM.REASON=WORK_ITEM.REASON.REASON_POTENTIAL_OWNER AND
WORK_ITEM.OWNER_ID=’Miller’",
(String)null, (Integer)null, (TimeZone)null);

if (result.size() > 0)
{

result.first();
// transfer the work item from user Miller to user Smith
// so that Smith can work on the task
task.transferWorkItem((TKIID)(result.getOID(1)),

WorkItem.REASON_POTENTIAL_OWNER,"Miller","Smith");
}

This action transfers the work item to the user Smith so that he can work on it.

Creating task templates and task instances at runtime
You usually use a modeling tool, such as WebSphere Integration Developer to
build task templates. You then install the task templates in WebSphere Process
Server and create instances from these templates, for example, using Business
Process Choreographer Explorer. However, you can also create human or
participating task instances or templates at runtime.

412 Developing and deploying

About this task

You might want to do this, for example, when the task definition is not available
when the application is deployed, the tasks that are part of a workflow are not yet
known, or you need a task to cover some ad hoc collaboration between a group of
people.

You can model ad hoc To-do or Collaboration tasks by creating instances of the
com.ibm.task.api.TaskModel class, and using them to either create a reusable task
template, or directly create a run-once task instance. To create an instance of the
TaskModel class, a set of factory methods is available in the
com.ibm.task.api.ClientTaskFactory factory class. Modeling human tasks at runtime
is based on the Eclipse Modeling Framework (EMF).

Procedure
1. Create an org.eclipse.emf.ecore.resource.ResourceSet using the

createResourceSet factory method.
2. Optional: If you intend to use complex message types, you can either define

them using the org.eclipse.xsd.XSDFactory that you can get using the factory
method getXSDFactory(), or directly import an existing XML schema using the
loadXSDSchema factory method .
To make the complex types available to the WebSphere Process Server, deploy
them as part of an enterprise application.

3. Create or import a Web Services Definition Language (WSDL) definition of the
type javax.wsdl.Definition.
You can create a new WSDL definition using the createWSDLDefinition
method. Then you can add it a port type and operation. You can also directly
import an existing WSDL definition using the loadWSDLDefinition factory
method.

4. Create the task definition using the createTTask factory method.
If you want to add or manipulate more complex task elements, you can use the
com.ibm.wbit.tel.TaskFactory class that you can retrieve using the
getTaskFactory factory method .

5. Create the task model using the createTaskModel factory method, and pass it
the resource bundle that you created in the step 1 and which aggregates all
other artifacts you created in the meantime.

6. Optional: Validate the model using the TaskModel validate method.

Results

Use one of the Human Task Manager EJB API create methods that have a
TaskModel parameter to either create a reusable task template, or a run-once task
instance.

Creating runtime tasks that use simple Java types:

This example creates a runtime task that uses only simple Java types in its
interface, for example, a String object.

About this task

The example runs only inside the context of the calling enterprise application, for
which the resources are loaded.

Developing client applications for business processes and tasks 413

Procedure

1. Access the ClientTaskFactory and create a resource set to contain the definitions
of the new task model.
ClientTaskFactory factory = ClientTaskFactory.newInstance();
ResourceSet resourceSet = factory.createResourceSet();

2. Create the WSDL definition and add the descriptions of your operations.
// create the WSDL interface
Definition definition = factory.createWSDLDefinition

(resourceSet, new QName("http://www.ibm.com/task/test/", "test"));

// create a port type
PortType portType = factory.createPortType(definition, "doItPT");

// create an operation; the input and output messages are of type String:
// a fault message is not specified
Operation operation = factory.createOperation

(definition, portType, "doIt",
new QName("http://www.w3.org/2001/XMLSchema", "string"),
new QName("http://www.w3.org/2001/XMLSchema", "string"),
(Map)null);

3. Create the EMF model of your new human task.
If you are creating a task instance, a valid-from date (UTCDate) is not required.
TTask humanTask = factory.createTTask(resourceSet,

TTaskKinds.HTASK_LITERAL,
"TestTask",
new UTCDate("2005-01-01T00:00:00"),
"http://www.ibm.com/task/test/",
portType,
operation);

This step initializes the properties of the task model with default values.
4. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,
humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements
TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings
TVerb verb = taskFactory.createTVerb();
verb.setName("John");

// create escalationReceiver and add verb
TEscalationReceiver escalationReceiver =

taskFactory.createTEscalationReceiver();
escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver
TEscalation escalation = taskFactory.createTEscalation();
escalation.setEscalationReceiver(escalationReceiver);

5. Create the task model that contains all the resource definitions.
TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validate the task model and correct any validation problems that are found.
ValidationProblem[] validationProblems = taskModel.validate();

7. Create the runtime task instance or template.
Use the HumanTaskManagerService interface to create the task instance or the
task template. Because the application uses simple Java types only, you do not
need to specify an application name.
v The following snippet creates a task instance:

414 Developing and deploying

atask.createTask(taskModel, (String)null, "HTM");

v The following snippet creates a task template:
task.createTaskTemplate(taskModel, (String)null);

Results

If a runtime task instance is created, it can now be started. If a runtime task
template is created, you can now create task instances from the template.

Creating runtime tasks that use complex types:

This example creates a runtime task that uses complex types in its interface. The
complex types are already defined, that is, the local file system on the client has
XSD files that contain the description of the complex types.

About this task

The example runs only inside the context of the calling enterprise application, for
which the resources are loaded.

Procedure

1. Access the ClientTaskFactory and create a resource set to contain the definitions
of the new task model.
ClientTaskFactory factory = ClientTaskFactory.newInstance();
ResourceSet resourceSet = factory.createResourceSet();

2. Add the XSD definitions of your complex types to the resource set so that they
are available when you define your operations.
The files are located relative to the location where the code is executed.
factory.loadXSDSchema(resourceSet, "InputBO.xsd");
factory.loadXSDSchema(resourceSet, "OutputBO.xsd");

3. Create the WSDL definition and add the descriptions of your operations.
// create the WSDL interface
Definition definition = factory.createWSDLDefinition

(resourceSet, new QName("http://www.ibm.com/task/test/", "test"));

// create a port type
PortType portType = factory.createPortType(definition, "doItPT");

// create an operation; the input message is an InputBO and
// the output message an OutputBO;
// a fault message is not specified
Operation operation = factory.createOperation

(definition, portType, "doIt",
new QName("http://Input", "InputBO"),
new QName("http://Output", "OutputBO"),
(Map)null);

4. Create the EMF model of your new human task.
If you are creating a task instance, a valid-from date (UTCDate) is not required.
TTask humanTask = factory.createTTask(resourceSet,

TTaskKinds.HTASK_LITERAL,
"TestTask",
new UTCDate("2005-01-01T00:00:00"),
"http://www.ibm.com/task/test/",
portType,
operation);

This step initializes the properties of the task model with default values.
5. Modify the properties of your human task model.

Developing client applications for business processes and tasks 415

// use the methods from the com.ibm.wbit.tel package, for example,
humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements
TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings
TVerb verb = taskFactory.createTVerb();
verb.setName("John");

// create escalationReceiver and add verb
TEscalationReceiver escalationReceiver =

taskFactory.createTEscalationReceiver();
escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver
TEscalation escalation = taskFactory.createTEscalation();
escalation.setEscalationReceiver(escalationReceiver);

6. Create the task model that contains all the resource definitions.
TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

7. Validate the task model and correct any validation problems that are found.
ValidationProblem[] validationProblems = taskModel.validate();

8. Create the runtime task instance or template.
Use the HumanTaskManagerService interface to create the task instance or the
task template. You must provide an application name that contains the data
type definitions so that they can be accessed. The application must also contain
a dummy task or process so that the application is loaded by Business Process
Choreographer.
v The following snippet creates a task instance:

task.createTask(taskModel, "BOapplication", "HTM");

v The following snippet creates a task template:
task.createTaskTemplate(taskModel, "BOapplication");

Results

If a runtime task instance is created, it can now be started. If a runtime task
template is created, you can now create task instances from the template.

Creating runtime tasks that use an existing interface:

This example creates a runtime task that uses an interface that is already defined,
that is, the local file system on the client has a file that contains the description of
the interface.

About this task

The example runs only inside the context of the calling enterprise application, for
which the resources are loaded.

Procedure

1. Access the ClientTaskFactory and create a resource set to contain the definitions
of the new task model.
ClientTaskFactory factory = ClientTaskFactory.newInstance();
ResourceSet resourceSet = factory.createResourceSet();

2. Access the WSDL definition and the descriptions of your operations.

416 Developing and deploying

The interface description is located relative to the location where the code is
executed.
Definition definition = factory.loadWSDLDefinition(

resourceSet, "interface.wsdl");
PortType portType = definition.getPortType(

new QName(definition.getTargetNamespace(), "doItPT"));
Operation operation = portType.getOperation

("doIt", (String)null, (String)null);

3. Create the EMF model of your new human task.
If you are creating a task instance, a valid-from date (UTCDate) is not required.
TTask humanTask = factory.createTTask(resourceSet,

TTaskKinds.HTASK_LITERAL,
"TestTask",
new UTCDate("2005-01-01T00:00:00"),
"http://www.ibm.com/task/test/",
portType,
operation);

This step initializes the properties of the task model with default values.
4. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,
humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements
TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings
TVerb verb = taskFactory.createTVerb();
verb.setName("John");

// create escalationReceiver and add verb
TEscalationReceiver escalationReceiver =

taskFactory.createTEscalationReceiver();
escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver
TEscalation escalation = taskFactory.createTEscalation();
escalation.setEscalationReceiver(escalationReceiver);

5. Create the task model that contains all the resource definitions.
TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validate the task model and correct any validation problems that are found.
ValidationProblem[] validationProblems = taskModel.validate();

7. Create the runtime task instance or template.
Use the HumanTaskManagerService interface to create the task instance or the
task template. You must provide an application name that contains the data
type definitions so that they can be accessed. The application must also contain
a dummy task or process so that the application is loaded by Business Process
Choreographer.
v The following snippet creates a task instance:

task.createTask(taskModel, "BOapplication", "HTM");

v The following snippet creates a task template:
task.createTaskTemplate(taskModel, "BOapplication");

Results

If a runtime task instance is created, it can now be started. If a runtime task
template is created, you can now create task instances from the template.

Developing client applications for business processes and tasks 417

Creating runtime tasks that use an interface from the calling application:

This example creates a runtime task that uses an interface that is part of the calling
application. For example, the runtime task is created in a Java snippet of a business
process and uses an interface from the process application.

About this task

The example runs only inside the context of the calling enterprise application, for
which the resources are loaded.

Procedure

1. Access the ClientTaskFactory and create a resource set to contain the definitions
of the new task model.
ClientTaskFactory factory = ClientTaskFactory.newInstance();

// specify the context class loader so that following resources are found
ResourceSet resourceSet = factory.createResourceSet

(Thread.currentThread().getContextClassLoader());

2. Access the WSDL definition and the descriptions of your operations.
Specify the path within the containing package JAR file.
Definition definition = factory.loadWSDLDefinition(resourceSet,

"com/ibm/workflow/metaflow/interface.wsdl");
PortType portType = definition.getPortType(
new QName(definition.getTargetNamespace(), "doItPT"));

Operation operation = portType.getOperation
("doIt", (String)null, (String)null);

3. Create the EMF model of your new human task.
If you are creating a task instance, a valid-from date (UTCDate) is not required.
TTask humanTask = factory.createTTask(resourceSet,

TTaskKinds.HTASK_LITERAL,
"TestTask",
new UTCDate("2005-01-01T00:00:00"),
"http://www.ibm.com/task/test/",
portType,
operation);

This step initializes the properties of the task model with default values.
4. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,
humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements
TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings
TVerb verb = taskFactory.createTVerb();
verb.setName("John");

// create escalationReceiver and add verb
TEscalationReceiver escalationReceiver =

taskFactory.createTEscalationReceiver();
escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver
TEscalation escalation = taskFactory.createTEscalation();
escalation.setEscalationReceiver(escalationReceiver);

5. Create the task model that contains all the resource definitions.
TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

418 Developing and deploying

6. Validate the task model and correct any validation problems that are found.
ValidationProblem[] validationProblems = taskModel.validate();

7. Create the runtime task instance or template.
Use the HumanTaskManagerService interface to create the task instance or the
task template. You must provide an application name that contains the data
type definitions so that they can be accessed.
v The following snippet creates a task instance:

task.createTask(taskModel, "WorkflowApplication", "HTM");

v The following snippet creates a task template:
task.createTaskTemplate(taskModel, "WorkflowApplication");

Results

If a runtime task instance is created, it can now be started. If a runtime task
template is created, you can now create task instances from the template.

HumanTaskManagerService interface
The HumanTaskManagerService interface exposes task-related functions that can be
called by a local or a remote client.

The methods that can be called depend on the state of the task and the
authorization of the person that uses the application containing the method. The
main methods for manipulating task objects are listed here. For more information
about these methods and the other methods that are available in the
HumanTaskManagerService interface, see the Javadoc in the com.ibm.task.api
package.

Task templates

The following methods are available to work with task templates.

Table 65. API methods for task templates

Method Description

getTaskTemplate Retrieves the specified task template.

createTask Creates a task instance from the specified
task template.

createAndCallTask Creates and runs a task instance from the
specified task template and waits
synchronously for the result.

createAndStartTask Creates and starts a task instance from the
specified task template.

createAndStartTaskAsSubtask Creates and starts a task instance as a
subtask of the specified task.

createInputMessage Creates an input message for the specified
task template. For example, create a message
that can be used to start a task.

queryTaskTemplates Retrieves task templates that are stored in
the database.

Developing client applications for business processes and tasks 419

Task instances

The following methods are available to work with task instances.

Table 66. API methods for task instances

Method Description

getTask Retrieves a task instance; the task instance
can be in any state.

callTask Starts an invocation task synchronously.

startTask Starts a task that has already been created.

startTaskAsSubtask Starts a task as a subtask of the task
instance.

suspend Suspends the collaboration or to-do task.

resume Resumes the collaboration or to-do task.

restart Restarts the task instance.

terminate Terminates the specified task instance. If an
invocation task is terminated, this action has
no impact on the invoked service.

delete Deletes the specified task instance.

claim Claims the task for processing.

update Updates the task instance.

complete Completes the task instance.

completeWithFollowOnTask Completes the task instance and starts a
follow-on task.

cancelClaim Releases a claimed task instance so that it
can be worked on by another potential
owner.

createWorkItem Creates a work item for the task instance.

transferWorkItem Transfers the work item to a specified
owner.

deleteWorkItem Deletes the work item.

Escalations

The following methods are available to work with escalations.

Table 67. API methods for working with escalations

Method Description

getEscalation Retrieves the specified escalation instance.

triggerEscalation Manually triggers an escalation.

Custom properties

Tasks, task templates, and escalations can all have custom properties. The interface
provides a get and a set method to retrieve and set values for custom properties.
You can also associate named properties with, and retrieve named properties from
task instances. Custom property names and values must be of the java.lang.String
type. The following methods are valid for tasks, task templates, and escalations.

420 Developing and deploying

Table 68. API methods for variables and custom properties

Method Description

getCustomProperty Retrieves the named custom property of the
specified task instance.

getCustomProperties Retrieves the custom properties of the
specified task instance.

getCustomPropertyNames Retrieves the names of the custom properties
for the task instance.

setCustomProperty Stores custom-specific values for the
specified task instance.

Developing applications for business processes and human
tasks

People are involved in most business process scenarios. For example, a business
process requires people interaction when the process is started or administered, or
when human task activities are performed. To support these scenarios, you need to
use both the Business Flow Manager API and the Human Task Manager API.

About this task

To involve people in business process scenarios, you can include the following task
kinds in the business process:
v An inline invocation task (also known as an originating task in the API).

You can provide an invocation task for every receive activity, for each
onMessage element of a pick activity, and for each onEvent element of an event
handler. This task then controls who is authorized to start a process or
communicate with a running process instance.

v An administration task.
You can provide an administration task to specify who is authorized to
administer the process or perform administrative operations on the failed
activities of the process.

v A to-do task (also known as a participating task in the API).
A to-do task implements a human task activity. This type of activity allows you
to involve people in the process.

Human task activities in the business process represent the to-do tasks that people
perform in the business process scenario. You can use both the Business Flow
Manager API and the Human Task Manager API to realize these scenarios:
v The business process is the container for all of the activities that belong to the

process, including the human task activities that are represented by to-do tasks.
When a process instance is created, a unique object ID (PIID) is assigned.

v When a human task activity is activated during the execution of the process
instance, an activity instance is created, which is identified by its unique object
ID (AIID). At the same time, an inline to-do task instance is also created, which
is identified by its object ID (TKIID). The relationship of the human task activity
to the task instance is achieved by using the object IDs:
– The to-do task ID of the activity instance is set to the TKIID of the associated

to-do task.
– The containment context ID of the task instance is set to the PIID of the

process instance that contains the associated activity instance.

Developing client applications for business processes and tasks 421

– The parent context ID of the task instance is set to the AIID of the associated
activity instance.

v The life cycles of all inline to-do task instances are managed by the process
instance. When the process instance is deleted, then the task instances are also
deleted. For example, all of the tasks that have the containment context ID set to
the PIID of the process instance are automatically deleted.

Determining the process templates or activities that can be
started
A business process can be started by invoking the call, initiate, or sendMessage
methods of the Business Flow Manager API. If the process has only one starting
activity, you can use the method signature that requires a process template name
as a parameter. If the process has more than one starting activity, you must
explicitly identify the starting activity.

About this task

When a business process is modeled, the modeler can decide that only a subset of
users can create a process instance from the process template. This is done by
associating an inline invocation task to a starting activity of the process and by
specifying authorization restrictions on that task. Only the people that are potential
starters or administrators of the task are allowed to create an instance of the task,
and thus an instance of the process template.

If an inline invocation task is not associated with the starting activity, or if
authorization restrictions are not specified for the task, everybody can create a
process instance using the starting activity.

A process can have more than one starting activity, each with different people
queries for potential starters or administrators. This means that a user can be
authorized to start a process using activity A but not using activity B.

Procedure
1. Use the Business Flow Manager API to create a list of the current versions of

process templates that are in the started state.

Tip: The queryProcessTemplates method excludes only those process templates
that are part of applications that are not yet started. So, if you use this method
without filtering the results, the method returns all of the versions of the
process templates regardless of which state they are in.
// current timestamp in UTC format, converted to yyyy-mm-ddThh:mm:ss
String now = (new UTCDate()).toXsdString();
String whereClause = "PROCESS_TEMPLATE.STATE =

PROCESS_TEMPLATE.STATE.STATE_STARTED AND
PROCESS_TEMPLATE.VALID_FROM =
(SELECT MAX(VALID_FROM) FROM PROCESS_TEMPLATE
WHERE NAME=PROCESS_TEMPLATE.NAME AND
VALID_FROM <= TS(’" + now + "’))";

ProcessTemplateData[] processTemplates = process.queryProcessTemplates
(whereClause,

"PROCESS_TEMPLATE.NAME",
(Integer)null, (TimeZone)null);

The results are sorted by process template name.
2. Create the list of process templates and the list of starting activities for which

the user is authorized.

422 Developing and deploying

The list of process templates contains those process templates that have a single
starting activity. These activities are either not secured or the logged-on user is
allowed to start them. Alternatively, you might want to gather the process
templates that can be started by at least one of the starting activities.

Tip: A process administrator can also start a process instance. However, if
Business Flow Manager is using the alternate process administration
authorization mode, which restricts process administration to system
administrators, then only users in the BPESystemAdministrator role can
perform this action. Therefore, to get a complete list of templates, you also need
to check whether the logged-on user is an administrator.
List authorizedProcessTemplates = new ArrayList();
List authorizedActivityServiceTemplates = new ArrayList();

3. Determine the starting activities for each of the process templates.
for(int i=0; i<processTemplates.length; i++)
{

ProcessTemplateData template = processTemplates[i];
ActivityServiceTemplateData[] startActivities =

process.getStartActivities(template.getID());

4. For each starting activity, retrieve the ID of the associated inline invocation task
template.
for(int j=0; j<startActivities.length; j++)
{

ActivityServiceTemplateData activity = startActivities[j];
TKTID tktid = activity.getTaskTemplateID();

a. If an invocation task template does not exist, the process template is not
secured by this starting activity.
In this case, everybody can create a process instance using this start activity.
boolean isAuthorized = false;

if (tktid == null)
{

isAuthorized = true;
authorizedActivityServiceTemplates.add(activity);

}

b. If an invocation task template exists, use the Human Task Manager API to
check the authorization for the logged-on user.
In the example, the logged-on user is Smith. The logged-on user must be a
potential starter of the invocation task or an administrator.
if (tktid != null)

{
isAuthorized =

task.isUserInRole
(tkid, "Smith", WorkItem.REASON_POTENTIAL_STARTER) ||

task.isUserInRole(tktid, "Smith", WorkItem.REASON_ADMINISTRATOR);

if (isAuthorized)
{

authorizedActivityServiceTemplates.add(activity);
}

}

If the user has the specified role, or if people assignment criteria for the role
are not specified, the isUserInRole method returns the value true.

5. Check whether the process can be started using only the process template
name.
if (isAuthorized && startActivities.length == 1)

{
authorizedProcessTemplates.add(template);

}

Developing client applications for business processes and tasks 423

6. End the loops.
} // end of loop for each activity service template

} // end of loop for each process template

Processing a single person workflow that includes human tasks
Some workflows are performed by only one person, for example, ordering books
from an online bookstore. This example shows how to implement a single person
workflow using a server-side page flow. Both the Business Flow Manager and the
Human Task Manager APIs are used to process the workflow.

