
IBM WebSphere Process Server for Multiplatforms

Technical Overviews
Version 7.0.0

���

30 April 2010

This edition applies to version 7, release 0, modification 0 of WebSphere Process Server for Multiplatforms (product
number 5724-L01) and to all subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, send an e-mail message to doc-comments@us.ibm.com. We look
forward to hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2005, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Technical overviews 1
Service Component Architecture 1

SCA and service invocation 1
Modules 2
Service components 5
Stand-alone references 16
Business objects 16

Business objects 17
Defining business objects 18
Working with business objects 19
Special business objects 21
Business object parsing mode 21

Relationships 24

Relationship service 27
Relationship manager 27
Relationships in Network Deployment
environments 28
Relationship service APIs 28

The enterprise service bus in WebSphere Process
Server 28

Connecting services through an enterprise service
bus 29
Enterprise service bus messaging infrastructure 30
Service applications and service modules . . . 35
Message Service clients 47

© Copyright IBM Corp. 2005, 2010 iii

iv Technical Overviews

Technical overviews

Technical overview information introduces the standards and technical aspects
related to the product architecture.

Service Component Architecture
Service Component Architecture (SCA) enables a service-oriented architecture and
is made available by many corporations including IBM®. SCA is a platform and
vendor independent programming model that provides a simple and consistent
means for expressing business logic and business data as SOA services, regardless
of technical implementation details. In this section, we examine SCA services and
data objects.

SCA and service invocation
If you take the three aspects of a programming model, which are data, invocation,
and composition, and apply some of the new paradigms of a services-based
approach, the new programming model for SOA starts to emerge. Service
Component Architecture (SCA) provides a way of invoking business services
within SOA solutions.

The architectural constructs that make up a service-oriented architecture include a
way to represent the data that is exchanged between services, a mechanism for
invoking services, and a way to compose services into larger integrated business
applications. Today there are many different programming models for supporting
each of these. This situation presents developers with the challenge of not only
solving a particular business problem, but also choosing and understanding the
appropriate implementation technology. One of the important goals of the
WebSphere® Process Server SOA solution is to mitigate these complexities. This is
done by converging the various programming models used for implementing
service-oriented business applications into a simplified programming model.

This section focuses specifically on the Service Component Architecture (SCA) in
WebSphere Process Server as the service-oriented component model for defining
and invoking business services. SCA plays an important role in providing an
invocation model for the SOA solution in WebSphere Process Server. SCA also
plays a role in composing business services into composite business applications.

First, we see that data is primarily represented by Extensible Markup Language
(XML) and is programmed with business objects based on the Service Data Object
(SDO) specification or through native XML facilities such as XPath or XSLT
(Extensible Stylesheet Language Transformation). Second, service invocation maps
to Service Component Architecture (SCA). Finally, composition is embodied in
process orchestration using Business Process Execution Language (BPEL). The
figure shows the three aspects of this new programming model.

© Copyright IBM Corp. 2005, 2010 1

SCA is aimed at providing a simplified programming model for writing
applications that run in a Java EE runtime environment, and is based upon
concepts and techniques that are refinements of existing Java EE technology. One
of the important aspects of SCA is to enable the separation between application
business logic and the implementation details. In order to accomplish this, SCA
provides a single abstraction for service types that might already be expressed as
session beans, Web services, Java classes, or BPEL. The ability to separate business
logic from infrastructure logic is important to help reduce the IT resources needed
to build an enterprise application, and give developers more time to work on
solving a particular business problem rather than focusing on the details of which
implementation technology to use.

Modules
A module is a unit of deployment that determines which artifacts are packaged
together in an Enterprise Archive (EAR) file. Components within a module are
collocated for performance, and can pass their data by reference. A module can be
seen as a scoping mechanism; that is, it sets an organizational boundary for
artifacts.

A module is a composite of service components, imports, and exports. The service
components, imports, and exports reside in the same project and root folder, which
also contain the wiring that links the components and the bindings needed for the
imports and exports. A module may also contain the implementations and
interfaces referenced by its components, imports and exports, or these may be
placed in other projects, such as a library project.

There are two types of modules. First, a module called module (sometimes referred
to as a business integration module) that contains a choice of many component
types, often used to support a business process. Second, a module called a
mediation module, which contains up to one component, one or more mediation
flow components, plus zero or more Java components that augment the mediation
flow component.

A module may contain one or more mediation flow components.

Business
processes

Business
tasks

Business
state

machines

Dynamic
service
section

Business
rules

Mediation
Flows (ESB)

Service Component
Architecture

Composition

Business Process
Execution Language

(BPEL)

Invocation

Business
objects

Common event
infrastructure

Business
Interface

Maps
object
Maps

Relationships

WebSphere Application Server (Java EE Runtime)

Data

Service Component
Architecture

(SCA)

Business Objects

Figure 1. Representing data, invocation, and composition within a programming model for SOA

2 Technical Overviews

Why are there two module types? The first type of module is primarily designed
for business processes. A mediation module is like a gateway to existing external
services, which is common in enterprise service bus architectures. These external
services or exports are accessed in a mediation module by imports or service
providers. By decoupling client service requesters from service providers by a
mediation flow, your applications gain flexibility and resilience, a goal of
service-oriented architecture. For example, your mediation flow can log incoming
messages, route messages to a specific service determined at run time or transform
data to make it suitable to pass to another service. These functions can be added
and changed over time without modifying the requester or provider services.

A module results in a service application tested and deployed to the WebSphere
Process Server. A mediation module results in a service application tested and
deployed to either the WebSphere Process Server or the WebSphere Enterprise
Service Bus server. Both types of modules support imports and exports.

Implementations, interfaces, business objects, business object maps, roles,
relationships, and other artifacts often need to be shared among modules. A library
is a project used to store these shared resources.

In Figure 2 on page 4, the module contains two service components, each
containing an implementation. The module also contains the appropriate interfaces
and references required by the service components. The second service component
does not contain a reference because it does not invoke any external service.

Technical overviews 3

In Figure 3, the module contains an export, two imports, and a service component
that uses them. Wiring is shown linking the interfaces and references.

Service
Component
MyValueInst1

Service
Export
myValue
WebService

Service
Import
customerInfo

Service
Import
stockQuote
WebService

Implementation

Implementation

Import

Service
Component

Service
Component

Standalone
Reference

Export

R

R

R

Java

Java

Figure 2. Structure of a module

Figure 3. Service module

4 Technical Overviews

Module and mediation module artifacts include:
v Module definition - defines the module.
v Service components - definitions of the services in the module. A service

component name inside a module is unique. However, a service component can
have an arbitrary display name, which is typically a name more useful to a user.

v Imports - definitions of imports, which are calls to services external to this
module. Imports have bindings, which are discussed in the Bindings section.

v Exports - definitions of exports, which are used to expose components to callers
that are external to this module. Exports have bindings, which are discussed in
the Bindings section.

v References - references from one component to another in the module.
v Stand-alone references - references applications that are not defined as Service

Component Architecture components (for example, JavaServer Pages), which
enable these applications to interact with Service Component Architecture
components. There can be only one stand-alone references artifact per module.

v Other artifacts - these artifacts include WSDL files, Java classes, XSD files, BPEL
processes, and so on.

Service components
A service component configures a service implementation. A service component is
presented in a standard block diagram.

In addition to providing a consistent syntax and mechanism for service invocation,
Service Component Architecture (SCA) is the invocation framework that provides a
way for developers to encapsulate service implementations in reusable
components. SCA enables developers to define interfaces, implementations, and
references in a way that is independent of the technology that is used. This
approach gives you the opportunity to bind the elements to whichever technology
you choose. SCA separates business logic from infrastructure so that application
programmers can focus on solving business problems.

A component consists of an implementation, which is hidden when using
WebSphere Integration Developer's tools, one or more interfaces, which defines its
inputs, outputs and faults, and zero or more references. A reference identifies the
interface of another service or component that this component requires or
consumes. An interface may be defined in one of two languages: a WSDL port
type or Java. An interface supports synchronous and asynchronous interaction
styles. A component's implementation can be in various languages.

The recommended interface type is WSDL and our tutorials and samples
consistently use the WSDL interface type. A Java interface, however, is supported
and used mostly in the case when a stateless session EJB is imported. Should you
develop a top-down Java component, that is, define a component and add the Java
implementation later, you should still use a WSDL interface. You cannot mix
WSDL-interface-based components with Java-interface-based components.

Technical overviews 5

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=cadm_bindingsgeneral
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=cadm_bindingsgeneral

In Figure 5 on page 7, we have a component in the center. Its implementation,
MyValueImpl, is in Java as is its interface. It has two references: another Java
interface and a WSDL interface.

Implementation Types

Java

WSDL
Port Type

WSDL
Port Type

Component

Implementation

ReferenceInterface

Java

Selector Interface Map

Stand-alone
Reference

State Machine Business Rule

Mediation Flow

BPEL

Human Task

Java

Figure 4. Structure of a component

6 Technical Overviews

When working with this component, as shown below, you effectively only see the
component itself. A reference to this component from another component would be
revealed visually by a line to its interface. A reference from this component would
be revealed by a line from its reference point to the interface of other component.
A reference represents a service that this component consumes. By naming a
reference and only specifying its interface, it allows the component implementation
author to defer binding that reference to an actual service until later. At that later
time, the integration specialist will do so by wiring from the reference to the
interface of another component or import. This loose coupling, which allows for
deferred binding and the re-use of implementations, is one of the key reasons for
using WebSphere Integration Developer's Service Component Architecture.

A component may also have properties and qualifiers. A qualifier is a quality of
service (QoS) directive on interfaces and references for the run time.

Service component implementation types are the implementations of the service
components.

WebSphere Integration Developer supports the following implementation artifacts
for WebSphere Process Server and WebSphere Enterprise Service Bus:

MyValue.java

MyValueImpl.java

CustomerInfo.java

Service
Info
MyValueImpl

StockQuote.wsdl

Figure 5. Service component structure

Service
Component
MyValueInst1

MyValue.java

MyValueImpl.java

Service
Info
MyValueImpl

CustomerInfo.java

StockQuote.wsdl

Figure 6. Instance of a service component

Technical overviews 7

Table 1. Implementation artifacts

WebSphere Process Server WebSphere Enterprise Service Bus

Java objects Java objects

Business processes Mediation flows

Business state machines

Business rules

Selectors

Human tasks

Interface maps

Mediation flows

Note: Note: Interface maps are deprecated as of WebSphere Process Server version
7.0. You can migrate your existing interface map components in WebSphere
Integration Developer to use the functions in the mediation flow component.

The standard component implementations of the services are described in the
topics in this section. These implementations appear in services in the assembly
editor and or within BPEL processes.

Java objects
An implementation of a component in Java is referred to as a Java object.

