
IBM WebSphere Process Server for Multiplatforms

Monitoring WebSphere Process Server
Version 7.0.0

���

30 April 2010

This edition applies to version 7, release 0, modification 0 of WebSphere Process Server for Multiplatforms (product
number 5724-L01) and to all subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, send an e-mail message to doc-comments@us.ibm.com. We look
forward to hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2006, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Service component monitoring overview 1
Why use monitoring? 1
What do you monitor? 2
How do you enable monitoring?. 3

Enabling and configuring service
component monitoring 7
Monitoring performance 7

Performance Monitoring Infrastructure statistics . 8
Application Response Measurement statistics for
the Service Component Architecture 13

Monitoring service component events 27
Enabling monitoring of business process and
human task events 27
Configuring logging for service component
events 28
Monitoring service components with the
Common Event Infrastructure server 34
Session monitoring 38

Viewing monitored events 41
Viewing performance metrics with the Tivoli
Performance Viewer 41
Viewing and interpreting service component event
log files. 42

Event catalog 45
The Common Base Event standard elements . . . 45
Business objects in events. 46
Business Process Choreographer events 47
WebSphere Process Server events 47

Resource Adapter events 47
Business rule events 49
Business state machine events 49
Map events 51
Mediation events 51
Recovery events 52
Service Component Architecture events 53
Selector events 54

© Copyright IBM Corp. 2006, 2010 iii

iv Monitoring

Service component monitoring overview

A conceptual overview of the reasons you monitor service components on the
process server; which event points within the service components you select to
monitor; and, how to configure monitoring on your system.

WebSphere® Process Server provides capabilities for monitoring service
components to aid in system administration functions, such as performance tuning
and problem determination. It goes beyond these traditional functions by also
providing the capability for persons who are not necessarily information
technology specialists to continually monitor the processing of the service
components within the applications deployed on your system. By overseeing the
overall processing flow of the interconnected components, you can ensure that
your system is producing what you expect it to produce.

WebSphere Process Server operates on top of an installation of WebSphere
Application Server, and, consequently, uses much of the functionality of the
application server infrastructure for monitoring system performance and
troubleshooting. It also includes some extra functionality that is designed for
monitoring process server service components. This section focuses on how you
monitor server-specific service components. It is intended to supplement the
monitoring and troubleshooting topics found in the WebSphere Application Server
Information Center; therefore; refer to that documentation for details of the other
monitoring capabilities in the combined product.

Why use monitoring?
You monitor service components within WebSphere Process Server to assess
performance, to troubleshoot problems, and to evaluate the overall processing
progress of service components that make up the applications deployed on your
system.

Service components are the integral functions incorporated into WebSphere Process
Server, with which you can create and deploy applications on your system that
mirror the processes employed in your enterprise. Effectively monitoring those
service components is, therefore, essential to managing the tasks that the server is
intended to accomplish. There are three main reasons you need to monitor service
components on the server:

Problem determination
You can diagnose particular errors by using the logging and tracing
facilities provided by WebSphere Application Server, which underlies
WebSphere Process Server. For example, if a particular application is not
producing the expected results, you can set up a logger to monitor the
processing of the service components that make up that application. You
can have the log output published to a file, which you can then examine to
pinpoint the cause of the problem. Troubleshooting is a task that is of
importance to system administrators and others concerned with the
maintenance of system hardware and software.

Performance tuning
You can monitor certain performance statistics that most process
server-specific service components produce. Use this information to
maintain and tune your system health, and ensure that your applications

© Copyright IBM Corp. 2006, 2010 1

are tuned optimally and efficiently. You can also spot situations where one
or more of your services are performing at a poor level, which may
indicate that other problems are present in your system. Like problem
determination, performance tuning is a task typically performed by
information technology specialists.

Assessing the processing of service components
Problem determination and performance tuning are tasks you perform on a
short-term basis, to solve a particular issue or problem. You can also set up
the process server to continually monitor the service components
incorporated into the applications deployed on your system. This type of
service component monitoring is of importance to those who are
responsible for designing, implementing, and ensuring that the processes
achieve their design goals, and may be accomplished persons who are not
necessarily specialists in information technology.

What do you monitor?
You can monitor service component events in WebSphere Process Server by
selecting certain points that a service component event reaches during processing.
Each service component defines these event points, which generate (or “fire”) an
event when the application processes at that given point. You can also monitor
performance statistics for service component events.

Regardless of the type of monitoring you intend to perform on your service
components (problem determination, performance tuning, or process monitoring),
you monitor a certain point that is reached during processing. This point is
referred to as an event point, and it is these points that you select to be monitored.
Each event point encapsulates the service component kind tag, an optional element
kind (which are specific functions of a service component type), and the nature of
the event. All these factors determine the type of event generated by monitoring.

Event natures describe the situations required to generate events during the
processing of service components. These natures are key points in the logic
structure of a service component that you select to be monitored. The most
common natures for service component events are ENTRY, EXIT, and FAILURE,
but there are many other natures depending on the particular component and
element. Whenever an application containing the specified service component is
later invoked, an event is fired every time the processing of a service component
crosses the points corresponding to the event nature.

As an example of how events are defined for a service component kind, the MAP
service component kind can directly fire events with natures of ENTRY, EXIT, and
FAILURE. It also includes an element kind, called Transformation, which defines a
specific type of functionality within the MAP component kind. This element also
fires events with ENTRY, EXIT, and FAILURE natures. Consequently, the MAP
service component kind can fire up to six different events depending on the
combination of elements and natures that you specify. The list of all service
components, their elements, and their event natures is contained in the event
catalog.

Monitoring is a separate layer of functionality that lies atop the processing of your
applications, and does not interfere with the processing of your service
components. Monitoring is concerned with service component processing only
insofar as it detects activity at a specified event point. When activity is detected, an

2 Monitoring

event is fired by monitoring, which determines where the event is sent, and what
data is contained in that event, based on the type of monitoring you are
performing:

Performance metrics
If you are monitoring a service component in order to gather performance
metrics, light weight events are fired to the Performance Monitoring
Infrastructure. You can select for monitoring one or more of the three
performance statistics generated for server-specific server components:
v A counter for each EXIT event nature – counts successful computations.
v A counter for each FAILURE event nature – counts failed computations
v The processing duration calculated between corresponding ENTRY and

EXIT events (synchronous computations only).

You can also monitor the performance of applications at the Service
Component Architecture (SCA) level by using Application Response
Measurement (ARM) statistics. These measures allow you to monitor an
application at a much finer level of detail within the application than is
otherwise available in other service component events. You can use these
statistics to monitor many different points between initial application call
invocations and service responses, when they use the SCA.

Service component events with business objects
If you want to capture the data from events fired by monitoring at
specified event points in service component, then you would configure the
server to generate the event and its data to be encoded in Common Base
Event formats. You can specify the level of detail of business object data to
capture in each service component event. You can publish these events to
either a logger or to the Common Event Infrastructure (CEI) bus, which
directs the output to a specially configured CEI server database.

How do you enable monitoring?
The are several methods that you can use to specify service component event
points for monitoring, depending on the type of monitoring you are planning to
do.

Performance statistics
For Performance Monitoring Infrastructure (PMI) statistics, use the
administrative console to specify the particular event points and their
associated performance measurements that you want to monitor. After you
start monitoring service component performance, the generated statistics
are published at certain intervals to the Tivoli® Performance Viewer. You
can use this viewer to watch the results as they occur on your system, and,
optionally, log the results to a file that can be later viewed and analyzed
within the same viewer.

For Application Response Measurement (ARM) statistics, use the
administrative console Request Metrics section to specify and the statistics
you want to monitor.

Common Base Events for problem determination and business process
monitoring

You can specify, at the time you create an application, to monitor service
component event points — along with a certain level of detail for those
events — on a continual basis after the application is deployed on a
running server. You can also select event points to monitor after the
application has been deployed and the events invoked at least once. In

Service component monitoring overview 3

both cases, the events generated by monitoring are fired across the
Common Event Infrastructure (CEI) bus. These events can be published to
a log file, or to a configured CEI Server database. WebSphere Process
Server supports two types of Common Base Event enablement for problem
determination and business process monitoring:

Static Certain events points within an application and their level of detail
can be tagged for monitoring using WebSphere Integration
Developer tooling. The selections indicate what event points are to
be continuously monitored, and are stored in a file with a .mon
extension that is distributed and deployed along with the
application. When WebSphere Process Server has been configured
to use a CEI server, the monitoring function begins firing service
component events to a CEI server whenever the specified services
are invoked. As long as the application is deployed on WebSphere
Process Server, the service component event points specified in the
.mon file is constantly monitored until the application is stopped.
You can specify additional events to be monitored in a running
application, and increase the detail level for event points that are
already monitored. But while that application remains active you
cannot stop, or lower the detail level of, the monitored event
points specified by the .mon of the deployed application.

Dynamic
If additional event points need to be monitored during the
processing of an application without shutting down the server,
then you can use dynamic monitoring. Use the administrative
console to specify service component event points for monitoring,
and set detail level for the payload that will be included in the
Common Base Event. A list is compiled of the event points that
have been reached by a processed service component after the
server was started. Choose from this list individual event points or
groups of event points for monitoring, with the service component
events directed either to the logger or to the CEI server database.

The primary purpose of the Dynamic enablement is for creating
correlated service component events that are published to logs,
which allow you to perform problem determination on services.
Service component events can be large — depending on how much
data is being requested — and can tax database resources if you
choose to send events to the CEI server. Consequently, you should
publish dynamically monitored events to the CEI server only if
you need to read the business data of the events, or if you
otherwise need to keep a database record of the events. If,
however, you are monitoring a particular session, then you need to
use the CEI server database to access the service component events
related to that session.

4 Monitoring

Related concepts

“Monitoring performance” on page 7
Performance measurements are available for service component event points, and
are processed through the Performance Monitoring Infrastructure. You configure
the process server to gather performance metrics from service component event
points. You can also collect Service Component Architecture-specific performance
statistics directly from service invocations of applications.
“Session monitoring” on page 38
You can monitor multiple events that are part of the same session, by using the
Common Base Event browser to find all events on the Common Event
Infrastructure database that contain the identical session ID attribute.
Related tasks

“Enabling and configuring service component monitoring” on page 7
To be able to monitor service components, you must first enable the monitoring
capabilities. Then you must specify the events you want to monitor, the
information you want to capture from the event, and the method used to publish
the results.

Administering Common Event Infrastructure

Enabling Common Base Events and the audit trail, using the administrative
console

Getting performance data from request metrics

Service component monitoring overview 5

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=tcei_administration
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=t4admin_choose_logging_mechanism
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm700&product=wps-dist&topic=t4admin_choose_logging_mechanism
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=pix&product=was-nd-mp&topic=tprf_rqenable

6 Monitoring

Enabling and configuring service component monitoring

To be able to monitor service components, you must first enable the monitoring
capabilities. Then you must specify the events you want to monitor, the
information you want to capture from the event, and the method used to publish
the results.
Related concepts

“How do you enable monitoring?” on page 3
The are several methods that you can use to specify service component event
points for monitoring, depending on the type of monitoring you are planning to
do.