About this task

A single person workflow is also referred to as a page flow or a screen flow. There
are two kinds of page flows:
v Client-side page flows, where the navigation between the different pages is

realized using client-side technology, such as a multi-page Lotus Forms form.
v Server-side page flows are realized using a business process and a set of human

tasks that are modeled so that subsequent tasks are assigned to the same person.

Server-side page flows are more powerful than client-side page flows, but they
consume more server resources to process them. Therefore, consider using this
type of workflow primarily in the following situations:
v You need to invoke services between steps carried out in a user interface, for

example, to retrieve or update data.
v You have auditing requirements that require CEI events to be written after a

user interface interaction completes.

In an online bookstore, the purchaser completes a sequence of actions to order a
book. This sequence of actions can be implemented as a series of human task
activities (to-do tasks). If the purchaser decides to order several books, this is
equivalent to claiming the next human task activity. Information about the
sequence of tasks is maintained by Business Flow Manager, while the tasks
themselves are maintained by Human Task Manager.

Compare this example with the example that uses only the Business Flow Manager
API.

Procedure
1. Use the Business Flow Manager API to get the process instance that you want

to work on.
In this example, an instance of the CustomerOrder process.
ProcessInstanceData processInstance =

process.getProcessInstance("CustomerOrder");
String piid = processInstance.getID().toString();

2. Use the Human Task Manager API to query the ready to-do tasks (kind
participating) that are part of the specified process instance.
Use the containment context ID of the task to specify the containing process
instance. For a single person workflow, the query returns the to-do task that is
associated with the first human task activity in the sequence of human task
activities.
//
// Query the list of to-do tasks that can be claimed by the logged-on user
// for the specified process instance
//
QueryResultSet result =

424 Developing and deploying

task.query("DISTINCT TASK.TKIID",
"TASK.CONTAINMENT_CTX_ID = ID(’" + piid + "’) AND
TASK.STATE = TASK.STATE.STATE_READY AND
TASK.KIND = TASK.KIND.KIND_PARTICIPATING AND
WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

(String)null, (Integer)null, (TimeZone)null);

3. Claim the to-do task that is returned.
if (result.size() > 0)
{
result.first();
TKIID tkiid = (TKIID) result.getOID(1);
ClientObjectWrapper input = task.claim(tkiid);
DataObject activityInput = null ;
if (input.getObject()!= null && input.getObject() instanceof DataObject)
{

taskInput = (DataObject)input.getObject();
// read the values
...

}
}

When the task is claimed, the input message of the task is returned.
4. Determine the human task activity that is associated with the to-do task.

You can use one of the following methods to correlate activities to their tasks.
v The task.getActivityID method:

AIID aiid = task.getActivityID(tkiid);

v The parent context ID that is part of the task object:
AIID aiid = null;
Task taskInstance = task.getTask(tkiid);

OID oid = taskInstance.getParentContextID();
if (oid != null and oid instanceof AIID)
{

aiid = (AIID)oid;
}

5. When work on the task is finished, use the Business Flow Manager API to
complete the task and its associated human task activity, and claim the next
human task activity in the process instance.
To complete the human task activity, an output message is passed. When you
create the output message, you must specify the message type name so that the
message definition is contained.
ActivityInstanceData activity = process.getActivityInstance(aiid);
ClientObjectWrapper output =

process.createMessage(aiid, activity.getOutputMessageTypeName());
DataObject myMessage = null ;
if (output.getObject()!= null && output.getObject() instanceof DataObject)
{

myMessage = (DataObject)output.getObject();
//set the parts in your message, for example, an order number
myMessage.setInt("OrderNo", 4711);

}

//complete the human task activity and its associated to-do task,
// and claim the next human task activity
CompleteAndClaimSuccessorResult successor =

process.completeAndClaimSuccessor(aiid, output);

This action sets an output message that contains the order number and claims
the next human task activity in the sequence. If AutoClaim is set for successor
activities and if there are multiple paths that can be followed, all of the

Developing client applications for business processes and tasks 425

successor activities are claimed and a random activity is returned as the next
activity. If there are no more successor activities that can be assigned to this
user, Null is returned.
If the process contains parallel paths that can be followed and these paths
contain human task activities for which the logged-on user is a potential owner
of more than one of these activities, a random activity is claimed automatically
and returned as the next activity.

6. Work on the next human task activity.
ClientObjectWrapper nextInput = successor.getInputMessage();
if (nextInput.getObject()!=

null && nextInput.getObject() instanceof DataObject)
{

activityInput = (DataObject)input.getObject();
// read the values
...

}

aiid = successor.getAIID();

7. Continue with step 5 to complete the human task activity and to retrieve the
next human task activity.

Related tasks

“Processing a single person workflow” on page 392
Some workflows are performed by only one person, for example, ordering books
from an online bookstore. This type of workflow has no parallel paths. The
initiateAndClaimFirst and completeAndClaimSuccessor APIs support the
processing of this type of workflow. This example shows the implementation of a
single person workflow using a client-side page flow.

Handling exceptions and faults
A BPEL process might encounter a fault at different points in the process.

About this task

Business Process Execution Language (BPEL) faults originate from:
v Web service invocations (Web Services Description Language (WSDL) faults)
v Throw activities
v BPEL standard faults that are recognized by Business Process Choreographer

Mechanisms exist to handle these faults. Use one of the following mechanisms to
handle faults that are generated by a process instance:
v Pass control to the corresponding fault handlers
v Compensate previous work in the process
v Stop the process and let someone repair the situation (force-retry, force-complete)

A BPEL process can also return faults to a caller of an operation provided by the
process. You can model the fault in the process as a reply activity with a fault
name and fault data. These faults are returned to the API caller as checked
exceptions.

If a BPEL process does not handle a BPEL fault or if an API exception occurs, a
runtime exception is returned to the API caller. An example for an API exception is
when the process model from which an instance is to be created does not exist.

The handling of faults and exceptions is described in the following tasks.

426 Developing and deploying

Handling Business Process Choreographer EJB API exceptions
If a method in the BusinessFlowManagerService interface or the
HumanTaskManagerService interface does not complete successfully, an exception
is thrown that denotes the cause of the error. You can handle this exception
specifically to provide guidance to the caller.

About this task

However, it is common practice to handle only a subset of the exceptions
specifically and to provide general guidance for the other potential exceptions. All
specific exceptions inherit from a generic ProcessException or TaskException. Catch
generic exceptions with a final catch(ProcessException) or catch(TaskException)
statement. This statement helps to ensure the upward compatibility of your
application program because it takes account of all of the other exceptions that can
occur.

Checking which fault is set for a human task activity
When a human task activity is processed, it can complete successfully. In this case,
you can pass an output message. If the human task activity does not complete
successfully, you can pass a fault message.

About this task

You can read the fault message to determine the cause of the error.

Procedure
1. List the task activities that are in a failed or stopped state.

QueryResultSet result =
process.query("ACTIVITY.AIID",

"(ACTIVITY.STATE = ACTIVITY.STATE.STATE_FAILED OR
ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED) AND
ACTIVITY.KIND=ACTIVITY.KIND.KIND_STAFF",
(String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that contains failed or stopped activities.
2. Read the name of the fault.

if (result.size() > 0)
{

result.first();
AIID aiid = (AIID) result.getOID(1);
ClientObjectWrapper faultMessage = process.getFaultMessage(aiid);
DataObject fault = null ;
if (faultMessage.getObject() != null && faultMessage.getObject()

instanceof DataObject)
{

fault = (DataObject)faultMessage.getObject();
Type type = fault.getType();
String name = type.getName();
String uri = type.getURI();

}
}

This returns the fault name. You can also analyze the unhandled exception for
a stopped activity instead of retrieving the fault name.

Checking which fault occurred for a stopped invoke activity
In a well-designed process, exceptions and faults are usually handled by fault
handlers. You can retrieve information about the exception or fault that occurred
for an invoke activity from the activity instance.

Developing client applications for business processes and tasks 427

About this task

If an activity causes a fault to occur, the fault type determines the actions that you
can take to repair the activity.

Procedure
1. List the human task activities that are in a stopped state.

QueryResultSet result =
process.query("ACTIVITY.AIID",

"ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND
ACTIVITY.KIND=ACTIVITY.KIND.KIND_INVOKE",
(String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that contains stopped invoke activities.
2. Read the name of the fault.

if (result.size() > 0)
{

result.first();
AIID aiid = (AIID) result.getOID(1);
ActivityInstanceData activity = process.getActivityInstance(aiid);

ProcessException excp = activity.getUnhandledException();
if (excp instanceof ApplicationFaultException)
{
ApplicationFaultException fault = (ApplicationFaultException)excp;
String faultName = fault.getFaultName();
}

}

Checking which unhandled exception or fault occurred for a
failed process instance
In a well-designed process, exceptions and faults are usually handled by a fault
handler. If the process implements a two-way operation, you can retrieve
information about a fault or handled exception from the fault name property of the
process instance object. For faults, you can also retrieve the corresponding fault
message using the getFaultMessage API.

About this task

If a process instance fails because of an exception that is not handled by any fault
handler, you can retrieve information about the unhandled exception from the
process instance object. By contrast, if a fault is caught by a fault handler, then
information about the fault is not available. You can, however, retrieve the fault
name and message and return to the caller by using a FaultReplyException
exception.

Procedure
1. List the process instances that are in the failed state.

QueryResultSet result =
process.query("PROCESS_INSTANCE.PIID",

"PROCESS_INSTANCE.STATE =
PROCESS_INSTANCE.STATE.STATE_FAILED",

(String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that contains the failed process instances.
2. Read the information for the unhandled exception.

428 Developing and deploying

if (result.size() > 0)
{

result.first();
PIID piid = (PIID) result.getOID(1);
ProcessInstanceData pInstance = process.getProcessInstance(piid);

ProcessException excp = pInstance.getUnhandledException();
if (excp instanceof RuntimeFaultException)
{
RuntimeFaultException xcp = (RuntimeFaultException)excp;
Throwable cause = xcp.getRootCause();
}
else if (excp instanceof StandardFaultException)
{
StandardFaultException xcp = (StandardFaultException)excp;
String faultName = xcp.getFaultName();
}
else if (excp instanceof ApplicationFaultException)
{
ApplicationFaultException xcp = (ApplicationFaultException)excp;
String faultName = xcp.getFaultName();
}

}

Results

Use this information to look up the fault name or the root cause of the problem.

Developing Web services API client applications for business
processes and human tasks

You can develop client applications that access business process applications and
human task applications through the Business Process Choreographer Web services
APIs. The client application development process consists of a number of
mandatory and optional steps, including generating a Web service proxy and
adding security and transaction policies to the client application.

About this task

Beginning with Version 7, the JAX-WS-based Web services API replaces the
JAX-RPC-based Business Process Choreographer Web services API in Version 6
(first published in release 6.0.2). The JAX-RPC-based Business Process
Choreographer Web services API will be deprecated, such that new Web service
client applications should be implemented using the JAX-WS-based API.

Note: The Business Process Choreographer Java Message Service (JMS) API is still
using the WSDL and XML Schema definitions for Version 6.

You can develop client applications in any Web services client environment. The
following steps provide an overview of the actions you need to take to develop
such an application.

Procedure
1. Decide which Web services API your client application needs to use: the

Business Flow Manager API, Human Task Manager API, or both.
2. Export the necessary files from the WebSphere Process Server environment.
3. In your client application development environment, generate a Web service

proxy using the exported artifacts.

Developing client applications for business processes and tasks 429

4. Develop the code for your client application.
5. Add any necessary security or transaction policies to your client application.

Web service components and sequence of control
In Web services applications, a number of client-side and server-side components
participate in the sequence of control that represents a Web service request and
response.

A typical sequence of control is as follows.
1. On the client side:

a. A client application (provided by the user) issues a request for a Web
service.

b. A Web service proxy (also provided by the user, but which can be
automatically generated using client-side utilities) wraps the service request
in a SOAP request envelope and forwards the request to a URL defined as
the Web service's endpoint.

2. The network transmits the request to the Web service endpoint using HTTP or
HTTPS.

3. On the server side:
a. The generic Web services API receives and decodes the request.
b. The request is either handled directly by the generic Business Flow Manager

or Human Task Manager component, or forwarded to the specified business
process or human task.

c. The returned data is wrapped in a SOAP response envelope.
4. The network transmits the response to the client-side environment using HTTP

or HTTPS.
5. Back on the client side:

a. The client-side development infrastructure unwraps the SOAP response
envelope.

b. The Web service proxy extracts the data from the SOAP response and
passes it to the client application.

c. The client application processes the returned data as necessary.

Example

The following is a possible outline for a client application that accesses the Human
Task Manager Web services API to process a to-do task:
1. The client application issues a query Web service call to the WebSphere Process

Server requesting a list of to-do tasks to be worked on by a user.
2. The WebSphere Process Server returns the list of to-do tasks.
3. The client application then issues a claim Web service call to claim one of the

to-do tasks.
4. The WebSphere Process Server returns the input message for the task.
5. The client application issues a complete Web service call to complete the task

with an output or fault message.

430 Developing and deploying

Web service API requirements for business processes and
human tasks

Business processes and human tasks developed with the WebSphere Integration
Developer to run on the Business Process Choreographer must conform to specific
rules to be accessible through the Web services APIs.

The requirements are:
v The interfaces of business processes and human tasks must be defined using the

"document/literal wrapped" style defined in the Java API for XML-based Web
Services (JAX-WS 2.0) specification. This is the default style for all business
processes and human tasks developed with WebSphere Integration Developer.

v Do not use the maxOccurs attribute in parameter elements of the operations, or
ensure that the value of this attribute is set to the default value, maxOccurs="1".

v Fault messages that are exposed by business processes and human tasks for Web
service operations must comprise a single WSDL message part defined with an
XML Schema element. For example:
<wsdl:part name="myFault" element="myNamespace:myFaultElement"/>

Related information

Java API for XML-based Web Services (JAX-WS 2.0) downloads page

Which style of WSDL should I use?

JAX-WS-based Business Process Choreographer Web
services APIs

Beginning with Version 7, the JAX-WS-based Web services API replaces the
JAX-RPC-based Business Process Choreographer Web services API in Version 6
(first published in release 6.0.2). Two Business Process Choreographer Web services
interfaces are provided, one for business processes and one for human tasks, each
with their own file artifacts and XML definition namespaces.

The following table provides an overview of the file artifacts and XML definition
namespaces for the JAX-WS-based Web services.

Table 69. File artifacts and XML definition namespaces for the JAX-WS-based Web services
Business Process Choreographer Web services
interface

JAX-WS Web services file
artifact JAX-WS Web services XML namespace

Business Flow Manager Web Service BFMJAXWSService.wsdl http://www.ibm.com/xmlns/prod/websphere/business-process/
services/7.0/Binding

Business Flow Manager Web Service Interface BFMJAXWSInterface.wsdl http://www.ibm.com/xmlns/prod/websphere/business-process/
services/7.0

Business Flow Manager Web Service Data Types BFMDataTypes.xsd http://www.ibm.com/xmlns/prod/websphere/business-process/
types/7.0

Business Flow Manager Callback Web Service BFMJAXWSCallbackService.
wsdl

http://www.ibm.com/xmlns/prod/websphere/business-process/
callback-services/7.0/Binding

Business Flow Manager Callback Web Service
Interface

BFMJAXWSCallbackInterface.
wsdl

http://www.ibm.com/xmlns/prod/websphere/business-process/
callback-services/7.0

Human Task Manager Web Service HTMJAXWSService.wsdl http://www.ibm.com/xmlns/prod/websphere/human-task/
services/7.0/Binding

Human Task Manager Web Service Interface HTMJAXWSInterface.wsdl http://www.ibm.com/xmlns/prod/websphere/human-task/
services/7.0

Human Task Manager Web Service Data Types HTMDataTypes.xsd http://www.ibm.com/xmlns/prod/websphere/human-task/
types/7.0

Human Task Manager Callback Web Service HTMJAXWSCallbackService.
wsdl

http://www.ibm.com/xmlns/prod/websphere/human-task/
callback-services/7.0/Binding

Developing client applications for business processes and tasks 431

http://java.sun.com/xml/downloads/jaxrpc.html
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

Table 69. File artifacts and XML definition namespaces for the JAX-WS-based Web services (continued)
Business Process Choreographer Web services
interface

JAX-WS Web services file
artifact JAX-WS Web services XML namespace

Human Task Manager Callback Web Service
Interface

HTMJAXWSCallbackInterface.
wsdl

http://www.ibm.com/xmlns/prod/websphere/human-task/
callback-services/7.0

Common Business Process Choreographer Data
Types

BPCDataTypes.xsd http://www.ibm.com/xmlns/prod/websphere/bpc-common/
types/7.0

Business Process Choreographer Web services API:
Standards

Use the following links to find relevant supplemental information about the
standards that apply to Web applications. The information resides on non-IBM
Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
IBM WebSphere Process Server, but is useful for understanding Web services in
general.
v Java API for XML-based Web Services (JAX-WS 2.0) (JSR-224; Java Community

Process)
v Java Architecture for XML Binding (JAXB) 2.0 (JSR-222; Java Community

Process)
v Web Services Description Language (WSDL) 1.1 (W3C)
v XML Schema Part 0: Primer Second Edition (W3C)
v XML Schema Part 1: Structures Second Edition (W3C)
v XML Schema Part 2: Datatypes Second Edition (W3C)
v Simple Object Access Protocol (SOAP) 1.1 (W3C)
v Web Services Policy Framework (WS-Policy) 1.5 (W3C)
v WS-Security 1.1 (OASIS)
v WS-Security UserName Token Profile 1.1 (OASIS)
v WS-AtomicTransaction 1.2 (OASIS)
v WS-Interoperability Basic Profile 1.1 (WS-Interoperability Organization)

Publishing and exporting artifacts from the server
environment for Web services client applications

Before you can develop client applications to access the Business Process
Choreographer Web services APIs, you must publish and export a number of
artifacts from the WebSphere server environment.

About this task

The artifacts to be exported are:
v Web Service Definition Language (WSDL) files describing the Web service

endpoint, the port types and operations that make up the Business Process
Choreographer Web services API (always required for the Web service proxy
generation).

v XML Schema Definition (XSD) files containing definitions of data types
referenced by services in the Business Process Choreographer WSDL files
(always required for the Web service proxy generation).

v Your own WSDL and XSD files describing interfaces and data types for your
business processes or human tasks running on the WebSphere server. These

432 Developing and deploying

https://jax-ws.dev.java.net/spec-download.html
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/home/index
http://jcp.org/en/home/index
https://jaxb.dev.java.net/
http://jcp.org/en/home/index
http://jcp.org/en/home/index
http://jcp.org/en/home/index
http://www.w3.org/TR/wsdl
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/
http://www.w3.org/TR/soap/
http://www.w3.org/
http://www.w3.org/TR/ws-policy/
http://www.w3.org/
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/
http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.oasis-open.org/
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.pdf
http://www.oasis-open.org/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org

additional files are only required if your client application needs to interact
directly with your business processes or human tasks through the Web services
APIs. They are not necessary if your client application is only going to invoke
operations that can be fulfilled by Business Process Choreographer without
direct interaction with your process or task instances, such as issuing queries.

v Web Service Policy (WS-Policy) files describing the quality of service attributes
for the Web services API. They may be exported in order to serve as a base for
creating client-side Web service policies.

WS-Security
The request message must contain either a UserName token or an LPTA
token.

WS-Transaction
The request message can contain a WS-AtomicTransaction context. If this
context is present, the request is processed in the transaction scope of the
caller.

After these artifacts are published, you need to copy them to your client
programming environment, where they are used to generate a Web service proxy
and helper classes.

Publishing Business Process Choreographer WSDL files
A Web Service Definition Language (WSDL) file contains a detailed description of
all the operations available with a Web services API. Separate WSDL files are
available for the Business Flow Manager and Human Task Manager Web services
APIs. These files are used to generate a Web service proxy for your application.

Before you begin

Before publishing the WSDL files, be sure to specify the correct Web services
endpoint address. This is the URL that your client application uses to access the
Web services APIs.

About this task

You must publish these WSDL files, and any XSD files referenced by the WSDL
files. You can then copy them from the WebSphere environment to your
development environment, where they are used to generate a Web service proxy
and helper classes. You only need to publish the Business Process Choreographer
WSDL files once.

Publishing the business process WSDL file for Web services applications:

Use the administrative console to publish the WSDL file.

Procedure

1. Log on to the administrative console with a user ID with administrator rights.
2. Click Applications → SCA modules.

Note: You can also click Applications → Application Types → WebSphere
enterprise applications to display a list of all available enterprise applications.

3. Choose the BPEContainer application from the list of SCA modules or
applications.

4. Select Publish WSDL files from the list of Additional properties

5. Click the .zip file in the list.

Developing client applications for business processes and tasks 433

6. On the File Download window that appears, click Save.
7. Browse to a local folder and click Save.

Results

The exported .zip file is named BPEContainer_nodename_servername_WSDLFiles.zip.
The .zip file contains a WSDL file that describes the Web services, and any XSD
files that are referenced by the WSDL file.

Note: The exported .zip file contains WSDL and XSD artifacts of both the JAX-WS
Web service introduced in Version 7 and the JAX-RPC Web service used in Version
6. When you generate a the Web service proxy using the wsimport tool, you select
the JAX-WS Web service artifacts and the JAX-RPC artifacts are ignored.

Publishing the human task WSDL file for Web services applications:

Use the administrative console to publish the WSDL file.

