
WebSphere® Process Server for Multiplatforms

Monitoring WebSphere Process Server

Version 6.2.0

���

WebSphere® Process Server for Multiplatforms

Monitoring WebSphere Process Server

Version 6.2.0

���

Note

Before using this information, be sure to read the general information in the Notices section at the end of this document.

24 April 2009

This edition applies to version 6, release 2, modification 0 of WebSphere Process Server for Multiplatforms (product
number 5724-L01) and to all subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, send an e-mail message to doc-comments@us.ibm.com. We look
forward to hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

PDF books and the information center

PDF books are provided as a convenience for printing and offline reading. For the
latest information, see the online information center.

As a set, the PDF books contain the same content as the information center.

The PDF documentation is available within a quarter after a major release of the
information center, such as Version 6.0 or Version 6.1.

The PDF documentation is updated less frequently than the information center, but
more frequently than the Redbooks®. In general, PDF books are updated when
enough changes are accumulated for the book.

Links to topics outside a PDF book go to the information center on the Web. Links
to targets outside a PDF book are marked by icons that indicate whether the target
is a PDF book or a Web page.

Table 1. Icons that prefix links to topics outside this book

Icon Description

A link to a Web page, including a page in the information center.

Links to the information center go through an indirection routing service, so that
they continue to work even if target topic is moved to a new location.

If you want to find a linked page in a local information center, you can search for
the link title. Alternatively, you can search for the topic id. If the search results in
several topics for different product variants, you can use the search result Group
by controls to identify the topic instance that you want to view. For example:

1. Copy the link URL; for example, right-click the link then select Copy link
location. For example: http://www14.software.ibm.com/webapp/wsbroker/
redirect?version=wbpm620&product=wesb-dist&topic=tins_apply_service

2. Copy the topic id after &topic=. For example: tins_apply_service

3. In the search field of your local information center, paste the topic id. If you
have the documentation feature installed locally, the search result will list the
topic. For example:

1 result(s) found for

Group by: None | Platform | Version | Product
Show Summary

Installing fix packs and refresh packs with the Update Installer

4. Click the link in the search result to display the topic.

A link to a PDF book.

© Copyright IBM Corp. 2006, 2009 iii

iv Monitoring

Contents

PDF books and the information center iii

Chapter 1. Service component
monitoring overview 1
Common Event Infrastructure 1

Common Base Event model 3
Why use monitoring? 4
What do you monitor? 4
How do you enable monitoring?. 6

Chapter 2. Enabling and configuring
service component monitoring 9
Monitoring performance 9

Performance Monitoring Infrastructure statistics . 9
Application Response Measurement statistics for
the Service Component Architecture 14

Monitoring service component events 28
Enabling monitoring of business process and
human task events 28
Configuring logging for service component
events 29
Monitoring service components with the
Common Event Infrastructure server 35
Session monitoring 39

Chapter 3. Viewing monitored events 41
Viewing performance metrics with the Tivoli
Performance Viewer 41

Viewing and interpreting service component event
log files. 42
Viewing events with the Common Base Event
browser 44

Specifying the events to view 44
Working with events returned from the event
browser 45
Troubleshooting the Common Base Event
browser 46

Chapter 4. Event catalog 49
The Common Base Event standard elements . . . 49
Business objects in events. 50
Business Process Choreographer events 51

Business process events overview 51
Human task events overview 84

WebSphere Process Server events 94
Resource Adapter events 94
Business rule events 96
Business state machine events 96
Map events 98
Mediation events 98
Recovery events 99
Service Component Architecture events. . . . 100
Selector events 101

Notices 103

© Copyright IBM Corp. 2006, 2009 v

vi Monitoring

Chapter 1. Service component monitoring overview

A conceptual overview of the reasons you monitor service components on the
process server; which event points within the service components you select to
monitor; and, how to configure monitoring on your system.

WebSphere® Process Server provides capabilities for monitoring service
components to aid in system administration functions, such as performance tuning
and problem determination. It goes beyond these traditional functions by also
providing the capability for persons who are not necessarily information
technology specialists to continually monitor the processing of the service
components within the applications deployed on your system. By overseeing the
overall processing flow of the interconnected components, you can ensure that
your system is producing what you expect it to produce.

WebSphere Process Server operates on top of an installation of WebSphere
Application Server, and, consequently, uses much of the functionality of the
application server infrastructure for monitoring system performance and
troubleshooting. It also includes some extra functionality that is specifically
designed for monitoring process server service components. This section focuses on
how you monitor server-specific service components. It is intended to supplement
the monitoring and troubleshooting topics found in the WebSphere Application
ServerInformation Center; therefore, you should refer to that documentation for
details of the other monitoring capabilities in the combined product.

Common Event Infrastructure
Common Event Infrastructure is an embeddable technology intended to provide
basic event management services to applications that require those services.

This event infrastructure serves as an integration point for consolidation and
persistence of raw events from multiple, heterogeneous sources, and distribution of
those events to event consumers. Events are represented using the Common Base
Event model, a standard, XML-based format defining the structure of an event. For
more information, see the Common Base Event model sub-topic.

By using this common infrastructure, diverse products that are not tightly coupled
with one another can integrate their management of events, providing an
end-to-end view of enterprise resources and correlating events across domain
boundaries. For example, events generated by a network monitoring application
can be correlated with events generated by a security application. Such correlation
can be difficult to achieve when each product uses its own approach to event
management.

Common Event Infrastructure provides facilities for generation, propagation,
persistence, and consumption of events, but it does not define the events
themselves. Instead, application developers and administrators define event types,
event groups, filtering, and correlation.

Common Event Infrastructure components

Common Event Infrastructure consists of the following major components:

© Copyright IBM Corp. 2006, 2009 1

Common Base Event
The Common Base Event component supports the creation of events and
access to their property data. Event sources use the Common Base Event
APIs to create new events conforming to the Common Base Event model;
event consumers use the APIs to read property data from received events.
In addition, applications can convert events to and from XML text format,
supporting interchange with other tools. The Common Base Event
component is part of the Eclipse Test and Performance Tools Platform
(TPTP).

Emitter
The emitter component supports the sending of events. After an event
source creates an event and populates it with data, the event source
submits the event to an emitter. The emitter optionally performs automatic
content completion and then validates the event to ensure that it conforms
to the Common Base Event specification. It also compares the event to
configurable filter criteria. If the event is valid and passes the filter criteria,
the emitter sends the event to the event service. An emitter can send
events to the event service either synchronously (using Enterprise
JavaBeans™ calls) or asynchronously (using a Java™ Message Service
queue).

Event service
The event service is the conduit between event sources and event
consumers. The event service receives events submitted to emitters by
event sources. It stores events in a persistent data store, and then
distributes them asynchronously to subscribed event consumers. In
addition, the event service supports synchronous queries of historical
events from the persistent store.

Event catalog
The event catalog is a repository of event metadata. Applications use the
event catalog to retrieve information about classes of events and their
permitted content.

In addition, an application or solution using Common Event Infrastructure might
also include the following components (which are not part of the infrastructure
itself):

Event source
An event source is any application that uses an emitter to send events to
the event service.

Event consumer
An event consumer is any application that receives events from the event
service.

Event catalog application
An event catalog application is any application that stores or retrieves
event metadata in the event catalog. This might be a management or
development tool; it might also be an event source or event consumer.

The following diagram shows the general flow of events from event source to
event consumer using Common Event Infrastructure.

2 Monitoring

Emitter Event
Server

Event
consumer

Event source

Data
store

Common Base Event model

The Common Base Event model is a standard that defines a common
representation of events that is intended for use by enterprise management and
business applications. This standard, developed by the IBM® Autonomic
Computing Architecture Board, supports encoding of logging, tracing,
management, and business events using a common XML-based format, making it
possible to correlate different types of events that originate from different
applications. The Common Base Event model is part of the IBM Autonomic
Computing Toolkit; for more information, see http://www.ibm.com/autonomic.

Common Event Infrastructure currently supports version 1.0.1 of the specification.

The basic concept behind the Common Base Event model is the situation. A
situation can be anything that happens anywhere in the computing infrastructure,
such as a server shutdown, a disk-drive failure, or a failed user login. The
Common Base Event model defines a set of standard situation types that
accommodate most of the situations that might arise (for example, StartSituation
and CreateSituation).

An event is a structured notification that reports information related to a situation.
An event reports three kinds of information:
v The situation itself (what has happened)
v The identity of the affected component (for example, the server that has shut

down)
v The identity of the component that is reporting the situation (which might be the

same as the affected component)

The Common Base Event specification defines an event as an XML element
containing properties that provide all three kinds of information. These properties
are encoded as attributes and subelements of the root element, CommonBaseEvent.

The Common Base Event format is extensible. In addition to the standard event
properties, an event can also contain extended data elements, which are
application-specific elements that can contain any kind of information relevant to
the situation. The extensionName attribute labels an event with an optional
classification name (an event class), which indicates to applications what sort of
extended data elements to expect. The event catalog stores event definitions that
describe these event classes and their allowed content.

For complete details on the Common Base Event format, see the specification
document and XSD schema included in the IBM Autonomic Computing Toolkit.

Chapter 1. Service component monitoring overview 3

http://www.ibm.com/autonomic

Why use monitoring?
You monitor service components within WebSphere Process Server to assess
performance, to troubleshoot problems, and evaluate the overall processing
progress of service components that make up the applications deployed on your
system.

Service components are the integral functions incorporated into WebSphere Process
Server, with which you can create and deploy applications on your system that
mirror the processes employed in your enterprise. Effectively monitoring those
service components is, therefore, essential to managing the tasks that the server is
intended to accomplish. There are three main reasons you need to monitor service
components on the server:

Problem determination
You can diagnose particular errors by using the logging and tracing
facilities provided by WebSphere Application Server, which underlies
WebSphere Process Server. For example, if a particular application is not
producing the expected results, you can set up a logger to monitor the
processing of the service components that comprise that application. You
can have the log output published to a file, which you can then examine to
pinpoint the cause of the problem. Troubleshooting is a task that is of
importance to system administrators and others concerned with the
maintenance of system hardware and software.

Performance tuning
You can monitor certain performance statistics that most process
server-specific service components produce. Use this information to
maintain and tune your system health, and ensure that your applications
are tuned optimally and efficiently. You can also spot situations where one
or more of your services are performing at a poor level, which may
indicate that other problems are present in your system. Like problem
determination, performance tuning is a task typically performed by
information technology specialists.

Assessing the processing of service components
Problem determination and performance tuning are tasks you perform on a
short-term basis, to solve a particular issue or problem. You can also set up
the process server to continually monitor the service components
incorporated into the applications deployed on your system. This type of
service component monitoring is of importance to those who are
responsible for designing, implementing, and ensuring that the processes
achieve their design goals, and may be accomplished persons who are not
necessarily specialists in information technology.

What do you monitor?
You can monitor service component events in WebSphere Process Server by
selecting certain points that a service component event reaches during processing.
Each service component defines these event points, which generate (or “fire”) an
event when the application processes at that given point. You can also monitor
performance statistics for service component events.

Regardless of the type of monitoring you intend to perform on your service
components (problem determination, performance tuning, or process monitoring),
you monitor a certain point that is reached during these components processing.
This point is referred to as an event point, and it is these points that you select to be

4 Monitoring

monitored. Each event point encapsulates the service component kind tag, an
optional element kind (which are specific functions of a service component type),
and the nature of the event. All of these factors will determine the type of event
generated by monitoring.

Event natures describe the situations required to generate events during the
processing of service components. These natures are essentially key points in the
logic structure of a service component that you select to be monitored. The most
common natures for service component events are ENTRY, EXIT, and FAILURE,
but there are many other natures depending on the particular component and
element. Whenever an application containing the specified service component is
subsequently invoked, an event is fired every time the processing of a service
component crosses the points corresponding to the event nature.

As an example of how events are defined for a service component kind, the MAP
service component kind can directly fire events with natures of ENTRY, EXIT, and
FAILURE. It also includes an element kind, called Transformation, which defines a
specific type of functionality within the MAP component kind. This element also
fires events with ENTRY, EXIT, and FAILURE natures. Consequently, the MAP
service component kind can fire up to six different events depending on the
combination of elements and natures that you specify. The list of all service
components, their elements, and their event natures is contained in the event
catalog.

Monitoring is a separate layer of functionality that lies atop the processing of your
applications, and does not interfere with the processing of your service
components. Monitoring is concerned with service component processing only
insofar as it detects activity at a specified event point. When this happens, an event
is fired by monitoring, which determines where the event is sent, and what data is
contained in that event, based on the type of monitoring you are performing, as
detailed below:

Performance metrics
If you are monitoring a service component in order to gather performance
metrics, light weight events are fired to the Performance Monitoring
Infrastructure. You can select for monitoring one or more of the three
performance statistics generated for server-specific server components:
v A counter for each EXIT event nature – this counts successful

computations.
v A counter for each FAILURE event nature – this counts failed

computations
v The processing duration calculated between corresponding ENTRY and

EXIT events (synchronous computations only).

You can also monitor the performance of applications at the Service
Component Architecture (SCA) level by using Application Response
Measurement (ARM) statistics. These measures allow you to monitor an
application at a much finer level of detail within the application than is
otherwise available in other service component events. You can use these
statistics to monitor many different points between initial application call
invocations and service responses, when they use the SCA.

Service component events with business objects
If you want to capture the data from events fired by monitoring at
specified event points in service component, then you would configure the
server to generate the event and its data to be encoded in Common Base
Event formats. You can specify the level of detail of business object data to

Chapter 1. Service component monitoring overview 5

capture in each service component event. You can publish these events to
either a logger or to the Common Event Infrastructure (CEI) bus, which
directs the output to a specially configured CEI server database.

How do you enable monitoring?
The are several methods that you can use to specify service component event
points for monitoring, depending on the type of monitoring you are planning to
do.

Performance statistics
For Performance Monitoring Infrastructure (PMI) statistics, use the
administrative console to specify the particular event points and their
associated performance measurements that you want to monitor. After you
start monitoring service component performance, the generated statistics
are published at certain intervals to the Tivoli® Performance Viewer. You
can use this viewer to watch the results as they occur on your system, and,
optionally, log the results to a file that can be later viewed and analyzed
within the same viewer.

For Application Response Measurement (ARM) statistics, use the
administrative console Request Metrics section to specify and the statistics
you want to monitor.

Common Base Events for problem determination and business process
monitoring

You can specify, at the time you create an application, to monitor service
component event points — along with a certain level of detail for those
events — on a continual basis after the application is deployed on a
running server. You can also select event points to monitor after the
application has been deployed and the events invoked at least once. In
both cases, the events generated by monitoring are fired across the
Common Event Infrastructure (CEI) bus. These events can be published to
a log file, or to a configured CEI Server database. WebSphere Process
Server supports two types of Common Base Event enablement for problem
determination and business process monitoring:

Static Certain events points within an application and their level of detail
can be tagged for monitoring using WebSphere Integration
Developer tooling. The selections indicate what event points are to
be continuously monitored, and are stored in a file with a .mon
extension that is distributed and deployed along with the
application. When WebSphere Process Server has been configured
to use a CEI server, the monitoring function begins firing service
component events to a CEI server whenever the specified services
are invoked. As long as the application is deployed on WebSphere
Process Server, the service component event points specified in the
.mon file is constantly monitored until the application is stopped.
You can specify additional events to be monitored in a running
application, and increase the detail level for event points that are
already monitored. But while that application remains active you
cannot stop, or lower the detail level of, the monitored event
points specified by the .mon of the deployed application.

Dynamic
If additional event points need to be monitored during the
processing of an application without shutting down the server,
then you can use dynamic monitoring. Use the administrative

6 Monitoring

console to specify service component event points for monitoring,
and set detail level for the payload that will be included in the
Common Base Event. A list is compiled of the event points that
have been reached by a processed service component after the
server was started. Choose from this list individual event points or
groups of event points for monitoring, with the service component
events directed either to the logger or to the CEI server database.

The primary purpose of the Dynamic enablement is for creating
correlated service component events that are published to logs,
which allow you to perform problem determination on services.
Service component events can be large — depending on how much
data is being requested — and can tax database resources if you
choose to send events to the CEI server. Consequently, you should
publish dynamically monitored events to the CEI server only if
you need to read the business data of the events, or if you
otherwise need to keep a database record of the events. If,
however, you are monitoring a particular session, then you need to
use the CEI server database to access the service component events
related to that session.

Chapter 1. Service component monitoring overview 7

8 Monitoring

Chapter 2. Enabling and configuring service component
monitoring

To be able to monitor service components, you must first enable the monitoring
capabilities. Then you must specify the events you want to monitor, the
information you want to capture from the event, and the method used to publish
the results.

Monitoring performance
Performance measurements are available for service component event points, and
are processed through the Performance Monitoring Infrastructure. You configure
the process server to gather performance metrics from service component event
points. You can also collect Service Component Architecture-specific performance
statistics directly from service invocations of applications.

Whether you are tuning service components for optimal efficiency or diagnosing a
poor performance, it is important to understand how the various run time and
application resources are behaving from a performance perspective. The
Performance Monitoring Infrastructure (PMI) provides a comprehensive set of data
that explains the runtime and application resource behavior. Using PMI data, the
performance bottlenecks in the application server can be identified and fixed. PMI
data can also be used to monitor the health of the application server.

The PMI is included in the base WebSphere Application Server installation. This
section provides only supplemental information about performance monitoring as
it relates to the service components specific to WebSphere Process Server; therefore,
consult the information in the WebSphere Application Server documentation for
using PMI with other parts of the entire product.

The service component event points specific to WebSphere Process Server that can
be monitored by the PMI are those that typically have ENTRY, EXIT, and FAILURE
event natures. Event sources which are not defined according to this pattern are
not supported. Events that are supported have three types of performance statistics
that can be measured:
v Successful invocations.
v Failed invocations.
v Elapsed time for event completion.

You can also monitor performance statistics derived from the service invocations of
applications by using the Application Response Measurement (ARM) statistics.
These statistics measure the actual runtime processes that underlie the process
server service component events comprising an enterprise application. You can
derive a variety of performance measurements for the processing of your
applications using these statistics.

Performance Monitoring Infrastructure statistics
You can monitor three types of performance statistics using the Performance
Monitoring Infrastructure: the number of successful invocations, the number of
failures, and the elapsed time to completion of an event. These statistics are only
available for events that have event natures of type ENTRY, EXIT, and FAILURE.

© Copyright IBM Corp. 2006, 2009 9

Enabling PMI using the administrative console
To monitor performance data you must first enable the Performance Monitoring
Infrastructure on the server.

About this task

You can enable the Performance Monitoring Infrastructure (PMI) through the
administrative console.

Procedure

1. Open the administrative console.
2. Click Servers > Application Servers in the console navigation tree.
3. Click server_name.

Note: From the administrative console, you can click Monitoring and Tuning
> Performance Monitoring Infrastructure (PMI) > server_name to open the
same panel

4. Click the Configuration tab.
5. Select the Enable Performance Monitoring Infrastructure (PMI) check box.
6. Optional: Select the check box for Use sequential counter updates to enable

precise statistic updates.
7. Go back to the server PMI configuration page by clicking the server name

link.
8. Click Apply or OK.
9. Click Save.

10. Restart the server.

What to do next

The changes you make will not take effect until you restart the server.

Event performance statistics
Performance monitoring statistics are available for most server events. You can use
performance monitoring statistics to monitor the counts of successful and
unsuccessful invocation requests, and the time taken to complete events.

You can use the Performance Monitoring Infrastructure (PMI) to monitor three
performance statistics generated by certain server events, as shown in the
following table:

Table 2. PMI statistics for events

Statistic name Type Description

BadRequests Counter Number of failed invocations of the
event.

GoodRequests Counter Number of successful invocations of the
event.

ResponseTime Timer Elapsed time for event completion.

. These statistics are limited to service component events with elements having
ENTRY, EXIT, and FAILURE natures. Each statistic is created for a single event of a
given server event type in an application. All performance measurements are either
counters (a cumulative number of the firings of a given event point), or timers (the

10 Monitoring

duration, measured in milliseconds, between the firings of two event points). Each
event kind (and their relevant elements) that can be monitored are listed below:

Table 3. Event types and elements that can produce event performance statistics

Event type Element(s)

Business process Process
Invoke
Staff
Receive
Wait
Compensate
Pick
Scope

Human task Task

Business rule Operation

Business state machine Transition
Guard
Action
EntryAction
ExitAction

Selector Operation

Map Map
Transformation

Mediation OperationBinding
ParameterMediation

Resource adapter InboundEventRetrieval
InboundEventDelivery
Outbound

Specifying performance statistics to monitor
You can specify single statistics, multiple statistics, or groups of related statistics
for monitoring through the Performance Monitoring Infrastructure by using the
administrative console.

Before you begin

Ensure that you have enabled performance monitoring, and that you have at least
once invoked the event you want to monitor before performing this task.

Procedure

1. Open the administrative console.
2. Select Monitoring and Tuning → Performance Monitoring Infrastructure.
3. Select the server or node agent that contains the event points that you want to

monitor.

