
WebSphere® Process Server for Multiplatforms

Developing and Deploying Modules

Version 6.1.0

���

WebSphere® Process Server for Multiplatforms

Developing and Deploying Modules

Version 6.1.0

���

Note

Before using this information, be sure to read the general information in the Notices section at the end of this document.

1 February 2008

This edition applies to version 6, release 1, modification 0 of WebSphere Process Server for Multiplatforms (product

number 5724-L01) and to all subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, send an e-mail message to doc-comments@us.ibm.com. We look

forward to hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2005, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures v

Tables vii

Part 1. Developing applications . . . 1

Chapter 1. Overview of developing

modules 3

Developing service modules 4

Developing service components 5

Invoking components 7

Overview of isolating modules and targets . . . 10

HTTP bindings 14

Overriding the generated Service Component

Architecture implementation 15

Overriding a Service Data Object to Java conversion 16

Runtime rules used for Java to Service Data Objects

conversion 17

Chapter 2. Developing client

applications for business processes

and tasks 21

Developing EJB client applications for business

processes and human tasks 21

Accessing the EJB APIs 22

Querying business-process and task-related

objects 27

Developing applications for business processes 61

Developing applications for human tasks . . . 80

Developing applications for business processes

and human tasks 97

Handling exceptions and faults 102

Developing Web service API client applications . . 104

Introduction: Web services 104

Web service components and sequence of

control 105

Overview of the Web services APIs 105

Requirements for business processes and human

tasks 106

Developing client applications 106

Copying artifacts 107

Developing client applications in the Java Web

services environment 115

Developing client applications in the .NET

environment 124

Querying business-process and task-related

objects 129

Developing JMS client applications 132

Introduction to JMS 132

Requirements for business processes 133

Accessing the JMS interface 133

Structure of a Business Process Choreographer

JMS message 135

Authorization for JMS renderings 136

Overview of the JMS API 137

Developing JMS applications 138

Developing Web applications for business

processes and human tasks, using JSF components . 140

Adding the List component to a JSF application 145

Adding the Details component to a JSF

application 152

Adding the CommandBar component to a JSF

application 154

Adding the Message component to a JSF

application 158

Developing JSP pages for task and process

messages 161

User-defined JSP fragments 162

Creating plug-ins to customize human task

functionality 163

Creating API event handlers 164

Creating notification event handlers 166

Creating plug-ins to post-process people query

results 167

Installing plug-ins 169

Registering plug-ins 170

Part 2. Deploying applications . . . 171

Chapter 3. Overview of preparing and

installing modules 173

Libraries and JAR files overview 173

EAR file overview 175

Preparing to deploy to a server 175

Considerations for installing service applications

on clusters 177

Chapter 4. Installing a module on a

production server 179

Creating an installable EAR file using

serviceDeploy 180

Deploying applications using Apache Ant tasks 180

Chapter 5. Installing business process

and human task applications 183

Installing business process and human task

applications interactively 185

Configuring process application data source and

set reference settings 185

Uninstalling business process and human task

applications, using the administrative console . . 187

Uninstalling business process and human task

applications, using administrative commands . . 188

Chapter 6. Installing adapters 191

Chapter 7. Installing EIS applications 193

© Copyright IBM Corp. 2005, 2008 iii

Deploying an EIS application module to the J2SE

platform 194

Deploying an EIS application module to the J2EE

platform 195

Chapter 8. Troubleshooting a failed

deployment 197

Deleting J2C activation specifications 198

Deleting SIBus destinations 199

Part 3. Appendixes 201

Notices 203

iv Developing and deploying

Figures

1. Simple invocation model 11

2. Multiple applications invoking a single service 12

3. Isolated invocation model invoking

UpdateCalculateFinal 13

4. Isolated invocation model invoking

UpdatedCalculateFinal 14

5. Relationship amongst module, component

and library 174

© Copyright IBM Corp. 2005, 2008 v

vi Developing and deploying

Tables

 1. WSDL type to Java class conversion 19

 2. 28

 3. Columns in the ACTIVITY view 40

 4. Columns in the ACTIVITY_ATTRIBUTE view 41

 5. Columns in the ACTIVITY_SERVICE view 42

 6. Columns in the APPLICATION_COMP view 42

 7. Columns in the ESCALATION view 43

 8. Columns in the ESCALATION_CPROP view 44

 9. Columns in the ESCALATION_DESC view 45

10. Columns in the ESC_TEMPL view 45

11. Columns in the ESC_TEMPL_CPROP view 46

12. Columns in the ESC_TEMPL_DESC view 47

13. Columns in the PROCESS_ATTRIBUTE view 47

14. Columns in the PROCESS_INSTANCE view 47

15. Columns in the PROCESS_TEMPLATE view 48

16. Columns in the QUERY_PROPERTY view 49

17. Columns in the TASK view 50

18. Columns in the TASK_CPROP view 53

19. Column in the TASK_DESC view 53

20. Columns in the TASK_TEMPL view 53

21. Columns in the TASK_TEMPL_CPROP view 55

22. Columns in the TASK_TEMPL_DESC view 55

23. Columns in the WORK_ITEM view 56

24. API methods for process templates 78

25. API methods are related to starting process

instances 78

26. API methods for controlling the life cycle of

process instances 79

27. API methods for controlling the life cycle of

activity instances 79

28. API methods for variables and custom

properties 80

29. API methods for task templates 94

30. API methods for task instances 95

31. API methods for working with escalations 96

32. API methods for variables and custom

properties 96

33. Mapping of the reference bindings to JNDI

names 142

34. How Business Process Choreographer

interfaces are mapped to client model objects . 145

35. bpe:list attributes 151

36. bpe:column attributes 152

37. bpe:details attributes 154

38. bpe:property attributes 154

39. bpe:commandbar attributes 157

40. bpe:command attributes 158

41. bpe:form attributes 161

42. Mapping from bindings to J2EE artifacts 193

43. Mapping from bindings to J2EE artifacts 195

© Copyright IBM Corp. 2005, 2008 vii

viii Developing and deploying

Part 1. Developing applications

© Copyright IBM Corp. 2005, 2008 1

2 Developing and deploying

Chapter 1. Overview of developing modules

A module is a basic deployment unit for a WebSphere® Process Server application.

A module contains one or more component libraries and staging modules used by

the application. A component may reference other service components. Developing

modules involves ensuring that the components, staging modules, and libraries

(collections of artifacts referenced by the module) required by the application are

available on the production server.