Procedure

1. Log on to the administrative console with a user ID with administrator rights.
2. Click Applications → SCA modules.

Note: You can also click Applications → Application Types → WebSphere
enterprise applications to display a list of all available enterprise applications.

3. Choose the TaskContainer application from the list of SCA modules or
applications.

4. Select Publish WSDL files from the list of Additional properties

5. Click the .zip file in the list.
6. On the File Download window that appears, click Save.
7. Browse to a local folder and click Save.

Results

The exported .zip file is named
TaskContainer_nodename_servername_WSDLFiles.zip. The .zip file contains a WSDL
file that describes the Web services, and any XSD files that are referenced by the
WSDL file.

Note: The exported .zip file contains WSDL and XSD artifacts of both the JAX-WS
Web service introduced in Version 7 and the JAX-RPC Web service used in Version
6. When you generate a the Web service proxy using wsimport tool, you select the
JAX-WS Web service artifacts and the JAX-RPC artifacts are ignored.

Exporting WSDL and XSD files for business process and human
task Web services applications
Business processes and human tasks have well-defined interfaces that allow them
to be accessed externally as Web services. You need to export the WSDL interface
definitions and the XML Schema data type definitions to your client programming
environment.

About this task

This procedure must be repeated for each business process or human task that
your client application needs to interact with.

434 Developing and deploying

For example, to create and start a human task, the following items of information
must be passed to the task interface:
v The task template name
v The task template namespace
v An input message, containing formatted business data
v A response wrapper for returning the response message
v A fault message for returning faults and exceptions

These items are encapsulated within a single business object. All operations of the
Web service interface are modeled as a document/literal wrapped operation. Input
and output parameters for these operations are encapsulated in wrapper
documents. Other business objects define the corresponding response and fault
message formats.

In order to create and start the business process or human task through a Web
service, these wrapper objects must be made available to the client application on
the client side.

This is achieved by exporting the business objects from the WebSphere
environment as Web Service Definition Language (WSDL) and XML Schema
Definition (XSD) files, and importing the data type definitions into your client
programming environment.

Procedure
1. Launch the WebSphere Integration Developer Workspace if it is not already

running.
2. Select the Library module containing the business objects to be exported. A

Library module is a compressed file that contains the necessary business
objects.

3. Export the Library module.
4. Copy the exported files to your client application development environment.

Example

Assume a business process exposes the following Web service operation:
<wsdl:operation name="updateCustomer">

<wsdl:input message="tns:updateCustomerRequestMsg"
name="updateCustomerRequest"/>

<wsdl:output message="tns:updateCustomerResponseMsg"
name="updateCustomerResponse"/>

<wsdl:fault message="tns:updateCustomerFaultMsg"
name="updateCustomerFault"/>

</wsdl:operation>

with the WSDL messages defined as:
<wsdl:message name="updateCustomerRequestMsg">

<wsdl:part element="types:updateCustomer"
name="updateCustomerParameters"/>

</wsdl:message>
<wsdl:message name="updateCustomerResponseMsg">

<wsdl:part element="types:updateCustomerResponse"
name="updateCustomerResult"/>

</wsdl:message>

Developing client applications for business processes and tasks 435

<wsdl:message name="updateCustomerFaultMsg">
<wsdl:part element="types:updateCustomerFault"

name="updateCustomerFault"/>
</wsdl:message>

The concrete customer-defined elements types:updateCustomer,
types:updateCustomerResponse, and types:updateCustomerFault must be passed to
and received from the Web services APIs using UserData parameters in all generic
operations (call, sendMessage, and so on) performed by the client application.

The customer-defined elements are created, serialized and deserialized on the client
application side using classes generated using the exported XSD files. The
generation of these classes is part of the Web service proxy generation where the
exported WSDL and XSD files are included.

The generic operations of the Web service interface propagate the document
wrapper element to and from the operation that is implemented by the business
process or human task. For the sample operation in the previous example, a Web
service SOAP message might look as follows:

<soapenv:Envelope xmlns:soapenv="..." ...>
<soapenv:Header>

...
</soapenv:Header>
<soapenv:Body>

<bfm:sendMessage
xmlns:bfm="http://www.ibm.com/xmlns/prod/websphere/business-process/services/7.0">

<processTemplateName>customerProcessTemplate</processTemplateName>
<portType xmlns:cns="http://example.com/customerProcess">cns:customerProcessPortType</portType>
<operation>updateCustomer</operation>
<input>

<cns:updateCustomer xmlns:cns="http://example.com/customerProcess">
<street>1600 Pennsylvania Avenue Northwest</street>
<city>Washington, DC 20006</city>

</cns:updateCustomer>
</input>

</bfm:sendMessage>
</soapenv:Body>

</soapenv:Envelope>

Developing client applications in the Java Web services
environment

You can use any Java-based development environment compatible with Java Web
services to develop client applications for the Business Process Choreographer Web
services APIs.

Generating a Web service proxy (Java Web services)
Java Web services client applications use a Web service proxy to interact with the
Business Process Choreographer Web services APIs.

About this task

A Web service proxy for Java Web services contains a number of JavaBeans classes
that the client application calls to perform Web service requests. The Web service
proxy handles the assembly of service parameters into SOAP messages, sends
SOAP messages to the Web service over HTTP, receives responses from the Web
service, and passes any returned data to the client application.

Basically, therefore, a Web service proxy allows a client application to call a Web
service as if it were a local function.

436 Developing and deploying

Note: You only need to generate a Web service proxy once. All client applications
accessing the same Web services API can then use the same Web service proxy.

In the IBM Web services environment, you can generate a Web service proxy in
one of the following ways.
v Use Rational Application Developer or WebSphere Integration Developer

integrated development environments.
v Use the wsimport command-line tool.

Other Java Web services development environments usually include either the
wsimport tool or proprietary client application generation facilities.

Using Rational Application Developer to generate a Web service proxy for a Web
services application:

You can use the Rational Application Developer integrated development
environment to generate a Web service proxy for your Web services client
application. The following sequence of steps applies to Rational Application
Developer Version 7.5.3.

Before you begin

Before generating a Web service proxy, you must have previously exported the
WSDL and XSD files that describe the business process or human task Web
services interfaces from the WebSphere environment and copied them to your
client programming environment.

Procedure

1. Add the appropriate WSDL file to your project:
v For business processes:

a. Unzip the exported file
BPEContainer_nodename_servername_WSDLFiles.zip to a temporary
directory. Do not change the contents of this directory, and be aware that
only the following WSDL and XSD files are used for the Web service
proxy generation for interactions with business processes:
– BFMJAXWSService.wsdl
– BFMJAXWSInterface.wsdl
– BFMJAXWSCallbackService.wsdl
– BFMJAXWSCallbackInterface.wsdl
– BFMDataTypes.xsd
– BPCDataTypes.xsd
– wsa.xsd

b. Import the subdirectory META-INF from the unzipped directory
BPEContainer_nodename_servername.ear/bfmjaxws.jar.

v For human tasks:
a. Unzip the exported file

TaskContainer_nodename_servername_WSDLFiles.zip to a temporary
directory. Do not change the contents of this directory, and be aware that
only the following WSDL and XSD files are used for the Web service
proxy generation for interactions with human tasks:
– HTMJAXWSService.wsdl
– HTMJAXWSInterface.wsdl

Developing client applications for business processes and tasks 437

– HTMJAXWSCallbackService.wsdl
– HTMJAXWSCallbackInterface.wsdl
– HTMDataTypes.xsd
– BPCDataTypes.xsd
– wsa.xsd

b. Import the subdirectory META-INF from the unzipped directory
TaskContainer_nodename_servername.ear/htmjaxws.jar.

A new wsdl directory and subdirectory structure are created in your project.
2. Select the BFMJAXWSService.wsdl file located in the newly-created wsdl

directory.
3. Right-click and choose Web services → Generate client.

Before continuing with the remaining steps, ensure that the server has started.
4. On the Web Services window, click Next to accept all defaults.
5. On the Web Service JAX-WS Web Service Client Configuration window, change

the Version of JAX-WS code to be generated to 2.0 and click Finish to accept all
other defaults

6. Redo steps 2 to 5 of this procedure with HTMJAXWSService.wsdl and overwrite
all files if you are prompted.

Results

A Web service proxy, made up of a number of proxy, locator, and JAXB classes, is
generated and added to your project.

Using the wsimport command-line tool to generate a Web service proxy for a
Web services application:

You can use the wsimport command-line tool to generate a Web service proxy for a
Web services application.

Before you begin

Before generating a Web service proxy, you must have previously exported the
WSDL files that describe the business process or human task Web services APIs
from the WebSphere environment, and copied them to your client programming
environment.

Procedure

1. Generate a Web service proxy for the Business Process Choreographer Web
services API:

Note: For a detailed description of the wsimport command-line tool for
JAX-WS applications, see the WebSphere Application Server wsimport
command-line tool documentation.
wsimport.bat BFMJAXWSService.wsdl myService1.wsdl myService2.wsdl
–d proxy-bfm
-wsdllocation <bfm_location>

wsimport.bat HTMJAXWSService.wsdl myService1.wsdl myService2.wsdl
–d proxy-htm
-wsdllocation <htm_location>

438 Developing and deploying

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rwbs_wsimport.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rwbs_wsimport.html

In this example, myService1.wsdl and myService2.wsdl contain interface
definitions of custom business processes, or human tasks, or both. In addition,
<bfm_location> and <htm_location> can be obtained from the WSDL <port>
element in BFMJAXWSService.wsdl and HTMJAXWSService.wsdl, respectively.
You can merge both proxies into one common directory (for example,
proxy-bpc) and overwrite existing files if you are prompted.

2. Include the generated class files in your project.
Related tasks

“Creating a client application for business processes and human tasks (Java Web
services)”
A client application sends requests to and receives responses from the Business
Process Choreographer Web services APIs. By using a Web service proxy to
manage communications and helper classes to format complex data types, a client
application can invoke Web service methods as if they were local functions.

Creating a client application for business processes and human
tasks (Java Web services)
A client application sends requests to and receives responses from the Business
Process Choreographer Web services APIs. By using a Web service proxy to
manage communications and helper classes to format complex data types, a client
application can invoke Web service methods as if they were local functions.

Before you begin

Before starting to create a client application, generate the Web service proxy.

About this task

You can develop client applications using any Web services-compatible
development tool, for example IBM Rational Application Developer. You can build
any type of Web services application to call the Web services APIs.

Procedure
1. Create a new client application project.
2. Generate the Web service proxy.
3. Code your client application.
4. Build the project.
5. Run the client application.

Example

The following example shows how to use the Business Flow Manager Web service
API.
try {

// create bfm proxy
BFMJAXWSPortType bfm = new BFMJAXWSService().getBFMJAXWSPort();

// call getProcessTemplate
ProcessTemplateType ptt =
bfm.getProcessTemplate("MY_PROCESS_TEMPLATE_NAME");

// handle return value
System.out.println("Process template ’" + ptt.getName() +

"’ found, details following:");
System.out.println("Execution mode: " +

ptt.getExecutionMode());
System.out.println("Schema version: " +

ptt.getSchemaVersion());

Developing client applications for business processes and tasks 439

} catch (Exception e) {
if (e instanceof ProcessFaultMsg)
{
ProcessFaultMsg pfm = (ProcessFaultMsg) e;
List<FaultStackType> list =

(pfm.getFaultInfo()).getFaultStack();
FaultStackType fault = list.get(0);
System.out.println("ProcessFaultMessage: " +

fault.getMessage());
}
else
{
e.printStackTrace(System.out);

}
}

Related tasks

“Using the wsimport command-line tool to generate a Web service proxy for a Web
services application” on page 438
You can use the wsimport command-line tool to generate a Web service proxy for a
Web services application.
“Generating a Web service proxy (Java Web services)” on page 436
Java Web services client applications use a Web service proxy to interact with the
Business Process Choreographer Web services APIs.

Adding security
The Business Process Choreographer Web service requires that you configure your
client application for an authentication mechanism.

About this task

By default, Business Process Choreographer supports the following authentication
mechanisms:

Username Token
A web service consumer supplies a Username token as a means of
identifying the requestor by "username", and optionally using a password
to authenticate that identity to the web service provider.

Binary Security Token – Lightweight Third-Party Authentication (LTPA) Token
A web service consumer supplies an LTPA token as a means of
authenticating the requestor to the web service provider

You can replace the Business Process Choreographer Web service security policy by
an alternative authentication mechanism. However, it is not possible to invoke
Business Process Choreographer Web service operations as an unauthenticated
user, so one authentication mechanism is always required.

Adding transaction support
Web service client applications can be configured to allow server-side request
processing to participate in the client's transaction, by passing a client application
context as part of the service request. This atomic transaction support is defined in
the Web Services-Atomic Transaction (WS-AT) specification.

About this task

Business Process Choreographer runs each Web service operation request as a
separate global transaction. Client applications can be configured to use transaction
support in one of the following ways:

440 Developing and deploying

v Propagate the client's transaction context. Server-side request processing is
performed within the client application transaction context and therefore
committed (or backed out) together with the client's transaction. Conversely, if
the server encounters a problem while the Web service operation is running and
requests a rollback, the client application's transaction is also rolled back.

v Not use transaction support. Business Process Choreographer creates a new
global transaction in which to run the request, but server-side request processing
is not performed with the client application transaction context

The Web service policy attached to the Business Process Choreographer Web
service allows that each request message may contain a WS-AT transaction context
as described above. If you choose to invoke the Web service operations without
passing a client transaction context, it is safe to ignore the provider-side transaction
policy and configure the Web service client without a transaction policy.

Developing client applications using the Business Process
Choreographer JMS API

You can develop client applications that access business process applications
asynchronously through the Java Messaging Service (JMS) API.

About this task

JMS client applications exchange request and response messages with the JMS API.
To create a request message, the client application fills a JMS TextMessage message
body with an XML element representing the document/literal wrapper of the
corresponding operation.

Requirements for business processes
Business processes developed with the WebSphere Integration Developer to run on
the Business Process Choreographer must conform to specific rules to be accessible
through the JMS API.

The requirements are:
1. The interfaces of business processes must be defined using the

"document/literal wrapped" style defined in the Java API for XML-based RPC
(JAX-RPC 1.1) specification. This is the default style for all business processes
and human tasks developed with the WebSphere Integration Developer.

2. Fault messages exposed by business processes and human tasks for Web service
operations must comprise a single WSDL message part defined with an XML
Schema element. For example:
<wsdl:part name="myFault" element="myNamespace:myFaultElement"/>

Related information

Java API for XML based RPC (JAX-RPC) downloads page

Which style of WSDL should I use?

Authorization for JMS renderings
To authorize use of the JMS interface, security settings must be enabled in
WebSphere Application Server.

Developing client applications for business processes and tasks 441

http://java.sun.com/xml/downloads/jaxrpc.html
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

When the business process container is installed, the role JMSAPIUser must be
mapped to a user ID. This user ID is used to issue all JMS API requests. For
example, if JMSAPIUser is mapped to "User A", all JMS API requests appear to
the process engine to originate from "User A".

The JMSAPIUser role must be assigned the following authorities:

Request Required authorization

forceTerminate Process administrator

sendEvent Potential activity owner or process
administrator

Note: For all other requests, no special authorizations are required.

Special authority is granted to a person with the role of business process
administrator. A business process administrator is a special role; it is different from
the process administrator of a process instance. A business process administrator
has all privileges.

You cannot delete the user ID of the process starter from your user registry while
the process instance exists. If you delete this user ID, the navigation of this process
cannot continue. You receive the following exception in the system log file:
no unique ID for: <user ID>

Accessing the JMS interface
To send and receive messages through the JMS interface, an application must first
create a connection to the BPC.cellname.Bus, create a session, then generate
message producers and consumers.

About this task

The process server accepts Java Message Service (JMS) messages that follow the
point-to-point paradigm. An application that sends or receives JMS messages must
perform the following actions.

The following example assumes that the JMS client is executed in a managed
environment (EJB, application client, or Web client container).

Procedure
1. Create a connection to the BPC.cellname.Bus. No preconfigured connection

factory exists for a client application's requests: a client application can either
use the JMS API's ReplyConnectionFactory or create its own connection factory,
in which case it can use Java Naming and Directory Interface (JNDI) lookup to
retrieve the connection factory. The JNDI-lookup name must be the same as the
name specified when configuring the Business Process Choreographer's external
request queue. The following example assumes the client application creates its
own connection factory named "jms/clientCF".
//Obtain the default initial JNDI context.
Context initialContext = new InitialContext();

// Look up the connection factory.
// Create a connection factory that connects to the BPC bus.
// Call it, for example, "jms/clientCF".
// Also configure an appropriate authentication alias.
ConnectionFactory connectionFactory =

442 Developing and deploying

(ConnectionFactory)initialcontext.lookup("jms/clientCF");

// Create the connection.
Connection connection = connectionFactory.createConnection();

2. Create a session so that message producers and consumers can be created.
// Create a transaction session using auto-acknowledgment.
Session session = connection.createSession(true, Session.AUTO_ACKNOWLEDGE);

3. Create a message producer to send messages. The JNDI-lookup name must be
the same as the name specified when configuring the Business Process
Choreographer's external request queue.
// Look up the destination of the Business Process Choreographer input queue to
// send messages to.
Queue sendQueue = (Queue) initialcontext.lookup("jms/BFMJMSAPIQueue");

// Create a message producer.
MessageProducer producer = session.createProducer(sendQueue);

4. Create a message consumer to receive replies. The JNDI-lookup name of the
reply destination can specify a user-defined destination, but it can also specify
the default (Business Process Choreographer-defined) reply destination
jms/BFMJMSReplyQueue. In both cases, the reply destination must lie on the
BPC.<cellname>.Bus.
// Look up the destination of the reply queue.
Queue replyQueue = (Queue) initialcontext.lookup("jms/BFMJMSReplyQueue");

// Create a message consumer.
MessageConsumer consumer = session.createConsumer(replyQueue);

5. Send a message.
// Start the connection.
connection.start();

// Create a message - see the task descriptions for examples - and send it.
// This method is defined elsewhere ...
String payload = createXMLDocumentForRequest();
TextMessage requestMessage = session.createTextMessage(payload);

// Set mandatory JMS header.
// targetFunctionName is the operation name of JMS API
// (for example, getProcessTemplate, sendMessage)
requestMessage.setStringProperty("TargetFunctionName", targetFunctionName);

// Set the reply queue; this is mandatory if the replyQueue
// is not the default queue (as it is in this example).
requestMessage.setJMSReplyTo(replyQueue);

// Send the message.
producer.send(requestMessage);

// Get the message ID.
String jmsMessageID = requestMessage.getJMSMessageID();

session.commit();

6. Receive the reply.
// Receive the reply message and analyse the reply.
TextMessage replyMessage = (TextMessage) consumer.receive();

// Get the payload.
String payload = replyMessage.getText();

session.commit();

7. Close the connection and free the resources.

Developing client applications for business processes and tasks 443

// Final housekeeping; free the resources.
session.close();
connection.close();

Note: It is not necessary to close the connection after each transaction. Once a
connection has been started, any number of request and response messages can
be exchanged before the connection is closed. The example shows a simple case
with a single call within a single business method.

Structure of a Business Process Choreographer JMS message
The header and body of each JMS message must have a predefined structure.

A Java Message Service (JMS) message consists of:
v A message header for message identification and routing information.
v The body (payload) of the message that holds the content.

The Business Process Choreographer supports text message formats only.

Message header

JMS allows clients to access a number of message header fields.

The following header fields can be set by a Business Process Choreographer JMS
client:

JMSReplyTo
The destination to send a reply to the request. If this field is not specified
in the request message, the reply is sent to the Export interface's default
reply destination (an Export is a client interface rendering of a business
process component). This destination can be obtained using
initialContext.lookup("jms/BFMJMSReplyQueue");

TargetFunctionName
The name of the WSDL operation, for example, "queryProcessTemplates".
This field must always be set. Note that the TargetFunctionName specifies
the operation of the generic JMS message interface described here. This
should not be confused with operations provided by concrete processes or
tasks that can be invoked indirectly, for example, using the call or
sendMessage operations.

A Business Process Choreographer client can also access the following header
fields:

JMSMessageID
Uniquely identifies a message. Set by the JMS provider when the message
is sent. If the client sets the JMSMessageID before sending the message, it
is overwritten by the JMS provider. If the ID of the message is required for
authentication purposes, the client can retrieve the JMSMessageID after
sending the message.

JMSCorrelationID
Links messages. Do not set this field. A Business Process Choreographer
reply message contains the JMSMessageID of the request message.

Each response message contains the following JMS header fields:
v IsBusinessException

"False" for WSDL output messages, or "true" for WSDL fault messages.

444 Developing and deploying

ServiceRuntimeExceptions are not returned to asynchronous client applications.
When a severe exception occurs during the processing of a JMS request message, it
results in a runtime failure, causing the transaction that is processing this request
message to roll back. The JMS request message is then delivered again. If the
failure occurs early, during processing of the message as part of the SCA Export
(for example, while deserializing the message), retries are attempted up to the
maximum number of failed deliveries specified by the SCA Export's receive
destination. After the maximum number of failed deliveries is reached, the request
message is added to the system exception destination of the Business Process
Choreographer bus. If, however, the failure occurs during actual processing of the
request by the Business Flow Manager's SCA component, the failed request
message is handled by the WebSphere Process Server's failed event management
infrastructure, that is, it may end up in the failed event management database if
retries do not resolve the exceptional situation.

Message body

Operations exposed by business processes or human tasks must comply with the
document/literal wrapper style. The JMS message body is a String containing an
XML document that represents the document/literal wrapper element of the
operation. The generic operations of the JMS message interface propagate the
document-wrapper element to and from the operation that is implemented by the
business process or human task.