Note: You cannot choose to monitor statistics on a cluster; you can only do so
on a specific server or node.

4. Expand some of the groups, such as WBIStats.RootGroup or Enterprise Beans.
All of the statistics that can be monitored are within the listed groups. Some
statistics may not be listed because they have not been invoked since the server
was last started.

Chapter 2. Enabling and configuring service component monitoring 11

5. Select a statistic you want to monitor from within the tree on the left side of the
panel, and then select the statistics that you want to collect on the right side,
then click Enable. Repeat this for all statistics that you want to monitor.

6. Go back to the server PMI configuration page by clicking the server name link.
7. Click Apply or OK.
8. Click Save.

Results

You can now start monitoring the performance of your chosen statistics in the
Tivoli Performance Viewer.

Note: When viewing these statistics, you should not mix counter-type statistics
with duration-type statistics. Counters are cumulative, and the scales against which
they are graphed them can quickly grow depending on your application. Duration
statistics, in contrast, tend to remain within a certain range because they represent
the average amount of time that it takes your system to process each event.
Consequently, the disparity between the statistics and their relative scales may
cause one or the other type of statistic to appear skewed in the viewer graph.

Tutorial: Service component performance monitoring
For service component event points that you monitor, you can publish and view
performance statistics. This tutorial guides you through an example of setting up
performance monitoring, and how to view the resulting statistics.

This tutorial guides you through an example of how to set up service component
event monitors that are published to the Performance Monitoring Infrastructure
(PMI), and how to view the resulting performance statistics on the Tivoli
Performance Viewer (TPV). This exercise will demonstrate how performance
monitoring of service component event points differs from monitoring using the
Common Event Infrastructure (CEI) server and loggers. The major difference that
you will notice is that you select an entire service component element for
performance monitoring, instead of individual events with specific natures.
Because WebSphere Process Server can monitor performance only on service
component elements having events with ENTRY, EXIT, and FAILURE natures, you
will have only those kinds of service component elements available to you to select
for monitoring.

While the service component event points ENTRY, EXIT, and FAILURE are
identical for all monitoring types, the performance monitoring function in the
server fires ″minimized″ events that do not contain all of the information
encompassed in CEI events. These events are sent to the PMI, which calculates
these performance statistics from corresponding sets of events:
v Successful invocation — the firing of an event of nature type EXIT that follows a

corresponding ENTRY event.
v Failed invocation — the firing of an event with a FAILURE nature following a

corresponding ENTRY event.
v Time for successful completion — the elapsed time between the firing an ENTRY

event and the firing of the corresponding EXIT event point.

The PMI publishes the statistics to the TPV, which presents cumulative counters for
the number of successful and failed invocations and a running average of the
completion response times.

12 Monitoring

Objectives of this tutorial

After completing this tutorial you will be able to:
v Select the performance statistics of service component elements that you want to

monitor.
v View and interpret the resulting performance statistics.

Time required to complete this tutorial

This tutorial requires approximately 15-20 minutes to complete.

Prerequisites

In order to perform this tutorial, you must have:
v Configured and started a server.
v Enabled the PMI on the server.
v Installed and started the Samples Gallery application on the server.
v Installed and started the business rules sample application on the server. Follow

the instructions on the Samples Gallery page to set up and run the business
rules sample application.

After all of these prerequisites have been completed, run the business rules sample
application from the Samples Gallery at least once before proceeding with the
tutorial.

Example: Monitoring service component performance:

For monitoring performance, you can use the administrative console to select
service components for monitoring and view performance measurements. This
example shows the use of the console to monitor performance statistics.

About this task

You will use the business rules sample application for this scenario, where you will
monitor all three of the performance statistics: successes, failures, and response
times. You should have the Web page containing this application already open;
keep it open, because you will be running the sample several times after you begin
monitoring. Ensure that you have already run the sample at least once, which
causes it to appear in the list of functions that you can select to monitor.

Procedure

1. Open the administrative console.
2. Select the cluster or server to monitor.

v To monitor a cluster, click Servers → Clusters → cluster_name.
v To monitor a single server, click Servers → Application Servers →

server_name.
3. Click the Runtime tab.
4. Under Performance, click Performance Monitoring Infrastructure.
5. Select Custom.
6. Expand WBIStats.RootGroup → BR → brsample_module.DiscountRuleGroup

→ Operation.
7. Select _calculateDiscount

Chapter 2. Enabling and configuring service component monitoring 13

8. Select the check boxes next to BadRequests, GoodRequests, and
ResponseTime.

9. Click Enable

10. In the navigation pane, click Monitoring and Tuning → Performance Viewer →
Current Activity.

11. Select the check box next to server_name, then click Start Monitoring.
12. Click server_name.
13. Expand WBIStats.RootGroup → BR → brsample_module.DiscountRuleGroup

→ Operation.
14. Select the check box next to _calculateDiscount

Results

You should now see a blank graph, and underneath that the names and values for
the three statistics. Select the check boxes next to the statistic names, if they are not
already checked. The PMI is now ready to publish performance data for the
selected event, and the Tivoli Performance Viewer is ready to present the results.

Run the business rules sample application several times, and then watch the
performance viewer as it periodically refreshes. Notice that there are now lines on
the graph, representing the cumulative number of successful requests and the
average response time for each successful request. You can also see the values next
to the name for each statistic below the graph. The line for the number of successes
should continue to rise as you perform additional invocations of the sample, while
the response time line should level off after a few refreshes.

After you have completed this example, you should understand how WebSphere
Process Server implements performance monitoring of service components. You
should know how to select service components for monitoring, and how the
performance statistics are calculated. You will also be able to start the performance
monitors, and view the performance measurements for your applications as they
are being used.

Example

What to do next

Performance monitoring can tax system resources; therefore, after you have
completed this task you should stop the monitors. To do this, click on the Tivoli
Performance Viewer link, select both the node and the server, and press Stop
Monitoring.

Application Response Measurement statistics for the Service
Component Architecture

There are 25 performance statistics that you can monitor at the Service Component
Architecture level. You can use these Application Response Measurement statistics,
which are either counters or timers, to measure invocations to and responses from
services in a variety of patterns.

The Application Response Measurement (ARM) statistics shown in the following
tables are — in a very simplified manner — time and count measurements of caller
invocations to the Service Component Architecture (SCA) layer, and the results
returned from a service. There are, in fact, a number of service invocation patterns
that vary between synchronous and asynchronous implementations of deferred

14 Monitoring

responses, results retrievals, callbacks, and one-way invocations. All of these,
however, are between the caller invocation and a service, the response from the
service, or, in some cases, a data source, with the SCA layer interposed in between.

You can specify the ARM statistics that you want to monitor by opening the
Monitoring and Tuning > Request Metrics panel on the administrative console.
Request metrics information might be either saved to the log file for later retrieval
and analysis, be sent to ARM agents, or both. WebSphere Process Server does not
ship an ARM agent; however, it supports the use of agents adhering to ARM 4.0.
You can choose your own ARM implementation provider to obtain the ARM
implementation libraries. Follow the instructions from the ARM provider, and
ensure that the ARM API Java archive (JAR) files found in the ARM provider are
on the class path so that WebSphere Process Server can load the needed classes.
Then you need to add the following entries into the system properties for each
server by selecting from the administrative console Application servers >
server_name > Process Definition > Java Virtual Machine > Custom Properties
before restarting the server(s):
v Arm40.ArmMetricFactory — the full Java class name of your ARM

implementation provider’s metrics factory.
v Arm40.ArmTranReportFactory — the full Java class name of your ARM

implementation provider’s transaction report factory.
v Arm40.ArmTransactionFactory — the full Java class name of your ARM

implementation provider’s transaction factory .

See the WebSphere Application Server documentation for further details on how to
configure the server to collect ARM statistics.

Table 4. Event types and elements that can produce ARM statistics

Event type Element(s)

Business process Process

Human task Task

Business rule Operation

Business state machine Transition
Guard
Action
EntryAction
ExitAction

Selector Operation

Map Map
Transformation

Mediation OperationBinding
ParameterMediation

Resource adapter InboundEventRetrieval
InboundEventDelivery
Outbound

Table 5. Common. These statistics are common to all service invocation patterns.

Statistic name Type Description

GoodRequests Counter Number of server invocations not raising
exceptions.

BadRequests Counter Number of server invocations raising
exceptions.

Chapter 2. Enabling and configuring service component monitoring 15

Table 5. Common (continued). These statistics are common to all service invocation
patterns.

Statistic name Type Description

ResponseTime Timer Duration measured on the server side
between the reception of a request and
computing the result.

TotalResponseTime Timer

Duration measured on the caller side, from
the time a caller requests a service to the
time when the result is available for the
caller. Does not include the processing of the
result by the caller.

RequestDeliveryTime Timer

Duration measured on the caller side, from
the time a caller requests a service to the
time when the request is handed over to the
implementation on the server side. In a
distributed environment the quality of this
measurement depends on the quality of
synchronization of system clocks.

ResponseDeliveryTime Timer

The time required to make the result
available to the client. In the case of deferred
response this time doesn’t include the result
retrieve time. In a distributed environment
the quality of this measurement depends on
the quality of synchronization of system
clocks.

Table 6. Reference. These statistics occur when a caller makes an invocation to the SCA
layer or a data source, without a response from the service.

Statistic name Type Description

GoodRefRequests Counter
Number of caller invocations to the SCA
layer that do not raise exceptions.

BadRefRequests Counter
Number of caller invocations to the SCA
layer that do raise exceptions.

RefResponseTime Timer

Duration measured on the caller side, from
the time the caller makes a request to the
SCA layer and the time when the results of
that call are returned to the caller.

BadRetrieveResult Counter
Number of caller invocations to a data
source that do raise exceptions.

GoodRetrieveResult Counter
Number of caller invocations to a data
source that do not raise exceptions.

RetrieveResultResponseTime Timer

Duration measured on the caller side, from
the time the caller makes a request to the
data source and the time when the data
source response is returned to the caller.

RetrieveResultWaitTime Timer
Duration measured on the caller side if a
timeout occurs.

16 Monitoring

Table 7. Target. These statistics occur when there are requests that originate between the
service and the SCA or a data source.

Statistic name Type Description

GoodTargetSubmit Counter
Number of SCA invocations to the service that do
not raise exceptions.

BadTargetSubmit Counter
Number of SCA invocations to the service that do
raise exceptions.

TargetSubmitTime Timer

Duration measured on the server side, from the
time the SCA makes a request to the service and
the time when the results of that call are returned
to the SCA.

GoodResultSubmit Counter
Number of service invocations to the data source
that do not raise exceptions.

BadResultSubmit Counter
Number of service invocations to the data source
that do raise exceptions.

ResultSubmitTime Timer

Duration measured on the server side, from the
time the service makes a request to the data source
and the time when the results of are returned to
the service.

Table 8. Callback. These statistics occur when a callback (a ″sibling″ of the original call) is
present on the caller.

Statistic name Type Description

GoodCB Counter Number of SCA invocations to the callback that do not
raise exceptions.

BadCB Counter Number of SCA invocations to the callback that do raise
exceptions.

CBTime Timer Duration from the time the SCA makes a request to the
callback, and the time when the results from the callback
are returned to the SCA.

GoodCBSubmit Counter Number of invocations from the service to the SCA
handling the callback that do not raise exceptions.

BadCBSubmit Counter Number of invocations from the service to the SCA
handling the callback that do raise exceptions.

CBSubmitTime Timer Duration from the time the service makes a request to the
SCA handling the callback, and the time when the results
from the SCA to the service.

The following topics show how these statistics are used in a variety of
implementations:

Synchronous invocations
The ARM performance statistics that can be obtained from a simple SCA call to a
service and the response from the service are described.

Parameters

Event monitoring for SCA components includes the event points that are shown in

black , while the event points shown in blue are used only to calculate
and fire PMI/ARM statistics.

Chapter 2. Enabling and configuring service component monitoring 17

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current arm transaction will be used, or a
new one will be created. If it is not the starting transaction it will have a parent.
This is represented in the following table and diagram with the notation Xn.Xn+1.
These are used to show the transaction lineage. Every SCA invocation starts a new
transaction, which is parented by the current transaction of the caller. You can
create new transactions and you can access the current transaction, but this will
not modify the SCA transaction lineage.

Table 9. Arm statistics for synchronous invocations of SCA

Statistics Formula ARM Transaction

TotalResponseTime t3 - t0 X0 .X1

RequestDeliveryTime t1 - t0 X1 .X2

ResponseDeliveryTime t3 - t2

GoodRequests CountEXIT

BadRequests CountFAILURE

ProcessTime t2 - t1

Service

Caller
X0.X1

X1.X2

Execution
thread

EXIT EXIT

SCA

FAILURE FAILURE

t0 t 1

t 3
t 2

ENTRY ENTRY

Deferred response with synchronous implementation
ARM statistics that can be obtained with a synchronous invocation of the request
and the returned result sent as output to a data store are shown for a synchronous
implementation.

Parameters

Event monitoring for SCA components includes the event points that are shown in

black , while the event points shown in blue are used only to calculate
and fire PMI/ARM statistics.

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current arm transaction will be used, or a
new one will be created. If it is not the starting transaction it will have a parent.

18 Monitoring

This is represented in the following table and diagram with the notation Xn.Xn+1.
These are used to show the transaction lineage. Every SCA invocation starts a new
transaction, which is parented by the current transaction of the caller. You can
create new transactions and you can access the current transaction, but this will
not modify the SCA transaction lineage.

Table 10. Invocation of request and return result

Type Statistics Formula
ARM
Transaction

Common TotalResponseTime t3 - t0 X0.X1

RequestDeliveryTime t'0 - t0 X1.X2

ResponseDeliveryTime N/A N/A

GoodRequests CountEXIT X1.X2

BadRequests CountFAILURE

ResponseTime t'1 - t'0

Reference
A

GoodRefRequest CountEXIT X1.X2

BadRefRequests CountFAILURE

RefResponseTime t1 - t0

ServiceCaller

X0.X1

XCURRENT

X1.X2

CommonReference A

Reference B

t'0t0

t1

t2

t3

t'1

Table 11. Invocation of output to data source

Type Statistics Formula
ARM
Transaction

Reference B GoodRetrieveResult CountEXIT X1.X2

BadRetrieveResult CountFAILURE

ResultRetrieveResponseTime Σ t3 – t2

ResultRetrieveWaitTime Σ timeout

Chapter 2. Enabling and configuring service component monitoring 19

Deferred response with asynchronous implementation
ARM statistics from an asynchronous implementation, where the call to the service
and the return result are invoked but the result output is sent to a data store from
the service target, are shown.

Parameters

Event monitoring for SCA components includes the event points that are shown in

black , while the event points shown in blue are used only to calculate
and fire PMI/ARM statistics.

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current arm transaction will be used, or a
new one will be created. If it is not the starting transaction it will have a parent.
This is represented in the following table and diagram with the notation Xn.Xn+1.
These are used to show the transaction lineage. Every SCA invocation starts a new
transaction, which is parented by the current transaction of the caller. You can
create new transactions and you can access the current transaction, but this will
not modify the SCA transaction lineage.

Table 12. Invocation of request and return result

Type Statistics Formula ARM Transaction

Common TotalResponseTime t3 - t0 X0.X1

RequestDeliveryTime t'0 - t0 X1.X2

ResponseDeliveryTime t'03 - t'2

GoodRequests CountEXIT

BadRequests CountFAILURE

ResponseTime t'3 - t'0

Reference A GoodRefRequest CountEXIT X0.X1

BadRefRequests CountFAILURE

RefResponseTime t1 - t0

Target A GoodTargetSubmit CountEXIT X1.X2

BadTargetSubmit CountFAILURE

TargetSubmitTime t'1 - t'0

20 Monitoring

ServiceCaller

X0.X1 X1.X2

X1.X2

Target A

Target B

Reference A

Reference B

t'0
t0

t1 t'1

t2 t'2

t3
t'3

Table 13. Invocation of return result to a data store

Type Statistics Formula
ARM
Transaction

Reference B GoodResultSubmit CountEXIT X0.X1

BadResultSubmit CountFAILURE

ResultResponseTime t'3 - t'2

Target B GoodResultRetrieve CountEXIT X1.X2

BadResultRetrieve CountFAILURE

ResultRetrieveResponseTime Σ t3 - t2

ResultRetrieveWaitTime Σ timeout

Deferred response with asynchronous result retrieve
The ResultRetrieve ARM statistic can be correlated to some original request using
the ARM transactions only if XPARENT-1 and XPARENT-2 have a common ancestor
transaction. The invocation of request, and result retrieve occur on different threads

Parameters

Event monitoring for SCA components includes the event points that are shown in

black , while the event points shown in blue are used only to calculate
and fire PMI/ARM statistics.

Chapter 2. Enabling and configuring service component monitoring 21

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current arm transaction will be used, or a
new one will be created. If it is not the starting transaction it will have a parent.
This is represented in the following table and diagram with the notation Xn.Xn+1.
These are used to show the transaction lineage. Every SCA invocation starts a new
transaction, which is parented by the current transaction of the caller. You can
create new transactions and you can access the current transaction, but this will
not modify the SCA transaction lineage.

Table 14. Invocation of request and return result

Type Statistics Formula
ARM
Transaction

Common TotalResponseTime t3 - t0 X0.X1

RequestDeliveryTime t'0 - t0 X1.X2

ResponseDeliveryTime N/A N/A

GoodRequests CountEXIT X1.X2

BadRequests CountFAILURE

ResponseTime See specific diagrams

Reference A GoodReferenceRequest CountEXIT X1.X2

BadReferenceRequests CountFAILURE

ReferenceResponseTime t1 - t0

Caller

X

X'

0

0

.X

.X'

1

1

Reference A

Reference B

t0

t1

t2

t3

For the right side of the diagram see
the diagrams in the “Deferred response
with synchronous/asynchronous
implementations” topics.

The request receive time t'0 is the
same in both cases.

Table 15. Invocation of request and return result

Type Statistics Formula ARM Transaction

Reference B GoodRetrieveResult CountEXIT X'0.X'1

BadRetrieveResult CountFAILURE

RetrieveResultResponseTime Σ t3 - t2

RetrieveResultWaitTime Σ timeout

22 Monitoring

Asynchronous callback with synchronous implementation
ARM statistics available when callback requests and callback executions use
different threads on a synchronous implementation.

Parameters

Event monitoring for SCA components includes the event points that are shown in

black , while the event points shown in blue are used only to calculate
and fire PMI/ARM statistics.

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current arm transaction will be used, or a
new one will be created. If it is not the starting transaction it will have a parent.
This is represented in the following table and diagram with the notation Xn.Xn+1.
These are used to show the transaction lineage. Every SCA invocation starts a new
transaction, which is parented by the current transaction of the caller. You can
create new transactions and you can access the current transaction, but this will
not modify the SCA transaction lineage.

Table 16. Invocation of request and return result

Type Statistics Formula
ARM
Transaction

Common TotalResponseTime t2 - t0 X0.X1

RequestDeliveryTime t'0 - t0 X1.X2

ResponseDeliveryTime t2 - t'1

GoodRequests CountEXIT

BadRequests CountFAILURE

ResponseTime t3 - t2

Reference GoodRefRequest CountEXIT X1.X2

BadRefRequests CountFAILURE

RefResponseTime t'1 - t'0

Chapter 2. Enabling and configuring service component monitoring 23

ServiceCaller
X0.X1 X1.X2

Callback

X2.X3

Reference Common

Callback

t'0t0

t1 t'1

t2

t3

Table 17. Invocation of callback

Type Statistics Formula
ARM
Transaction

Callback GoodCB CountEXIT X1.X3

BadCB CountFAILURE

CBTime t3 – t2

Asynchronous callback with asynchronous implementation
ARM statistics available for callback requests and callback executions using
different threads with an asynchronous implementation

Parameters

Event monitoring for SCA components includes the event points that are shown in

black , while the event points shown in blue are used only to calculate
and fire PMI/ARM statistics.

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current arm transaction will be used, or a
new one will be created. If it is not the starting transaction it will have a parent.
This is represented in the following table and diagram with the notation Xn.Xn+1.
These are used to show the transaction lineage. Every SCA invocation starts a new
transaction, which is parented by the current transaction of the caller. You can
create new transactions and you can access the current transaction, but this will
not modify the SCA transaction lineage.