WebSphere Integration Developer is the main tool for developing modules for

deployment to WebSphere Process Server. Although you can develop modules in

other environments, it is best to use WebSphere Integration Developer.

WebSphere Process Server supports two types of service modules: modules for

business services and mediation modules. A module for business services

implements the logic of a process. A mediation module allows communication

between applications by transforming the service invocation to a format

understood by the target, passing the request to the target and returning the result

to the originator.

The following sections address how to implement and update modules on

WebSphere Process Server.

A synopsis on components

A component is the basic building block to encapsulate reusable business logic. A

service component is associated with interfaces, references and implementations.

The interface defines a contract between a service component and a calling

component. With WebSphere Process Server, a service module can either export a

service component for use by other modules or import a service component for

use. To invoke a service component, a calling module references the interface to the

service component. The references to the interfaces are resolved by configuring the

references from the calling module to their respective interfaces.

To develop a module you must do the following activities:

1. Define interfaces for the components in the module

2. Define, modify, or manipulate business objects used by service components

3. Define or modify service components through its interfaces.

Note: A service component is defined through its interface.

4. Optionally, export or import service components.

5. Create an EAR file you use to install a module that uses components. You

create the file using either the export EAR feature in WebSphere Integration

Developer or the serviceDeploy command to create an EAR file to install a

service module that uses service components.

Development types

WebSphere Process Server provides a component programming model to facilitate

a service-oriented programming paradigm. To use this model, a provider exports

interfaces of a service component so that a consumer can import those interfaces

and use the service component as if it were local. A developer uses either

© Copyright IBM Corp. 2005, 2008 3

strongly-typed interfaces or dynamically-typed interfaces to implement or invoke

the service component. The interfaces and their methods are described in the

References section within this information center.

After installing service modules to your servers, you can use the administrative

console to change the target component for a reference from an application. The

new target must accept the same business object type and perform the same

operation that the reference from the application is requesting.

Service component development considerations

When developing a service component, ask yourself the following questions:

v Will this service component be exported and used by another module?

If so, make sure the interface you define for the component can be used by

another module.

v Will the service component take a relatively long time to run?

If so, consider implementing an asynchronous interface to the service

component.

v Is it beneficial to decentralize the service component?

If so, consider having a copy of the service component in a service module that

is deployed on a cluster of servers to benefit from parallel processing.

v Does your application require a mixture of 1-phase and 2-phase commit

resources?

If so, make sure you enable last participant support for the application.

Note: If you create your application using WebSphere Integration Developer or

create the installable EAR file using the serviceDeploy command, these tools

automatically enable the support for the application. See the topic, “Using

one-phase and two-phase commit resources in the same transaction” in the

WebSphere Application Server Network Deployment information center.

Developing service modules

A service component must be contained within a service module. Developing

service modules to contain service components is key to providing services to

other modules.

Before you begin

This task assumes that an analysis of requirements shows that implementing a

service component for use by other modules is beneficial.

About this task

After analyzing your requirements, you might decide that providing and using

service components is an efficient way to process information. If you determine

that reusable service components would benefit your environment, create a service

module to contain the service components.

Procedure

1. Identify service components other modules can use.

Once you have identified the service components, continue with Developing

service components.

4 Developing and deploying

2. Identify service components within an application that could use service

components in other service modules.

Once you have identified the service components and their target components,

continue with Invoking components.

3. Connect the client components with the target components through wires.

Developing service components

Develop service components to provide reusable logic to multiple applications

within your server.

Before you begin

This task assumes that you have already developed and identified processing that

is useful for multiple modules.

About this task

Multiple modules can use a service component. Exporting a service component

makes it available to other modules that refer to the service component through an

interface. This task describes how to build the service component so that other

modules can use it.

Note: A single service component can contain multiple interfaces.

Procedure

 1. Define the data object to move data between the caller and the service

component.

The data object and its type is part of the interface between the callers and the

service component.

 2. Define an interface that the callers will use to reference the service component.

This interface definition names the service component and lists any methods

available within the service component.

 3. Develop the class that defines the implementation.

v If the component is long running (or asynchronous), continue with step 4.

v If the component is not long running (or synchronous), continue with step

5.
 4. Develop an asynchronous implementation.

Important: An asynchronous component interface cannot have a

joinsTransaction property set to true.

a. Define the interface that represents the synchronous service component.

b. Define the implementation of the service component.

c. Continue with step 6.
 5. Develop a synchronous implementation.

a. Define the interface that represents the synchronous service component.

b. Define the implementation of the service component.
 6. Save the component interfaces and implementations in files with a .java

extension.

 7. Package the service module and necessary resources in a JAR file.

See “Deploying a module to a production server” in this information center

for a description of steps 7 through 9 on page 6.

Chapter 1. Overview of developing modules 5

8. Run the serviceDeploy command to create an installable EAR file containing

the application.

 9. Install the application on the server node.

10. Optional: Configure the wires between the callers and the corresponding

service component, if calling a service component in another service module.

The “Administering” section of this information center describes configuring

the wires.

Examples of developing components

This example shows a synchronous service component that implements a single

method, CustomerInfo. The first section defines the interface to the service

component that implements a method called getCustomerInfo.

public interface CustomerInfo {

 public Customer getCustomerInfo(String customerID);

}

The following block of code implements the service component.

public class CustomerInfoImpl implements CustomerInfo {

 public Customer getCustomerInfo(String customerID) {

 Customer cust = new Customer();

 cust.setCustNo(customerID);

 cust.setFirstName("Victor");

 cust.setLastName("Hugo");

 cust.setSymbol("IBM");

 cust.setNumShares(100);

 cust.setPostalCode(10589);

 cust.setErrorMsg("");

 return cust;

 }

}

This example develops an asynchronous service component. The first section of

code defines the interface to the service component that implements a method

called getQuote.

public interface StockQuote {

 public float getQuote(String symbol);

}

The following section is the implementation of the class associated with

StockQuote.

public class StockQuoteImpl implements StockQuote {

 public float getQuote(String symbol) {

 return 100.0f;

 }

}

This next section of code implements the asynchronous interface,

StockQuoteAsync.

public interface StockQuoteAsync {

 // deferred response

 public Ticket getQuoteAsync(String symbol);

6 Developing and deploying

public float getQuoteResponse(Ticket ticket, long timeout);

 // callback

 public Ticket getQuoteAsync(String symbol, StockQuoteCallback callback);

}

This section is the interface, StockQuoteCallback, which defines the

onGetQuoteResponse method.

public interface StockQuoteCallback {

 public void onGetQuoteResponse(Ticket ticket, float quote);

}

What to do next

Invoke the service.

