
WebSphere® WebSphere Process Server for z/OS

Monitoring WebSphere Process Server

Version 6.1.0

���

WebSphere® WebSphere Process Server for z/OS

Monitoring WebSphere Process Server

Version 6.1.0

���

Note

Before using this information, be sure to read the general information in the Notices section at the end of this document.

1 February 2008

This edition applies to version 6, release 1, modification 0 of WebSphere Process Server for z/OS (product number

5655-N53) and to all subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, send an e-mail message to doc-comments@us.ibm.com. We look

forward to hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Service component

monitoring overview 1

Common Event Infrastructure 1

Common Base Event model 3

Why use monitoring? 4

What do you monitor? 4

How do you enable monitoring? 6

Chapter 2. Enabling and configuring

service component monitoring 9

Monitoring performance 9

Performance Monitoring Infrastructure statistics . 9

Application Response Measurement statistics for

the Service Component Architecture 14

Monitoring service component events 28

Enabling monitoring of business process and

human task events 28

Configuring logging for service component

events 29

Monitoring service components with the

Common Event Infrastructure server 35

Session monitoring 38

Chapter 3. Viewing monitored events 41

Viewing performance metrics with the Tivoli

Performance Viewer 41

Viewing and interpreting service component event

log files 42

Viewing events with the Common Base Event

browser 44

Specifying the events to view 44

Working with events returned from the event

browser 45

Troubleshooting the Common Base Event

browser 46

Chapter 4. Event catalog 47

The Common Base Event standard elements . . . 47

Business objects in events 48

Business Process Choreographer events 49

Monitoring business process events 49

Monitoring human task events 69

Process server events 77

Resource Adapter events 78

Business rule events 79

Business state machine events 80

Map events 81

Mediation events 82

Recovery events 82

Service Component Architecture events 83

Selector events 84

Notices 87

© Copyright IBM Corp. 2006, 2008 iii

iv Monitoring

Chapter 1. Service component monitoring overview

A conceptual overview of the reasons you monitor service components on the

process server; which event points within the service components you select to

monitor; and, how to configure monitoring on your system.

WebSphere® Process Server provides capabilities for monitoring service

components to aid in system administration functions, such as performance tuning

and problem determination. It goes beyond these traditional functions by also

providing the capability for persons who are not necessarily information

technology specialists to continually monitor the processing of the service

components within the applications deployed on your system. By overseeing the

overall processing flow of the interconnected components, you can ensure that

your system is producing what you expect it to produce.

WebSphere Process Server operates on top of an installation of WebSphere

Application Server, and, consequently, uses much of the functionality of the

application server infrastructure for monitoring system performance and

troubleshooting. It also includes some extra functionality that is specifically

designed for monitoring process server service components. This section of the

WebSphere Process Server Information Center will focus on how you monitor

process server-specific service components. It is intended to supplement the

monitoring and troubleshooting topics found in the WebSphere Application Server,

Version 6.1 Information Center; therefore, you should refer to that documentation

for details of the other monitoring capabilities in the combined product.

Common Event Infrastructure

Common Event Infrastructure is an embeddable technology intended to provide

basic event management services to applications that require those services.

This event infrastructure serves as an integration point for consolidation and

persistence of raw events from multiple, heterogeneous sources, and distribution of

those events to event consumers. Events are represented using the Common Base

Event model, a standard, XML-based format defining the structure of an event. For

more information, see the Common Base Event model sub-topic.

By using this common infrastructure, diverse products that are not tightly coupled

with one another can integrate their management of events, providing an

end-to-end view of enterprise resources and correlating events across domain

boundaries. For example, events generated by a network monitoring application

can be correlated with events generated by a security application. Such correlation

can be difficult to achieve when each product uses its own approach to event

management.

Common Event Infrastructure provides facilities for generation, propagation,

persistence, and consumption of events, but it does not define the events

themselves. Instead, application developers and administrators define event types,

event groups, filtering, and correlation.

Common Event Infrastructure components

Common Event Infrastructure consists of the following major components:

© Copyright IBM Corp. 2006, 2008 1

Common Base Event

The Common Base Event component supports the creation of events and

access to their property data. Event sources use the Common Base Event

APIs to create new events conforming to the Common Base Event model;

event consumers use the APIs to read property data from received events.

In addition, applications can convert events to and from XML text format,

supporting interchange with other tools. The Common Base Event

component is part of the Eclipse Test and Performance Tools Platform

(TPTP).

Emitter

The emitter component supports the sending of events. After an event

source creates an event and populates it with data, the event source

submits the event to an emitter. The emitter optionally performs automatic

content completion and then validates the event to ensure that it conforms

to the Common Base Event specification. It also compares the event to

configurable filter criteria. If the event is valid and passes the filter criteria,

the emitter sends the event to the event service. An emitter can send

events to the event service either synchronously (using Enterprise

JavaBeans™ calls) or asynchronously (using a Java™ Message Service

queue).

Event service

The event service is the conduit between event sources and event

consumers. The event service receives events submitted to emitters by

event sources. It stores events in a persistent data store, and then

distributes them asynchronously to subscribed event consumers. In

addition, the event service supports synchronous queries of historical

events from the persistent store.

Event catalog

The event catalog is a repository of event metadata. Applications use the

event catalog to retrieve information about classes of events and their

permitted content.

In addition, an application or solution using Common Event Infrastructure might

also include the following components (which are not part of the infrastructure

itself):

Event source

An event source is any application that uses an emitter to send events to

the event service.

Event consumer

An event consumer is any application that receives events from the event

service.

Event catalog application

An event catalog application is any application that stores or retrieves

event metadata in the event catalog. This might be a management or

development tool; it might also be an event source or event consumer.

The following diagram shows the general flow of events from event source to

event consumer using Common Event Infrastructure.

2 Monitoring

Emitter Event
Server

Event
consumer

Event source

Data
store

Common Base Event model

The Common Base Event model is a standard that defines a common

representation of events that is intended for use by enterprise management and

business applications. This standard, developed by the IBM® Autonomic

Computing Architecture Board, supports encoding of logging, tracing,

management, and business events using a common XML-based format, making it

possible to correlate different types of events that originate from different

applications. The Common Base Event model is part of the IBM Autonomic

Computing Toolkit; for more information, see http://www.ibm.com/autonomic.

Common Event Infrastructure currently supports version 1.0.1 of the specification.

The basic concept behind the Common Base Event model is the situation. A

situation can be anything that happens anywhere in the computing infrastructure,

such as a server shutdown, a disk-drive failure, or a failed user login. The

Common Base Event model defines a set of standard situation types that

accommodate most of the situations that might arise (for example, StartSituation

and CreateSituation).

An event is a structured notification that reports information related to a situation.

An event reports three kinds of information:

v The situation itself (what has happened)

v The identity of the affected component (for example, the server that has shut

down)

v The identity of the component that is reporting the situation (which might be the

same as the affected component)

The Common Base Event specification defines an event as an XML element

containing properties that provide all three kinds of information. These properties

are encoded as attributes and subelements of the root element, CommonBaseEvent.

The Common Base Event format is extensible. In addition to the standard event

properties, an event can also contain extended data elements, which are

application-specific elements that can contain any kind of information relevant to

the situation. The extensionName attribute labels an event with an optional

classification name (an event class), which indicates to applications what sort of

extended data elements to expect. The event catalog stores event definitions that

describe these event classes and their allowed content.

For complete details on the Common Base Event format, see the specification

document and XSD schema included in the IBM Autonomic Computing Toolkit.

Chapter 1. Service component monitoring overview 3

http://www.ibm.com/autonomic

Why use monitoring?

You monitor service components within WebSphere Process Server to assess

performance, to troubleshoot problems, and evaluate the overall processing

progress of service components that make up the applications deployed on your

system.

Service components are the integral functions incorporated into WebSphere Process

Server, with which you can easily create and deploy applications on your system

that mirror the processes employed in your enterprise. Effectively monitoring those

service components is, therefore, essential to managing the tasks which the process

server is intended to accomplish. There are three main reasons you need to

monitor service components on the process server:

Problem determination

You can diagnose particular errors by using the logging and tracing

facilities provided by WebSphere Application Server, which underlies

WebSphere Process Server. For example, if a particular application is not

producing the expected results, you can set up a logger to monitor the

processing of the service components that comprise that application. You

can have the log output published to a file, which you can then examine to

pinpoint the cause of the problem. Troubleshooting is a task that is of

importance to system administrators and others concerned with the

maintenance of system hardware and software.

Performance tuning

You can monitor certain performance statistics that most process

server-specific service components produce. Use this information to

maintain and tune your system health, and ensure that your applications

are tuned optimally and efficiently. You can also spot situations where one

or more of your services are performing at a poor level, which may

indicate that other problems are present in your system. Like problem

determination, performance tuning is a task typically performed by

information technology specialists.

Assessing the processing of service components

Problem determination and performance tuning are tasks you perform on a

short-term basis, to solve a particular issue or problem. You can also set up

the process server to continually monitor the service components

incorporated into the applications deployed on your system. This type of

service component monitoring is of importance to those who are

responsible for designing, implementing, and ensuring that the processes

achieve their design goals, and may be accomplished persons who are not

necessarily specialists in information technology.

What do you monitor?

You can monitor service component events in WebSphere Process Server by

selecting certain points that a service component event reaches during processing.

Each service component defines these event points, which ″fire″ an event when the

application processes at that given point. You can also monitor performance

statistics for service component events.

Regardless of the type of monitoring you intend to perform on your service

components (problem determination, performance tuning, or process monitoring),

you will actually be monitoring a certain point that is reached during these

components processing. This point is referred to as an event point, and it is these

4 Monitoring

points that you select to be monitored. Each event point encapsulates the service

component kind tag, an optional element kind (which are specific functions of a

service component type), and the nature of the event. All of these factors will

determine the type of event fired by monitoring.

Event natures describe the situations required to generate (or ″fire″) events during

the processing of service components. These natures are essentially key points in

the logic structure of a service component that you select to be monitored. The

most common natures for service component events are ENTRY, EXIT, and

FAILURE, but there are many other natures depending on the particular

component and element. Whenever an application containing the specified service

component is subsequently invoked, an event is fired every time the processing of

a service component crosses the points corresponding to the event nature.

As an example of how events are defined for a service component kind, the MAP

service component kind can directly fire events with natures of ENTRY, EXIT, and

FAILURE. It also includes an element kind, called Transformation, which defines a

specific type of functionality within the MAP component kind. This element also

fires events with ENTRY, EXIT, and FAILURE natures. Consequently, the MAP

service component kind can fire up to six different events depending on the

combination of elements and natures that you specify. The list of all service

components, their elements, and their event natures is contained in the event

catalog.

Monitoring is a separate layer of functionality that lies atop the processing of your

applications, and does not interfere with the processing of your service

components. Monitoring is concerned with service component processing only

insofar as it detects activity at a specified event point. When this happens, an event

is fired by monitoring, which determines where the event is sent, and what data is

contained in that event, based on the type of monitoring you are performing, as

detailed below:

Performance metrics

If you are monitoring a service component in order to gather performance

metrics, light weight events are fired to the Performance Monitoring

Infrastructure. You can select for monitoring one or more of the three

performance statistics generated for process server-specific server

components:

v A counter for each EXIT event nature – this counts successful

computations.

v A counter for each FAILURE event nature – this counts failed

computations

v The processing duration calculated between corresponding ENTRY and

EXIT events (synchronous computations only).

You can also monitor the performance of applications at the Service

Component Architecture (SCA) level by using Application Response

Measurement (ARM) statistics. These measures allow you to monitor an

application at a much finer level of detail within the application than is

otherwise available in other service component events. You can use these

statistics to monitor many different points between initial application call

invocations and service responses, when they use the SCA.

Service component events with business objects

If you want to capture the data from events fired by monitoring at

specified event points in service component, then you would configure the

process server to generate the event and its data to be encoded in Common

Chapter 1. Service component monitoring overview 5

Base Event formats. You can specify the level of detail of business object

data to capture in each service component event. You can publish these

events to either a logger or to the Common Event Infrastructure (CEI) bus,

which directs the output to a specially configured CEI server database.

How do you enable monitoring?

The are several methods that you can use to specify service component event

points for monitoring, depending on the type of monitoring you are planning to

do on the process server.

Performance statistics

For Performance Monitoring Infrastructure (PMI) statistics, use the

administrative console to specify the particular event points and their

associated performance measurements that you want to monitor. After you

start monitoring service component performance, the generated statistics

are published at certain intervals to the Tivoli® Performance Viewer. You

can use this viewer to watch the results as they occur on your system, and,

optionally, log the results to a file that can be later viewed and analyzed

within the same viewer.

 For Application Response Measurement (ARM) statistics, use the

administrative console Request Metrics section to specify and the statistics

you want to monitor. See the WebSphere Application Server, Version 6.1

Information Center for details and instructions on how to work with

request metrics.

Common Base Events for problem determination and business process

monitoring

You can specify, at the time you create an application, to monitor service

component event points — along with a certain level of detail for those

events — on a continual basis after the application is deployed on a

running server. You can also select event points to monitor after the

application has been deployed and the events invoked at least once on the

process server. In both cases, the events generated by monitoring will be

fired across the Common Event Infrastructure (CEI) bus. These events can

be published to a log file, or to a configured CEI Server database.

WebSphere Process Server supports two types of Common Base Event

enablement for problem determination and business process monitoring:

Static Certain events points within an application and their level of detail

can be tagged for monitoring using WebSphere Integration

Developer tooling. The selections indicate what event points are to

be continuously monitored, and are stored in a file with a .mon

extension that is distributed and deployed along with the process

server application. Once the process server is configured to use a

CEI server, the monitoring function will begin firing service

component events to a CEI server whenever the specified services

are invoked. As long as the application is deployed on the process

server, the service component event points specified in the .mon

file will be constantly monitored until the application is stopped.

You can specify additional events to be monitored in a running

application, and increase the detail level for event points that are

already monitored. But as long as that application remains active

you cannot stop, or lower the detail level of, the monitored event

points specified by the .mon of the deployed application.

6 Monitoring

Dynamic

If additional event points need to be monitored during the

processing of an application without shutting down the server,

then you can use dynamic monitoring. Use the administrative

console to specify service component event points for monitoring,

and set detail level for the payload that will be included in the

Common Base Event. A list is compiled of the event points that

have been reached by a processed service component after the

process server was started. Choose from this list individual event

points or groups of event points for monitoring, with the service

component events directed either to the logger or to the CEI server

database.

 The primary purpose of the Dynamic enablement is for creating

correlated service component events that are published to logs,

which allow you to perform problem determination on services.

Service component events can be large — depending on how much

data is being requested — and can tax database resources if you

choose to send events to the CEI server. Consequently, you should

publish dynamically monitored events to the CEI server only if

you need to read the business data of the events, or if you

otherwise need to keep a database record of the events. If,

however, you are monitoring a particular session, then you will

need to use the CEI server database to access the service

component events related to that session.

Chapter 1. Service component monitoring overview 7

8 Monitoring

Chapter 2. Enabling and configuring service component

monitoring

In order to monitor the service components on the process server, you must first

enable the monitoring capabilities. Then you must specify the events you want to

monitor, the information you want to capture from the event, and the method used

to publish the results.

Monitoring performance

Performance measurements are available for service component event points, and

are processed through the Performance Monitoring Infrastructure. You configure

the process server to gather performance metrics from service component event

points. You can also collect Service Component Architecture-specific performance

statistics directly from service invocations of applications.

Whether you are tuning WebSphere Process Server service components for optimal

efficiency or diagnosing a poor performance, it is important to understand how the

various run time and application resources are behaving from a performance

perspective. The Performance Monitoring Infrastructure (PMI) provides a

comprehensive set of data that explains the runtime and application resource

behavior. Using PMI data, the performance bottlenecks in the application server

can be identified and fixed. PMI data can also be used to monitor the health of the

application server.

The PMI is included in the base WebSphere Application Server installation. This

section provides only supplemental information about performance monitoring as

it relates to the service components specific to WebSphere Process Server; therefore,

consult the information in the WebSphere Application Server documentation for

using PMI with other parts of the entire product.

The service component event points specific to WebSphere Process Server that can

be monitored by the PMI are those that typically have ENTRY, EXIT, and FAILURE

event natures. Event sources which are not defined according to this pattern are

not supported. Events that are supported have three types of performance statistics

that can be measured:

v Successful invocations.

v Failed invocations.

v Elapsed time for event completion.

You can also monitor performance statistics derived from the service invocations of

applications by using the Application Response Measurement (ARM) statistics.

These statistics measure the actual runtime processes that underlie the process

server service component events comprising an enterprise application. You can

derive a variety of performance measurements for the processing of your

applications using these statistics.

Performance Monitoring Infrastructure statistics

You can monitor three types of performance statistics using the Performance

Monitoring Infrastructure: the number of successful invocations, the number of

© Copyright IBM Corp. 2006, 2008 9

failures, and the elapsed time to completion of an event. These statistics are only

available for events that have event natures of type ENTRY, EXIT, and FAILURE.

Enabling PMI using the administrative console

To monitor performance data you must first enable the Performance Monitoring

Infrastructure on the server.

About this task

You can enable the Performance Monitoring Infrastructure (PMI) through the

administrative console.

Procedure

 1. Open the administrative console.

 2. Click Servers > Application Servers in the console navigation tree.

 3. Click server_name.

Note: From the administrative console, you can click Monitoring and Tuning

> Performance Monitoring Infrastructure (PMI) > server_name to open the

same panel

 4. Click the Configuration tab.

 5. Select the Enable Performance Monitoring Infrastructure (PMI) check box.

 6. Optional: Select the check box for Use sequential counter updates to enable

precise statistic update.

 7. Go back to the server PMI configuration page by clicking the server name

link.