The following example shows a simple valid request message body:
<bfm:queryProcessTemplates

xmlns:bfm="http://www.ibm.com/xmlns/prod/websphere/business-process/services/6.0">
<whereClause>PROCESS_TEMPLATE.STATE IN (1)</whereClause>

</bfm:queryProcessTemplates>

The following example shows a more complex, valid request message body. The
client application has a sendMessage API operation for submitting a message to a
specific process. The process input message is one of the API parameters; this
message is the input message of a business operation exposed by a customer
process. The process contains a receive activity that consumes the message.

The bfm:sendMessage element is the document wrapper element of the JMS API
operation. It includes the cns:updateCustomer element, which is the document
wrapper element for the operation that is implemented by the process. This
process has, for example, a bpel:receive activity that references the
cns:customerProcessPortType WSDL port type, and the updateCustomer WSDL
operation.
<bfm:sendMessage

xmlns:bfm="http://www.ibm.com/xmlns/prod/websphere/business-process/services/6.0">
<processTemplateName>customerProcessTemplate</processTemplateName>
<portType xmlns:cns="http://example.com/customerProcess">cns:customerProcessPortType</portType>
<operation>updateCustomer</operation>
<cns:updateCustomer xmlns:cns="http://example.com/customerProcess">
<street>1600 Pennsylvania Avenue Northwest</street>
<city>Washington, DC 20006</city>

</cns:updateCustomer>
</bfm:sendMessage>

Developing client applications for business processes and tasks 445

Related tasks

“Checking the response message for business exceptions”
JMS client applications must check the message header of all response messages
for business exceptions.

Copying artifacts for JMS client applications
A number of artifacts can be copied from the WebSphere Process Server
environment to help in the creation of JMS client applications.

About this task

These artifacts are mandatory only if you use the BOXMLSerializer to create the
JMS message body. For the JMS API, these artifacts are:

BFMIF.wsdl

BFMIF.xsd

BPCGen.xsd

wsa.xsd

You must publish and export these files from the WebSphere Process Server
environment to your development environment.

Publishing the business process WSDL file for JMS applications
Use the administrative console to publish the WSDL file.

Procedure
1. Log on to the administrative console with a user ID with administrator rights.
2. Click Applications → SCA modules.

Note: You can also click Applications → Application Types → WebSphere
enterprise applications to display a list of all available enterprise applications.

3. Choose the BPEContainer application from the list of SCA modules or
applications.

4. Select Publish WSDL files from the list of Additional properties

5. Click the .zip file in the list.
6. On the File Download window that appears, click Save.
7. Browse to a local folder and click Save.

Results

The exported .zip file is named BPEContainer_WSDLFiles.zip. The .zip file contains
a WSDL file, and any XSD files that are referenced by the WSDL file.

Checking the response message for business exceptions
JMS client applications must check the message header of all response messages
for business exceptions.

About this task

A JMS client application must first check the IsBusinessException property in the
response message's header.

For example:

446 Developing and deploying

Example
// receive response message
Message receivedMessage = ((JmsProxy) getToBeInvokedUponObject().receiveMessage();
String strResponse = ((TextMessage) receivedMessage).getText();

if (receivedMessage.getStringProperty("IsBusinessException") {
// strResponse is a bussiness fault
// any api can end w/a processFaultMsg
// the call api also w/a businessFaultMsg
}
else {

// strResponse is the output message
}

Related concepts

“Structure of a Business Process Choreographer JMS message” on page 444
The header and body of each JMS message must have a predefined structure.

Example: executing a long running process using the
Business Process Choreographer JMS API

This example shows how to create a generic client application that uses the JMS
API to work with long-running processes.

Procedure
1. Set up the JMS environment, as described in “Accessing the JMS interface” on

page 442.
2. Obtain a list of installed process definitions.

v Send queryProcessTemplates.
v This returns a list of ProcessTemplate objects.

3. Obtain a list of start activities (receive or pick with createInstance="yes").
v Send getStartActivities.
v This returns a list of InboundOperationTemplate objects.

4. Create an input message. This is environment-specific, and might require the
use of predeployed, process-specific artifacts.

5. Create a process instance.
v Issue a sendMessage.
With the JMS API, you can also use the call operation for interacting with
long-running, request-response operations provided by a business process. This
operation returns the operation result or fault to the specified reply-to
destination, even after a long period of time. Therefore, if you use the call
operation, you do not need to use the query and getOutputMessage operations
to obtain the process’ output or fault message.

6. Optional: Obtain output messages from the process instances by repeating the
following steps:
a. Issue query to obtain the finished state of the process instance.
b. Issue getOutputMessage .

7. Optional: Work with additional operations exposed by the process:
a. Issue getWaitingActivities or getActiveEventHandlers to obtain a list of

InboundOperationTemplate objects.
b. Create input messages.
c. Send messages with sendMessage.

8. Optional: Get and set custom properties that are defined on the process or
contained activities with getCustomProperties and setCustomProperties.

Developing client applications for business processes and tasks 447

9. Finish working with a process instance:
a. Send delete and terminate to finish working with the long-running

process.

Developing Web applications for business processes and human
tasks, using JSF components

Business Process Choreographer provides several JavaServer Faces (JSF)
components. You can extend and integrate these components to add
business-process and human-task functionality to Web applications.

About this task

You can use WebSphere Integration Developer to build your Web application. For
applications that include human tasks, you can generate a JSF custom client. For
more information on generating a JSF client, go to the information center for
WebSphere Integration Developer.

You can also develop your Web client using the JSF components provided by
Business Process Choreographer.

Procedure
1. Create a dynamic project and change the Web Project Features properties to

include the JSF base components.
For more information on creating a Web project, go to the information center
for WebSphere Integration Developer.

2. Add the prerequisite Business Process Choreographer Explorer Java archive
(JAR files).
Add the following files to the WEB-INF/lib directory of your project:
v bpcclientcore.jar
v bfmclientmodel.jar
v htmclientmodel.jar
v bpcjsfcomponents.jar
These files are in the install_root/ProcessChoreographer/client directory.

3. Add the EJB references that you need to the Web application deployment
descriptor, web.xml file.
<ejb-ref id="EjbRef_1">

<ejb-ref-name>ejb/BusinessProcessHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.ibm.bpe.api.BusinessFlowManagerHome</home>
<remote>com.ibm.bpe.api.BusinessFlowManager</remote>

</ejb-ref>
<ejb-ref id="EjbRef_2">

<ejb-ref-name>ejb/HumanTaskManagerEJB</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.ibm.task.api.HumanTaskManagerHome</home>
<remote>com.ibm.task.api.HumanTaskManager</remote>

</ejb-ref>
<ejb-local-ref id="EjbLocalRef_1">

<ejb-ref-name>ejb/LocalBusinessProcessHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>com.ibm.bpe.api.LocalBusinessFlowManagerHome</local-home>
<local>com.ibm.bpe.api.LocalBusinessFlowManager</local>

</ejb-local-ref>
<ejb-local-ref id="EjbLocalRef_2">

<ejb-ref-name>ejb/LocalHumanTaskManagerEJB</ejb-ref-name>

448 Developing and deploying

<ejb-ref-type>Session</ejb-ref-type>
<local-home>com.ibm.task.api.LocalHumanTaskManagerHome</local-home>
<local>com.ibm.task.api.LocalHumanTaskManager</local>

</ejb-local-ref>

4. Add the Business Process Choreographer Explorer JSF components to the JSF
application.
a. Add the tag library references that you need for your applications to the

JavaServer Pages (JSP) files. Typically, you need the JSF and HTML tag
libraries, and the tag library required by the JSF components.
v <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

v <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

v <%@ taglib uri="http://com.ibm.bpe.jsf/taglib" prefix="bpe" %>

b. Add an <f:view> tag to the body of the JSP page, and an <h:form> tag to
the <f:view> tag.

c. Add the JSF components to the JSP files.
Depending on your application, add the List component, the Details
component, the CommandBar component, or the Message component to the
JSP files. You can add multiple instances of each component.

d. Configure the managed beans in the JSF configuration file.
By default, the configuration file is the faces-config.xml file. This file is in
the WEB-INF directory of the Web application.
Depending on the component that you add to your JSP file, you also need
to add the references to the query and other wrapper objects to the JSF
configuration file. To ensure correct error handling, you also need to define
both an error bean and a navigation target for the error page in the JSF
configuration file. Ensure that you use BPCError for the name of the error
bean and error for the name of the navigation target of the error page.
<faces-config>
...
<managed-bean>

<managed-bean-name>BPCError</managed-bean-name>
<managed-bean-class>com.ibm.bpc.clientcore.util.ErrorBeanImpl
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

...
<navigation-rule>
...
<navigation-case>
<description>
The general error page.
</description>
<from-outcome>error</from-outcome>
<to-view-id>/Error.jsp</to-view-id>
</navigation-case>
...
</navigation-rule>
</faces-config>

In error situations that trigger the error page, the exception is set on the
error bean.

e. Implement the custom code that you need to support the JSF components.
5. Deploy the application.

Developing client applications for business processes and tasks 449

If you are deploying the application in a network deployment environment,
change the target resource Java Naming and Directory Interface (JNDI) names
to values where the Business Flow Manager and Human Task Manager APIs
can be found in your cell.
v If your business process containers are configured on another server in the

same managed cell, the names have the following structure:
cell/nodes/nodename/servers/servername/com/ibm/bpe/api/BusinessManagerHome
cell/nodes/nodename/servers/servername/com/ibm/task/api/HumanTaskManagerHome

v If your business process containers are configured on a cluster in the same
cell, the names have the following structure:
cell/clusters/clustername/com/ibm/bpe/api/BusinessFlowManagerHome
cell/clusters/clustername/com/ibm/task/api/HumanTaskManagerHome

Map the EJB references to the JNDI names or manually add the references to
the ibm-web-bnd.xmi file.
The following table lists the reference bindings and their default mappings.

Table 70. Mapping of the reference bindings to JNDI names

Reference binding JNDI name Comments

ejb/BusinessProcessHome com/ibm/bpe/api/BusinessFlowManagerHome Remote session bean

ejb/LocalBusinessProcessHome com/ibm/bpe/api/BusinessFlowManagerHome Local session bean

ejb/HumanTaskManagerEJB com/ibm/task/api/HumanTaskManagerHome Remote session bean

ejb/LocalHumanTaskManagerEJB com/ibm/task/api/HumanTaskManagerHome Local session bean

Results

Your deployed Web application contains the functionality provided by the Business
Process Choreographer Explorer components.

What to do next

If you are using custom JSPs for the process and task messages, you must map the
Web modules that are used to deploy the JSPs to the same servers that the custom
JSF client is mapped to.

Business Process Choreographer Explorer components
The Business Process Choreographer Explorer components are a set of
configurable, reusable elements that are based on the JavaServer Faces (JSF)
technology. You can imbed these elements in Web applications. The Web
applications can then access installed business process and human task
applications.

The components consist of a set of JSF components and a set of client model
objects. The relationship of the components to Business Process Choreographer,
Business Process Choreographer Explorer, and other custom clients is shown in the
following figure.

450 Developing and deploying

JSF components

The Business Process Choreographer Explorer components include the following
JSF components. You imbed these JSF components in your JavaServer Pages (JSP)
files when you build Web applications for working with business processes and
human tasks.
v List component

The List component displays a list of application objects in a table, for example,
tasks, activities, process instances, process templates, work items, or escalations.
This component has an associated list handler.

v Details component
The Details component displays the properties of tasks, work items, activities,
process instances, and process templates. This component has an associated
details handler.

v CommandBar component
The CommandBar component displays a bar with buttons. These buttons
represent commands that operate on either the object in a details view or the
selected objects in a list. These objects are provided by a list handler or a details
handler.

v Message component
The Message component displays a message that can contain either a Service
Data Object (SDO) or a simple type.

Client model objects

The client model objects are used with the JSF components. The objects implement
some of the interfaces of the underlying Business Process Choreographer API and
wrap the original object. The client model objects provide national language
support for labels and converters for some properties.

Developing client applications for business processes and tasks 451

Error handling in JSF components
The JavaServer Faces (JSF) components exploit a predefined managed bean,
BPCError, for error handling. In error situations that trigger the error page, the
exception is set on the error bean.

This bean implements the com.ibm.bpc.clientcore.util.ErrorBean interface. The error
page is displayed in the following situations:
v If an error occurs during the execution of a query that is defined for a list

handler, and the error is generated as a ClientException error by the execute
method of a command

v If a ClientException error is generated by the execute method of a command and
this error is not an ErrorsInCommandException error nor does it implement the
CommandBarMessage interface

v If an error message is displayed in the component, and you follow the hyperlink
for the message

A default implementation of the com.ibm.bpc.clientcore.util.ErrorBeanImpl
interface is available.

The interface is defined as follows:
public interface ErrorBean {

public void setException(Exception ex);

/*
* This setter method call allows a locale and
* the exception to be passed. This allows the
* getExceptionMessage methods to return localized Strings
*
*/
public void setException(Exception ex, Locale locale);

public Exception getException();
public String getStack();
public String getNestedExceptionMessage();
public String getNestedExceptionStack();
public String getRootExceptionMessage();
public String getRootExceptionStack();

/*
* This method returns the exception message
* concatenated recursively with the messages of all
* the nested exceptions.
*/
public String getAllExceptionMessages();

/*
* This method is returns the exception stack
* concatenated recursively with the stacks of all
* the nested exceptions.
*/
public String getAllExceptionStacks();

}

452 Developing and deploying

Related concepts

“Error handling in the List component” on page 457
When you use the List component to display lists in your JSF application, you can
take advantage of the error handling functions provided by the
com.ibm.bpe.jsf.handler.BPCListHandler class.

Default converters and labels for client model objects
The client model objects implement the corresponding interfaces of the Business
Process Choreographer API.

The List component and the Details component operate on any bean. You can
display all of the properties of a bean. However, if you want to set the converters
and labels that are used for the properties of a bean, you must use either the
column tag for the List component, or the property tag for the Details component.
Instead of setting the converters and labels, you can define default converter and
labels for the properties by defining the following static methods. You can define
the following static methods:
static public String getLabel(String property,Locale locale);
static public com.ibm.bpc.clientcore.converter.SimpleConverter

getConverter(String property);

The following table shows the client model objects that implement the
corresponding Business Flow Manager and Human Task Manager API classes and
provide default labels and converter for their properties. This wrapping of the
interfaces provides locale-sensitive labels and converters for a set of properties. The
following table shows the mapping of the Business Process Choreographer
interfaces to the corresponding client model objects.

Table 71. How Business Process Choreographer interfaces are mapped to client model objects

Business Process Choreographer interface Client model object class

com.ibm.bpe.api.ActivityInstanceData com.ibm.bpe.clientmodel.bean.ActivityInstanceBean

com.ibm.bpe.api.ActivityServiceTemplateData com.ibm.bpe.clientmodel.bean.ActivityServiceTemplateBean

com.ibm.bpe.api.ProcessInstanceData com.ibm.bpe.clientmodel.bean.ProcessInstanceBean

com.ibm.bpe.api.ProcessTemplateData com.ibm.bpe.clientmodel.bean.ProcessTemplateBean

com.ibm.task.api.Escalation com.ibm.task.clientmodel.bean.EscalationBean

com.ibm.task.api.Task com.ibm.task.clientmodel.bean.TaskInstanceBean

com.ibm.task.api.TaskTemplate com.ibm.task.clientmodel.bean.TaskTemplateBean

Adding the List component to a JSF application
Use the Business Process Choreographer Explorer List component to display a list
of client model objects, for example, business process instances or task instances.

Procedure
1. Add the List component to the JavaServer Pages (JSP) file.

Add the bpe:list tag to the h:form tag. The bpe:list tag must include a
model attribute. Add bpe:column tags to the bpe:list tag to add the properties
of the objects that are to appear in each of the rows in the list.
The following example shows how to add a List component to display task
instances.

Developing client applications for business processes and tasks 453

<h:form>

<bpe:list model="#{TaskPool}">
<bpe:column name="name" action="taskInstanceDetails" />
<bpe:column name="state" />
<bpe:column name="kind" />
<bpe:column name="owner" />
<bpe:column name="originator" />

</bpe:list>

</h:form>

The model attribute refers to a managed bean, TaskPool. The managed bean
provides the list of Java objects over which the list iterates and then displays in
individual rows.

2. Configure the managed bean referred to in the bpe:list tag.
For the List component, this managed bean must be an instance of the
com.ibm.bpe.jsf.handler.BPCListHandler class.
The following example shows how to add the TaskPool managed bean to the
configuration file.
<managed-bean>
<managed-bean-name>TaskPool</managed-bean-name>
<managed-bean-class>com.ibm.bpe.jsf.handler.BPCListHandler</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

<managed-property>
<property-name>query</property-name>
<value>#{TaskPoolQuery}</value>

</managed-property>
<managed-property>

<property-name>type</property-name>
<value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

</managed-property>
</managed-bean>

<managed-bean>
<managed-bean-name>TaskPoolQuery</managed-bean-name>
<managed-bean-class>sample.TaskPoolQuery</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

<managed-property>
<property-name>type</property-name>
<value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

</managed-property>
</managed-bean>

<managed-bean>
<managed-bean-name>htmConnection</managed-bean-name>
<managed-bean-class>com.ibm.task.clientmodel.HTMConnection</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>

<managed-property>
<property-name>jndiName</property-name>
<value>java:comp/env/ejb/LocalHumanTaskManagerEJB</value>

</managed-property>
</managed-bean>

The example shows that TaskPool has two configurable properties: query and
type. The value of the query property refers to another managed bean,
TaskPoolQuery. The value of the type property specifies the bean class, the
properties of which are shown in the columns of the displayed list. The
associated query instance can also have a property type. If a property type is
specified, it must be the same as the type specified for the list handler.
You can add any type of query logic to the JSF application as long as the result
of the query can be represented as list of strongly-typed beans. For example,

454 Developing and deploying

the TaskPoolQuery is implemented using a list of
com.ibm.task.clientmodel.bean.TaskInstanceBean objects.

3. Add the custom code for the managed bean that is referred to by the list
handler.
The following example shows how to add custom code for the TaskPool
managed bean.
public class TaskPoolQuery implements Query {

public List execute throws ClientException {

// Examine the faces-config file for a managed bean "htmConnection".
//
FacesContext ctx = FacesContext.getCurrentInstance();
Application app = ctx.getApplication();
ValueBinding htmVb = app.createValueBinding("#{htmConnection}");
htmConnection = (HTMConnection) htmVb.getValue(ctx);
HumanTaskManagerService taskService =

htmConnection.getHumanTaskManagerService();

// Then call the actual query method on the Human Task Manager service.
//
// Add the database columns for all of the properties you want to show
// in your list to the select statement
//
QueryResultSet queryResult = taskService.query(
"DISTINCT TASK.TKIID, TASK.NAME, TASK.KIND, TASK.STATE, TASK.TYPE,"
+ "TASK.STARTER, TASK.OWNER, TASK.STARTED, TASK.ACTIVATED, TASK.DUE,

TASK.EXPIRES, TASK.PRIORITY",
"TASK.KIND IN(101,102,105) AND TASK.STATE IN(2)

AND WORK_ITEM.REASON IN (1)",
(String)null,
(Integer)null,
(TimeZone)null);

List applicationObjects = transformToTaskList (queryResult);
return applicationObjects ;

}

private List transformToTaskList(QueryResultSet result) {

ArrayList array = null;
int entries = result.size();
array = new ArrayList(entries);

// Transforms each row in the QueryResultSet to a task instance beans.
for (int i = 0; i < entries; i++) {

result.next();
array.add(new TaskInstanceBean(result, connection));

}
return array ;
}

}

The TaskPoolQuery bean queries the properties of the Java objects. This bean
must implement the com.ibm.bpc.clientcore.Query interface. When the list
handler refreshes its contents, it calls the execute method of the query. The call
returns a list of Java objects. The getType method must return the class name of
the returned Java objects.

Results

Your JSF application now contains a JavaServer page that displays the properties of
the requested list of objects, for example, the state, kind, owner, and originator of
the task instances that are available to you.

Developing client applications for business processes and tasks 455

How lists are processed
Every instance of the List component is associated with an instance of the
com.ibm.bpe.jsf.handler.BPCListHandler class.

This list handler tracks the selected items in the associated list and it provides a
notification mechanism to associate the list entries with the details pages for the
different kinds of items. The list handler is bound to the List component through
the model attribute of the bpe:list tag.

The notification mechanism of the list handler is implemented using the
com.ibm.bpe.jsf.handler.ItemListener interface. You can register implementations of
this interface in the configuration file of your JavaServer Faces (JSF) application.

The notification is triggered when a link in the list is clicked. Links are rendered
for all of the columns for which the action attribute is set. The value of the action
attribute is either a JSF navigation target, or a JSF action method that returns a JSF
navigation target.

The BPCListHandler class also provides a refreshList method. You can use this
method in JSF method bindings to implement a user interface control for running
the query again.

Query implementations

You can use the list handler to display all kinds of objects and their properties. The
content of the list that is displayed depends on the list of objects that is returned
by the implementation of the com.ibm.bpc.clientcore.Query interface that is
configured for the list handler. You can set the query either programmatically
using the setQuery method of the BPCListHandler class, or you can configure it in
the JSF configuration files of the application.

You can run queries not only against the Business Process Choreographer APIs, but
also against any other source of information that is accessible from your
application, for example, a content management system or a database. The only
requirement is that the result of the query is returned as a java.util.List of
objects by the execute method.