One common implementation is a component written in Java. This implementation
is sometimes nicknamed a "plain old Java object" or POJO. Generally, this
implementation has a WSDL interface type, though this implementation could also
have a Java interface. If there are multiple interfaces specified, then you cannot mix
WSDL interfaces with Java interfaces. You can, however, "join" an application
created with a set of WSDL interfaces to an application with a set of Java
interfaces. A sample listed in the samples gallery of the Welcome view shows you
how.

When working with a Java object, the code remains hidden from you within the
context of the editors.

A Java object can be used in a mediation module. It can be deployed to either a
WebSphere Process Server or a WebSphere Enterprise Service Bus server.

BPEL process
A BPEL process component implements a business process.

Its implementation language is the industry standard Business Process Execution
Language for Web Services (BPEL4WS) and its IBM extensions. A BPEL process
implements a potentially long-running service through the use of more elementary
services. A BPEL process created in the process editor can do the following things:
v Describe the orchestration of other services using control flow graphs
v Use variables to keep the process state
v Use sophisticated error handling through fault handling
v Support asynchronous events
v Correlate inbound requests with the right instance of a particular process by

using correlation sets to mark that business data within the request that
identifies the instance (for example, a customer ID)

8 Technical Overviews

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

v Provide extended transactions through sophisticated compensation support

In addition to these standard BPEL items, WebSphere Integration Developer also
extends BPEL to include people into a process with human task support. For
example, this extension could add to a process the requirement that a person
approves a loan.

The process editor uses visual representations of BPEL constructs to build your
business process quickly and simply.

A BPEL process cannot be used in a mediation module. It can only be deployed to
a WebSphere Process Server.

Receive

Step1

Step6

Reply

Step4

Step5

Step8

Step2

Step3

Step7

Figure 7. Simple business process

Technical overviews 9

State machines
A state machine is an alternative way of creating a business process. A state
machine is suited for processes related to changing states rather than a flow of
control. A state defines what an artifact can do at a point in time. A state machine is
an implementation of this set of states.

State machines are a common way of showing a set of interrelated states in a
process. A familiar state machine is a drink dispenser. You put some coins into the
machine and along with your drink, which hopefully is dispensed, you get your
exact change as the state machine mechanically breaks down the coins that need to
be returned to you based on the coins you inserted. In the diagram that follows, a
typical state machine is shown as created by the state machine editor. In the state
machine, an item is purchased and shipped to a customer.

A state machine cannot be used in a mediation module. It can only be deployed to
a WebSphere Process Server.

archive

cancel

Cancelled
event Timer [Duration 1Month]/^archive

purchase[needsApproval]/doApprovalAction

Created

cancel/doCancelApprovalAction

cancel/doCancelPurchaseAction

Archived

approve/doPurchaseAction

ship/doShipAction

orderReceived

Archive/doArchiveAction

Ready

purchase
[NotNeedsApproval]/
doPurchaseAction

InApproval

Purchased

Shipped

Delivered
event Timer [Duration 2Months]/^archive

Figure 8. State machine

10 Technical Overviews

Business rules
Business rules complement business processes and state machines. If there is
condition with a variable, for example, a business rule can change the value in that
variable at run time. Created by a visual programming language, a business rule
makes a decision based on context. The decision can be simple or complex.
Business rules are nonprocedural and the rules can be changed independently of
an application.

Business rules determine the outcome of a process based on a context. Business
rules are used in everyday business situations to make a decision given a specific
set of circumstances. This decision may require many rules to cover all the
circumstances. Business rules within a business process allow applications to
respond quickly to changing business conditions. In an insurance corporation, for
example, a business rule for approving car insurance to an applicant could be: If
the applicant is male and over 25 years old, and the car category is sports, and he has been
insured with us for the past 5 years, then approve the application for insurance at a fee of
$100 per month.

WebSphere Integration Developer offers a number of approaches to creating
business rules. You can create if-then rules or decision tables, all which shape the
outcome of your process. These rules are independent of the process itself,
meaning that you can change the rules at any time without having to redo your
process. For example, based on where your business is located, you might have a
rule that says: If the date is between December 26th and January 1st, then offer a
post-holiday sale discount of 20%. However, if sales continue to be too slow, you
could at any time modify the discount to 40%.

Business rules cannot be used in a mediation module. They can only be deployed
to a WebSphere Process Server.

Selectors
Integrated applications contain many ways to interact. A selector is used to route an
operation from a client application to one of several possible components for
implementation.

Routing to a component is based on dates. For example, here is one route based on
a date: Two weeks before school starts, offer a back-to-school special price on our
school-related merchandise. Businesses have many such routes based on dates. A
selector decides to choose one route over another at run time based on a date. For
example, if the time is just before school starts, then the previous back-to-school
offer would be called. However, if it is the season when school is ending, there
could be an offer to prepare children for summer.

Decision TablesIf-Then Rules

Business Rules

Figure 9. Types of business rules

Technical overviews 11

A selector cannot be used in a mediation module. It can only be deployed to a
WebSphere Process Server.

Human task
A human task component implements a task done by a person. It represents the
involvement of a person in a business process.

Occasionally, people need to intervene in a business process. For example, a
customer wants to purchase an item that is above their credit limit. A human task
lets you intervene and override a business rule that prevents the customer from
making the purchase. A human task can have attributes, such as setting the owner
of the task, and providing an escalation process in the case that the human
specified is not available. The human task component recognizes the reality that
many processes require human intervention for tasks like reviewing, researching,
and approving.

Calling
Application

Business Rule
Component

selector
algorithm

Rule Set 1

Rule Set 2

Rule Set 3

application - specific Java
or WSDL interface

Figure 10. Selecting from a set of business rules

12 Technical Overviews

A human task cannot be used in a mediation module. It can only be deployed to a
WebSphere Process Server.

Interface map
An interface map resolves differences between the interfaces of interacting
components.

Note: Interface maps are deprecated as of WebSphere Process Server version 7.0.
You can migrate your existing interface map components in WebSphere Integration
Developer to use the functions in the mediation flow component.

Differences between interfaces in components that need to interact with one
another are common. These differences arise because in WebSphere Integration
Developer you are often assembling components that were created for different
applications. Reusing them to create an application is one of WebSphere
Integration Developer's strengths, since otherwise you would be recoding similar
components. But you typically must make some adjustments.

For example, two components can have methods that perform basically the same
action but have different names such as getCredit and getCreditRating. They also
may have different operation names and the operations may have different
parameter types. An interface map maps the operations and parameters of these
methods so that the differences are resolved and the two components can interact.
An interface map is like a bridge between the interfaces of two components
allowing them to be wired together despite differences.

Rejected

Authorization
denied

Authorization

Stock order

Approved

Approver

get approvalApproved/Denied $ > Authorized

Figure 11. Human task component

Technical overviews 13

An interface map exists independent of the components using it, which means the
components themselves do not need to be changed.

An interface map cannot be used in a mediation module. It can only be deployed
to a WebSphere Process Server.

Mediation flow
Mediation is a way of mediating or intervening dynamically between services. A
mediation flow implements a mediation.

Mediation has several useful functions. For example, you can use mediation when
you need to transform data from one service into an acceptable format for a
subsequent service. Logging lets you log messages from a service before they are
sent to the next service. Routing lets you route data from one service into an
appropriate service determined by the mediation flow. A mediation operates
independently of the services it connects to. A mediation in the assembly editor
appears as a mediation flow component between exports and imports.

In the diagram that follows, three service requesters or exports send their output
data to the interface of the mediation flow component. The mediation flow
component then routes the appropriate data to two service providers or imports.

A mediation flow is a flow-like construct created with the mediation flow editor.
Selecting a mediation flow component in the assembly editor, launches the
mediation flow editor. In the mediation flow editor, an operation from one service,
the service requester or export, is mapped to the operation of another service, the
service provider or import, along with functions provided by the mediation flow
editor. These functions are called mediation primitives and are wired in a mediation
flow as shown in the following diagram. Mediation primitives are IBM-supplied or
you can create your own custom primitives. Mediation primitives can act on both
message content and message context, where context is binding-specific
information such as SOAP or JMS headers, or user-defined properties.

Import

Mediation
Flow

Export

Import

Export

Export

Figure 12. Mediation flow component between three service requesters or exports and two
service providers or imports

14 Technical Overviews

In the diagram that follows an operation, applyforLoan, sends a message first to a
logging primitive, Log, that records the message. Log sends the message to the
Filter primitive, which, depending on the message, routes the message to either a
processBusinessLoan operation or a processPersonalLoan operation.

As discussed in the Modules section, mediation flows can be in either a module or
a mediation module. Both types of modules can contain one or more mediation
flow components plus zero or more Java components that augment the mediation
flow component. A module can be deployed to a WebSphere Process Server. A
mediation module can be deployed to either a WebSphere Process Server or a
WebSphere Enterprise Service Bus server.

Service qualifiers
An application communicates its quality of service (QoS) needs to the runtime
environment by specifying service qualifiers. They govern the interaction between a
service client and a target service.

Qualifiers can be specified on service component references, interfaces, and
implementations. Since declaration of the QoS values is external to an
implementation, you can change these values without changing the
implementation, or set them differently when several instances of the same
implementation are used in different contexts.

These are the categories of qualifiers:
v Transaction - rules for the type of transaction
v Activity session - rules for joining the active session
v Security - rules for permission
v Asynchronous reliability - rules for asynchronous message delivery

applyforLoan

processPersonalLoan

processBusinessLoan

Log Filter

Operation to
apply for a loan

Log incoming
messages
from the
operation

Sort loan
applications
into business
and personal
loans

Route to process business
loan operation

Route to process personal
loan operation

Figure 13. Mediation flow between operations

Technical overviews 15

Stand-alone references
Stand-alone references are references to applications that are not defined as Service
Component Architecture components (for example, JavaServer Pages or servlets).
Stand-alone references permit these applications to interact with Service
Component Architecture components.

Stand-alone references have neither an interface or an implementation (as the
implementation is outside the scope of the module). A module can contain no
stand-alone references or one stand-alone references artifact. Stand-alone references
have the practical value of allowing you to use your existing applications together
with Service Component Architecture components created in WebSphere
Integration Developer.

Stand-alone references can be used in a mediation module. They can be deployed
to either a WebSphere Process Server or a WebSphere Enterprise Service Bus server.

Business objects
Business objects complement Service Component Architecture. Service Component
Architecture defines the services as components and the connectivity between
them. Business objects define the data flowing between components.

Each component passes information as input and output. When a service is
invoked, data objects are passed as an XML document with document literal
encoding when using a WSDL port type or as a Java object when using a Java
interface. Data objects are the preferred form for data and metadata in Service
Component Architecture services. Like components, business objects separate the
data object from its implementation. For example, a component interacts with
purchase orders while the purchase order itself might use JDBC, EJB, and so on, to
perform the updates to the data. Business objects let the integration developer
focus on working with business artifacts. In fact, service data objects are
transparent to the integration developer. They are defined by a service data objects
Java Specification Request (JSR).