 8. Click Apply or OK.

 9. Click Save.

10. Restart the server.

What to do next

The changes you make will not take effect until you restart the server.

Event performance statistics

Performance monitoring statistics are available for most server events. You can

monitor the counts of invocation requests (good and bad) and the time it took to

complete the event.

You can use the Performance Monitoring Infrastructure (PMI) to monitor three

performance statistics generated by certain server events, as shown in the

following table:

 Table 1. PMI statistics for events

Statistic name Type Description

BadRequests Counter Number of failed invocations of the

event.

GoodRequests Counter Number of successful invocations of the

event.

ResponseTime Timer Elapsed time for event completion.

10 Monitoring

. These statistics are limited to service component events with elements having

ENTRY, EXIT, and FAILURE natures. Each statistic is created for a single event of a

given server event type in an application. All performance measurements are either

counters (a cumulative number of the firings of a given event point), or timers (the

duration, measured in milliseconds, between the firings of two event points). Each

event kind (and their relevant elements) that can be monitored are listed below:

 Table 2. Event types and elements that can produce event performance statistics

Event type Element(s)

Business process Process
Invoke
Staff
Receive
Wait
Compensate
Pick
Scope

Human task Task

Business rule Operation

Business state machine Transition
Guard
Action
EntryAction
ExitAction

Selector Operation

Map Map
Transformation

Mediation OperationBinding
ParameterMediation

Resource adapter InboundEventRetrieval
InboundEventDelivery
Outbound

Specifying performance statistics to monitor

You can specify single statistics, multiple statistics, or groups of related statistics

for monitoring through the Performance Monitoring Infrastructure by using the

administrative console.

Before you begin

Ensure that you have enabled performance monitoring, and that you have at least

once invoked the event you want to monitor before performing this task.

Procedure

1. Open the administrative console.

2. Select Monitoring and Tuning > Performance Monitoring Infrastructure.

3. Select the server or node agent that contains the event points that you want to

monitor.

Note: You cannot choose to monitor statistics on a cluster; you can only do so

on a specific server or node.

Chapter 2. Enabling and configuring service component monitoring 11

4. Expand some of the groups, such as WBIStats.RootGroup or Enterprise Beans.

All of the statistics that can be monitored are within the listed groups. Some

statistics may not be listed because they have not been invoked since the

process server was last started.

5. Select a statistic you want to monitor from within the tree on the left side of the

panel, and then select the statistics that you want to collect on the right side

and click Enable. Repeat this for all statistics that you want to monitor.

6. Go back to the server PMI configuration page by clicking the server name link.

7. Click Apply or OK.

8. Click Save.

Results

You can now start monitoring the performance of your chosen statistics in the

Tivoli Performance Viewer.

Note: When viewing these statistics, you should not mix counter-type statistics

with duration-type statistics. Counters are cumulative, and the scales against which

they are graphed them can quickly grow depending on your application. Duration

statistics, in contrast, tend to remain within a certain range because they represent

the average amount of time that it takes your system to process each event.

Consequently, the disparity between the statistics and their relative scales may

cause one or the other type of statistic to appear skewed in the viewer graph.

Tutorial: Service component performance monitoring

This tutorial will guide you through an example of how to set up service

component event monitors that are published to the Performance Monitoring

Infrastructure (PMI), and how to view the resulting performance statistics on the

Tivoli Performance Viewer (TPV). This exercise will demonstrate how performance

monitoring of service component event points differs from monitoring using the

Common Event Infrastructure (CEI) server and loggers. The major difference that

you will notice is that you select an entire service component element for

performance monitoring, instead of individual events with specific natures.

Because WebSphere Process Server can monitor performance only on service

component elements having events with ENTRY, EXIT, and FAILURE natures, you

will have only those kinds of service component elements available to you to select

for monitoring.

While the service component event points ENTRY, EXIT, and FAILURE are

identical for all monitoring types, the process server performance monitoring

function fires ″minimized″ events that do not contain all of the information

encompassed in CEI events. These events are sent to the PMI, which calculates

these performance statistics from corresponding sets of events:

v Successful invocation — the firing of an event of nature type EXIT that follows a

corresponding ENTRY event.

v Failed invocation — the firing of an event with a FAILURE nature following a

corresponding ENTRY event.

v Time for successful completion — the elapsed time between the firing an ENTRY

event and the firing of the corresponding EXIT event point.

The PMI publishes the statistics to the TPV, which presents cumulative counters for

the number of successful and failed invocations and a running average of the

completion response times.

12 Monitoring

Objectives of this tutorial

After completing this tutorial you will be able to:

v Select the performance statistics of service component elements that you want to

monitor.

v View and interpret the resulting performance statistics.

Time required to complete this tutorial

This tutorial requires approximately 15-20 minutes to complete.

Prerequisites

In order to perform this tutorial, you must have:

v Configured and started a process server.

v Enabled the PMI on the process server.

v Installed and started the Samples Gallery application on the process server.

v Installed and started the business rules sample application on the process server.

Follow the instructions on the Samples Gallery page to set up and run the

business rules sample application.

After all of these prerequisites have been completed, run the business rules sample

application from the Samples Gallery at least once before proceeding with the

tutorial.

Example: Monitoring service component performance: About this task

You will use the business rules sample application for this scenario, where you will

monitor all three of the performance statistics: successes, failures, and response

times. You should have the web page containing this application already open;

keep it open, since you will be running the sample several times after you begin

monitoring. Ensure that you have already run the sample at least once, which will

cause it to appear in the list of functions that you can select to monitor.

Procedure

 1. Open the administrative console.

 2. To monitor a cluster, click Servers > Clusters > cluster_name in the console

navigation tree. To monitor a single process server, click Servers >

Application Servers > server_name in the console navigation tree.

 3. Click the Runtime tab.

 4. Click Performance Monitoring Infrastructure under Performance.

 5. Select Custom.

 6. Expand WBIStats.RootGroup > BR > brsample_module.DiscountRuleGroup

> Operation, and select _calculateDiscount.

 7. Select the check boxes next to BadRequests, GoodRequests, and

ResponseTime, and press Enable.

 8. Click Monitoring and Tuning > Performance Viewer > Current Activity in

the administrative console navigation tree.

 9. Select the check box next to server_name and press Start Monitoring.

10. Click server_name.

11. Expand WBIStats.RootGroup > BR > brsample_module.DiscountRuleGroup

> Operation, and select the check box next to _calculateDiscount.

Chapter 2. Enabling and configuring service component monitoring 13

Results

You should now see a blank graph, and underneath that the names and values for

the three statistics. Select the check boxes next to the statistic names, if they are not

already checked. The PMI is now ready to publish performance data for the

selected event, and the TPV is ready to present the results.

Run the business rules sample application several times, and then watch the

performance viewer as it periodically refreshes. Notice that there are now lines on

the graph, representing the cumulative number of successful requests and the

average response time for each successful request. You can also see the values next

to the name for each statistic below the graph. The line for the number of successes

should continue to rise as you perform additional invocations of the sample, while

the response time line should level off after a few refreshes.

Once you have completed this task, you should understand how WebSphere

Process Server implements performance monitoring of service components. You

will know how to select service components for monitoring, and how the

performance statistics are calculated. You will also be able to start the performance

monitors, and view the performance measurements for your applications as they

are being used.

Performance monitoring can tax system resources; therefore, after you have

completed this task you should stop the monitors. To do this, simply click on the

Tivoli Performance Viewer link, select both the node and the server, and press Stop

Monitoring.

Application Response Measurement statistics for the Service

Component Architecture

There are 25 performance statistics that you can monitor at the Service Component

Architecture level. You can use these Application Response Measurement statistics,

which are either counters or timers, to measure invocations to and responses from

services in a variety of patterns.

The Application Response Measurement (ARM) statistics shown in the following

tables are — in a very simplified manner — time and count measurements of caller

invocations to the Service Component Architecture (SCA) layer, and the results

returned from a service. There are, in fact, a number of service invocation patterns

that vary between synchronous and asynchronous implementations of deferred

responses, results retrievals, callbacks, and one-way invocations. All of these,

however, are between the caller invocation and a service, the response from the

service, or, in some cases, a data source, with the SCA layer interposed in between.

You can specify the ARM statistics that you want to monitor by opening the

Monitoring and Tuning > Request Metrics panel on the administrative console.

Request metrics information might be either saved to the log file for later retrieval

and analysis, be sent to ARM agents, or both. WebSphere Process Server does not

ship an ARM agent; however, it supports the use of agents adhering to ARM 4.0.

You can choose your own ARM implementation provider to obtain the ARM

implementation libraries. Follow the instructions from the ARM provider, and

ensure that the ARM API Java archive (JAR) files found in the ARM provider are

on the class path so that the WebSphere Process Server can load the needed

classes. Then you need to add the following entries into the system properties for

14 Monitoring

each server by selecting from the administrative console Application servers >

server_name > Process Definition > Java Virtual Machine > Custom Properties

before restarting the server(s):

v Arm40.ArmMetricFactory — the full Java class name of your ARM

implementation provider’s metrics factory.

v Arm40.ArmTranReportFactory — the full Java class name of your ARM

implementation provider’s transaction report factory.

v Arm40.ArmTransactionFactory — the full Java class name of your ARM

implementation provider’s transaction factory .

See the WebSphere Application Server documentation for further details on how to

configure the server to collect ARM statistics.

 Table 3. Event types and elements that can produce ARM statistics

Event type Element(s)

Business process Process

Human task Task

Business rule Operation

Business state machine Transition
Guard
Action
EntryAction
ExitAction

Selector Operation

Map Map
Transformation

Mediation OperationBinding
ParameterMediation

Resource adapter InboundEventRetrieval
InboundEventDelivery
Outbound

 Table 4. Common. These statistics are common to all service invocation patterns.

Statistic name Type Description

GoodRequests Counter Number of server invocations not raising

exceptions.

BadRequests Counter Number of server invocations raising

exceptions.

ResponseTime Timer Duration measured on the server side

between the reception of a request and

computing the result.

TotalResponseTime Timer

Duration measured on the caller side, from

the time a caller requests a service to the

time when the result is available for the

caller. Does not include the processing of the

result by the caller.

Chapter 2. Enabling and configuring service component monitoring 15

Table 4. Common (continued). These statistics are common to all service invocation

patterns.

Statistic name Type Description

RequestDeliveryTime Timer

Duration measured on the caller side, from

the time a caller requests a service to the

time when the request is handed over to the

implementation on the server side. In a

distributed environment the quality of this

measurement depends on the quality of

synchronization of system clocks.

ResponseDeliveryTime Timer

The time required to make the result

available to the client. In the case of deferred

response this time doesn’t include the result

retrieve time. In a distributed environment

the quality of this measurement depends on

the quality of synchronization of system

clocks.

 Table 5. Reference. These statistics occur when a caller makes an invocation to the SCA

layer or a data source, without a response from the service.

Statistic name Type Description

GoodRefRequests Counter

Number of caller invocations to the SCA

layer that do not raise exceptions.

BadRefRequests Counter

Number of caller invocations to the SCA

layer that do raise exceptions.

RefResponseTime Timer

Duration measured on the caller side, from

the time the caller makes a request to the

SCA layer and the time when the results of

that call are returned to the caller.

BadRetrieveResult Counter

Number of caller invocations to a data

source that do raise exceptions.

GoodRetrieveResult Counter

Number of caller invocations to a data

source that do not raise exceptions.

RetrieveResultResponseTime Timer

Duration measured on the caller side, from

the time the caller makes a request to the

data source and the time when the data

source response is returned to the caller.

RetrieveResultWaitTime Timer

Duration measured on the caller side if a

timeout occurs.

 Table 6. Target. These statistics occur when there are requests that originate between the

service and the SCA or a data source.

Statistic name Type Description

GoodTargetSubmit Counter

Number of SCA invocations to the service that do

not raise exceptions.

BadTargetSubmit Counter

Number of SCA invocations to the service that do

raise exceptions.

TargetSubmitTime Timer

Duration measured on the server side, from the

time the SCA makes a request to the service and

the time when the results of that call are returned

to the SCA.

16 Monitoring

Table 6. Target (continued). These statistics occur when there are requests that originate

between the service and the SCA or a data source.

Statistic name Type Description

GoodResultSubmit Counter

Number of service invocations to the data source

that do not raise exceptions.

BadResultSubmit Counter

Number of service invocations to the data source

that do raise exceptions.

ResultSubmitTime Timer

Duration measured on the server side, from the

time the service makes a request to the data source

and the time when the results of are returned to

the service.

 Table 7. Callback. These statistics occur when a callback (a ″sibling″ of the original call) is

present on the caller.

Statistic name Type Description

GoodCB Counter Number of SCA invocations to the callback that do not

raise exceptions.

BadCB Counter Number of SCA invocations to the callback that do raise

exceptions.

CBTime Timer Duration from the time the SCA makes a request to the

callback, and the time when the results from the callback

are returned to the SCA.

GoodCBSubmit Counter Number of invocations from the service to the SCA

handling the callback that do not raise exceptions.

BadCBSubmit Counter Number of invocations from the service to the SCA

handling the callback that do raise exceptions.

CBSubmitTime Timer Duration from the time the service makes a request to the

SCA handling the callback, and the time when the results

from the SCA to the service.

The following topics show how these statistics are used in a variety of

implementations:

Synchronous invocations

The ARM performance statistics that can be obtained from a simple SCA call to a

service and the response from the service are described.

Parameters

Event monitoring for SCA components includes the event points that are shown in

black

, while the event points shown in blue

are used only to calculate

and fire PMI/ARM statistics.

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is

created when the calling service component was invoked for the first time. If the

caller is not a service component, the current arm transaction will be used, or a

new will be created. If it is not the starting transaction it will have a parent. This is

represented in the following table and diagram with the notation Xn.Xn+1. These are

used to show the transaction lineage. Every SCA invocation starts a new

Chapter 2. Enabling and configuring service component monitoring 17

transaction, which is parented by the current transaction of the caller. You can

create new transactions and you can access the current transaction, but this will

not modify the SCA transaction lineage.

 Table 8. Arm statistics for synchronous invocations of SCA

Statistics Formula ARM Transaction

TotalResponseTime t3

- t0

X0

.X1

RequestDeliveryTime t1

- t0

X1

.X2

ResponseDeliveryTime t3

- t2

GoodRequests CountEXIT

BadRequests CountFAILURE

ProcessTime t2

- t1

Service

Caller
X0.X1

X1.X2

Execution
thread

EXIT EXIT

SCA

FAILURE FAILURE

t0 t 1

t 3
t 2

ENTRY ENTRY

Deferred response with synchronous implementation

ARM statistics that can be obtained with a synchronous invocation of the request

and the returned result sent as output to a data store are shown for a synchronous

implementation.

Parameters

Event monitoring for SCA components includes the event points that are shown in

black

, while the event points shown in blue

are used only to calculate

and fire PMI/ARM statistics.

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is

created when the calling service component was invoked for the first time. If the

caller is not a service component, the current arm transaction will be used, or a

new will be created. If it is not the starting transaction it will have a parent. This is

represented in the following table and diagram with the notation Xn.Xn+1. These are

used to show the transaction lineage. Every SCA invocation starts a new

transaction, which is parented by the current transaction of the caller. You can

create new transactions and you can access the current transaction, but this will

not modify the SCA transaction lineage.

18 Monitoring

Table 9. Invocation of request and return result

Type Statistics Formula

ARM

Transaction

Common TotalResponseTime t3

- t0

X0.X1

RequestDeliveryTime t’0

- t0

X1.X2

ResponseDeliveryTime N/A N/A

GoodRequests CountEXIT

X1.X2

BadRequests CountFAILURE

ResponseTime t’1

- t’0

Reference

A

GoodRefRequest CountEXIT

X1.X2

BadRefRequests CountFAILURE

RefResponseTime t1

- t0

ServiceCaller

X0.X1

XCURRENT

X1.X2

CommonReference A

Reference B

t'0t
0

t1

t2

t3

t'1

 Table 10. Invocation of output to data source

Type Statistics Formula

ARM

Transaction

Reference B GoodRetrieveResult CountEXIT

X1.X2

BadRetrieveResult CountFAILURE

ResultRetrieveResponseTime Σ t3

– t2

ResultRetrieveWaitTime Σ timeout

Deferred response with asynchronous implementation

ARM statistics from an asynchronous implementation, where the call to the service

and the return result are invoked but the result output is sent to a data store from

the service target, are shown.

Chapter 2. Enabling and configuring service component monitoring 19

Parameters

Event monitoring for SCA components includes the event points that are shown in

black

, while the event points shown in blue

are used only to calculate

and fire PMI/ARM statistics.

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is

created when the calling service component was invoked for the first time. If the

caller is not a service component, the current arm transaction will be used, or a

new will be created. If it is not the starting transaction it will have a parent. This is

represented in the following table and diagram with the notation Xn.Xn+1. These are

used to show the transaction lineage. Every SCA invocation starts a new

transaction, which is parented by the current transaction of the caller. You can

create new transactions and you can access the current transaction, but this will

not modify the SCA transaction lineage.