The type of the objects returned must guarantee that the appropriate getter
methods are available for all of the properties that are displayed in the columns of
the list for which the query is defined. To ensure that the type of the object that is
returned fits the list definitions, you can set the value of the type property on the
BPCListHandler instance that is defined in the faces configuration file to the fully
qualified class name of the returned objects. You can return this name in the
getType call of the query implementation. At runtime, the list handler checks that
the object types conform to the definitions.

To map error messages to specific entries in a list, the objects returned by the
query must implement a method with the signature public Object getID().

Default converters and labels

The items returned by a query must be beans and their class must match the class
specified as the type in the definition of the BPCListHandler class or
com.ibm.bpc.clientcore.Query interface. In addition, the List component checks
whether the item class or a superclass implements the following methods:

456 Developing and deploying

static public String getLabel(String property,Locale locale);
static public com.ibm.bpc.clientcore.converter.SimpleConverter

getConverter(String property);

If these methods are defined for the beans, the List component uses the label as the
default label for the list and the SimpleConverter as the default converter for the
property. You can overwrite these settings with the label and converterID
attributes of the bpe:list tag. For more information, see the Javadoc for the
SimpleConverter interface and the ColumnTag class.

User-specific time zone information
The JavaServer Faces (JSF) components provide a utility for handling user-specific
time zone information in the List component.

The BPCListHandler class uses the com.ibm.bpc.clientcore.util.User interface to get
information about the time zone and locale of each user. The List component
expects the implementation of the interface to be configured with user as the
managed-bean name in your JavaServer Faces (JSF) configuration file. If this entry
is missing from the configuration file, the time zone in which WebSphere Process
Server is running is returned.

The com.ibm.bpc.clientcore.util.User interface is defined as follows:
public interface User {

/**
* The locale used by the client of the user.
* @return Locale.
*/
public Locale getLocale();
/**
* The time zone used by the client of the user.
* @return TimeZone.
*/
public TimeZone getTimeZone();

/**
* The name of the user.
* @return name of the user.
*/
public String getName();

}

Error handling in the List component
When you use the List component to display lists in your JSF application, you can
take advantage of the error handling functions provided by the
com.ibm.bpe.jsf.handler.BPCListHandler class.

Errors that occur when queries are run or commands are run

If an error occurs during the execution of a query, the BPCListHandler class
distinguishes between errors that were caused by insufficient access rights and
other exceptions. To catch errors due to insufficient access rights, the rootCause
parameter of the ClientException that is thrown by the execute method of the
query must be a com.ibm.bpe.api.EngineNotAuthorizedException or a
com.ibm.task.api.NotAuthorizedException exception. The List component displays
the error message instead of the result of the query.

If the error is not caused by insufficient access rights, the BPCListHandler class
passes the exception object to the implementation of the

Developing client applications for business processes and tasks 457

com.ibm.bpc.clientcore.util.ErrorBean interface that is defined by the BPCError key
in your JSF application configuration file. When the exception is set, the error
navigation target is called.

Errors that occur when working with items that are displayed in a list

The BPCListHandler class implements the com.ibm.bpe.jsf.handler.ErrorHandler
interface. You can provide information about these errors with the map parameter
of type java.util.Map in the setErrors method. This map contains identifiers as keys
and the exceptions as values. The identifiers must be the values returned by the
getID method of the object that caused the error. If the map is set and any of the
IDs match any of the items displayed in the list, the list handler automatically adds
a column containing the error message to the list.

To avoid outdated error messages in the list, reset the errors map. In the following
situations, the map is reset automatically:
v The refreshList method BPCListHandler class is called.
v A new query is set on the BPCListHandler class.
v The CommandBar component is used to trigger actions on items of the list. The

CommandBar component uses this mechanism as one of the methods for error
handling.

Related concepts

“Error handling in JSF components” on page 452
The JavaServer Faces (JSF) components exploit a predefined managed bean,
BPCError, for error handling. In error situations that trigger the error page, the
exception is set on the error bean.

List component: Tag definitions
The Business Process Choreographer Explorer List component displays a list of
objects in a table, for example, tasks, activities, process instances, process
templates, work items, and escalations.

The List component consists of the JSF component tags: bpe:list and bpe:column.
The bpe:column tag is a subelement of the bpe:list tag.

Component class

com.ibm.bpe.jsf.component.ListComponent

Example syntax
<bpe:list model="#{ProcessTemplateList}">

rows="20"
styleClass="list"
headerStyleClass="listHeader"
rowClasses="normal">

<bpe:column name="name" action="processTemplateDetails"/>
<bpe:column name="validFromTime"/>
<bpe:column name="executionMode" label="Execution mode"/>
<bpe:column name="state" converterID="my.state.converter"/>
<bpe:column name="autoDelete"/>
<bpe:column name="description"/>

</bpe:list>

458 Developing and deploying

Tag attributes

The body of the bpe:list tag can contain only bpe:column tags. When the table is
rendered, the List component iterates over the list of application objects and
renders all of the columns for each of the objects.

Table 72. bpe:list attributes

Attribute Required Description

buttonStyleClass no The cascading style sheet (CSS) style class
for rendering the buttons in the footer
area.

cellStyleClass no The CSS style class for rendering
individual table cells.

checkbox no Determines whether the check box for
selecting multiple items is rendered. The
attribute has a value of either true or
false. If the value is set to true, the check
box column is rendered.

headerStyleClass no The CSS style class for rendering the table
header.

model yes A value binding for a managed bean of
the
com.ibm.bpe.jsf.handler.BPCListHandler
class.

rows no The number of rows that are shown on a
page. If the number of items exceeds the
number of rows, paging buttons are
displayed at the end of the table. Value
expressions are not supported for this
attribute.

rowClasses no The CSS style class for rendering the rows
in the table.

selectAll no If this attribute is set to true, all of the
items in the list are selected by default.

styleClass no The CSS style class for rendering the
overall table containing titles, rows, and
paging buttons.

Table 73. bpe:column attributes

Attribute Required Description

action no If this attribute is specified, a link is
rendered in the column. Either a
JavaServer Faces action method or the
Faces navigation target is triggered when
this link is clicked. A JavaServer Faces
action method has the following
signature: String method().

converterID no The Faces converter ID that is used for
converting the property value. If this
attribute is not set, any Faces converter ID
that is provided by the model for this
property is used.

Developing client applications for business processes and tasks 459

Table 73. bpe:column attributes (continued)

Attribute Required Description

label no A literal or value binding expression that
is used as a label for the header of the
column or the cell of the table header row.
If this attribute is not set, any label that is
provided by the model for this property is
used.

name yes The name of the property that is
displayed in this column.

Adding the Details component to a JSF application
Use the Business Process Choreographer Explorer Details component to display the
properties of tasks, work items, activities, process instances, and process templates.

Procedure
1. Add the Details component to the JavaServer Pages (JSP) file.

Add the bpe:details tag to the <h:form> tag. The bpe:details tag must contain
a model attribute. You can add properties to the Details component with the
bpe:property tag.
The following example shows how to add a Details component to display some
of the properties for a task instance.
<h:form>

<bpe:details model="#{TaskInstanceDetails}">
<bpe:property name="displayName" />
<bpe:property name="owner" />
<bpe:property name="kind" />
<bpe:property name="state" />
<bpe:property name="escalated" />
<bpe:property name="suspended" />
<bpe:property name="originator" />
<bpe:property name="activationTime" />
<bpe:property name="expirationTime" />

</bpe:details>

</h:form>

The model attribute refers to a managed bean, TaskInstanceDetails. The bean
provides the properties of the Java object.

2. Configure the managed bean referred to in the bpe:details tag.
For the Details component, this managed bean must be an instance of the
com.ibm.bpe.jsf.handler.BPCDetailsHandler class. This handler class wraps a
Java object and exposes its public properties to the details component.
The following example shows how to add the TaskInstanceDetails managed
bean to the configuration file.
<managed-bean>

<managed-bean-name>TaskInstanceDetails</managed-bean-name>
<managed-bean-class>com.ibm.bpe.jsf.handler.BPCDetailsHandler</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>

<property-name>type</property-name>
<value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

</managed-property>
</managed-bean>

The example shows that the TaskInstanceDetails bean has a configurable type
property. The value of the type property specifies the bean class

460 Developing and deploying

(com.ibm.task.clientmodel.bean.TaskInstanceBean), the properties of which are
shown in the rows of the displayed details. The bean class can be any
JavaBeans class. If the bean provides default converter and property labels, the
converter and the label are used for the rendering in the same way as for the
List component.

Results

Your JSF application now contains a JavaServer page that displays the details of
the specified object, for example, the details of a task instance.

Details component: Tag definitions
The Business Process Choreographer Explorer Details component displays the
properties of tasks, work items, activities, process instances, and process templates.

The Details component consists of the JSF component tags: bpe:details and
bpe:property. The bpe:property tag is a subelement of the bpe:details tag.

Component class

com.ibm.bpe.jsf.component.DetailsComponent

Example syntax
<bpe:details model=”#{MyActivityDetails}”>

<bpe:property name=”name”/>
<bpe:property name=”owner”/>
<bpe:property name=”activated”/>

</bpe:details>

<bpe:details model=”#{MyActivityDetails}” style=”style” styleClass=”cssStyle”>
style=”style”
styleClass=”cssStyle”

</bpe:details>

Tag attributes

Use bpe:property tags to specify both the subset of attributes that are shown and
the order in which these attributes are shown. If the details tag does not contain
any attribute tags, it renders all of the available attributes of the model object.

Table 74. bpe:details attributes

Attribute Required Description

columnClasses no A list of cascading style sheet style (CSS)
style classes, separated by commas, for
rendering columns.

id no The JavaServer Faces ID of the component.

model yes A value binding for a managed bean of the
com.ibm.bpe.jsf.handler.BPCDetailsHandler
class.

rowClasses no A list of CSS style classes, separated by
commas, for rendering rows.

styleClass no The CSS class that is used for rendering
the HTML element.

Developing client applications for business processes and tasks 461

Table 75. bpe:property attributes

Attribute Required Description

converterID no The ID used to register the converter in the
JavaServer Faces (JSF) configuration file.

label no The label for the property. If this attribute
is not set, a default label is provided by
the client model class.

name yes The name of the property to be displayed.
This name must correspond to a named
property as defined in the corresponding
client model class.

Adding the CommandBar component to a JSF application
Use the Business Process Choreographer Explorer CommandBar component to
display a bar with buttons. These buttons represent commands that operate on the
details view of an object or the selected objects in a list.

About this task

When the user clicks a button in the user interface, the corresponding command is
run on the selected objects. You can add and extend the CommandBar component
in your JavaServer Faces (JSF) application.

Procedure
1. Add the CommandBar component to the JavaServer Pages (JSP) file.

Add the bpe:commandbar tag to the <h:form> tag. The bpe:commandbar tag must
contain a model attribute.
The following example shows how to add a CommandBar component that
provides refresh and claim commands for a task instance list.
<h:form>

<bpe:commandbar model="#{TaskInstanceList}">
<bpe:command commandID="Refresh" >

action="#{TaskInstanceList.refreshList}"
label="Refresh"/>

<bpe:command commandID="MyClaimCommand" >
label="Claim" >
commandClass="<customcode>"/>

</bpe:commandbar>

</h:form>

The model attribute refers to a managed bean. This bean must implement the
ItemProvider interface and provide the selected Java objects. The CommandBar
component is usually used with either the List component or the Details
component in the same JSP file. Generally, the model that is specified in the tag
is the same as the model that is specified in the List component or Details
component on the same page. So for the List component, for example, the
command acts on the selected items in the list.
In this example, the model attribute refers to the TaskInstanceList managed
bean. This bean provides the selected objects in the task instance list. The bean
must implement the ItemProvider interface. This interface is implemented by
the BPCListHandler class and the BPCDetailsHandler class.

462 Developing and deploying

2. Optional: Configure the managed bean that is referred to in the bpe:commandbar
tag.
If the CommandBar model attribute refers to a managed bean that is already
configured, for example, for a list or details handler, no further configuration is
required. If you use neither the BPCListHandler class nor the
BPCDetailsHandler class for the model, you must refer to another object that
has a class that implements the ItemProvider interface.

3. Add the code that implements the custom commands to the JSF application.
The following code snippet shows how to write a command class that
implements the Command interface. This command class (MyClaimCommand)
is referred to by the bpe:command tag in the JSP file.
public class MyClaimCommand implements Command {

public String execute(List selectedObjects) throws ClientException {
if(selectedObjects != null && selectedObjects.size() > 0) {

try {
// Determine HumanTaskManagerService from an HTMConnection bean.
// Configure the bean in the faces-config.xml for easy access
// in the JSF application.
FacesContext ctx = FacesContext.getCurrentInstance();
ValueBinding vb =

ctx.getApplication().createValueBinding("{htmConnection}");
HTMConnection htmConnection = (HTMConnection) htmVB.getValue(ctx);
HumanTaskManagerService htm =

htmConnection.getHumanTaskManagerService();

Iterator iter = selectedObjects.iterator() ;
while(iter.hasNext()) {

try {
TaskInstanceBean task = (TaskInstanceBean) iter.next() ;
TKIID tiid = task.getID() ;

htm.claim(tiid) ;
task.setState(new Integer(TaskInstanceBean.STATE_CLAIMED)) ;

}
catch(Exception e) {

; // Error while iterating or claiming task instance.
// Ignore for better understanding of the sample.

}
}

}
catch(Exception e) {

; // Configuration or communication error.
// Ignore for better understanding of the sample

}
}
return null;

}

// Default implementations
public boolean isMultiSelectEnabled() { return false; }
public boolean[] isApplicable(List itemsOnList) {return null; }
public void setContext(Object targetModel) {; // Not used here }
}

The command is processed in the following way:
a. A command is invoked when a user clicks the corresponding button in the

command bar. The CommandBar component retrieves the selected items
from the item provider that is specified in the model attribute and passes
the list of selected objects to the execute method of the commandClass
instance.

Developing client applications for business processes and tasks 463

b. Optional: The commandClass attribute refers to a custom command
implementation that implements the Command interface. This means that
the command must implement the public String execute(List
selectedObjects) throws ClientException method. The command returns a
result that is used to determine the next navigation rule for the JSF
application.

c. Optional: After the command completes, the CommandBar component
evaluates the action attribute. The action attribute can be a static string or a
method binding to a JSF action method with the public String Method()
signature. Use the action attribute to override the outcome of a command
class or to explicitly specify an outcome for the navigation rules. The action
attribute is not processed if the command generates an exception other than
an ErrorsInCommandException exception.

d. If the commandClass attribute does not have a command class specified,
the action is immediately called. For example, for the refresh command in
the example, the JSF value expression #{TaskInstanceList.refreshList} is
called instead of a command.

Results

Your JSF application now contains a JavaServer page that implements a customized
command bar.

How commands are processed
Use the CommandBar component to add action buttons to your application. The
component creates the buttons for the actions in the user interface and handles the
events that are created when a button is clicked.

These buttons trigger functions that act on the objects that are returned by a
com.ibm.bpe.jsf.handler.ItemProvider interface, such as the BPCListHandler class,
or the BPCDetailsHandler class. The CommandBar component uses the item
provider that is defined by the value of the model attribute in the bpe:commandbar
tag.

When a button in the command-bar section of the application's user interface is
clicked, the associated event is handled by the CommandBar component in the
following way.
1. The CommandBar component identifies the implementation of the

com.ibm.bpc.clientcore.Command interface that is specified for the button that
generated the event.

2. If the model associated with the CommandBar component implements the
com.ibm.bpe.jsf.handler.ErrorHandler interface, the clearErrorMap method is
invoked to remove error messages from previous events.

3. The getSelectedItems method of the ItemProvider interface is called. The list of
items that is returned is passed to the execute method of the command, and the
command is invoked.

4. The CommandBar component determines the JavaServer Faces (JSF) navigation
target. If an action attribute is not specified in the bpe:commandbar tag, the
return value of the execute method specifies the navigation target. If the action
attribute is set to a JSF method binding, the string returned by the method is
interpreted as the navigation target. The action attribute can also specify an
explicit navigation target.

464 Developing and deploying

CommandBar component: Tag definitions
The Business Process Choreographer Explorer CommandBar component displays a
bar with buttons. These buttons operate on the object in a details view or the
selected objects in a list.

The CommandBar component consists of the JSF component tags: bpe:commandbar
and bpe:command. The bpe:command tag is a subelement of the bpe:commandbar tag.

Component class

com.ibm.bpe.jsf.component.CommandBarComponent

Example syntax
<bpe:commandbar model="#{TaskInstanceList}">

<bpe:command
commandID="Work on"
label="Work on..."
commandClass="com.ibm.bpc.explorer.command.WorkOnTaskCommand"
context="#{TaskInstanceDetailsBean}"/>

<bpe:command
commandID="Cancel"
label="Cancel"
commandClass="com.ibm.task.clientmodel.command.CancelClaimTaskCommand"
context="#{TaskInstanceList}"/>

</bpe:commandbar>

Tag attributes

Table 76. bpe:commandbar attributes

Attribute Required Description

buttonStyleClass no The cascading style sheet (CSS) style class
that is used for rendering the buttons in the
command bar.

id no The JavaServer Faces ID of the component.

model yes A value binding expression to a managed
bean that implements the ItemProvider
interface. This managed bean is usually the
com.ibm.bpe.jsf.handler.BPCListHandler class
or the
com.ibm.bpe.jsf.handler.BPCDetailsHandler
class that is used by the List component or
Details component in the same JavaServer
Pages (JSP) file as the CommandBar
component.

styleClass no The CSS style class that is used for rendering
the command bar.

Developing client applications for business processes and tasks 465

Table 77. bpe:command attributes

Attribute Required Description

action no A JavaServer Faces action method or the
Faces navigation target that is to be triggered
by the command button. The navigation
target that is returned by the action
overwrites all other navigation rules. The
action is called when either an exception is
not thrown or an ErrorsInCommandException
exception is thrown by the command.

commandClass no The name of the command class. An instance
of the class is created by the CommandBar
component and run if the command button is
selected.

commandID yes The ID of the command.

context no An object that provides context for
commands that are specified using the
commandClass attribute. The context object is
retrieved when the command bar is first
accessed.

immediate no Specifies when the command is triggered. If
the value of this attribute is true, the
command is triggered before the input of the
page is processed. The default is false.

label yes The label of the button that is rendered in the
command bar.

rendered no Determines whether a button is rendered. The
value of the attribute can be either a Boolean
value or a value expression.

styleClass no The CSS style class that is used for rendering
the button. This style overrides the button
style defined for the command bar.

Adding the Message component to a JSF application
Use the Business Process Choreographer Explorer Message component to render
data objects and primitive types in a JavaServer Faces (JSF) application.

About this task

If the message type is a primitive type, a label and an input field are rendered. If
the message type is a data object, the component traverses the object and renders
the elements within the object.

Procedure
1. Add the Message component to the JavaServer Pages (JSP) file.

Add the bpe:form tag to the <h:form> tag. The bpe:form tag must include a
model attribute.
The following example shows how to add a Message component.
<h:form>

<h:outputText value="Input Message" />
<bpe:form model="#{MyHandler.inputMessage}" readOnly="true" />

466 Developing and deploying

<h:outputText value="Output Message" />
<bpe:form model="#{MyHandler.outputMessage}" />

</h:form>

The model attribute of the Message component refers to a
com.ibm.bpc.clientcore.MessageWrapper object. This wrapper object wraps
either a Service Data Object (SDO) object or a Java primitive type, for example,
int or boolean. In the example, the message is provided by a property of the
MyHandler managed bean.

2. Configure the managed bean referred to in the bpe:form tag.
The following example shows how to add the MyHandler managed bean to the
configuration file.
<managed-bean>
<managed-bean-name>MyHandler</managed-bean-name>
<managed-bean-class>com.ibm.bpe.sample.jsf.MyHandler</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

<managed-property>
<property-name>type</property-name>
<value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

</managed-property>

</managed-bean>

3. Add the custom code to the JSF application.
The following example shows how to implement input and output messages.
public class MyHandler implements ItemListener {

private TaskInstanceBean taskBean;
private MessageWrapper inputMessage, outputMessage

/* Listener method, e.g. when a task instance was selected in a list handler.
* Ensure that the handler is registered in the faces-config.xml or manually.
*/
public void itemChanged(Object item) {

if(item instanceof TaskInstanceBean) {
taskBean = (TaskInstanceBean) item ;

}
}

/* Get the input message wrapper
*/
public MessageWrapper getInputMessage() {

try{
inputMessage = taskBean.getInputMessageWrapper() ;

}
catch(Exception e) {

; //...ignore errors for simplicity
}
return inputMessage;

}

/* Get the output message wrapper
*/
public MessageWrapper getOutputMessage() {

// Retrieve the message from the bean. If there is no message, create
// one if the task has been claimed by the user. Ensure that only
// potential owners or owners can manipulate the output message.
try{

outputMessage = taskBean.getOutputMessageWrapper();
if(outputMessage == null
&& taskBean.getState() == TaskInstanceBean.STATE_CLAIMED) {

HumanTaskManagerService htm = getHumanTaskManagerService();
outputMessage = new MessageWrapperImpl();

Developing client applications for business processes and tasks 467

outputMessage.setMessage(
htm.createOutputMessage(taskBean.getID()).getObject()

);
}

}
catch(Exception e) {

; //...ignore errors for simplicity
}
return outputMessage

}
}

The MyHandler managed bean implements the
com.ibm.jsf.handler.ItemListener interface so that it can register itself as an item
listener to list handlers. When the user clicks an item in the list, the MyHandler
bean is notified in its itemChanged(Object item) method about the selected
item. The handler checks the item type and then stores a reference to the
associated TaskInstanceBean object. To use this interface, add an entry to the
itemListener list in the appropriate list handler in the faces-config.xml file.
The MyHandler bean provides the getInputMessage and getOutputMessage
methods. Both of these methods return a MessageWrapper object. The methods
delegate the calls to the referenced task instance bean. If the task instance bean
returns null, for example, because a message is not set, the handler creates and
stores a new, empty message. The Message component displays the messages
provided by the MyHandler bean.