Service
Component

1Service

Service
Component
Service2

Service
Info
Service2

Reference
Qualifiers

Port
Qualifiers

Implementation
Qualifiers

Figure 14. Qualifiers

16 Technical Overviews

http://www.jcp.org/en/jsr/detail?id=235

In Figure 15, business objects are passed from an external service to an export,
from an export to a component, from a component to a component, from a
component to an import, and from an import to a service. Imports and exports are
discussed in the Bindings section.

Business objects
The computer software industry has developed several programming models and
frameworks in which business objects provide a natural representation of the
business data for application processing.

In general, these business objects:
v Are defined using industry standards
v Transparently map data to database tables or enterprise information systems
v Support remote invocation protocols
v Provide the data programming model foundation for application programming

From a tooling perspective, WebSphere Integration Developer provides developers
with one such common business object model for representing different kinds of

Import
stockQuote

Export
MyValue

Business
Object

Business
Object

Business
Object

SCA
MyValue

SCA
Customerinfo

Business Object

Business
Object

Other Application
Modules

Other Application
Modules

Figure 15. Business objects

Technical overviews 17

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=cadm_bindingsgeneral

business entities from different domains. At development time, this model enables
developers to define business objects as XML schema definitions.

At run time, the business data defined by the XML schema definitions is
represented as Java Business Objects. In this model, business objects are loosely
based on early drafts of the Service Data Object (SDO) specification and provide
the complete set of programming model application interfaces required to
manipulate business data.

Defining business objects
You define business objects using the business object editor in WebSphere
Integration Developer. The business object editor stores the business objects as
XML schema definitions.

Using XML schema to define business objects provides several advantages:
v XML schema provide a standards-based data definition model and a foundation

for interoperability between disparate heterogeneous systems and applications.
XML schema are used in conjunction with the Web Services Description
Language (WSDL) to provide standards-based interface contracts among
components, applications, and systems.

v XML schema define a rich data definition model for representing business data.
This model includes complex types, simple types, user-defined types, type
inheritance, and cardinality, among other features.

v Business objects can be defined by business interfaces and data defined in the
Web Services Description Language, as well as by XML schema from industry
standards organizations or from other systems and applications. WebSphere
Integration Developer can import these business objects directly.

WebSphere Integration Developer also provides support for discovering business
data in databases and enterprise information systems and then generating the
standards-based XML schema business object definition of that business data.
Business objects generated in this fashion are often referred to as application specific
business objects because they mimic the structure of the business data defined in the
enterprise information system.

When a process is manipulating data from many different information systems, it
can be valuable to transform the disparate representation of business data (for
example, CustomerEIS1 and CustomerEIS2 or OrderEIS1 and OrderEIS2) into a
single canonical representation (for example, Customer or Order). The canonical
representation is often referred to as the generic business object.

Business object definitions, particularly for generic business objects, are frequently
used by more than one application. To support this reuse, WebSphere Integration
Developer allows business objects to be created in libraries that can then be
associated with multiple application modules.

The contracts for the services provided and consumed by a Service Component
Architecture (SCA) application module as well as the contracts used to create the
components within an application module are defined using the Web Services
Description Language. A WSDL can represent both the operations and business
objects, which are defined by XML schema to represent the business data, of a
contract.

18 Technical Overviews

Working with business objects
Service Component Architecture (SCA) provides the framework for defining an
application module, the services it provides, the services it consumes, and the
composition of components that provide the business logic of the application
module. Business objects play an important role in the application, defining the
business data that is used to describe the service and component contracts and the
business data that the components manipulate.

The following diagram depicts an SCA application module and illustrates many of
the places in which the developer works with business objects.

Note: This topic describes how business objects are used by SCA application
modules. If you are using Java interfaces, the SCA application modules can also
process Java objects.

Business object programming model

The business object programming model consists of a set of Java interfaces that
represent:
v The business object definition and instance data
v A set of services that support the operations on the business objects

Business object type definitions are represented by the commonj.sdo.Type and
commonj.sdo.Property interfaces. The business object programming model
provides a set of rules for mapping the XML schema complex type information to
the Type interface and each of the elements in the complex type definition to the
Property interface.

Business object instances are represented by the commonj.sdo.DataObject interface.
The business object programming model is untyped, which means that the same
commonj.sdo.DataObject interface can be used to represent different business object
definitions, such as Customer and Order. The definition of which properties can be

Figure 16. Business objects represent the data that flows between services in an application

Technical overviews 19

set and retrieved from each business object is determined by type information
defined in the XML schema associated with each business object.

The business object programming model behavior is based on the Service Data
Object 2.1 specification. For additional information, see the SDO 2.1 for Java
specification, tutorials and javadocs on the Web: http://osoa.org/display/Main/
Service+Data+Objects+Specifications.

Business object services support various lifecycle operations (such as creation,
equality, parsing, and serialization) on business objects.

For specifics on the business object programming model, see Programming using
business object services and Package com.ibm.websphere.bo.

Bindings, data bindings, and data handlers

As shown in Figure 16 on page 19, business data that is used to invoke services
provided by SCA application modules is transformed into business objects so that
the SCA components can manipulate the business data. Similarly, the business
objects manipulated by SCA components are converted into the data format
required by the external services.

In some cases, such as the web service binding, the binding used to export and
import services automatically transforms the data into the appropriate format. In
other cases, such as the JMS binding, developers can provide a data binding or
data handler that converts non-native formats into business objects represented by
the DataObject interface.

For more information on developing data bindings and data handlers, refer to Data
handlers and Data bindings.

Components

SCA components define their provision and consumption service contracts using a
combination of the Web Services Description Language and XML schema. The
business data that SCA passes between components is represented as business
objects using the DataObject interface. SCA verifies that these business object types
are compatible with the interface contract defined by the component to be invoked.

The programming model abstractions for manipulating business objects vary from
component to component. The POJO component and the mediation flow
component Custom primitive provide direct manipulating of the business objects
by enabling Java programming directly using the business object programming
interfaces and services. Most components provide higher level abstractions for
manipulating business objects, but also provide snippets of Java code for defining
custom behavior in the business object interfaces and services.

Business objects can be transformed using either the combination of the Interface
Flow Mediation and Business Object Map component or the mediation flow
component and its XML Map primitive. These business object transformation
capabilities are useful for converting application specific business objects to and
from generic business objects.

20 Technical Overviews

http://osoa.org/display/Main/Service+Data+Objects+Specifications
http://osoa.org/display/Main/Service+Data+Objects+Specifications
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=cbopg_serv
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=cbopg_serv
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=welcome_infocenter
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=cadm_datahandlers
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=cadm_datahandlers
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=cadm_databindings

Special business objects
Service message objects and business graphs are two specialized types of business
objects that are used for specific application purposes.

Service message object

A service message object (SMO) is a specialized business object that is used by
mediation flow components to represent the collection of data associated with a
service invocation.

A SMO has a fixed top-level structure consisting of headers, context, body, and
attachments (if present).
v Headers carry information related to the service invocation over a particular

protocol or binding. Examples are SOAP headers and JMS headers.
v Context data carries additional logical information associated with the

invocation while it is being processed by the mediation flow component. This
information is typically not part of the application data sent or received by
clients.

v The body of the SMO carries the payload business data, which represents the
core application message or invocation data in the form of a standard business
object.

The SMO can also carry attachment data for Web service invocations using SOAP
with attachments.

Mediation flows perform such tasks as request routing and data transformation,
and the SMO provides the combined view of header and payload contents in a
single unified structure.

Business graph

A business graph is a special business object used to provide support for data
synchronization in integration scenarios.

Consider an example in which two enterprise information systems have a
representation of a specific order. When the order changes in one system, a
message can be sent to the other system to synchronize the order data. Business
graphs support the notion of sending just the portion of the order that changed to
the other system and annotating it with change-summary information to define the
type of change.

In this example, an Order business graph would convey to the other system that
one of the line items in the order was deleted and that the projected ship date
property of the order was updated.

Business graphs can easily be added to existing business objects in WebSphere
Integration Developer. They are most frequently found in scenarios in which
WebSphere adapters are being used and to support the migration of WebSphere
InterChange Server applications.

Business object parsing mode
WebSphere Integration Developer provides a property on modules and libraries
you can use to configure XML parsing mode for business objects to either eager or
lazy.

Technical overviews 21

v If the option is set to eager, XML byte streams are eagerly parsed to create the
business object.

v If the option is set to lazy, the business object is created normally, but the actual
parsing of the XML byte stream is deferred and partially parsed only when the
business object properties are accessed.

In either XML parsing mode, non-XML data is always eagerly parsed to create the
business object.

Benefits of using lazy versus eager parsing mode
Some applications benefit from lazy XML parsing mode while others see improved
performance with eager parsing mode. It is recommended that you benchmark
your application in both parsing modes to determine which mode best suites the
specific characteristics of your application.

The following section provides general guidance about the types of applications
that benefit from each type of parsing mode:
v Applications benefiting from lazy XML parsing mode

Applications that parse large XML data streams are likely to see performance
improvements when the lazy XML parsing mode is used. The performance
benefits increase as the size of the XML byte stream increases and the amount of
data from the byte stream that is accessed by the application decreases.

Note: The business object lazy parsing mode is supported in WebSphere Process
Server 7.0.0.3 and later versions. Modules and mediation modules that include
mediation flow components are not supported.

v Applications benefiting from eager parsing mode
The following applications are likely to perform better in eager parsing mode:
– Applications that parse non-XML data streams
– Applications that are created using the BOFactory service
– Applications that parse very small XML messages

Application migration and development considerations
If you are configuring an application that was originally developed using eager
parsing mode to now use lazy parsing mode, or if you are planning to switch an
application between lazy and eager parsing mode, be aware of the differences
between modes and the considerations when switching modes.

Error handling

If the XML byte stream being parsed is ill-formed, parsing exceptions occur.
v In eager XML parsing mode, those exceptions occur as soon as the business

object is parsed from the inbound XML stream.
v If lazy XML parsing mode is configured, the parsing exceptions occur latently

when the business object properties are accessed and the portion of the XML
that is ill-formed is parsed.

To deal with ill-formed XML, select one of the following options:
v Deploy an enterprise service bus on the edges to validate inbound XML
v Author lazy error-detection logic at the point where business object properties

are accessed

22 Technical Overviews

Exception stacks and messages

Because the eager and lazy XML parsing modes have different underlying
implementations, stack traces thrown by the business object programming
interfaces and services have the same exception class name, but they might not
contain the same exception message or wrapped set of implementation-specific
exception classes.