Monitoring performance
Performance measurements are available for service component event points, and
are processed through the Performance Monitoring Infrastructure. You configure
the process server to gather performance metrics from service component event
points. You can also collect Service Component Architecture-specific performance
statistics directly from service invocations of applications.

Whether you are tuning service components for optimal efficiency or diagnosing a
poor performance, it is important to understand how the various run time and
application resources are behaving from a performance perspective. The
Performance Monitoring Infrastructure (PMI) provides a comprehensive set of data
that explains the runtime and application resource behavior. Using PMI data, the
performance bottlenecks in the application server can be identified and fixed. PMI
data can also be used to monitor the health of the application server.

The PMI is included in the base WebSphere Application Server installation. This
section provides only supplemental information about performance monitoring as
it relates to the service components specific to WebSphere Process Server; therefore,
consult the information in the WebSphere Application Server documentation for
using PMI with other parts of the entire product.

The service component event points specific to WebSphere Process Server that can
be monitored by the PMI are those events that include ENTRY, EXIT, and
FAILURE event natures. Event sources which are not defined according to this
pattern are not supported. Events that are supported have three types of
performance statistics that can be measured:
v Successful invocations.
v Failed invocations.
v Elapsed time for event completion.

You can also monitor performance statistics derived from the service invocations of
applications by using the Application Response Measurement (ARM) statistics.
These statistics measure the actual runtime processes that underlie the process
server service component events making up an enterprise application. You can
derive various performance measurements for the processing of your applications
using these statistics.

© Copyright IBM Corp. 2006, 2010 7

Related concepts

“How do you enable monitoring?” on page 3
The are several methods that you can use to specify service component event
points for monitoring, depending on the type of monitoring you are planning to
do.

Performance Monitoring Infrastructure statistics
You can monitor three types of performance statistics using the Performance
Monitoring Infrastructure: the number of successful invocations, the number of
failures, and the elapsed time to completion of an event. These statistics are only
available for events that have event natures of type ENTRY, EXIT, and FAILURE.

Enabling PMI using the administrative console
To monitor performance data you must first enable the Performance Monitoring
Infrastructure on the server.

About this task

You can enable the Performance Monitoring Infrastructure (PMI) through the
administrative console.

Procedure
1. Open the administrative console.
2. Click Servers > Server Types > WebSphere application servers in the console

navigation tree.
3. Click server_name.

Note: From the administrative console, you can click Monitoring and Tuning
> Performance Monitoring Infrastructure (PMI) > server_name to open the
same panel

4. Click the Configuration tab.
5. Select the Enable Performance Monitoring Infrastructure (PMI) check box.
6. Optional: Select the check box for Use sequential counter updates to enable

precise statistic updates.
7. Go back to the server PMI configuration page by clicking the server name

link.
8. Click Apply or OK.
9. Click Save.

10. Restart the server.

What to do next

The changes you make will not take effect until you restart the server.

Event performance statistics
Performance monitoring statistics are available for most server events. You can use
performance monitoring statistics to monitor the counts of successful and
unsuccessful invocation requests, and the time taken to complete events.

You can use the Performance Monitoring Infrastructure (PMI) to monitor three
performance statistics generated by certain server events, as shown in the
following table:

8 Monitoring

Table 1. PMI statistics for events

Statistic name Type Description

BadRequests Counter Number of failed invocations of the
event.

GoodRequests Counter Number of successful invocations of the
event.

ResponseTime Timer Elapsed time for event completion.

These statistics are limited to service component events with elements having
ENTRY, EXIT, and FAILURE natures. Each statistic is created for a single event of a
given server event type in an application. All performance measurements are either
counters (a cumulative number of the firings of a given event point), or timers (the
duration, measured in milliseconds, between the firings of two event points). Each
event kind (and their relevant elements) that can be monitored are listed below:

Table 2. Event types and elements that can produce event performance statistics

Event type Element(s)

Business process Process
Invoke
Staff
Receive
Wait
Compensate
Pick
Scope

Human task Task

Business rule Operation

Business state machine Transition
Guard
Action
EntryAction
ExitAction

Selector Operation

Map Map
Transformation

Mediation OperationBinding
ParameterMediation

Resource adapter InboundEventRetrieval
InboundEventDelivery
Outbound

Enabling and configuring service component monitoring 9

Related reference

“Application Response Measurement statistics for the Service Component
Architecture” on page 13
There are 25 performance statistics that you can monitor at the Service Component
Architecture (SCA) level. You can use these Application Response Measurement
(ARM) statistics, which are either counters or timers, to measure invocations to and
responses from services in various patterns.

Specifying performance statistics to monitor
You can specify single statistics, multiple statistics, or groups of related statistics
for monitoring through the Performance Monitoring Infrastructure by using the
administrative console.

Before you begin

Ensure that you have enabled performance monitoring, and that you have at least
once invoked the event you want to monitor before performing this task.

Procedure
1. Open the administrative console.
2. Select Monitoring and Tuning → Performance Monitoring Infrastructure.
3. Select the server or node agent that contains the event points that you want to

monitor.

Note: You cannot choose to monitor statistics on a cluster; you can only do so
on a specific server or node.

4. Expand some of the groups, such as WBIStats.RootGroup or Enterprise Beans.
All the statistics that can be monitored are in the listed groups. Some statistics
cannot be listed because they have not been invoked since the server was last
started.

5. Select a statistic you want to monitor from the tree on the left side of the panel,
and then select the statistics that you want to collect on the right side, then
click Enable. Repeat for all statistics that you want to monitor.

6. Go back to the server PMI configuration page by clicking the server name link.
7. Click Apply or OK.
8. Click Save.

Results

You can now start monitoring the performance of your chosen statistics in the
Tivoli Performance Viewer.

Note: When viewing these statistics, Do not mix counter-type statistics with
duration-type statistics. Counters are cumulative, and the scales against which they
are graphed them can quickly grow depending on your application. Duration
statistics, in contrast, tend to remain within a certain range because they represent
the average amount of time that it takes your system to process each event.
Consequently, the disparity between the statistics and their relative scales can
cause one or the other type of statistic to appear skewed in the viewer graph.

Tutorial: Service component performance monitoring
This tutorial guides you through an example of setting up performance
monitoring, and how to view the resulting statistics.

10 Monitoring

For service component event points that you monitor, you can publish to the
Performance Monitoring Infrastructure (PMI) and view the resulting performance
statistics on the Tivoli Performance Viewer (TPV). This exercise demonstrates how
performance monitoring of service component event points differs from monitoring
using the Common Event Infrastructure (CEI) server and loggers. The major
difference that you notice is that you select an entire service component element
for performance monitoring, instead of individual events with specific natures.
Because WebSphere Process Server can monitor performance only on service
component elements having events with ENTRY, EXIT, and FAILURE natures, you
have only those kinds of service component elements available to you to select for
monitoring.

While the service component event points ENTRY, EXIT, and FAILURE are
identical for all monitoring types, the performance monitoring function in the
server fires "minimized" events that do not contain all the information
encompassed in CEI events. These events are sent to the PMI, which calculates
these performance statistics from corresponding sets of events:
v Successful invocation — the firing of an event of nature type EXIT that follows a

corresponding ENTRY event.
v Failed invocation — the firing of an event with a FAILURE nature following a

corresponding ENTRY event.
v Time for successful completion — the elapsed time between the firing an ENTRY

event and the firing of the corresponding EXIT event point.

The PMI publishes the statistics to the TPV, which presents cumulative counters for
the number of successful and failed invocations and a running average of the
completion response times.

Objectives of this tutorial

After completing this tutorial, you will be able to:
v Select the performance statistics of service component elements that you want to

monitor.
v View and interpret the resulting performance statistics.

Time required to complete this tutorial

This tutorial requires approximately 15-20 minutes to complete.

Prerequisites

In order to perform this tutorial, you must have:
v Configured and started a server.
v Enabled the PMI on the server.
v Installed and started the Samples Gallery application on the server.
v Installed and started the business rules sample application on the server. Follow

the instructions on the Samples Gallery page to set up and run the business
rules sample application.

After all these prerequisites have been completed, run the business rules sample
application from the Samples Gallery at least once before proceeding with the
tutorial.

Example: Monitoring service component performance:

Enabling and configuring service component monitoring 11

For monitoring performance, you can use the administrative console to select
service components for monitoring and view performance measurements. This
example shows the use of the console to monitor performance statistics.

About this task

You will use the business rules sample application for this scenario, where you will
monitor all three of the performance statistics: successes, failures, and response
times. You should have the web page containing this application already open;
keep it open, because you will be running the sample several times after you begin
monitoring. Ensure that you have already run the sample at least once, which
causes it to appear in the list of functions that you can select to monitor.

Procedure

1. Open the administrative console.
2. Select the cluster or server to monitor.

v To monitor a cluster, click Servers → Clusters → WebSphere application
server clusters → cluster_name.

v To monitor a single server, click Servers → Server Types → WebSphere
application servers → server_name.

3. Click the Runtime tab.
4. Under Performance, click Performance Monitoring Infrastructure.
5. Select Custom.
6. Expand WBIStats.RootGroup → BR → brsample_module.DiscountRuleGroup

→ Operation.
7. Select _calculateDiscount

8. Select the check boxes next to BadRequests, GoodRequests, and
ResponseTime.

9. Click Enable

10. In the navigation pane, click Monitoring and Tuning → Performance Viewer →
Current Activity.

11. Select the check box next to server_name, then click Start Monitoring.
12. Click server_name.
13. Expand WBIStats.RootGroup → BR → brsample_module.DiscountRuleGroup

→ Operation.
14. Select the check box next to _calculateDiscount

Results

You should now see a blank graph, and underneath that the names and values for
the three statistics. Select the check boxes next to the statistic names, if they are not
already checked. The PMI is now ready to publish performance data for the
selected event, and the Tivoli Performance Viewer is ready to present the results.

Run the business rules sample application several times, and then watch the
performance viewer as it periodically refreshes. Notice that there are now lines on
the graph, representing the cumulative number of successful requests and the
average response time for each successful request. You can also see the values next
to the name for each statistic below the graph. The line for the number of successes
should continue to rise as you perform additional invocations of the sample, while
the response time line should level off after a few refreshes.

12 Monitoring

After you have completed this example, you should understand how WebSphere
Process Server implements performance monitoring of service components. You
should know how to select service components for monitoring, and how the
performance statistics are calculated. You will also be able to start the performance
monitors, and view the performance measurements for your applications as they
are being used.

What to do next

Performance monitoring can tax system resources; therefore, after you have
completed this task you should stop the monitors. To do this, click the Tivoli
Performance Viewer link, select both the node and the server, and press Stop
Monitoring.

Application Response Measurement statistics for the Service
Component Architecture

There are 25 performance statistics that you can monitor at the Service Component
Architecture (SCA) level. You can use these Application Response Measurement
(ARM) statistics, which are either counters or timers, to measure invocations to and
responses from services in various patterns.