 Table 11. Invocation of request and return result

Type Statistics Formula ARM Transaction

Common TotalResponseTime t3

- t0

X0.X1

RequestDeliveryTime t’0

- t0

X1.X2

ResponseDeliveryTime t’03

- t’2

GoodRequests CountEXIT

BadRequests CountFAILURE

ResponseTime t’3

- t’0

Reference A GoodRefRequest CountEXIT

X0.X1

BadRefRequests CountFAILURE

RefResponseTime t1

- t0

Target A GoodTargetSubmit CountEXIT

X1.X2

BadTargetSubmit CountFAILURE

TargetSubmitTime t’1

- t’0

20 Monitoring

ServiceCaller

X0.X1 X1.X2

X1.X2

Target A

Target B

Reference A

Reference B

t'0
t
0

t1 t'1

t2 t'2

t3
t'3

Table 12. Invocation of return result to a data store

Type Statistics Formula

ARM

Transaction

Reference B GoodResultSubmit CountEXIT

X0.X1

BadResultSubmit CountFAILURE

ResultResponseTime t’3

- t’2

Target B GoodResultRetrieve CountEXIT

X1.X2

BadResultRetrieve CountFAILURE

ResultRetrieveResponseTime Σ t3

- t2

ResultRetrieveWaitTime Σ timeout

Deferred response with asynchronous result retrieve

The ResultRetrieve ARM statistic can be correlated to some original request using

the ARM transactions only if XPARENT-1

and XPARENT-2

have a common ancestor

transaction. The invocation of request, and result retrieve occur on different threads

Parameters

Event monitoring for SCA components includes the event points that are shown in

black

, while the event points shown in blue

are used only to calculate

and fire PMI/ARM statistics.

Chapter 2. Enabling and configuring service component monitoring 21

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is

created when the calling service component was invoked for the first time. If the

caller is not a service component, the current arm transaction will be used, or a

new will be created. If it is not the starting transaction it will have a parent. This is

represented in the following table and diagram with the notation Xn.Xn+1. These are

used to show the transaction lineage. Every SCA invocation starts a new

transaction, which is parented by the current transaction of the caller. You can

create new transactions and you can access the current transaction, but this will

not modify the SCA transaction lineage.

 Table 13. Invocation of request and return result

Type Statistics Formula

ARM

Transaction

Common TotalResponseTime t3

- t0

X0.X1

RequestDeliveryTime t’0

- t0

X1.X2

ResponseDeliveryTime N/A N/A

GoodRequests CountEXIT

X1.X2

BadRequests CountFAILURE

ResponseTime See specific diagrams

Reference A GoodReferenceRequest CountEXIT

X1.X2

BadReferenceRequests CountFAILURE

ReferenceResponseTime t1

- t0

Caller

X

X'

0

0

.X

.X'

1

1

Reference A

Reference B

t
0

t1

t2

t3

For the right side of the diagram see
the diagrams in the “Deferred response
with synchronous/synchronous
implementations” topics.

The request receive time t'0 is the
same in both cases.

 Table 14. Invocation of request and return result

Type Statistics Formula ARM Transaction

Reference B GoodRetrieveResult CountEXIT

X’0.X’1

BadRetrieveResult CountFAILURE

RetrieveResultResponseTime Σ t3

- t2

RetrieveResultWaitTime Σ timeout

22 Monitoring

Asynchronous callback with synchronous implementation

ARM statistics available when callback requests and callback executions use

different threads on a synchronous implementation.

Parameters

Event monitoring for SCA components includes the event points that are shown in

black

, while the event points shown in blue

are used only to calculate

and fire PMI/ARM statistics.

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is

created when the calling service component was invoked for the first time. If the

caller is not a service component, the current arm transaction will be used, or a

new will be created. If it is not the starting transaction it will have a parent. This is

represented in the following table and diagram with the notation Xn.Xn+1. These are

used to show the transaction lineage. Every SCA invocation starts a new

transaction, which is parented by the current transaction of the caller. You can

create new transactions and you can access the current transaction, but this will

not modify the SCA transaction lineage.

 Table 15. Invocation of request and return result

Type Statistics Formula

ARM

Transaction

Common TotalResponseTime t2

- t0

X0.X1

RequestDeliveryTime t’0

- t0

X1.X2

ResponseDeliveryTime t2

- t’1

GoodRequests CountEXIT

BadRequests CountFAILURE

ResponseTime t3

- t2

Reference GoodRefRequest CountEXIT

X1.X2

BadRefRequests CountFAILURE

RefResponseTime t’1

- t’0

Chapter 2. Enabling and configuring service component monitoring 23

ServiceCaller
X0.X1

X1.X2

Callback

X2.X3

Reference Common

Callback

t'0t
0

t1 t'1

t2

t3

Table 16. Invocation of callback

Type Statistics Formula

ARM

Transaction

Callback GoodCB CountEXIT

X1.X3

BadCB CountFAILURE

CBTime t3

– t2

Asynchronous callback with asynchronous implementation

ARM statistics available for callback requests and callback executions using

different threads with an asynchronous implementation

Parameters

Event monitoring for SCA components includes the event points that are shown in

black

, while the event points shown in blue

are used only to calculate

and fire PMI/ARM statistics.

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is

created when the calling service component was invoked for the first time. If the

caller is not a service component, the current arm transaction will be used, or a

new will be created. If it is not the starting transaction it will have a parent. This is

represented in the following table and diagram with the notation Xn.Xn+1. These are

used to show the transaction lineage. Every SCA invocation starts a new

transaction, which is parented by the current transaction of the caller. You can

create new transactions and you can access the current transaction, but this will

not modify the SCA transaction lineage.

24 Monitoring

Table 17. Invocation of request and return result

Type Statistics Formula ARM Transaction

Common TotalResponseTime t2

- t0

X0.X1

RequestDeliveryTime t’0

- t0

X1.X2

ResponseDeliveryTime t2

- t’2

GoodRequests CountEXIT

BadRequests CountFAILURE

ResponseTime t’3

- t’0

Reference A GoodRefRequest CountEXIT

X0.X1

BadRefRequests CountFAILURE

RefResponseTime t1

- t0

Target A GoodTargetSubmit CountEXIT

X1.X2

BadTargetSubmit CountFAILURE

TargetSubmitTime t’1

- t’0

ServiceCaller

X0.X1

XCURRENT

X1.X2

X1.X2

Callback

X2.X3

'

Reference A

Reference B

Target A

Target B

t
0 t'0

t1
t'1

t2
t'2

t3 t'3

 Table 18. Invocation of callback

Type Statistics Formula ARM Transaction

Reference B GoodCBSubmit CountEXIT

X1.X2

BadCBSubmit CountFAILURE

CBSubmitTime t’3

- t’2

Chapter 2. Enabling and configuring service component monitoring 25

Table 18. Invocation of callback (continued)

Type Statistics Formula ARM Transaction

Target B GoodCB CountEXIT

X0.X1

BadCB CountFAILURE

CBTime t3

- t2

Asynchronous one-way with synchronous implementation

ARM statistics when a call is submitted (fire and forget) with a synchronous

implementation.

Parameters

Event monitoring for SCA components includes the event points that are shown in

black

, while the event points shown in blue

are used only to calculate

and fire PMI/ARM statistics.

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is

created when the calling service component was invoked for the first time. If the

caller is not a service component, the current arm transaction will be used, or a

new will be created. If it is not the starting transaction it will have a parent. This is

represented in the following table and diagram with the notation Xn.Xn+1. These are

used to show the transaction lineage. Every SCA invocation starts a new

transaction, which is parented by the current transaction of the caller. You can

create new transactions and you can access the current transaction, but this will

not modify the SCA transaction lineage.

 Table 19. Invocation of request and return result

Type Statistics Formula

ARM

Transaction

Common TotalResponseTime t1

- t0

X0.X1

RequestDeliveryTime t’0

- t0

X1.X2

ResponseDeliveryTime N/A N/A

GoodRequests CountEXIT

X1.X2

BadRequests CountFAILURE

ResponseTime t’1

- t’0

Service
Caller

X0.X1
X1.X2

t'0t
0

t1 t'1

26 Monitoring

Asynchronous one-way with asynchronous implementation

ARM statistics when a call is submitted (fire and forget) with an asynchronous

implementation.

Parameters

Event monitoring for SCA components includes the event points that are shown in

black

, while the event points shown in blue

are used only to calculate

and fire PMI/ARM statistics.

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is

created when the calling service component was invoked for the first time. If the

caller is not a service component, the current arm transaction will be used, or a

new will be created. If it is not the starting transaction it will have a parent. This is

represented in the following table and diagram with the notation Xn.Xn+1. These are

used to show the transaction lineage. Every SCA invocation starts a new

transaction, which is parented by the current transaction of the caller. You can

create new transactions and you can access the current transaction, but this will

not modify the SCA transaction lineage.

 Table 20. Invocation of request and return result

Type Statistics Formula ARM Transaction

Common TotalResponseTime t1

- t0

XPARENT.XREQUEST

RequestDeliveryTime t’0

- t0

XREQUEST.XPROCESS

ResponseDeliveryTime N/A N/A

GoodRequests CountEXIT

XREQUEST.XPROCESS

BadRequests CountFAILURE

ResponseTime t’2

- t0

Reference GoodRefRequest CountEXIT

XPARENT.XREQUEST

BadRefRequest CountFAILURE

RefResponseDuration t1

- t0

Reference

Completion
Report
Utility

X .X
0 1

X .X
1 2

X .X
1 2

t'0t
0

t1 t'1

Service

Caller

'

t2

Chapter 2. Enabling and configuring service component monitoring 27

Monitoring service component events

WebSphere Process Server monitoring can capture the data in a service component

at a certain event point. You can view each event in a log file, or you can use the

more versatile monitoring capabilities of a Common Event Infrastructure server.

Applications that are deployed on the process server may contain a specification of

service component events that will be monitored for as long as the application

runs. If you developed the application using the WebSphere Integration Developer,

then you can specify service component events to monitor continuously. This

specification is included as part of the application, and comes in the form of file

with a .mon extension that is read by the process server when the application is

deployed. Once the application is started, you will not be able to turn off

monitoring of the service components specified in the .mon file. The

documentation for the WebSphere Process Server does not address this type of

continuous monitoring. For more information about this subject, refer to the

WebSphere Integration Developer documentation.

You can use WebSphere Process Server to monitor service component events that

are not already specified in the .mon file of the application. You can configure the

process server to direct the output of the event monitors to a log file, or to a

Common Event Infrastructure server database. The monitored events will be

formatted using the Common Base Event standard, but you can regulate the

amount of information contained in each event. Use the monitoring facilities in

WebSphere Process Server to diagnose problems, analyze the process flow of your

applications, or audit how your applications are used.

Enabling monitoring of business process and human task

events

You must configure WebSphere Process Server to support monitoring of business

process and human task service components before you do any actual monitoring

of those service component kinds.

Before you begin

You must have previously created the business process container and the human

task container on the process server.

About this task

Perform this task to enable Common Event Infrastructure monitoring support on

WebSphere Process Server.

Procedure

1. Open the administrative console.

2. If Business Process Choreographer is configured on a single server, complete

the following steps to enable the server to generate business process events:

a. In the left frame, expand Servers and click Application servers >

server_name

b. Select Containers Settings > Business Process Choreographer container

settings > Business Process Choreographer container.

c. Click State Observers.

28 Monitoring

d. Ensure that the boxes for Audit Logging and Common Event Infrastructure

Logging are checked for both the Business Flow Manager and the Human

Task Manager.If the check boxes are not selected, then you must select

them and restart the server.
3. If Business Process Choreographer is configured on a cluster, complete the

following steps to enable the cluster to generate business process events:

a. Select Clusters > cluster_name.

b. Select Business Process Choreographer container settings > Business

Process Choreographer container.

c. Click State Observers.

d. Ensure that the boxes for Audit Logging and Common Event Infrastructure

Logging are checked for both the Business Flow Manager and the Human

Task Manager.If the check boxes are not selected, then you must select

them and restart the cluster.

What to do next

If you had to select any of the boxes, then you must restart the server or cluster for

the changes to take effect.

Configuring logging for service component events

You may choose to use the logging facilities of WebSphere Application Server to

capture the service component events fired by process server monitoring. Use the

loggers to view the data in events when you diagnose problems with the

processing of your applications.

WebSphere Process Server uses the extensive logging facilities of the underlying

WebSphere Application Server to allow you to capture the events fired by process

server monitoring at service component event points. You can use the

administrative console to specify the particular service component event points

that you want to monitor, the amount of payload detail contained in the resulting

service component events, and the method used to publish the results, such as to a

file of a certain format, or directly to a console. Monitor logs contain events

encoded in Common Base Event format, and you can use the information

contained in the event elements to trace problems with the processing of your

service components.

The functionality of WebSphere Application Server logging and tracing capabilities

is documented in considerable detail in the WebSphere Application Server

documentation, with complete details of how logging and tracing is used within

the entire product. This section provides only supplemental information about

logging as it relates to the service components that are specific to WebSphere

Process Server. Consult the information in the WebSphere Application Server

documentation for using logging and trace with other components of the entire

product.

Enabling the diagnostic trace service

Use this task to enable the diagnostic trace service, which is the logging service

that can manage the amount of detail contained in the service component event.

Before you begin

You must have the business process and human task containers configured to

allow Common Event Infrastructure (CEI) logging and audit logging.

Chapter 2. Enabling and configuring service component monitoring 29

About this task

The diagnostic trace service is the only logger type that can provide the level of

detail required to capture the detail contained in the elements of service

component events. You must enable the diagnostic trace service before you start

the process server in order to log events. The service must also be enabled if you

use the administrative console to select service component event points for

monitoring using the CEI server.

Procedure

1. In the navigation pane, click Servers > Application Servers.

2. Click the name of the server that you want to work with.

3. Under Troubleshooting, click Diagnostic Trace service.

4. Select Enable log on the Configuration tab.

5. Click Apply, and then Save.

6. Click OK.

What to do next

If the process server was already started, then you must restart it for the changes

to take effect.

Configuring logging properties using the administrative console

Use this task to specify that the monitoring function publish service component

events to a logger file.

About this task

Before WebSphere Process Server applications can log monitored events, you must

specify the service component event points that you want to monitor, what level of

detail you require for each event, and format of the output used to publish the

events to the logs. Using the administrative console, you can:

v Enable or disable a particular event log.

v Specify the level of detail in a log.

v Specify where log files are stored, how many log files are kept, and a format for

log output.

You can change the log configuration statically or dynamically. Static configuration

changes affect applications when you start or restart the application server.

Dynamic or run time configuration changes apply immediately.

When a log is created, the level value for that log is set from the configuration

data. If no configuration data is available for a particular log name, the level for

that log is obtained from the parent of the log. If no configuration data exists for

the parent log, the parent of that log is checked, and so on up the tree, until a log

with a non-null level value is found. When you change the level of a log, the

change is propagated to the children of the log, which recursively propagates the

change to their children, as necessary.

Procedure

 1. Enable logging and set the output properties for a log:

 2. In the navigation pane, click Servers > Application Servers.

 3. Click the name of the server that you want to work with.

30 Monitoring

4. Under Troubleshooting, click Logging and tracing.

 5. Click Change Log Detail levels.

 6. The list of components, packages, and groups displays all the components that

are currently registered on the running server; only process server events that

have been invoked at least once will appear on this list. All process server

components with event points that can be logged are listed under one of the

components that start with the name WBILocationMonitor.LOG.

v To select events for a static change to the configuration, click the

Configuration tab.

v To select events for a dynamic change to the configuration, click the

Runtime tab.
 7. Select the event or group of events that you want to log.

 8. Set the logging level for each event or group of events.

Note: Only the levels FINE, FINER, and FINEST are valid for CEI event

logging.

 9. Click Apply.

10. Click OK.

11. To have static configuration changes take effect, stop then restart the process

server.

Results

By default, the loggers will publish their output to the job log.

Tutorial: Logging service component events

This tutorial will give you an example of how to set up service component event

monitors that are published to the logger, and how to view the events in the log

file. The scenario you will follow for this example will show you how to select

service component event points for monitoring in applications already deployed

and running on your process server. You will see how the monitoring function fires

an event whenever the processing of an application reaches one of those event

points. Each of those fired events takes the form of a standardized Common Base

Event, which is published as an XML string directly to a log file.

Objectives of this tutorial

After completing this tutorial you will be able to:

v Select service component event points to monitor, with the output published to

the process server loggers.

v View the stored events in the log files.

Time required to complete this tutorial

This tutorial requires approximately 15-20 minutes to complete.

Prerequisites

In order to perform this tutorial, you must have:

v Configured and started a process server.

v Configured Common Event Infrastructure.

v Enabled the diagnostic trace service on the process server.

Chapter 2. Enabling and configuring service component monitoring 31

v Installed and started the Samples Gallery application on the process server.

v Installed and started the business rules sample application on the process server.

Follow the instructions on the Samples Gallery page to set up and run the

business rules sample application.

After all of these prerequisites have been completed, run the business rules sample

application from the Samples Gallery at least once before proceeding with the

tutorial.

Example: Monitoring events in the logger: About this task

You will use the business rules sample application for this scenario, so you should

already have the web page containing this application already open. Keep it open,

since you will be running the sample after you specify monitoring parameters.

Ensure that you have already run the sample at least once, so that it will appear in

the list of functions that you can select to monitor.

Procedure

 1. Open the administrative console.

 2. In the navigation pane, click Servers > Application Servers.

 3. Click server_name.

 4. Under Troubleshooting, click Logging and tracing

 5. Click Change Log Detail levels

 6. Select the Runtime tab.

 7. Expand the tree for WBILocationMonitor.LOG.BR and you will see seven

event types under the WBILocationMonitor.LOG.BR.brsample.* element. The

first event is called

WBILocationMonitor.LOG.BR.brsample_module.DiscountRuleGroup, which

includes a single function, named Operation._calculateDiscount, with the

following natures:

v ENTRY

v EXIT

v FAILURE

v SelectionKeyExtracted

v TargetFound
 8. Click on each of the events and select finest.

 9. Click OK.

10. Switch the business rules sample application page, and run the application

once.

11. Use a text editor to open the trace.log file located in the profile_root/logs/
server_name folder on your system.

Results

You should see lines in the log containing the business rule events fired by the

monitor when you ran the sample application. The main thing you will probably

notice is that the output consists of lengthy, unparsed XML strings conforming to

the Common Base Event standard. Examine the ENTRY and EXIT events, and you

will see that business object — which was included because you selected the finest

level of detail — is encoded in hexadecimal format. Compare this output with

events published to the Common Event Infrastructure server, which parses the

XML into a readable table and decodes any business object data into a readable

32 Monitoring

format. You may want to go back through this exercise and change the level of

detail from finest to fine or finer, and compare the differences between the events.