Invoking components

Components with modules can use components on any node of a WebSphere

Process Server cluster.

Before you begin

Before invoking a component, make sure that the module containing the

component is installed on WebSphere Process Server.

About this task

Components can use any service component available within a WebSphere Process

Server cluster by using the name of the component and passing the data type the

component expects. Invoking a component in this environment involves locating

and then creating the reference to the required component.

Note: A component in a module can invoke a component within the same module,

known as an intra-module invocation. Implement external calls (inter-module

invocations) by exporting the interface in the providing component and importing

the interface in the calling component.

Important: When invoking a component that resides on a different server than the

one on which the calling module is running, you must perform additional

configurations to the servers. The configurations required depend on whether the

component is called asynchronously or synchronously. How to configure the

application servers in this case is described in related tasks.

Procedure

1. Determine the components required by the calling module.

Note the name of the interface within a component and the data type that

interface requires.

2. Define a data object.

Although the input or return can be a Java™ class, a service data object is

optimal.

3. Locate the component.

a. Use the ServiceManager class to obtain the references available to the

calling module.

b. Use the locateService() method to find the component.

Chapter 1. Overview of developing modules 7

Depending on the component, the interface can either be a Web Service

Descriptor Language (WSDL) port type or a Java interface.
4. Invoke the component either synchronously or asynchronously.

You can either invoke the component through a Java interface or use the

invoke() method to dynamically invoke the component.

5. Process the return.

The component might generate an exception, so the client has to be able to

process that possibility.

Example of invoking a component

The following example creates a ServiceManager class.

ServiceManager serviceManager = new ServiceManager();

The following example uses the ServiceManager class to obtain a list of

components from a file that contains the component references.

InputStream myReferences = new FileInputStream("MyReferences.references");

ServiceManager serviceManager = new ServiceManager(myReferences);

The following code locates a component that implements the StockQuote Java

interface.

StockQuote stockQuote = (StockQuote)serviceManager.locateService("stockQuote");

The following code locates a component that implements either a Java or WSDL

port type interface. The calling module uses the Service interface to interact with

the component.

Tip: If the component implements a Java interface, the component can be invoked

through either the interface or the invoke() method.
Service stockQuote = (Service)serviceManager.locateService("stockQuote");

The following example shows MyValue, code that calls another component.

public class MyValueImpl implements MyValue {

 public float myValue throws MyValueException {

 ServiceManager serviceManager = new ServiceManager();

 // variables

 Customer customer = null;

 float quote = 0;

 float value = 0;

 // invoke

 CustomerInfo cInfo =

 (CustomerInfo)serviceManager.locateService("customerInfo");

 customer = cInfo.getCustomerInfo(customerID);

 if (customer.getErrorMsg().equals("")) {

 // invoke

 StockQuoteAsync sQuote =

 (StockQuoteAsync)serviceManager.locateService("stockQuote");

 Ticket ticket = sQuote.getQuoteAsync(customer.getSymbol());

 // ... do something else ...

 quote = sQuote.getQuoteResponse(ticket, Service.WAIT);

 // assign

 value = quote * customer.getNumShares();

8 Developing and deploying

} else {

 // throw

 throw new MyValueException(customer.getErrorMsg());

 }

 // reply

 return value;

 }

}

What to do next

Configure the wires between the calling module references and the component

interfaces.

Dynamically invoking a component

When an module invokes a component that has a Web Service Descriptor

Language (WSDL) port type interface, the module must invoke the component

dynamically using the invoke() method.

Before you begin

This task assumes that a calling component is invoking a component dynamically.

About this task

With a WSDL port type interface, a calling component must use the invoke()

method to invoke the component. A calling module can also invoke a component

that has a Java interface this way.

Procedure

1. Determine the module that contains the component required.

2. Determine the array required by the component.

The input array can be one of three types:

v Primitive uppercase Java types or arrays of this type

v Ordinary Java classes or arrays of the classes

v Service Data Objects (SDOs)
3. Define an array to contain the response from the component.

The response array can be of the same types as the input array.

4. Use the invoke() method to invoke the required component and pass the array

object to the component.

5. Process the result.

Examples of dynamically invoking a component

In the following example, a module uses the invoke() method to call a component

that uses primitive uppercase Java data types.

Service service = (Service)serviceManager.locateService("multiParamInf");

 Reference reference = service.getReference();

 OperationType methodMultiType =

 reference.getOperationType("methodWithMultiParameter");

 Type t = methodMultiType.getInputType();

 BOFactory boFactory = (BOFactory)serviceManager.locateService

Chapter 1. Overview of developing modules 9

("com/ibm/websphere/bo/BOFactory");

 DataObject paramObject = boFactory.createbyType(t);

 paramObject.set(0,"input1")

 paramObject.set(1,"input2")

 paramObject.set(2,"input3")

 service.invoke("methodMultiParamater",paramObject);

The following example uses the invoke method with a WSDL port type interface as

the target.

Service serviceOne = (Service)serviceManager.locateService("multiParamInfWSDL");

 DataObject dob = factory.create("http://MultiCallWSServerOne/bos", "SameBO");

 dob.setString("attribute1", stringArg);

 DataObject wrapBo = factory.createByElement

 ("http://MultiCallWSServerOne/wsdl/ServerOneInf", "methodOne");

 wrapBo.set("input1", dob); //wrapBo encapsulates all the parameters of methodOne

 wrapBo.set("input2", "XXXX");

 wrapBo.set("input3", "yyyy");

 DataObject resBo= (DataObject)serviceOne.invoke("methodOne", wrapBo);

Overview of isolating modules and targets

When developing modules, you will identify services that multiple modules can

use. Leveraging services this way minimizes your development cycle and costs.

When you have a service used by many modules, you should isolate the invoking

modules from the target so that if the target is upgraded, switching to the new

service is transparent to the calling module. This topic contrasts the simple

invocation model and the isolated invocation model and provides an example of

how isolation can be useful. While describing a specific example, this is not the

only way to isolate modules from targets.

Simple invocation model

While developing a module, you might use services that are located in other

modules. You do this by importing the service into the module and then invoking

that service. The imported service is “wired” to the service exported by the other

module either in WebSphere Integration Developer or by binding the service in the

administrative console. Simple invocation model illustrates this model.