The Application Response Measurement (ARM) statistics shown in the following
tables are — in a simplified manner — time and count measurements of caller
invocations to the Service Component Architecture (SCA) layer, and the results
returned from a service. There are, in fact, a number of service invocation patterns
that vary between synchronous and asynchronous implementations of deferred
responses, results retrievals, callbacks, and one-way invocations. All patterns,
however, are between the caller invocation and a service, the response from the
service, or, in some cases, a data source, with the SCA layer interposed in between.

You can specify the ARM statistics that you want to monitor by opening the
Monitoring and Tuning > Request Metrics panel on the administrative console.
Request metrics information might be either saved to the log file for later retrieval
and analysis, be sent to ARM agents, or both. WebSphere Process Server does not
ship an ARM agent; however, it supports the use of agents adhering to ARM 4.0.
You can choose your own ARM implementation provider to obtain the ARM
implementation libraries. Follow the instructions from the ARM provider, and
ensure that the ARM API Java™ archive (JAR) files found in the ARM provider are
on the class path so that WebSphere Process Server can load the needed classes.
Then you need to add the following entries into the system properties for each
server by selecting from the administrative console Application servers >
server_name > Process Definition > Java Virtual Machine > Custom Properties
before restarting the server:
v Arm40.ArmMetricFactory — the full Java class name of your ARM

implementation providers metrics factory.
v Arm40.ArmTranReportFactory — the full Java class name of your ARM

implementation providers transaction report factory.
v Arm40.ArmTransactionFactory — the full Java class name of your ARM

implementation providers transaction factory.

See the WebSphere Application Server documentation for further details on how to
configure the server to collect ARM statistics.

Enabling and configuring service component monitoring 13

Table 3. Event types and elements that can produce ARM statistics

Event type Element

Business process Process

Human task Task

Business rule Operation

Business state
machine

Transition
Guard
Action
EntryAction
ExitAction

Selector Operation

Map Map
Transformation

Mediation OperationBinding
ParameterMediation

Resource adapter InboundEventRetrieval
InboundEventDelivery
Outbound

Table 4. Common. These statistics are common to all service invocation patterns.

Statistic name Type Description

GoodRequests Counter Number of server invocations not raising
exceptions.

BadRequests Counter Number of server invocations raising
exceptions.

ResponseTime Timer Duration measured on the server side
between the reception of a request and
computing the result.

TotalResponseTime Timer

Duration measured on the caller side, from
the time a caller requests a service to the
time when the result is available for the
caller. Does not include the processing of the
result by the caller.

RequestDeliveryTime Timer

Duration measured on the caller side, from
the time a caller requests a service to the
time when the request is handed over to the
implementation on the server side. In a
distributed environment, the quality of this
measurement depends on the quality of
synchronization of system clocks.

ResponseDeliveryTime Timer

The time required to make the result
available to the client. For a deferred
response, this time does not include the
result retrieve time. In a distributed
environment, the quality of this measurement
depends on the quality of synchronization of
system clocks.

14 Monitoring

Table 5. Reference. These statistics occur when a caller makes an invocation to the SCA
layer or a data source, without a response from the service.

Statistic name Type Description

GoodRefRequests Counter
Number of caller invocations to the SCA
layer that do not raise exceptions.

BadRefRequests Counter
Number of caller invocations to the SCA
layer that do raise exceptions.

RefResponseTime Timer

Duration measured on the caller side, from
the time the caller makes a request to the
SCA layer and the time when the results of
that call are returned to the caller.

BadRetrieveResult Counter
Number of caller invocations to a data
source that do raise exceptions.

GoodRetrieveResult Counter
Number of caller invocations to a data
source that do not raise exceptions.

RetrieveResultResponseTime Timer

Duration measured on the caller side, from
the time the caller makes a request to the
data source and the time when the data
source response is returned to the caller.

RetrieveResultWaitTime Timer
Duration measured on the caller side if a
timeout occurs.

Table 6. Target. These statistics occur when there are requests that originate between the
service and the SCA or a data source.

Statistic name Type Description

GoodTargetSubmit Counter
Number of SCA invocations to the service that do
not raise exceptions.

BadTargetSubmit Counter
Number of SCA invocations to the service that do
raise exceptions.

TargetSubmitTime Timer

Duration measured on the server side, from the
time the SCA makes a request to the service and
the time when the results of that call are returned
to the SCA.

GoodResultSubmit Counter
Number of service invocations to the data source
that do not raise exceptions.

BadResultSubmit Counter
Number of service invocations to the data source
that do raise exceptions.

ResultSubmitTime Timer

Duration measured on the server side, from the
time the service makes a request to the data source
and the time when the results of are returned to
the service.

Table 7. Callback. These statistics occur when a callback (a "sibling" of the original call) is
present on the caller.

Statistic name Type Description

GoodCB Counter Number of SCA invocations to the callback that do not
raise exceptions.

BadCB Counter Number of SCA invocations to the callback that do raise
exceptions.

Enabling and configuring service component monitoring 15

Table 7. Callback (continued). These statistics occur when a callback (a "sibling" of the
original call) is present on the caller.

Statistic name Type Description

CBTime Timer Duration from the time the SCA makes a request to the
callback, and the time when the results from the callback
are returned to the SCA.

GoodCBSubmit Counter Number of invocations from the service to the SCA
handling the callback that do not raise exceptions.

BadCBSubmit Counter Number of invocations from the service to the SCA
handling the callback that do raise exceptions.

CBSubmitTime Timer Duration from the time the service makes a request to the
SCA handling the callback, and the time when the results
from the SCA to the service.

Related reference

“Performance Monitoring Infrastructure statistics” on page 8
You can monitor three types of performance statistics using the Performance
Monitoring Infrastructure: the number of successful invocations, the number of
failures, and the elapsed time to completion of an event. These statistics are only
available for events that have event natures of type ENTRY, EXIT, and FAILURE.
Related information

WebSphere Application Server documentation Network Deployment

Synchronous invocations
You can obtain Application Response Measurement (ARM) performance statistics
from a simple Service Component Architecture (SCA) call to a service and the
response from the service.

Parameters

Event monitoring for SCA components includes the event points that are shown in

black , while the event points shown in blue are used only to calculate
and fire PMI/ARM statistics.

In the table and diagram below, the "current" ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current ARM transaction is used, or a new
one is created. If it is not the starting transaction then it has a parent, as
represented in the following table and diagram with the notation Xn.Xn+1. The
notation is used to document the transaction lineage. Every SCA invocation starts a
new transaction, which is parented by the current transaction of the caller. You can
create new transactions and you can access the current transaction, but they do not
modify the SCA transaction lineage.

Table 8. ARM statistics for synchronous invocations of SCA

Statistics Formula ARM Transaction

TotalResponseTime t3 - t0 X0 .X1

RequestDeliveryTime t1 - t0 X1 .X2

ResponseDeliveryTime t3 - t2

GoodRequests CountEXIT

16 Monitoring

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/welcome_nd.html

Table 8. ARM statistics for synchronous invocations of SCA (continued)

Statistics Formula ARM Transaction

BadRequests CountFAILURE

ProcessTime t2 - t1

Service

Caller
X0.X1

X1.X2

Execution
thread

EXIT EXIT

SCA

FAILURE FAILURE

t0 t 1

t 3
t 2

ENTRY ENTRY

Deferred response with synchronous implementation
You can obtain Application Response Measurement (ARM) statistics with a
synchronous invocation of the request. The returned result is sent as output to a
data store for a synchronous implementation.

Parameters

Event monitoring for Service Component Architecture (SCA) components includes

the event points that are shown in black , while the event points shown in

blue are used only to calculate and fire PMI/ARM statistics.

In the table and diagram below, the "current" ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current ARM transaction is used, or a new
one is created. If it is not the starting transaction, it has a parent, as represented in
the following table and diagram with the notation Xn.Xn+1. The notation is used to
show the transaction lineage. Every SCA invocation starts a new transaction, which
is parented by the current transaction of the caller. You can create new transactions
and you can access the current transaction, but you cannot modify the SCA
transaction lineage.

Enabling and configuring service component monitoring 17

Table 9. Invocation of request and return result

Type Statistics Formula
ARM
Transaction

Common TotalResponseTime t3 - t0 X0.X1

RequestDeliveryTime t’0 - t0 X1.X2

ResponseDeliveryTime N/A N/A

GoodRequests CountEXIT X1.X2

BadRequests CountFAILURE

ResponseTime t’1 - t’0

Reference
A

GoodRefRequest CountEXIT X1.X2

BadRefRequests CountFAILURE

RefResponseTime t1 - t0

ServiceCaller

X0.X1

XCURRENT

X1.X2

CommonReference A

Reference B

t'0t
0

t1

t2

t3

t'1

Table 10. Invocation of output to data source

Type Statistics Formula
ARM
Transaction

Reference B GoodRetrieveResult CountEXIT X1.X2

BadRetrieveResult CountFAILURE

ResultRetrieveResponseTime Σ t3 – t2

ResultRetrieveWaitTime Σ timeout

Deferred response with asynchronous implementation
You can obtain Application Response Measurement (ARM) statistics from an
asynchronous implementation. The call to the service and the return result are
invoked but the resulting output is sent to a data store from the service target.

18 Monitoring

Parameters

Event monitoring for Service Component Architecture (SCA) components includes

the event points that are shown in black , while the event points shown in

blue are used only to calculate and fire PMI/ARM statistics.

In the table and diagram below, the "current" ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current ARM transaction is used, or a new
one is created. If it is not the starting transaction, it has a parent, as represented in
the following table and diagram with the notation Xn.Xn+1. The notation is used to
show the transaction lineage. Every SCA invocation starts a new transaction, which
is parented by the current transaction of the caller. You can create new transactions
and you can access the current transaction, but you cannot modify the SCA
transaction lineage.

Table 11. Invocation of request and return result

Type Statistics Formula ARM Transaction

Common TotalResponseTime t3 - t0 X0.X1

RequestDeliveryTime t’0 - t0 X1.X2

ResponseDeliveryTime t’03 - t’2

GoodRequests CountEXIT

BadRequests CountFAILURE

ResponseTime t’3 - t’0

Reference A GoodRefRequest CountEXIT X0.X1

BadRefRequests CountFAILURE

RefResponseTime t1 - t0

Target A GoodTargetSubmit CountEXIT X1.X2

BadTargetSubmit CountFAILURE

TargetSubmitTime t’1 - t’0

Enabling and configuring service component monitoring 19

ServiceCaller

X0.X1 X1.X2

X1.X2

Target A

Target B

Reference A

Reference B

t'0
t
0

t1 t'1

t2 t'2

t3
t'3

Table 12. Invocation of return result to a data store

Type Statistics Formula
ARM
Transaction

Reference B GoodResultSubmit CountEXIT X0.X1

BadResultSubmit CountFAILURE

ResultResponseTime t’3 - t’2

Target B GoodResultRetrieve CountEXIT X1.X2

BadResultRetrieve CountFAILURE

ResultRetrieveResponseTime Σ t3 - t2

ResultRetrieveWaitTime Σ timeout

Deferred response with asynchronous result retrieve
The ResultRetrieve Application Response Measurement (ARM) statistic can be
correlated to some original request using the ARM transactions only if XPARENT-1
and XPARENT-2 have a common ancestor transaction. The invocation of request, and
result retrieve occur on different threads

20 Monitoring

Parameters

Event monitoring for Service Component Architecture (SCA) components includes

the event points that are shown in black , while the event points shown in

blue are used only to calculate and fire PMI/ARM statistics.