XML serialization format

The lazy XML parsing mode provides a performance optimization that attempts to
copy unmodified XML from the inbound byte stream to the outbound byte stream
upon serialization. The result is increased performance, but the serialization format
of the outbound XML byte stream might be different if the entire business object
was updated in lazy XML parsing mode or if it was running in eager XML parsing
mode.

Although the XML serialization format might not be precisely syntactically
equivalent, the semantic value provided by the business object is equivalent
independent of the parsing modes, and XML can be safely passed between
applications running in different parsing modes with semantic equivalence.

Business object instance validator

The lazy XML parsing business object mode instance validator provides a higher
fidelity validation of business objects, particularly facet validation of property
values. Because of these improvements, the lazy parsing mode instance validator
catches additional issues that are not caught in eager parsing mode and provides
more detailed error messages.

Version 602 XML Maps

Mediation flows originally developed before WebSphere Integration Developer
Version 6.1 might contain XSLT primitives that use a map or stylesheet that cannot
process directly in lazy XML parsing mode. When an application is migrated for
use in lazy XML parsing mode, map files associated with XSLT primitives can be
automatically updated by the migration wizard to run in the new mode. However,
if an XSLT primitive refers directly to a stylesheet that has been edited manually,
the stylesheet is not migrated and cannot process in lazy XML parsing mode.

Private unpublished APIs

If an application is taking advantage of unpublished, private, implementation-
specific business object programming interfaces, the application is likely to fail
compilation when the parsing mode is switched. In eager parsing mode, these
private interfaces are typically business object implementation classes defined by
the Eclipse Modeling Framework (EMF).

In all cases, it is recommended that private APIs be removed from the application.

Service Message Object EMF APIs

A mediation component in WebSphere Process Server provides the ability to
manipulate message content using the Java classes and interfaces provided in the
com.ibm.websphere.sibx.smobo package. In lazy XML parsing mode, the Java
interfaces in the com.ibm.websphere.sibx.smobo package can still be used, but

Technical overviews 23

methods that refer directly to Eclipse Modeling Framework (EMF) classes and
interfaces or that are inherited from EMF interfaces are likely to fail.

The ServiceMessageObject and its contents cannot be cast to EMF objects in lazy
XML parsing mode.

BOMode service

The BOMode service is used to determine whether the currently processing XML
parsing mode is eager or lazy.

Migration

All applications before version 7.0.0.0 are running in eager XML parsing mode.
When they are runtime migrated using the BPM runtime migration tools, they
continue to run in eager XML parsing mode.

To enable an application earlier than version 7.0.0.0 to be configured to use the
lazy XML parsing mode, you first use WebSphere Integration Developer to migrate
the artifacts of the application. After migration, you then configure the application
to use lazy XML parsing.

See Migrating source artifacts for information about migrating artifacts in
WebSphere Integration Developer, and see Configuring the business object parsing
mode of modules and libraries for information about setting the parsing mode.

Business object property type QName

You must modify the application code to work with business objects that contain
property of type QName if you want your application that used eager parsing to use
lazy parsing. In eager parsing mode, WebSphere Process Server uses the Java class
org.eclipse.emf.ecore.xml.type.internal.QName to define the QName type
property value. Lazy parsing mode uses the Java class javax.xml.namespace.QName
to set value for the QName type property. Modify the application code when
changing the mode from Eager to Lazy for a module by replacing the reference to
Java class org.eclipse.emf.ecore.xml.type.internal.QName
with javax.xml.namespace.QName.

Relationships
A relationship is an association between two or more data entities, typically
business objects. Relationships can be used to transform data that is equivalent
across business objects and other data but that is represented differently, or they
can be used to draw associations across different objects found in different
applications. They can be shared across applications, across solutions, and even
across products.

The relationship service in WebSphere Process Server provides the infrastructure
and operations for managing relationships. Because it enables you to deal with
business objects regardless of where they reside, it can provide a unified holistic
view across all applications in an enterprise, and serve as a building block for BPM
solutions. Because relationships are extensible and manageable, they can be used in
complex integration solutions.

24 Technical Overviews

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=welcome_infocenter
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=welcome_infocenter
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=welcome_infocenter

What are relationships?

A relationship is an association between business objects. Each business object in a
relationship is called a participant in the relationship. Each participant in the
relationship is distinguished from other participants based on the function, or role,
it serves in that relationship. A relationship contains a list of roles.

The relationship definition describes each role and specifies how the roles are
related. It also describes the overall "shape" of the relationship. For example, this
role can have only one participant, but this other role can have as many
participants as necessary. You might define a car-owner relationship, for instance,
where one owner might own multiple cars. For example, one instance could have
the following participants for each of these roles:
v Car (Ferrari)
v Owner (John)

The relationship definition is a template for the relationship instance. The instance
is the run-time instantiation of the relationship. In the car-owner example above, an
instance might describe any of the following associations:
v John owns Ferrari
v Sara owns Mazda
v Bob owns Ferrari

Using relationships frees you from the need to custom build relationship tracking
persistence within your business logic. For certain scenarios, the relationship
service does all the work for you. See the example described in the section on
Identity relationships.

Scenarios

Here is a typical example of a situation in which an integration solution might use
relationships. A large corporation buys multiple companies, or business units. Each
business unit uses different software to monitor personnel and laptops. The
company needs a way to monitor its employees and their laptops. It wants a
solution that enables them to:
v View all the employees in the various business units as if they were in one

database
v Have a single view of all their laptops
v Allow employees to log on to the system and buy a laptop
v Accommodate the different enterprise application systems in the various

business units

To accomplish this, the company needs a way to ensure, for example, that John
Smith and John A. Smith in different applications are seen as the same employee.
For Example, they need a way to consolidate a single entity across multiple
application spaces.

More complex relationship scenarios involve building business processes that draw
relationships across different objects found in multiple applications. With complex
relationship scenarios, the business objects reside in the integration solution, and
not in the applications. The relationship service provides a platform for managing
relationships persistently. Before the relationship service, you would have to build
your own object persistence service. Two examples of complex relationship
scenarios are:

Technical overviews 25

v You have a car business object with a VIN number in an SAP application, and
you want to track the fact that this car is owned by someone else. However, the
ownership relationship is with someone in a PeopleSoft application. In this
pattern of relationships, you have two solutions and you need to build a
cross-bridge between them.

v A large retail company wants to be able to monitor merchandise returned for
cash back or credit. There are two different applications involved: an order
management system (OMS) for purchases, and a returns management system
(RMS) for returns. The business objects reside in more than one application, and
you need a way to show the relationships that exist between them.

Common usage patterns

The most common relationship patterns are equivalence patterns. These are based
on cross-referencing, or correlation. There are two types of relationships that fit this
pattern: non-identity and identity.
v Non-identity relationships establish associations between business objects or

other data on a one-to-many or many-to-many basis. For each relationship
instance, there can be one or more instances of each participant. One type of
non-identity relationship is a static lookup relationship. An example of this is a
relationship in which CA in an SAP application is related to California in a
Siebel application.

v

Identity relationships establish associations between business objects or other
data on a one-to-one basis. For each relationship instance, there can be only one
instance of each participant. Identity relationships capture cross-references
between business objects that are semantically equivalent, but that are identified
differently within different applications. Each participant in the relationship is
associated with a business object that has a value (or combination of values) that
uniquely identifies the object. Identity relationships typically transform the key
attributes of business objects, such as ID numbers and product codes.
For example, if you have car business objects in SAP, PeopleSoft, and Siebel
applications, and you want to build a solution that synchronizes them, you
would normally need to introduce hand-built relationship synchronization logic
in six maps:

SAP -> generic
generic -> SAP
PeopleSoft-> generic
generic-> PeopleSoft
Siebel-> generic
generic-> Siebel

However, if you use relationships in your solution, the relationship service
provides prebuilt pattern implementations that maintains all these relationship
instances for you.

Tools for working with relationships

The relationship editor in WebSphere Integration Developer is the tool you use to
model and design business integration relationships and roles. For detailed
background and task information about creating relationships and using the
relationship editor, refer to the WebSphere Integration Developer Information
Center.

26 Technical Overviews

http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/index.jsp

The relationship service is an infrastructure service in WebSphere Process Server that
maintains relationships and roles in the system and provides operations for
relationship and role management.

The relationship manager is the administrative interface for managing relationships.
It is accessed through the Relationship Manager pages of the administrative
console.

Relationships can be invoked programmatically through the relationship service
APIs.

Relationship service
The relationship service stores relationship data in relationship tables, where it
keeps track of application-specific values across applications and across solutions.
The relationship service provides operations for relationship and role management.

How relationships work

Relationships and roles are defined using the graphical interface of the relationship
editor tool in WebSphere Integration Developer. The relationship service stores the
correlation data in tables in the relationship database in the default data source
that you specify when you configure the relationship service. A separate table
(sometimes called a participant table) stores information for each participant in the
relationship. The relationship service uses these relationship tables to keep track of
the related application-specific values and propagate updated information across
all the solutions.

Relationships, which are business artifacts, are deployed within a project or in a
shared library. At the first deployment, the relationship service populates the data.

At run time, when maps or other WebSphere Process Server components need a
relationship instance, the instances of the relationship are either updated or
retrieved, depending on the scenario.

Relationship and role instance data can be manipulated through three means:
v WebSphere Process Server component Java snippet invocations of the

relationship service APIs
v Relationship transformations in the WebSphere Process Server business object

mapping service
v The relationship manager tool

For detailed background and task information on creating relationships, identifying
relationship types, and using the relationship editor, refer to the WebSphere
Integration Developer Information Center.

Relationship manager
The relationship manager is the administrative interface for managing
relationships. It is accessed through the Relationship Manager pages of the
administrative console.

The relationship manager provides a graphical user interface for creating and
manipulating relationship and role data at run time. You can manage relationship
entities at all levels: relationship instance, role instance, and attribute data and
property data levels. With the relationship manager, you can:

Technical overviews 27

http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/index.jsp
http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/index.jsp

v View a list of the relationships in the system and detailed information for
individual relationships

v Manage relationship instances:
– Query relationship data to view subsets of instance data
– Query relationship data to view subsets of instance data using database views
– View a list of relationship instances that match a relationship query and

detailed information about an instance
– Edit the property values for a relationship instance
– Create and delete relationship instances

v Manage roles and role instances:
– View details about a role or a role instance
– Edit role instance properties
– Create and delete role instances for a relationship
– Roll back relationship instance data to a point in time when you know the

data is reliable
v Import data from an existing static relationship into your system, or export data

from an existing static relationship to an RI or CSV file
v Remove relationship schema and data from the repository when the application

that uses it is uninstalled

Relationships in Network Deployment environments
Relationships can be used in Network Deployment (ND) environments without
any extra configuration.