24 Monitoring

Table 18. Invocation of request and return result

Type Statistics Formula ARM Transaction

Common TotalResponseTime t2 - t0 X0.X1

RequestDeliveryTime t'0 - t0 X1.X2

ResponseDeliveryTime t2 - t'2

GoodRequests CountEXIT

BadRequests CountFAILURE

ResponseTime t'3 - t'0

Reference A GoodRefRequest CountEXIT X0.X1

BadRefRequests CountFAILURE

RefResponseTime t1 - t0

Target A GoodTargetSubmit CountEXIT X1.X2

BadTargetSubmit CountFAILURE

TargetSubmitTime t'1 - t'0

ServiceCaller

X0.X1

XCURRENT

X1.X2

X1.X2

Callback

X2.X3

'

Reference A

Reference B

Target A

Target B

t0 t'0

t1
t'1

t2
t'2

t3 t'3

Table 19. Invocation of callback

Type Statistics Formula ARM Transaction

Reference B GoodCBSubmit CountEXIT X1.X2

BadCBSubmit CountFAILURE

CBSubmitTime t'3 - t'2

Chapter 2. Enabling and configuring service component monitoring 25

Table 19. Invocation of callback (continued)

Type Statistics Formula ARM Transaction

Target B GoodCB CountEXIT X0.X1

BadCB CountFAILURE

CBTime t3 - t2

Asynchronous one-way with synchronous implementation
ARM statistics when a call is submitted (fire and forget) with a synchronous
implementation.

Parameters

Event monitoring for SCA components includes the event points that are shown in

black , while the event points shown in blue are used only to calculate
and fire PMI/ARM statistics.

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current arm transaction will be used, or a
new one will be created. If it is not the starting transaction it will have a parent.
This is represented in the following table and diagram with the notation Xn.Xn+1.
These are used to show the transaction lineage. Every SCA invocation starts a new
transaction, which is parented by the current transaction of the caller. You can
create new transactions and you can access the current transaction, but this will
not modify the SCA transaction lineage.

Table 20. Invocation of request and return result

Type Statistics Formula
ARM
Transaction

Common TotalResponseTime t1 - t0 X0.X1

RequestDeliveryTime t'0 - t0 X1.X2

ResponseDeliveryTime N/A N/A

GoodRequests CountEXIT X1.X2

BadRequests CountFAILURE

ResponseTime t'1 - t'0

Service
Caller

X0.X1 X1.X2
t'0t0

t1 t'1

26 Monitoring

Asynchronous one-way with asynchronous implementation
ARM statistics when a call is submitted (fire and forget) with an asynchronous
implementation.

Parameters

Event monitoring for SCA components includes the event points that are shown in

black , while the event points shown in blue are used only to calculate
and fire PMI/ARM statistics.

In the table and diagram below, the ″current″ ARM transaction (denoted as X1) is
created when the calling service component was invoked for the first time. If the
caller is not a service component, the current arm transaction will be used, or a
new one will be created. If it is not the starting transaction it will have a parent.
This is represented in the following table and diagram with the notation Xn.Xn+1.
These are used to show the transaction lineage. Every SCA invocation starts a new
transaction, which is parented by the current transaction of the caller. You can
create new transactions and you can access the current transaction, but this will
not modify the SCA transaction lineage.

Table 21. Invocation of request and return result

Type Statistics Formula ARM Transaction

Common TotalResponseTime t1 - t0 X0.X1

RequestDeliveryTime t'0 - t0 X1.X2

ResponseDeliveryTime N/A N/A

GoodRequests CountEXIT X1.X2

BadRequests CountFAILURE

ResponseTime t2 - t0

Reference GoodRefRequest CountEXIT X0.X1

BadRefRequest CountFAILURE

RefResponseDuration t1 - t0

Reference

Completion
Report
Utility

X .X0 1
X .X1 2

X .X1 2

t'0t0

t1 t'1

Service

Caller

'

t2

Chapter 2. Enabling and configuring service component monitoring 27

Monitoring service component events
WebSphere Process Server monitoring can capture the data in a service component
at a certain event point. You can view each event in a log file, or you can use the
more versatile monitoring capabilities of a Common Event Infrastructure server.

Applications that are deployed on the process server may contain a specification of
service component events that will be monitored for as long as the application
runs. If you developed the application using the WebSphere Integration Developer,
then you can specify service component events to monitor continuously. This
specification is included as part of the application, and comes in the form of file
with a .mon extension that is read by the process server when the application is
deployed. After the application is started, you will not be able to turn off
monitoring of the service components specified in the .mon file. The
documentation for the WebSphere Process Server does not address this type of
continuous monitoring. For more information about this subject, refer to the
WebSphere Integration Developer documentation.

You can use WebSphere Process Server to monitor service component events that
are not already specified in the .mon file of the application. You can configure the
process server to direct the output of the event monitors to a log file, or to a
Common Event Infrastructure server database. The monitored events will be
formatted using the Common Base Event standard, but you can regulate the
amount of information contained in each event. Use the monitoring facilities in
WebSphere Process Server to diagnose problems, analyze the process flow of your
applications, or audit how your applications are used.

Enabling monitoring of business process and human task
events

You must configure WebSphere Process Server to support monitoring of business
process and human task service components before you do any actual monitoring
of those service component kinds.

Before you begin

You must have previously created the business process container and the human
task container on the process server.

About this task

Perform this task to enable Common Event Infrastructure monitoring support on
WebSphere Process Server.

Procedure

1. Open the administrative console.
2. If Business Process Choreographer is configured on a single server, complete

the following steps to enable the server to generate business process events:
a. In the left frame, expand Servers and click Application servers >

server_name

b. Select Containers Settings > Business Process Choreographer container
settings > Business Process Choreographer container.

c. Click State Observers.

28 Monitoring

d. Ensure that the boxes for Audit Logging and Common Event Infrastructure
Logging are checked for both the Business Flow Manager and the Human
Task Manager.If the check boxes are not selected, then you must select
them and restart the server.

3. If Business Process Choreographer is configured on a cluster, complete the
following steps to enable the cluster to generate business process events:
a. Select Clusters > cluster_name.
b. Select Business Process Choreographer container settings > Business

Process Choreographer container.
c. Click State Observers.
d. Ensure that the boxes for Audit Logging and Common Event Infrastructure

Logging are checked for both the Business Flow Manager and the Human
Task Manager.If the check boxes are not selected, then you must select
them and restart the cluster.

What to do next

If you had to select any of the boxes, then you must restart the server or cluster for
the changes to take effect.

Configuring logging for service component events
You may choose to use the logging facilities of WebSphere Application Server to
capture the service component events fired by process server monitoring. Use the
loggers to view the data in events when you diagnose problems with the
processing of your applications.

WebSphere Process Server uses the extensive logging facilities of the underlying
WebSphere Application Server to allow you to capture the events fired by server
monitoring at service component event points. You can use the administrative
console to specify the particular service component event points that you want to
monitor, the amount of payload detail contained in the resulting service
component events, and the method used to publish the results, such as to a file of
a certain format, or directly to a console. Monitor logs contain events encoded in
Common Base Event format, and you can use the information contained in the
event elements to trace problems with the processing of your service components.

The functionality of WebSphere Application Server logging and tracing capabilities
is documented in considerable detail in the WebSphere Application Server
documentation, with complete details of how logging and tracing is used within
the entire product. This section provides only supplemental information about
logging as it relates to the service components that are specific to WebSphere
Process Server. Consult the information in the WebSphere Application Server
documentation for using logging and trace with other components of the entire
product.

Enabling the diagnostic trace service
Use this task to enable the diagnostic trace service, which is the logging service
that can manage the amount of detail contained in the service component event.

Before you begin

You must have the business process and human task containers configured to
allow Common Event Infrastructure (CEI) logging and audit logging.

Chapter 2. Enabling and configuring service component monitoring 29

About this task

The diagnostic trace service is the only logger type that can provide the level of
detail required to capture the detail contained in the elements of service
component events. You must enable the diagnostic trace service before you start
the process server in order to log events. The service must also be enabled if you
use the administrative console to select service component event points for
monitoring using the CEI server.

Procedure

1. In the navigation pane, click Servers → Application Servers.
2. Click the name of the server that you want to work with.
3. Under Troubleshooting, click Diagnostic Trace service.
4. Select Enable log on the Configuration tab.
5. Click Apply, and then Save.
6. Click OK.

What to do next

If the server was already started, then you must restart it for the changes to take
effect.

Configuring logging properties using the administrative console
Use this task to specify that the monitoring function publish service component
events to a logger file.

About this task

Before applications can log monitored events, you must specify the service
component event points that you want to monitor, what level of detail you require
for each event, and format of the output used to publish the events to the logs.
Using the administrative console, you can:
v Enable or disable a particular event log.
v Specify the level of detail in a log.
v Specify where log files are stored, how many log files are kept, and a format for

log output.

You can change the log configuration statically or dynamically. Static configuration
changes affect applications when you start or restart the application server.
Dynamic or run time configuration changes apply immediately.

When a log is created, the level value for that log is set from the configuration
data. If no configuration data is available for a particular log name, the level for
that log is obtained from the parent of the log. If no configuration data exists for
the parent log, the parent of that log is checked, and so on up the tree, until a log
with a non-null level value is found. When you change the level of a log, the
change is propagated to the children of the log, which recursively propagates the
change to their children, as necessary.

Procedure

1. Enable logging and set the output properties for a log:
2. In the navigation pane, click Servers > Application Servers.
3. Click the name of the server that you want to work with.

30 Monitoring

4. Under Troubleshooting, click Logging and tracing.
5. Click Change Log Detail levels.
6. The list of components, packages, and groups displays all the components that

are currently registered on the running server; only server events that have
been invoked at least once appear on this list. All server components with
event points that can be logged are listed under one of the components that
start with the name WBILocationMonitor.LOG.

v To select events for a static change to the configuration, click the
Configuration tab.

v To select events for a dynamic change to the configuration, click the
Runtime tab.

7. Select the event or group of events that you want to log.
8. Set the logging level for each event or group of events.

Note: Only the levels FINE, FINER, and FINEST are valid for CEI event
logging.

9. Click Apply.
10. Click OK.
11. To have static configuration changes take effect, stop then restart the server.

Results

By default, the loggers will publish their output to a file called trace.log, located in
the install_root/profiles/profile_name/logs/server_name folder.

Tutorial: Logging service component events
For service component event points that you monitor, events can be published to
the logging facilities of the underlying WebSphere Application Server. This tutorial
guides you through an example of setting up monitoring with logging, and how to
view events stored in a log file.

The scenario you will follow for this example will show you how to select service
component event points for monitoring in applications already deployed and
running on a server. You will see how the monitoring function fires an event
whenever the processing of an application reaches one of those event points. Each
of those fired events takes the form of a standardized Common Base Event, which
is published as an XML string directly to a log file.

Objectives of this tutorial

After completing this tutorial you will be able to:
v Select service component event points to monitor, with the output published to

the server loggers.
v View the stored events in the log files.

Time required to complete this tutorial

This tutorial requires approximately 15-20 minutes to complete.

Prerequisites

In order to perform this tutorial, you must have:
v Configured and started a server.

Chapter 2. Enabling and configuring service component monitoring 31

v Configured Common Event Infrastructure.
v Enabled the diagnostic trace service on the server.
v Installed and started the Samples Gallery application on the server.
v Installed and started the business rules sample application on the server. Follow

the instructions on the Samples Gallery page to set up and run the business
rules sample application.

After all of these prerequisites have been completed, run the business rules sample
application from the Samples Gallery at least once before proceeding with the
tutorial.

Example: Monitoring events in the logger:

For monitoring with logging, you can use the administrative console to manage
the details for event types. This example shows the use of the console to change
the level of detail recorded for some event types and to use a text editor to open
the trace.log file to view the information for individual events.

About this task

You will use the business rules sample application for this scenario, so you should
already have the web page containing this application already open. Keep it open,
since you will be running the sample after you specify monitoring parameters.
Ensure that you have already run the sample at least once, so that it will appear in
the list of functions that you can select to monitor.

Procedure

1. Open the administrative console.
2. In the navigation pane, click Servers → Application Servers.
3. Click server_name.
4. Under Troubleshooting, click Logging and tracing

5. Click Change Log Detail levels

6. Select the Runtime tab.
7. Expand the tree for WBILocationMonitor.LOG.BR and you will see seven

event types under the WBILocationMonitor.LOG.BR.brsample.* element. The
first event is called
WBILocationMonitor.LOG.BR.brsample_module.DiscountRuleGroup, which
includes a single function, named Operation._calculateDiscount, with the
following natures:
v ENTRY
v EXIT
v FAILURE
v SelectionKeyExtracted
v TargetFound

8. Click on each of the events and select finest.
9. Click OK.

10. Switch the business rules sample application page, and run the application
once.

11. Use a text editor to open the trace.log file located in the profile_root/logs/
server_name folder on your system.

32 Monitoring

Results

You should see lines in the log containing the business rule events fired by the
monitor when you ran the sample application. The main thing you will probably
notice is that the output consists of lengthy, unparsed XML strings conforming to
the Common Base Event standard. Examine the ENTRY and EXIT events, and you
will see that business object — which was included because you selected the finest
level of detail — is encoded in hexadecimal format. Compare this output with
events published to the Common Event Infrastructure server, which parses the
XML into a readable table and decodes any business object data into a readable
format. You may want to go back through this exercise and change the level of
detail from finest to fine or finer, and compare the differences between the events.

After completing this exercise, you should understand how to select service
component event points for monitoring to the logger. You have seen that the
events fired in this type monitoring have a standard format, and that the results
are published as a string in raw XML format directly to a log file. Viewing the
published events is simply a matter of opening the log file in a text editor, and
deciphering the contents of individual events.

What to do next

If you no longer want to monitor the business rules sample application, you can go
back to through the steps outlined here and reset the level of detail for the sample
events to info.

Audit logging for business rules and selectors
You can set up WebSphere Process Server to automatically log any changes made
to business rules and selectors.

You can configure your server to automatically detect when changes are made to
business rules and selectors, and create an entry in a log file detailing the changes.

You can choose to have the log entries written to either the standard JVM
SystemOut.log file, or to a custom audit log file of your choice. Depending on how
the changes are made, the process server where each business rule or selector
change is made will log the:
v name of the person making the change
v location from where the change request originated
v old business rule or selector object
v new business rule or selector replacing the old object

The business rule and selector objects are the complete business rule set, decision
table, business rule group, or selector for both the business rule or selector that is
replaced and the new version which replaced it. You will have to examine the logs
(the audit output cannot be directed to the Common Event Infrastructure database)
to determine the changes that were made, by comparing the old and new business
rules or selectors. The following scenarios describe the circumstance when logging
occurs, if it has been configured, and the contents of the log entry:

Chapter 2. Enabling and configuring service component monitoring 33

Scenario Result Log entry contents

Publish business rules using
the Business Rule Manager

Request

User ID, Server name
(including Cell and Node, if
applicable), old business rule
ruleset, new ruleset.

Failure

User ID, Server name
(including Cell and Node, if
applicable), old business rule
ruleset, new ruleset.

Repository database update
and commit (from attempt to
publish using the Business
Rule Manager)

Success
User ID, old ruleset, new
ruleset.

Failure User ID, new ruleset.

Exporting a selector or
business rule group

Request
User ID, selector or business
rule group name.

Success

User ID, Server name
(including Cell and Node, if
applicable), copy of exported
selector or business rule
group

Failure

User ID, Server name
(including Cell and Node, if
applicable), selector or
business rule group name.

Importing a selector or
business rule group

Request
User ID, copy of new
selector or business rule
group.

Success

User ID, Server name
(including Cell and Node, if
applicable), copy of imported
selector or business rule
group, copy of selector or
business rule group that was
replaced by the imported
version.

Failure

User ID, Server name
(including Cell and Node, if
applicable), copy of selector
or business rule group that
was to be imported.

Application install

Success

User ID, Server name
(including Cell and Node, if
applicable), selector or
business rule group name.

Failure

User ID, Server name
(including Cell and Node, if
applicable), selector or
business rule group name.

34 Monitoring

Scenario Result Log entry contents

Application update (through
the administrative console or
wsadmin command)

Success

User ID, Server name
(including Cell and Node, if
applicable), copy of new
selector or business rule
group, copy of old selector
or business rule group.

Failure

User ID, Server name
(including Cell and Node, if
applicable), copy of new
selector or business rule
group

Previously deployed
application with existing
business rules, selectors or
both is started

Success

Server name (including Cell
and Node, if applicable),
copy of selector or business
rule group.

Failure

Server name (including Cell
and Node, if applicable),
copy of selector or business
rule group.

Monitoring service components with the Common Event
Infrastructure server

You can choose to have service component monitoring results published to a
Common Event Infrastructure (CEI) server. Service component event points can be
specified for monitoring with the CEI server on a permanent basis for viewing and
managing application flow, or on an ad-hoc basis for troubleshooting problems.

You can use monitoring to publish the data in service component event points
within service component events that are fired across the CEI bus. This approach
to monitoring allows you much more flexibility in analyzing your service
component activities on your system. You can also use browsers optimized for CEI
events, such as the Common Base Event browser.

The events are structured identically to the events sent to loggers, but are stored
on a database which can be accessed by viewers designed specifically for analyzing
service component events. Service component event points can be specified within
an application when it is created, for continual monitoring at all times after the
application is deployed and running on a server (a method known as “static”
monitoring). You perform static monitoring on service component event points that
are of particular importance in the proper flow of component processing on your
system. With this information, you can easily oversee the actions of, and
interactions between, the service component processes running on your system.
You can also quickly detect deviations from the normal flow of these processes,
which may indicate that your service components are not working properly.

To configure static monitoring of service components, you use WebSphere
Integration Developer to select the service component event points in your
applications. The selections are specified in the form of an XML file with a .mon
extension that will be deployed along with the application. After you have
deployed the application on a running server, you cannot turn off or lower the
detail level of the monitoring for events specified in the .mon file of the
application. To stop this kind of monitoring, you must stop the server and
undeploy the application.

Chapter 2. Enabling and configuring service component monitoring 35

You can also select service component event points for “dynamic” monitoring,
which can be enabled and disabled on an application already deployed to a
running server. The rationale for performing dynamic monitoring using the CEI
server is essentially the same as that for logging: to diagnose and troubleshoot
problems on your system. The output is essentially the same as that which is
published to loggers, with Common Base Event elements comprising the structure
for each event fired across the CEI bus. Also, like logging data, the differences in
detail levels affect only how much of the payload is encoded within the event.

Configuring service component event monitoring using the
administrative console
Use the administrative console to dynamically specify the monitoring function to
publish service component events to the Common Event Infrastructure server.

Before you begin

You must enable the diagnostic trace service, just as you would with the logger.
After you restart your server you would invoke the events you want to monitor
once, because that will cause them to appear on the list of events available for
monitoring.

About this task

This method of selecting events for monitoring is used for applications that have
already been deployed on a process server. Events that are specified in a .mon file
that is deployed with the application on the process server are monitored by the
Common Event Infrastructure (CEI) database regardless of any changes you make
here. For those events, you can only specify a greater level of detail to be captured
and published to the CEI database. The output that is published to the CEI
database is very similar to that published by loggers.

Procedure

1. From the administrative console, click Troubleshooting > Logging and tracing.
2. Click Change Log Detail levels

3. The list of components, packages, and groups displays all the components that
are currently registered on the running server; only process server events that
have been invoked at least once appear on this list. All process server events
that can be logged are listed under one of the components that start with the
name WBILocationMonitor.CEI.
v To make a static change to the configuration, click the Configuration tab.
v To change the configuration dynamically, click the Runtime tab.

4. Select an event or group of events to monitor.
5. Click the level of detail that you want to capture for each event.

Note: Only the levels FINE, FINER, and FINEST are valid for CEI events.
6. Click Apply, and then Save.
7. Click OK.
8. If you made a static change to the configuration, then you will have to restart

the process server for the changes to take effect.

Results

You can view the monitored event results in the Common Base Event browser.

36 Monitoring

Tutorial: Using the Common Event Infrastructure server for event
monitoring
For service component event points that you monitor, events can be published to
the Common Event Infrastructure (CEI) server and stored in the CEI server
database. This tutorial guides you through an example of setting up monitoring
with the CEI server, and how to view events stored in the database.

This tutorial demonstrates how to set up service component event monitors that
are published to the CEI server, and how to use the Common Base Event browser
to view those stored events. The example you will use in this scenario does not
involve static monitoring, whereby an application deployed with a .mon file will
continually monitor specific service components event points. For information
about how to perform static monitoring, consult the IBM WebSphere Integration
Developer Information Center.

The scenario you will follow for this example, instead, will show you how to select
for monitoring event points on service components in applications already
deployed and running on a server. You will see how the monitoring function fires
an event whenever the processing of an application reaches one of those event
points. Each of those fired events are published to the CEI server, which will store
the event information about its database. You will use the Common Base Event
browser to view the events.

Objectives of this tutorial

After completing this tutorial you will be able to:
v Select service component event points to monitor, with events published to the

CEI server.
v View the stored events with the Common Base Event browser.

Time required to complete this tutorial

This tutorial requires approximately 15-20 minutes to complete.

Prerequisites

In order to perform this tutorial, you must have:
v Configured and started a server.
v Configured the CEI and its database.
v Enabled the diagnostic trace service on the server.
v Installed and started the Samples Gallery application on the server.
v Installed and started the business rules sample application on the server. Follow

the instructions on the Samples Gallery page to set up and run the business
rules sample application.

After all of these prerequisites have been completed, run the business rules sample
application from the Samples Gallery at least once before proceeding with the
tutorial.