10 Developing and deploying

Isolated invocation model

To change the target of an invocation without stopping invoking modules, you can

isolate the invoking modules from the target of the invocation. This allows the

modules to continue processing while you change the target because you are not

changing the module itself but the downstream target. Example of isolating

applications shows how isolation allows you to change the target without affecting

the status of the invoking module.

Example of isolating applications

Using the simple invocation model, multiple modules invoking the same service

would look much like Multiple applications invoking a single service . MODA,

MODB, and MODC all invoke CalculateFinalCost.

MyModule
DifferentModule

Invoke ServiceA ServiceA

ServiceB

Figure 1. Simple invocation model

Chapter 1. Overview of developing modules 11

The service provided by CalculateFinalCost needs updating so that new costs are

reflected in all modules that use the service. The development team builds and

tests a new service UpdatedCalculateFinal to incorporate the changes. You are

ready to bring the new service into production. Without isolation, you would have

to update all of the modules invoking CalculateFinalCost to invoke

UpdateCalculateFinal. With isolation, you only have to change the binding that

connects the buffer module to the target.

Note: Changing the service this way allows you to continue to provide the original

service to other modules that may need it.

Using isolation, you create a buffer module between the applications and the target

(see Isolated invocation model invoking UpdateCalculateFinal).

ModA

ModB

ModC

DifferentMod

CalculateFinalCost

Figure 2. Multiple applications invoking a single service

12 Developing and deploying

With this model, the invoking modules do not change, you just have to change the

binding from the buffer module import to the target (see Isolated invocation model

invoking UpdatedCalculateFinal).

ModA

ModB

ModC

BufferMod ActualMod

CalculateFinalCost

CalculateFinalCost

UpdateFinalCost

Figure 3. Isolated invocation model invoking UpdateCalculateFinal

Chapter 1. Overview of developing modules 13

If the buffer module invokes the target synchronously, when you restart the buffer

module (whether a mediation module or a service for business module) the results

returned to the original application come from the new target. If the buffer module

invokes the target asynchronously, the results returned to the original application

come from the new target on the next invocation.

 Related tasks

Changing targets

Changing the target of a reference provides applications with the flexibility of

taking advantage of advances in components as they happen without

recompiling and reinstalling the application.

HTTP bindings

The HTTP binding is designed to provide Service Component Architecture (SCA)

connectivity to HTTP. This allows existing or newly-developed HTTP applications

to participate in Service Oriented Architecture (SOA) environments.

In addition, a network of SCA runtime environments can communicate across an

existing HTTP infrastructure.

The HTTP binding exposes several HTTP features:

ModA

ModB

ModC

BufferMod ActualMod

CalculateFinalCost

CalculateFinalCost

UpdateFinalCost

Figure 4. Isolated invocation model invoking UpdatedCalculateFinal

14 Developing and deploying

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.soacore.610.doc/doc/tadm_changingtargetcomponents.html

v Messages are presented to mediation components in a manner that preserves

HTTP format and message header information. This provides a more familiar

view to HTTP application programmers, users and administrators.

v An existing data binding framework is extended for HTTP conventions and

provides mapping between SCA messages and HTTP message headers and

bodies.

v Imports and exports can be configured to support a range of common HTTP

features.

v When you install an SCA module containing HTTP imports or exports, the

runtime environment is automatically configured appropriately to allow

connectivity to HTTP.

Detailed instructions on creating HTTP imports and exports can be found in the

information center at WebSphere Integration Developer > Developing integration

applications > HTTP data binding.

 Related tasks

Displaying HTTP Bindings

After deploying an application, you may want to examine the HTTP bindings

to make sure they are correct.

Changing HTTP export bindings

The administrative console allows you to change the configuration of HTTP

export bindings without changing the original source and then redeploying the

application.

Changing HTTP import bindings

The administrative console allows you to change the configuration of HTTP

import bindings without changing the original source and then redeploying the

application.

Overriding the generated Service Component Architecture

implementation

Sometimes, the conversion the system creates between a Java code and a Service

Data Object (SDO) may not meet your needs. Use this procedure to replace the

default Service Component Architecture (SCA) class implementation with your

own.

Before you begin

Make sure that you have generated the Java to Web Services Definition Language

(WSDL) type conversion using either WebSphere Integration Developer or the

genMapper command.

About this task

You override a generated component that maps a Java type to a WSDL type by

replacing the generated code with code that meets your needs. Consider using

your own map if you have defined your own Java classes. Use this procedure to

make the changes.

Procedure

Chapter 1. Overview of developing modules 15

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/tadm_displhttpbind.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/tadm_chghttpexports.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/tadm_chghttpimports.html

1. Locate the generated component. The component is named

java_classMapper.component.

2. Edit the component using a text editor.

3. Comment out the generated code and provide your own method.

Do not change the file name that contains the component implementation.

This is an example of a generated component to replace:

 private DataObject javatodata_setAccount_output(Object myAccount) {

 // You can override this code for custom mapping.

 // Comment out this code and write custom code.

 // You can also change the Java type that is passed to the

 // converter, which the converter tries to create.

 return SDOJavaObjectMediator.java2Data(myAccount);

}

Copy the component and other files to the directory in which the containing

module resides, and either wire the component in WebSphere Integration

Developer or generate an enterprise archive (EAR) file using the serviceDeploy

command.

 Related concepts

 “Runtime rules used for Java to Service Data Objects conversion” on page 17
To correctly override generated code, or to determine possible run time

exceptions related to Java to Service Data Object (SDO) conversions, an

understanding of the rules involved is important. The majority of the

conversions are straightforward, but there are some complex cases that the run

time provides the best possibility when it converts the generated code.
 Related reference

Java to XML conversion

The system generates XML based on Java types using predefined rules.

genMapper command

Use the genMapper command to generate a component that bridges as Service

Component Architecture (SCA) reference to a Java interface.

Overriding a Service Data Object to Java conversion

Sometimes, the conversion the system creates between a Service Data Object (SDO)

and a Java type object may not meet your needs. Use this procedure to replace the

default implementation with your own.

Before you begin

Make sure that you have generated the WSDL to Java type conversion using either

WebSphere Integration Developer or the genMapper command.

About this task

16 Developing and deploying

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/rref_javatowsdltypemap.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/rref_genmappercommand.html

You override a generated component that maps a WSDL type to a Java type by

replacing the generated code with code that meets your needs. Consider using

your own map if you have defined your own Java classes. Use this procedure to

make the changes.