Results

Your JSF application now contains a JavaServer page that can render data objects
and primitive types.

Message component: Tag definitions
The Business Process Choreographer Explorer Message component renders
commonj.sdo.DataObject objects and primitive types, such as integers and strings,
in a JavaServer Faces (JSF) application.

The Message component consists of the JSF component tag: bpe:form.

Component class

com.ibm.bpe.jsf.component.MessageComponent

Example syntax
<bpe:form model="#{TaskInstanceDetailsBean.inputMessageWrapper}"

simplification="true" readOnly="true"
styleClass4table="messageData"
styleClass4output="messageDataOutput">

</bpe:form>

Tag attributes

Table 78. bpe:form attributes

Attribute Required Description

id no The JavaServer Faces ID of the component.

468 Developing and deploying

Table 78. bpe:form attributes (continued)

Attribute Required Description

model yes A value binding expression that refers to
either a commonj.sdo.DataObject object or
a com.ibm.bpc.clientcore.MessageWrapper
object.

readOnly no If this attribute is set to true, a read-only
form is rendered. By default, this attribute
is set to false.

simplification no If this attribute is set to true, properties
that contain simple types and have a
cardinality of zero or one are shown. By
default, this attribute is set to true.

style4validinput no The cascading style sheet (CSS) style for
rendering input that is valid.

style4invalidinput no The CSS style for rendering input that is
not valid.

styleClass4invalidInput no The CSS style class name for rendering
input that is not valid.

styleClass4output no The CSS style class name for rendering the
output elements.

styleClass4table no The class name of the CSS table style for
rendering the tables rendered by the
message component.

styleClass4validInput no The CSS style class name for rendering
input that is valid.

Developing JSP pages for task and process messages
The Business Process Choreographer Explorer interface provides default input and
output forms for displaying and entering business data. You can use JSP pages to
provide customized input and output forms.

About this task

To include user-defined JavaServer Pages (JSP) pages in the Web client, you must
specify them when you model a human task in WebSphere Integration Developer.
For example, you can provide JSP pages for a specific task and its input and
output messages, and for a specific user role or all user roles. At runtime, the
user-defined JSP pages are included in the user interface to display output data
and collect input data.

The customized forms are not self-contained Web pages; they are HTML fragments
that Business Process Choreographer Explorer imbeds in an HTML form, for
example, fragments for all of the labels and input fields of a message.

When a button is clicked on the page that contains the customized forms, the input
is submitted and validated in Business Process Choreographer Explorer. The
validation is based on the type of the properties provided and the locale used in
the browser. If the input cannot be validated, the same page is shown again and
information about the validation errors is provided in the messageValidationErrors

Developing client applications for business processes and tasks 469

request attribute. The information is provided as a map that maps the XML Path
Expression (XPath) of the properties that are not valid to the validation exceptions
that occurred.

To add customized forms to Business Process Choreographer Explorer, complete
the following steps using WebSphere Integration Developer.

Procedure
1. Create the customized forms.

The user-defined JSP pages for the input and output forms used in the Web
interface need access to the message data. Use Java snippets in a JSP or the JSP
execution language to access the message data. Data in the forms is available
through the request context.

2. Assign the JSP pages to a task.
Open the human task in the human task editor. In the client settings, specify
the location of the user-defined JSP pages and the role to which the customized
form applies, for example, administrator. The client settings for Business
Process Choreographer Explorer are stored in the task template. At runtime
these settings are retrieved with the task template.

3. Package the user-defined JSP pages in a Web archive (WAR file).
You can either include the WAR file in the enterprise archive with the module
that contains the tasks or deploy the WAR file separately. If the JSPs are
deployed separately, make the JSPs available on the server where the Business
Process Choreographer Explorer or the custom client is deployed.
If you are using custom JSPs for the process and task messages, you must map
the Web modules that are used to deploy the JSPs to the same servers that the
custom JSF client is mapped to.

Results

The customized forms are rendered in Business Process Choreographer Explorer at
runtime.

User-defined JSP fragments
The user-defined JavaServer Pages (JSP) fragments are imbedded in an HTML form
tag. At runtime, Business Process Choreographer Explorer includes these fragments
in the rendered page.

The user-defined JSP fragment for the input message is imbedded before the JSP
fragment for the output message.
<html....>

...
<form...>

Input JSP (display task input message)

Output JSP (display task output message)

</form>
...

</html>

Because the user-defined JSP fragments are embedded in an HTML form tag, you
can add input elements. The name of the input element must match the XML Path
Language (XPath) expression of the data element. It is important to prefix the
name of the input element with the provided prefix value:

470 Developing and deploying

<input id="address"
type="text"
name="${prefix}/selectPromotionalGiftResponse/address"
value="${messageMap[’/selectPromotionalGiftResponse/address"]}
size="60"
align="left" />

The prefix value is provided as a request attribute. The attribute ensures that the
input name is unique in the enclosing form. The prefix is generated by Business
Process Choreographer Explorer and it should not be changed:
String prefix = (String)request.getAttribute("prefix");

The prefix element is set only if the message can be edited in the given context.
Output data can be displayed in different ways depending on the state of the
human task. For example, if the task is in the claimed state, the output data can be
modified. However, if the task is in the finished state, the data can be displayed
only. In your JSP fragment, you can test whether the prefix element exists and
render the message accordingly. The following JSTL statement shows how you
might test whether the prefix element is set.
...
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
...
<c:choose>

<c:when test="${not empty prefix}">
<!--Read/write mode-->

</c:when>
<c:otherwise>

<!--Read-only mode-->
</c:otherwise>

</c:choose>

Creating plug-ins to customize human task functionality
Business Process Choreographer provides an event handling infrastructure for
events that occur during the processing of human tasks. Plug-in points are also
provided so that you can adapt the functionality to your needs. You can use the
service provider interfaces (SPIs) to create customized plug-ins for handling events
and the post processing of people query results.

About this task

You can create plug-ins for human task API events and escalation notification
events. You can also create a plug-in that processes the results that are returned
from people resolution. For example, at peak periods you might want to add users
to the result list to help balance the workload.

Before you can use the plug-ins, you must install and register them. You can
register the plug-in to post process people query results with the TaskContainer
application. The plug-in is then available for all tasks.

Creating API event handlers for Business Process
Choreographer

An API event occurs when an API method manipulates a human task. Use the API
event handler plug-in service provider interface (SPI) to create plug-ins to handle
the task events sent by the API or the internal events that have equivalent API
events.

Developing client applications for business processes and tasks 471

About this task

Complete the following steps to create an API event handler.

Procedure
1. Write a class that implements the APIEventHandlerPlugin5 interface or extends

the APIEventHandler implementation class. This class can invoke the methods
of other classes.
v If you use the APIEventHandlerPlugin5 interface, you must implement all of

the methods of the APIEventHandlerPlugin5 interface and the
APIEventHandlerPlugin interface.

v If you extend the APIEventHandler implementation class, overwrite the
methods that you need.

This class runs in the context of a Java Platform, Enterprise Edition (Java EE)
Enterprise application. Ensure that this class and its helper classes follow the
EJB specification.

Note: If you want to call the HumanTaskManagerService interface from this
class, do not call a method that updates the task that produced the event. This
action might result in inconsistent task data in the database.

2. Assemble the plug-in class and its helper classes into a JAR file.
You can make the JAR file available in one of the following ways:
v As a utility JAR file in the application EAR file.
v As a shared library that is installed with the application EAR file.
v As a shared library that is installed with the TaskContainer application. In

this case, the plug-in is available for all tasks.
3. Create a service provider configuration file for the plug-in in the

META-INF/services/ directory of your JAR file.
The configuration file provides the mechanism for identifying and loading the
plug-in. This file conforms to the Java EE service provider interface
specification.
a. Create a file with the name com.ibm.task.spi.plug-

in_nameAPIEventHandlerPlugin, where plug-in_name is the name of the
plug-in.
For example, if your plug-in is called Customer and it implements the
com.ibm.task.spi.APIEventHandlerPlugin5 interface, the name of the
configuration file is com.ibm.task.spi.CustomerAPIEventHandlerPlugin.

b. In the first line of the file that is neither a comment line (a line that starts
with a number sign (#)) nor a blank line, specify the fully qualified name of
the plug-in class that you created in step 1.
For example, if your plug-in class is called MyAPIEventHandler and it is in
the com.customer.plugins package, then the first line of the configuration
file must contain the following entry:
com.customer.plugins.MyAPIEventHandler.

Results

You have an installable JAR file that contains a plug-in that handles API events
and a service provider configuration file that can be used to load the plug-in.

Notes: You only have one eventHandlerName property available to register both
API event handlers and notification event handlers. If you want to use both an API

472 Developing and deploying

event handler and a notification event handler, the plug-in implementations must
have the same name, for example, Customer as the event handler name for the SPI
implementation.

You can implement both plug-ins using a single class, or two separate classes. In
both cases, you need to create two files in the META-INF/services/ directory of
your JAR file, for example,
com.ibm.task.spi.CustomerNotificationEventHandlerPlugin and
com.ibm.task.spi.CustomerAPIEventHandlerPlugin.

Package the plug-in implementation and the helper classes in a single JAR file.

To make a change to an implementation effective, replace the JAR file in the shared
library, deploy the associated EAR file again, and restart the server.

What to do next

You now need to install and register the plug-in so that it is available to the
human task container at runtime. You can register API event handlers with a task
instance, a task template, or an application component.

API event handlers
API events occur when a human task is modified or it changes state. To handle
these API events, the event handler is invoked directly before the task is modified
(pre-event method) and just before the API call returns (post-event method).

If the pre-event method throws an ApplicationVetoException exception, the API
action is not performed, the exception is returned to the API caller, and the
transaction associated with the event is rolled back. If the pre-event method was
triggered by an internal event and an ApplicationVetoException exception is
thrown, the internal event, such as an automatic claim, is not performed but an
exception is not returned to the client application. In this case, an information
message is written to the SystemOut.log file. If the API method throws an
exception during processing, the exception is caught and passed to the post-event
method. The exception is passed again to the caller after the post-event method
returns.

The following rules apply to pre-event methods:
v Pre-event methods receive the parameters of the associated API method or

internal event.
v Pre-event methods can throw an ApplicationVetoException exception to prevent

processing from continuing.

The following rules apply to post-event methods:
v Post-event methods receive the parameters that were supplied to the API call,

and the return value. If an exception is thrown by the API method
implementation, the post-event method also receives the exception.

v Post-event methods cannot modify return values.
v Post-event methods cannot throw exceptions; runtime exceptions are logged and

prevent processing from continuing.

To implement API event handlers, you can implement either the
APIEventHandlerPlugin3 interface, which extends the APIEventHandlerPlugin
interface, or extend the default com.ibm.task.spi.APIEventHandler SPI
implementation class. If your event handler inherits from the default

Developing client applications for business processes and tasks 473

implementation class, it always implements the most recent version of the SPI. If
you upgrade to a newer version of Business Process Choreographer, fewer changes
are necessary if you want to exploit new SPI methods.

If you have both a notification event handler and an API event handler, both of
these handlers must have the same name because you can register only one event
handler name.

Creating notification event handlers for Business Process
Choreographer

Notification events are produced when human tasks are escalated. Business Process
Choreographer provides functionality for handling escalations, such as creating
escalation work items or sending e-mails. You can create notification event
handlers to customize the way in which escalations are handled.

About this task

To implement notification event handlers, you can implement the
NotificationEventHandlerPlugin interface, or you can extend the default
com.ibm.task.spi.NotificationEventHandler service provider interface (SPI)
implementation class.

Complete the following steps to create a notification event handler.

Procedure
1. Write a class that implements the NotificationEventHandlerPlugin interface or

extends the NotificationEventHandler implementation class. This class can
invoke the methods of other classes.
If you use the NotificationEventHandlerPlugin interface, you must implement
all of the interface methods. If you extend the SPI implementation class,
overwrite the methods that you need.
This class runs in the context of a Java Platform, Enterprise Edition (Java EE)
Enterprise application. Ensure that this class and its helper classes follow the
EJB specification.
The plug-in is invoked with the authority of the EscalationUser role. This role
is defined when the human task container is configured.

Note: If you want to call the HumanTaskManagerService interface from this
class, do not call a method that updates the task that produced the event. This
action might result in inconsistent task data in the database.

2. Assemble the plug-in class and its helper classes into a JAR file.
You can make the JAR file available in one of the following ways:
v As a utility JAR file in the application EAR file.
v As a shared library that is installed with the application EAR file.
v As a shared library that is installed with the TaskContainer application. In

this case, the plug-in is available for all tasks.
3. Assemble the plug-in class and its helper classes into a JAR file.

If the helper classes are used by several Java EE applications, you can package
these classes in a separate JAR file that you register as a shared library.

4. Create a service provider configuration file for the plug-in in the
META-INF/services/ directory of your JAR file.

474 Developing and deploying

The configuration file provides the mechanism for identifying and loading the
plug-in. This file conforms to the Java EE service provider interface
specification.
a. Create a file with the name com.ibm.task.spi.plug-

in_nameNotificationEventHandlerPlugin, where plug-in_name is the name of
the plug-in.
For example, if your plug-in is called HelpDeskRequest (event handler name)
and it implements the com.ibm.task.spi.NotificationEventHandlerPlugin
interface, the name of the configuration file is
com.ibm.task.spi.HelpDeskRequestNotificationEventHandlerPlugin.

b. In the first line of the file that is neither a comment line (a line that starts
with a number sign (#)) nor a blank line, specify the fully qualified name of
the plug-in class that you created in step 1.
For example, if your plug-in class is called MyEventHandler and it is in the
com.customer.plugins package, then the first line of the configuration file
must contain the following entry: com.customer.plugins.MyEventHandler.

Results

You have an installable JAR file that contains a plug-in that handles notification
events and a service provider configuration file that can be used to load the
plug-in. You can register API event handlers with a task instance, a task template,
or an application component.

Notes: You only have one eventHandlerName property available to register both
API event handlers and notification event handlers. If you want to use both an API
event handler and a notification event handler, the plug-in implementations must
have the same name, for example, Customer as the event handler name for the SPI
implementation.

You can implement both plug-ins using a single class, or two separate classes. In
both cases, you need to create two files in the META-INF/services/ directory of
your JAR file, for example,
com.ibm.task.spi.CustomerNotificationEventHandlerPlugin and
com.ibm.task.spi.CustomerAPIEventHandlerPlugin.

Package the plug-in implementation and the helper classes in a single JAR file.

To make a change to an implementation effective, replace the JAR file in the shared
library, deploy the associated EAR file again, and restart the server.

What to do next

You now need to install and register the plug-in so that it is available to the
human task container at runtime. You can register notification event handlers with
a task instance, a task template, or an application component.

Installing API event handler and notification event handler
plug-ins for human tasks

To use API event handler or notification event handler plug-ins, you must install
the plug-in so that it can be accessed by the human task container.

Developing client applications for business processes and tasks 475

About this task

The way in which you install the plug-in depends on whether the plug-in is to be
used by only one Java Platform, Enterprise Edition (Java EE) application, or several
applications.

Complete one of the following steps to install a plug-in.

Procedure
v Install a plug-in for use by a single Java EE application.

Add your plug-in JAR file to the application EAR file. In the deployment
descriptor editor in WebSphere Integration Developer, install the JAR file for
your plug-in as a project utility JAR file for the Java EE application of the main
enterprise JavaBeans (EJB) module.

v Install a plug-in for use by several Java EE applications.
Put the JAR file in a WebSphere Application Server shared library and associate
the library with the applications that need access to the plug-in. To make the
JAR file available in a network deployment environment, manually distribute
the JAR file on each node that hosts a server or cluster member on which any of
your applications is deployed. You can use the deployment target scope of your
applications, that is the server or cluster on which the applications are deployed,
or the cell scope. Be aware that the plug-in classes are then visible throughout
the selected deployment scope.

What to do next

You can now register the plug-in.

Registering API event handler and notification event handler
plug-ins with task templates, task models, and tasks

You can register plug-ins for API event handlers and notification event handlers
with tasks, task templates, and task models at various times: when you create an
ad hoc task, update an existing task, create an ad hoc task model, or define a task
template.

About this task

You can register plug-ins for API event handlers and notification event handlers
with tasks on the following levels:

Task template
All of the tasks that are created using the template use the same handlers

Ad hoc task model
The tasks that are created using the model use the same handlers

Ad hoc task
The task that is created uses the specified handlers

Existing task
The task uses the specified handlers

You can register a plug-in in one of the following ways.

476 Developing and deploying

Procedure
v For task templates modeled in WebSphere Integration Developer, specify the

plug-in in the task model.
v For ad hoc tasks or ad hoc task models, specify the plug-in when you create the

task or task model.
Use the setEventHandlerName method of the TTask class to register the name of
the event handler.

v Change the event handler for a task instance at runtime.
Use the update(Task task) method to use a different event handler for a task
instance at runtime. The caller must have task administrator authority to update
this property.

Using a plug-in to post-process people query results
People resolution in Business Process Choreographer returns a list of the users that
are assigned to a specific role, for example, potential owners of a task. You can
create a plug-in that changes the results of people queries that are returned by
people resolution. For example, to improve workload balancing, you could remove
users from the query result who already have a high workload.

About this task

To modify the results that are returned by people assignment and people
substitution, you must write a class that implements the plug-in interface, assemble
a JAR file for the plug-in, then install and activate it.

Complete the following steps to create a plug-in to post-process people query
results.

Procedure
1. Implement your people query result post-processing plug-in. Write a class that

implements either the StaffQueryResultPostProcessorPlugin interface or the
StaffQueryResultPostProcessorPlugin2 interface.

2. Create an installable JAR file.
a. Assemble your plug-in class and its helper classes into a JAR file.
b. Create a service provider configuration file for the plug-in in the

META-INF/services/ directory of your JAR file. The configuration file
provides the mechanism for identifying and loading the plug-in. This file
must conform to the Java EE service provider interface specification.
1) In a text editor, create a service provider configuration file with the

name com.ibm.task.spi.plug-
in_nameStaffQueryResultPostProcessorPlugin, where plug-in_name is
the name of the plug-in. The name of the configuration file does not
depend on the name of the interface that you implemented. For
example, if your plug-in is called MyHandler and it implements the
com.ibm.task.spi.StaffQueryResultPostProcessorPlugin2 interface, the
name of the configuration file is
com.ibm.task.spi.MyHandlerStaffQueryResultPostProcessorPlugin.

2) In the first line of the file that is neither a comment line (a line that
starts with a number sign (#)) nor a blank line, specify the fully
qualified name of the plug-in class that you created in step 1. For
example, if your plug-in class is called StaffPostProcessor and it is in
the com.customer.plugins package, then the first line of the

Developing client applications for business processes and tasks 477

configuration file must contain the following entry:
com.customer.plugins.StaffPostProcessor.

You have an installable JAR file that contains a plug-in that post-processes
people query results and a service provider configuration file that can be used
to load the plug-in.

3. Install the JAR file in a shared library in the application server and associate it
with the Human Task Manager application.
a. Define a WebSphere Application Server shared library for the plug-in on the

scope of the server or cluster where Business Process Choreographer is
configured.

b. Associate the shared library with the TaskContainer application.
c. Make the plug-in JAR file available to each affected WebSphere Process

Server installation that hosts a server or a cluster member.
4. Configure the Human Task Manager to use the plug-in.

a. In the administrative console, go to the Custom Properties page of the
Human Task Manager.
Click either Servers → Clusters → WebSphere application server clusters →
cluster_name or Servers → Server Types → WebSphere application servers →
server_name, then on the Configuration tab, in the Business Integration
section, expand Business Process Choreographer, and click Human Task
Manager. Under Additional Properties, select Custom Properties.

b. Add a custom property with the name Staff.PostProcessorPlugin, and a
value of the name that you gave to your plug-in, for example, MyHandler.

The plug-in is now available for post processing people query results.
5. Restart the server to activate the plug-in. The post processing plug-in is

invoked after both the people assignment and people substitution have run.

Note: If you modify the plug-in, you must replace the JAR file in the shared
library, and restart the server.

478 Developing and deploying

Part 2. Deploying applications

© Copyright IBM Corp. 2006, 2010 479

480 Developing and deploying

Overview of preparing and installing modules

Installing modules (also known as deploying) activates the modules in either a test
environment or a production environment. This overview briefly describes the test
and production environments and some of the steps involved in installing
modules.

Note: The process for installing applications in a production environment is
similar to the process described in “Developing and deploying applications” in the
WebSphere Application Server for z/OS information center. If you are unfamiliar
with those topics, review those first.

Before installing a module to a production environment, always verify changes in a
test environment. To install modules to a test environment, use WebSphere
Integration Developer (see the WebSphere Integration Developer information center
for more information). To install modules to a production environment, use
WebSphere Process Server.

This topic describes the concepts and tasks needed to prepare and install modules
to a production environment. Other topics describe the files that house the objects
that your module uses and help you move your module from your test
environment into your production environment. It is important to understand
these files and what they contain so you can be sure that you have correctly
installed your modules.