After completing this exercise, you should understand how to select service

component event points for monitoring to the logger. You have seen that the

events fired in this type monitoring have a standard format, and that the results

are published as a string in raw XML format directly to a log file. Viewing the

published events is simply a matter of opening the log file in a text editor, and

deciphering the contents of individual events.

What to do next

If you no longer want to monitor the business rules sample application, you can go

back to through the steps outlined here and reset the level of detail for the sample

events to info.

Audit logging for business rules and selectors

You can set up WebSphere Process Server to automatically log any changes made

to business rules and selectors.

You can configure your server to automatically detect when changes are made to

business rules and selectors, and create an entry in a log file detailing the changes.

You can choose to have the log entries written to either the standard JVM

SystemOut.log file, or to a custom audit log file of your choice. Depending on how

the changes are made, the process server where each business rule or selector

change is made will log the:

v name of the person making the change

v location from where the change request originated

v old business rule or selector object

v new business rule or selector replacing the old object

The business rule and selector objects are the complete business rule set, decision

table, business rule group, or selector for both the business rule or selector that is

replaced and the new version which replaced it. You will have to examine the logs

(the audit output cannot be directed to the Common Event Infrastructure database)

to determine the changes that were made, by comparing the old and new business

rules or selectors. The following scenarios describe the circumstance when logging

occurs, if it has been configured, and the contents of the log entry:

 Scenario Result Log entry contents

Publish business rules using

the Business Rule Manager

Request

User ID, Server name

(including Cell and Node, if

applicable), old business rule

ruleset, new ruleset.

Failure

User ID, Server name

(including Cell and Node, if

applicable), old business rule

ruleset, new ruleset.

Repository database update

and commit (from attempt to

publish using the Business

Rule Manager)

Success

User ID, old ruleset, new

ruleset.

Failure

User ID, new ruleset.

Chapter 2. Enabling and configuring service component monitoring 33

Scenario Result Log entry contents

Exporting a selector or

business rule group

Request

User ID, selector or business

rule group name.

Success

User ID, Server name

(including Cell and Node, if

applicable), copy of exported

selector or business rule

group

Failure

User ID, Server name

(including Cell and Node, if

applicable), selector or

business rule group name.

Importing a selector or

business rule group

Request

User ID, copy of new

selector or business rule

group.

Success

User ID, Server name

(including Cell and Node, if

applicable), copy of imported

selector or business rule

group, copy of selector or

business rule group that was

replaced by the imported

version.

Failure

User ID, Server name

(including Cell and Node, if

applicable), copy of selector

or business rule group that

was to be imported.

Application install

Success

User ID, Server name

(including Cell and Node, if

applicable), selector or

business rule group name.

Failure

User ID, Server name

(including Cell and Node, if

applicable), selector or

business rule group name.

Application update (through

the administrative console or

wsadmin command)

Success

User ID, Server name

(including Cell and Node, if

applicable), copy of new

selector or business rule

group, copy of old selector

or business rule group.

Failure

User ID, Server name

(including Cell and Node, if

applicable), copy of new

selector or business rule

group

Previously deployed

application with existing

business rules, selectors or

both is started

Success

Server name (including Cell

and Node, if applicable),

copy of selector or business

rule group.

Failure

Server name (including Cell

and Node, if applicable),

copy of selector or business

rule group.

34 Monitoring

Monitoring service components with the Common Event

Infrastructure server

You can choose to have service component monitoring results published to a

Common Event Infrastructure server. Service component event points can be

specified for monitoring with the Common Event Infrastructure server on a

permanent basis for viewing and managing application flow, or on an ad-hoc basis

for troubleshooting problems.

You can use WebSphere Process Server monitoring to publish the data in service

component event points within service component events that are fired across the

Common Event Infrastructure (CEI) bus. This approach to monitoring allows you

much more flexibility in analyzing your service component activities on your

system. You can also use browsers optimized for CEI events, such as the Common

Base Event browser, which is included with the process server.

The events are structured identically to the events sent to loggers, but are stored

on a database which can be accessed by viewers designed specifically for analyzing

service component events. Service component event points can be specified within

an application, when it is created, for continual monitoring at all times after the

application is deployed and running on a server -- a method known as ″static″

monitoring. You would perform static monitoring on service component event

points that are of particular importance in the proper flow of component

processing on your system. With this information, you can easily oversee the

overall actions of, and interactions between, the service component processes

running on your system. You would also have the ability to quickly detect

deviations from the normal flow of these processes, which may indicate that your

service components are not working properly.

To configure static monitoring of service components, you would use WebSphere

Integration Developer to select the service component event points in your

applications that will be deployed on the process server. The selections are

specified in the form of an XML file with a .mon extension that will be deployed

along with the application. Once deployed on a running server, you will not be

able to turn off or lower the detail level of the monitoring for events specified in

the .mon file of the application; you must stop the server and undeploy the

application to stop this kind of monitoring. Consult the WebSphere Integration

Developer Information Center for details on creating and deploying applications

with .mon files.

You can also select service component event points for ″dynamic″ monitoring,

which can be enabled and disabled on an application already deployed to a

running server. The rationale for performing dynamic monitoring using the CEI

server is essentially the same as that for logging: to diagnose and troubleshoot

problems on your system. The output is essentially the same as that which is

published to loggers, with Common Base Event elements comprising the structure

for each event fired across the CEI bus. Also, like logging data, the differences in

detail levels affect only how much of the payload is encoded within the event.

Configuring service component event monitoring using the

administrative console

Use the administrative console to dynamically specify the monitoring function to

publish service component events to the Common Event Infrastructure server.

Chapter 2. Enabling and configuring service component monitoring 35

Before you begin

You must enable the diagnostic trace service, just as you would with the logger.

After you restart your server you would invoke the events you want to monitor

once, because that will cause them to appear on the list of events available for

monitoring.

About this task

This method of selecting events for monitoring is used for applications that have

already been deployed on a process server. Events that are specified in a .mon file

that is deployed with the application on the process server are monitored by the

Common Event Infrastructure (CEI) database regardless of any changes you make

here. For those events, you can only specify a greater level of detail to be captured

and published to the CEI database. The output that is published to the CEI

database is very similar to that published by loggers.

Procedure

1. From the administrative console, click Troubleshooting > Logging and tracing.

2. Click Change Log Detail levels

3. The list of components, packages, and groups displays all the components that

are currently registered on the running server; only process server events that

have been invoked at least once appear on this list. All process server events

that can be logged are listed under one of the components that start with the

name WBILocationMonitor.CEI.

v To make a static change to the configuration, click the Configuration tab.

v To change the configuration dynamically, click the Runtime tab.
4. Select an event or group of events to monitor.

5. Click the level of detail that you want to capture for each event.

Note: Only the levels FINE, FINER, and FINEST are valid for CEI events.

6. Click Apply, and then Save.

7. Click OK.

8. If you made a static change to the configuration, then you will have to restart

the process server for the changes to take effect.

Results

You can view the monitored event results in the Common Base Event browser.

Tutorial: Using the Common Event Infrastructure server for event

monitoring

This tutorial will guide you through an example demonstrating how to set up

service component event monitors that are published to the Common Event

Infrastructure (CEI) server, and how to view those stored events on the Common

Base Event browser. The example you will use in this scenario does not involve

static monitoring, whereby an application deployed with a .mon file will

continually monitor specific service components event points. For information

about how to perform static monitoring, consult the IBM WebSphere Integration

Developer Information Center.

The scenario you will follow for this example, instead, will show you how to select

for monitoring event points on service components in applications already

deployed and running on your process server. You will see how the monitoring

36 Monitoring

function fires an event whenever the processing of an application reaches one of

those event points. Each of those fired events are published to the CEI server,

which will store the event information about its database. You will use the

Common Base Event browser to view the events.

Objectives of this tutorial

After completing this tutorial you will be able to:

v Select service component event points to monitor, with events published to the

CEI server.

v View the stored events with the Common Base Event browser.

Time required to complete this tutorial

This tutorial requires approximately 15-20 minutes to complete.

Prerequisites

In order to perform this tutorial, you must have:

v Configured and started a process server.

v Configured the CEI and its database.

v Enabled the diagnostic trace service on the process server.

v Installed and started the Samples Gallery application on the process server.

v Installed and started the business rules sample application on the process server.

Follow the instructions on the Samples Gallery page to set up and run the

business rules sample application.

After all of these prerequisites have been completed, run the business rules sample

application from the Samples Gallery at least once before proceeding with the

tutorial.

Example: Monitoring with the Common Event Infrastructure server: About this

task

You will use the business rules sample application for this scenario; consequently,

you should already have the web page containing this application already open.

Keep it open, since you will be running the sample after you specify monitoring

parameters. Ensure that you have already run the sample at least once, because

that will cause it to appear in the list of functions that you can select to monitor.

Procedure

 1. Open the administrative console.

 2. In the navigation pane, click Servers > Application Servers.

 3. Click server_name.

 4. Under Troubleshooting, click Logging and tracing

 5. Click Change Log Detail levels

 6. Select the Runtime tab.

 7. Expand the tree for WBILocationMonitor.CEI.BR and you will see five event

types under the WBILocationMonitor.CEI.BR.brsample.* element. Each event

type includes the name

WBILocationMonitor.CEI.BR.brsample_module.DiscountRuleGroup,

appended by the function Operation._calculateDiscount, and the following

natures:

Chapter 2. Enabling and configuring service component monitoring 37

v ENTRY

v EXIT

v FAILURE

v SelectionKeyExtracted

v TargetFound
 8. Click on each of the events and select finest.

 9. Click OK.

10. Switch the business rules sample application page, and run the application

once.

11. Go back to the administrative console, and select Integration Applications >

Common Base Event Browser from the navigation pane.

12. If you are running your server on node within a Network Deployment

environment, then you may need to modify the Event Data Store field to

include to the names of your server and node. Enter the string in the

following form: ’cell/nodes/node_name/servers/server_name/ejb/com/ibm/
events/access/EventAccess’.

13. Press Get Events.

Results

You should now see a list in the upper pane of the Common Base Event browser

of the four business rule events that were published to the CEI server when you

ran the sample application. Select one of the events, and you will be shown the

contents of the event in the lower pane. Compare this to the events published to

the loggers. Notice that the browser has parsed the original XML string that was

published to the CEI server, and that the business object code in the ENTRY and

EXIT events was converted from the original hexadecimal format to readable XML.

You may want to go back through this exercise and change the level of detail from

finest to fine or finer, and compare the differences between the events.

After completing this exercise, you should understand how to select service

component event points for monitoring using the CEI server. You have seen that

the events fired in this type monitoring have a standard format, and that the

results are published to a database. You should also be able to use the Common

Base Event browser to retrieve events from the database, and view the information

for individual events in a parsed table format on the browser.

What to do next

If you no longer want to monitor the business rules sample application, you can go

back to through the steps outlined here and reset the level of detail for the sample

events to info.

Session monitoring

You can monitor multiple events that are part of the same session, by using the

Common Base Event browser to find all events on the Common Event

Infrastructure database that contain the identical session ID attribute.

WebSphere Process Server has enhanced capabilities with which you can identify

all of the service component events that are part of a single session. The standard

elements for the Common Base Event include an attribute under the

contextDataElement element, called WBISessionID. A unique identifier for an

individual session is stored in this attribute, for all service component events that

38 Monitoring

were part of that session. You can use the SessionID field in the Common Base

Event browser to search for events stored on the Common Event Infrastructure

(CEI) database that match the session ID you specify. With this capability, you can

easily review the process flow and contents of all the service component events.

You can use this information to assess the efficiency of your applications, and aid

you in diagnosing problems that occur only under certain circumstances.

You can use the Common Base Event browser to view the returned list of events

and their associated contents. If you click the All Events view, you will see two

columns named Failed and Business Process. If a particular event has a link in the

Failed column, you can click that link to view more details about the failed event.

Similarly, if there is a link in the Business Process associated with a particular

event, you can click that link to open the Business Process Explorer and view

further information about the business process or human task event.

Chapter 2. Enabling and configuring service component monitoring 39

40 Monitoring

Chapter 3. Viewing monitored events

There are a number of ways for you to view the published results of your

monitored events, depending on the type of monitoring you are using. This section

presents methods that you can use to view performance data, event logs, and

service component events stored on a Common Event Infrastructure database

Viewing performance metrics with the Tivoli Performance Viewer

This topic explains how you can use the Tivoli Performance Viewer to start and

stop performance monitoring; view Performance Monitoring Infrastructure data in

chart or table form as it occurs on your system; and, optionally, log the data to a

file that you can later review in the same viewer.

Before you begin

It is assumed that one or more servers have been created and are running on the

node, that the Performance Monitoring Infrastructure (PMI) is enabled, and that

the service component event points that you want to monitor have been invoked at

least once so that they can be selected from within the viewer.

About this task

The Tivoli Performance Viewer (TPV) is a powerful application that allows you

view a variety of details of all aspects of the performance of your process server.

The section entitled ″Monitoring performance with Tivoli Performance Viewer″ in

the contains details on how to use this tool for a variety of purposes, and you

should consult this resource for complete instructions on using this program. This

section will be limited to discussing the viewing of performance data for

WebSphere Process Server-specific events.

The performance viewer enables administrators and programmers to monitor the

current health of WebSphere Process Server. Because the collection and viewing of

data occurs on the process server, performance is affected. To minimize

performance impacts, monitor only those servers whose activity you want to

monitor.

Note: When viewing these statistics, you should not mix counter-type statistics

with duration-type statistics. Counters are cumulative, and the scales against which

they are graphed them can quickly grow depending on your application. Duration

statistics, in contrast, tend to remain within a certain range because they represent

the average amount of time that it takes your system to process each event.

Consequently, the disparity between the statistics and their relative scales may

cause one or the other type of statistic to appear skewed in the viewer graph.

v View current performance activity

1. Click Monitoring and Tuning > Performance Viewer > Current Activity in

the administrative console navigation tree.

2. Select Server, and click the name of the server whose activity you want to

monitor. You can alternatively select the check box for the server whose

activity you want to monitor, and click Start Monitoring. To start monitoring

multiple servers at the same time, select the servers and click Start

Monitoring.

© Copyright IBM Corp. 2006, 2008 41

3. Select Performance Modules.

4. Select the check box beside the name of each performance module that you

want to view. All process server-specific events that emit performance

statistics, and that have been invoked at least once, are listed under the

WBIStats.RootGroup hierarchy. Expand the tree by clicking + next to a node

and shrink it by clicking – next to a node.

5. Click on View Modules. A chart or table providing the requested data is

displayed on the right side of the page. Charts are displayed by default.

Each module has several counters associated with it. These counters are

displayed in a table underneath the data chart or table. Selected counters are

displayed in the chart or table. You can add or remove counters from the

chart or table by selecting or clearing the check box next to them. By default,

the first three counters for each module are shown.

You can select up to 20 counters and display them in the TPV in the

Current® Activity mode.

6. Optional: To remove a module from a chart or table, clear the check box next

to the module and click View Modules again.

7. Optional: To view the data in a table, click View Table on the counter

selection table. To toggle back to a chart, click View Graph.

8. Optional: To view the legend for a chart, click Show Legend. To hide the

legend, click Hide Legend.

9. When you have finished monitoring the performance of your events, click on

Tivoli Performance Viewer, select the server you were monitoring, and click

Stop Monitoring.
v Log performance statistics

While monitoring is active on a server, you can log the data from all the PMI

counters that are currently enabled and record the results in a TPV log file. You

can view the TPV log file for a particular time period multiple times, selecting

different combinations of up to 20 counters each time. You have the flexibility to

observe the relationships among different performance measures in the server

during a particular period of time.

1. Click on Start Logging when viewing summary reports or performance

modules.

2. When finished, click Stop Logging. By default, the log files are stored in the

profile_root/logs/tpv directory on the node on which the server is running.

The TPV automatically compresses the log file when it finishes writing to it

to conserve space. At this point, there must only be a single log file in each

compressed file and it must have the same name as the compressed file.

3. Click Monitoring and Tuning > Performance Viewer > View Logs in the

administrative console navigation tree to view the logs

Viewing and interpreting service component event log files

This topic discusses how you would interpret the information in a log file

generated by service component monitoring. You can view the log files in the log

viewer on the administrative console, or in a separate text file editor of your

choice.

Events fired to the logger by service component monitoring are encoded in

Common Base Event format. When published to a log file, the event is included as

a single, lengthy line of text in XML tagging format, which will also include

several logger-specific fields, as outlined below. You should consult the event

catalog section of this documentation for details on deciphering the Common Base

42 Monitoring

Event coding of the logged event. Use this section to understand the other fields

contained in each entry of the log file, and how the format you chose for the log

file when you configured the logger is structured.

Basic and advanced format fields

On a process server, logging output can be directed either to a file or to an

in-memory circular buffer. If trace output is directed to the in-memory circular

buffer, it must be dumped to a file before it can be viewed. Output is generated as

plain text in either basic, advanced or log analyzer format as specified by the user.

The basic and advanced formats for output are similar to the basic and advanced

formats that are available for the message logs. Basic and Advanced Formats use

many of the same fields and formatting techniques. The fields that can be used in

these formats include:

TimeStamp

The timestamp is formatted using the locale of the process where it is

formatted. It includes a fully qualified date (YYMMDD), 24 hour time with

millisecond precision and the time zone.

ThreadId

An 8 character hexadecimal value generated from the hash code of the

thread that issued the trace event.

ThreadName

The name of the Java thread that issued the message or trace event.

ShortName

The abbreviated name of the logging component that issued the trace

event. This is typically the class name for WebSphere Process Server

internal components, but may be some other identifier for user

applications.