In the table and diagram below, the "current" ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current ARM transaction will be used, or a
new one will be created. If it is not the starting transaction it will have a parent.
This is represented in the following table and diagram with the notation Xn.Xn+1.
These are used to show the transaction lineage. Every SCA invocation starts a new
transaction, which is parented by the current transaction of the caller. You can
create new transactions and you can access the current transaction, but this will
not modify the SCA transaction lineage.

Table 13. Invocation of request and return result

Type Statistics Formula
ARM
Transaction

Common TotalResponseTime t3 - t0 X0.X1

RequestDeliveryTime t’0 - t0 X1.X2

ResponseDeliveryTime N/A N/A

GoodRequests CountEXIT X1.X2

BadRequests CountFAILURE

ResponseTime See specific diagrams

Reference A GoodReferenceRequest CountEXIT X1.X2

BadReferenceRequests CountFAILURE

ReferenceResponseTime t1 - t0

Caller

X

X'

0

0

.X

.X'

1

1

Reference A

Reference B

t
0

t1

t2

t3

For the right side of the diagram see
the diagrams in the “Deferred response
with synchronous/asynchronous
implementations” topics.

The request receive time t'0 is the
same in both cases.

Enabling and configuring service component monitoring 21

Table 14. Invocation of request and return result

Type Statistics Formula ARM Transaction

Reference B GoodRetrieveResult CountEXIT X’0.X’1

BadRetrieveResult CountFAILURE

RetrieveResultResponseTime Σ t3 - t2

RetrieveResultWaitTime Σ timeout

Asynchronous callback with synchronous implementation
You can obtain Application Response Measurement (ARM) statistics when callback
requests and callback executions use different threads on a synchronous
implementation.

Parameters

Event monitoring for Service Component Architecture (SCA) components includes

the event points that are shown in black , while the event points shown in

blue are used only to calculate and fire PMI/ARM statistics.

In the table and diagram below, the "current" ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current ARM transaction is used, or a new
one is created. If it is not the starting transaction, it has a parent, as represented in
the following table and diagram with the notation Xn.Xn+1. The notation is used to
show the transaction lineage. Every SCA invocation starts a new transaction, which
is parented by the current transaction of the caller. You can create new transactions
and you can access the current transaction, but you cannot modify the SCA
transaction lineage.

Table 15. Invocation of request and return result

Type Statistics Formula
ARM
Transaction

Common TotalResponseTime t2 - t0 X0.X1

RequestDeliveryTime t’0 - t0 X1.X2

ResponseDeliveryTime t2 - t’1

GoodRequests CountEXIT

BadRequests CountFAILURE

ResponseTime t3 - t2

Reference GoodRefRequest CountEXIT X1.X2

BadRefRequests CountFAILURE

RefResponseTime t’1 - t’0

22 Monitoring

ServiceCaller
X0.X1

X1.X2

Callback

X2.X3

Reference Common

Callback

t'0t
0

t1 t'1

t2

t3

Table 16. Invocation of callback

Type Statistics Formula
ARM
Transaction

Callback GoodCB CountEXIT X1.X3

BadCB CountFAILURE

CBTime t3 – t2

Asynchronous callback with asynchronous implementation
Application Response Measurement (ARM) statistics are available for callback
requests and callback executions using different threads with an asynchronous
implementation

Parameters

Event monitoring for Service Component Architecture (SCA) components includes

the event points that are shown in black , while the event points shown in

blue are used only to calculate and fire PMI/ARM statistics.

In the table and diagram below, the "current" ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current ARM transaction is used, or a new
one is created. If it is not the starting transaction it has a parent, as represented in
the following table and diagram with the notation Xn.Xn+1. The notation is used to
show the transaction lineage. Every SCA invocation starts a new transaction, which

Enabling and configuring service component monitoring 23

is parented by the current transaction of the caller. You can create new transactions
and you can access the current transaction, but you cannot modify the SCA
transaction lineage.

Table 17. Invocation of request and return result

Type Statistics Formula ARM Transaction

Common TotalResponseTime t2 - t0 X0.X1

RequestDeliveryTime t’0 - t0 X1.X2

ResponseDeliveryTime t2 - t’2

GoodRequests CountEXIT

BadRequests CountFAILURE

ResponseTime t’3 - t’0

Reference A GoodRefRequest CountEXIT X0.X1

BadRefRequests CountFAILURE

RefResponseTime t1 - t0

Target A GoodTargetSubmit CountEXIT X1.X2

BadTargetSubmit CountFAILURE

TargetSubmitTime t’1 - t’0

ServiceCaller

X0.X1

XCURRENT

X1.X2

X1.X2

Callback

X2.X3

'

Reference A

Reference B

Target A

Target B

t
0 t'0

t1
t'1

t2
t'2

t3 t'3

24 Monitoring

Table 18. Invocation of callback

Type Statistics Formula ARM Transaction

Reference B GoodCBSubmit CountEXIT X1.X2

BadCBSubmit CountFAILURE

CBSubmitTime t’3 - t’2

Target B GoodCB CountEXIT X0.X1

BadCB CountFAILURE

CBTime t3 - t2

Asynchronous one way with synchronous implementation
These Application Response Measurement (ARM) statistics can be obtained when a
call is submitted (fire and forget) with a synchronous implementation.

Parameters

Event monitoring for Service Component Architecture (SCA) components includes

the event points that are shown in black , while the event points shown in

blue are used only to calculate and fire PMI/ARM statistics.

In the table and diagram below, the "current" ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current ARM transaction is used, or a new
one is created. If it is not the starting transaction, it has a parent, as represented in
the following table and diagram with the notation Xn.Xn+1. The notation is used to
show the transaction lineage. Every SCA invocation starts a new transaction, which
is parented by the current transaction of the caller. You can create new transactions
and you can access the current transaction, but you cannot modify the SCA
transaction lineage.

Table 19. Invocation of request and return result

Type Statistics Formula
ARM
Transaction

Common TotalResponseTime t1 - t0 X0.X1

RequestDeliveryTime t’0 - t0 X1.X2

ResponseDeliveryTime N/A N/A

GoodRequests CountEXIT X1.X2

BadRequests CountFAILURE

ResponseTime t’1 - t’0

Enabling and configuring service component monitoring 25

Service
Caller

X0.X1
X1.X2

t'0t
0

t1 t'1

Asynchronous one way with asynchronous implementation
Application Response Measurement (ARM) statistics when a call is submitted (fire
and forget) with an asynchronous implementation.

Parameters

Event monitoring for Service Component Architecture (SCA) components includes

the event points that are shown in black , while the event points shown in

blue are used only to calculate and fire PMI/ARM statistics.

In the table and diagram below, the "current" ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current ARM transaction is used, or a new
one is created. If it is not the starting transaction, it has a parent. This relationship
is represented in the following table and diagram with the notation Xn.Xn+1. The
notation is used to show the transaction lineage. Every SCA invocation starts a
new transaction, which is parented by the current transaction of the caller. You can
create new transactions and you can access the current transaction, but you cannot
modify the SCA transaction lineage.

Table 20. Invocation of request and return result

Type Statistics Formula ARM Transaction

Common TotalResponseTime t1 - t0 X0.X1

RequestDeliveryTime t’0 - t0 X1.X2

ResponseDeliveryTime N/A N/A

GoodRequests CountEXIT X1.X2

BadRequests CountFAILURE

ResponseTime t2 - t0

Reference GoodRefRequest CountEXIT X0.X1

BadRefRequest CountFAILURE

RefResponseDuration t1 - t0

26 Monitoring

Reference

Completion
Report
Utility

X .X
0 1

X .X
1 2

X .X
1 2

t'0t
0

t1 t'1

Service

Caller

'

t2

Monitoring service component events
WebSphere Process Server monitoring can capture the data in a service component
at a certain event point. You can view each event in a log file, or you can use the
more versatile monitoring capabilities of a Common Event Infrastructure server.

Applications that are deployed on the process server may contain a specification of
service component events that will be monitored for as long as the application
runs. If you developed the application using the WebSphere Integration Developer,
then you can specify service component events to monitor continuously. This
specification is included as part of the application, and comes in the form of file
with a .mon extension that is read by the process server when the application is
deployed. After the application is started, you will not be able to turn off
monitoring of the service components specified in the .mon file. The
documentation for the WebSphere Process Server does not address this type of
continuous monitoring. For more information about this subject, refer to the
WebSphere Integration Developer documentation.

You can use WebSphere Process Server to monitor service component events that
are not already specified in the .mon file of the application. You can configure the
process server to direct the output of the event monitors to a log file, or to a
Common Event Infrastructure server database. The monitored events will be
formatted using the Common Base Event standard, but you can regulate the
amount of information contained in each event. Use the monitoring facilities in
WebSphere Process Server to diagnose problems, analyze the process flow of your
applications, or audit how your applications are used.

Enabling monitoring of business process and human task
events

You must configure WebSphere Process Server to support monitoring of business
process and human task service components before you do any actual monitoring
of those service component kinds.

Before you begin

You must have previously created the business process container and the human
task container on the process server.

Enabling and configuring service component monitoring 27

About this task

Perform this task to enable Common Event Infrastructure monitoring support on
WebSphere Process Server.

Procedure
1. Open the administrative console.
2. If Business Process Choreographer is configured on a single server, complete

the following steps to enable the server to generate business process events:
a. To enable business process events for the Human Task Manager, click

Servers → Server Types → WebSphere application servers → server_name,
then on the Configuration tab under Business Integration, expand
Business Process Choreographer, click Human Task Manager. In the
section State Observers, ensure that the boxes for Enable Common Event
Infrastructure Logging, Enable audit logging, and Enable task history are
selected. If the check boxes are not selected, then you must select them and
restart the server.

b. To enable business process events for the Business Flow Manager, click
Servers → Server Types → WebSphere application servers → server_name,
then on the Configuration tab under Business Integration, expand
Business Process Choreographer, click Business Flow Manager. In the
section State Observers, ensure that the boxes for Enable Common Event
Infrastructure Logging and Enable audit logging are selected. If the check
boxes are not selected, then you must select them and restart the server.

3. If Business Process Choreographer is configured on a cluster, complete the
following steps to enable the cluster to generate business process events:
a. To enable business process events for the Human Task Manager, click

Servers → Clusters → WebSphere application server clusters → cluster_name,
then on the Configuration tab under Business Integration, expand
Business Process Choreographer, click ensure that the boxes for Enable
Common Event Infrastructure Logging, Enable audit logging, and Enable
task history are selected. If the check boxes are not selected, then you must
select them and restart the server.

b. To enable business process events for the Business Flow Manager, click
Servers → Clusters → WebSphere application server clusters → cluster_name,
then on the Configuration tab under Business Integration, expand
Business Process Choreographer, click Business Flow Manager. In the
section State Observers, ensure that the boxes for Enable Common Event
Infrastructure Logging and Enable audit logging are selected. If the check
boxes are not selected, then you must select them and restart the server.