In Network Deployment (ND) environments, relationships are installed in an
application cluster. Relationships are then visible within the cluster, and all servers
in the cluster have access to the instance data stored in the relationship database.
The ability to run the relationship service in an ND environment makes it scalable
and highly available.

The relationship manager allows relationships to be managed across different
clusters through a centralized administrative interface. You connect the relationship
manager to a server in a cluster by selecting its relationship MBean.

Relationship service APIs
Relationships can be invoked programmatically through the relationship service
APIs, within or outside of business object maps.

Three API types are available:
v Relationship instance manipulation APIs (including create, update, delete

instance data directly)
v Relationship pattern support APIs (including correlate(),

correlateforeignKeyLookup)
v Relationship lookup patterns (lookup APIs)

The enterprise service bus in WebSphere Process Server
WebSphere Process Server supports the integration of application services,
including the same capabilities as WebSphere Enterprise Service Bus.

28 Technical Overviews

Connecting services through an enterprise service bus
With an enterprise service bus (ESB), you can maximize the flexibility of an SOA.
Participants in a service interaction are connected to the ESB, rather than directly
to one another.

When the service requester connects to the ESB, the ESB takes responsibility for
delivering its requests, using messages, to a service provider offering the required
function and quality of service. The ESB facilitates requester-provider interactions
and addresses mismatched protocols, interaction patterns, or service capabilities.
An ESB can also enable or enhance monitoring and management. The ESB
provides virtualization and management features that implement and extend the
core capabilities of SOA.

The ESB abstracts the following features:

Location and identity
Participants need not know the location or identity of other participants.
For example, requesters need not be aware that a request could be serviced
by any of several providers; service providers can be added or removed
without disruption.

Interaction protocol
Participants need not share the same communication protocol or
interaction style. For example, a request expressed as SOAP over HTTP can
be serviced by a provider that only understands SOAP over Java Message
Service (JMS).

Interface
Requesters and providers need not agree on a common interface. An ESB
reconciles differences by transforming request and response messages into
a form expected by the provider.

Requesters and providers need not agree on a common interface
An ESB reconciles differences by transforming request messages into a
form expected by the provider.

Qualities of (interaction) service
Participants, or systems administrators, declare their quality-of-service
requirements, including authorization of requests, encryption and
decryption of message contents, automatic auditing of service interactions,
and how their requests should be routed (for example, optimizing for
speed or cost).

Interposing the ESB between participants enables you to modulate their interaction
through a logical construct called a mediation. Mediations operate on messages
in-flight between requesters and providers. For example, mediations can be used to
find services with specific characteristics that a requester is asking for, or to resolve
interface differences between requesters and providers. For complex interactions,
mediations can be chained sequentially.

An enterprise service bus, with mediations, performs the following actions
between requester and service:
v Routing messages between services. An enterprise service bus offers a common

communication infrastructure that can be used to connect services, and thereby
the business functions they represent, without the need for programmers to
write and maintain complex connectivity logic.

Technical overviews 29

v Converting transport protocols between requester and service. An enterprise
service bus provides a consistent, standards-based way to integrate business
functions that use different IT standards. This enables integration of business
functions that could not normally communicate, such as to connect applications
in departmental silos or to enable applications in different companies to
participate in service interactions.

v Transforming message formats between requester and service. An enterprise
service bus enables business functions to exchange information in different
formats, with the bus ensuring that the information delivered to a business
function is in the format required by that application.

v Handling business events from disparate sources. An enterprise service bus
supports event-based interactions in addition to the message exchanges to
handle service requests.

By using the enterprise service bus you can concentrate focus on your core
business rather than your computer systems. You can change or add to the services
when you need to; for example, to respond to changes in the business requirement,
to add extra service capacity, or to add new capabilities. You can make the
required changes by reconfiguring the bus, with little or no impact to existing
services and applications that use the bus.

Enterprise service bus messaging infrastructure
WebSphere Process Server includes enterprise service bus capabilities. WebSphere
Process Server supports the integration of service-oriented, message-oriented, and
event-driven technologies to provide a standards-based, messaging infrastructure
in an integrated enterprise service bus.

The enterprise service capabilities that you can use for your enterprise applications
provide not only a transport layer but mediation support to facilitate service
interactions. The enterprise service bus is built around open standards and
service-oriented architecture (SOA). It is based on the robust Java EE infrastructure
and associated platform services provided by IBM WebSphere Application Server
Network Deployment.

WebSphere Process Server is powered by the same technology available with IBM
WebSphere Enterprise Service Bus. This capability is part of the underlying
functionality of WebSphere Process Server, and no additional license for WebSphere
Enterprise Service Bus is required to take advantage of these capabilities.

Enterprise Service Bus (ESB)

Service
ProviderService

request

Service
Requester

Service
Mediation

Figure 17. An enterprise service bus. The enterprise service bus is routing messages between applications, which are
requesters or providers of services. The bus is converting transport protocols and transforming message formats
between requesters and providers. In this figure, each application uses a different protocol (represented by the
different geometric shapes of their connectors) and uses different message formats.

30 Technical Overviews

However, you can deploy additional stand-alone licenses of WebSphere Enterprise
Service Bus around your enterprise to extend the connectivity reach of the process
integration solutions powered by WebSphere Process Server. For example,
WebSphere Enterprise Service Bus can be installed closer to an SAP application to
host an IBM WebSphere Adapter for SAP and to transform SAP messages before
sending that information across the network to a business process choreographed
by WebSphere Process Server.

You can deploy WebSphere Enterprise Service Bus around your enterprise to
extend the connectivity reach of the process integration solutions powered by
separate installations of WebSphere Process Server or other integration solutions as
part of a federated ESB. For example, WebSphere Enterprise Service Bus can be
installed closer to an SAP application to host an IBM WebSphere Adapter for SAP
and to transform SAP messages before sending that information across the network
to a business process choreographed by WebSphere Process Server.

Messaging or queue destination hosts
A messaging or queue destination host provides the messaging function within a
server. A server becomes the messaging destination host when you configure it as
the messaging target.

A messaging engine runs within a server. The messaging engine provides
messaging functions and a connection point for applications to connect to the bus.
Service Component Architecture (SCA) asynchronous communication, JMS imports
and exports, asynchronous internal processing use message queues on the
messaging engine.

The deployment environment connects the message source to the message target
through the bus when the application modules are deployed. Knowing the
message source and message target helps you determine what type of deployment
environment you need.

Applications can store persistent data in a data store, which is a set of tables in a
database or schema, or in a file store. The messaging engine uses an instance of a
JDBC data source to interact with that database.

Configure the messaging destination host when you define your deployment
environment by using Server from the administrative console or designate the
server as the destination host during software installation.

Data stores:

Every messaging engine can use a data store, which is a set of tables in a database
or schema that store persistent data.

All of the tables in the data store are held in the same database schema. You can
create each data store in a separate database. Alternatively, you can create multiple
data stores in the same database, with each data store using a different schema.

A messaging engine uses an instance of a JDBC data source to interact with the
database that contains the data store for that messaging engine.

Data sources
Data sources provide the link between applications and relational databases.

Technical overviews 31

Applications use a data source to obtain connections to a relational database. A
data source is analogous to the Java EE Connector Architecture (JCA) connection
factory, which provides connectivity to other types of enterprise information
systems (EIS).

A data source is associated with a JDBC provider, which supplies the driver
implementation classes that are required for JDBC connectivity with a specific type
of database. Application components transact directly with the data source to
obtain connection instances to your database. The connection pool that corresponds
to each data source provides connection management.

You can create multiple data sources with different settings, and associate them
with the same JDBC provider. For example, you might use multiple data sources to
access different databases within the same database application. WebSphere Process
Server requires JDBC providers to implement one or both of the following data
source interfaces, which are defined by Sun Microsystems. These interfaces enable
the application to run in a single-phase or two-phase transaction protocol.

Note: Business Process Choreographer data sources are created using the Business
Process Choreographer configuration tools. Refer to Configuring Business Process
Choreographer.
v ConnectionPoolDataSource - a data source that supports application

participation in local and global transactions, except two-phase commit
transactions. When a connection pool data source is involved in a global
transaction, transaction recovery is not provided by the transaction manager. The
application is responsible for providing the backup recovery process if multiple
resource managers are involved.

v XADataSource - a data source that supports application participation in any
single-phase or two-phase transaction environment. When this data source is
involved in a global transaction, the WebSphere Application Server transaction
manager provides transaction recovery.

The following tables provide examples of typical stand-alone and typical
deployment environment setups:

Table 2. Typical stand-alone environment setup

Datasource Component Scope JNDI Name

WBI DataSource CommonDB Node jdbc/WPSDB

SCA Application
Bus ME data
source

SCA ME Server jdbc/com.ibm.ws.sib/nlNode01.server1-
SCA.APPLICATION.localhostNode01Cell.Bus

Business Process
Choreographer
data source

BPC Server jdbc/BPEDB

Business Process
Choreographer
ME data source

BPC ME Server jdbc/com.ibm.ws.sib/nlNode01.server1-BPC.localhostNode01Cell.Bus

event CEI Server jdbc/cei

CEI ME data
source

CEI ME Server jdbc/com.ibm.ws.sib/nlNode01.server1-CEI.cellName.BUS

32 Technical Overviews

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=t2configovr
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=t2configovr

Table 3. Typical deployment environment setup

Datasource Component Scope JNDI Name

WBI DataSource CommonDB Cell jdbc/WPSDB

SCA Application
Bus ME data
source

SCA ME Cluster jdbc/com.ibm.ws.sib/clusterone-
SCA.APPLICATION.enduranceTestCell01.Bus

Business Process
Choreographer
data source

BPC Cluster jdbc/BPEDB

Business Process
Choreographer
ME data source

BPC ME Cluster jdbc/com.ibm.ws.sib/clusterone-BPC.enduranceTestCell01.Bus

event CEI Cluster jdbc/cei

CEI ME data
source

CEI ME Cluster jdbc/com.ibm.ws.sib/clusterone-CEI.cellName.BUS

For more information on data sources, see “Data sources” in theWebSphere
Application Server information center.

JDBC providers:

You can use JDBC providers to interact applications with relational databases.

Applications use JDBC providers to interact with relational databases. The JDBC
provider supplies the specific JDBC driver implementation class for access to a
specific type of database. To create a pool of connections to that database, you
associate a data source with the JDBC provider. Together, the JDBC provider and
the data source objects are functionally equivalent to the Java EE Connector
Architecture (JCA) connection factory, which provides connectivity with a
non-relational database.

Refer to the examples of both Typical stand-alone environment setup and Typical
deployment environment setup in the previous topic.

For more information on JDBC providers, see “JDBC providers” in the WebSphere
Application Server information center.