LongName

The full name of the logging component that issued the trace event. This is

typically the fully qualified class name for WebSphere Process Server

internal components, but may be some other identifier for user

applications.

EventType

A one character field that indicates the type of the trace event. Trace types

are in lower case. Possible values include:

1 a trace entry of type fine or event.

2 a trace entry of type finer.

3 a trace entry of type finest, debug or dump.

Z a placeholder to indicate that the trace type was not recognized.
ClassName

The class that issued the message or trace event.

MethodName

The method that issued the message or trace event.

Organization

The organization that owns the application that issued the message or trace

event.

Product

The product that issued the message or trace event.

Component

The component within the product that issued the message or trace event.

Basic format

Trace events displayed in basic format use the following format:

Chapter 3. Viewing monitored events 43

<timestamp><threadId><shortName><eventType>[className][methodName]<textmessage>

 [parameter 1]

 [parameter 2]

Advanced format

Trace events displayed in advanced format use the following format:

<timestamp><threadId><eventType><UOW><source=longName>[className][methodName]

<Organization><Product><Component>[thread=threadName]

<textMessage>[parameter 1=parameterValue][parameter 2=parameterValue]

Log analyzer format

Specifying the log analyzer format allows you to open trace output using the Log

Analyzer tool, which is an application included with WebSphere Application

Server. This is useful if you are trying to correlate traces from two different server

processes, because it allows you to use the merge capability of the Log Analyzer.

Viewing events with the Common Base Event browser

Use the Common Base Event browser to select, sort, and view events.

Before you begin

This task assumes you are logged into the server administrative console.

About this task

The event browser uses the event access interface to query event data. The results

of the query are shown in the browser.

Procedure

1. Begin by opening the event browser. Click Integration Applications and then

Common Base Event Browser in the navigation pane of the administrative

console.

2. Specify the events you want to view.

3. Select the view of the returned events.

4. In any of the browser panels, when you have finished selecting search or sort

criteria, click the Get Events button at the bottom of the browser panel to

display the events.

Specifying the events to view

How to use the Common Base Event browser to specify search criteria for

querying events in the event database.

Before you begin

This task assumes that you have already opened the event browser and are

viewing the Get Events panel.

The Event Data Store Properties fields require completion. The Event Filter

Properties fields are optional, and you can narrow your events search based on

time, date, server name, sub-component name, and event severity parameters.

Procedure

44 Monitoring

1. Required: Specify the Event Data Store to search.

The field is a Java Naming and Directory Interface (JNDI) name, an Enterprise

JavaBeans (EJB) reference that can be configured in the administrative console.

The server default is java:comp/env/eventsaccess, but you may need to

specify a different name if you are working in a Network Deployment

environment (see the WebSphere Application Server Network Deployment,

version 6.1 documentation for more details about JNDI naming).

 2. Required: Specify the Event Group to search.

This is the event group from which events are retrieved. The default group is

All events.

 3. Required: Specify the number of events to retrieve.

The maximum number of events to search is 500.

 4. Optional: Specify the Creation Date (calendar period) for the report.

Enter the start and end dates.

 5. Optional: Specify the Creation Time (time period) for the report.

Enter the start and end times.

 6. Optional: Specify the server name.

 7. Optional: Specify the sub-component name, if applicable.

 8. Optional: Specify an event’s priority. The range of events priorities to retrieve

is from 0 (lowest priority) to 100 (highest priority).

 9. Optional: Specify an event’s severity.

The range of events severities to retrieve is from 0 (least severe) to 70 (most

severe).

10. Click Get Events.

Results

The number of Common Base Events matching the search criteria is displayed. If

the results you queried are not displayed, see the ″Troubleshooting the Common

Base Event browser″ topic in the Troubleshooting and Support PDF file.

To view the returned events, select a view from the navigation bar. You can click

All Events, BPEL Process Events, User Data Events, or Server Events. When you

view event data, you can change your search criteria at any time by clicking Get

Events.

What to do next

After events are returned, you can work with them to get various levels of event

detail.

Working with events returned from the event browser

You use the event browser to view the events returned from a query.

Before you begin

This task acts on data that is returned by a submitted query, as described in the

topic Specifying the events to view.

About this task

The query returns all the events that meet your criteria.

Chapter 3. Viewing monitored events 45

Procedure

1. Click a view from the navigation bar.

The navigation bar offers the following views of the returned query:

All Events

All the events returned.

BPEL Process Events

Business Process Choreographer events for a specific process instance.

User Data Events

Events with the extension name ECS:UserDataEvent. This event type is

created by the addUserDataEvent method of the ECSEmitter class.

Server Events

Events for a specific server.
2. Perform one of the following actions.

v If you click BPEL Process Events in step 1, you must click a process

template, and then a process instance.

v If you click Server Events in step 1, you must click a server.
3. Click an event, to display the event data in the pane at the bottom of the

browser window.

Troubleshooting the Common Base Event browser

There are four primary conditions under which you are unable to access the

Common Base Event browser.

Conditions

“Cannot find server”

The server is unavailable. When you attempt to launch the event browser

URI, a “Cannot find server” browser page will be returned, which

indicates that the server is unavailable. In this case, you need to contact the

server administrator to determine the cause of the problem.

“File not found”

The server is available; however, the event browser application may not be

installed or started on the server. When you attempt to launch the event

browser URI, a “File not found” browser page will be returned, which

indicates that the server is available, but the URI is not available on that

server. In this case, you need to contact the server administrator to

determine the cause of the problem.

Logon panel appears

The server and the event browser are available; however, you have not

been mapped to the proper role to allow access to the event browser. You

will be prompted with a logon panel. When you enter your userID and

password, attempting to log in, the login will fail. In this case, you need to

contact the server administrator to get the proper authorization to launch

the event browser.

Error message on “Get event data” panel

The server and the event browser are available, and you have the proper

authority to gain access; however, the Common Event Infrastructure server

is unavailable. An error message will be displayed on the event browser

Get Events panel, when you click the Get Events button. The error

information is logged to the message log.

46 Monitoring

Chapter 4. Event catalog

The event catalog contains the specifications for all the events that can be

monitored for each service component type, as well as the associated Common

Base Event extended data elements produced by each event. You should use the

information presented in this section as reference material that will enable you to

understand how individual events are structured. This knowledge will help you

decipher the information contained in each event, so that you can quickly identify

the pieces of information you need from the relatively large amount of data

generated by each event. The information included in this section covers the

structure and standard elements of the Common Base Event; the list of events for

the Business Process Choreographer service components and WebSphere Process

Server-specific service components; and, the extensions to the Common Base Event

unique to each event type. There is also a discussion of how business objects that

may be processed by a service component are captured in service component

events.

When an event of a given type is fired across the Common Event Infrastructure

(CEI) bus to the CEI server or to a logger, it takes the form of a Common Base

Event — which is, essentially, an XML encapsulation of the event elements created

according to the event catalog specification. The Common Base Event includes a

set of standard elements, process server component identification elements, Event

Correlation Sphere identifiers, and additional elements unique to each event type.

All of these elements are passed to the CEI server or logger whenever an event is

fired by a service component monitor, with one exception: if the event includes the

business object code within the payload, you may specify the amount of business

object data that you want to include in event.

The Common Base Event standard elements

The elements of the Common Base Event that are included in all events fired from

service component monitoring are listed here.

 Attribute Description

version Set to 1.0.1.

creationTime The time at which the event is created, in UTC.

globalInstanceId The identifier of the Common Base Event instance. This ID

is automatically generated.

localInstanceId This ID is automatically generated (may be blank).

severity The impact that the event has on business processes or on

human tasks. This attribute is set to 10 (information).

Otherwise, it is not used.

priority Not used.

reporterComponentId Not used.

locationType Set to Hostname.

location Name of the server region.

application Not used.

executionEnvironment A string that identifies the operating system.

© Copyright IBM Corp. 2006, 2008 47

Attribute Description

component Process server version. For business processes and human

tasks: Set to WPS#, followed by the identification of the

current platform and the version identification of the

underlying software stack.

componentType The component QName, based on the Apache QName

format.

For business processes, set to:

 www.ibm.com/namespaces/autonomic/Workflow_Engine

For human tasks, set to:

 www.ibm.com/xmlns/prod/websphere/scdl/human-task

subComponent The observable element name.

 For business processes, set to BFM.

For human tasks, set to HTM.

componentIdType set to ProductName.

instanceId The identifier of the server. This identifier has the format

cell_name/node_name/server_name. The delimiters are

operating system dependent.

processId The process identifier of the operating system.

threadId The thread identifier of the Java virtual machine (JVM).

Situation Type The type of situation that caused the event to be reported.

For process server-specific components, set to

ReportSituation.

Situation Category The category of the type of situation that caused the event

to be reported. For process server-specific components, set

to STATUS.

Situation Reasoning Scope The scope of the impact of the situation reported. For

process server-specific components, set to EXTERNAL.

ECSCurrentID The value of the current Event Correlation Sphere ID.

ECSParentID The value of the parent Event Correlation Sphere ID.

WBISessionID The value of the current Session ID.

extensionName Set to the event name.

Business objects in events

Business object data is, starting with version 6.1, carried within the event in XML

format. The Common Base Event format includes an xs:any schema, which

encapsulates the business object payload in XML elements.

You specify the level of business object detail that will be captured in service

component events. This level of detail affects only the amount of business object

code that will be passed to the event; all of the other Common Base Event

elements (both standard and event-specific) will be published to the event. The

names of the detail levels applicable to service component events differ depending

on whether you created a static monitor using WebSphere Integration Developer,

or a dynamic monitor on the administrative console, but they correspond as shown

in the table below:

48 Monitoring

Administrative console

detail level

Common Base

Event/WebSphere

Integration Developer detail

level

Payload information

published

FINE EMPTY None.

FINER DIGEST Payload description only.

FINEST FULL All of the payload.

The detail level is specified by PayloadType element which is part of the event

instance data. The actual business object data is included in the event only if the

monitor is set to record FULL/FINEST detail. The business object data itself is

included in the Common Base Event under an xsd:any schema. You will actually

see the process server business object payloads with the root element named

wbi:event. If you are publishing the event output to the logger, then you will see

the output when you view the log files. If the event is published to the CEI server,

then you can use the Common Base Event browser to view the event. You can then

click the wbi:event link to view the business object data.

Business Process Choreographer events

WebSphere Process Server incorporates the Business Process Choreographer service

components for business processes and human tasks. The event points that can be

monitored in these components are described in this section.

Monitoring business process events

Events that are emitted on behalf of business processes consist of

situation-independent data and data that is specific to business process events. The

attributes and elements that are specific to business process events are described.

Business process events can have the following categories of event content.

Event data specific to business processes

In business processes, events relate to processes, activities, scopes, links, and

variables. The object-specific content of each of these event types is described.

For Business Process Choreographer version 6.1 two event formats can occur:

WebSphere Business Monitor 6.0.2 format

WebSphere Business Monitor 6.0.2 format events occur when there are

processes modeled within WebSphere Integration Developer 6.0.2, or if the

WebSphere Business Monitor 6.0.2 format mode is enabled within

WebSphere Integration Developer 6.1. If not specified otherwise, the

object-specific content for these events is written as extendedDataElement

XML elements of the type string.

WebSphere Business Monitor 6.1 format

WebSphere Business Monitor 6.1 format events occur when there are

processes modeled within WebSphere Integration Developer 6.1, and the

WebSphere Business Monitor 6.1 format mode is enabled. The

object-specific content for these events is written as XML elements in the

xs:any slot in the eventPointData folder of the Common Base Event, and

the payload message is written to the applicationData section. The structure

of the XML is defined in the XML Schema Definition (XSD) file

BFMEvents.xsd. The file can be found in the install_root\
ProcessChoreographer\client directory.

Chapter 4. Event catalog 49

Process

Events of process instances have the following object-specific event content:

 Attribute Description

processTemplateName The name of the process template from which the instance

was derived

processTemplateValidFrom The date from which the template is valid

processTemplateId The identifier of the process template

processInstanceDescription Optional: The description of the process instance

processInstanceExecutionState A string value that represents the state of the process. It has

the format: state number-state description. This attribute can

have one of the following values:

 1 - STATE_READY

2 - STATE_RUNNING

3 - STATE_FINISHED

4 - STATE_COMPENSATING

5 - STATE_FAILED

6 - STATE_TERMINATED

7 - STATE_COMPENSATED

8 - STATE_TERMINATING

9 - STATE_FAILING

10 - STATE_INDOUBT

11 - STATE_SUSPENDED

12 - STATE_COMPENSATION_FAILED

principal The principal on whose behalf the current execution step is

executed. This is usually the starter of the process.

PayloadType The payload type. The value of the string can be one of:

none, digest, or full. The value depends on the setting in

WebSphere Integration Developer. If there is no explicit

monitoring definition available, for example, if Enable

default events is selected, the default payload type is full.

Activity and scope

Activities and scopes have the following object-specific event content:

 Attribute Description

processTemplateName The name of the process template from which the instance

was derived.

processTemplateValidFrom The date from which the template is valid.

activityTemplateName Optional: The name of the activity template from which the

instance was derived.

activityInstanceDescription Optional: The description of the activity instance.

50 Monitoring

Attribute Description

activityKind A string value that identifies the activity kind. This value

has the format: kind number-kind description. This attribute

can have one of the following values:

 3 - KIND_EMPTY

21 - KIND_INVOKE

23 - KIND_RECEIVE

24 - KIND_REPLY

25 - KIND_THROW

26 - KIND_TERMINATE

27 - KIND_WAIT

29 - KIND_COMPENSATE

30 - KIND_SEQUENCE

32 - KIND_SWITCH

34 - KIND_WHILE

36 - KIND_PICK

38 - KIND_FLOW

40 - KIND_SCOPE

42 - KIND_SCRIPT

43 - KIND_STAFF

44 - KIND_ASSIGN

45 - KIND_CUSTOM

46 - KIND_RETHROW

47 - KIND_FOR_EACH_SERIAL

48 - KIND_FOR_EACH_PARALLEL

1000 - SQLSnippet

1001 - RetrieveSet

1002 - InvokeInformationService

1003 - AtomicSQLSnippetSequence

state A string value that represents the state of the activity. It has

the format: state number-state description. Note that the state

codes for activities are different from those used for

processes. This attribute can have one of the following

values:

 1 - STATE_INACTIVE

2 - STATE_READY

3 - STATE_RUNNING

4 - STATE_SKIPPED

5 - STATE_FINISHED

6 - STATE_FAILED

7 - STATE_TERMINATED

8 - STATE_CLAIMED

9 - STATE_TERMINATING

10 - STATE_FAILING

11 - STATE_WAITING

12 - STATE_EXPIRED

13 - STATE_STOPPED

bpelId A string value that represents the wpc:id attribute of the

activity.

PayloadType The payload type. The value of the string can be one of:

none, digest, or full. The value depends on the setting in

WebSphere Integration Developer. If there is no explicit

monitoring definition available, for example, if Enable

default events is selected, the default payload type is full.

Chapter 4. Event catalog 51

Link

Links have the following object-specific event content:

 Attribute Description

processTemplateName The name of the process template from which the instance

was derived

processTemplateValidFrom The date from which the template is valid

flowBpelId A string value that represents the wpc:id attribute of the

flow activity that contains the link

elementName The name of the link that was evaluated

description A description of the link. This attribute is only included if

specified in the process model.

PayloadType The payload type. The value of the string can be one of:

none, digest, or full. The value depends on the setting in

WebSphere Integration Developer. If there is no explicit

monitoring definition available, for example, if Enable

default events is selected, the default payload type is full.

Variable

Variables have the following object-specific event content.

 Attribute Description

processTemplateName The name of the process template from which the instance

was derived.

processTemplateValidFrom The date from which the template is valid.

variableName The name of the variable that was changed.

variableData Emitted when WBI Monitor compatible events are

requested. An XML representation of the content of the

variable. Each property of the data object is reported in the

form of a nested extended data element. The element type

may be of type ’boolean’ or ’string’, with an appropriate

value. If the variable variableName has not been initialized,

there is no variableData element.

This attribute is only used for WebSphere Business Monitor

6.0.2 format events. For WebSphere Business Monitor 6.1

format events, the content of the variable is written to the

applicationData section, which contains one content element

with the name set to the name of the variable.

variableData_BO Emitted when non-WBI Monitor compatible events are

requested. This element is of type ’noValue’ and contains

an XML representation of the content of the variable. Each

property of the data object is reported in the form of a

nested extended data element. If the variable variableName

has not been initialized, there is no VariableData_BO

element.

This attribute is only used for WebSphere Business Monitor

6.0.2 format events. For WebSphere Business Monitor 6.1

format events, the content of the variable is written to the

applicationData section, which contains one content element

with the name set to the name of the variable.

52 Monitoring

Attribute Description

bpelId A string value that represents the wpc:id attribute of the

activity.

PayloadType The payload type. The value of the string can be one of:

none, digest, or full. The value depends on the setting in

WebSphere Integration Developer. If there is no explicit

monitoring definition available, for example, if Enable

default events is selected, the default payload type is full.

Extension names for business process events

The extension name indicates the payload of the event. A list of all the extension

names for business process events and their corresponding payload can be found

here.

The extension name contains the string value that is used as the value of the

extensionName attribute of the Common Base Event. This is also the name of the

XML element that provides additional data about the event. The names of event

elements are in uppercase, for example, BPC.BFM.BASE, and the names of XML

elements are in mixed case, for example, BPCEventCode. Except where indicated, all

data elements are of the type string.