Procedure

1. Locate the generated component. The component is named

java_classMapper.component.

2. Edit the component using a text editor.

3. Comment out the generated code and provide your own method.

Do not change the file name that contains the component implementation.

This is an example of a generated component to replace:

 private Object datatojava_get_customerAcct(DataObject myCustomerID,

 String integer)

{

 // You can override this code for custom mapping.

 // Comment out this code and write custom code.

 // You can also change the Java type that is passed to the

 // converter, which the converter tries to create.

 return SDOJavaObjectMediator.data2Java(customerID, integer) ;

}

Copy the component and other files to the directory in which the containing

module resides, and either wire the component in WebSphere Integration

Developer or generate an enterprise archive (EAR) file using the serviceDeploy

command.

 Related concepts

 “Runtime rules used for Java to Service Data Objects conversion”
To correctly override generated code, or to determine possible run time

exceptions related to Java to Service Data Object (SDO) conversions, an

understanding of the rules involved is important. The majority of the

conversions are straightforward, but there are some complex cases that the run

time provides the best possibility when it converts the generated code.
 Related reference

Java to XML conversion

The system generates XML based on Java types using predefined rules.

genMapper command

Use the genMapper command to generate a component that bridges as Service

Component Architecture (SCA) reference to a Java interface.

Runtime rules used for Java to Service Data Objects conversion

To correctly override generated code, or to determine possible run time exceptions

related to Java to Service Data Object (SDO) conversions, an understanding of the

rules involved is important. The majority of the conversions are straightforward,

but there are some complex cases that the run time provides the best possibility

when it converts the generated code.

Chapter 1. Overview of developing modules 17

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/rref_javatowsdltypemap.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/rref_genmappercommand.html

Basic types and classes

The run time performs a straightforward conversion between Service Data Objects

and basic Java types and classes. Basic types and classes include:

v Char or java.lang.Character

v Boolean

v Java.lang.Boolean

v Byte or java.lang.Byte

v Short or java.lang.Short

v Int or java.lang.Integer

v Long or java.lang.Long

v Float or java.lang.Float

v Double or java.lang.Double

v Java.lang.String

v Java.math.BigInteger

v Java.math.BigDecimal

v Java.util.Calendar

v Java.util.Date

v Java.xml.namespace.QName

v Java.net.URI

v Byte[]

User-defined Java classes and arrays

When converting from a Java class or array to an SDO, the run time creates a data

object that has a URI that is generated by inverting the package name of the Java

type and has a type equal to the name of the Java class. For example, the Java class

com.ibm.xsd.Customer is converted to an SDO and URI http://xsd.ibm.com with

type Customer. The run time then inspects the contents of the Java class members

and assigns the values to properties in the SDO.

When converting from an SDO to a Java type, the run time generates the package

name by inverting the URI and the name of the type equals the type of the SDO.

For example, the data object with type Customer and URI http://xsd.ibm.com

generates an instance of the Java package com.ibm.xsd.Customer. The run time

then extracts values from the properties of the SDO and assign those properties to

fields in the instance of the Java class.

When the Java class is a user-defined interface, you must override the generated

code an provide a concrete class that the run time can instantiate. If the run time

cannot create the concrete class, an exception occurs.

Java.lang.Object

When a Java type is java.lang.Object the generated type is xsd:anyType. A module

can invoke this interface with any SDO. The run time attempts to instantiate a

concrete class the same way it does for user-defined Java classes and arrays, if the

run time can find that class. Otherwise, the run time passes the SDO to the Java

interface.

Even if the method returns a java.lang.Object type, the run time converts to an

SDO only if the method returns a concrete type. The run time uses a similar

conversion to that for converting user-defined Java classes and arrays to SDOs, as

described by the next paragraph.

18 Developing and deploying

When converting from a Java class or array to an SDO, the run time creates a data

object that has a URI that is generated by inverting the package name of the Java

type and has a type equal to the name of the Java class. For example, the Java class

com.ibm.xsd.Customer is converted to an SDO and URI http://xsd.ibm.com with

type Customer. The run time then inspects the contents of the Java class members

and assigns the values to properties in the SDO.

In either case, if the run time is unable to complete the conversion an exception

occurs.

Java.util container classes

When converting to a concrete Java container class such as Vector, HashMap,

HashSet and the like, the run time instantiates the appropriate container class. The

run time uses a method similar to that used for user-defined Java classes and

arrays to populate the container class. If the run time cannot locate a concrete Java

class, the run time populates the container class with the SDO.

When converting concrete Java container classes to SDOs, the run time uses the

generated schemas shown in “Java to XML conversion.”

Java.util interfaces

For certain container interfaces in the java.util package, the run time instantiates

the following concrete classes:

 Table 1. WSDL type to Java class conversion

Interface Default concrete classes

Collection HashSet

Map HashMap

List ArrayList

Set HashSet

 Related tasks

 “Overriding the generated Service Component Architecture implementation” on

page 15
Sometimes, the conversion the system creates between a Java code and a

Service Data Object (SDO) may not meet your needs. Use this procedure to

replace the default Service Component Architecture (SCA) class implementation

with your own.

 “Overriding a Service Data Object to Java conversion” on page 16
Sometimes, the conversion the system creates between a Service Data Object

(SDO) and a Java type object may not meet your needs. Use this procedure to

replace the default implementation with your own.
 Related reference

Java to XML conversion

The system generates XML based on Java types using predefined rules.

genMapper command

Use the genMapper command to generate a component that bridges as Service

Component Architecture (SCA) reference to a Java interface.

Chapter 1. Overview of developing modules 19

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/rref_javatowsdltypemap.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/rref_genmappercommand.html

20 Developing and deploying

Chapter 2. Developing client applications for business

processes and tasks

You can use a modeling tool to build and deploy business processes and tasks.

These processes and tasks are interacted with at runtime, for example, a process is

started, or tasks are claimed and completed. You can use Business Process

Choreographer Explorer to interact with processes and tasks, or the Business

Process Choreographer APIs to develop customized clients for these interactions.

About this task

These clients can be Enterprise JavaBeans™ (EJB) clients, Web service clients, or

Web clients that exploit the Business Process Choreographer Explorer JavaServer

Faces (JSF) components. Business Process Choreographer provides Enterprise

JavaBeans (EJB) APIs and interfaces for Web services for you to develop these

clients. The EJB API can be accessed by any Java application, including another EJB

application. The interfaces for Web services can be accessed from either Java

environments or Microsoft® .Net environments.