Example: Monitoring with the Common Event Infrastructure server:

For monitoring with the CEI server, you can use the administrative console to
manage the details for event types and to display recorded events in the Common
Base Event browser. This example shows the use of the console to change the level

Chapter 2. Enabling and configuring service component monitoring 37

of detail recorded for some event types and to use the Common Base Event
browser to view the information for individual events.

About this task

You will use the business rules sample application for this scenario; consequently,
you should already have the Web page containing this application already open.
Keep it open, since you will be running the sample after you specify monitoring
parameters. Ensure that you have already run the sample at least once, because
that will cause it to appear in the list of functions that you can select to monitor.

Procedure

1. Open the administrative console.
2. In the navigation pane, click Servers → Application Servers.
3. Click server_name.
4. Under Troubleshooting, click Logging and tracing

5. Click Change Log Detail levels

6. Select the Runtime tab.
7. Expand the tree for WBILocationMonitor.CEI.BR and you will see five event

types under the WBILocationMonitor.CEI.BR.brsample.* element. Each event
type includes the name
WBILocationMonitor.CEI.BR.brsample_module.DiscountRuleGroup,
appended by the function Operation._calculateDiscount, and the following
natures:
v ENTRY
v EXIT
v FAILURE
v SelectionKeyExtracted
v TargetFound

8. Click on each of the events and select finest.
9. Click OK.

10. Switch the business rules sample application page, and run the application
once.

11. Go back to the administrative console, and select Integration Applications →
Common Base Event Browser from the navigation pane.

12. If you are running your server on node within a Network Deployment
environment, then you may need to modify the Event Data Store field to
include to the names of your server and node. Enter the string in the
following form: ’cell/nodes/node_name/servers/server_name/ejb/com/ibm/
events/access/EventAccess’.

13. Press Get Events.

Results

You should now see a list in the upper pane of the Common Base Event browser
of the four business rule events that were published to the CEI server when you
ran the sample application. Select one of the events, and you will be shown the
contents of the event in the lower pane. Compare this to the events published to
the loggers. Notice that the browser has parsed the original XML string that was
published to the CEI server, and that the business object code in the ENTRY and
EXIT events was converted from the original hexadecimal format to readable XML.

38 Monitoring

You may want to go back through this exercise and change the level of detail from
finest to fine or finer, and compare the differences between the events.

After completing this exercise, you should understand how to select service
component event points for monitoring using the CEI server. You have seen that
the events fired in this type monitoring have a standard format, and that the
results are published to a database. You should also be able to use the Common
Base Event browser to retrieve events from the database, and view the information
for individual events in a parsed table format on the browser.

What to do next

If you no longer want to monitor the business rules sample application, you can go
back to through the steps outlined here and reset the level of detail for the sample
events to info.

Session monitoring
You can monitor multiple events that are part of the same session, by using the
Common Base Event browser to find all events on the Common Event
Infrastructure database that contain the identical session ID attribute.

WebSphere Process Server has enhanced capabilities with which you can identify
all of the service component events that are part of a single session. The standard
elements for the Common Base Event include an attribute under the
contextDataElement element, called WBISessionID. A unique identifier for an
individual session is stored in this attribute, for all service component events that
were part of that session. You can use the SessionID field in the Common Base
Event browser to search for events stored on the Common Event Infrastructure
(CEI) database that match the session ID you specify. With this capability, you can
easily review the process flow and contents of all the service component events.
You can use this information to assess the efficiency of your applications, and aid
you in diagnosing problems that occur only under certain circumstances.

You can use the Common Base Event browser to view the returned list of events
and their associated contents. If you click the All Events view, you can see columns
of links for more details about events. If a particular event has a link in the Failed
column, you can click that link to view more details about the failed event.
Similarly, if there is a link in the Business Process associated with a particular
event, you can click that link to open the Business Process Explorer and view
further information about the business process or human task event.

Chapter 2. Enabling and configuring service component monitoring 39

40 Monitoring

Chapter 3. Viewing monitored events

There are a number of ways for you to view the published results of your
monitored events, depending on the type of monitoring you are using. This section
presents methods that you can use to view performance data, event logs, and
service component events stored on a Common Event Infrastructure database.

Viewing performance metrics with the Tivoli Performance Viewer
You can use the Tivoli Performance Viewer to start and stop performance
monitoring; view Performance Monitoring Infrastructure data in chart or table
form as it occurs on your system; and, optionally, log the data to a file that you
can later review in the same viewer.

Before you begin

Before you can view performance metrics with the Tivoli Performance Viewer, the
following conditions must be true:
v The servers that you want to monitor must be running on the node
v The Performance Monitoring Infrastructure (PMI) is enabled
v The service component event points that you want to monitor have been

invoked at least once so that they can be selected from within the viewer.

About this task

The Tivoli Performance Viewer (TPV) is a powerful application that allows you
view a variety of details of about the performance of your server. The section
entitled “Monitoring performance with Tivoli Performance Viewer” in the
WebSphere Application Server Information Center contains details about how to
use this tool for a variety of purposes, and you should see that resource for
complete instructions on using this program. This section is limited to discussing
the viewing of performance data for events specific to WebSphere Process Server.

The performance viewer enables administrators and programmers to monitor the
current health of WebSphere Process Server. Because the collection and viewing of
data occurs on the process server, performance is affected. To minimize
performance impacts, monitor only those servers whose activity you want to
monitor.

Note: When viewing these statistics, you should not mix counter-type statistics
with duration-type statistics. Counters are cumulative, and the scales against which
they are graphed can quickly grow depending on your application. Duration
statistics, in contrast, tend to remain within a certain range because they represent
the average amount of time that it takes your system to process each event.
Consequently, the disparity between the statistics and their relative scales may
cause one or the other type of statistic to appear skewed in the viewer graph.
v View current performance activity

1. Click Monitoring and Tuning → Performance Viewer → Current Activity in
the administrative console navigation tree.

2. Select Server, then click the name of the server whose activity you want to
monitor. You can alternatively select the check box for the server whose

© Copyright IBM Corp. 2006, 2009 41

activity you want to monitor, then click Start Monitoring. To start
monitoring multiple servers at the same time, select the servers then click
Start Monitoring.

3. Select Performance Modules.
4. Select the check box beside the name of each performance module that you

want to view. WebSphere Process Server events that emit performance
statistics, and that have been invoked at least once, are listed under the
WBIStats.RootGroup hierarchy. Expand the tree by clicking + next to a node
and shrink it by clicking – next to a node.

5. Click on View Modules. A chart or table providing the requested data is
displayed on the right side of the page. Charts are displayed by default.
Each module has several counters associated with it. These counters are
displayed in a table underneath the data chart or table. Selected counters are
displayed in the chart or table. You can add or remove counters from the
chart or table by selecting or clearing the check box next to them. By default,
the first three counters for each module are shown.
You can select up to 20 counters and display them in the TPV in the Current
Activity mode.

6. Optional: To remove a module from a chart or table, clear the check box next
to the module then click View Modules again.

7. Optional: To view the data in a table, click View Table on the counter
selection table. To toggle back to a chart, click View Graph.

8. Optional: To view the legend for a chart, click Sho w Legend. To hide the
legend, click Hide Legend.

9. When you have finished monitoring the performance of your events, click on
Tivoli Performance Viewer, select the server you were monitoring, and click
Stop Monitoring.

v Log performance statistics
While monitoring is active on a server, you can log the data from all the PMI
counters that are currently enabled and record the results in a TPV log file. You
can view the TPV log file for a particular time period multiple times, selecting
different combinations of up to 20 counters each time. You have the flexibility to
observe the relationships among different performance measures in the server
during a particular period of time.
1. Click on Start Logging when viewing summary reports or performance

modules.
2. When finished, click Stop Logging. By default, the log files are stored in the

profile_root/logs/tpv directory on the node on which the server is running.
The TPV automatically compresses the log file when it finishes writing to it
to conserve space. At this point, there must only be a single log file in each
compressed file and it must have the same name as the compressed file.

3. Click Monitoring and Tuning → Performance Viewer → View Logs in the
administrative console navigation tree to view the logs

Viewing and interpreting service component event log files
This topic discusses how you would interpret the information in a log file
generated by service component monitoring. You can view the log files in the log
viewer on the administrative console, or in a separate text file editor of your
choice.

42 Monitoring

Events fired to the logger by service component monitoring are encoded in
Common Base Event format. When published to a log file, the event is included as
a single, lengthy line of text in XML tagging format, which will also include
several logger-specific fields, as outlined below. You should consult the event
catalog section of this documentation for details on deciphering the Common Base
Event coding of the logged event. Use this section to understand the other fields
contained in each entry of the log file, and how the format you chose for the log
file when you configured the logger is structured.

Basic and advanced format fields

Logging output can be directed either to a file or to an in-memory circular buffer.
If trace output is directed to the in-memory circular buffer, it must be dumped to a
file before it can be viewed. Output is generated as plain text in either basic,
advanced or log analyzer format as specified by the user. The basic and advanced
formats for output are similar to the basic and advanced formats that are available
for the message logs. Basic and Advanced Formats use many of the same fields
and formatting techniques. The fields that can be used in these formats include:
TimeStamp

The timestamp is formatted using the locale of the process where it is
formatted. It includes a fully qualified date (YYMMDD), 24 hour time with
millisecond precision and the time zone.

ThreadId
An 8-character hexadecimal value generated from the hash code of the
thread that issued the trace event.

ThreadName
The name of the Java thread that issued the message or trace event.

ShortName
The abbreviated name of the logging component that issued the trace
event. This is typically the class name for WebSphere Process Server
internal components, but may be some other identifier for user
applications.

LongName
The full name of the logging component that issued the trace event. This is
typically the fully-qualified class name for WebSphere Process Server
internal components, but may be some other identifier for user
applications.

EventType
A one character field that indicates the type of the trace event. Trace types
are in lower case. Possible values include:
1 a trace entry of type fine or event.
2 a trace entry of type finer.
3 a trace entry of type finest, debug or dump.
Z a placeholder to indicate that the trace type was not recognized.

ClassName
The class that issued the message or trace event.

MethodName
The method that issued the message or trace event.

Organization
The organization that owns the application that issued the message or trace
event.

Product
The product that issued the message or trace event.

Component
The component within the product that issued the message or trace event.

Chapter 3. Viewing monitored events 43

Basic format

Trace events displayed in basic format use the following format:
<timestamp><threadId><shortName><eventType>[className][methodName]<textmessage>

[parameter 1]
[parameter 2]

Advanced format

Trace events displayed in advanced format use the following format:
<timestamp><threadId><eventType><UOW><source=longName>[className][methodName]
<Organization><Product><Component>[thread=threadName]
<textMessage>[parameter 1=parameterValue][parameter 2=parameterValue]

Log analyzer format

Specifying the log analyzer format allows you to open trace output using the Log
Analyzer tool, which is an application included with WebSphere Application
Server. This is useful if you are trying to correlate traces from two different server
processes, because it allows you to use the merge capability of the Log Analyzer.

Viewing events with the Common Base Event browser
Use the Common Base Event browser to select, sort, and view events.

Before you begin

This task assumes you are logged into the server administrative console.

About this task

The event browser uses the event access interface to query event data. The results
of the query are shown in the browser.

Procedure

1. Begin by opening the event browser. Click Integration Applications and then
Common Base Event Browser in the navigation pane of the administrative
console.

2. Specify the events you want to view.
3. Select the view of the returned events.
4. In any of the browser panels, when you have finished selecting search or sort

criteria, click the Get Events button at the bottom of the browser panel to
display the events.

Specifying the events to view
How to use the Common Base Event browser to specify search criteria for
querying events in the event database.

Before you begin

This task assumes that you have already opened the event browser and are
viewing the Get Events panel.

The Event Data Store Properties fields require completion. The Event Filter
Properties fields are optional, and you can narrow your events search based on

44 Monitoring

time, date, server name, sub-component name, and event severity parameters.

Procedure

1. Required: Specify the Event Data Store to search.
The field is a Java Naming and Directory Interface (JNDI) name, an Enterprise
JavaBeans (EJB) reference that can be configured in the administrative console.
The server default is java:comp/env/eventsaccess, but you may need to
specify a different name if you are working in a Network Deployment
environment (see the WebSphere Application Server Network Deployment,
version 6.1 documentation for more details about JNDI naming).

2. Required: Specify the Event Group to search.
This is the event group from which events are retrieved. The default group is
All events.

3. Required: Specify the number of events to retrieve.
The maximum number of events to search is 500.

4. Optional: Specify the Creation Date (calendar period) for the report.
Enter the start and end dates.

5. Optional: Specify the Creation Time (time period) for the report.
Enter the start and end times.

6. Optional: Specify the server name.
7. Optional: Specify the sub-component name, if applicable.
8. Optional: Specify an event’s priority. The range of events priorities to retrieve

is from 0 (lowest priority) to 100 (highest priority).
9. Optional: Specify an event’s severity.

The range of events severities to retrieve is from 0 (least severe) to 70 (most
severe).

10. Click Get Events.

Results

The number of Common Base Events matching the search criteria is displayed. If
the results you queried are not displayed, see the ″Troubleshooting the Common
Base Event browser″ topic in the Troubleshooting and Support PDF file.

Example

To view the returned events, select a view from the navigation bar. You can click
All Events, BPEL Process Events, User Data Events, or Server Events. When you
view event data, you can change your search criteria at any time by clicking Get
Events.

What to do next

After events are returned, you can work with them to get various levels of event
detail.

Working with events returned from the event browser
You use the event browser to view the events returned from a query.

Chapter 3. Viewing monitored events 45

Before you begin

This task acts on data that is returned by a submitted query, as described in the
topic Specifying the events to view.

About this task

The query returns all the events that meet your criteria.

Procedure

1. Click a view from the navigation bar.
The navigation bar offers the following views of the returned query:

All Events
All the events returned.

BPEL Process Events
Business Process Choreographer events for a specific process instance.

User Data Events
Events with the extension name ECS:UserDataEvent. This event type is
created by the addUserDataEvent method of the ECSEmitter class.

Server Events
Events for a specific server.

2. Perform one of the following actions.
v If you click BPEL Process Events in step 1, you must click a process

template, and then a process instance.
v If you click Server Events in step 1, you must click a server.

3. Click an event, to display the event data in the pane at the bottom of the
browser window.

Troubleshooting the Common Base Event browser
There are four primary conditions under which you are unable to access the
Common Base Event browser.

Conditions

“Cannot find server”
The server is unavailable. When you attempt to launch the event browser
URI, a “Cannot find server” browser page will be returned, which
indicates that the server is unavailable. In this case, you need to contact the
server administrator to determine the cause of the problem.

“File not found”
The server is available; however, the event browser application may not be
installed or started on the server. When you attempt to launch the event
browser URI, a “File not found” browser page will be returned, which
indicates that the server is available, but the URI is not available on that
server. In this case, you need to contact the server administrator to
determine the cause of the problem.

Logon panel appears
The server and the event browser are available; however, you have not
been mapped to the proper role to allow access to the event browser. You
will be prompted with a logon panel. When you enter your userID and

46 Monitoring

password, attempting to log in, the login will fail. In this case, you need to
contact the server administrator to get the proper authorization to launch
the event browser.

Error message on “Get events” panel
The server and the event browser are available, and you have the proper
authority to gain access; however, the Common Event Infrastructure server
is unavailable. An error message will be displayed on the event browser
Get Events panel, when you click the Get Events button. The error
information is logged to the message log.

Chapter 3. Viewing monitored events 47

48 Monitoring

Chapter 4. Event catalog

The event catalog contains the specifications for all the events that can be
monitored for each service component type, and the associated Common Base
Event extended data elements produced by each event.

Use the information presented in this section as reference material that enables you
to understand how individual events are structured. This knowledge helps you
decipher the information contained in each event, so that you can quickly identify
the pieces of information you need from the relatively large amount of data
generated by each event.

The information included in this section covers the following items:
v The structure and standard elements of the Common Base Event
v The list of events for the Business Process Choreographer service components
v The list of WebSphere Process Server-specific service components
v The extensions to the Common Base Event unique to each event type

There is also a discussion of how business objects that might be processed by a
service component are captured in service component events.

When an event of a given type is fired across the Common Event Infrastructure
(CEI) bus to the CEI server or to a logger, it takes the form of a Common Base
Event — which is, essentially, an XML encapsulation of the event elements created
according to the event catalog specification. The Common Base Event includes a
set of standard elements, server component identification elements, Event
Correlation Sphere identifiers, and additional elements unique to each event type.
All of these elements are passed to the CEI server or logger whenever an event is
fired by a service component monitor, with one exception: if the event includes the
business object code within the payload, you may specify the amount of business
object data that you want to include in event.

The Common Base Event standard elements
The elements of the Common Base Event that are included in all events fired from
service component monitoring are listed here.

Attribute Description

version Set to 1.0.1.

creationTime The time at which the event is created, in UTC.

globalInstanceId The identifier of the Common Base Event instance. This ID
is automatically generated.

localInstanceId This ID is automatically generated (may be blank).

severity The impact that the event has on business processesor on
human tasks. This attribute is set to 10 (information).
Otherwise, it is not used.

priority Not used.

reporterComponentId Not used.

locationType Set to Hostname.

© Copyright IBM Corp. 2006, 2009 49

Attribute Description

location Set to the host name of the executing server.

application Not used.

executionEnvironment A string that identifies the operating system.

component Process server version. For business processes and human
tasks: Set to WPS#, followed by the identification of the
current platform and the version identification of the
underlying software stack.

componentType The component QName, based on the Apache QName
format.

For business processes, set to:

www.ibm.com/namespaces/autonomic/Workflow_Engine

For human tasks, set to:

www.ibm.com/xmlns/prod/websphere/scdl/human-task

subComponent The observable element name.

For business processes, set to BFM.
For human tasks, set to HTM.

componentIdType Set to ProductName.

instanceId The identifier of the server. This identifier has the format
cell_name/node_name/server_name. The delimiters are
operating system dependent.

processId The process identifier of the operating system.

threadId The thread identifier of the Java virtual machine (JVM).

Situation Type The type of situation that caused the event to be reported.
For specific components, set to ReportSituation.

Situation Category The category of the type of situation that caused the event
to be reported. For specific components, set to STATUS.

Situation Reasoning Scope The scope of the impact of the situation reported. For
specific components, set to EXTERNAL.

ECSCurrentID The value of the current Event Correlation Sphere ID.

ECSParentID The value of the parent Event Correlation Sphere ID.

WBISessionID The value of the current Session ID.

extensionName Set to the event name.

Business objects in events
Business object data is, starting with version 6.1, carried within the event in XML
format. The Common Base Event format includes an xs:any schema, which
encapsulates the business object payload in XML elements.

You specify the level of business object detail that will be captured in service
component events. This level of detail affects only the amount of business object
code that will be passed to the event; all of the other Common Base Event
elements (both standard and event-specific) will be published to the event. The
names of the detail levels applicable to service component events differ depending
on whether you created a static monitor using WebSphere Integration Developer,

50 Monitoring

or a dynamic monitor on the administrative console, but they correspond as shown
in the table below:

Administrative console
detail level

Common Base
Event/WebSphere
Integration Developer detail
level

Payload information
published

FINE EMPTY None.

FINER DIGEST Payload description only.

FINEST FULL All of the payload.

The detail level is specified by PayloadType element which is part of the event
instance data. The actual business object data is included in the event only if the
monitor is set to record FULL/FINEST detail. The business object data itself is
included in the Common Base Event under an xsd:any schema. You can see the
process server business object payloads with the root element named wbi:event. If
you are publishing the event output to the logger, then you will see the output
when you view the log files. If the event is published to the CEI server, then you
can use the Common Base Event browser to view the event. You can then click the
wbi:event link to view the business object data.

Business Process Choreographer events
WebSphere Process Server incorporates the Business Process Choreographer service
components for business processes and human tasks. The event points that can be
monitored in these components are described in this section.

Business process events overview
Events that are emitted on behalf of business processes consist of
situation-independent data and data that is specific to business process events. The
attributes and elements that are specific to business process events are described.

Business process events can have the following categories of event content.

Event data specific to business processes
In business processes, events relate to processes, activities, scopes, links, and
variables.

The events can have one of the following formats:

WebSphere Business Monitor 6.0.2 format
WebSphere Business Monitor 6.0.2 format events occur when there are
processes modeled in WebSphere Integration Developer 6.0.2, or if the
WebSphere Business Monitor 6.0.2 format (legacy XML) is enabled in
WebSphere Integration Developer 6.1, or later. If not specified otherwise,
the object-specific content for these events is written as extendedDataElement
XML elements of the type string.

WebSphere Business Monitor 6.1 format
WebSphere Business Monitor 6.1 format events occur when there are
processes modeled in WebSphere Integration Developer 6.1, or later, and
the WebSphere Business Monitor 6.1 format (XML schema support) is
enabled. The object-specific content for these events is written as XML
elements in the xs:any slot in the eventPointData folder of the Common
Base Event, and the payload message is written to the applicationData

Chapter 4. Event catalog 51

section. The structure of the XML is defined in the XML Schema Definition
(XSD) file BFMEvents.xsd. The file can be found in the
install_root\ProcessChoreographer\client directory.