Libraries and JAR files overview
Modules often use artifacts that are located in libraries, which are special projects
in WebSphere Integration Developer used for storing shared resources. At
deployment time, WebSphere Integration Developer libraries are transformed into
utility JAR files and packaged in the applications to be run.

While developing a module, you might identify certain resources or components
that could be used by other modules. These artifacts can be shared by using a
library.

What is a library?

A library is a special project in WebSphere Integration Developer that is used for
the development, version management, and organization of shared resources, such
as those resources that are typically shared between modules. Only a subset of
artifact types can be created and stored in a library, including:
v Interfaces or Web services descriptors (files with a .wsdl extension)
v Business object XML schema definitions (files with an .xsd extension)
v Business object maps (files with a .map extension)
v Relationship and role definitions (files with a .rel and .rol extension)

At deployment time, these WebSphere Integration Developer libraries are
transformed into utility JAR files in the applications to be run.

When a module needs an artifact, the server locates the artifact from the EAR class
path and loads the artifact, if it is not already loaded, into memory. Figure 78 on
page 482

© Copyright IBM Corp. 2006, 2010 481

page 482 shows how an application contains components and related libraries.

What are JAR, RAR, and WAR files?

There are a number of files that can contain components of a module. These files
are fully described in the Java Platform, Enterprise Edition specification. Details
about JAR files can be found in the JAR specification.

In WebSphere Process Server, a JAR file also contains an application, which is the
assembled version of the module with all the supporting references and interfaces
to any other service components used by the module. To completely install the
application, you need this JAR file, any other dependent JAR, Web services archive
(WAR), resource archive (RAR), staging libraries (Enterprise Java Beans - EJB) JAR
files, and any other archives. You then create an installable EAR file using the
serviceDeploy command (see).

Naming conventions for staging modules

Within the library, there are requirements for the names of the staging modules.
These names are unique for a specific module. Name any other modules required
to deploy the application so that conflicts with the staging module names do not
occur. For a module named myService, the staging module names are:

Components

Service Module

Application

Libraries
(JAR files)

Staging modules
(JAR, WAR, others)

Figure 78. Relationships among module, component, and library

482 Developing and deploying

http://java.sun.com/javaee/reference/index.jsp

v myServiceApp
v myServiceWeb

Note: The myServiceEJB and myServiceEJBClient staging modules no longer get
created by serviceDeploy. However, those file names should not be used, because
they could still be deleted by the serviceDeploy command.

Considerations when using libraries

Using libraries provides consistency of business objects and consistency of
processing amongst modules because each calling module has its own copy of a
specific component. To prevent inconsistencies and failures it is important to make
sure that changes to components and business objects used by calling modules are
coordinated with all of the calling modules. Update the calling modules by:
1. Copying the module and the latest copy of the libraries to the production

server
2. Rebuilding the installable EAR file using the serviceDeploy command
3. Stopping the running application containing the calling module and reinstalling

it
4. Restarting the application containing the calling module
Related reference

serviceDeploy command-line utility
Use the serviceDeploy command to package Service Component Architecture
(SCA) compliant modules as Java applications that can be installed on a server.
The command is useful when performing batch installs through wsadmin.

EAR file overview
An EAR file is a critical piece in deploying a service application to a production
server.

An enterprise archive (EAR) file is a compressed file that contains the libraries,
enterprise beans, and JAR files that the application requires for deployment.

You create a JAR file when you export your application modules from WebSphere
Integration Developer. Use this JAR file and any other artifact libraries or objects as
input to the installation process. The serviceDeploy command creates an EAR file
from the input files that contain the component descriptions and Java code that
make up the application.
Related reference

serviceDeploy command-line utility
Use the serviceDeploy command to package Service Component Architecture
(SCA) compliant modules as Java applications that can be installed on a server.
The command is useful when performing batch installs through wsadmin.

Preparing to deploy to a server
After developing and testing a module, you must export the module from a test
system and bring it into a production environment for deployment. To install an
application you also should be aware of the paths needed when exporting the
module and any libraries the module requires.

Overview of preparing and installing modules 483

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=rdev_servicedeploy
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=rdev_servicedeploy

Before you begin

Before beginning this task, you should have developed and tested your modules
on a test server and resolved problems and performance issues.

Important: To prevent replacing an application or module already running in a
deployment environment make sure the name of the module or application is
unique from any already installed.

About this task

This task verifies that all of the necessary pieces of an application are available and
packaged into the correct files to bring to the production server.

Note: You can also export an enterprise archive (EAR) file from WebSphere
Integration Developer and install that file directly into WebSphere Process Server.

Important: If the services within a component use a database, install the
application on a server directly connected to the database.

Procedure
1. Locate the folder that contains the components for the module you are to

deploy.
The component folder should be named module-name with a file in it named
module.module, the base module.

2. Verify that all components contained in the module are in component
subfolders beneath the module folder.
For ease of use, name the subfolder similar to module/component.

3. Verify that all files that comprise each component are contained in the
appropriate component subfolder and have a name similar to
component-file-name.component.
The component files contain the definitions for each individual component
within the module.

4. Verify that all other components and artifacts are in the subfolders of the
component that requires them.
In this step you ensure that any references to artifacts required by a component
are available. Names for components should not conflict with the names the
serviceDeploy command uses for staging modules. See Naming conventions for
staging modules.

5. Verify that a references file, module.references, exists in the module folder of
step 1.
The references file defines the references and the interfaces within the module.

6. Verify that a wires file, module.wires, exists in the component folder.
The wires file completes the connections between the references and the
interfaces within the module.

7. Verify that a manifest file, module.manifest, exists in the component folder.
The manifest lists the module and all the components that comprise the
module. It also contains a class path statement so that the serviceDeploy
command can locate any other modules needed by the module.

8. Create a compressed file or a JAR file of the module as input to the
serviceDeploy command that you will use to prepare the module for
installation to the production server.

484 Developing and deploying

Example folder structure for MyValue module prior to
deployment

The following example illustrates the directory structure for the module
MyValueModule, which is made up of the components MyValue, CustomerInfo,
and StockQuote.
MyValueModule

MyValueModule.manifest
MyValueModule.references
MyValueModule.wiring
MyValueClient.jsp

process/myvalue
MyValue.component
MyValue.java
MyValueImpl.java

service/customerinfo
CustomerInfo.component
CustomerInfo.java
Customer.java
CustomerInfoImpl.java

service/stockquote
StockQuote.component
StockQuote.java
StockQuoteAsynch.java
StockQuoteCallback.java
StockQuoteImpl.java

What to do next

Install the module onto the production systems as described in Installing a module
on a production server.
Related reference

serviceDeploy command-line utility
Use the serviceDeploy command to package Service Component Architecture
(SCA) compliant modules as Java applications that can be installed on a server.
The command is useful when performing batch installs through wsadmin.

Considerations for installing service applications on clusters
Installing a service application on a cluster places additional requirements on you.
It is important that you keep these considerations in mind as you install any
service applications on a cluster.

Clusters can provide many benefits to your processing environment by providing
economies of scale to help you balance request workload across servers and
provide a level of availability for clients of the applications. Consider the following
before installing an application that contains services on a cluster:
v Will users of the application require the processing power and availability

provided by clustering?
If so, clustering is the correct solution. Clustering will increase the availability
and capacity of your applications.

v Is the cluster correctly prepared for service applications?
You must configure the cluster correctly before installing and starting the first
application that contains a service. Failure to configure the cluster correctly
prevents the applications from processing requests correctly.

v Does the cluster have a backup?

Overview of preparing and installing modules 485

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=rdev_servicedeploy

You must install the application on the backup cluster also.

Cross-cluster modules

JNDI resources must not be shared across clusters. A cross-cluster module requires
that each cluster have different JNDI resources. A scenario matching the following
criteria will result in the log file indicating a NameNotFoundException:
v One module has a configured binding that generates JNDI resources.
v Another module is configured to use those generated JNDI resources.
v The modules are deployed in different clusters.

To resolve the problem, modify the module properties so that each module uses
the JNDI resources in the same cluster as it.

486 Developing and deploying

Deploying a module

You can deploy a module or a mediation module, as generated by WebSphere®

Integration Developer, into a production WebSphere Process Server environment
using these steps.

Before you begin

Before deploying a service application to a production server, assemble and test the
application on a test server. After testing, export the relevant files as described in
Preparing to deploy to a server in the Developing and Deploying Modules PDF and
bring the files to the production system to deploy. See the information centers for
WebSphere Integration Developer and WebSphere Application Server for z/OS for
more information.

Procedure
1. Copy the module and other files onto the production server.

The modules and resources (EAR, JAR, RAR, and WAR files) needed by the
application are moved to your production environment.

2. Run the serviceDeploy command to create an installable EAR file.
This step defines the module to the server in preparation for installing the
application into production.
a. Locate the JAR file that contains the module to deploy.
b. Issue the serviceDeploy command using the JAR file from the previous step

as input.
3. Install the EAR file from step 2. How you install the applications depends on

whether you are installing the application on a stand alone server or a server in
a cell.

Note: You can either use the administrative console or a script to install the
application. See the WebSphere Application Server information center for
additional information.

4. Save the configuration. The module is now installed as an application.
5. Start the application.

Results

The application is now active and work should flow through the module.

What to do next

Monitor the application to make sure the server is processing requests correctly.

© Copyright IBM Corp. 2006, 2010 487

Related reference

serviceDeploy command-line utility
Use the serviceDeploy command to package Service Component Architecture
(SCA) compliant modules as Java applications that can be installed on a server.
The command is useful when performing batch installs through wsadmin.

Installing versioned SCA modules in a production environment
You can deploy versioned Service Component Architecture (SCA) modules into the
run time. Each version of a module exists alongside any other versions currently
installed on the server or in the cell.

Before you begin

Make sure you perform the following tasks before installing a versioned SCA
module into your production environment:
v In WebSphere Integration Developer, specify that the module is versioned and

export it for command-line deployment. See Creating versioned modules and
libraries for more information.

v Determine whether you want to co-deploy different versions of the module on a
single server or whether you need to co-deploy multiple instances of the same
versioned module on more than one cluster in the same cell.

About this task

To install versioned modules, perform the following steps.

Procedure
1. Run serviceDeploy against the versioned module you exported to generate an

installable EAR file.
serviceDeploy moduleName.zip

The serviceDeploy command returns an installable EAR file whose name
contains the version and, optionally, cell ID information.

2. Install the module using one of the following methods:
v From within the administrative console, click SCA Modules and use the

Install button on the SCA Modules page.
v From within the administrative console, click Applications > Install New

Application.
v Use the AdminApp.install wsadmin command.

3. If you want to install a versioned module on multiple servers or clusters in a
cell, do the following for each module instance you require:
a. Use the createVersionedSCAModule command to create an instance of the

module.
createVersionedSCAModule -archiveAbsolutePath input_archive_dir
-workingDirectory working_dir -uniqueCellID cell_ID

b. Install the resulting EAR file as described in Step 2.
4. Optional: Use the validateSCAImportExportInformation command to validate

that all SCA bindings and selector export bindings in the specified EAR file
exist on the bus.

488 Developing and deploying

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=rdev_servicedeploy
http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/topic/com.ibm.wbit.help.basics.doc/topics/tcrtvers.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/topic/com.ibm.wbit.help.basics.doc/topics/tcrtvers.html

Results

You now have one or more versioned applications in your production
environment. They can all be administered through the administrative console or
through corresponding administrative commands.

Note: To preserve versioning information, the installation process automatically
modifies the module name to ensure it is unique within the server or cell through
the use of either the serviceDeploy or createVersionedSCAModule command. These
commands add the version number, a unique cell ID, or both to the original
module name.
moduleName_vversionValue_uniqueCellID

For example, if you followed the steps in this topic, deploying version 1.0.1 of the
module billingProcess results in a module called billingProcess_v1_0_1 and an
installed service application called billingProcess_v1_0_1App. If you also specify a
unique cell ID (for example, Cell5), then the module is called
billingProcess_v1_0_1_Cell5 and the installed service application is called
billingProcess_v1_0_1_Cell5App.

Installing an SCA module with the console
Before you can start running a module or a mediation module, you must deploy it
to a server or cluster. Deployment involves creating an installable enterprise
archive (EAR) file and installing the EAR file onto the server or cluster.

Before you begin

If you have exported either a module or a mediation module to a JAR file, use the
serviceDeploy command to create an installable EAR file from the JAR file. For
more information, see “Deploying a module” on page 487.

Note: Versioned libraries are shared between applications for run time and
management. A versioned library can be associated with an application or module
using an installed optional package that declares the shared library in the
application's manifest file. Modules that use a library have a dependency on a
specific version of that library. An artifact in a versioned library that is used by
multiple applications is managed as a single artifact. If the artifact is changed, it
affects all dependents.

See the WebSphere Integration Developer information center for details about
versioned libraries.

About this task

You must install the EAR file onto a server or cluster before you can start running
the module or mediation module.

Instead of using the administrative console, you can use other methods to install
the EAR file, such as the AdminApp.install or AdminApp.installinteractive
command with the wsadmin tool.

Important: If, after you start performing the steps, you decide not to install the
application you must click Cancel: do not simply move to another administrative
console page.

Deploying a module 489

Procedure
1. From the administrative console, click Applications → New Application in the

console navigation pane. The first of two Preparing for application installation
pages is displayed.

2. On the first Preparing for application installation page:
a. Specify the full path name of the EAR file. For more information, see

Installing applications with the console.
b. Select whether to use default values or specify some of the values yourself:

Prompt me only when additional information is required
Displays only the module mapping step and other steps where you
must specify information.

Show me all installation options and parameters
Displays all installation steps. To use Generate default bindings,
which supplies default values for incomplete bindings, select this
option.

c. Click Next.
3. Installing an EAR file containing a mediation flow is like installing any other

enterprise application EAR file into WebSphere Application Server. For detailed
information about completing the second Preparing for application installation
page and specifying the options in the remaining wizard steps, see Installing
applications with the console.

4. When you are installing a mediation module, or a module containing a
mediation flow, there is one additional optional step you can perform. On the
Edit module properties panel, you can edit the values of the properties in the
module. If properties belong to a group they are displayed inside an
expandable section; if they do not belong to a group you can view them
immediately.

Results

You can now start the module or mediation module.

Creating an installable EAR file using serviceDeploy
To install an application in the production environment, take the files copied to the
production server and create an installable EAR file.

Before you begin

Before starting this task, you must have a JAR file that contains the module and
services you are deploying to the server. See “Preparing to deploy to a server” for
more information.

About this task

The serviceDeploy command takes a JAR file, any other dependent EAR, JAR,
RAR, WAR and ZIP files and builds an EAR file that you can install on a server.

Procedure
1. Locate the JAR file that contains the module to deploy.
2. Issue the serviceDeploy command using the JAR file from the previous step as

input.
This step creates an EAR file.

490 Developing and deploying

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-mp&topic=trun_app_instwiz
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-mp&topic=trun_app_instwiz
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-mp&topic=trun_app_instwiz

Note: Perform the following steps at an administrative console.
3. Select the EAR file to install in the administrative console of the server.
4. Click Save to install the EAR file.
Related reference

serviceDeploy command-line utility
Use the serviceDeploy command to package Service Component Architecture
(SCA) compliant modules as Java applications that can be installed on a server.
The command is useful when performing batch installs through wsadmin.

Deploying applications using Apache Ant tasks
ANT tasks allow you to define the deployment of multiple applications to
WebSphere Process Server and have them run unattended on a server.

Before you begin

This task assumes the following:
v The applications being deployed have already been developed and tested.
v The applications are to be installed on the same server or servers.
v You have some knowledge of Apache Ant tasks.
v You understand the deployment process.

Information about developing and testing applications is located in the WebSphere
Integration Developer information center.

The Generated API and SPI documentation reference section provides details of
application programming interfaces. Apache Ant tasks are described in the package
com.ibm.websphere.ant.tasks. For the purpose of this topic, the tasks of interest
are ServiceDeploy and InstallApplication.

About this task

If you need to install multiple applications concurrently, develop an Apache Ant
task before deployment. The Apache Ant task can then deploy and install the
applications on the servers without your involvement in the process.

Procedure
1. Identify the applications to deploy.
2. Create a JAR file for each application.
3. Copy the JAR files to the target servers.
4. Create an Apache Ant task to run the ServiceDeploy command to create the

EAR file for each server.
5. Create an Apache Ant task to run the InstallApplication command for each

EAR file from step 4 on the applicable servers.
6. Run the ServiceDeploy Apache Ant task to create the EAR file for the

applications.
7. Run the InstallApplication Apache Ant task to install the EAR files from step 6.

Results

The applications are correctly deployed on the target servers.

Deploying a module 491

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=rdev_servicedeploy
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=com.ibm.websphere.wps.z.doc/doc/welc_ref_javadoc

Example of deploying an application unattended

This example of deploying an application unattended shows an Apache ANT task
contained in a file myBuildScript.xml.
<?xml version="1.0">

<project name="OwnTaskExample" default="main" basedir=".">
<taskdef name="servicedeploy"

classname="com.ibm.websphere.ant.tasks.ServiceDeployTask" />
<target name="main" depends="main2">
<servicedeploy scaModule="c:/synctest/SyncTargetJAR"
ignoreErrors="true"
outputApplication="c:/synctest/SyncTargetEAREAR"
workingDirectory="c:/synctest"
cleanStagingModules="true"/>

</target>
</project>

This statement shows how to invoke the Apache Ant task.
${WAS}/bin/ws_ant -f myBuildScript.xml

Tip: Multiple applications can be deployed unattended by adding additional
project statements into the file.

What to do next

Use the administrative console to verify that the newly-installed applications are
started and processing the workflow correctly.
Related reference

serviceDeploy command-line utility
Use the serviceDeploy command to package Service Component Architecture
(SCA) compliant modules as Java applications that can be installed on a server.
The command is useful when performing batch installs through wsadmin.

492 Developing and deploying

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=rdev_servicedeploy

Installing business process and human task applications

You can distribute Service Component Architecture (SCA) modules that contain
business processes or human tasks, or both, to deployment targets. A deployment
target can be a server or a cluster.

Before you begin

Verify that Business Flow Manager and Human Task Manager are installed and
configured for each application server or cluster on which you want to install your
application.

About this task

You can install business process and task applications from the administrative
console, from the command line, or by running an administrative script.

Results

After a business process or human task application is installed, all of the business
process templates and human task templates are put into the start state. You can
create process instances and task instances from these templates.

What to do next

Before you can create process instances or task instances, you must start the
application.

How business process and human task applications are installed in a
network deployment environment

When process templates or human task templates are installed in a network
deployment environment, the following actions are performed automatically by the
application installation.

The application is installed in stages. Each stage must complete successfully before
the following stage can begin.
1. The application installation starts on the deployment manager.

During this stage, the business process templates and human task templates are
configured in the WebSphere configuration repository. The application is also
validated. If errors occur, they are reported in the System.out file, in the
System.err file, or as FFDC entries on the deployment manager.

2. The application installation continues on the node agent.
During this stage, the installation of the application on one application server
instance is triggered. This application server instance is either part of, or is, the
deployment target. If the deployment target is a cluster with multiple cluster
members, the server instance is chosen arbitrarily from the cluster members of
this cluster. If errors occur during this stage, they are reported in the
SystemOut.log file, in the SystemErr.log file, or as FFDC entries on the node
agent.

3. The application runs on the server instance.

© Copyright IBM Corp. 2006, 2010 493

During this stage, the process templates and human templates are deployed to
the Business Process Choreographer database on the deployment target. If
errors occur, they are reported in the SDSF job data sets for the deployment
manager.

Deployment of business processes and human tasks
Use WebSphere Integration Developer or serviceDeploy to package process
components or task components in an enterprise application (EAR) file. Each new
version of a model that is to be deployed must be packaged in a new enterprise
application.

When you install an enterprise application that contains business processes or
human tasks, then these are stored as business process templates or human task
templates, as appropriate, in the Business Process Choreographer database. Newly
installed templates are, by default, in the started state. However, the newly
installed enterprise application is in the stopped state. Each installed enterprise
application can be started and stopped individually.

You can deploy many different versions of a process template or task template,
each in a different enterprise application. The versions are differentiated by their
valid-from dates. When you install a new enterprise application, the version of the
template that is installed is determined as follows:
v If the name of the template and the target namespace do not already exist, a

new template is installed
v If the template name and target namespace are the same as those of an existing

template, but the valid-from date is different, a new version of an existing
template is installed

Note: The template name is derived from the name of the component and not
from the business process or human task.

If you do not specify a valid-from date, the date is determined as follows:
v If you use WebSphere Integration Developer, the valid-from date is the date on

which the human task or the business process was modeled.
v If you use service deployment, the valid-from date is the date on which the

serviceDeploy command was run. Only collaboration tasks get the date on
which the application was installed as the valid-from date.

Installing business process and human task applications interactively
You can install an application interactively at runtime using the wsadmin tool and
the installInteractive script. You can use this script to change settings that cannot
be changed if you use the administrative console to install the application.

About this task

Perform the following steps to install business process applications interactively.

Procedure
1. Start the wsadmin tool.

In the profile_root/bin directory, enter wsadmin.
2. Install the application.

At the wsadmin command-line prompt, enter the following command:

494 Developing and deploying

$AdminApp installInteractive application.ear

where application.ear is the qualified name of the enterprise archive file that
contains your process application. You are prompted through a series of tasks
where you can change values for the application.

3. Save the configuration changes.
At the wsadmin command-line prompt, enter the following command:
$AdminConfig save

You must save your changes to transfer the updates to the master configuration
repository. If a scripting process ends and you have not saved your changes,
the changes are discarded.