What to do next

If you had to select any of the boxes, then you must restart the server or cluster for
the changes to take effect.

Configuring logging for service component events
You can choose to use the logging facilities of WebSphere Application Server to
capture the service component events fired by process server monitoring. Use the
loggers to view the data in events when you diagnose problems with the
processing of your applications.

WebSphere Process Server uses the extensive logging facilities of the underlying
WebSphere Application Server to allow you to capture the events fired by server

28 Monitoring

monitoring at service component event points. You can use the administrative
console to specify the particular service component event points that you want to
monitor, the amount of payload detail contained in the resulting service
component events, and the method used to publish the results, such as to a file of
a certain format, or directly to a console. Monitor logs contain events encoded in
Common Base Event format, and you can use the information contained in the
event elements to trace problems with the processing of your service components.

The functionality of WebSphere Application Server logging and tracing capabilities
is documented in considerable detail in the WebSphere Application Server
documentation, with complete details of how logging and tracing is used within
the entire product. This section provides only supplemental information about
logging as it relates to the service components that are specific to WebSphere
Process Server. Consult the information in the WebSphere Application Server
documentation for using logging and trace with other components of the entire
product.

Enabling the diagnostic trace service
Use this task to enable the diagnostic trace service, which is the logging service
that can manage the amount of detail contained in the service component event.

Before you begin

You must have the business process and human task containers configured to
allow Common Event Infrastructure (CEI) logging and audit logging.

About this task

The diagnostic trace service is the only logger type that can provide the level of
detail required to capture the detail contained in the elements of service
component events. You must enable the diagnostic trace service before you start
the process server in order to log events. The service must also be enabled if you
use the administrative console to select service component event points for
monitoring using the CEI server.

Procedure
1. In the navigation pane, click Servers → Server Types → WebSphere application

servers.
2. Click the name of the server that you want to work with.
3. Under Troubleshooting, click Diagnostic Trace service.
4. Select Enable log on the Configuration tab.
5. Click Apply, and then Save.
6. Click OK.

What to do next

If the server was already started, then you must restart it for the changes to take
effect.

Configuring logging properties using the administrative console
Use this task to specify that the monitoring function publish service component
events to a logger file.

Enabling and configuring service component monitoring 29

About this task

Before applications can log monitored events, you must specify the service
component event points that you want to monitor, what level of detail you require
for each event, and format of the output used to publish the events to the logs.
Using the administrative console, you can:
v Enable or disable a particular event log.
v Specify the level of detail in a log.
v Specify where log files are stored, how many log files are kept, and a format for

log output.

You can change the log configuration statically or dynamically. Static configuration
changes affect applications when you start or restart the application server.
Dynamic or run time configuration changes apply immediately.

When a log is created, the level value for that log is set from the configuration
data. If no configuration data is available for a particular log name, the level for
that log is obtained from the parent of the log. If no configuration data exists for
the parent log, the parent of that log is checked, and so on, up the tree until a log
with a non-null level value is found. When you change the level of a log, the
change is propagated to the children of the log, which recursively propagates the
change to their children, as necessary.

Procedure
1. Enable logging and set the output properties for a log:
2. In the navigation pane, click Servers > Server Types > WebSphere

application servers.
3. Click the name of the server that you want to work with.
4. Under Troubleshooting, click Logging and tracing.
5. Click Change Log Detail levels.
6. The list of components, packages, and groups displays all the components that

are currently registered on the running server; only server events that have
been invoked at least once appear on this list. All server components with
event points that can be logged are listed under one of the components that
start with the name WBILocationMonitor.LOG.

v To select events for a static change to the configuration, click the
Configuration tab.

v To select events for a dynamic change to the configuration, click the
Runtime tab.

7. Select the event or group of events that you want to log.
8. Set the logging level for each event or group of events.

Note: Only the levels FINE, FINER, and FINEST are valid for CEI event
logging.

9. Click Apply.
10. Click OK.
11. To have static configuration changes take effect, stop then restart the server.

Results

By default, the loggers publish their output to a file called trace.log, located in the
install_root/profiles/profile_name/logs/server_name folder.

30 Monitoring

Tutorial: Logging service component events
For service component event points that you monitor, events can be published to
the logging facilities of the underlying WebSphere Application Server. This tutorial
guides you through an example of setting up monitoring with logging, and how to
view events stored in a log file.

The scenario you will follow for this example will show you how to select service
component event points for monitoring in applications already deployed and
running on a server. You will see how the monitoring function fires an event
whenever the processing of an application reaches one of those event points. Each
of those fired events takes the form of a standardized Common Base Event, which
is published as an XML string directly to a log file.

Objectives of this tutorial

After completing this tutorial you will be able to:
v Select service component event points to monitor, with the output published to

the server loggers.
v View the stored events in the log files.

Time required to complete this tutorial

This tutorial requires approximately 15-20 minutes to complete.

Prerequisites

In order to perform this tutorial, you must have:
v Configured and started a server.
v Configured Common Event Infrastructure.
v Enabled the diagnostic trace service on the server.
v Installed and started the Samples Gallery application on the server.
v Installed and started the business rules sample application on the server. Follow

the instructions on the Samples Gallery page to set up and run the business
rules sample application.

After all of these prerequisites have been completed, run the business rules sample
application from the Samples Gallery at least once before proceeding with the
tutorial.

Example: Monitoring events in the logger:

For monitoring with logging, you can use the administrative console to manage
the details for event types. This example shows the use of the console to change
the level of detail recorded for some event types and to use a text editor to open
the trace.log file to view the information for individual events.

About this task

You will use the business rules sample application for this scenario, so you should
already have the web page containing this application already open. Keep it open,
since you will be running the sample after you specify monitoring parameters.
Ensure that you have already run the sample at least once, so that it will appear in
the list of functions that you can select to monitor.

Enabling and configuring service component monitoring 31

Procedure

1. Open the administrative console.
2. In the navigation pane, click Servers → Application Servers.
3. Click server_name.
4. Under Troubleshooting, click Logging and tracing

5. Click Change Log Detail levels

6. Select the Runtime tab.
7. Expand the tree for WBILocationMonitor.LOG.BR and you will see seven

event types under the WBILocationMonitor.LOG.BR.brsample.* element. The
first event is called
WBILocationMonitor.LOG.BR.brsample_module.DiscountRuleGroup, which
includes a single function, named Operation._calculateDiscount, with the
following natures:
v ENTRY
v EXIT
v FAILURE
v SelectionKeyExtracted
v TargetFound

8. Click on each of the events and select finest.
9. Click OK.

10. Switch the business rules sample application page, and run the application
once.

11. Use a text editor to open the trace.log file located in the profile_root/logs/
server_name folder on your system.

Results

You should see lines in the log containing the business rule events fired by the
monitor when you ran the sample application. The main thing you will probably
notice is that the output consists of lengthy, unparsed XML strings conforming to
the Common Base Event standard. Examine the ENTRY and EXIT events, and you
will see that business object — which was included because you selected the finest
level of detail — is encoded in hexadecimal format. Compare this output with
events published to the Common Event Infrastructure server, which parses the
XML into a readable table and decodes any business object data into a readable
format. You may want to go back through this exercise and change the level of
detail from finest to fine or finer, and compare the differences between the events.

After completing this exercise, you should understand how to select service
component event points for monitoring to the logger. You have seen that the
events fired in this type monitoring have a standard format, and that the results
are published as a string in raw XML format directly to a log file. To view the
published events, open the log file in a text editor, and decipher the contents of
individual events.

What to do next

If you no longer want to monitor the business rules sample application, you can go
back to through the steps outlined here and reset the level of detail for the sample
events to info.

32 Monitoring

Audit logging for business rules and selectors
You can set up WebSphere Process Server to automatically log any changes made
to business rules and selectors.

You can configure your server to automatically detect when changes are made to
business rules and selectors, and create an entry in a log file detailing the changes.

You can choose to have the log entries written to either the standard JVM
SystemOut.log file, or to a custom audit log file of your choice. Depending on how
the changes are made, the process server where each business rule or selector
change is made logs the:
v name of the person making the change
v location from where the change request originated
v old business rule or selector object
v new business rule or selector replacing the old object

The business rule and selector objects are the complete business rule set, decision
table, business rule group, or selector for both the business rule or selector that is
replaced and the new version which replaced it. You can examine the logs (the
audit output cannot be directed to the Common Event Infrastructure database) to
determine the changes that were made, by comparing the old and new business
rules or selectors. The following scenarios describe the circumstance when logging
occurs, if it has been configured, and the contents of the log entry:

Scenario Result Log entry contents

Publish business rules using
the Business Rule Manager

Request

User ID, Server name
(including Cell and Node, if
applicable), old business rule
ruleset, new ruleset.

Failure

User ID, Server name
(including Cell and Node, if
applicable), old business rule
ruleset, new ruleset.

Repository database update
and commit (from attempt to
publish using the Business
Rule Manager)

Success
User ID, old ruleset, new
ruleset.

Failure User ID, new ruleset.

Exporting a selector or
business rule group

Request
User ID, selector, or business
rule group name.

Success

User ID, Server name
(including Cell and Node, if
applicable), copy of exported
selector or business rule
group

Failure

User ID, Server name
(including Cell and Node, if
applicable), selector or
business rule group name.

Enabling and configuring service component monitoring 33

Scenario Result Log entry contents

Importing a selector or
business rule group

Request
User ID, copy of new
selector or business rule
group.

Success

User ID, Server name
(including Cell and Node, if
applicable), copy of imported
selector or business rule
group, copy of selector or
business rule group that was
replaced by the imported
version.

Failure

User ID, Server name
(including Cell and Node, if
applicable), copy of selector
or business rule group that
was to be imported.

Application installation

Success

User ID, Server name
(including Cell and Node, if
applicable), selector or
business rule group name.

Failure

User ID, Server name
(including Cell and Node, if
applicable), selector or
business rule group name.

Application update (through
the administrative console or
wsadmin command)

Success

User ID, Server name
(including Cell and Node, if
applicable), copy of new
selector or business rule
group, copy of old selector
or business rule group.

Failure

User ID, Server name
(including Cell and Node, if
applicable), copy of new
selector or business rule
group

Previously deployed
application with existing
business rules, selectors or
both is started

Success

Server name (including Cell
and Node, if applicable),
copy of selector or business
rule group.

Failure

Server name (including Cell
and Node, if applicable),
copy of selector or business
rule group.

Monitoring service components with the Common Event
Infrastructure server

You can choose to have service component monitoring results published to a
Common Event Infrastructure (CEI) server. Service component event points can be
specified for monitoring with the CEI server on a permanent basis for viewing and
managing application flow, or on an temporary basis for troubleshooting problems.

You can use monitoring to publish the data in service component event points
within service component events that are fired across the CEI bus. This approach

34 Monitoring

to monitoring allows you much more flexibility in analyzing your service
component activities on your system. You can also use browsers optimized for CEI
events, such as the Common Base Event browser.