Related reference

Business process events
Common Base Events are emitted for business processes if monitoring is requested
for the business process elements in WebSphere Integration Developer. A process
can cause process events, activity events, activity scope events, link events, and
variable events to be emitted.
Common Base Events for business processes
Common Base Events are emitted for business processes if monitoring is requested
for the business process in WebSphere Integration Developer. A list of all the
events that can be emitted by a business process can be found here.
Common Base Events for activities
Common Base Events are emitted for activities if monitoring is requested for these
activities in WebSphere Integration Developer. A list of all the events that can be
emitted by an activity can be found here.
Common Base Events for scope activities
Common Base Events are emitted for scope activities if monitoring is requested for
these activities in WebSphere Integration Developer. A list of all the events that can
be emitted by an activity scope can be found here.
Common Base Events for links in flow activities
Common Base Events for links are emitted if monitoring is requested in
WebSphere Integration Developer for the flow activity on which the link is defined.
A list of all the events that can be emitted by a link can be found here.
Common Base Events for process variables
Common Base Events are emitted for process variables if monitoring is requested
for the business process elements in WebSphere Integration Developer. A list of all
the events that can be emitted by variables can be found here.

Extension names for business process events
The extension name indicates the payload of the event. A list of all the extension
names for business process events and their corresponding payload can be found
here.

The extension name contains the string value that is used as the value of the
extensionName attribute of the Common Base Event. This is also the name of the
XML element that provides additional data about the event. The names of event
elements are in uppercase, for example, BPC.BFM.BASE, and the names of XML
elements are in mixed case, for example, BPCEventCode. Except where indicated, all
data elements are of the type string.

The following extension names are available for business process events:
v “BPC.BFM.BASE” on page 53
v “BPC.BFM.PROCESS.BASE” on page 54
v “BPC.BFM.PROCESS.STATUS” on page 54
v “BPC.BFM.PROCESS.START” on page 54
v “BPC.BFM.PROCESS.FAILURE” on page 55
v “BPC.BFM.PROCESS.CORREL” on page 55
v “BPC.BFM.PROCESS.WISTATUS” on page 55
v “BPC.BFM.PROCESS.WITRANSFER” on page 55
v “BPC.BFM.PROCESS.ESCALATED” on page 56

52 Monitoring

v “BPC.BFM.PROCESS.EVENT” on page 56
v “BPC.BFM.PROCESS.OWNERTRANSFER” on page 56
v “BPC.BFM.PROCESS.PARTNER” on page 57
v “BPC.BFM.PROCESS.CUSTOMPROPERTYSET” on page 57
v “BPC.BFM.ACTIVITY.BASE” on page 57
v “BPC.BFM.ACTIVITY.STATUS” on page 59
v “BPC.BFM.ACTIVITY.FAILURE” on page 59
v “BPC.BFM.ACTIVITY.MESSAGE” on page 59
v “BPC.BFM.ACTIVITY.CLAIM” on page 60
v “BPC.BFM.ACTIVITY.WISTATUS” on page 60
v “BPC.BFM.ACTIVITY.WITRANSFER” on page 60
v “BPC.BFM.ACTIVITY.FOREACH” on page 61
v “BPC.BFM.ACTIVITY.ESCALATED” on page 61
v “BPC.BFM.ACTIVITY.EVENT” on page 61
v “BPC.BFM.ACTIVITY.CUSTOMPROPERTYSET” on page 61
v “BPC.BFM.ACTIVITY.JUMPED” on page 62
v “BPC.BFM.ACTIVITY.SKIP_REQUESTED” on page 62
v “BPC.BFM.ACTIVITY.SKIPPED_ON_REQUEST” on page 62
v “BPC.BFM.ACTIVITY.SKIP_ON_EXIT_CONDITION_TRUE” on page 62
v “BPC.BFM.ACTIVITY.CONDITION” on page 62
v “BPC.BFM.LINK.STATUS” on page 63
v “BPC.BFM.VARIABLE.STATUS” on page 63

BPC.BFM.BASE

BPC.BFM.BASE inherits the XML elements from WBIMonitoringEvent.

Table 22. XML elements for BPC.BFM.BASE

XML element Description

BPCEventCode The Business Process Choreographer event
code that identifies the event nature.

processTemplateName The name of the process template. This
name can differ from the display name.

processTemplateValidFrom The valid from attribute of the process
template.

eventProgressCounter The event progress counter is used to
indicate the position of the current
navigation step in the execution order of all
navigation steps of the same process
instance.

The event progress counter is required for
long-running processes, and it can be used
together with the event local counter to
recreate the (possibly incomplete) order of
the events belonging to the same process
instance. In microflows, the event progress
counter is set to zero.

Chapter 4. Event catalog 53

Table 22. XML elements for BPC.BFM.BASE (continued)

XML element Description

eventLocalCounter The local counter is used to discover the
order of two events that occur in the same
transaction. For a microflow instance, this
counter reconstructs an order of all the
emitted events. For long-running processes,
the local counter indicates an order in the
current navigation transaction.

BPC.BFM.PROCESS.BASE

BPC.BFM.PROCESS.BASE inherits the XML elements from “BPC.BFM.BASE” on
page 53.

Table 23. XML elements for BPC.BFM.PROCESS.BASE

XML element Description

processInstanceExecutionState The current execution state of the process in
the following format: <state code>-<state
name>. This attribute can have one of the
following values:

1 - STATE_READY
2 - STATE_RUNNING
3 - STATE_FINISHED
4 - STATE_COMPENSATING
5 - STATE_FAILED
6 - STATE_TERMINATED
7 - STATE_COMPENSATED
8 - STATE_TERMINATING
9 - STATE_FAILING
11 - STATE_SUSPENDED
12 - STATE_COMPENSATION_FAILED

processTemplateId The ID of the process template.

processInstanceDescription The description of the process instance.

principal The name of the user who is associated with
this event.

BPC.BFM.PROCESS.STATUS

BPC.BFM.PROCESS.STATUS inherits the XML elements from
“BPC.BFM.PROCESS.BASE.”

BPC.BFM.PROCESS.START

BPC.BFM.PROCESS.START inherits the XML elements from
“BPC.BFM.PROCESS.BASE.”

Table 24. XML elements for BPC.BFM.PROCESS.START

XML element Description

username The name of the user who requested the
start or restart of the process.

54 Monitoring

BPC.BFM.PROCESS.FAILURE

BPC.BFM.PROCESS.FAILURE inherits the XML elements from
“BPC.BFM.PROCESS.BASE” on page 54.

Table 25. XML elements for BPC.BFM.PROCESS.FAILURE

XML element Description

processFailedException The exception message that lead to the
failure of the process.

BPC.BFM.PROCESS.CORREL

BPC.BFM.PROCESS.CORREL inherits the XML elements from
“BPC.BFM.PROCESS.BASE” on page 54.

Table 26. XML elements for BPC.BFM.PROCESS.CORREL

XML element Description

correlationSet The correlation set instance, in the following
format:

<?xml version="1.0"?>
<correlationSet name=”correlation set

name”>
<property name=”property name”

value=”property value”/>*
</correlationSet>

BPC.BFM.PROCESS.WISTATUS

BPC.BFM.PROCESS.WISTATUS inherits the XML elements from
“BPC.BFM.PROCESS.BASE” on page 54.

Table 27. XML elements for BPC.BFM.PROCESS.WISTATUS

XML element Description

username The names of the users with work items that
were created or deleted.

BPC.BFM.PROCESS.WITRANSFER

BPC.BFM.PROCESS.WITRANSFER inherits the XML elements from
“BPC.BFM.PROCESS.BASE” on page 54.

Table 28. XML elements for BPC.BFM.PROCESS.WITRANSFER

XML element Description

current The user name of the current owner of the
work item. This is the user whose work item
has been transferred to someone else.

target The user name of the new owner of the
work item.

Chapter 4. Event catalog 55

BPC.BFM.PROCESS.ESCALATED

BPC.BFM.PROCESS.ESCALATED inherits the XML elements from
“BPC.BFM.PROCESS.BASE” on page 54.

Table 29. XML elements for BPC.BFM.PROCESS.ESCALATED

XML element Description

escalationName The name of the escalation.

operation This is the operation that is associated with
the event handler for which the inline
invocation task is escalated.

portTypeName The port type name of the operation that is
associated with the event handler for which
the inline invocation task is escalated.

portTypeNamespace The port type namespace of the operation
that is associated with the event handler for
which the inline invocation task is escalated.

BPC.BFM.PROCESS.EVENT

BPC.BFM.PROCESS.EVENT inherits the XML elements from
“BPC.BFM.PROCESS.BASE” on page 54.

Table 30. XML elements for BPC.BFM.PROCESS.EVENT

XML element Description

message or message_BO- The input message or the output message
for the service as a String or business object
(BO) representation. The format depends on
whether the Monitor Compatible Events
option was selected on the Event Monitor
tab in WebSphere Integration Developer.

This attribute is only used for WebSphere
Business Monitor 6.0.2 format events. For
WebSphere Business Monitor 6.1 format
events, the content of the message is written
to the applicationData section, which contains
one content element with the name set to
the name of the message.

operation Name of the operation for the received
event.

portTypeName The port type name of the operation that is
associated with the event handler.

portTypeNamespace The port type namespace of the operation
that is associated with the event handler.

BPC.BFM.PROCESS.OWNERTRANSFER

BPC.BFM.PROCESS.OWNERTRANSFER inherits the XML elements from
“BPC.BFM.PROCESS.BASE” on page 54.

56 Monitoring

Table 31. XML elements for BPC.BFM.PROCESS.OWNERTRANSFER

XML element Description

current The user name of the current owner of the
process. This is the user whose process is
transferred to someone else.

target The user name of the new owner of the
process.

BPC.BFM.PROCESS.PARTNER

BPC.BFM.PROCESS.PARTNER inherits the XML elements from
“BPC.BFM.PROCESS.BASE” on page 54.

Table 32. XML elements for BPC.BFM.PROCESS.PARTNER

XML element Description

partnerLinkName The name of the partner link.

BPC.BFM.PROCESS.CUSTOMPROPERTYSET

BPC.BFM.PROCESS.CUSTOMPROPERTYSET inherits the XML elements from
“BPC.BFM.PROCESS.BASE” on page 54.

Table 33. XML elements for BPC.BFM.PROCESS.CUSTOMPROPERTYSET

XML element Description

propertyName The name of the custom property.

propertyValue The value of the custom property.

associatedObjectID The ID of the associated object that is the
process instance ID.

associatedObjectName The name of the associated object that is the
process template name.

query If isBinary is true, this element specifies the
query string for the binary property.
Otherwise, this element is not present.

type If isBinary is true, this element specifies the
type of the binary property. Otherwise, this
element is not present.

isBinary Set to false for string custom properties, and
to true for binary custom properties. The
payload type for binary custom properties is
restricted to Empty. The property
propertyValue is omitted for binary custom
properties.

BPC.BFM.ACTIVITY.BASE

BPC.BFM.ACTIVITY.BASE inherits the XML elements from “BPC.BFM.BASE” on
page 53.

Chapter 4. Event catalog 57

Table 34. XML elements for BPC.BFM.ACTIVITY.BASE

XML element Description

activityKind The activity kind, for example, sequence or
invoke. The format is: <kind code>-<kind
name>. This attribute can have one of the
following values:

3 - KIND_EMPTY
21 - KIND_INVOKE
23 - KIND_RECEIVE
24 - KIND_REPLY
25 - KIND_THROW
26 - KIND_TERMINATE
27 - KIND_WAIT
29 - KIND_COMPENSATE
30 - KIND_SEQUENCE
32 - KIND_SWITCH
34 - KIND_WHILE
36 - KIND_PICK
38 - KIND_FLOW
40 - KIND_SCOPE
42 - KIND_SCRIPT
43 - KIND_STAFF
44 - KIND_ASSIGN
45 - KIND_CUSTOM
46 - KIND_RETHROW
47 - KIND_FOR_EACH_SERIAL
49 - KIND_FOR_EACH_PARALLEL
52 - KIND_REPEAT_UNTIL
1000 - SQLSnippet
1001 - RetrieveSet
1002 - InvokeInformationService
1003 - AtomicSQLSnippetSequence

state The current state of the activity instance in
the format: <state code>-<state name>. This
attribute can have one of the following
values:

1 - STATE_INACTIVE
2 - STATE_READY
3 - STATE_RUNNING
4 - STATE_SKIPPED
5 - STATE_FINISHED
6 - STATE_FAILED
7 - STATE_TERMINATED
8 - STATE_CLAIMED
11 - STATE_WAITING
12 - STATE_EXPIRED
13 - STATE_STOPPED

bpelId The wpc:id attribute of the activity in the
BPEL file. It is unique for activities in a
process model.

activityTemplateName The name of the activity template. this can
differ from the display name.

activityTemplateId The internal ID of the activity template.

activityInstanceDescription The description of the activity instance.

58 Monitoring

Table 34. XML elements for BPC.BFM.ACTIVITY.BASE (continued)

XML element Description

principal The name of the user who claimed the
activity.

BPC.BFM.ACTIVITY.STATUS

BPC.BFM.ACTIVITY.STATUS inherits the XML elements from
“BPC.BFM.ACTIVITY.BASE” on page 57.

Table 35. XML elements for BPC.BFM.ACTIVITY.STATUS

XML element Description

reason The stop reason code. The stop reason code
is only relevant if the activity is in the
stopped state. It indicates the reason why
the activity stopped. This attribute can have
one of the following values:

1 - STOP_REASON_UNSPECIFIED
2 - STOP_REASON_ACTIVATION_FAILED
3 - STOP_REASON_IMPLEMENTATION_
FAILED
4 - STOP_REASON_FOLLOW_ON_
NAVIGATION_FAILED

BPC.BFM.ACTIVITY.FAILURE

BPC.BFM.ACTIVITY.FAILURE inherits the XML elements from
“BPC.BFM.ACTIVITY.BASE” on page 57.

Table 36. XML elements for BPC.BFM.ACTIVITY.FAILURE

XML element Description

activityFailedException The exception that caused the activity to fail.

BPC.BFM.ACTIVITY.MESSAGE

BPC.BFM.ACTIVITY.MESSAGE inherits the XML elements from
“BPC.BFM.ACTIVITY.BASE” on page 57.

Chapter 4. Event catalog 59

Table 37. XML elements for BPC.BFM.ACTIVITY.MESSAGE

XML element Description

message or message_BO The input or the output message for the
service as a string or business object (BO)
representation. The format depends on
whether the Monitor Compatible Events
option was selected on the Event Monitor
tab in WebSphere Integration Developer.

This attribute is only used for WebSphere
Business Monitor 6.0.2 format events. For
WebSphere Business Monitor 6.1 format
events, the content of the message is written
to the applicationData section, which contains
one content element with the name set to
the name of the message.

BPC.BFM.ACTIVITY.CLAIM

BPC.BFM.ACTIVITY.CLAIM inherits the XML elements from
“BPC.BFM.ACTIVITY.BASE” on page 57.

Table 38. XML elements for BPC.BFM.ACTIVITY.CLAIM

XML element Description

username The name of the user for whom the task has
been claimed.

BPC.BFM.ACTIVITY.WISTATUS

BPC.BFM.ACTIVITY.WISTATUS inherits the XML elements from
“BPC.BFM.ACTIVITY.BASE” on page 57.

Table 39. XML elements for BPC.BFM.ACTIVITY.WISTATUS

XML element Description

username The names of the users who are associated
with the work item.

BPC.BFM.ACTIVITY.WITRANSFER

BPC.BFM.ACTIVITY.WITRANSFER inherits the XML elements from
“BPC.BFM.ACTIVITY.BASE” on page 57.

Table 40. XML elements for BPC.BFM.ACTIVITY.WITRANSFER

XML element Description

current The user name of the current owner of the
work item. This is the user whose work item
has been transferred to someone else.

target The user name of the new owner of the
work item.

60 Monitoring

BPC.BFM.ACTIVITY.FOREACH

BPC.BFM.ACTIVITY.FOREACH inherits the XML elements from
“BPC.BFM.ACTIVITY.BASE” on page 57.

Table 41. XML elements for BPC.BFM.ACTIVITY.FOREACH

XML element Description

parallelBranchesStarted The number of branches started.

BPC.BFM.ACTIVITY.ESCALATED

BPC.BFM.ACTIVITY.ESCALATED inherits the XML elements from
“BPC.BFM.ACTIVITY.BASE” on page 57.

Table 42. XML elements for BPC.BFM.ACTIVITY.ESCALATED

XML element Description

escalationName The name of the escalation.

operation This is the operation that is associated with
the event handler for which the inline
invocation task is escalated.

BPC.BFM.ACTIVITY.EVENT

BPC.BFM.ACTIVITY.EVENT inherits the XML elements from
“BPC.BFM.ACTIVITY.BASE” on page 57.

Table 43. XML elements for BPC.BFM.ACTIVITY.EVENT

XML element Description

operation The name of the operation for the received
event.

BPC.BFM.ACTIVITY.CUSTOMPROPERTYSET

BPC.BFM.ACTIVITY.CUSTOMPROPERTYSET inherits the XML elements from
“BPC.BFM.ACTIVITY.BASE” on page 57.

Table 44. XML elements for BPC.BFM.ACTIVITY.CUSTOMPROPERTYSET

XML element Description

propertyName The name of the custom property.

propertyValue The value of the custom property.

associatedObjecID The ID of the associated object that is the
activity instance ID.

associatedObjectName The name of the associated object that is the
activity template name.

query If isBinary is true, this element specifies the
query string for the binary property.
Otherwise, this element is not present.

type If isBinary is true, this element specifies the
type of the binary property. Otherwise, this
element is not present.

Chapter 4. Event catalog 61

Table 44. XML elements for BPC.BFM.ACTIVITY.CUSTOMPROPERTYSET (continued)

XML element Description

isBinary Set to false for string custom properties, and
to true for binary custom properties. The
payload type for binary custom properties is
restricted to Empty. The property
propertyValue is omitted for binary custom
properties.

BPC.BFM.ACTIVITY.JUMPED

BPC.BFM.ACTIVITY.JUMPED inherits the XML elements from
“BPC.BFM.ACTIVITY.BASE” on page 57.

Table 45. XML elements for BPC.BFM.ACTIVITY.JUMPED

XML element Description

targetName Contains the activity template name of the
target activity for the jump. The aiid
contained in the ECSCurrentId of the event
refers to the source activity of the jump.

BPC.BFM.ACTIVITY.SKIP_REQUESTED

BPC.BFM.ACTIVITY.SKIP_REQUESTED inherits the XML elements from
“BPC.BFM.ACTIVITY.BASE” on page 57.

Table 46. XML elements for BPC.BFM.ACTIVITY.SKIP_REQUESTED

XML element Description

cancel Cancel specifies whether the activity is
skipped or not to distinguish between a skip
(=false) and a cancelSkipRequest (=true) call.

BPC.BFM.ACTIVITY.SKIPPED_ON_REQUEST

BPC.BFM.ACTIVITY.SKIPPED_ON_REQUEST inherits the XML elements from
“BPC.BFM.ACTIVITY.BASE” on page 57. No further specific properties are defined
for this BPC.BFM.ACTIVITY.SKIPPED_ON_REQUEST beyond the inherited
properties

BPC.BFM.ACTIVITY.SKIP_ON_EXIT_CONDITION_TRUE

BPC.BFM.ACTIVITY.SKIP_ON_EXIT_CONDITION_TRUE inherits the XML
elements from “BPC.BFM.ACTIVITY.BASE” on page 57. No further specific
properties are defined for
BPC.BFM.ACTIVITY.SKIP_ON_EXIT_CONDITION_TRUE beyond the inherited
properties

BPC.BFM.ACTIVITY.CONDITION

BPC.BFM.ACTIVITY.CONDITION inherits the XML elements from
“BPC.BFM.ACTIVITY.BASE” on page 57.

62 Monitoring

Table 47. XML elements for BPC.BFM.ACTIVITY.CONDITION

XML element Description

branchBpelId This is set to the value of the wpc:id
attribute of the related case element, as
specified in the BPEL file. This information
is provided only for processes that are
installed with version 6.1.2 or later.

condition This specifies the condition as a string for
XPath conditions. (This property is not
present for otherwise or Java conditions.)

isForced This specifies whether the event is triggered
through the forceNavigate APIs (=true), or
in any other way (=false).

isOtherwise This specifies whether the otherwise branch
is entered (=true) or a case branch is entered
(=false).

BPC.BFM.LINK.STATUS

BPC.BFM.LINK.STATUS inherits the XML elements from “BPC.BFM.BASE” on
page 53.

Table 48. XML elements for BPC.BFM.LINK.STATUS

XML element Description

elementName The name of the link.

description The description of the link.

flowBpelId The ID of the flow activity where the link is
defined.

sourceBpelId The wpc:id attribute of the source activity
corresponding to the navigated link.

targetBpelId The wpc:id attribute of the target activity
corresponding to the navigated link.

isForced This specifies whether the event is triggered
through the forceNavigate APIs (=true), or
in any other way (=false).