Service integration buses for WebSphere Process Server
A service integration bus is a managed communication mechanism that supports
service integration through synchronous and asynchronous messaging. A bus
consists of interconnecting messaging engines that manage bus resources. It is one
of the WebSphere Application Server technologies on which WebSphere Process
Server is based.

Some buses are automatically created for use by the system, the Service
Component Architecture (SCA) applications that you deploy, and by other
components. You can also create buses to support service integration logic or other
applications, for example, to support applications that act as service requesters and
providers within WebSphere Process Server, or to link to WebSphere MQ.

A bus destination is a logical address to which applications can attach as a
producer, consumer, or both. A queue destination is a bus destination that is used
for point-to-point messaging.

Technical overviews 33

Each bus can have one or more bus members, each of which is either a server or a
cluster.

The bus topology is the physical arrangement of application servers, messaging
engines, and WebSphere MQ queue managers and the pattern of bus connections
and links between them that makes up your enterprise service bus.

Some service integration buses are created automatically to support WebSphere
Process Server. Up to four buses are created when you create your deployment
environment or configure a server or cluster to support SCA applications. These
buses each have three authentication aliases that you must configure.

SCA system bus:

The SCA system bus is a service integration bus that is used to host queue
destinations for Service Component Architecture (SCA) modules. The SCA run
time, which supports mediation modules, uses queue destinations on the system
bus as an infrastructure to support asynchronous interactions between components
and modules.

The system bus is automatically created when you create a deployment
environment or when you configure a server or cluster to support SCA
applications. The system bus provides a scope within which resources, such as
queue destinations, are configured for mediation modules and interaction
endpoints. The bus enables message routing between endpoints. You can specify
the quality of service for the bus, including priority and reliability.

The bus name is SCA.SYSTEM.busID.Bus. The authentication alias used for
securing this bus is SCA_Auth_Alias.

SCA application bus:

The application bus destinations support the asynchronous communication of
WebSphere Business Integration Adapters and other System Component
Architecture components.

The application bus is automatically created when you create a deployment
environment or when you configure a server or cluster to support SCA
applications. The application bus is similar to service integration buses you might
create to support service integration logic or other applications.

The bus name is SCA.APPLICATION.busID.Bus. The authentication alias used for
securing this bus is SCA_Auth_Alias.

The Common Event Infrastructure bus:

The Common Event Infrastructure bus is used for transmitting common base
events, asynchronously, to the configured Common Event Infrastructure server.

The bus name is CommonEventInfrastructure_Bus. The authentication alias used
for securing this bus is CommonEventInfrastructureJMSAuthAlias

The Business Process Choreographer bus:

Use the Business Process Choreographer bus name and authentication for internal
message transmission.

34 Technical Overviews

The Business Process Choreographer bus is used for transmitting messages
internally and for business flow manager's Java Messaging Service (JMS) API.

The bus name is BPC.cellName.Bus. The authentication alias is BPC_Auth_Alias

Service applications and service modules
A service module is a Service Component Architecture (SCA) module that provides
services in the run time. When you deploy a service module toWebSphere Process
Server, you build an associated service application that is packaged as an
Enterprise ARchive (EAR) file.

Service modules are the basic units of deployment and can contain components,
libraries, and staging modules used by the associated service application. Service
modules have exports and, optionally, imports to define the relationships between
modules and service requesters and providers. WebSphere Process Server supports
modules for business services and mediation modules. Both modules and
mediation modules are types of SCA modules. A mediation module allows
communication between applications by transforming the service invocation to a
format understood by the target, passing the request to the target and returning
the result to the originator. A module for a business service implements the logic of
a business process. However, a module can also include the same mediation logic
that can be packaged in a mediation module.

Deploying a service application

The process of deploying an EAR file containing a service application is the same
as the process of deploying any EAR file. You can modify values for mediation
parameters at deployment time. After you have deployed an EAR file containing
an SCA module, you can view details about the service application and its
associated module. You can see how a service module is connected to service
requesters (through exports) and service providers (through imports).

Viewing SCA module details

The service module details that you can view depend upon the SCA module. They
can include the following attributes.
v SCA module name
v SCA module description
v Associated application name
v SCA module version information, if the module is versioned
v SCA module imports:

– Import interfaces are abstract definitions that describe how an SCA module
accesses a service.

– Import bindings are concrete definitions that specify the physical mechanism
by which an SCA module accesses a service. For example, using SOAP/HTTP.

v SCA module exports:
– Export interfaces are abstract definitions that describe how service requesters

access an SCA module.
– Export bindings are concrete definitions that specify the physical mechanism

by which a service requester accesses an SCA module, and indirectly, a
service.

v SCA module properties

Technical overviews 35

Imports and import bindings
Imports define interactions between Service Component Architecture (SCA)
modules and service providers. SCA modules use imports to permit components to
access external services (services that are outside the SCA module) using a local
representation. Import bindings define the specific way that an external service is
accessed.

If SCA modules do not need to access external services, they are not required to
have imports. Mediation modules usually have one or more imports that are used
to pass messages or requests on to their intended targets.

Interfaces and bindings

An SCA module import needs at least one interface, and an SCA module import
has a single binding.
v Import interfaces are abstract definitions that define a set of operations using

Web Services Description Language (WSDL), an XML language for describing
Web services. An SCA module can have many import interfaces.

v Import bindings are concrete definitions that specify the physical mechanism
that SCA modules use to access an external service.

Supported import bindings

WebSphere Process Server supports the following import bindings:
v SCA bindings connect SCA modules to other SCA modules. SCA bindings are

also referred to as default bindings.
v Web Service bindings permit components to invoke Web services. The supported

protocols are SOAP1.1/HTTP, SOAP1.2/HTTP, and SOAP1.1/JMS.
You can use a SOAP1.1/HTTP or SOAP1.2/HTTP binding based on the Java API
for XML Web Services (JAX-WS), which allows interaction with services using
document or RPC literal bindings and which uses JAX-WS handlers to
customize invocations. A separate SOAP1.1/HTTP binding is provided to allow
interaction with services that use an RPC-encoded binding or where there is a
requirement to use JAX-RPC handlers to customize invocations.

v HTTP bindings permit you to access applications using the HTTP protocol.
v Enterprise JavaBeans (EJB) import bindings enable SCA components to invoke

services provided by Java EE business logic running on a Java EE server.
v Enterprise information system (EIS) bindings provide connectivity between SCA

components and an external EIS. This communication is achieved through the
use of resource adapters.

v Java Message Service (JMS) 1.1 bindings permit interoperability with the
WebSphere Application Server default messaging provider. JMS can exploit
various transport types, including TCP/IP and HTTP or HTTPS. The JMS
Message class and its five subtypes (Text, Bytes, Object, Stream, and Map) are
automatically supported.

v Generic JMS bindings permit interoperability with third-party JMS providers
that integrate with the WebSphere Application Server using the JMS Application
Server Facility (ASF).

v WebSphere MQ JMS bindings permit interoperability with WebSphere MQ-based
JMS providers. The JMS Message class and its five subtypes (Text, Bytes, Object,
Stream, and Map) are automatically supported. If you want to use WebSphere
MQ as a JMS provider, use WebSphere MQ JMS bindings.

36 Technical Overviews

v WebSphere MQ bindings permit interoperability with WebSphere MQ. You can
use WebSphere MQ bindings only with remote queue managers by way of a
WebSphere MQ client connection; you cannot use them with local queue
managers. Use WebSphere MQ bindings if you want to communicate with native
WebSphere MQ applications.

Dynamic invocation of services

Services can be invoked through any supported import binding. A service is
normally found at an endpoint specified in the import. This endpoint is called a
static endpoint. It is possible to invoke a different service by overriding the static
endpoint. Dynamic override of static endpoints lets you invoke a service at another
endpoint, through any supported import binding. Dynamic invocation of services
also permits you to invoke a service where the supported import binding does not
have a static endpoint.

An import with an associated binding is used to specify the protocol and its
configuration for dynamic invocation. The import used for the dynamic invocation
can be wired to the calling component, or it can be dynamically selected at
runtime.

For Web service and SCA invocations, it is also possible to make a dynamic
invocation without an import, with the protocol and configuration deduced from
the endpoint URL. The invocation target type is identified from the endpoint URL.
If an import is used, the URL must be compatible with the protocol of the import
binding.
v An SCA URL indicates invocation of another SCA module.
v An HTTP or a JMS URL by default indicates invocation of a Web service; for

these URLs, it is possible to provide an additional binding type value that
indicates that the URL represents an invocation by way of an HTTP or JMS
binding.

v For a Web service HTTP URL, the default is to use SOAP 1.1, and a binding type
value can be specified that indicates the use of SOAP 1.2.

Exports and export bindings
Exports define interactions between Service Component Architecture (SCA)
modules and service requesters. SCA modules use exports to offer services to
others. Export bindings define the specific way that an SCA module is accessed by
service requesters.

Interfaces and bindings

An SCA module export needs at least one interface.
v Export interfaces are abstract definitions that define a set of operations using

Web Services Description Language (WSDL), an XML language for describing
Web services. An SCA module can have many export interfaces.

v Export bindings are concrete definitions that specify the physical mechanism
that service requesters use to access a service. Usually, an SCA module export
has one binding specified. An export with no binding specified is interpreted by
the run time as an export with an SCA binding.

Supported export bindings

WebSphere Process Server supports the following export bindings:

Technical overviews 37

v SCA bindings connect SCA modules to other SCA modules. SCA bindings are
also referred to as default bindings.

v Web Service bindings permit exports to be invoked as Web services. The
supported protocols are SOAP1.1/HTTP, SOAP1.2/HTTP, and SOAP1.1/JMS.
You can use a SOAP1.1/HTTP or SOAP1.2/HTTP binding based on the Java API
for XML Web Services (JAX-WS), which allows interaction with services using
document or RPC literal bindings and which uses JAX-WS handlers to
customize invocations. A separate SOAP1.1/HTTP binding is provided to allow
interaction with services that use an RPC-encoded binding or where there is a
requirement to use JAX-RPC handlers to customize invocations.

v HTTP bindings permit exports to be accessed using the HTTP protocol.
v Enterprise JavaBeans (EJB) export bindings allow SCA components to be

exposed as EJBs so that Java EE business logic can invoke SCA components
otherwise unavailable to them.

v Enterprise information system (EIS) bindings provide connectivity between SCA
components and an external EIS. This communication is achieved through the
use of resource adapters.

v Java Message Service (JMS) 1.1 bindings permit interoperability with the
WebSphere Application Server default messaging provider. JMS can exploit
various transport types, including TCP/IP and HTTP or HTTPS. The JMS
Message class and its five subtypes (Text, Bytes, Object, Stream, and Map) are
automatically supported.

v Generic JMS bindings permit interoperability with third-party JMS providers
that integrate with the WebSphere Application Server using the JMS Application
Server Facility (ASF).

v WebSphere MQ JMS bindings permit interoperability with WebSphere MQ-based
JMS providers. The JMS Message class and its five subtypes (Text, Bytes, Object,
Stream, and Map) are automatically supported. If you want to use WebSphere
MQ as a JMS provider, use WebSphere MQ JMS bindings.

v WebSphere MQ bindings permit interoperability with WebSphere MQ. You use a
remote (or client) connection to connect to an MQ queue manager on a remote
machine. A local (or bindings) connection is a direct connection to WebSphere
MQ. This can be used only for a connection to an MQ queue manager on the
same machine. WebSphere MQ will permit both types of connection, but MQ
bindings only support the "remote" (or "client") connection.