The events are structured identically to the events sent to loggers, but are stored
on a database which can be accessed by viewers designed specifically for analyzing
service component events. Service component event points can be specified within
an application when it is created, for continual monitoring at all times after the
application is deployed and running on a server (a method known as “static”
monitoring). You perform static monitoring on service component event points that
are of particular importance in the proper flow of component processing on your
system. With this information, you can easily oversee the actions of, and
interactions between, the service component processes running on your system.
You can also quickly detect deviations from the normal flow of these processes,
which can indicate that your service components are not working properly.

To configure static monitoring of service components, you use WebSphere
Integration Developer to select the service component event points in your
applications. The selections are specified in the form of an XML file with a .mon
extension that is deployed along with the application. After you have deployed the
application on a running server, you cannot turn off or lower the detail level of the
monitoring for events specified in the .mon file of the application. To stop this
monitoring, you must stop the server and undeploy the application.

You can also select service component event points for “dynamic” monitoring,
which can be enabled and disabled on an application already deployed to a
running server. The rationale for performing dynamic monitoring using the CEI
server is essentially the same as that for logging: to diagnose and troubleshoot
problems on your system. The output is essentially the same as the output that is
published to loggers, with Common Base Event elements that make up the
structure for each event fired across the CEI bus. Also, like logging data, the
differences in detail levels affect only how much of the payload is encoded within
the event.

Configuring service component event monitoring using the
administrative console
Use the administrative console to dynamically specify the monitoring function to
publish service component events to the Common Event Infrastructure server.

Before you begin

You must enable the diagnostic trace service, just as you would with the logger.
After you restart your server you would invoke the events you want to monitor
once, because that will cause them to appear on the list of events available for
monitoring.

About this task

This method of selecting events for monitoring is used for applications that have
already been deployed on a process server. Events that are specified in a .mon file
that is deployed with the application on the process server are monitored by the
Common Event Infrastructure (CEI) database regardless of any changes you make
here. For those events, you can only specify a greater level of detail to be captured
and published to the CEI database. The output that is published to the CEI
database is very similar to that published by loggers.

Enabling and configuring service component monitoring 35

Procedure
1. From the administrative console, click Troubleshooting > Logging and tracing.
2. Click Change Log Detail levels

3. The list of components, packages, and groups displays all the components that
are currently registered on the running server; only process server events that
have been invoked at least once appear on this list. All process server events
that can be logged are listed under one of the components that start with the
name WBILocationMonitor.CEI.
v To make a static change to the configuration, click the Configuration tab.
v To change the configuration dynamically, click the Runtime tab.

4. Select an event or group of events to monitor.
5. Click the level of detail that you want to capture for each event.

Note: Only the levels FINE, FINER, and FINEST are valid for CEI events.
6. Click Apply, and then Save.
7. Click OK.
8. If you made a static change to the configuration, then you will have to restart

the process server for the changes to take effect.

Results

You can view the monitored event results in the Common Base Event browser.

Tutorial: Using the Common Event Infrastructure server for event
monitoring
This tutorial guides you through an example of setting up monitoring with the CEI
server, and how to view events stored in the database.

For service component event points that you monitor, events can be published to
the Common Event Infrastructure (CEI) server and stored in the CEI server
database. Once events have been captured, use the Common Base Event browser to
view those stored events. The example you use in this scenario does not involve
static monitoring, whereby an application deployed with a .mon file continually
monitors specific service components event points. For information about how to
perform static monitoring, consult the IBM® WebSphere Integration Developer
Information Center.

The scenario you follow for this example, instead, shows you how to select for
monitoring event points on service components in applications already deployed
and running on a server. You can see how the monitoring function fires an event
whenever the processing of an application reaches one of those event points. Each
of those fired events are published to the CEI server, which stores the event
information about its database. You then use the Common Base Event browser to
view the events.

Objectives of this tutorial

After completing this tutorial you will be able to:
v Select service component event points to monitor, with events published to the

CEI server.
v View the stored events with the Common Base Event browser.

36 Monitoring

Time required to complete this tutorial

This tutorial requires approximately 15-20 minutes to complete.

Prerequisites

In order to perform this tutorial, you must have:
v Configured and started a server.
v Configured the CEI and its database.
v Enabled the diagnostic trace service on the server.
v Installed and started the Samples Gallery application on the server.
v Installed and started the business rules sample application on the server. Follow

the instructions on the Samples Gallery page to set up and run the business
rules sample application.

After all these prerequisites have been completed, run the business rules sample
application from the Samples Gallery at least once before proceeding with the
tutorial.

Example: Monitoring with the Common Event Infrastructure server:

For monitoring with the CEI server, you can use the administrative console to
manage the details for event types and to display recorded events in the Common
Base Event browser. This example shows the use of the console to change the level
of detail recorded for some event types and to use the Common Base Event
browser to view the information for individual events.

About this task

You will use the business rules sample application for this scenario; consequently,
you should already have the web page containing this application already open.
Keep it open, since you will be running the sample after you specify monitoring
parameters. Ensure that you have already run the sample at least once, because
that will cause it to appear in the list of functions that you can select to monitor.

Procedure

1. Open the administrative console.
2. In the navigation pane, click Servers → Server Types → WebSphere application

servers.
3. Click server_name.
4. Under Troubleshooting, click Logging and tracing

5. Click Change Log Detail levels

6. Select the Runtime tab.
7. Expand the tree for WBILocationMonitor.CEI.BR and you will see five event

types under the WBILocationMonitor.CEI.BR.brsample.* element. Each event
type includes the name
WBILocationMonitor.CEI.BR.brsample_module.DiscountRuleGroup,
appended by the function Operation._calculateDiscount, and the following
natures:
v ENTRY
v EXIT
v FAILURE
v SelectionKeyExtracted

Enabling and configuring service component monitoring 37

v TargetFound
8. Click on each of the events and select finest.
9. Click OK.

10. Switch the business rules sample application page, and run the application
once.

11. Go back to the administrative console, and select Integration Applications →
Common Base Event Browser from the navigation pane.

12. If you are running your server on node within a Network Deployment
environment, then you may need to modify the Event Data Store field to
include to the names of your server and node. Enter the string in the
following form: 'cell/nodes/node_name/servers/server_name/ejb/com/ibm/
events/access/EventAccess'.

13. Press Get Events.

Results

You should now see a list in the upper pane of the Common Base Event browser
of the four business rule events that were published to the CEI server when you
ran the sample application. Select one of the events, and you will be shown the
contents of the event in the lower pane. Compare this to the events published to
the loggers. Notice that the browser has parsed the original XML string that was
published to the CEI server, and that the business object code in the ENTRY and
EXIT events was converted from the original hexadecimal format to readable XML.
You may want to go back through this exercise and change the level of detail from
finest to fine or finer, and compare the differences between the events.

After completing this exercise, you should understand how to select service
component event points for monitoring using the CEI server. You have seen that
the events fired in this type monitoring have a standard format, and that the
results are published to a database. You should also be able to use the Common
Base Event browser to retrieve events from the database, and view the information
for individual events in a parsed table format on the browser.

What to do next

If you no longer want to monitor the business rules sample application, you can go
back to through the steps outlined here and reset the level of detail for the sample
events to info.

Session monitoring
You can monitor multiple events that are part of the same session, by using the
Common Base Event browser to find all events on the Common Event
Infrastructure database that contain the identical session ID attribute.

WebSphere Process Server has enhanced capabilities with which you can identify
all the service component events that are part of a single session. The standard
elements for the Common Base Event include an attribute under the
contextDataElement element, called WBISessionID. A unique identifier for an
individual session is stored in this attribute, for all service component events that
were part of that session. You can use the SessionID field in the Common Base
Event browser to search for events stored on the Common Event Infrastructure
(CEI) database that match the session ID you specify. With this capability, you can
easily review the process flow and contents of all the service component events.

38 Monitoring

You can use this information to assess the efficiency of your applications, and aid
you in diagnosing problems that occur only under certain circumstances.

You can use the Common Base Event browser to view the returned list of events
and their associated contents. If you click the All Events view, you can see columns
of links for more details about events. If a particular event has a link in the Failed
column, you can click that link to view more details about the failed event.
Similarly, if there is a link in the Business Process associated with a particular
event, you can click that link to open the Business Process Choreographer Explorer
and view further information about the business process or human task event.
Related concepts

“How do you enable monitoring?” on page 3
The are several methods that you can use to specify service component event
points for monitoring, depending on the type of monitoring you are planning to
do.

Enabling and configuring service component monitoring 39

40 Monitoring

Viewing monitored events

There are a number of ways for you to view the published results of your
monitored events, depending on the type of monitoring you are using. This section
presents methods that you can use to view performance data, event logs, and
service component events stored on a Common Event Infrastructure database.

Viewing performance metrics with the Tivoli Performance Viewer
You can use the Tivoli Performance Viewer to start and stop performance
monitoring; view Performance Monitoring Infrastructure data in chart or table
form as it occurs on your system; and, optionally, log the data to a file that you
can later review in the same viewer.

Before you begin

Before you can view performance metrics with the Tivoli Performance Viewer, the
following conditions must be true:
v The servers that you want to monitor must be running on the node
v The Performance Monitoring Infrastructure (PMI) is enabled
v The service component event points that you want to monitor have been

invoked at least once so that they can be selected from within the viewer.

About this task

The Tivoli Performance Viewer (TPV) is a powerful application that allows you
view various details of about the performance of your server. The section entitled
“Monitoring performance with Tivoli Performance Viewer” in the WebSphere
Application Server Information Center contains details about how to use this tool
for various purposes, including the resource for complete instructions on using this
program. This section is limited to discussing the viewing of performance data for
events specific to WebSphere Process Server.

The performance viewer enables administrators and programmers to monitor the
current health of WebSphere Process Server. Because the collection and viewing of
data occurs on the process server, performance is affected. To minimize
performance impacts, monitor only those servers whose activity you want to
monitor.

Note: When viewing these statistics, do not mix counter-type statistics with
duration-type statistics. Counters are cumulative, and the scales against which they
are graphed can quickly grow depending on your application. Duration statistics,
in contrast, tend to remain within a certain range because they represent the
average amount of time that it takes your system to process each event.
Consequently, the disparity between the statistics and their relative scales can
cause one or the other type of statistic to appear skewed in the viewer graph.

Procedure
v View current performance activity

1. Click Monitoring and Tuning → Performance Viewer → Current Activity in
the administrative console navigation tree.

© Copyright IBM Corp. 2006, 2010 41

2. Select Server, then click the name of the server whose activity you want to
monitor. You can alternatively select the check box for the server whose
activity you want to monitor, then click Start Monitoring. To start
monitoring multiple servers at the same time, select the servers then click
Start Monitoring.

3. Select Performance Modules.
4. Select the check box beside the name of each performance module that you

want to view. WebSphere Process Server events that emit performance
statistics, and that have been invoked at least once, are listed under the
WBIStats.RootGroup hierarchy. Expand the tree by clicking + next to a node
and shrink it by clicking – next to a node.