Developing EJB client applications for business processes and human

tasks

The EJB APIs provide a set of generic methods for developing EJB client

applications for working with the business processes and human tasks that are

installed on a WebSphere Process Server.

About this task

With these Enterprise JavaBeans (EJB) APIs, you can create client applications to do

the following:

v Manage the life cycle of processes and tasks from starting them through to

deleting them when they complete

v Repair activities and processes

v Manage and distribute the workload over members of a work group

The EJB APIs are provided as two stateless session enterprise beans:

v BusinessFlowManagerService interface provides the methods for business

process applications

v HumanTaskManagerService interface provides the methods for task-based

applications

For more information on the EJB APIs, see the Javadoc in the com.ibm.bpe.api

package and the com.ibm.task.api package.

The following steps provide an overview of the actions you need to take to

develop an EJB client application.

Procedure

1. Decide on the functionality that the application is to provide.

2. Decide which of the session beans that you are going to use.

© IBM Corporation 2005, 2006 21

Depending on the scenarios that you want to implement with your application,

you can use one, or both, of the session beans.

3. Determine the authorization authorities needed by users of the application.

The users of your application must be assigned the appropriate authorization

roles to call the methods that you include in your application, and to view the

objects and the attributes of these objects that these methods return. When an

instance of the appropriate session bean is created, WebSphere Application

Server associates a context with the instance. The context contains information

about the caller’s principal ID, group membership list, and roles. This

information is used to check the caller’s authorization for each call.

The Javadoc contains authorization information for each of the methods.

4. Decide how to render the application.

The EJB APIs can be called locally or remotely.

5. Develop the application.

a. Access the EJB API.

b. Use the EJB API to interact with processes or tasks.

v Query the data.

v Work with the data.

Accessing the EJB APIs

The Enterprise JavaBeans (EJB) APIs are provided as two stateless session

enterprise beans. Business process applications and task applications access the

appropriate session enterprise bean through the home interface of the bean.

About this task

The BusinessFlowManagerService interface provides the methods for business

process applications, and the HumanTaskManagerService interface provides the

methods for task-based applications. The application can be any Java application,

including another Enterprise JavaBeans (EJB) application.

Accessing the remote interface of the session bean

An EJB client application accesses the remote interface of the session bean through

the remote home interface of the bean.

About this task

The session bean can be either the BusinessFlowManager session bean for process

applications or the HumanTaskManager session bean for task applications.

Procedure

1. Add a reference to the remote interface of the session bean to the application

deployment descriptor. Add the reference to one of the following files:

v The application-client.xml file, for a Java 2 Platform, Enterprise Edition

(J2EE) client application

v The web.xml file, for a Web application

v The ejb-jar.xml file, for an Enterprise JavaBeans (EJB) application

The reference to the remote home interface for process applications is shown in

the following example:

22 Developing and deploying

<ejb-ref>

 <ejb-ref-name>ejb/BusinessFlowManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.bpe.api.BusinessFlowManagerHome</home>

 <remote>com.ibm.bpe.api.BusinessFlowManager</remote>

</ejb-ref>

The reference to the remote home interface for task applications is shown in the

following example:

<ejb-ref>

 <ejb-ref-name>ejb/HumanTaskManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.task.api.HumanTaskManagerHome</home>

 <remote>com.ibm.task.api.HumanTaskManager</remote>

</ejb-ref>

If you use WebSphere Integration Developer to add the EJB reference to the

deployment descriptor, the binding for the EJB reference is automatically

created when the application is deployed. For more information on adding EJB

references, refer to the WebSphere Integration Developer documentation.

2. Package the generated stubs with your application.

If your application runs on a different Java Virtual Machine (JVM) from the one

where the BPEContainer application or the TaskContainer application runs,

complete the following actions:

a. For process applications, package the <install_root>/ProcessChoreographer/
client/bpe137650.jar file with the enterprise archive (EAR) file of your

application.

b. For task applications, package the <install_root>/ProcessChoreographer/
client/task137650.jar file with the EAR file of your application.

c. Set the Classpath parameter in the manifest file of the application module

to include the JAR file.

The application module can be a J2EE application, a Web application, or an

EJB application.

d. If you use complex data types in your business process or human task and

your client does not run in an EJB application or a Web application,

package the corresponding XSD or WSDL files with the EAR file of your

application.
3. Locate the remote home interface of the session bean through the Java Naming

and Directory Interface (JNDI).

The following example shows this step for a process application:

// Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

// Lookup the remote home interface of the BusinessFlowManager bean

Object result =

 initialContext.lookup("java:comp/env/ejb/BusinessFlowManagerHome");

// Convert the lookup result to the proper type

 BusinessFlowManagerHome processHome =

 (BusinessFlowManagerHome)javax.rmi.PortableRemoteObject.narrow

 (result,BusinessFlowManagerHome.class);

The remote home interface of the session bean contains a create method for EJB

objects. The method returns the remote interface of the session bean.

4. Access the remote interface of the session bean.

The following example shows this step for a process application:

BusinessFlowManager process = processHome.create();

Chapter 2. Developing client applications for business processes and tasks 23

Access to the session bean does not guarantee that the caller can perform all of

the actions provided by the bean; the caller must also be authorized for these

actions. When an instance of the session bean is created, a context is associated

with the instance of the session bean. The context contains the caller’s principal

ID, group membership list, and indicates whether the caller has one of the

Business Process Choreographer J2EE roles. The context is used to check the

caller’s authorization for each call, even when global security is not set. If

global security is not set, the caller’s principal ID has the value

UNAUTHENTICATED.

5. Call the business functions exposed by the service interface.

The following example shows this step for a process application:

process.initiate("MyProcessModel",input);

Calls from applications are run as transactions. A transaction is established and

ended in one of the following ways:

v Automatically by WebSphere Application Server (the deployment descriptor

specifies TX_REQUIRED).

v Explicitly by the application. You can bundle application calls into one

transaction:

// Obtain user transaction interface

UserTransaction transaction=

 (UserTransaction)initialContext.lookup("jta/usertransaction");

// Begin a transaction

transaction.begin();

// Applications calls ...