Mediation modules
Mediation modules are Service Component Architecture (SCA) modules that can
change the format, content, or target of service requests.

Mediation modules operate on messages that are in-flight between service
requesters and service providers. You are able to route messages to different
service providers and to amend message content or form. Mediation modules can
provide functions such as message logging, and error processing that is tailored to
your requirements.

You can change certain aspects of mediation modules, from the WebSphere Process
Server administrative console, without having to redeploy the module.

Components of mediation modules

Mediation modules contain the following items:

38 Technical Overviews

v Imports, which define interactions between SCA modules and service providers.
They allow SCA modules to call external services as if they were local. You can
view mediation module imports from WebSphere Process Server and modify the
binding.

v Exports, which define interactions between SCA modules and service requesters.
They allow an SCA module to offer a service and define the external interfaces
(access points) of an SCA module. You can view mediation module exports from
WebSphere Process Server.

v SCA components, which are building blocks for SCA modules such as mediation
modules. You can create and customize SCA modules and components
graphically, using WebSphere Integration Developer. After you deploy a
mediation module you can customize certain aspects of it from the WebSphere
Process Server administrative console, without having to redeploy the module.
Usually, mediation modules contain a specific type of SCA component called a
mediation flow component. Mediation flow components define mediation flows.
A mediation flow component can contain none, one, or a number of mediation
primitives. WebSphere Process Server supports a supplied set of mediation
primitives that provide functionality for message routing and transformation. If
you need additional mediation primitive flexibility, you can use the Custom
Mediation primitive to call custom logic.
The purpose of a mediation module that does not contain a mediation flow
component is to transform service requests from one protocol to another. For
example, a service request might be made using SOAP/JMS but might need
transforming to SOAP/HTTP before sending on.

Note: You can view and make certain changes to mediation modules from
WebSphere Process Server. However, you cannot view or change the SCA
components inside a WebSphere Process Server module. Use WebSphere
Integration Developer to customize SCA components.

v Properties
Mediation primitives have properties, some of which can be displayed in the
administrative console as additional properties of an SCA module.

mediation
module
export

mediation
module
import

mediation flow component

mediation
primitive

mediation
primitive

stop mediation
primitive

Fail output terminalOutput terminalInput terminal

Interface Reference

Figure 18. Simplified example of a mediation module. The mediation module contains one
mediation flow component, which contains mediation primitives.

Technical overviews 39

For mediation primitive properties to be visible from the WebSphere Process
Server administrative console, the integration developer must promote the
properties. Certain properties lend themselves to being administratively
configured and WebSphere Integration Developer describes these as promotable
properties, because they can be promoted from the integration cycle to the
administrative cycle. Other properties are not suitable for administrative
configuration, because modifying them can affect the mediation flow in such a
way that the mediation module needs to be redeployed. WebSphere Integration
Developer lists the properties that you can choose to promote under the
promoted properties of a mediation primitive.
You can use the WebSphere Process Server administrative console to change the
value of promoted properties without having to redeploy a mediation module,
or restart the server or module.
Generally, mediation flows use property changes immediately. However, if
property changes occur in a deployment manager cell, they take effect on each
node as that node is synchronized. Also, mediation flows that are in-flight
continue to use previous values.

Note: From the administrative console, you can only change property values,
not property groups, names or types. If you want to change property groups,
names or types, you must use WebSphere Integration Developer.

v A mediation module or dependent library may also define subflows. A subflow
encapsulates a set of mediation primitives wire together as a reusable piece of
integration logic. A primitive can be added to a mediation flow to invoke a
subflow.

Deploying mediation modules

Mediation modules are created using WebSphere Integration Developer, and are
generally deployed to WebSphere Process Server inside an enterprise archive (EAR)
file.

You can change the value of promoted properties at deployment time.

You can export a mediation module from WebSphere Integration Developer, and
cause WebSphere Integration Developer to package the mediation module inside a
Java archive (JAR) file, and the JAR file inside an EAR file. You can then deploy
the EAR file, by installing a new application from the administrative console.

Mediation modules can be thought of as one entity. However, SCA modules are
defined by a number of XML files stored in a JAR file.

Example of EAR file, containing a mediation module

Utility JAR file
containing a
mediation module

EJB JAR
file

Manifest
file

WAR
file

Figure 19. Simplified example of an EAR file containing a mediation module. The EAR file
contains JARs. The utility JAR file contains a mediation module.

40 Technical Overviews

Mediation primitives
Mediation flow components operate on message flows between service
components. The capabilities of a mediation component are implemented by
mediation primitives, which implement standard service implementation types.

A mediation flow component has one or more flows. For example, one for request
and one for reply.

WebSphere Process Server supports a supplied set of mediation primitives, which
implement standard mediation capabilities for mediation modules or modules
deployed into WebSphere Process Server. If you need special mediation
capabilities, you can develop your own custom mediation primitives.

A mediation primitive defines an “in” operation that processes or handles
messages that are represented by service message objects (SMOs). A mediation
primitive can also define “out” operations that send messages to another
component or module.

You can use WebSphere Integration Developer to configure mediation primitives
and set their properties. Some of these properties can be made visible to the
runtime administrator by promoting them. Any mediation primitive property that
can be promoted can also be a dynamic property. A dynamic property can be
overridden, at run time, using a policy file.

WebSphere Integration Developer also allows you to graphically model and
assemble mediation flow components from mediation primitives, and assemble
mediation modules or modules from mediation flow components. The
administrative console refers to mediation modules and modules as SCA modules.

WebSphere Integration Developer also allows the definition of subflows in modules
or their dependent libraries. A subflow can contain any mediation primitive except
for the Policy Resolution mediation primitive. A subflow is invoked from a request
or response flow, or from another subflow using the Subflow mediation primitive.
Properties promoted from mediation primitives in a subflow are exposed as

Mediation
primitive
myMap

Mediation
primitive
myLogger

Service
message

object

XSLT MessageLogger

Export Import

Mediation module

Mediation
primitive
myFilter

MessageFilter

Figure 20. Mediation module containing three mediation primitives

Technical overviews 41

properties on the Subflow mediation primitives. These may then be promoted
again until they reach the module level at which point they can then be modified
by the runtime administrator.

Supported mediation primitives

The following set of mediation primitives are supported by WebSphere Process
Server:

Business Object Map
Transforms messages.
v Defines message transformations using a business object map, which can

be reused.
v Allows you to define message transformations graphically, using the

business object map editor.
v Can alter the content of a message.
v Can transform an input message type to a different output message

type.

Custom Mediation
Allows you to implement your own mediation logic in Java code. The
Custom Mediation primitive combines the flexibility of a user-defined
mediation primitive, with the simplicity of a pre-defined mediation
primitive. You can create complex transformations and routing patterns by:
v Creating Java code.
v Creating your own properties.
v Adding new terminals.

You can call a service from a Custom Mediation primitive, but the Service
Invoke mediation primitive is designed to call services and provides
additional functionality, such as retry.

Data Handler
Allows you to transform a part of a message. It is used to convert an
element of a message from a physical format to a logical structure or a
logical structure to a physical format. The primary usage of the primitive is
to convert a physical format, such as a Text string within a JMS Text
Message object, into a logical Business Object structure and back again.
This mediation is commonly used to:
v Transform a section of the input message from a defined structure to

another - an example of this would be were the SMO includes a string
value that is comma delimited and you want to parse this into a specific
Business Object.

v Alter the message type – an example would be when a JMS export has
been configured to use a JMS basic typed data binding and within the
mediation module the integration developer decides that the content
should be inflated to a specific BO structure.

Database Lookup
Modifies messages, using information from a user-supplied database.
v You must set up a database, data source, and any server authentication

settings for the Database Lookup mediation primitive to use. Use the
administrative console to help you do this.

v The Database Lookup mediation primitive can read from only one table.
v The specified key column must contain a unique value.

42 Technical Overviews

v The data in the value columns must be either a simple XML schema
type, or an XML schema type that extends a simple XML schema type.

Endpoint Lookup
Allows for the dynamic routing of requests, by searching for service
endpoints in a repository.
v Service endpoint information is retrieved from a WebSphere Service

Registry and Repository (WSRR). The WSRR registry can be local or
remote.

v You make registry changes from the WSRR administrative console.
v WebSphere Process Server needs to know which registry to use,

therefore, you must create WSRR access definitions using the WebSphere
Process Server administrative console.

Event Emitter
Enhances monitoring by letting you send events from inside a mediation
flow component.
v You can suspend the mediate action by deselecting the check box.
v You can view Event Emitter events using the Common Base Events

(CBE) browser on WebSphere Process Server.
v You should only send events at a significant point in a mediation flow,

for performance reasons.
v You can define the parts of the message that the event contains.
v The events are sent in the form of Common Base Events and are sent to

a Common Event Infrastructure server.
v To fully use the Event Emitter information, event consumers need to

understand the structure of the Common Base Events. The Common
Base Events has an overall schema, but this does not model the
application specific data, which is contained in the extended data
elements. To model the extended data elements, the WebSphere
Integration Developer tools generate a Common Event Infrastructure
event catalog definition file for each of the configured Event Emitter
mediation primitives. Event catalog definition files are export artifacts
that are provided to help you; they are not used by WebSphere
Integration Developer or by the WebSphere Process Server runtime. You
should refer to the event catalog definition files when you create
applications to consume Event Emitter events.

v You can specify other monitoring from WebSphere Process Server. For
example, you can monitor events to be emitted from imports and
exports.

Fail Stops a particular path in the flow, and generates an exception.

Fan In Helps aggregate (combine) messages.
v Can only be used in combination with the Fan Out mediation primitive.
v Together, the Fan Out and Fan In mediation primitives allow

aggregation of data into one output message.
v The Fan In mediation primitive receives messages until a decision point

is reached, then one message is output.
v The shared context should be used to hold aggregation data.

Fan Out
Helps split and aggregate (combine) messages.
v Together, the Fan Out and Fan In mediation primitives allow

aggregation of data into one output message.