BPC.BFM.VARIABLE.STATUS

BPC.BFM.VARIABLE.STATUS inherits the XML elements from “BPC.BFM.BASE”
on page 53.

Table 49. XML elements for BPC.BFM.VARIABLE.STATUS

XML element Description

variableName The name of the variable.

Chapter 4. Event catalog 63

Table 49. XML elements for BPC.BFM.VARIABLE.STATUS (continued)

XML element Description

variableData or variableData_BO If the variable variableName is not initialized,
there is no variableData or VariableData_BO
element. The variable’s data is represented
either as a String or business object (BO).
The format depends on whether the
Monitor Compatible Events option was
selected on the Event Monitor tab in
WebSphere Integration Developer.

This attribute is only used for WebSphere
Business Monitor 6.0.2 format events. For
WebSphere Business Monitor 6.1 format
events, the content of the variable is written
to the applicationData section, which contains
one content element with the name set to
the name of the variable.

bpelId The Business Process Choreographer ID for
the variable.

principal The name of the user who updated the
variable.

Related reference

Business process events
Common Base Events are emitted for business processes if monitoring is requested
for the business process elements in WebSphere Integration Developer. A process
can cause process events, activity events, activity scope events, link events, and
variable events to be emitted.
Common Base Events for business processes
Common Base Events are emitted for business processes if monitoring is requested
for the business process in WebSphere Integration Developer. A list of all the
events that can be emitted by a business process can be found here.
Common Base Events for activities
Common Base Events are emitted for activities if monitoring is requested for these
activities in WebSphere Integration Developer. A list of all the events that can be
emitted by an activity can be found here.
Common Base Events for scope activities
Common Base Events are emitted for scope activities if monitoring is requested for
these activities in WebSphere Integration Developer. A list of all the events that can
be emitted by an activity scope can be found here.
Common Base Events for links in flow activities
Common Base Events for links are emitted if monitoring is requested in
WebSphere Integration Developer for the flow activity on which the link is defined.
A list of all the events that can be emitted by a link can be found here.
Common Base Events for process variables
Common Base Events are emitted for process variables if monitoring is requested
for the business process elements in WebSphere Integration Developer. A list of all
the events that can be emitted by variables can be found here.

Business process events
Common Base Events are emitted for business processes if monitoring is requested
for the business process elements in WebSphere Integration Developer. A process
can cause process events, activity events, activity scope events, link events, and
variable events to be emitted.

64 Monitoring

All business process events can be emitted in both the CEI and the audit trail, with
the exception of the process template events. The process template events
PROCESS_INSTALLED and PROCESS_UNINSTALLED can only be emitted in the
audit trail.

The event structure is described in the XML Schema Definition (XSD) file
BFMEvents.xsd. The file can be found in the install_root\ProcessChoreographer\
client directory.
Related reference

Event data specific to business processes
In business processes, events relate to processes, activities, scopes, links, and
variables.
Situations in business process events
Business process events can be emitted in different situations. The data for these
situations is described in situation elements.
Extension names for business process events
The extension name indicates the payload of the event. A list of all the extension
names for business process events and their corresponding payload can be found
here.
Human task events
Human task events are sent if monitoring is requested for the elements of the task
in WebSphere Integration Developer. Use the information provided here for a
detailed description of all of the events, that is, task events and escalation events,
that can be emitted by human tasks.
Related information

State transition diagrams for process instances

State transition diagrams for activities

Common Base Events for business processes:

Common Base Events are emitted for business processes if monitoring is requested
for the business process in WebSphere Integration Developer. A list of all the
events that can be emitted by a business process can be found here.

State transitions and process events

The following diagram shows the state transitions that can occur for a business
process and the events that are emitted when these state changes take place. The
link between each state indicates the nature of the event and the event code of the
event that is emitted for the state transitions.

Chapter 4. Event catalog 65

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=cprocess_state
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=cactivity_state

Process events

The columns in the following table contain:

Code Contains the number of the event. For WebSphere Business Monitor 6.0.2
format events, the value is written to the Common Base Event as an
extended data element with the name BPCEventCode. For WebSphere
Business Monitor 6.1 format events, the value is written to the xs:any slot
of the Common Base Event.

Extension name
The extensionName contains a string value which defines the event specific
information that is contained in the Common Base Event. This is also the
name of the XML element that provides additional data about the event.

Situation
Refers to the situation name of the business process event.

Event nature
A pointer to the event situation for a business process element in the
EventNature parameter, as they are displayed in WebSphere Integration
Developer.

Some process events are emitted without a state change. The following table
describes all process events.

ready

running

compensation
failed

compensating

finished

failing

suspended
terminating

terminated

failed

compensating

ENTRY
(21000)

SUSPENDED
(21001)RESUMED

(21002)

DELETED
(21020)

DELETED
(21020)

DELETED
(21020)

DELETED
(21020)

DELETED
(21020)

FAILING
(42010)

FAILED
(42001)

COMPENSATING
(42046)

COMPENSATED
(42004) COMPFAILED

(42046)

TERMINATED
(21005)

EXIT
(21004)

RESTARTED
(21019)

RESTARTED
(21019)

TERMINATING
(42009)

TERMINATING
(42009)

RESTARTED
(21019)

RESUMED
(21002)

TERMINATING
(42009)

Figure 1. State transitions and process events

66 Monitoring

Table 50. Process events

Code Extension name Situation Event nature Description

21000 BPC.BFM.PROCESS.START Start ENTRY Process started

21001 BPC.BFM.PROCESS.STATUS Report SUSPENDED Process suspended. To
suspend process instances,
use Business Process
Choreographer Explorer.

21002 BPC.BFM.PROCESS.STATUS Report RESUMED Process resumed. Only
suspended processes can
be resumed. To resume
process instances, use
Business Process
Choreographer Explorer.

21004 BPC.BFM.PROCESS.STATUS Stop EXIT Process completed

21005 BPC.BFM.PROCESS.STATUS Stop TERMINATED Process terminated. To
terminate process
instances, use Business
Process Choreographer
Explorer.

21019 BPC.BFM.PROCESS.START Report RESTARTED Process restarted. A
process is restarted on
request, for example, by
using Business Process
Choreographer Explorer.

21020 BPC.BFM.PROCESS.STATUS Destroy DELETED Process deleted

42001 BPC.BFM.PROCESS. FAILURE Fail FAILED Process failed

42003 BPC.BFM.PROCESS.STATUS Report COMPENSATING Process compensating.
Only child processes can
be compensated. The
compensation of a child
process is triggered by a
fault handler or
compensation handler
associated with the parent
process.

42004 BPC.BFM.PROCESS.STATUS Stop COMPENSATED Process compensated

42009 BPC.BFM.PROCESS.STATUS Report TERMINATING Process terminating

42010 BPC.BFM.PROCESS.STATUS Report FAILING Process failing

42027 BPC.BFM.PROCESS.CORREL Report CORRELATION This event is emitted when
a new correlation set for
the process instance is
initialized, for example,
when a receive activity
with an initiating
correlation set receives a
message.

This event is not
associated with a state
change.

Chapter 4. Event catalog 67

Table 50. Process events (continued)

Code Extension name Situation Event nature Description

42041 BPC.BFM.PROCESS. WISTATUS Report WI_DELETED Process work item deleted.
This event is emitted only
when a work item is
explicitly deleted by an
API request. If the work
item is deleted because the
corresponding process
instance is deleted, an
event is not emitted.

This event is not
associated with a state
change.

42042 BPC.BFM.PROCESS. WISTATUS Report WI_CREATED Process work item created.
This event is emitted when
an additional work item is
created for the process, for
example, by an API
request.

This event is not
associated with a state
change.

42046 BPC.BFM.PROCESS.STATUS Fail COMPFAILED Process compensation
failed

42047 BPC.BFM.PROCESS.EVENT Report EV_RECEIVED Process event received.
The event is emitted when
an event handler that is
associated with a process
is activated.

This event is not
associated with a state
change.

42049 BPC.BFM.PROCESS.ESCALATED Report EV_ESCALATED Process event escalated.
This event is emitted when
an inline invocation task is
escalated that is associated
with an onEvent event
handler for the process.

This event is not
associated with a state
change.

42056 BPC.BFM.PROCESS. WITRANSFER Report WI_
TRANSFERRED

Process work item
transferred.

This event is not
associated with a state
change.

68 Monitoring

Table 50. Process events (continued)

Code Extension name Situation Event nature Description

42058 BPC.BFM.PROCESS.PARTNER Report PA_CHANGE Process partner changed.
This event is emitted when
a new endpoint reference
is assigned to a partner
link.

This event is not
associated with a state
change.

42059 BPC.BFM.PROCESS.
CUSTOMPROPERTYSET

Report CP_SET Process custom property
set. This event is emitted
when a custom property of
a process instance is
changed.

This event is not
associated with a state
change.

42071 BPC.BFM.PROCESS.OWNERTRANSFER Report OWNER_
TRANSFERRED

This event is emitted when
the ownership of a process
is transferred from one
user to another.

This event is not
associated with a state
change.

For process events, the following event correlation sphere identifiers have the
following content:
v The ECSCurrentID provides the ID of the process instance.
v The ECSParentID provides the value of the ECSCurrentID before the process

instance start event of the current process.
Related reference

Event data specific to business processes
In business processes, events relate to processes, activities, scopes, links, and
variables.
Situations in business process events
Business process events can be emitted in different situations. The data for these
situations is described in situation elements.
Extension names for business process events
The extension name indicates the payload of the event. A list of all the extension
names for business process events and their corresponding payload can be found
here.

Common Base Events for activities:

Common Base Events are emitted for activities if monitoring is requested for these
activities in WebSphere Integration Developer. A list of all the events that can be
emitted by an activity can be found here.

State transitions and activity events

The state changes and the events that are emitted depend on the type of activity:

Chapter 4. Event catalog 69

v Invoke, assign, empty, reply, rethrow, throw, terminate, and Java snippet
activities

v Pick (receive choice), wait, and receive activities

inactive

skipped

running

stopped

expired

finished

terminated

failed

ENTRY
(21007)

TERMINATED
(21027)

STOPPED
(42015)

FCOMPLETED
(42032)

SKIPPED_ON_REQUEST (42065)

FRETRIED
(42031)

STOPPED
(42015)

STOPPED
(42015)

STOPPED
(42015)

TERMINATED
(21027)

EXIT
(21011)

FAILED
(21080)

FRETRIED
(42031)

FCOMPLETED
(42032)

FCOMPLETED
(42032)

EXPIRED
(21081)

SKIPPED
(42005)

SKIPPED_ON_EXIT_CONDITION_TRUE (42070)

SKIPPED_ON_REQUEST (42065)

SKIPPED_ON_REQUEST (42065)

Figure 2. State transitions and events for invoke activities and short-lived activities

70 Monitoring

v Human task activities

inactive

skipped

waiting

stopped

expired

finished

terminated
failed

EXIT
(42036)

TERMINATED
(21027)

ENTRY
(21007)

FRETRIED
(42031)

FCOMPLETED
(42032)

STOPPED
(42015)

STOPPED
(42015)

STOPPED
(42015)

STOPPED
(42015)

STOPPED
(42015)

FAILED
(21080)

TERMINATED
(21027)

SKIPPED_ON_REQUEST
(42065)

FCOMPLETED
(42032)

SKIPPED
(42005)

EXPIRED
(21081)

FRETRIED
(42031)

SKIPPED-ON-EXIT-CONDITION-TRUE (42070)
SKIPPED-ON-REQUEST (42065)

SKIPPED (42005)

SKIPPED_ON_REQUEST
(42065)

Figure 3. State transitions and events for wait, and receive activities

Chapter 4. Event catalog 71

v Structured activities, such as flow or sequence activities

inactive

ready

terminated

stopped

expired

finished

claimed

failed

DEASSIGNED
(21021)

STOPPED
(42015)

ASSIGNED
(21022)

SKIPPED_ON_REQUEST (42065)

FRETRIED
(42031)

STOPPED
(42015)

EXPIRED
(21081)

EXIT
(21011)

TERMINATED
(21027)

FAILED
(21080)

FRETRIED
(42031)

FCOMPLETED
(42032)

SKIPPED (42005)

SKIPPED_ON_EXIT_CONDITION_TRUE (42070)

skipped

CREATED
(21006)

FAILED
(21080)

FAILED
(21080)

FCOMPLETED
(42032)

FCOMPLETED
(42032)

FRETRIED
(42031)

FCOMPLETED
(42032)

FCOMPLETED
(42032)

EXPIRED
(21081) EXPIRED

(21081)

FRETRIED
(42031)

FRETRIED
(42031)

TERMINATED
(21027)

TERMINATED
(21027)

SKIPPED_ON_REQUEST
(42065)

SKIPPED_ON_REQUEST
(42065)

SKIPPED_ON_REQUEST
(42065)

STOPPED
(42015)

STOPPED
(42015)

Figure 4. State transitions and events for human task activities

72 Monitoring

Activity events

The columns in the following table contain:

Code Contains the number of the event. For WebSphere Business Monitor 6.0.2
format events, the value is written to the Common Base Event as an
extended data element with the name BPCEventCode. For WebSphere
Business Monitor 6.1 format events, the value is written to the xs:any slot
of the Common Base Event.

Extension name
The extensionName contains a string value which defines the event specific
information that is contained in the Common Base Event. This is also the
name of the XML element that provides additional data about the event.

Situation
Refers to the situation name of the business process event.

Event nature
A pointer to the event situation for a business process element in the
EventNature parameter, as they are displayed in WebSphere Integration
Developer.

The following table describes all activity events.

Table 51. Activity events

Code Extension name Situation Event nature Description

21006 BPC.BFM.ACTIVITY.MESSAGE Start CREATED Activity ready. This event
is emitted when a human
task activity is started.

21007 For invoke activities: BPC.BFM.ACTIVITY.
MESSAGE. For all other activity types:
BPC.BFM.ACTIVITY.STATUS

Start ENTRY Activity started. For
invoke activities, a
business object payload is
available.

inactive

skipped

Running the
implementation

inside the
structured activity

stopped

finished terminated

SKIPPED
(42021)

STOPPED
(42066)

TERMINATED
(42024)

FRETRIED
(42068)

STOPPED
(42066)

STOPPED
(42066)

FCOMPLETE
(42067)

ENTRY
(42020) FCOMPLETE

(42067)
STOPPED

(42066)

Figure 5. State transitions and events for structured activities

Chapter 4. Event catalog 73

Table 51. Activity events (continued)

Code Extension name Situation Event nature Description

21011 For invoke, human task, receive, and reply
activities: BPC.BFM.ACTIVITY. MESSAGE.
For pick activities:
BPC.BFM.ACTIVITY.EVENT. For all other
activity types: BPC.BFM.ACTIVITY.STATUS

Stop EXIT Activity completed. For
invoke, human task,
receive, and reply
activities, a business object
payload is available.

21021 BPC.BFM.ACTIVITY.STATUS Report DEASSIGNED Claim canceled. This event
is emitted when the claim
for a human task activity
is canceled.

21022 BPC.BFM.ACTIVITY.CLAIM Report ASSIGNED Activity claimed. This
event is emitted when a
human task activity is
claimed.

21027 BPC.BFM.ACTIVITY.STATUS Stop TERMINATED Activity terminated.
Long-running activities
can be terminated as an
effect of fault handling on
the scope or process the
activity is assigned to.

21080 BPC.BFM.ACTIVITY.FAILURE Failed FAILED Activity failed. This event
is emitted if a fault occurs
when the activity runs and
the fault is propagated to
the fault handlers that are
defined for the enclosing
scopes or process.

21081 BPC.BFM.ACTIVITY.STATUS Report EXPIRED Activity expired. This
event applies to invoke
and human task activities
only.

42005 BPC.BFM.ACTIVITY.STATUS Report SKIPPED Activity skipped. This
event applies only to
activities that have join
behavior defined. If the
join behavior evaluates to
false, then the activity is
skipped and the skipped
event is emitted.

42012 BPC.BFM.ACTIVITY.MESSAGE Report OUTPUTSET Activity output message
set. A business object
payload is available.

This event is emitted when
the output message for a
claimed human task
activity is set without
completing the activity, for
example, to store
intermediate results. The
state of the activity does
not change.

This event is not emitted
when a human task
activity is completed.

74 Monitoring

Table 51. Activity events (continued)

Code Extension name Situation Event nature Description

42013 BPC.BFM.ACTIVITY.MESSAGE Report FAULTSET Activity fault message set.
Business object payload is
available.

This event is emitted when
a fault message for a
claimed human task
activity is set without
completing the activity.
This event is not emitted
when a human task
activity is completed with
a fault.

42015 BPC.BFM.ACTIVITY.STATUS Stop STOPPED Activity stopped. An
activity can be stopped if
an unhandled fault occurs
when the activity runs.

42031 BPC.BFM.ACTIVITY.STATUS Report FRETRIED Activity forcibly retried. To
force activities to retry, use
Business Process
Choreographer Explorer.

42032 BPC.BFM.ACTIVITY.STATUS Stop FCOMPLETED Activity forcibly
completed. To force
activities to complete use
Business Process
Choreographer Explorer.

42036 BPC.BFM.ACTIVITY.MESSAGE Report EXIT A pick (receive choice)
activity has received a
message

42037 BPC.BFM.ACTIVITY.STATUS Report CONDTRUE Loop condition true

42038 BPC.BFM.ACTIVITY.STATUS Report CONDFALSE Loop condition false

42039 BPC.BFM.ACTIVITY. WISTATUS Report WI_DELETED Work item deleted. This
event applies to pick,
human tasks, and receive
events only.

This event is emitted only
when a work item is
explicitly deleted by an
API request. If the work
item is deleted because the
corresponding process
instance is deleted, an
event is not emitted.

42040 BPC.BFM.ACTIVITY. WISTATUS Report WI_CREATED Work items created. This
event applies only to pick,
human tasks, and receive
events.

42050 BPC.BFM.ACTIVITY.ESCALATED Report ESCALATED Activity escalated. This
event applies only to pick,
human tasks, and receive
events when the escalation
associated with the human
task activity is raised.

Chapter 4. Event catalog 75

Table 51. Activity events (continued)

Code Extension name Situation Event nature Description

42054 BPC.BFM.ACTIVITY. WISTATUS Report WI_REFRESHED Activity work items
refreshed. This event
applies only to pick,
human tasks, and receive
events.

42055 BPC.BFM.ACTIVITY. WITRANSFER Report WI_
TRANSFERRED

Work item transferred.
This event applies only to
pick, human tasks, and
receive events.

42057 BPC.BFM.ACTIVITY. FOREACH Report BRANCHES_
STARTED

This event is emitted when
branches are started for a
forEach activity.

42060 BPC.BFM.ACTIVITY.
CUSTOMPROPERTYSET

Report CP_SET Activity custom property
set. This event is emitted
when a custom property of
an activity instance is
changed.

42061 BPC.BFM.ACTIVITY.CONDITION Report CONDTRUE This event is emitted when
the case condition of a
choice activity evaluates to
true. There is, at most, one
event with the case
element condition set to
true for each navigated
choice activity instance.
That is, non-entered case
elements are not honored
by an event, and otherwise
elements provoke the same
event as condition case
elements.

42062 BPC.BFM.ACTIVITY.STATUS Report ALLCONDFALSE This event is emitted when
no case element was used
and no otherwise element
exists. In this case, the
navigation continues at the
end of the choice
construct.

42063 BPC.BFM.ACTIVITY.JUMPED Report JUMPED This event is emitted after
the final activity event of
the source activity of the
jump action and before the
first event of the target
activity.

76 Monitoring

Table 51. Activity events (continued)

Code Extension name Situation Event nature Description

42064 BPC.BFM.ACTIVITY.SKIP_REQUESTED Report SKIP_
REQUESTED

Skip activity requested.
This event is emitted if the
corresponding activity is
not in an active state and a
skip or cancelSkipRequest
API is called. In this case,
the request has no
immediate effect on the
navigation. The event
contains a flag to
distinguish between a skip
and a cancelSkipRequest
call.

The ECSCurrentID for the
event to be skipped is not
set to the AIID of the
associated activity.

42065 BPC.BFM.ACTIVITY.SKIPPED_ON_
REQUEST

Report SKIPPED_ON_
REQUEST

Event skipped on request.
This event is emitted when
the navigation after an
activity that is marked for
skipping is continued.

42070 BPC.BFM.ACTIVITY.SKIP_ON_EXIT_
CONDITION_TRUE

Report SKIPPED_ON_
EXIT_
CONDITION_
TRUE

This event is emitted when
an exit condition of the
onEntry type evaluates to
true, and the activity is
skipped for this reason.

For most activity events, the following event correlation sphere identifiers have the
following content:
v The ECSCurrentID provides the ID of the activity.
v The ECSParentID provides the ID of the containing process.