// On successful return, commit the transaction

transaction.commit();

Tip: To prevent database lock conflicts, avoid running statements similar to the

following in parallel:

// Obtain user transaction interface

UserTransaction transaction=

 (UserTransaction)initialContext.lookup("jta/usertransaction");

transaction.begin();

//read the activity instance

process.getActivityInstance(aiid);

//claim the activity instance

process.claim(aiid);

transaction.commit();

The getActivityInstance method and other read operations set a read lock. In

this example, a read lock on the activity instance is upgraded to an update lock

on the activity instance. This can result in a database deadlock when these

transactions are run in parallel.

Example

Here is an example of how steps 3 through 5 might look for a task application.

//Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

//Lookup the remote home interface of the HumanTaskManager bean

Object result =

 initialContext.lookup("java:comp/env/ejb/HumanTaskManagerHome");

24 Developing and deploying

//Convert the lookup result to the proper type

HumanTaskManagerHome taskHome =

 (HumanTaskManagerHome)javax.rmi.PortableRemoteObject.narrow

 (result,HumanTaskManagerHome.class);

...

//Access the remote interface of the session bean.

HumanTaskManager task = taskHome.create();

...

//Call the business functions exposed by the service interface

task.callTask(tkiid,input);

Accessing the local interface of the session bean

An EJB client application accesses the local interface of the session bean through

the local home interface of the bean.

About this task

The session bean can be either the BusinessFlowManager session bean for process

applications or the HumanTaskManager session bean for human task applications.

Procedure

1. Add a reference to the local interface of the session bean to the application

deployment descriptor. Add the reference to one of the following files:

v The application-client.xml file, for a Java 2 Platform, Enterprise Edition

(J2EE) client application

v The web.xml file, for a Web application

v The ejb-jar.xml file, for an Enterprise JavaBeans (EJB) application

The reference to the local home interface for process applications is shown in

the following example:

<ejb-local-ref>

 <ejb-ref-name>ejb/LocalBusinessFlowManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home>com.ibm.bpe.api.LocalBusinessFlowManagerHome</local-home>

 <local>com.ibm.bpe.api.LocalBusinessFlowManager</local>

</ejb-local-ref>

The reference to the local home interface for task applications is shown in the

following example:

<ejb-local-ref>

 <ejb-ref-name>ejb/LocalHumanTaskManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home>com.ibm.task.api.LocalHumanTaskManagerHome</local-home>

 <local>com.ibm.task.api.LocalHumanTaskManager</local>

</ejb-local-ref>

If you use WebSphere Integration Developer to add the EJB reference to the

deployment descriptor, the binding for the EJB reference is automatically

created when the application is deployed. For more information on adding EJB

references, refer to the WebSphere Integration Developer documentation.

2. Locate the local home interface of the session bean through the Java Naming

and Directory Interface (JNDI).

The following example shows this step for a process application:

// Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

// Lookup the local home interface of the BusinessFlowManager bean

Chapter 2. Developing client applications for business processes and tasks 25

LocalBusinessFlowManagerHome processHome =

 (LocalBusinessFlowManagerHome)initialContext.lookup

 ("java:comp/env/ejb/LocalBusinessFlowManagerHome");

The local home interface of the session bean contains a create method for EJB

objects. The method returns the local interface of the session bean.

3. Access the local interface of the session bean.

The following example shows this step for a process application:

LocalBusinessFlowManager process = processHome.create();

Access to the session bean does not guarantee that the caller can perform all of

the actions provided by the bean; the caller must also be authorized for these

actions. When an instance of the session bean is created, a context is associated

with the instance of the session bean. The context contains the caller’s principal

ID, group membership list, and indicates whether the caller has one of the

Business Process Choreographer J2EE roles. The context is used to check the

caller’s authorization for each call, even when global security is not set. If

global security is not set, the caller’s principal ID has the value

UNAUTHENTICATED.

4. Call the business functions exposed by the service interface.

The following example shows this step for a process application:

process.initiate("MyProcessModel",input);

Calls from applications are run as transactions. A transaction is established and

ended in one of the following ways:

v Automatically by WebSphere Application Server (the deployment descriptor

specifies TX_REQUIRED).

v Explicitly by the application. You can bundle application calls into one

transaction:

// Obtain user transaction interface

UserTransaction transaction=

 (UserTransaction)initialContext.lookup("jta/usertransaction");

// Begin a transaction

transaction.begin();

// Applications calls ...

// On successful return, commit the transaction

transaction.commit();

Tip: To prevent database deadlocks, avoid running statements similar to the

following in parallel:

// Obtain user transaction interface

UserTransaction transaction=

 (UserTransaction)initialContext.lookup("jta/usertransaction");

transaction.begin();

//read the activity instance

process.getActivityInstance(aiid);

//claim the activity instance

process.claim(aiid);

transaction.commit();

The getActivityInstance method and other read operations set a read lock. In

this example, a read lock on the activity instance is upgraded to an update lock

on the activity instance. This can result in a database deadlock when these

transactions are run in parallel

26 Developing and deploying

Example

Here is an example of how steps 2 through 4 might look for a task application.

//Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

//Lookup the local home interface of the HumanTaskManager bean

LocalHumanTaskManagerHome taskHome =

 (LocalHumanTaskManagerHome)initialContext.lookup

 ("java:comp/env/ejb/LocalHumanTaskManagerHome");

...

//Access the local interface of the session bean

LocalHumanTaskManager task = taskHome.create();

...

//Call the business functions exposed by the service interface

task.callTask(tkiid,input);

Querying business-process and task-related objects

The client applications work with business-process and task-related objects. You

can query business-process and task-related objects in the database to retrieve

specific properties of these objects.

About this task

During the configuration of Business Process Choreographer, a relational database

is associated with both the business process container and the task container. The

database stores all of the template (model) and instance (runtime) data for

managing business processes and tasks. You use SQL-like syntax to query this

data.

You can perform a one-off query to retrieve a specific property of an object. You

can also save queries that you use often and include these stored queries in your

application.

Queries on business-process and task-related objects

Use the query method or the queryAll method of the service API to retrieve stored

information about business processes and tasks.

The query method can be called by all users, and it returns the properties of the

objects for which work items exist. The queryAll method can be called only by

users who have one of the following J2EE roles: BPESystemAdministrator,

TaskSystemAdministrator, BPESystemMonitor, or TaskSystemMonitor. This method

returns the properties of all the objects that are stored in the database.

All API queries are mapped to SQL queries. The form of the resulting SQL query

depends on the following aspects:

v Whether the query was invoked by someone with one of the J2EE roles.

v The objects that are queried. Predefined database views are provided for you to

query the object properties.

v The insertion of a from clause, join conditions, and user-specific conditions for

access control.