Configuring process application data source and set reference
settings

You might need to configure process applications that run SQL statements for the
specific database infrastructure. These SQL statements can come from information
service activities or they can be statements that you run during process installation
or instance startup.

About this task

When you install the application, you can specify the following types of data
sources:
v Data sources to run SQL statements during process installation
v Data sources to run SQL statements during the startup of a process instance
v Data sources to run SQL snippet activities

The data source required to run an SQL snippet activity is defined in a BPEL
variable of type tDataSource. The database schema and table names that are
required by an SQL snippet activity are defined in BPEL variables of type
tSetReference. You can configure the initial values of both of these variables.

You can use the wsadmin tool to specify the data sources.

Procedure
1. Install the process application interactively using the wsadmin tool.
2. Step through the tasks until you come to the tasks for updating data sources

and set references.
Configure these settings for your environment. The following example shows
the settings that you can change for each of these tasks.

3. Save your changes.

Example: Updating data sources and set references, using the
wsadmin tool

In the Updating data sources task, you can change data source values for initial
variable values and statements that are used during installation of the process or
when the process starts. In the Updating set references task, you can configure the
settings related to the database schema and the table names.
Task [24]: Updating data sources

//Change data source values for initial variable values at process start

Installing business process and human task applications 495

Process name: Test
// Name of the process template
Process start or installation time: Process start
// Indicates whether the specified value is evaluated
//at process startup or process installation
Statement or variable: Variable
// Indicates that a data source variable is to be changed
Data source name: MyDataSource
// Name of the variable
JNDI name:[jdbc/sample]:jdbc/newName
// Sets the JNDI name to jdbc/newName

Task [25]: Updating set references

// Change set reference values that are used as initial values for BPEL variables

Process name: Test
// Name of the process template
Variable: SetRef
// The BPEL variable name
JNDI name:[jdbc/sample]:jdbc/newName
// Sets the JNDI name of the data source of the set reference to jdbc/newName
Schema name: [IISAMPLE]
// The name of the database schema
Schema prefix: []:
// The schema name prefix.
// This setting applies only if the schema name is generated.
Table name: [SETREFTAB]: NEWTABLE
// Sets the name of the database table to NEWTABLE
Table prefix: []:
// The table name prefix.
// This setting applies only if the prefix name is generated.

Uninstalling business process and human task applications, using the
administrative console

You can use the administrative console to uninstall applications that contain
business processes or human tasks.

Before you begin

To uninstall an application that contains business processes or human tasks, the
following conditions must apply:
v If the application is installed on a stand-alone server, the server must be running

and have access to the Business Process Choreographer database.
v If the application is installed on a cluster, the deployment manager and at least

one cluster member must be running. The cluster member must have access to
the Business Process Choreographer database.

v If the application is installed on a managed server, the deployment manager and
the managed server must be running. The server must have access to the
Business Process Choreographer database.

v There are no instances of business process or human task templates present in
any state.

v If a process instance was migrated to a newer version of the process but it is
waiting for a service invocation to reply, the application that contains the
previous version cannot be uninstalled until the reply is received. In all other
cases, instances that have been migrated are considered to be instances of the
new version, and the application that contains the older version of the process
can be uninstalled.

496 Developing and deploying

About this task

To uninstall an enterprise application that contains business processes or human
tasks, perform the following actions:

Procedure
1. In the administrative console, click Applications → Application Types →

WebSphere enterprise applications.
2. Select the application that you want to uninstall and click Stop.

This step fails if any process instances or task instances still exist in the
application. You can either use the Business Process Choreographer Explorer to
delete the instances, or the -force option of the bpcTamplates.jacl administrative
script to stop and delete these instances before the application is uninstalled.

3. Select the application that you want to uninstall, and click Uninstall.
4. Click Save to save your changes.

Results

The application is uninstalled.
Related tasks

“Uninstalling business process and human task applications, using an
administrative command”
Using the bpcTemplates.jacl script provides an alternative to the administrative
console for uninstalling applications that contain business processes or human
tasks.

Uninstalling business process and human task applications, using an
administrative command

Using the bpcTemplates.jacl script provides an alternative to the administrative
console for uninstalling applications that contain business processes or human
tasks.

Before you begin

To uninstall an application that contains business processes or human tasks, the
following conditions must apply:
v If the application is installed on a stand-alone server, the server must be running

and have access to the Business Process Choreographer database.
v If the application is installed on a cluster, the deployment manager and at least

one cluster member must be running. The cluster member must have access to
the Business Process Choreographer database.

v If the application is installed on a managed server, the deployment manager and
the managed server must be running. The server must have access to the
Business Process Choreographer database.

v Ensure that the server process to which the administrative client connects is
running. To ensure that the administrative client automatically connects to the
server process, do not use the -conntype NONE option as a command option.

v If WebSphere administrative security is enabled, and your user ID does not have
operator or administrator authority, include the wsadmin -user and -password

Installing business process and human task applications 497

options to specify a user ID that has operator or administrator authority. The
-uninstall option requires operator authority and the -force option requires
administrator authority.

v One or more of the following is true:
– There are no instances of business process or human task templates present in

any state.
– You intend to use the -force option.

v If a process instance was migrated to a newer version of the process but it is
waiting for a service invocation to reply, the application that contains the
previous version cannot be uninstalled until the reply is received. In all other
cases, instances that have been migrated are considered to be instances of the
new version, and the application that contains the older version of the process
can be uninstalled.

About this task

The following steps describe how to use the bpcTemplates.jacl script to uninstall
applications that contain business process templates or human task templates.

Procedure
1. If there are still process instances or task instances associated with the

templates in the application that you want to uninstall perform one or both of
the following:
v Use the Business Process Choreographer Explorer to delete the instances.
v In cases where you are sure that no other business processes depend on the

process templates that are defined in the application you want to uninstall,
you can use the -force option.
CAUTION:
If you use the script with this option, it deletes any instances that are
associated with the templates, all of the data that is associated with any
running instances, stops the templates, and uninstalls the application in
one step. Use this option with extreme care.

2. Change to the Business Process Choreographer subdirectory where the
administrative scripts are located. Enter the following command:
cd install_root/ProcessChoreographer/admin

On Linux® and UNIX® platforms, enter the following command:
cd install_root/ProcessChoreographer/admin

On the i5/OS® platform, enter the following command:
cd install_root/ProcessChoreographer/admin

On Windows platforms, enter the following command:
cd install_root\ProcessChoreographer\admin

3. Stop the templates and uninstall the corresponding application.
install_root/bin/wsadmin.sh -f bpcTemplates.jacl

-uninstall application_name]
[-force]

Where:

-uninstall application_name
This specifies the name of the application to be uninstalled.

-force
This option causes any running instances to be stopped and deleted before

498 Developing and deploying

the application is uninstalled. Use this option with care because it also
deletes all of the data associated with the running instances.

Results

The application is uninstalled.
Related tasks

“Uninstalling business process and human task applications, using the
administrative console” on page 496
You can use the administrative console to uninstall applications that contain
business processes or human tasks.

Installing business process and human task applications 499

500 Developing and deploying

Adapters and their installation

Adapters allow your application to communicate with other components of your
enterprise information system.

The process you use to install adapters is described in Configuring and using
adapters in the WebSphere Integration Developer information center.

© Copyright IBM Corp. 2006, 2010 501

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=welcome_infocenter
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-zos&topic=welcome_infocenter

502 Developing and deploying

Troubleshooting a failed deployment

This topic describes the steps to take to determine the cause of a problem when
deploying an application. It also presents some possible solutions.

Before you begin

This topic assumes the following things:
v You have a basic understanding of debugging a module.
v Logging and tracing is active while the module is being deployed.

About this task

The task of troubleshooting a deployment begins after you receive notification of
an error. There are various symptoms of a failed deployment that you have to
inspect before taking action.

Procedure
1. Determine if the application installation failed.

Examine the SystemOut.log file for messages that specify the cause of failure.
Some of the reasons an application might not install include the following:
v You are attempting to install an application on multiple servers in the same

Network Deployment cell.
v An application has the same name as an existing module on the Network

Deployment cell to which you are installing the application.
v You are attempting to deploy Java EE modules within an EAR file to

different target servers.

Important: If the installation has failed and the application contains services,
you must remove any SIBus destinations or JCA activation specifications
created before the failure before attempting to reinstall the application. The
simplest way to remove these artifacts is to click Save > Discard all after the
failure. If you inadvertently save the changes, you must manually remove the
SIBus destinations and JCA activation specifications (see Deleting SIBus
destinations and Deleting JCA activation specifications in the Administering
section).

2. If the application is installed correctly, examine it to determine if it started
successfully.
If the application did not start successfully, the failure occurred when the server
attempted to initiate the resources for the application.
a. Examine the SystemOut.log file for messages that will direct you on how to

proceed.
b. Determine if resources required by the application are available and/or

have started successfully.
Resources that are not started prevent an application from running. This
protects against lost information. The reasons for a resource not starting
include:
v Bindings are specified incorrectly
v Resources are not configured correctly
v Resources are not included in the resource archive (RAR) file

© Copyright IBM Corp. 2006, 2010 503

v Web resources not included in the Web services archive (WAR) file
c. Determine if any components are missing.

The reason for missing a component is an incorrectly built enterprise
archive (EAR) file. Make sure that the all of the components required by the
module are in the correct folders on the test system on which you built the
Java archive (JAR) file. “Preparing to deploy to a server” contains additional
information.

3. Examine the application to see if there is information flowing through it.
Even a running application can fail to process information. Reasons for this are
similar to those mentioned in step 2b on page 503.
a. Determine if the application uses any services contained in another

application. Make sure that the other application is installed and has started
successfully.

b. Determine if the import and export bindings for devices contained in other
applications used by the failing application are configured correctly. Use the
administrative console to examine and correct the bindings.

4. Correct the problem and restart the application.

Deleting JCA activation specifications
The system builds JCA application specifications when installing an application
that contains services. There are occasions when you must delete these
specifications before reinstalling the application.

Before you begin

If you are deleting the specification because of a failed application installation,
make sure the module in the Java Naming and Directory Interface (JNDI) name
matches the name of the module that failed to install. The second part of the JNDI
name is the name of the module that implemented the destination. For example in
sca/SimpleBOCrsmA/ActivationSpec, SimpleBOCrsmA is the module name.

Required security role for this task: When security and role-based authorization
are enabled, you must be logged in as administrator or configurator to perform
this task.

About this task

Delete JCA activation specifications when you inadvertently saved a configuration
after installing an application that contains services and do not require the
specifications.

Procedure
1. Locate the activation specification to delete.

The specifications are contained in the resource adapter panel. Navigate to this
panel by clicking Resources > Resource adapters.
a. Locate the Platform Messaging Component SPI Resource Adapter.

To locate this adapter, you must be at the node scope for a standalone
server or at the server scope in a deployment environment.

2. Display the JCA activation specifications associated with the Platform
Messaging Component SPI Resource Adapter.
Click on the resource adapter name and the next panel displays the associated
specifications.

504 Developing and deploying

3. Delete all of the specifications with a JNDI Name that matches the module
name that you are deleting.
a. Click the check box next to the appropriate specifications.
b. Click Delete.

Results

The system removes selected specifications from the display.

What to do next

Save the changes.

Deleting SIBus destinations
Service integration bus (SIBus) destinations are used to hold messages being
processed by SCA modules. If a problem occurs, you might have to remove bus
destinations to resolve the problem.

Before you begin

If you are deleting the destination because of a failed application installation, make
sure the module in the destination name matches the name of the module that
failed to install. The second part of the destination is the name of the module that
implemented the destination. For example in sca/SimpleBOCrsmA/component/test/
sca/cros/simple/cust/Customer, SimpleBOCrsmA is the module name.

Required security role for this task: When security and role-based authorization
are enabled, you must be logged in as administrator or configurator to perform
this task.

About this task

Delete SIBus destinations when you inadvertently saved a configuration after
installing an application that contains services or you no longer need the
destinations.

Note: This task deletes the destination from the SCA system bus only. You must
remove the entries from the application bus also before reinstalling an application
that contains services (see Deleting JCA activation specifications in the
Administering section of this information center.

Procedure
1. Log into the administrative console.
2. Display the destinations on the SCA system bus.

a. In the navigation pane, click Service integration → buses

b. In the content pane, click SCA.SYSTEM.cell_name.Bus

c. Under Destination resources, click Destinations

3. Select the check box next to each destination with a module name that matches
the module that you are removing.

4. Click Delete.

Troubleshooting a failed deployment 505

Results

The panel displays only the remaining destinations.

What to do next

Delete the JCA activation specifications related to the module that created these
destinations.

506 Developing and deploying

Part 3. Appendixes

© Copyright IBM Corp. 2006, 2010 507

508 Developing and deploying

����

Printed in USA

	Contents
	Tables
	Part 1. Developing applications
	Developing business process management solutions
	Business integration architecture and patterns
	Business integration scenarios
	Roles, products, and technical challenges

	Bindings
	Export and import binding overview
	Export and import binding configuration
	Data format transformation in imports and exports
	Data handlers
	Data bindings

	Function selectors in export bindings
	Fault handling
	How faults are handled in export bindings
	How faults are handled in import bindings

	Interoperability between SCA modules and Open SCA services
	Binding types
	Selecting appropriate bindings
	SCA bindings
	Web service bindings
	Web service bindings overview
	SOAP header propagation
	Attachments in SOAP messages
	Use of WSDL document style binding with multipart messages

	HTTP bindings
	HTTP bindings overview
	HTTP headers
	HTTP data bindings

	EJB bindings
	EJB import bindings
	EJB export bindings
	EJB binding properties

	EIS bindings
	EIS bindings overview
	Key features of EIS bindings
	JCA Interaction Spec and Connection Spec dynamic properties
	External clients with EIS bindings

	JMS bindings
	JMS bindings overview
	JMS integration and resource adapters
	Key features of JMS bindings
	JMS headers
	JMS temporary dynamic response destination correlation scheme
	External clients
	Troubleshooting JMS bindings
	Handling exceptions

	Generic JMS bindings
	Generic JMS bindings overview
	Key features of Generic JMS bindings
	Generic JMS headers
	Troubleshooting Generic JMS bindings
	Handling exceptions

	WebSphere MQ JMS bindings
	WebSphere MQ JMS bindings overview
	Key features of WebSphere MQ JMS bindings
	JMS headers
	External clients
	Troubleshooting WebSphere MQ JMS bindings
	Handling exceptions

	WebSphere MQ bindings
	WebSphere MQ bindings overview
	Key features of a WebSphere MQ binding
	WebSphere MQ headers
	Adding MQCIH statically in a WebSphere MQ binding
	External clients
	Troubleshooting WebSphere MQ bindings
	Handling exceptions

	Limitations of bindings
	Limitations of the MQ binding
	Limitations of the JMS, MQ JMS, and generic JMS bindings

	Programming guides and techniques
	Service Component Architecture programming
	Service Component Definition Language
	Module definition
	Component definition
	Import definition
	Export definition
	Reference definition

	SCA programming model fundamentals
	Client programming model
	Interfaces
	Developing service modules
	Invocation styles
	Qualifiers

	SCA programming techniques
	Runtime rules used for Java to Service Data Objects conversion
	Overriding a Service Data Object to Java conversion
	Overriding the generated Service Component Architecture implementation
	Protocol header propagation from non-SCA export bindings

	Business objects programming
	Programming model
	Working with the IBM business object framework
	Modeling business objects
	Modeling business graphs
	Modeling business object type metadata

	Programming using business object services
	XML document validation

	Programming techniques
	Arrays in business objects
	Creating nested business objects
	Differentiating identically named elements
	Differentiating identically named properties
	Resolving property names that contain periods
	Support for null business objects
	Using the Sequence object to set data order
	Using Any data types

	Business rule management programming
	Programming model
	Business Rule Group
	Business Rule Group Properties
	Operation
	Business Rule
	Rule set
	Decision table
	Templates and Parameters
	Validation
	Tracking Changes
	BusinessRuleManager
	Exception Handling
	Authorization

	Examples
	Example 1: Retrieve and print all business rule groups
	Example 2: Retrieve and print business rule groups, rule sets and decision tables
	Example 3: Retrieve business rule groups by multiple properties with AND
	Example 4: Retrieve business rule groups by multiple properties with OR
	Example 5: Retrieve business rule groups with a complex query
	Example 6: Update a business rule group property and publish
	Example 7: Update properties in multiple business rule groups and publish
	Example 8: Change the default business rule for a business rule group
	Example 9: Schedule another rule for an operation in a business rule group
	Example 10: Modify a parameter value in a template in a rule set
	Example 11: Add a new rule from a template to a rule set
	Example 12: Modify a template in a decision table by changing a parameter value and then publish
	Example 13: Add a condition value and actions to a decision table
	Example 14: Handle errors in a rule set
	Example 15: Handle errors in a business rule group
	Additional Query Examples

	Common operations classes
	Formatter class
	RuleArtifactUtility class

	Widget programming

	Developing client applications for business processes and tasks
	Comparison of the programming interfaces for interacting with business processes and human tasks
	Queries on business process and task data
	Comparison of the programming interfaces for retrieving process and task data
	Query tables in Business Process Choreographer
	Predefined query tables
	Supplemental query tables
	Composite query tables
	Query table development
	Filters and selection criteria of query tables
	Authorization for query tables
	Attribute types for query tables
	Query table queries
	Query table queries for meta data retrieval
	Internationalization for query table meta data
	Query tables and query performance
	Creating query tables for Business Space
	Creating query tables for Business Process Choreographer Explorer

	Business Process Choreographer EJB query API
	Syntax of the API query method
	User-specific access conditions
	Examples of the query and queryAll methods
	Managing stored queries

	Developing EJB client applications for business processes and human tasks
	Accessing the EJB APIs
	Accessing the remote interface of the session bean
	Accessing the local interface of the session bean

	Developing applications for business processes
	Required roles for actions on process instances
	Required roles for actions on business-process activities
	Managing the life cycle of a business process
	Processing human task activities
	Processing a single person workflow
	Sending a message to a waiting activity
	Handling events
	Analyzing the results of a process
	Repairing activities
	BusinessFlowManagerService interface

	Developing applications for human tasks
	Starting an invocation task that invokes a synchronous interface
	Starting an invocation task that invokes an asynchronous interface
	Creating and starting a task instance
	Processing to-do tasks or collaboration tasks
	Suspending and resuming a task instance
	Analyzing the results of a task
	Terminating a task instance
	Deleting task instances
	Releasing a claimed task
	Managing work items
	Creating task templates and task instances at runtime
	HumanTaskManagerService interface

	Developing applications for business processes and human tasks
	Determining the process templates or activities that can be started
	Processing a single person workflow that includes human tasks

	Handling exceptions and faults
	Handling Business Process Choreographer EJB API exceptions
	Checking which fault is set for a human task activity
	Checking which fault occurred for a stopped invoke activity
	Checking which unhandled exception or fault occurred for a failed process instance

	Developing Web services API client applications for business processes and human tasks
	Web service components and sequence of control
	Web service API requirements for business processes and human tasks
	JAX-WS-based Business Process Choreographer Web services APIs
	Business Process Choreographer Web services API: Standards
	Publishing and exporting artifacts from the server environment for Web services client applications
	Publishing Business Process Choreographer WSDL files
	Exporting WSDL and XSD files for business process and human task Web services applications

	Developing client applications in the Java Web services environment
	Generating a Web service proxy (Java Web services)
	Creating a client application for business processes and human tasks (Java Web services)

	Adding security
	Adding transaction support

	Developing client applications using the Business Process Choreographer JMS API
	Requirements for business processes
	Authorization for JMS renderings
	Accessing the JMS interface
	Structure of a Business Process Choreographer JMS message

	Copying artifacts for JMS client applications
	Publishing the business process WSDL file for JMS applications

	Checking the response message for business exceptions
	Example: executing a long running process using the Business Process Choreographer JMS API

	Developing Web applications for business processes and human tasks, using JSF components
	Business Process Choreographer Explorer components
	Error handling in JSF components
	Default converters and labels for client model objects
	Adding the List component to a JSF application
	How lists are processed
	User-specific time zone information
	Error handling in the List component
	List component: Tag definitions

	Adding the Details component to a JSF application
	Details component: Tag definitions

	Adding the CommandBar component to a JSF application
	How commands are processed
	CommandBar component: Tag definitions

	Adding the Message component to a JSF application
	Message component: Tag definitions

	Developing JSP pages for task and process messages
	User-defined JSP fragments

	Creating plug-ins to customize human task functionality
	Creating API event handlers for Business Process Choreographer
	API event handlers

	Creating notification event handlers for Business Process Choreographer
	Installing API event handler and notification event handler plug-ins for human tasks
	Registering API event handler and notification event handler plug-ins with task templates, task models, and tasks
	Using a plug-in to post-process people query results

	Part 2. Deploying applications
	Overview of preparing and installing modules
	Libraries and JAR files overview
	EAR file overview
	Preparing to deploy to a server
	Considerations for installing service applications on clusters

	Deploying a module
	Installing versioned SCA modules in a production environment
	Installing an SCA module with the console
	Creating an installable EAR file using serviceDeploy
	Deploying applications using Apache Ant tasks

	Installing business process and human task applications
	How business process and human task applications are installed in a network deployment environment
	Deployment of business processes and human tasks
	Installing business process and human task applications interactively
	Configuring process application data source and set reference settings

	Uninstalling business process and human task applications, using the administrative console
	Uninstalling business process and human task applications, using an administrative command

	Adapters and their installation
	Troubleshooting a failed deployment
	Deleting JCA activation specifications
	Deleting SIBus destinations

	Part 3. Appendixes