5. Click View Modules. A chart or table providing the requested data is
displayed on the right side of the page. Charts are displayed by default.
Each module has several counters associated with it. These counters are
displayed in a table underneath the data chart or table. Selected counters are
displayed in the chart or table. You can add or remove counters from the
chart or table by selecting or clearing the check box next to them. By default,
the first three counters for each module are shown.
You can select up to 20 counters and display them in the TPV in the Current
Activity mode.

6. Optional: To remove a module from a chart or table, clear the check box next
to the module then click View Modules again.

7. Optional: To view the data in a table, click View Table on the counter
selection table. To toggle back to a chart, click View Graph.

8. Optional: To view the legend for a chart, click Show Legend. To hide the
legend, click Hide Legend.

9. When you have finished monitoring the performance of your events, click
Tivoli Performance Viewer, select the server you were monitoring, and click
Stop Monitoring.

v Log performance statistics
While monitoring is active on a server, you can log the data from all the PMI
counters that are currently enabled and record the results in a TPV log file. You
can view the TPV log file for a particular time period multiple times, selecting
different combinations of up to 20 counters each time. You have the flexibility to
observe the relationships among different performance measures in the server
during a particular period.
1. Click Start Logging when viewing summary reports or performance

modules.
2. When finished, click Stop Logging. By default, the log files are stored in the

profile_root/logs/tpv directory on the node on which the server is running.
The TPV automatically compresses the log file when it finishes writing to it
to conserve space. There must only be a single log file in each compressed
file and it must have the same name as the compressed file.

3. Click Monitoring and Tuning → Performance Viewer → View Logs in the
administrative console navigation tree to view the logs

Viewing and interpreting service component event log files
This topic discusses how you would interpret the information in a log file
generated by service component monitoring. You can view the log files in the log
viewer on the administrative console, or in a separate text file editor of your
choice.

42 Monitoring

Events fired to the logger by service component monitoring are encoded in
Common Base Event format. When published to a log file, the event is included as
a single, lengthy line of text in XML tagging format, which also includes several
logger-specific fields. Consult the event catalog section of this documentation for
details on deciphering the Common Base Event coding of the logged event. Use
this section to understand the other fields contained in each entry of the log file,
and how the format you chose for the log file when you configured the logger is
structured.

Basic and advanced format fields

Logging output can be directed either to a file or to an in-memory circular buffer.
If trace output is directed to the in-memory circular buffer, it must be dumped to a
file before it can be viewed. Output is generated as plain text in either basic,
advanced or log analyzer format as specified by the user. The basic and advanced
formats for output are like the basic and advanced formats that are available for
the message logs. Basic and Advanced Formats use many of the same fields and
formatting techniques. The fields that can be used in these formats include:
TimeStamp

The timestamp is formatted using the locale of the process where it is
formatted. It includes a fully qualified date (YYMMDD), 24 hour time with
millisecond precision and the time zone.

ThreadId
An 8-character hexadecimal value generated from the hash code of the
thread that issued the trace event.

ThreadName
The name of the Java thread that issued the message or trace event.

ShortName
The abbreviated name of the logging component that issued the trace
event. This is typically the class name for WebSphere Process Server
internal components, but can be some other identifier for user applications.

LongName
The full name of the logging component that issued the trace event. This is
typically the fully qualified class name for WebSphere Process Server
internal components, but can be some other identifier for user applications.

EventType
A one-character field that indicates the type of the trace event. Trace types
are in lowercase. Possible values include:
1 a trace entry of type fine or event.
2 a trace entry of type finer.
3 a trace entry of type finest, debug, or dump.
Z a placeholder to indicate that the trace type was not recognized.

ClassName
The class that issued the message or trace event.

MethodName
The method that issued the message or trace event.

Organization
The organization that owns the application that issued the message or trace
event.

Product
The product that issued the message or trace event.

Component
The component within the product that issued the message or trace event.

Viewing monitored events 43

Basic format

Trace events displayed in basic format use the following format:
<timestamp><threadId><shortName><eventType>[className][methodName]<textmessage>

[parameter 1]
[parameter 2]

Advanced format

Trace events displayed in advanced format use the following format:
<timestamp><threadId><eventType><UOW><source=longName>[className][methodName]
<Organization><Product><Component>[thread=threadName]
<textMessage>[parameter 1=parameterValue][parameter 2=parameterValue]

Log analyzer format

Specifying the log analyzer format allows you to open trace output using the Log
Analyzer tool, which is an application included with WebSphere Application
Server. This is useful if you are trying to correlate traces from two different server
processes, because it allows you to use the merge capability of the Log Analyzer.

44 Monitoring

Event catalog

The event catalog contains the specifications for all the events that can be
monitored for each service component type, and the associated Common Base
Event extended data elements produced by each event.

Use the information presented in this section as reference material that enables you
to understand how individual events are structured. This knowledge helps you
decipher the information contained in each event, so that you can quickly identify
the pieces of information you need from the relatively large amount of data
generated by each event.

The information included in this section covers the following items:
v The structure and standard elements of the Common Base Event
v The list of events for the Business Process Choreographer service components
v The list of WebSphere Process Server-specific service components
v The extensions to the Common Base Event unique to each event type

There is also a discussion of how business objects that might be processed by a
service component are captured in service component events.

When an event of a given type is fired across the Common Event Infrastructure
(CEI) bus to the CEI server or to a logger, it takes the form of a Common Base
Event — which is, essentially, an XML encapsulation of the event elements created
according to the event catalog specification. The Common Base Event includes a
set of standard elements, server component identification elements, Event
Correlation Sphere identifiers, and additional elements unique to each event type.
All of these elements are passed to the CEI server or logger whenever an event is
fired by a service component monitor, with one exception: if the event includes the
business object code within the payload, you may specify the amount of business
object data that you want to include in event.

The Common Base Event standard elements
The elements of the Common Base Event that are included in all events fired from
service component monitoring are listed here.

Attribute Description

version Set to 1.0.1.

creationTime The time at which the event is created, in UTC.

globalInstanceId The identifier of the Common Base Event instance. This ID
is automatically generated.

localInstanceId This ID is automatically generated (may be blank).

severity The impact that the event has on business processesor on
human tasks. This attribute is set to 10 (information).
Otherwise, it is not used.

priority Not used.

reporterComponentId Not used.

locationType Set to Hostname.

© Copyright IBM Corp. 2006, 2010 45

Attribute Description

location Set to the host name of the executing server.

application Not used.

executionEnvironment A string that identifies the operating system.

component Process server version. For business processes and human
tasks: Set to WPS#, followed by the SCA version, the
identification of the current platform, and the version
identification of the underlying software stack.

componentType The component QName, based on the Apache QName
format.

For business processes, set to:

www.ibm.com/namespaces/autonomic/Workflow_Engine

For human tasks, set to:

www.ibm.com/xmlns/prod/websphere/scdl/human-task

subComponent The observable element name.

For business processes, set to BFM.
For human tasks, set to HTM.

componentIdType Set to ProductName.

instanceId The identifier of the server. This identifier has the format
cell_name/node_name/server_name. The delimiters are
operating system dependent.

processId The process identifier of the operating system.

threadId The thread identifier of the Java virtual machine (JVM).

Situation Type The type of situation that caused the event to be reported.
For specific components, set to ReportSituation.

Situation Category The category of the type of situation that caused the event
to be reported. For specific components, set to STATUS.

Situation Reasoning Scope The scope of the impact of the situation reported. For
specific components, set to EXTERNAL.

ECSCurrentID The value of the current Event Correlation Sphere ID.

ECSParentID The value of the parent Event Correlation Sphere ID.

WBISessionID The value of the current Session ID.

extensionName Set to the event name.

Business objects in events
Business object data is, starting with version 6.1, carried within the event in XML
format. The Common Base Event format includes an xs:any schema, which
encapsulates the business object payload in XML elements.

You specify the level of business object detail that will be captured in service
component events. This level of detail affects only the amount of business object
code that will be passed to the event; all of the other Common Base Event
elements (both standard and event-specific) will be published to the event. The
names of the detail levels applicable to service component events differ depending

46 Monitoring

on whether you created a static monitor using WebSphere Integration Developer,
or a dynamic monitor on the administrative console, but they correspond as shown
in the table below:

Administrative console
detail level

Common Base
Event/WebSphere
Integration Developer detail
level

Payload information
published

FINE EMPTY None.

FINER DIGEST Payload description only.

FINEST FULL All of the payload.

The detail level is specified by PayloadType element which is part of the event
instance data. The actual business object data is included in the event only if the
monitor is set to record FULL/FINEST detail. The business object data itself is
included in the Common Base Event under an xsd:any schema. You can see the
process server business object payloads with the root element named wbi:event. If
you are publishing the event output to the logger, then you will see the output
when you view the log files. If the event is published to the CEI server, then you
can use the Common Base Event browser to view the event. You can then click the
wbi:event link to view the business object data.

Business Process Choreographer events
WebSphere Process Server incorporates the Business Process Choreographer service
components for business processes and human tasks. The event points that can be
monitored in these components are described in this section.

WebSphere Process Server events
WebSphere Process Server features its own service components, and each of these
components has its own set of event points that can be monitored.

Service components contain one or more elements, which are sets of different steps
processed in each service component. In turn, each element has its own set of
event natures, that are key points that are reached when processing a service
component element. All service components, their elements and associated event
natures, and the extended data elements unique to each event are listed.

Resource Adapter events
The event types available for the resource adapter component are listed.

The elements of the resource adapter component (base name eis:WBI.JCAAdapter)
that can be monitored are listed here, along with their associated event natures,
event names, and the extended data elements that are unique to each event.

Event Name Event Natures Event Contents Type

InboundEventRetrieval element

eis:WBI.JCAAdapter.
InboundEventRetrieval. ENTRY

ENTRY

pollQuantity int

status int

eventTypeFilters string

Event catalog 47

Event Name Event Natures Event Contents Type

eis:WBI.JCAAdapter.
InboundEventRetrieval. EXIT

EXIT N/A

eis:WBI.JCAAdapter.
InboundEventRetrieval. FAILURE

FAILURE FailureReason exception

InboundEventDelivery element

eis:WBI.JCAAdapter.
InboundEventDelivery.ENTRY

ENTRY N/A

eis:WBI.JCAAdapter.
InboundEventDelivery.EXIT

EXIT N/A

eis:WBI.JCAAdapter.
InboundEventDelivery.FAILURE

FAILURE FailureReason exception

Outbound element

eis:WBI.JCAAdapter.
Outbound.ENTRY

ENTRY N/A

eis:WBI.JCAAdapter. Outbound.EXIT EXIT N/A

eis:WBI.JCAAdapter.
Outbound.FAILURE

FAILURE FailureReason exception

InboundCallbackAsyncDeliverEvent element

eis:WBI.JCAAdapter.
InboundCallbackAsyncDeliverEvent.
ENTRY

ENTRY N/A

eis:WBI.JCAAdapter.
InboundCallbackAsyncDeliverEvent.
EXIT

EXIT N/A

eis:WBI.JCAAdapter.
InboundCallbackAsyncDeliverEvent.
FAILURE

FAILURE FailureReason exception

InboundCallbackSyncDeliverEvent element

eis:WBI.JCAAdapter.
InboundCallbackSyncDeliverEvent.
ENTRY

ENTRY N/A

eis:WBI.JCAAdapter.
InboundCallbackSyncDeliverEvent.
EXIT

EXIT N/A

eis:WBI.JCAAdapter.
InboundCallbackSyncDeliverEvent.
FAILURE

FAILURE FailureReason exception

Polling element

eis:WBI.JCAAdapter.
Polling.STARTED

STARTED
PollFrequency int

PollQuantity int

eis:WBI.JCAAdapter.
Polling.STOPPED

STOPPED N/A

Delivery element

eis:WBI.JCAAdapter. Delivery.EXIT EXIT N/A

eis:WBI.JCAAdapter.
Delivery.FAILURE

FAILURE
EventID string

FailureReason exception

Retrieval element

48 Monitoring

Event Name Event Natures Event Contents Type

eis:WBI.JCAAdapter.
Retrieval.FAILURE

FAILURE
EventID string

FailureReason exception

Endpoint element

eis:WBI.JCAAdapter.
Endpoint.FAILURE

FAILURE
FailureReason exception

Recovery element

eis:WBI.JCAAdapter. Recovery.EXIT EXIT N/A

eis:WBI.JCAAdapter.
Recovery.FAILURE

FAILURE
FailureReason exception

EventFailure element

eis:WBI.JCAAdapter.
EventFailure.FAILURE

FAILURE
FailureReason exception

Connection element

eis:WBI.JCAAdapter.
Connection.FAILURE

FAILURE
FailureReason exception

Business rule events
The event types available for the business rule component are listed.