The following extension names are available for business process events:

v “BPC.BFM.BASE” on page 54

v “BPC.BFM.PROCESS.BASE” on page 54

v “BPC.BFM.PROCESS.STATUS” on page 54

v “BPC.BFM.PROCESS.START” on page 55

v “BPC.BFM.PROCESS.FAILURE” on page 55

v “BPC.BFM.PROCESS.CORREL” on page 55

v “BPC.BFM.PROCESS.WISTATUS” on page 55

v “BPC.BFM.PROCESS.WITRANSFER” on page 56

v “BPC.BFM.PROCESS.ESCALATED” on page 56

v “BPC.BFM.PROCESS.EVENT” on page 56

v “BPC.BFM.PROCESS.PARTNER” on page 57

v “BPC.BFM.ACTIVITY.BASE” on page 57

v “BPC.BFM.ACTIVITY.STATUS” on page 59

v “BPC.BFM.ACTIVITY.FAILURE” on page 59

v “BPC.BFM.ACTIVITY.MESSAGE” on page 59

v “BPC.BFM.ACTIVITY.CLAIM” on page 59

v “BPC.BFM.ACTIVITY.WISTATUS” on page 60

v “BPC.BFM.ACTIVITY.WITRANSFER” on page 60

v “BPC.BFM.ACTIVITY.FOREACH” on page 60

v “BPC.BFM.ACTIVITY.ESCALATED” on page 60

v “BPC.BFM.ACTIVITY.EVENT” on page 61

v “BPC.BFM.LINK.STATUS” on page 61

v “BPC.BFM.VARIABLE.STATUS” on page 61

Chapter 4. Event catalog 53

BPC.BFM.BASE

BPC.BFM.BASE inherits the XML elements from WBIMonitoringEvent.

 Table 21. XML elements for BPC.BFM.BASE

XML element Description

BPCEventCode The Business Process Choreographer event

code that identifies the event nature.

processTemplateName The name of the process template. This

name can differ from the display name.

processTemplateValidFrom The valid from attribute of the process

template.

eventLocalCounter The local counter is used to discover the

order of two events that occur in the same

transaction. For a microflow instance, this

counter reconstructs an order of all the

emitted events. For long-running processes,

the local counter indicates an order in the

current navigation transaction.

BPC.BFM.PROCESS.BASE

BPC.BFM.PROCESS.STATUS inherits the XML elements from “BPC.BFM.BASE.”

 Table 22. XML elements for BPC.BFM.PROCESS.BASE

XML element Description

processInstanceExecutionState The current execution state of the process in

the following format: <state code>-<state

name>. This attribute can have one of the

following values:

 1 - STATE_READY

2 - STATE_RUNNING

3 - STATE_FINISHED

4 - STATE_COMPENSATING

5 - STATE_FAILED

6 - STATE_TERMINATED

7 - STATE_COMPENSATED

8 - STATE_TERMINATING

9 - STATE_FAILING

10 - STATE_INDOUBT

11 - STATE_SUSPENDED

12 - STATE_COMPENSATION_FAILED

BPC.BFM.PROCESS.STATUS

BPC.BFM.PROCESS.STATUS inherits the XML elements from

“BPC.BFM.PROCESS.BASE.”

 Table 23. XML elements for BPC.BFM.PROCESS.STATUS

XML element Description

processTemplateId The ID of the process template.

processInstanceDescription The description of the process instance.

54 Monitoring

Table 23. XML elements for BPC.BFM.PROCESS.STATUS (continued)

XML element Description

principal The name of the user who is associated with

this event.

BPC.BFM.PROCESS.START

BPC.BFM.PROCESS.START inherits the XML elements from

“BPC.BFM.PROCESS.STATUS” on page 54.

 Table 24. XML elements for BPC.BFM.PROCESS.START

XML element Description

username For BPC.BFM.PROCESS.START, this is the

name of the user who requested the start or

restart of the process.

BPC.BFM.PROCESS.FAILURE

BPC.BFM.PROCESS.FAILURE inherits the XML elements from

“BPC.BFM.PROCESS.STATUS” on page 54.

 Table 25. XML elements for BPC.BFM.PROCESS.FAILURE

XML element Description

processFailedException The exception message that lead to the

failure of the process.

BPC.BFM.PROCESS.CORREL

BPC.BFM.PROCESS.CORREL inherits the XML elements from

“BPC.BFM.PROCESS.STATUS” on page 54.

 Table 26. XML elements for BPC.BFM.PROCESS.CORREL

XML element Description

correlationSet The correlation set instance, in the following

format:

<?xml version="1.0"?>

<correlationSet name=”correlation set

 name”>

 <property name=”property name”

 value=”property value”/>*

</correlationSet>

BPC.BFM.PROCESS.WISTATUS

BPC.BFM.PROCESS.WISTATUS inherits the XML elements from

“BPC.BFM.PROCESS.STATUS” on page 54.

 Table 27. XML elements for BPC.BFM.PROCESS.WISTATUS

XML element Description

username For BPC.BFM.PROCESS.WISTATUS this is a

list of users with work items that were

created or deleted.

Chapter 4. Event catalog 55

BPC.BFM.PROCESS.WITRANSFER

BPC.BFM.PROCESS.WITRANSFER inherits the XML elements from

“BPC.BFM.PROCESS.STATUS” on page 54.

 Table 28. XML elements for BPC.BFM.PROCESS.WITRANSFER

XML element Description

current The user name of the current owner of the

work item. This is the user whose work item

has been transferred to someone else.

target The user name of the new owner of the

work item.

BPC.BFM.PROCESS.ESCALATED

BPC.BFM.PROCESS.ESCALATED inherits the XML elements from

“BPC.BFM.PROCESS.STATUS” on page 54.

 Table 29. XML elements for BPC.BFM.PROCESS.ESCALATED

XML element Description

escalationName The name of the escalation.

operation For BPC.BFM.PROCESS.ESCALATED, the

operation that is associated with the event

handler for which the inline invocation task

is escalated.

portTypeName The port type name of the operation that is

associated with the event handler for which

the inline invocation task is escalated.

portTypeNamespace The port type namespace of the operation

that is associated with the event handler for

which the inline invocation task is escalated.

BPC.BFM.PROCESS.EVENT

BPC.BFM.PROCESS.EVENT inherits the XML elements from

“BPC.BFM.PROCESS.STATUS” on page 54.

56 Monitoring

Table 30. XML elements for BPC.BFM.PROCESS.EVENT

XML element Description

message or message_BO- The input message or the output message

for the service as a String or business object

(BO) representation. The format depends on

whether the Monitor Compatible Events

option was selected on the Event Monitor

tab in WebSphere Integration Developer.

This attribute is only used for WebSphere

Business Monitor 6.0.2 format events. For

WebSphere Business Monitor 6.1 format

events, the content of the message is written

to the applicationData section, which contains

one content element with the name set to

the name of the message.

operation Name of the operation for the received

event.

portTypeName The port type name of the operation that is

associated with the event handler.

portTypeNamespace The port type namespace of the operation

that is associated with the event handler.

BPC.BFM.PROCESS.PARTNER

BPC.BFM.PROCESS.PARTNER inherits the XML elements from

“BPC.BFM.PROCESS.STATUS” on page 54.

 Table 31. XML elements for BPC.BFM.PROCESS.PARTNER

XML element Description

partnerLinkName The name of the partner link.

BPC.BFM.ACTIVITY.BASE

BPC.BFM.ACTIVITY.BASE inherits the XML elements from “BPC.BFM.BASE” on

page 54.

Chapter 4. Event catalog 57

Table 32. XML elements for BPC.BFM.ACTIVITY.BASE

XML element Description

activityKind The activity kind, for example, sequence or

invoke. The format is: <kind code>-<kind

name>. This attribute can have one of the

following values:

 3 - KIND_EMPTY

21 - KIND_INVOKE

23 - KIND_RECEIVE

24 - KIND_REPLY

25 - KIND_THROW

26 - KIND_TERMINATE

27 - KIND_WAIT

29 - KIND_COMPENSATE

30 - KIND_SEQUENCE

32 - KIND_SWITCH

34 - KIND_WHILE

36 - KIND_PICK

38 - KIND_FLOW

40 - KIND_SCOPE

42 - KIND_SCRIPT

43 - KIND_STAFF

44 - KIND_ASSIGN

45 - KIND_CUSTOM

46 - KIND_RETHROW

47 - KIND_FOR_EACH_SERIAL

48 - KIND_FOR_EACH_PARALLEL

1000 - SQLSnippet

1001 - RetrieveSet

1002 - InvokeInformationService

1003 - AtomicSQLSnippetSequence

state The current state of the activity instance in

the format: <state code>-<state name>. This

attribute can have one of the following

values:

 1 - STATE_INACTIVE

2 - STATE_READY

3 - STATE_RUNNING

4 - STATE_SKIPPED

5 - STATE_FINISHED

6 - STATE_FAILED

7 - STATE_TERMINATED

8 - STATE_CLAIMED

9 - STATE_TERMINATING

10 - STATE_FAILING

11 - STATE_WAITING

12 - STATE_EXPIRED

13 - STATE_STOPPED

bpelId The wpc:id attribute of the activity in the

BPEL file. It is unique for activities in a

process model.

58 Monitoring

BPC.BFM.ACTIVITY.STATUS

BPC.BFM.ACTIVITY.STATUS inherits the XML elements from

“BPC.BFM.ACTIVITY.BASE” on page 57.

 Table 33. XML elements for BPC.BFM.ACTIVITY.STATUS

XML element Description

activityTemplateName The name of the activity template. this can

differ from the display name.

activityTemplateId The internal ID of the activity template.

activityInstanceDescription The description of the activity instance.

principal The name of the user who claimed the

activity.

BPC.BFM.ACTIVITY.FAILURE

BPC.BFM.ACTIVITY.FAILURE inherits the XML elements from

“BPC.BFM.ACTIVITY.STATUS.”

 Table 34. XML elements for BPC.BFM.ACTIVITY.FAILURE

XML element Description

activityFailedException The exception that caused the activity to fail.

BPC.BFM.ACTIVITY.MESSAGE

BPC.BFM.ACTIVITY.MESSAGE inherits the XML elements from

“BPC.BFM.ACTIVITY.STATUS.”

 Table 35. XML elements for BPC.BFM.ACTIVITY.MESSAGE

XML element Description

message or message_BO The input or the output message for the

service as a string or business object (BO)

representation. The format depends on

whether the Monitor Compatible Events

option was selected on the Event Monitor

tab in WebSphere Integration Developer.

This attribute is only used for WebSphere

Business Monitor 6.0.2 format events. For

WebSphere Business Monitor 6.1 format

events, the content of the message is written

to the applicationData section, which contains

one content element with the name set to

the name of the message.

BPC.BFM.ACTIVITY.CLAIM

BPC.BFM.ACTIVITY.CLAIM inherits the XML elements from

“BPC.BFM.ACTIVITY.STATUS.”

Chapter 4. Event catalog 59

Table 36. XML elements for BPC.BFM.ACTIVITY.CLAIM

XML element Description

username For BPC.BFM.ACTIVITY.CLAIM this is the

user for whom the task has been claimed.

BPC.BFM.ACTIVITY.WISTATUS

BPC.BFM.ACTIVITY.WISTATUS inherits the XML elements from

“BPC.BFM.ACTIVITY.STATUS” on page 59.

 Table 37. XML elements for BPC.BFM.ACTIVITY.WISTATUS

XML element Description

username For BPC.BFM.ACTIVITY.WISTATUS this is a

list users who are associated with the work

item.

BPC.BFM.ACTIVITY.WITRANSFER

BPC.BFM.ACTIVITY.WITRANSFER inherits the XML elements from

“BPC.BFM.ACTIVITY.STATUS” on page 59.

 Table 38. XML elements for BPC.BFM.ACTIVITY.WITRANSFER

XML element Description

current The user name of the current owner of the

work item. This is the user whose work item

has been transferred to someone else.

target The user name of the new owner of the

work item.

BPC.BFM.ACTIVITY.FOREACH

BPC.BFM.ACTIVITY.FOREACH inherits the XML elements from

“BPC.BFM.ACTIVITY.STATUS” on page 59.

 Table 39. XML elements for BPC.BFM.ACTIVITY.FOREACH

XML element Description

parallelBranchesStarted The number of branches started.

BPC.BFM.ACTIVITY.ESCALATED

BPC.BFM.ACTIVITY.ESCALATED inherits the XML elements from

“BPC.BFM.ACTIVITY.STATUS” on page 59.

 Table 40. XML elements for BPC.BFM.ACTIVITY.ESCALATED

XML element Description

escalationName The name of the escalation.

operation For BPC.BFM.ACTIVITY.ESCALATED, the

operation that is associated with the event

handler for which the inline invocation task

is escalated.

60 Monitoring

BPC.BFM.ACTIVITY.EVENT

BPC.BFM.ACTIVITY.EVENT inherits the XML elements from

“BPC.BFM.ACTIVITY.MESSAGE” on page 59.

 Table 41. XML elements for BPC.BFM.ACTIVITY.EVENT

XML element Description

operation The name of the operation for the received

event.

BPC.BFM.LINK.STATUS

BPC.BFM.LINK.STATUS inherits the XML elements from “BPC.BFM.BASE” on

page 54.

 Table 42. XML elements for BPC.BFM.LINK.STATUS

XML element Description

elementName The name of the link.

description The description of the link.

flowBpelId The ID of the flow activity where the link is

defined.

BPC.BFM.VARIABLE.STATUS

BPC.BFM.VARIABLE.STATUS inherits the XML elements from “BPC.BFM.BASE”

on page 54.

 Table 43. XML elements for BPC.BFM.VARIABLE.STATUS

XML element Description

variableName The name of the variable.

variableData or variableData_BO If the variable variableName is not initialized,

there is no variableData or VariableData_BO

element. The variable’s data is represented

either as a String or business object (BO).

The format depends on whether the

Monitor Compatible Events option was

selected on the Event Monitor tab in

WebSphere Integration Developer.

This attribute is only used for WebSphere

Business Monitor 6.0.2 format events. For

WebSphere Business Monitor 6.1 format

events, the content of the variable is written

to the applicationData section, which contains

one content element with the name set to

the name of the variable.

bpelId The Business Process Choreographer ID for

the variable.

principal The name of the user who updated the

variable.

Chapter 4. Event catalog 61

Business process events

Business process events are sent if monitoring is requested for the business process

elements in WebSphere Integration Developer. A list of all the events that can be

emitted by business processes can be found here.

An event is emitted when the state of a process or activity changes. The following

types of events can be caused by business process:

v “Process events”

v “Activity events” on page 64

v “Activity scope events” on page 67

v “Link events” on page 68

v “Variable events” on page 68

XML Schema Definition (XSD) files

The event structure is described in the XML Schema Definition (XSD) file

BFMEvents.xsd. The file can be found in the install_root\ProcessChoreographer\
client directory.

Key to table columns

The columns in the following tables contain:

Code Contains the number of the event. For WebSphere Business Monitor 6.0.2

format events, the value is written to the Common Base Event as an

extended data element with the name BPCEventCode. For WebSphere

Business Monitor 6.1 format events, the value is written to the xs:any slot

of the Common Base Event.

Extension name

The extensionName contains a string value which defines the event specific

information that is contained in the Common Base Event. This is also the

name of the XML element that provides additional data about the event.

For further information on extension names, see “Extension names for

business process events” on page 53.

Situation

Refers to the situation name of the business process event. For details of

situations, see “Situations in business process events” on page 68.

Event nature

A pointer to the event situation for a business process element in the

EventNature parameter, as they are displayed in WebSphere Integration

Developer.

Process events

The following table describes all process events.

 Code Extension name Situation Event nature Description

21000 BPC.BFM.PROCESS.START Start ENTRY Process started

62 Monitoring

Code Extension name Situation Event nature Description

21001 BPC.BFM.PROCESS.STATUS Report SUSPENDED Process

suspended. To

suspend process

instances use the

Business Process

Choreographer

Explorer.

21002 BPC.BFM.PROCESS.STATUS Report RESUMED Process resumed.

Only suspended

processes can be

resumed. To

resume process

instances use the

Business Process

Choreographer

Explorer.

21004 BPC.BFM.PROCESS.STATUS Stop EXIT Process completed

21005 BPC.BFM.PROCESS.STATUS Stop TERMINATED Process

terminated. To

terminate process

instances use the

Business Process

Choreographer

Explorer.

21019 BPC.BFM.PROCESS.START Report RESTARTED Process restarted

21020 BPC.BFM.PROCESS.STATUS Destroy DELETED Process deleted

42001 BPC.BFM.PROCESS. FAILURE Fail FAILED Process failed

42003 BPC.BFM.PROCESS.STATUS Report COMPENSATING Process

compensating. To

compensate

process instances

use the Business

Process

Choreographer

Explorer.

42004 BPC.BFM.PROCESS.STATUS Stop COMPENSATED Process

compensated

42009 BPC.BFM.PROCESS.STATUS Report TERMINATING Process

terminating

42010 BPC.BFM.PROCESS.STATUS Report FAILING Process failing

42027 BPC.BFM.PROCESS.CORREL Report CORRELATION Correlation set

initialized. Emitted

when a new

correlation set for

the process

instance is

initialized. This is

for example the

case, when a

receive activity

with an initiating

correlation set

receives a

message.

Chapter 4. Event catalog 63

Code Extension name Situation Event nature Description

42041 BPC.BFM.PROCESS. WISTATUS Report WI_DELETED Process work item

deleted

42042 BPC.BFM.PROCESS. WISTATUS Report WI_CREATED Process work item

created

42046 BPC.BFM.PROCESS.STATUS Fail COMPFAILED Process

compensation

failed

42047 BPC.BFM.PROCESS.EVENT Report EV_RECEIVED Process event

received. To define

the event use the

process interface.

The event is

genereated when

an event handler

that is associated

with a process is

activated.

42049 BPC.BFM.PROCESS.ESCALATED Report EV_ESCALATED Process event

escalated. This

event is

genereated when

an inline

invocation task is

escalated, that is

defined on the

process level and

associated with an

onEvent event

handler.