Technical overviews 43

v In iterate mode, the Fan Out mediation primitive lets you iterate through
a single input message that contains a repeating element. For each
occurrence of the repeating element, a message is sent.

v The shared context should be used to hold aggregation data.

HTTP Header Setter
Provides a mechanism for managing headers in HTTP messages.
v Can create, set, copy, or delete HTTP message headers.
v Can set multiple actions to change multiple HTTP headers.

MQ Header Setter
Provides a mechanism for managing headers in MQ messages.
v Can create, set, copy, or delete MQ message headers.
v Can set multiple actions to change multiple MQ headers.

SOAP Header Setter
Provides a mechanism for managing headers in SOAP messages.
v Can create, set, copy, or delete SOAP message headers.
v Can set multiple actions to change multiple SOAP headers.

Message Element Setter
Provides a simple mechanism for setting the content of messages.
v Can change, add or delete message elements.
v Does not change the type of the message.
v The data in the value columns must be either a simple XML schema

type, or an XML schema type that extends a simple XML schema type.

Message Filter
Routes messages down different paths, based on the message content.
v You can suspend the mediate action by deselecting the check box.

Message Logger
Logs messages in a relational database or through your own custom
logger. The messages are stored as XML, therefore, data can be
post-processed by XML-aware applications.
v You can suspend the mediate action by deselecting the check box.
v The rational database schema (table structure) is defined by IBM.
v By default, the Message Logger mediation primitive uses the Common

database. The runtime maps the data source at jdbc/mediation/
messageLog to the Common database.

v You can set Handler implementation classes to customize the behavior of
the custom logger. Optionally, you can provide Formatter
implementation classes, Filter implementation classes, or both to
customize the behavior of the custom logger.

Policy Resolution
Allows for the dynamic configuration of requests, by searching for service
endpoints, and associated policy files, in a repository.
v You can use a policy file to dynamically override the promoted

properties of other mediation primitives.
v Service endpoint information and policy information is retrieved from a

WebSphere Service Registry and Repository (WSRR). The WSRR registry
can be local or remote.

v You make registry changes from the WSRR administrative console.

44 Technical Overviews

v WebSphere Process Server needs to know which registry to use,
therefore, you must create WSRR access definitions using the WebSphere
Process Server administrative console.

Service Invoke
Calls a service from inside a mediation flow, rather than waiting until the
end of the mediation flow and using the callout mechanism.
v If the service returns a fault, you can retry the same service or call

another service.
v The Service Invoke mediation primitive is a powerful mediation

primitive that can be used on its own for simple service calls, or in
combination with other mediation primitives for complex mediations.

Set Message Type
During integration development, lets you treat weakly-typed message
fields as though they are strongly-typed. A field is weakly-typed if it can
contain more than one type of data. A field is strongly-typed if its type and
internal structure are known.
v At runtime, the Set Message Type mediation primitive lets you check

that the content of a message matches the data types you expect.

Stop Stops a particular path in the flow, without generating an exception.

Type Filter
Allows you to direct messages down a different path of a flow, based on
their type.

XSL Transformation
Transforms messages.
v Allows you to perform Extensible Stylesheet Language (XSL)

transformations.
v You transform messages using an XSLT 1.0 transformation. The

transformation operates on an XML serialization of the message.

Dynamic routing
You can route messages in various ways using endpoints defined at integration
time or endpoints determined, dynamically, at run time.

Dynamic routing covers message routing where the flow is dynamic but all
possible endpoints are predefined in a Service Component Architecture (SCA)
module, and message routing where the flow is dynamic and the endpoint
selection is also dynamic. In the latter case, the service endpoints are selected from
an external source, at run time.

Dynamic endpoint selection

The run time has the capability to route request and response messages to an
endpoint address identified by a message header element. This message header
element can be updated by mediation primitives, in a mediation flow. The
endpoint address could be updated with information from a registry, a database, or
with information from the message itself. Routing of response messages applies
only when the response is being sent by a Web service JAX-WS export.

In order for the run time to implement dynamic routing on a request or response,
the SCA module must have the Use dynamic endpoint if set in the message
header property set. Integration developers can set the Use dynamic endpoint if
set in the message header property or they can promote it (make it visible at run

Technical overviews 45

time), so that the runtime administrator can set it. You can view module properties
in the Module Properties window. To see the window, click Applications > SCA
Modules > Module Properties. The integration developer gives promoted
properties alias names, and these are the names displayed on the administrative
console.

Registry

You can use IBM WebSphere Service Registry and Repository (WSRR) to store
service endpoint information, and then create SCA modules to retrieve endpoints
from the WSRR registry.

When you develop SCA modules, you use the Endpoint Lookup mediation
primitive to allow a mediation flow to query a WSRR registry for a service
endpoint, or a set of service endpoints. If an SCA module retrieves a set of
endpoints then it must use another mediation primitive to select the preferred one.

Mediation policy control of service requests
You can use mediation policies to control mediation flows between service
requesters and service providers.

You can control mediation flows using mediation policies stored in IBM WebSphere
Service Registry and Repository (WSRR). The implementation of service policy
management in WSRR is based on the Web Services Policy Framework
(WS-Policy).

In order to control service requests using mediation policies, you must have
suitable Service Component Architecture (SCA) modules and mediation policy
documents in your WSRR registry.

How to attach a mediation policy to a service request

When you develop an SCA module that needs to make use of a mediation policy,
you must include a Policy Resolution mediation primitive in the mediation flow.
At run time, the Policy Resolution mediation primitive obtains mediation policy
information from the registry. Therefore, an SCA module must contain a mediation
flow component in order to support mediation policy control of service requests.

In the registry, you can attach one or more mediation policies to an SCA module,
or to a target service used by the SCA module. Attached mediation policies could
be used (are in scope) for all service messages processed by that SCA module. The
mediation policies can have policy attachments that define conditions. Mediation
policy conditions allow different mediation policies to apply in different contexts.
In addition, mediation policies can have classifications, which can be used to
specify a governance state.

WebSphere Service Registry and Repository
The WebSphere Service Registry and Repository (WSRR) product allows you to
store, access, and manage information about service endpoints and mediation
policies. You can use WSRR to make your service applications more dynamic, and
more adaptable to changing business conditions.

Introduction

Mediation flows can use WSRR as a dynamic lookup mechanism, providing
information about service endpoints or mediation policies.

46 Technical Overviews

To configure access to WSRR, you create WSRR definition documents using the
administrative console. Alternatively, you can use the WSRR administration
commands from the wsadmin scripting client. WSRR definitions and their
connection properties are the mechanism used to connect to a registry instance,
and retrieve a service endpoint or mediation policy.

Service endpoints

You can use WSRR to store information about services that you already use, that
you plan to use, or that you want to be aware of. These services might be in your
systems, or in other systems. For example, an application could use WSRR to
locate the most appropriate service to satisfy its functional and performance needs.

When you develop an SCA module that needs to access service endpoints from
WSRR, you must include an Endpoint Lookup mediation primitive in the
mediation flow. At run time, the Endpoint Lookup mediation primitive obtains
service endpoints from the registry.

Mediation policies

You can also use WSRR to store mediation policy information. Mediation policies
can help you to control service requests, by dynamically overriding module
properties. If WSRR contains mediation policies that are attached to an object
representing either your SCA module or your target service, then the mediation
policies could override the module properties. If you want different mediation
policies to apply in different contexts, you can create mediation policy conditions.

Note: Mediation policies are concerned with the control of mediation flows, and
not with security.

When you develop an SCA module that needs to make use of a mediation policy,
you must include a Policy Resolution mediation primitive in the mediation flow.
At run time, the Policy Resolution mediation primitive obtains mediation policy
information from the registry.

Message Service clients
Message Service clients is available for C/C++ and .NET to enable non-Java
applications to connect to the enterprise service bus.

Message Service Clients for C/C++ and .NET provide an API called XMS that has
the same set of interfaces as the Java Message Service (JMS) API. Message Service
Client for C/C++ contains two implementations of XMS, one for use by C
applications and another for use by C++ applications. Message Service Client for
.NET contains a fully managed implementation of XMS, which can be used by any
.NET compliant language.

You can obtain Message Service Clients for .NET from http://www-01.ibm.com/
support/docview.wss?rs=0&q1=IA9H&uid=swg24011756&loc=en_US&cs=utf-8
&cc=us&lang=en

You can obtain Message Service Clients for C/C++ from http://www-01.ibm.com/
support/docview.wss?rs=0&q1=ia94&uid=swg24007092&loc=en_US&cs=utf-8
&cc=us&lang=en.

Technical overviews 47

http://www-01.ibm.com/support/docview.wss?rs=0&q1=IA9H&uid=swg24011756&loc=en_US&cs=utf-8&cc=us&lang=en
http://www-01.ibm.com/support/docview.wss?rs=0&q1=IA9H&uid=swg24011756&loc=en_US&cs=utf-8&cc=us&lang=en
http://www-01.ibm.com/support/docview.wss?rs=0&q1=IA9H&uid=swg24011756&loc=en_US&cs=utf-8&cc=us&lang=en
http://www-01.ibm.com/support/docview.wss?rs=0&q1=ia94&uid=swg24007092&loc=en_US&cs=utf-8&cc=us&lang=en
http://www-01.ibm.com/support/docview.wss?rs=0&q1=ia94&uid=swg24007092&loc=en_US&cs=utf-8&cc=us&lang=en
http://www-01.ibm.com/support/docview.wss?rs=0&q1=ia94&uid=swg24007092&loc=en_US&cs=utf-8&cc=us&lang=en

You can also install and use the Java EE client support from WebSphere
Application Server Network Deployment, including Web services Client, EJB
Client, and JMS Client.

48 Technical Overviews

Technical overviews 49

����

Printed in USA

	Contents
	Technical overviews
	Service Component Architecture
	SCA and service invocation
	Modules
	Service components
	Java objects
	BPEL process
	State machines
	Business rules
	Selectors
	Human task
	Interface map
	Mediation flow
	Service qualifiers

	Stand-alone references
	Business objects

	Business objects
	Defining business objects
	Working with business objects
	Special business objects
	Business object parsing mode
	Benefits of using lazy versus eager parsing mode
	Application migration and development considerations

	Relationships
	Relationship service
	Relationship manager
	Relationships in Network Deployment environments
	Relationship service APIs

	The enterprise service bus in WebSphere Process Server
	Connecting services through an enterprise service bus
	Enterprise service bus messaging infrastructure
	Messaging or queue destination hosts
	Data sources
	Service integration buses for WebSphere Process Server

	Service applications and service modules
	Imports and import bindings
	Exports and export bindings
	Mediation modules
	Mediation primitives
	Dynamic routing
	Mediation policy control of service requests
	WebSphere Service Registry and Repository

	Message Service clients