For the custom property set event, the event correlation sphere identifiers indicate
the context in which the custom property was set. If, for example, the custom
property is set using an API request, the event correlation sphere identifiers are set
as for a process event. If the custom property is set in a Java snippet, the
ECSCurrentID is set to the activity instance ID of the Java snippet and the
ECSParentID is set to the process instance ID.

Chapter 4. Event catalog 77

Related reference

Event data specific to business processes
In business processes, events relate to processes, activities, scopes, links, and
variables.
Situations in business process events
Business process events can be emitted in different situations. The data for these
situations is described in situation elements.
Extension names for business process events
The extension name indicates the payload of the event. A list of all the extension
names for business process events and their corresponding payload can be found
here.

Common Base Events for scope activities:

Common Base Events are emitted for scope activities if monitoring is requested for
these activities in WebSphere Integration Developer. A list of all the events that can
be emitted by an activity scope can be found here.

State transitions and events for scope activities

The following diagram shows the state transitions that can occur for a scope
activity and the events that are emitted when these state changes take place.

Scope activity events

The columns in the following table contain:

ready

skipped

compensation
failed

failing

running

stopped

terminated

finished

compensated

compensating

failed

SKIPPED
(42021)

ENTRY
(42020)

TERMINATED
(42024)

STOPPED
(42066)

TERMINATED
(42024)

FRETRIED
(42068)

STOPPED
(42066)

STOPPED
(42066)

COMPENSATED
(42044)

COMPFAILED
(42045)

COMPENSATING
(42043)

FAILED
(42022)

FAILING
(42023) EXIT

(42026)

FCOMPLETE
(42067)

STOPPED
(42066)

Figure 6. State transitions and events for scope activities

78 Monitoring

Code Contains the number of the event. For WebSphere Business Monitor 6.0.2
format events, the value is written to the Common Base Event as an
extended data element with the name BPCEventCode. For WebSphere
Business Monitor 6.1 format events, the value is written to the xs:any slot
of the Common Base Event.

Extension name
The extensionName contains a string value which defines the event specific
information that is contained in the Common Base Event. This is also the
name of the XML element that provides additional data about the event.

Situation
Refers to the situation name of the business process event.

Event nature
A pointer to the event situation for a business process element in the
EventNature parameter, as they are displayed in WebSphere Integration
Developer.

The following table describes all scope activity events.

Table 52. Scope activity events

Code Extension name Situation Event nature Description

42020 BPC.BFM.ACTIVITY.STATUS Start ENTRY Scope started. This event is
emitted when the navigation
enters the scope instance.

42021 BPC.BFM.ACTIVITY.STATUS Report SKIPPED Scope skipped. The event
applies only to scope activities
that have join behavior
defined. The event is emitted
when the join condition of the
scope evaluates to false. The
navigation of the process
continues at the end of the
scope with dead-path
elimination.

42022 BPC.BFM.ACTIVITY.FAILURE Fail FAILED Scope failed. This event is
emitted when the process
navigation leaves the fault
handler of the scope.

42023 BPC.BFM.ACTIVITY.STATUS Report FAILING Scope failing. This event is
emitted when the process
navigation enters the fault
handling path of the scope.

42024 BPC.BFM.ACTIVITY.STATUS Stop TERMINATED Scope terminated. A scope
activity can be terminated if
the associated process is
terminated, for example, by a
terminate activity in a branch
that is parallel to the scope
activity.

42026 BPC.BFM.ACTIVITY.STATUS Stop EXIT Scope completed. This event
is emitted when the normal
navigation path of the scope
and all of the activated event
handler paths are completed.

Chapter 4. Event catalog 79

Table 52. Scope activity events (continued)

Code Extension name Situation Event nature Description

42043 BPC.BFM.ACTIVITY.STATUS Report COMPENSATING Scope compensating. This
event is emitted when the
process navigation enters the
compensation handler,
including the default
compensation handler, of the
scope.

42044 BPC.BFM.ACTIVITY.STATUS Stop COMPENSATED Scope compensated. This
event is emitted when the
compensation handler,
including default
compensation handler, of the
scope completes.

42045 BPC.BFM.ACTIVITY.STATUS Fail COMPFAILED Scope compensation failed.
This event is emitted if a fault
occurs when the
compensation handler for the
scope runs.

42048 BPC.BFM.ACTIVITY.EVENT Report EV_RECEIVED This event is emitted when a
new event handler instance is
started for the scope.

42051 BPC.BFM.ACTIVITY.ESCALATED Report EV_ESCALATED Scope event escalated. This
event is emitted when the
escalation is started that is
associated with the inline
human task of an active event
handler for the scope.

42066 BPC.BFM.ACTIVITY.STATUS Stop STOPPED Scope is stopped. A scope
instance can stop if an
unhandled fault occurs during
the activation or the follow-on
navigation of a scope.

42067 BPC.BFM.ACTIVITY.STATUS Report FCOMPLETED Scope is force completed

42068 BPC.BFM.ACTIVITY.STATUS Report FRETRIED Scope has been force retried

Activity scope events are a type of activity events, whose syntax is described above
for BPC.BFM.ACTIVITY.STATUS.

For activity scope events, the following event correlation sphere identifiers have
the following content:
v The ECSCurrentID provides the ID of the scope.
v The ECSParentID provides the ID of the containing process.

80 Monitoring

Related reference

Event data specific to business processes
In business processes, events relate to processes, activities, scopes, links, and
variables.
Situations in business process events
Business process events can be emitted in different situations. The data for these
situations is described in situation elements.
Extension names for business process events
The extension name indicates the payload of the event. A list of all the extension
names for business process events and their corresponding payload can be found
here.

Common Base Events for links in flow activities:

Common Base Events for links are emitted if monitoring is requested in
WebSphere Integration Developer for the flow activity on which the link is defined.
A list of all the events that can be emitted by a link can be found here.

The following types of events can be caused by links in flow activties.

Link events

The columns in the following table contain:

Code Contains the number of the event. For WebSphere Business Monitor 6.0.2
format events, the value is written to the Common Base Event as an
extended data element with the name BPCEventCode. For WebSphere
Business Monitor 6.1 format events, the value is written to the xs:any slot
of the Common Base Event.

Extension name
The extensionName contains a string value which defines the event specific
information that is contained in the Common Base Event. This is also the
name of the XML element that provides additional data about the event.

Situation
Refers to the situation name of the business process event.

Event nature
A pointer to the event situation for a business process element in the
EventNature parameter, as they are displayed in WebSphere Integration
Developer.

The following table describes all link events.

Table 53. Link events

Code Extension name Situation Event nature Description

21034 BPC.BFM.LINK.STATUS Report CONDTRUE Link evaluated
true

42000 BPC.BFM.LINK.STATUS Report CONDFALSE Link evaluated
false

For link events, the following event correlation sphere identifiers have the
following content:
v The ECSCurrentID provides the ID of the source activity of the link.

Chapter 4. Event catalog 81

v The ECSParentID provides the ID of the containing process.
Related reference

Event data specific to business processes
In business processes, events relate to processes, activities, scopes, links, and
variables.
Situations in business process events
Business process events can be emitted in different situations. The data for these
situations is described in situation elements.
Extension names for business process events
The extension name indicates the payload of the event. A list of all the extension
names for business process events and their corresponding payload can be found
here.

Common Base Events for process variables:

Common Base Events are emitted for process variables if monitoring is requested
for the business process elements in WebSphere Integration Developer. A list of all
the events that can be emitted by variables can be found here.

The following types of events can be caused by process variables.

Variable events

The columns in the following table contain:

Code Contains the number of the event. For WebSphere Business Monitor 6.0.2
format events, the value is written to the Common Base Event as an
extended data element with the name BPCEventCode. For WebSphere
Business Monitor 6.1 format events, the value is written to the xs:any slot
of the Common Base Event.

Extension name
The extensionName contains a string value which defines the event specific
information that is contained in the Common Base Event. This is also the
name of the XML element that provides additional data about the event.

Situation
Refers to the situation name of the business process event.

Event nature
A pointer to the event situation for a business process element in the
EventNature parameter, as they are displayed in WebSphere Integration
Developer.

The following table describes the variable events.

Table 54. Variable events

Code Extension name Situation Event nature Description

21090 BPC.BFM.VARIABLE.STATUS Report CHANGED Variable update. A
business object
payload is
available.

For the variable event, the following event correlation sphere identifiers have the
following content:
v The ECSCurrentID provides the ID of the containing process.

82 Monitoring

v The ECSParentID is the ECSCurrentID before the process instance start event of
the current process.

Related reference

Event data specific to business processes
In business processes, events relate to processes, activities, scopes, links, and
variables.
Situations in business process events
Business process events can be emitted in different situations. The data for these
situations is described in situation elements.
Extension names for business process events
The extension name indicates the payload of the event. A list of all the extension
names for business process events and their corresponding payload can be found
here.

Situations in business process events
Business process events can be emitted in different situations. The data for these
situations is described in situation elements.

Business process events can contain one of the following situation elements.

Situation
name

Content of the Common Base Event

Start categoryName is set to StartSituation.

situationType

Type StartSituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

situationQualifier START_COMPLETED

Stop categoryName is set to StopSituation.

situationType

Type StopSituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

situationQualifier STOP_COMPLETED

Destroy categoryName is set to DestroySituation.

situationType

Type DestroySituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

Fail categoryName is set to StopSituation.

situationType

Type StopSituation

reasoningScope EXTERNAL

successDisposition UNSUCCESSFUL

situationQualifier STOP_COMPLETED

Chapter 4. Event catalog 83

Situation
name

Content of the Common Base Event

Report categoryName is set to ReportSituation.

situationType

Type ReportSituation

reasoningScope EXTERNAL

reportCategory STATUS

Related reference

Business process events
Common Base Events are emitted for business processes if monitoring is requested
for the business process elements in WebSphere Integration Developer. A process
can cause process events, activity events, activity scope events, link events, and
variable events to be emitted.
Common Base Events for business processes
Common Base Events are emitted for business processes if monitoring is requested
for the business process in WebSphere Integration Developer. A list of all the
events that can be emitted by a business process can be found here.
Common Base Events for activities
Common Base Events are emitted for activities if monitoring is requested for these
activities in WebSphere Integration Developer. A list of all the events that can be
emitted by an activity can be found here.
Common Base Events for scope activities
Common Base Events are emitted for scope activities if monitoring is requested for
these activities in WebSphere Integration Developer. A list of all the events that can
be emitted by an activity scope can be found here.
Common Base Events for links in flow activities
Common Base Events for links are emitted if monitoring is requested in
WebSphere Integration Developer for the flow activity on which the link is defined.
A list of all the events that can be emitted by a link can be found here.
Common Base Events for process variables
Common Base Events are emitted for process variables if monitoring is requested
for the business process elements in WebSphere Integration Developer. A list of all
the events that can be emitted by variables can be found here.

Human task events overview
Events that are emitted on behalf of human tasks consist of situation-independent
data and data that is specific to human task events. The attributes and elements
that are specific to human task events are described.

Human task events can have the following categories of event content.

Event data specific to human tasks
Events are created on behalf of tasks and escalations.

The events can have one of the following formats:

WebSphere Business Monitor 6.0.2 format
WebSphere Business Monitor 6.0.2 format events occur when there are
tasks modeled in WebSphere Integration Developer 6.0.2, or if the
WebSphere Business Monitor 6.0.2 format (legacy XML) is enabled in

84 Monitoring

WebSphere Integration Developer 6.1, or later. If not specified otherwise,
the object-specific content for these events is written as extendedDataElement
XML elements of the type string.

WebSphere Business Monitor 6.1 format
WebSphere Business Monitor 6.1 format events occur when there are tasks
modeled in WebSphere Integration Developer 6.1, or later, and the
WebSphere Business Monitor 6.1 format (XML schema support) is enabled.
The object-specific content for these events is written as XML elements in
the xs:any slot in the eventPointData folder of the Common Base Event.
The structure of the XML is defined in the XML Schema Definition (XSD)
file HTMEvents.xsd. The file can be found in the install_root\
ProcessChoreographer\client directory.

Related reference

Human task events
Human task events are sent if monitoring is requested for the elements of the task
in WebSphere Integration Developer. Use the information provided here for a
detailed description of all of the events, that is, task events and escalation events,
that can be emitted by human tasks.

Extension names for human task events
The extension name indicates the payload of the human task event. A list of all the
extension names for human task events and their corresponding payload can be
found here.

The extension name contains the string value that is used as the value of the
extensionName attribute of the Common Base Event. This is also the name of the
XML element that provides additional data about the event. The names of event
elements are in uppercase, for example BPC.HTM.BASE, and the names of XML
elements are in mixed case, for example, HTMEventCode. Except where indicated,
all data elements are of the type string.

The following extension names are available for human task events:
v “BPC.HTM.BASE” on page 86
v “BPC.HTM.TASK.BASE” on page 86
v “BPC.HTM.TASK.STATUS” on page 86
v “BPC.HTM.TASK.FOLLOW” on page 86
v “BPC.HTM.TASK.MESSAGE” on page 86
v “BPC.HTM.TASK.INTERACT” on page 87
v “BPC.HTM.TASK.FAILURE” on page 87
v “BPC.HTM.TASK.WISTATUS” on page 87
v “BPC.HTM.TASK.WITRANSFER” on page 87
v “BPC.HTM.TASK.CUSTOMPROPERTYSET” on page 88
v “BPC.HTM.ESCALATION.BASE” on page 88
v “BPC.HTM.ESCALATION.STATUS” on page 88
v “BPC.HTM.ESCALATION.WISTATUS” on page 89
v “BPC.HTM.ESCALATION.WITRANSFER” on page 89
v “BPC.HTM.ESCALATION.CUSTOMPROPERTYSET” on page 89

Chapter 4. Event catalog 85

BPC.HTM.BASE

BPC.HTM.BASE inherits the XML elements from WBIMonitoringEvent.

Table 55. XML elements for BPC.HTM.BASE

XML element Description

HTMEventCode The Business Process Choreographer event
code that identifies the number of the event
type. Possible event codes are listed in the
following tables.

taskTemplateId The ID of the template.

taskTemplateName The name of the task template. This can
differ from the display name.

taskTemplateValidFrom The date and time from when the task
template is valid.

BPC.HTM.TASK.BASE

BPC.HTM.TASK.BASE inherits the XML elements from “BPC.HTM.BASE.”

Table 56. XML elements for BPC.HTM.TASK.BASE

XML element Description

taskInstanceDescription The description of the task.

BPC.HTM.TASK.STATUS

BPC.HTM.TASK.STATUS inherits the XML elements from “BPC.HTM.TASK.BASE.”
No further specific properties are defined for BPC.HTM.TASK.STATUS beyond the
inherited properties.

BPC.HTM.TASK.FOLLOW

BPC.HTM.TASK.FOLLOW inherits the XML elements from
“BPC.HTM.TASK.BASE.”

Table 57. XML elements for BPC.HTM.TASK.FOLLOW

XML element Description

followTaskId The ID of the task that was started as a
follow-on task.

BPC.HTM.TASK.MESSAGE

BPC.HTM.TASK.MESSAGE inherits the XML elements from
“BPC.HTM.TASK.BASE.”

86 Monitoring

Table 58. XML elements for BPC.HTM.TASK.MESSAGE

XML element Description

message or message_BO A String or business object representation
that contains the input or output message.
The format depends on whether the
Monitor Compatible Events option was
selected on the Event Monitor tab in
WebSphere Integration Developer.

This attribute is only used for WebSphere
Business Monitor 6.0.2 format events. For
WebSphere Business Monitor 6.1 format
events, the content of the message is written
to the applicationData section, which contains
one content element with the name set to
the name of the message.

BPC.HTM.TASK.INTERACT

BPC.HTM.TASK.INTERACT inherits the XML elements from
“BPC.HTM.TASK.BASE” on page 86.

Table 59. XML elements for BPC.HTM.TASK.INTERACT

XML element Description

username The name of the user that is associated with
the task.

BPC.HTM.TASK.FAILURE

BPC.HTM.TASK.FAILURE inherits the XML elements from
“BPC.HTM.TASK.BASE” on page 86.

Table 60. XML elements for BPC.HTM.TASK.FAILURE

XML element Description

taskFailedException A string containing the faultNameSpace and
faultName separated by a semicolon (;).

BPC.HTM.TASK.WISTATUS

BPC.HTM.TASK.WISTATUS inherits the XML elements from
“BPC.HTM.TASK.BASE” on page 86.

Table 61. XML elements for BPC.HTM.TASK.WISTATUS

XML element Description

username The names of the users who have work
items that were created or deleted.

BPC.HTM.TASK.WITRANSFER

BPC.HTM.TASK.WITRANSFER inherits the XML elements from
“BPC.HTM.TASK.BASE” on page 86.

Chapter 4. Event catalog 87

Table 62. XML elements for BPC.HTM.TASK.WITRANSFER

XML element Description

current The name of the current user. This is the
user whose work item was transferred to
someone else.

target The name of the user of the work item
receiver.

BPC.HTM.TASK.CUSTOMPROPERTYSET

BPC.HTM.TASK.CUSTOMPROPERTYSET inherits the XML elements from
“BPC.HTM.TASK.BASE” on page 86.

Table 63. XML elements for BPC.HTM.TASK.CUSTOMPROPERTYSET

XML element Description

username The name of the user who set the custom
property.

propertyName The name of the custom property.

propertyValue The value of the custom property.

associatedObjectID The ID of the associated object that is the
task instance ID.

query If isBinary is true, this element specifies the
query string for the binary property.
Otherwise, this element is not present.

type If isBinary is true, this element specifies the
type of the binary property. Otherwise, this
element is not present.

isBinary Set to false for string custom properties, and
to true for binary custom properties. The
payload type for binary custom properties is
restricted to Empty. The property
propertyValue is omitted for binary custom
properties.

BPC.HTM.ESCALATION.BASE

BPC.HTM.ESCALATION.BASE inherits the XML elements from “BPC.HTM.BASE”
on page 86.

Table 64. XML elements for BPC.HTM.ESCALATION.BASE

XML element Description

escalationName The name of the escalation.

escalationInstanceDescription The description of the escalation.

BPC.HTM.ESCALATION.STATUS

BPC.HTM.ESCALATION.STATUS inherits the XML elements from
“BPC.HTM.ESCALATION.BASE.” No further specific properties are defined for
BPC.HTM.ESCALATION.STATUS beyond the inherited properties.

88 Monitoring

BPC.HTM.ESCALATION.WISTATUS

BPC.HTM.ESCALATION.WISTATUS inherits the XML elements from
“BPC.HTM.ESCALATION.BASE” on page 88.

Table 65. XML elements for BPC.HTM.ESCALATION.WISTATUS

XML element Description

username The names of the users who have work
items that are escalated.

BPC.HTM.ESCALATION.WITRANSFER

BPC.HTM.ESCALATION.WITRANSFER inherits the XML elements from
“BPC.HTM.ESCALATION.BASE” on page 88.

Table 66. XML elements for BPC.HTM.ESCALATION.WITRANSFER

XML element Description

current The name of the current user. This is the
user whose work item was transferred to
someone else.

target The name of the user of the work item
receiver.

BPC.HTM.ESCALATION.CUSTOMPROPERTYSET

BPC.HTM.ESCALATION.CUSTOMPROPERTYSET inherits the XML elements from
“BPC.HTM.ESCALATION.BASE” on page 88.

Table 67. XML elements for BPC.HTM.ESCALATION.CUSTOMPROPERTYSET

XML element Description

username The name of the user who set the custom
property.

propertyName The name of the custom property.

propertyValue The value of the custom property.

associatedObjectID The ID of the associated object that is the
escalation instance ID.

query If isBinary is true, this element specifies the
query string for the binary property.
Otherwise, this element is not present.

type If isBinary is true, this element specifies the
type of the binary property. Otherwise, this
element is not present.

isBinary Set to false for string custom properties, and
to true for binary custom properties. The
payload type for binary custom properties is
restricted to Empty. The property
propertyValue is omitted for binary custom
properties.

Chapter 4. Event catalog 89

Related reference

Human task events
Human task events are sent if monitoring is requested for the elements of the task
in WebSphere Integration Developer. Use the information provided here for a
detailed description of all of the events, that is, task events and escalation events,
that can be emitted by human tasks.

Human task events
Human task events are sent if monitoring is requested for the elements of the task
in WebSphere Integration Developer. Use the information provided here for a
detailed description of all of the events, that is, task events and escalation events,
that can be emitted by human tasks.

An event is emitted when the state of a task changes. The following types of
events can be caused by human tasks:
v “Task events” on page 91
v “Escalation events” on page 92

Note: Events are only emitted for ad-hoc tasks if the business relevance flag is set
to true in the task model.

Events for inline tasks are emitted as activity events. For a list of these events, see
“Business process events” on page 64.

All human task events can be emitted in both the CEI and the audit trail, with the
exception of the task template events. The task template events
TASK_TEMPLATE_INSTALLED and TASK_TEMPLATE_UNINSTALLED can only
be emitted in the audit trail.