42056 BPC.BFM.PROCESS. WITRANSFER Report WI_TRANSFERRED Process work item

transferred

42058 BPC.BFM.PROCESS.PARTNER Report PA_CHANGE Process partner

changed. This

event is

genereated when a

new endpoint

reference is

assigned to a

partner link.

For process events, the following event correlation sphere identifiers have the

following content:

v The ECSCurrentID provides the ID of the process instance.

v The ECSParentID provides the value of the ECSCurrentID before the process

instance start event of the current process.

Activity events

The following table describes all activity events.

64 Monitoring

Code Extension name Situation Event nature Description

21006 BPC.BFM.ACTIVITY.MESSAGE Start CREATED Activity ready.

This event is

generated when a

human task

activity is started.

21007 For invoke activities: BPC.BFM.ACTIVITY.

MESSAGE. For all other activity types:

BPC.BFM.ACTIVITY.STATUS

Start ENTRY Activity started.

For Invoke

activities, business

object payload is

available.

21011 For invoke, human task, receive, and reply

activities: BPC.BFM.ACTIVITY. MESSAGE.

For pick activities:

BPC.BFM.ACTIVITY.EVENT. For all other

activity types: BPC.BFM.ACTIVITY.STATUS

Stop EXIT Activity

completed. For

invoke, human

task, receive, and

reply activities,

business object

payload is

available.

21021 BPC.BFM.ACTIVITY.STATUS Report DEASSIGNED Claim canceled.

This event is

generated when

the claim for a

human task

activity is

canceled..

21022 BPC.BFM.ACTIVITY.CLAIM Report ASSIGNED Activity claimed.

This event is

generated when a

human task

activity is claimed.

21027 BPC.BFM.ACTIVITY.STATUS Stop TERMINATED Activity

terminated.

Long-running

activities can be

terminated as an

effect of fault

handling on the

scope or process

the activity is

assigned to.

21080 BPC.BFM.ACTIVITY.FAILURE Failed FAILED Activity failed

21081 BPC.BFM.ACTIVITY.STATUS Report EXPIRED Activity expired.

You can define

expiration on

invoke and inline

human task

activities.

Chapter 4. Event catalog 65

Code Extension name Situation Event nature Description

42005 BPC.BFM.ACTIVITY.STATUS Report SKIPPED Activity skipped.

This event can

only apply to

activities that have

join behavior

defined. If the join

behavior evaluates

to false, then the

activity is skipped

and the skipped

event is emitted.

42012 BPC.BFM.ACTIVITY.MESSAGE Report OUTPUTSET Activity output

message set.

Business object

payload is

available.

42013 BPC.BFM.ACTIVITY.MESSAGE Report FAULTSET Activity fault

message set.

Business object

payload is

available.

42015 BPC.BFM.ACTIVITY.STATUS Stop STOPPED Activity stopped

42031 BPC.BFM.ACTIVITY.STATUS Report FRETRIED Activity forcibly

retried. To force

activities to retry

use the Business

Process

Choreographer

Explorer.

42032 BPC.BFM.ACTIVITY.STATUS Stop FCOMPLETED Activity forcibly

completed. To

force activities to

complete use the

Business Process

Choreographer

Explorer.

42036 BPC.BFM.ACTIVITY.MESSAGE Report EXIT Activity has

message received

42037 BPC.BFM.ACTIVITY.STATUS Report CONDTRUE Loop condition

true

42038 BPC.BFM.ACTIVITY.STATUS Report CONDFALSE Loop condition

false

42039 BPC.BFM.ACTIVITY. WISTATUS Report WI_DELETED Work item deleted.

This event can

only apply to pick,

inline human

tasks, and receive

events.

42040 BPC.BFM.ACTIVITY. WISTATUS Report WI_CREATED Work items

created. This event

can only apply to

pick, inline human

tasks, and receive

events.

66 Monitoring

Code Extension name Situation Event nature Description

42050 BPC.BFM.ACTIVITY.ESCALATED Report ESCALATED Activity escalated.

This event can

only apply to pick,

inline human

tasks, and receive

events.

42054 BPC.BFM.ACTIVITY. WISTATUS Report WI_REFRESHED Activity work

items refreshed.

This event can

only apply to pick,

inline human

tasks, and receive

events.

42055 BPC.BFM.ACTIVITY. WITRANSFER Report WI_TRANSFERRED Work item

transferred. This

event can only

apply to pick,

inline human

tasks, and receive

events.

42057 BPC.BFM.ACTIVITY. FOREACH Report BRANCHES_STARTED For each - activity

branches started

For activity events, the following event correlation sphere identifiers have the

following content:

v The ECSCurrentID provides the ID of the activity.

v The ECSParentID provides the ID of the containing process.

Activity scope events

The following table describes all activity scope events.

 Code Extension name Situation Event nature Description

42020 BPC.BFM.ACTIVITY.STATUS Start ENTRY Scope started

42021 BPC.BFM.ACTIVITY.STATUS Report SKIPPED Scope skipped

42022 BPC.BFM.ACTIVITY.FAILURE Fail FAILED Scope failed

42023 BPC.BFM.ACTIVITY.STATUS Report FAILING Scope terminating

42024 BPC.BFM.ACTIVITY.STATUS Stop TERMINATED Scope terminated

42026 BPC.BFM.ACTIVITY.STATUS Stop EXIT Scope completed

42043 BPC.BFM.ACTIVITY.STATUS Report COMPENSATING Scope

compensating

42044 BPC.BFM.ACTIVITY.STATUS Stop COMPENSATED Scope

compensated

42045 BPC.BFM.ACTIVITY.STATUS Fail COMPFAILED Scope

compensation

failed

42048 BPC.BFM.ACTIVITY.EVENT Report EV_RECEIVED Activity event

received

42051 BPC.BFM.ACTIVITY.ESCALATED Report EV_ESCALATED Scope event

escalated

Chapter 4. Event catalog 67

Activity scope events are a type of activity events, whose syntax is described above

for BPC.BFM.ACTIVITY.STATUS.

For activity scope events, the following event correlation sphere identifiers have

the following content:

v The ECSCurrentID provides the ID of the scope.

v The ECSParentID provides the ID of the containing process.

Link events

The following table describes all link events.

 Code Extension name Situation Event nature Description

21034 BPC.BFM.LINK.STATUS Report CONDTRUE Link evaluated

true

42000 BPC.BFM.LINK.STATUS Report CONDFALSE Link evaluated

false

For link events, the following event correlation sphere identifiers have the

following content:

v The ECSCurrentID provides the ID of the source activity of the link.

v The ECSParentID provides the ID of the containing process.

Variable events

The following table describes the variable events.

 Code Extension name Situation Event nature Description

21090 BPC.BFM.VARIABLE.STATUS Report CHANGED Variable update.

Business object

payload is

available.

For the variable event, the following event correlation sphere identifiers have the

following content:

v The ECSCurrentID provides the ID of the containing process.

v The ECSParentID is the ECSCurrentID before the process instance start event of

the current process.

Situations in business process events

Business process events can be emitted in different situations. The data for these

situations is described in situation elements.

68 Monitoring

Business process events can contain one of the following situation elements.

 Situation

name

Content of the Common Base Event

Start categoryName is set to StartSituation.

situationType

Type StartSituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

situationQualifier START_COMPLETED

Stop categoryName is set to StopSituation.

situationType

Type StopSituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

situationQualifier STOP_COMPLETED

Destroy categoryName is set to DestroySituation.

situationType

Type DestroySituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

Fail categoryName is set to StopSituation.

situationType

Type StopSituation

reasoningScope EXTERNAL

successDisposition UNSUCCESSFUL

situationQualifier STOP_COMPLETED

Report categoryName is set to ReportSituation.

situationType

Type ReportSituation

reasoningScope EXTERNAL

reportCategory STATUS

Monitoring human task events

Events that are emitted on behalf of human tasks consist of situation-independent

data and data that is specific to human task events. The attributes and elements

that are specific to human task events are described.

Human task events can have the following categories of event content.

Event data specific to human tasks

Events are created on behalf of tasks and escalations. The object-specific content of

each of these event types is described.

For Business Process Choreographer version 6.1 two event formats can occur:

Chapter 4. Event catalog 69

WebSphere Business Monitor 6.0.2 format

WebSphere Business Monitor 6.0.2 format events occur when there are

tasks modeled within WebSphere Integration Developer 6.0.2, or if the

WebSphere Business Monitor 6.0.2 format mode is enabled within

WebSphere Integration Developer 6.1. If not specified otherwise, the

object-specific content for these events is written as extendedDataElement

XML elements of the type string.

WebSphere Business Monitor 6.1 format

WebSphere Business Monitor 6.1 format events occur when there are tasks

modeled within WebSphere Integration Developer 6.1, and the WebSphere

Business Monitor 6.1 format mode is enabled. The object-specific content

for these events is written as XML elements in the xs:any slot in the

eventPointData folder of the Common Base Event. The structure of the

XML is defined in the XML Schema Definition (XSD) file HTMEvents.xsd.

The file can be found in the install_root\ProcessChoreographer\client

directory.

Tasks

Task events have the following object-specific event content.

 Attribute Description

taskTemplateName The name of the task template from which the instance was

derived.

taskTemplateValidFrom The date from which the template is valid.

taskTemplateId The identifier of the task template from which the instance

is derived.

taskInstanceDescription The description of the task instance in the default locale.

PayloadType The payload type. The value of the string can be one of:

none, digest, or full. The value depends on the setting in

WebSphere Integration Developer. If there is no explicit

monitoring definition available, the default payload type is

full.

Escalation

Escalations have the following object-specific event content:

 Attribute Description

taskTemplateName The name of the task template from which the instance was

derived.

taskTemplateValidFrom The date from which the template is valid.

taskTemplateId The identifier of the task template from which the instance

is derived.

escalationName The name of the escalation.

escalationInstanceDescription Optional: The description of the escalation instance.

PayloadType The payload type. The value of the string can be one of:

none, digest, or full. The value depends on the setting in

WebSphere Integration Developer. If there is no explicit

monitoring definition available, the default payload type is

full.

70 Monitoring

Extension names for human task events

The extension name indicates the payload of the human task event. A list of all the

extension names for human task events and their corresponding payload can be

found here.

The extension name contains the string value that is used as the value of the

extensionName attribute of the Common Base Event. This is also the name of the

XML element that provides additional data about the event. The names of event

elements are in uppercase, for example BPC.HTM.BASE, and the names of XML

elements are in mixed case, for example, HTMEventCode. Except where indicated,

all data elements are of the type string.

The following extension names are available for human task events:

v “BPC.HTM.BASE”

v “BPC.HTM.TASK.BASE”

v “BPC.HTM.TASK.STATUS” on page 72

v “BPC.HTM.TASK.FOLLOW” on page 72

v “BPC.HTM.TASK.MESSAGE” on page 72

v “BPC.HTM.TASK.INTERACT” on page 72

v “BPC.HTM.TASK.FAILURE” on page 73

v “BPC.HTM.TASK.WISTATUS” on page 73

v “BPC.HTM.TASK.WITRANSFER” on page 73

v “BPC.HTM.ESCALATION.STATUS” on page 73

v “BPC.HTM.ESCALATION.WISTATUS” on page 73

v “BPC.HTM.ESCALATION.WITRANSFER” on page 74

BPC.HTM.BASE

BPC.HTM.BASE inherits the XML elements from WBIMonitoringEvent.

 Table 44. XML elements for BPC.HTM.BASE

XML element Description

HTMEventCode The Business Process Choreographer event

code that identifies the number of the event

type. Possible event codes are listed in the

following tables.

BPC.HTM.TASK.BASE

BPC.HTM.TASK.BASE inherits the XML elements from “BPC.HTM.BASE.”

 Table 45. XML elements for BPC.HTM.TASK.BASE

XML element Description

taskTemplateId The ID of the template.

taskTemplateName The name of the task template. This can

differ from the display name.

taskTemplateValidFrom The date and time from when the task

template is valid.

Chapter 4. Event catalog 71

BPC.HTM.TASK.STATUS

BPC.HTM.TASK.STATUS inherits the XML elements from “BPC.HTM.TASK.BASE”

on page 71.

 Table 46. XML elements for BPC.HTM.TASK.STATUS

XML element Description

taskInstanceDescription The description of the task.

BPC.HTM.TASK.FOLLOW

BPC.HTM.TASK.FOLLOW inherits the XML elements from

“BPC.HTM.TASK.BASE” on page 71.

 Table 47. XML elements for BPC.HTM.TASK.FOLLOW

XML element Description

followTaskId The ID of the task that was started as a

follow-on task.

BPC.HTM.TASK.MESSAGE

BPC.HTM.TASK.MESSAGE inherits the XML elements from

“BPC.HTM.TASK.STATUS.”

 Table 48. XML elements for BPC.HTM.TASK.FOLLOW

XML element Description

message or message_BO A String or business object representation

that contains the input or output message.

The format depends on whether the

Monitor Compatible Events option was

selected on the Event Monitor tab in

WebSphere Integration Developer.

This attribute is only used for WebSphere

Business Monitor 6.0.2 format events. For

WebSphere Business Monitor 6.1 format

events, the content of the message is written

to the applicationData section, which contains

one content element with the name set to

the name of the message.

BPC.HTM.TASK.INTERACT

BPC.HTM.TASK.INTERACT inherits the XML elements from

“BPC.HTM.TASK.STATUS.”

 Table 49. XML elements for BPC.HTM.TASK.INTERACT

XML element Description

username For BPC.HTM.TASK.INTERACT, this is the

name of the user that is associated with the

task.

72 Monitoring

BPC.HTM.TASK.FAILURE

BPC.HTM.TASK.FAILURE inherits the XML elements from

“BPC.HTM.TASK.STATUS” on page 72.

 Table 50. XML elements for BPC.HTM.TASK.FAILURE

XML element Description

taskFailedException A string containing the faultNameSpace and

faultName separated by a semicolon (;).

BPC.HTM.TASK.WISTATUS

BPC.HTM.TASK.WISTATUS inherits the XML elements from

“BPC.HTM.TASK.STATUS” on page 72.

 Table 51. XML elements for BPC.HTM.TASK.WISTATUS

XML element Description

username For BPC.BPC.TASK.WISTATUS, this is a list

of users who have work items that were

created or deleted.

BPC.HTM.TASK.WITRANSFER

BPC.HTM.TASK.WITRANSFER inherits the XML elements from

“BPC.HTM.TASK.STATUS” on page 72.

 Table 52. XML elements for BPC.HTM.TASK.WITRANSFER

XML element Description

current For BPC.HTM.TASK.WITRANSFER, this is

the name of the current user. This is the user

whose work item was transferred to

someone else.

target For BPC.HTM.TASK.WITRANSFER, this is

the user name of the work item receiver.

BPC.HTM.ESCALATION.STATUS

BPC.HTM.ESCALATION.STATUS inherits the XML elements from

“BPC.HTM.TASK.BASE” on page 71.

 Table 53. XML elements for BPC.HTM.ESCALATION.STATUS

XML element Description

escalationName The name of the escalation.

escalationInstanceDescription The description of the escalation.

BPC.HTM.ESCALATION.WISTATUS

BPC.HTM.ESCALATION.WISTATUS inherits the XML elements from

“BPC.HTM.ESCALATION.STATUS.”

Chapter 4. Event catalog 73

Table 54. XML elements for BPC.HTM.ESCALATION.WISTATUS

XML element Description

username For BPC.HTM.ESCALATION.WISTATUS,

this is a list of users who have work items

that are escalated.

BPC.HTM.ESCALATION.WITRANSFER

BPC.HTM.ESCALATION.WITRANSFER inherits the XML elements from

“BPC.HTM.ESCALATION.STATUS” on page 73.

 Table 55. XML elements for BPC.HTM.ESCALATION.WITRANSFER

XML element Description

current For BPC.HTM.ESCALATION.WITRANSFER,

this is the name of the current user. This is

the user whose work item was transferred to

someone else.

target For BPC.HTM.ESCALATION.WITRANSFER,

this is the user name of the work item

receiver.

Human task events

Human task events are sent if monitoring is requested for the elements of the task

in WebSphere Integration Developer. A list of all the events that can be emitted by

human tasks can be found here.

An event is emitted when the state of a task changes. The following types of

events can be caused by human tasks:

v “Task events” on page 75

v “Escalation events” on page 76

Note: Events are only emitted for ad-hoc tasks if the business relevance flag is set

to true in the task model.

Events for inline tasks are emitted as activity events. For a list of these events, see

“Business process events” on page 62.

XML Schema Definition (XSD) files

The event structure is described in the XML Schema Definition (XSD) file

HTMEvents.xsd. The file can be found in the install_root\ProcessChoreographer\
client directory.

Key to table columns

The columns in the following tables contain:

Code Contains the number of the event. For WebSphere Business Monitor 6.0.2

format events, the value is written to the Common Base Event as an

extended data element with the name HTMEventCode. For WebSphere

Business Monitor 6.1 format events, the value is written to the xs:any slot

of the Common Base Event.

74 Monitoring

Extension name

Contains the string value that is used as the value of the extensionName

attribute of the Common Base Event.

 If WebSphere Business Integration Modeler is used to create the underlying

task model, the extension name for events that contain message data in

their payload can be extended by a hash character (#) followed by

additional characters. These additional characters are used to distinguish

Common Base Events that carry different message objects. Events that emit

message data also contain additional nested extendedDataElements in

order to report the contents of the data object. Refer to the documentation

for WebSphere Business Integration Modeler for more information.

Situation

Refers to the situation name of the human task event. For details of

situations, see “Situations in human task events” on page 76.

Event nature

A pointer to the event situation for a business process element in the

EventNature parameter, as they are displayed in WebSphere Integration

Developer.

Task events

The following table describes all task events.