The business rule component (base name br:WBI.BR) contains a single element that
can be monitored. All event types for this element are listed here, with their
associated event natures, event names, and the extended data elements that are
unique to each event.

Event Name Event Nature Event Contents Type

br:WBI.BR.ENTRY ENTRY operationName string

br:WBI.BR.EXIT EXIT operationName string

br:WBI.BR.FAILURE FAILURE
ErrorReport Exception

operationName string

WBI.BR.
br:SelectionKeyExtracted

SelectionKeyExtracted operationName string

br:WBI.BR.TargetFound TargetFound
operationName string

target string

Business state machine events
The event types available for the business state machine component are listed.

The elements from the business state machine component (base name bsm:WBI.BSM)
that can be monitored are listed here, along with their associated event natures,
event names, and all extended data elements that are unique to each event.

Event Name Event Nature Event Contents Type

StateMachineDefinition element

bsm:WBI.BSM.
StateMachineDefinition.
ALLOCATED

ALLOCATED instanceID string

Event catalog 49

Event Name Event Nature Event Contents Type

bsm:WBI.BSM.
StateMachineDefinition. RELEASED

RELEASED instanceID string

Transition element

bsm:WBI.BSM.Transition.ENTRY ENTRY
instanceID string

name string

bsm:WBI.BSM.Transition.EXIT EXIT
instanceID string

name string

bsm:WBI.BSM.Transition.FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

State element

bsm:WBI.BSM.State.ENTRY ENTRY
instanceID string

name string

bsm:WBI.BSM.State.EXIT EXIT
instanceID string

name string

bsm:WBI.BSM.State.FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

Guard element

bsm:WBI.BSM.Guard.ENTRY ENTRY
instanceID string

name string

bsm:WBI.BSM.Guard.EXIT EXIT

instanceID string

name string

result boolean

bsm:WBI.BSM.Guard.FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

Action element

bsm:WBI.BSM.Action.ENTRY ENTRY
instanceID string

name string

bsm:WBI.BSM.Action.EXIT EXIT
instanceID string

name string

bsm:WBI.BSM.Action.FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

EntryAction element

bsm:WBI.BSM.EntryAction. ENTRY ENTRY
instanceID string

name string

bsm:WBI.BSM.EntryAction. EXIT EXIT
instanceID string

name string

50 Monitoring

Event Name Event Nature Event Contents Type

bsm:WBI.BSM.EntryAction.
FAILURE

FAILURE

ErrorReport Exception

instanceID string

name string

ExitAction element

bsm:WBI.BSM.ExitAction.ENTRY ENTRY
instanceID string

name string

bsm:WBI.BSM.ExitAction.EXIT EXIT
instanceID string

name string

bsm:WBI.BSM.ExitAction. FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

Timer element

bsm:WBI.BSM.Timer.START START

instanceID string

name string

duration string

bsm:WBI.BSM.Timer.STOPPED STOPPED

instanceID string

name string

duration string

Map events
The event types available for the map component are listed.

The elements from the map component (base name map:WBI.MAP) that can be
monitored are listed here, along with their event natures, event names, and all
extended data elements that are unique to each event.

Table 21. Base element

Event Name Event Nature
Event
Contents Type

map:WBI.MAP.ENTRY ENTRY N/A N/A

map:WBI.MAP.EXIT EXIT N/A N/A

map:WBI.MAP.FAILURE FAILURE FailureReason Exception

Transformation element

map:WBI.MAP.Transformation. ENTRY ENTRY N/A N/A

map:WBI.MAP.Transformation. EXIT EXIT N/A N/A

map:WBI.MAP.Transformation. FAILURE FAILURE FailureReason Exception

Mediation events
The event types available for the mediation component are listed.

The elements from the mediation component (base name ifm:WBI.MEDIATION) that
can be monitored are listed here, along with their associated event natures, names,
and all extended data elements that are unique to each event.

Event catalog 51

Event Name Event Nature Event Contents Type

OperationBinding element

ifm:WBI.MEDIATION.
OperationBinding.ENTRY

ENTRY

InteractionType string

TicketID string

Source string

Target string

ifm:WBI.MEDIATION.
OperationBinding.EXIT

EXIT

InteractionType string

TicketID string

Source string

Target string

ifm:WBI.MEDIATION.
OperationBinding.FAILURE

FAILURE

InteractionType string

TicketID string

Source string

Target string

ErrorReport Exception

ParameterMediation element

ifm:WBI.MEDIATION.
ParameterMediation. ENTRY

ENTRY
Type string

TransformName string

WBI.MEDIATION.
ParameterMediation. EXIT

EXIT
Type string

TransformName string

ifm:WBI.MEDIATION.
ParameterMediation. FAILURE

FAILURE

Type string

TransformName string

ErrorReport Exception

Recovery events
The event types available for the recovery component are listed.

The recovery component (base name recovery:WBI.Recovery) contains a single
element that can be monitored. All event types for this element are listed here,
along with their associated event natures, event names, and the extended data
elements that are unique to each event.

52 Monitoring

Event Name Event Nature Event Contents Type

recovery:WBI.Recovery.
FAILURE

FAILURE

MsgId string

DestModuleName string

DestComponentName string

DestMethodName string

SourceModuleName string

SourceComponentName string

ResubmitDestination string

ExceptionDetails string

SessionId string

FailureTime dateTime

ExpirationTime dateTime

Status int

MessageBody byteArray

Deliverable boolean

recovery:WBI.Recovery.
DEADLOOP

DEADLOOP

DeadloopMsgId string

SIBusName string

QueueName string

Reason string

recovery:WBI.Recovery.
RESUBMIT

RESUBMIT

MsgId string

OriginalMesId string

ResubmitCount int

Description string

recovery:WBI.Recovery.
DELETE

DELETE

MsgId string

deleteTime dateTime

Description string

Service Component Architecture events
The event types available for the Service Component Architecture are listed.

The Service Component Architecture (SCA) contains a single element, with a base
name of sca:WBI.SCA.MethodInvocation. All the events and associated natures of
this element are listed here, along with all extended data elements and that are
unique to each event.

Note: Do not confuse these events with SCA-specific Application Response
Measurement (ARM) performance statistics.

Event catalog 53

Event Name Event Nature Event Contents Type

WBI.SCA. MethodInvocation.
ENTRY

ENTRY

SOURCE COMPONENT string

SOURCE INTERFACE string

SOURCE METHOD string

SOURCE MODULE string

SOURCE REFERENCE string

TARGET COMPONENT string

TARGET INTERFACE string

TARGET METHOD string

TARGET MODULE string

WBI.SCA. MethodInvocation.
EXIT

EXIT

SOURCE COMPONENT string

SOURCE INTERFACE string

SOURCE METHOD string

SOURCE MODULE string

SOURCE REFERENCE string

TARGET COMPONENT string

TARGET INTERFACE string

TARGET METHOD string

TARGET MODULE string

WBI.SCA. MethodInvocation.
FAILURE

FAILURE

SOURCE COMPONENT string

SOURCE INTERFACE string

SOURCE METHOD string

SOURCE MODULE string

SOURCE REFERENCE string

TARGET COMPONENT string

TARGET INTERFACE string

TARGET METHOD string

TARGET MODULE string

Exception string

Selector events
The event types available for the Selector component are listed.

The selector component contains a single element that can be monitored. All event
types for this element are listed here, along with their associated event natures,
event names, and the extended data elements that are unique to each event. All
selector events have a base name of sel:WBI.SEL.

Event Name Event Nature Event Contents Type

sel:WBI.SEL.ENTRY ENTRY operationName string

sel:WBI.SEL.EXIT EXIT operationName string

sel:WBI.SEL.FAILURE FAILURE
ErrorReport Exception

operationName string

54 Monitoring

Event Name Event Nature Event Contents Type

sel:WBI.SEL.
SelectionKeyExtracted

SelectionKeyExtracted
operationName string

sel:WBI.SEL.TargetFound TargetFound
operationName string

target string

Event catalog 55

����

Printed in USA

	Contents
	Service component monitoring overview
	Why use monitoring?
	What do you monitor?
	How do you enable monitoring?

	Enabling and configuring service component monitoring
	Monitoring performance
	Performance Monitoring Infrastructure statistics
	Enabling PMI using the administrative console
	Event performance statistics
	Specifying performance statistics to monitor
	Tutorial: Service component performance monitoring

	Application Response Measurement statistics for the Service Component Architecture
	Synchronous invocations
	Deferred response with synchronous implementation
	Deferred response with asynchronous implementation
	Deferred response with asynchronous result retrieve
	Asynchronous callback with synchronous implementation
	Asynchronous callback with asynchronous implementation
	Asynchronous one way with synchronous implementation
	Asynchronous one way with asynchronous implementation

	Monitoring service component events
	Enabling monitoring of business process and human task events
	Configuring logging for service component events
	Enabling the diagnostic trace service
	Configuring logging properties using the administrative console
	Tutorial: Logging service component events
	Audit logging for business rules and selectors

	Monitoring service components with the Common Event Infrastructure server
	Configuring service component event monitoring using the administrative console
	Tutorial: Using the Common Event Infrastructure server for event monitoring

	Session monitoring

	Viewing monitored events
	Viewing performance metrics with the Tivoli Performance Viewer
	Viewing and interpreting service component event log files

	Event catalog
	The Common Base Event standard elements
	Business objects in events
	Business Process Choreographer events
	WebSphere Process Server events
	Resource Adapter events
	Business rule events
	Business state machine events
	Map events
	Mediation events
	Recovery events
	Service Component Architecture events
	Selector events