XML Schema Definition (XSD) files

The event structure is described in the XML Schema Definition (XSD) file
HTMEvents.xsd. The file can be found in the install_root\ProcessChoreographer\
client directory.

Key to table columns

The columns in the following tables contain:

Code Contains the number of the event. For WebSphere Business Monitor 6.0.2
format events, the value is written to the Common Base Event as an
extended data element with the name HTMEventCode. For WebSphere
Business Monitor 6.1 format events, the value is written to the xs:any slot
of the Common Base Event.

Extension name
Contains the string value that is used as the value of the extensionName
attribute of the Common Base Event.

If WebSphere Business Integration Modeler is used to create the underlying
task model, the extension name for events that contain message data in
their payload can be extended by a hash character (#) followed by
additional characters. These additional characters are used to distinguish
Common Base Events that carry different message objects. Events that emit
message data also contain additional nested extendedDataElements in
order to report the contents of the data object. Refer to the documentation
for WebSphere Business Integration Modeler for more information.

90 Monitoring

Situation
Refers to the situation name of the human task event. For details of
situations, see “Situations in human task events” on page 93.

Event nature
A pointer to the event situation for a business process element in the
EventNature parameter, as they are displayed in WebSphere Integration
Developer.

Task events

The following table describes all task events.

Code Extension name Situation Event nature Description

51001 BPC.HTM.TASK. INTERACT Report CREATED Task created

51002 BPC.HTM.TASK.STATUS Destroy DELETED Task deleted

51003 BPC.HTM.TASK.STATUS Start ENTRY Task started

51004 BPC.HTM.TASK.STATUS Stop EXIT Task completed

51005 BPC.HTM.TASK.STATUS Report DEASSIGNED Claim canceled

51006 BPC.HTM.TASK. INTERACT Report ASSIGNED Task claimed

51007 BPC.HTM.TASK.STATUS Stop TERMINATED Task terminated

51008 BPC.HTM.TASK. FAILURE Fail FAILED Task failed

51009 BPC.HTM.TASK.STATUS Report EXPIRED Task expired

51010 BPC.HTM.TASK.STATUS Report WAITFORSUBTASK Waiting for subtasks

51011 BPC.HTM.TASK.STATUS Stop SUBTASKCOMPLETED Subtasks completed

51012 BPC.HTM.TASK.STATUS Report RESTARTED Task restarted

51013 BPC.HTM.TASK.STATUS Report SUSPENDED Task suspended

51014 BPC.HTM.TASK.STATUS Report RESUMED Task resumed

51015 BPC.HTM.TASK. FOLLOW Report COMPLETEDFOLLOW Task completed and
follow-on task
started

51101 BPC.HTM.TASK.STATUS Report UPDATED Task properties
updated

51102 BPC.HTM.TASK. MESSAGE Report INPUTSET Input message
updated. Business
object payload is
available.

51103 BPC.HTM.TASK. MESSAGE Report OUTPUTSET Output message
updated. Business
object payload is
available.

51104 BPC.HTM.TASK. MESSAGE Report FAULTSET Fault message
updated. Business
object payload is
available.

51201 BPC.HTM.TASK. WISTATUS Destroy WI_DELETED Work item deleted

51202 BPC.HTM.TASK. WISTATUS Report WI_CREATED Work items created

51204 BPC.HTM.TASK. WITRANSFER Report WI_TRANSFERRED Work item
transferred

Chapter 4. Event catalog 91

Code Extension name Situation Event nature Description

51205 BPC.HTM.TASK. WISTATUS Report WI_REFRESHED Work items
refreshed

51301 BPC.HTM.TASK.
CUSTOMPROPERTYSET

Report CP_SET Custom property
set. This event is
generated when a
custom property of
a task instance is
changed.

For task events, the following identifiers of event correlation spheres have the
following content:
v The ESCcurrentID provides the ID of the task instance.
v The ECSParentID is the ECSCurrentID before the task instance event.

Escalation events

The following table describes all task escalation events.

Code Extension name Situation Event nature Description

53001 BPC.HTM.ESCALATION. STATUS Report ENTRY Escalation fired

53201 BPC.HTM.ESCALATION. WISTATUS Destroy WI_DELETED Work item deleted

53202 BPC.HTM.ESCALATION. WISTATUS Report WI_CREATED Work item created

53204 BPC.HTM.ESCALATION. WITRANSFER Report WI_TRANS-
FERRED

Escalation transferred

53205 BPC.HTM.ESCALATION. WISTATUS Report WI_REFRESH-
ED

Work item refreshed

51302 BPC.HTM.ESCALATION.
CUSTOMPROPERTYSET

Report CP_SET Custom property set.
This event is generated
when a custom
property of an
escalation instance is
changed.

For task events, the following identifiers of event correlation spheres have the
following content:
v The ESCcurrentID provides the ID of the escalation.
v The ECSParentID provides the ID of the associated task instance.

92 Monitoring

Related reference

Event data specific to human tasks
Events are created on behalf of tasks and escalations.
Extension names for human task events
The extension name indicates the payload of the human task event. A list of all the
extension names for human task events and their corresponding payload can be
found here.
Situations in human task events
Human task events can be emitted in different situations. The data for these
situations are described in situation elements.
Business process events
Common Base Events are emitted for business processes if monitoring is requested
for the business process elements in WebSphere Integration Developer. A process
can cause process events, activity events, activity scope events, link events, and
variable events to be emitted.
Related information

Life cycle of human tasks

State transition diagram for activities

Situations in human task events
Human task events can be emitted in different situations. The data for these
situations are described in situation elements.

Human task events can contain one of the following situation elements.

Situation
name

Content of the Common Base Event

Start categoryName is set to StartSituation.

situationType

Type StartSituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

situationQualifier START_COMPLETED

Stop categoryName is set to StopSituation.

situationType

Type StopSituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

situationQualifier STOP_COMPLETED

Destroy categoryName is set to DestroySituation.

situationType

Type DestroySituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

Chapter 4. Event catalog 93

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=ctasklifecycle
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=wbpm620&product=wps-dist&topic=cactivity_state

Situation
name

Content of the Common Base Event

Fail categoryName is set to StopSituation.

situationType

Type StopSituation

reasoningScope EXTERNAL

successDisposition UNSUCCESSFUL

situationQualifier STOP_COMPLETED

Report categoryName is set to ReportSituation.

situationType

Type ReportSituation

reasoningScope EXTERNAL

reportCategory STATUS

Related reference

Human task events
Human task events are sent if monitoring is requested for the elements of the task
in WebSphere Integration Developer. Use the information provided here for a
detailed description of all of the events, that is, task events and escalation events,
that can be emitted by human tasks.

WebSphere Process Server events
WebSphere Process Server features its own service components, and each of these
components has its own set of event points that can be monitored.

Service components contain one or more elements, which are sets of different steps
processed in each service component. In turn, each element has its own set of
event natures, that are key points that are reached when processing a service
component element. All service components, their elements and associated event
natures, and the extended data elements unique to each event are listed.

Resource Adapter events
The event types available for the resource adapter component are listed.

The elements of the resource adapter component (base name eis:WBI.JCAAdapter)
that can be monitored are listed here, along with their associated event natures,
event names, and the extended data elements that are unique to each event.

Event Name Event Natures Event Contents Type

InboundEventRetrieval element

eis:WBI.JCAAdapter.
InboundEventRetrieval. ENTRY

ENTRY

pollQuantity int

status int

eventTypeFilters string

eis:WBI.JCAAdapter.
InboundEventRetrieval. EXIT

EXIT N/A

eis:WBI.JCAAdapter.
InboundEventRetrieval. FAILURE

FAILURE FailureReason exception

InboundEventDelivery element

94 Monitoring

Event Name Event Natures Event Contents Type

eis:WBI.JCAAdapter.
InboundEventDelivery.ENTRY

ENTRY N/A

eis:WBI.JCAAdapter.
InboundEventDelivery.EXIT

EXIT N/A

eis:WBI.JCAAdapter.
InboundEventDelivery.FAILURE

FAILURE FailureReason exception

Outbound element

eis:WBI.JCAAdapter.
Outbound.ENTRY

ENTRY N/A

eis:WBI.JCAAdapter. Outbound.EXIT EXIT N/A

eis:WBI.JCAAdapter.
Outbound.FAILURE

FAILURE FailureReason exception

InboundCallbackAsyncDeliverEvent element

eis:WBI.JCAAdapter.
InboundCallbackAsyncDeliverEvent.
ENTRY

ENTRY N/A

eis:WBI.JCAAdapter.
InboundCallbackAsyncDeliverEvent.
EXIT

EXIT N/A

eis:WBI.JCAAdapter.
InboundCallbackAsyncDeliverEvent.
FAILURE

FAILURE FailureReason exception

InboundCallbackSyncDeliverEvent element

eis:WBI.JCAAdapter.
InboundCallbackSyncDeliverEvent.
ENTRY

ENTRY N/A

eis:WBI.JCAAdapter.
InboundCallbackSyncDeliverEvent.
EXIT

EXIT N/A

eis:WBI.JCAAdapter.
InboundCallbackSyncDeliverEvent.
FAILURE

FAILURE FailureReason exception

Polling element

eis:WBI.JCAAdapter.
Polling.STARTED

STARTED
PollFrequency int

PollQuantity int

eis:WBI.JCAAdapter.
Polling.STOPPED

STOPPED N/A

Delivery element

eis:WBI.JCAAdapter. Delivery.EXIT EXIT N/A

eis:WBI.JCAAdapter.
Delivery.FAILURE

FAILURE
EventID string

FailureReason exception

Retrieval element

eis:WBI.JCAAdapter.
Retrieval.FAILURE

FAILURE
EventID string

FailureReason exception

Endpoint element

eis:WBI.JCAAdapter.
Endpoint.FAILURE

FAILURE
FailureReason exception

Chapter 4. Event catalog 95

Event Name Event Natures Event Contents Type

Recovery element

eis:WBI.JCAAdapter. Recovery.EXIT EXIT N/A

eis:WBI.JCAAdapter.
Recovery.FAILURE

FAILURE
FailureReason exception

EventFailure element

eis:WBI.JCAAdapter.
EventFailure.FAILURE

FAILURE
FailureReason exception

Connection element

eis:WBI.JCAAdapter.
Connection.FAILURE

FAILURE
FailureReason exception

Business rule events
The event types available for the business rule component are listed.

The business rule component (base name br:WBI.BR) contains a single element that
can be monitored. All event types for this element are listed here, with their
associated event natures, event names, and the extended data elements that are
unique to each event.

Event Name Event Nature Event Contents Type

br:WBI.BR.ENTRY ENTRY operationName string

br:WBI.BR.EXIT EXIT operationName string

br:WBI.BR.FAILURE FAILURE
ErrorReport Exception

operationName string

WBI.BR.
br:SelectionKeyExtracted

SelectionKeyExtracted operationName string

br:WBI.BR.TargetFound TargetFound
operationName string

target string

Business state machine events
The event types available for the business state machine component are listed.

The elements from the business state machine component (base name bsm:WBI.BSM)
that can be monitored are listed here, along with their associated event natures,
event names, and all extended data elements that are unique to each event.

Event Name Event Nature Event Contents Type

StateMachineDefinition element

bsm:WBI.BSM.
StateMachineDefinition.
ALLOCATED

ALLOCATED instanceID string

bsm:WBI.BSM.
StateMachineDefinition. RELEASED

RELEASED instanceID string

Transition element

bsm:WBI.BSM.Transition.ENTRY ENTRY
instanceID string

name string

96 Monitoring

Event Name Event Nature Event Contents Type

bsm:WBI.BSM.Transition.EXIT EXIT
instanceID string

name string

bsm:WBI.BSM.Transition.FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

State element

bsm:WBI.BSM.State.ENTRY ENTRY
instanceID string

name string

bsm:WBI.BSM.State.EXIT EXIT
instanceID string

name string

bsm:WBI.BSM.State.FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

Guard element

bsm:WBI.BSM.Guard.ENTRY ENTRY
instanceID string

name string

bsm:WBI.BSM.Guard.EXIT EXIT

instanceID string

name string

result boolean

bsm:WBI.BSM.Guard.FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

Action element

bsm:WBI.BSM.Action.ENTRY ENTRY
instanceID string

name string

bsm:WBI.BSM.Action.EXIT EXIT
instanceID string

name string

bsm:WBI.BSM.Action.FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

EntryAction element

bsm:WBI.BSM.EntryAction. ENTRY ENTRY
instanceID string

name string

bsm:WBI.BSM.EntryAction. EXIT EXIT
instanceID string

name string

bsm:WBI.BSM.EntryAction.
FAILURE

FAILURE

ErrorReport Exception

instanceID string

name string

ExitAction element

bsm:WBI.BSM.ExitAction.ENTRY ENTRY
instanceID string

name string

Chapter 4. Event catalog 97

Event Name Event Nature Event Contents Type

bsm:WBI.BSM.ExitAction.EXIT EXIT
instanceID string

name string

bsm:WBI.BSM.ExitAction. FAILURE FAILURE

ErrorReport Exception

instanceID string

name string

Timer element

bsm:WBI.BSM.Timer.START START

instanceID string

name string

duration string

bsm:WBI.BSM.Timer.STOPPED STOPPED

instanceID string

name string

duration string

Map events
The event types available for the map component are listed.

The elements from the map component (base name map:WBI.MAP) that can be
monitored are listed here, along with their event natures, event names, and all
extended data elements that are unique to each event.

Table 68. Base element

Event Name Event Nature
Event
Contents Type

map:WBI.MAP.ENTRY ENTRY N/A N/A

map:WBI.MAP.EXIT EXIT N/A N/A

map:WBI.MAP.FAILURE FAILURE FailureReason Exception

Transformation element

map:WBI.MAP.Transformation. ENTRY ENTRY N/A N/A

map:WBI.MAP.Transformation. EXIT EXIT N/A N/A

map:WBI.MAP.Transformation. FAILURE FAILURE FailureReason Exception

Mediation events
The event types available for the mediation component are listed.

The elements from the mediation component (base name ifm:WBI.MEDIATION) that
can be monitored are listed here, along with their associated event natures, names,
and all extended data elements that are unique to each event.

Event Name Event Nature Event Contents Type

OperationBinding element

ifm:WBI.MEDIATION.
OperationBinding.ENTRY

ENTRY

InteractionType string

TicketID string

Source string

Target string

98 Monitoring

Event Name Event Nature Event Contents Type

ifm:WBI.MEDIATION.
OperationBinding.EXIT

EXIT

InteractionType string

TicketID string

Source string

Target string

ifm:WBI.MEDIATION.
OperationBinding.FAILURE

FAILURE

InteractionType string

TicketID string

Source string

Target string

ErrorReport Exception

ParameterMediation element

ifm:WBI.MEDIATION.
ParameterMediation. ENTRY

ENTRY
Type string

TransformName string

WBI.MEDIATION.
ParameterMediation. EXIT

EXIT
Type string

TransformName string

ifm:WBI.MEDIATION.
ParameterMediation. FAILURE

FAILURE

Type string

TransformName string

ErrorReport Exception

Recovery events
The event types available for the recovery component are listed.

The recovery component (base name recovery:WBI.Recovery) contains a single
element that can be monitored. All event types for this element are listed here,
along with their associated event natures, event names, and the extended data
elements that are unique to each event.

Event Name Event Nature Event Contents Type

recovery:WBI.Recovery.
FAILURE

FAILURE

MsgId string

DestModuleName string

DestComponentName string

DestMethodName string

SourceModuleName string

SourceComponentName string

ResubmitDestination string

ExceptionDetails string

SessionId string

FailureTime dateTime

ExpirationTime dateTime

Status int

MessageBody byteArray

Deliverable boolean

Chapter 4. Event catalog 99

Event Name Event Nature Event Contents Type

recovery:WBI.Recovery.
DEADLOOP

DEADLOOP

DeadloopMsgId string

SIBusName string

QueueName string

Reason string

recovery:WBI.Recovery.
RESUBMIT

RESUBMIT

MsgId string

OriginalMesId string

ResubmitCount int

Description string

recovery:WBI.Recovery.
DELETE

DELETE

MsgId string

deleteTime dateTime

Description string

Service Component Architecture events
The event types available for the Service Component Architecture are listed.

The Service Component Architecture (SCA) contains a single element, with a base
name of sca:WBI.SCA.MethodInvocation. All the events and associated natures of
this element are listed here, along with all extended data elements and that are
unique to each event.

Note: These events should not be confused with the SCA-specific ARM
performance statistics.

Event Name Event Nature Event Contents Type

WBI.SCA. MethodInvocation.
ENTRY

ENTRY

SOURCE COMPONENT string

SOURCE INTERFACE string

SOURCE METHOD string

SOURCE MODULE string

SOURCE REFERENCE string

TARGET COMPONENT string

TARGET INTERFACE string

TARGET METHOD string

TARGET MODULE string

WBI.SCA. MethodInvocation.
EXIT

EXIT

SOURCE COMPONENT string

SOURCE INTERFACE string

SOURCE METHOD string

SOURCE MODULE string

SOURCE REFERENCE string

TARGET COMPONENT string

TARGET INTERFACE string

TARGET METHOD string

TARGET MODULE string

100 Monitoring

Event Name Event Nature Event Contents Type

WBI.SCA. MethodInvocation.
FAILURE

FAILURE

SOURCE COMPONENT string

SOURCE INTERFACE string

SOURCE METHOD string

SOURCE MODULE string

SOURCE REFERENCE string

TARGET COMPONENT string

TARGET INTERFACE string

TARGET METHOD string

TARGET MODULE string

Exception string

Selector events
The event types available for the Selector component are listed.

The selector component contains a single element that can be monitored. All event
types for this element are listed here, along with their associated event natures,
event names, and the extended data elements that are unique to each event. All
selector events have a base name of sel:WBI.SEL.

Event Name Event Nature Event Contents Type

sel:WBI.SEL.ENTRY ENTRY operationName string

sel:WBI.SEL.EXIT EXIT operationName string

sel:WBI.SEL.FAILURE FAILURE
ErrorReport Exception

operationName string

sel:WBI.SEL.
SelectionKeyExtracted

SelectionKeyExtracted
operationName string

sel:WBI.SEL.TargetFound TargetFound
operationName string

target string

Chapter 4. Event catalog 101

102 Monitoring

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006, 2009 103

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
1001 Hillsdale Blvd., Suite 400
Foster City, CA 94404
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

104 Monitoring

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows: (c) (your company name) (year). Portions of
this code are derived from IBM Corp. Sample Programs. (c) Copyright IBM Corp.
enter the year or years. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create
application software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (R or TM), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at ″Copyright and trademark information″ at www.ibm.com/legal/
copytrade.shtml.

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries,
or both.

Other company, product, or service names may be trademarks or service marks of
others.

This product includes software developed by the Eclipse Project
(http://www.eclipse.org).

IBM WebSphere Process Server for Multiplatforms, Version 6.2

Notices 105

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.eclipse.org

106 Monitoring

����

Printed in USA

	PDF books and the information center
	Contents
	Chapter 1. Service component monitoring overview
	Common Event Infrastructure
	Common Base Event model

	Why use monitoring?
	What do you monitor?
	How do you enable monitoring?

	Chapter 2. Enabling and configuring service component monitoring
	Monitoring performance
	Performance Monitoring Infrastructure statistics
	Enabling PMI using the administrative console
	Event performance statistics
	Specifying performance statistics to monitor
	Tutorial: Service component performance monitoring

	Application Response Measurement statistics for the Service Component Architecture
	Synchronous invocations
	Deferred response with synchronous implementation
	Deferred response with asynchronous implementation
	Deferred response with asynchronous result retrieve
	Asynchronous callback with synchronous implementation
	Asynchronous callback with asynchronous implementation
	Asynchronous one-way with synchronous implementation
	Asynchronous one-way with asynchronous implementation

	Monitoring service component events
	Enabling monitoring of business process and human task events
	Configuring logging for service component events
	Enabling the diagnostic trace service
	Configuring logging properties using the administrative console
	Tutorial: Logging service component events
	Audit logging for business rules and selectors

	Monitoring service components with the Common Event Infrastructure server
	Configuring service component event monitoring using the administrative console
	Tutorial: Using the Common Event Infrastructure server for event monitoring

	Session monitoring

	Chapter 3. Viewing monitored events
	Viewing performance metrics with the Tivoli Performance Viewer
	Viewing and interpreting service component event log files
	Viewing events with the Common Base Event browser
	Specifying the events to view
	Working with events returned from the event browser
	Troubleshooting the Common Base Event browser

	Chapter 4. Event catalog
	The Common Base Event standard elements
	Business objects in events
	Business Process Choreographer events
	Business process events overview
	Event data specific to business processes
	Extension names for business process events
	Business process events
	Situations in business process events

	Human task events overview
	Event data specific to human tasks
	Extension names for human task events
	Human task events
	Situations in human task events

	WebSphere Process Server events
	Resource Adapter events
	Business rule events
	Business state machine events
	Map events
	Mediation events
	Recovery events
	Service Component Architecture events
	Selector events

	Notices