 Code Extension name Situation Event nature Description

51001 BPC.HTM.TASK. INTERACT Report CREATED Task created

51002 BPC.HTM.TASK.STATUS Destroy DELETED Task deleted

51003 BPC.HTM.TASK.STATUS Start ENTRY Task started

51004 BPC.HTM.TASK.STATUS Stop EXIT Task completed

51005 BPC.HTM.TASK.STATUS Report DEASSIGNED Claim canceled

51006 BPC.HTM.TASK. INTERACT Report ASSIGNED Task claimed

51007 BPC.HTM.TASK.STATUS Stop TERMINATED Task terminated

51008 BPC.HTM.TASK. FAILURE Fail FAILED Task failed

51009 BPC.HTM.TASK.STATUS Report EXPIRED Task expired

51010 BPC.HTM.TASK.STATUS Report WAITFORSUBTASK Waiting for subtasks

51011 BPC.HTM.TASK.STATUS Stop SUBTASKCOMPLETED Subtasks completed

51012 BPC.HTM.TASK.STATUS Report RESTARTED Task restarted

51013 BPC.HTM.TASK.STATUS Report SUSPENDED Task suspended

51014 BPC.HTM.TASK.STATUS Report RESUMED Task resumed

51015 BPC.HTM.TASK. FOLLOW Report COMPLETEDFOLLOW Task completed and

follow-on task

started

51101 BPC.HTM.TASK.STATUS Report UPDATED Task properties

updated

51103 BPC.HTM.TASK. MESSAGE Report OUTPUTSET Output message

updated. Business

object payload is

available.

Chapter 4. Event catalog 75

Code Extension name Situation Event nature Description

51104 BPC.HTM.TASK. MESSAGE Report FAULTSET Fault message

updated. Business

object payload is

available.

51201 BPC.HTM.TASK. WISTATUS Destroy WI_DELETED Work item deleted

51202 BPC.HTM.TASK. WISTATUS Report WI_CREATED Work items created

51204 BPC.HTM.TASK. WITRANSFER Report WI_TRANSFERRED Work item

transferred

51205 BPC.HTM.TASK. WISTATUS Report WI_REFRESHED Work items

refreshed

For task events, the following identifiers of event correlation spheres have the

following content:

v The ESCcurrentID provides the ID of the task instance.

v The ECSParentID is the ECSCurrentID before the task instance event.

Escalation events

The following table describes all task escalation events.

 Code Extension name Situation Event nature Description

53001 BPC.HTM.ESCALATION. STATUS Report ENTRY Escalation fired

53201 BPC.HTM.ESCALATION. WISTATUS Destroy WI_DELETED Work item deleted

53202 BPC.HTM.ESCALATION. WISTATUS Report WI_CREATED Work item created

53204 BPC.HTM.ESCALATION. WITRANSFER Report WI_TRANS-

FERRED

Escalation transferred

53205 BPC.HTM.ESCALATION. WISTATUS Report WI_REFRESH-

ED

Work item refreshed

For task events, the following identifiers of event correlation spheres have the

following content:

v The ESCcurrentID provides the ID of the escalation.

v The ECSParentID provides the ID of the associated task instance.

Situations in human task events

Human task events can be emitted in different situations. The data for these

situations are described in situation elements.

76 Monitoring

Human task events can contain one of the following situation elements.

 Situation

name

Content of the Common Base Event

Start categoryName is set to StartSituation.

situationType

Type StartSituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

situationQualifier START_COMPLETED

Stop categoryName is set to StopSituation.

situationType

Type StopSituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

situationQualifier STOP_COMPLETED

Destroy categoryName is set to DestroySituation.

situationType

Type DestroySituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

Fail categoryName is set to StopSituation.

situationType

Type StopSituation

reasoningScope EXTERNAL

successDisposition UNSUCCESSFUL

situationQualifier STOP_COMPLETED

Report categoryName is set to ReportSituation.

situationType

Type ReportSituation

reasoningScope EXTERNAL

reportCategory STATUS

Process server events

WebSphere Process Server features its own service components, and each of these

components has its own set of event points that can be monitored. Service

components contain one or more elements, which are sets of different steps

processed in each service component. In turn, each element has its own set of

event natures, that are key points that are reached when processing a service

component element. All service components, their elements and associated event

natures, and the extended data elements unique to each event are listed.

Chapter 4. Event catalog 77

Resource Adapter events

The elements of the resource adapter component (base name eis:WBI.JCAAdapter)

that can be monitored are listed here, along with their associated event natures,

event names, and the extended data elements that are unique to each event.

 Event Name Event Natures Event Contents Type

InboundEventRetrieval element

eis:WBI.JCAAdapter.

InboundEventRetrieval. ENTRY

ENTRY

pollQuantity int

status int

eventTypeFilters string

eis:WBI.JCAAdapter.

InboundEventRetrieval. EXIT

EXIT N/A

eis:WBI.JCAAdapter.

InboundEventRetrieval. FAILURE

FAILURE FailureReason exception

InboundEventDelivery element

eis:WBI.JCAAdapter.

InboundEventDelivery.ENTRY

ENTRY N/A

eis:WBI.JCAAdapter.

InboundEventDelivery.EXIT

EXIT N/A

eis:WBI.JCAAdapter.

InboundEventDelivery.FAILURE

FAILURE FailureReason exception

Outbound element

eis:WBI.JCAAdapter.

Outbound.ENTRY

ENTRY N/A

eis:WBI.JCAAdapter. Outbound.EXIT EXIT N/A

eis:WBI.JCAAdapter.

Outbound.FAILURE

FAILURE FailureReason exception

InboundCallbackAsyncDeliverEvent element

eis:WBI.JCAAdapter.

InboundCallbackAsyncDeliverEvent.

ENTRY

ENTRY N/A

eis:WBI.JCAAdapter.

InboundCallbackAsyncDeliverEvent.

EXIT

EXIT N/A

eis:WBI.JCAAdapter.

InboundCallbackAsyncDeliverEvent.

FAILURE

FAILURE FailureReason exception

InboundCallbackSyncDeliverEvent element

eis:WBI.JCAAdapter.

InboundCallbackSyncDeliverEvent.

ENTRY

ENTRY N/A

eis:WBI.JCAAdapter.

InboundCallbackSyncDeliverEvent.

EXIT

EXIT N/A

eis:WBI.JCAAdapter.

InboundCallbackSyncDeliverEvent.

FAILURE

FAILURE FailureReason exception

Polling element

78 Monitoring

Event Name Event Natures Event Contents Type

eis:WBI.JCAAdapter.

Polling.STARTED

STARTED

PollFrequency int

PollQuantity int

eis:WBI.JCAAdapter.

Polling.STOPPED

STOPPED N/A

Delivery element

eis:WBI.JCAAdapter. Delivery.EXIT EXIT N/A

eis:WBI.JCAAdapter.

Delivery.FAILURE

FAILURE

EventID string

FailureReason exception

Retrieval element

eis:WBI.JCAAdapter.

Retrieval.FAILURE

FAILURE

EventID string

FailureReason exception

Endpoint element

eis:WBI.JCAAdapter.

Endpoint.FAILURE

FAILURE

FailureReason exception

Recovery element

eis:WBI.JCAAdapter. Recovery.EXIT EXIT N/A

eis:WBI.JCAAdapter.

Recovery.FAILURE

FAILURE

FailureReason exception

EventFailure element

eis:WBI.JCAAdapter.

EventFailure.FAILURE

FAILURE

FailureReason exception

Connection element

eis:WBI.JCAAdapter.

Connection.FAILURE

FAILURE

FailureReason exception

Business rule events

The business rule component (base name br:WBI.BR) contains a single element that

can be monitored. All event types for this element are listed here, with their

associated event natures, event names, and the extended data elements that are

unique to each event.

 Event Name Event Nature Event Contents Type

br:WBI.BR.ENTRY ENTRY operationName string

br:WBI.BR.EXIT EXIT operationName string

br:WBI.BR.FAILURE FAILURE

ErrorReport Exception

operationName string

WBI.BR.

br:SelectionKeyExtracted

SelectionKeyExtracted operationName string

br:WBI.BR.TargetFound TargetFound

operationName string

target string

Chapter 4. Event catalog 79

Business state machine events

The elements from the business state machine component (base name bsm:WBI.BSM)

that can be monitored are listed here, along with their associated event natures,

event names, and all extended data elements that are unique to each event.

 Event Name Event Nature Event Contents Type

StateMachineDefinition element

bsm:WBI.BSM.

StateMachineDefinition.

ALLOCATED

ALLOCATED instanceID string

bsm:WBI.BSM.

StateMachineDefinition. RELEASED

RELEASED instanceID string

Transition element

bsm:WBI.BSM.Transition.ENTRY ENTRY

instanceID string

name string

bsm:WBI.BSM.Transition.EXIT EXIT

instanceID string

name string

bsm:WBI.BSM.Transition.FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

State element

bsm:WBI.BSM.State.ENTRY ENTRY

instanceID string

name string

bsm:WBI.BSM.State.EXIT EXIT

instanceID string

name string

bsm:WBI.BSM.State.FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

Guard element

bsm:WBI.BSM.Guard.ENTRY ENTRY

instanceID string

name string

bsm:WBI.BSM.Guard.EXIT EXIT

instanceID string

name string

result boolean

bsm:WBI.BSM.Guard.FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

Action element

bsm:WBI.BSM.Action.ENTRY ENTRY

instanceID string

name string

bsm:WBI.BSM.Action.EXIT EXIT

instanceID string

name string

80 Monitoring

Event Name Event Nature Event Contents Type

bsm:WBI.BSM.Action.FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

EntryAction element

bsm:WBI.BSM.EntryAction. ENTRY ENTRY

instanceID string

name string

bsm:WBI.BSM.EntryAction. EXIT EXIT

instanceID string

name string

bsm:WBI.BSM.EntryAction.

FAILURE

FAILURE

ErrorReport Exception

instanceID string

name string

ExitAction element

bsm:WBI.BSM.ExitAction.ENTRY ENTRY

instanceID string

name string

bsm:WBI.BSM.ExitAction.EXIT EXIT

instanceID string

name string

bsm:WBI.BSM.ExitAction. FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

Timer element

bsm:WBI.BSM.Timer.START START

instanceID string

name string

duration string

bsm:WBI.BSM.Timer.STOPPED STOPPED

instanceID string

name string

duration string

Map events

The elements from the map component (base name map:WBI.MAP) that can be

monitored are listed here, along with their event natures, event names, and all

extended data elements that are unique to each event.

 Table 56. Base element

Event Name Event Nature

Event

Contents Type

map:WBI.MAP.ENTRY ENTRY N/A N/A

map:WBI.MAP.EXIT EXIT N/A N/A

map:WBI.MAP.FAILURE FAILURE FailureReason Exception

Transformation element

map:WBI.MAP.Transformation. ENTRY ENTRY N/A N/A

map:WBI.MAP.Transformation. EXIT EXIT N/A N/A

Chapter 4. Event catalog 81

Table 56. Base element (continued)

Event Name Event Nature

Event

Contents Type

map:WBI.MAP.Transformation. FAILURE FAILURE FailureReason Exception

Mediation events

The elements from the mediation component (base name ifm:WBI.MEDIATION) that

can be monitored are listed here, along with their associated event natures, names,

and all extended data elements that are unique to each event.

 Event Name Event Nature Event Contents Type

OperationBinding element

ifm:WBI.MEDIATION.

OperationBinding.ENTRY

ENTRY

InteractionType string

TicketID string

Source string

Target string

ifm:WBI.MEDIATION.

OperationBinding.EXIT

EXIT

InteractionType string

TicketID string

Source string

Target string

ifm:WBI.MEDIATION.

OperationBinding.FAILURE

FAILURE

InteractionType string

TicketID string

Source string

Target string

ErrorReport Exception

ParameterMediation element

ifm:WBI.MEDIATION.

ParameterMediation. ENTRY

ENTRY

Type string

TransformName string

WBI.MEDIATION.

ParameterMediation. EXIT

EXIT

Type string

TransformName string

ifm:WBI.MEDIATION.

ParameterMediation. FAILURE

FAILURE

Type string

TransformName string

ErrorReport Exception

Recovery events

The recovery component (base name recovery:WBI.Recovery) contains a single

element that can be monitored. All event types for this element are listed here,

along with their associated event natures, event names, and the extended data

elements that are unique to each event.

82 Monitoring

Event Name Event Nature Event Contents Type

recovery:WBI.Recovery.

FAILURE

FAILURE

MsgId string

DestModuleName string

DestComponentName string

DestMethodName string

SourceModuleName string

SourceComponentName string

ResubmitDestination string

ExceptionDetails string

SessionId string

FailureTime dateTime

ExpirationTime dateTime

Status int

MessageBody byteArray

Deliverable boolean

recovery:WBI.Recovery.

DEADLOOP

DEADLOOP

DeadloopMsgId string

SIBusName string

QueueName string

Reason string

recovery:WBI.Recovery.

RESUBMIT

RESUBMIT

MsgId string

OriginalMesId string

ResubmitCount int

Description string

recovery:WBI.Recovery.

DELETE

DELETE

MsgId string

deleteTime dateTime

Description string

Service Component Architecture events

The Service Component Architecture (SCA) contains a single element, with a base

name of sca:WBI.SCA.MethodInvocation. All the events and associated natures of

this element are listed here, along with all extended data elements and that are

unique to each event.

Note: These events should not be confused with the SCA-specific ARM

performance statistics.

Chapter 4. Event catalog 83

Event Name Event Nature Event Contents Type

WBI.SCA. MethodInvocation.

ENTRY

ENTRY

SOURCE COMPONENT string

SOURCE INTERFACE string

SOURCE METHOD string

SOURCE MODULE string

SOURCE REFERENCE string

TARGET COMPONENT string

TARGET INTERFACE string

TARGET METHOD string

TARGET MODULE string

WBI.SCA. MethodInvocation.

EXIT

EXIT

SOURCE COMPONENT string

SOURCE INTERFACE string

SOURCE METHOD string

SOURCE MODULE string

SOURCE REFERENCE string

TARGET COMPONENT string

TARGET INTERFACE string

TARGET METHOD string

TARGET MODULE string

WBI.SCA. MethodInvocation.

FAILURE

FAILURE

SOURCE COMPONENT string

SOURCE INTERFACE string

SOURCE METHOD string

SOURCE MODULE string

SOURCE REFERENCE string

TARGET COMPONENT string

TARGET INTERFACE string

TARGET METHOD string

TARGET MODULE string

Exception string

Selector events

The selector component contains a single element that can be monitored. All event

types for this element are listed here, along with their associated event natures,

event names, and the extended data elements that are unique to each event. All

selector events have a base name of sel:WBI.SEL.

 Event Name Event Nature Event Contents Type

sel:WBI.SEL.ENTRY ENTRY operationName string

sel:WBI.SEL.EXIT EXIT operationName string

sel:WBI.SEL.FAILURE FAILURE

ErrorReport Exception

operationName string

84 Monitoring

Event Name Event Nature Event Contents Type

sel:WBI.SEL.

SelectionKeyExtracted

SelectionKeyExtracted

operationName string

sel:WBI.SEL.TargetFound TargetFound

operationName string

target string

Chapter 4. Event catalog 85

86 Monitoring

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006, 2008 87

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows: (c) (your company name) (year). Portions of

88 Monitoring

this code are derived from IBM Corp. Sample Programs. (c) Copyright IBM Corp.

enter the year or years. All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

IBM, the IBM logo, developerWorks, Tivoli, and WebSphere are registered

trademarks of International Business Machines Corporation in the United States,

other countries, or both.

Adobe is a registered trademarks of Adobe Systems Incorporated in the United

States, and/or other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org).

 IBM WebSphere Process Server for z/OS, Version 6.1.0

Notices 89

http://www.eclipse.org

90 Monitoring

����

Printed in USA

	Contents
	Chapter 1. Service component monitoring overview
	Common Event Infrastructure
	Common Base Event model

	Why use monitoring?
	What do you monitor?
	How do you enable monitoring?

	Chapter 2. Enabling and configuring service component monitoring
	Monitoring performance
	Performance Monitoring Infrastructure statistics
	Enabling PMI using the administrative console
	Event performance statistics
	Specifying performance statistics to monitor
	Tutorial: Service component performance monitoring

	Application Response Measurement statistics for the Service Component Architecture
	Synchronous invocations
	Deferred response with synchronous implementation
	Deferred response with asynchronous implementation
	Deferred response with asynchronous result retrieve
	Asynchronous callback with synchronous implementation
	Asynchronous callback with asynchronous implementation
	Asynchronous one-way with synchronous implementation
	Asynchronous one-way with asynchronous implementation

	Monitoring service component events
	Enabling monitoring of business process and human task events
	Configuring logging for service component events
	Enabling the diagnostic trace service
	Configuring logging properties using the administrative console
	Tutorial: Logging service component events
	Audit logging for business rules and selectors

	Monitoring service components with the Common Event Infrastructure server
	Configuring service component event monitoring using the administrative console
	Tutorial: Using the Common Event Infrastructure server for event monitoring

	Session monitoring

	Chapter 3. Viewing monitored events
	Viewing performance metrics with the Tivoli Performance Viewer
	Viewing and interpreting service component event log files
	Viewing events with the Common Base Event browser
	Specifying the events to view
	Working with events returned from the event browser
	Troubleshooting the Common Base Event browser

	Chapter 4. Event catalog
	The Common Base Event standard elements
	Business objects in events
	Business Process Choreographer events
	Monitoring business process events
	Event data specific to business processes
	Extension names for business process events
	Business process events
	Situations in business process events

	Monitoring human task events
	Event data specific to human tasks
	Extension names for human task events
	Human task events
	Situations in human task events

	Process server events
	Resource Adapter events
	Business rule events
	Business state machine events
	Map events
	Mediation events
	Recovery events
	Service Component Architecture events
	Selector events

	Notices