You can include both custom properties and variable properties in queries. If you

include several custom properties or variable properties in your query, this results

Chapter 2. Developing client applications for business processes and tasks 27

in self-joins on the corresponding database table. Depending on your database

system, these query() calls might have performance implications.

You can also store queries in the Business Process Choreographer database using

the createStoredQuery method. You provide the query criteria when you define the

stored query. The criteria are applied dynamically when the stored query runs, that

is, the data is assembled at runtime. If the stored query contains parameters, these

are also resolved when the query runs.

For more information on the Business Process Choreographer APIs, see the Javadoc

in the com.ibm.bpe.api package for process-related methods and in the

com.ibm.task.api package for task-related methods.

Syntax of the API query method:

The syntax of the Business Process Choreographer API queries is similar to SQL

queries. A query can include a select clause, a where clause, an order-by clause, a

skip-tuples parameter, a threshold parameter and a time-zone parameter.

 The syntax of the query depends on the object type. The following table shows the

syntax for each of the different object types.

 Table 2.

Object Syntax

Process template ProcessTemplateData[] queryProcessTemplates

 (java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

Task template TaskTemplate[] queryTaskTemplates

 (java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

Business-process and

task-related data

QueryResultSet query (java.lang.String selectClause,

 java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer skipTuples

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

Select clause:

The select clause in the query function identifies the object properties that are to be

returned by a query.

 The select clause describes the query result. It specifies a list of names that identify

the object properties (columns of the result) to return. Its syntax is similar to the

syntax of an SQL SELECT clause; use commas to separate parts of the clause. Each

part of the clause must specify a column from one of the predefined views. The

columns must be fully specified by view name and column name. The columns

returned in the QueryResultSet object appear in the same order as the columns

specified in the select clause.

The select clause does not support SQL aggregation functions, such as AVG(),

SUM(), MIN(), or MAX().

28 Developing and deploying

To select the properties of multiple name-value pairs, such as custom properties

and properties of variables that can be queried, add a one-digit counter to the view

name. This counter can take the values 1 through 9.

Examples of select clauses

v ″WORK_ITEM.OBJECT_TYPE, WORK_ITEM.REASON″

Gets the object types of the associated objects and the assignment reasons for the

work items.

v ″DISTINCT WORK_ITEM.OBJECT_ID″

Gets all of the IDs of objects, without duplicates, for which the caller has a work

item.

v ″ACTIVITY.TEMPLATE_NAME, WORK_ITEM.REASON″

Gets the names of the activities the caller has work items for and their

assignment reasons.

v ″ACTIVITY.STATE, PROCESS_INSTANCE.STARTER″

Gets the states of the activities and the starters of their associated process

instances.

v ″DISTINCT TASK.TKIID, TASK.NAME″

Gets all of the IDs and names of tasks, without duplicates, for which the caller

has a work item.

v ″TASK_CPROP1.STRING_VALUE, TASK_CPROP2.STRING_VALUE″

Gets the values of the custom properties that are specified further in the where

clause.

v ″QUERY_PROPERTY1.STRING_VALUE, QUERY_PROPERTY2.INT_VALUE

Gets the values of the properties of variables that can be queried. These parts are

specified further in the where clause.

v ″COUNT(DISTINCT TASK.TKIID)″

Counts the number of work items for unique tasks that satisfy the where clause.

Where clause:

The where clause in the query function describes the filter criteria to apply to the

query domain.

 The syntax of a where clause is similar to the syntax of an SQL WHERE clause.

You do not need to explicitly add an SQL from clause or join predicates to the API

where clause, these constructs are added automatically when the query runs. If

you do not want to apply filter criteria, you must specify null for the where

clause.

The where-clause syntax supports:

v Keywords: AND, OR, NOT

v Comparison operators: =, <=, <, <>, >,>=, LIKE

The LIKE operation supports the wildcard characters that are defined for the

queried database.

v Set operation: IN

The following rules also apply:

v Specify object ID constants as ID(’string-rep-of-oid’).

v Specify binary constants as BIN(’UTF-8 string’).

Chapter 2. Developing client applications for business processes and tasks 29

v Use symbolic constants instead of integer enumerations. For example, instead of

specifying an activity state expression ACTIVITY.STATE=2, specify

ACTIVITY.STATE=ACTIVITY.STATE.STATE_READY.

v If the value of the property in the comparison statement contains single

quotation marks (’), double the quotation marks, for example,

"TASK_CPROP.STRING_VALUE=’d’’automatisation’".

v Refer to properties of multiple name-value pairs, such as custom properties, by

adding a one-digit suffix to the view name. For example:

"TASK_CPROP1.NAME=’prop1’ AND "TASK_CPROP2.NAME=’prop2’"

v Specify time-stamp constants as TS(’yyyy-mm-ddThh:mm:ss’). To refer to the

current date, specify CURRENT_DATE as the timestamp.

You must specify at least a date or a time value in the timestamp:

– If you specify a date only, the time value is set to zero.

– If you specify a time only, the date is set to the current date.

– If you specify a date, the year must consist of four digits; the month and day

values are optional. Missing month and day values are set to 01. For example,

TS(’2003’) is the same as TS(’2003-01-01T00:00:00’).

– If you specify a time, these values are expressed in the 24-hour system. For

example, if the current date is 1 January 2003, TS(’T16:04’) or TS(’16:04’) is

the same as TS(’2003-01-01T16:04:00’).

Examples of where clauses

v Comparing an object ID with an existing ID

"WORK_ITEM.WIID = ID(’_WI:800c00ed.df8d7e7c.feffff80.38’)"

This type of where clause is usually created dynamically with an existing object

ID from a previous call. If this object ID is stored in a wiid1 variable, the clause

can be constructed as:

"WORK_ITEM.WIID = ID(’" + wiid1.toString() + "’)"

v Using time stamps

"ACTIVITY.STARTED >= TS(’2002-06-1T16.00.00’)"

v Using symbolic constants

"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_OWNER"

v Using Boolean values true and false

"ACTIVITY.BUSINESS_RELEVANCE = TRUE"

v Using custom properties

"TASK_CPROP1.NAME = ’prop1’ AND " TASK_CPROP1.STRING_VALUE = ’v1’ AND

 TASK_CPROP2.NAME = ’prop2’ AND " TASK_CPROP2.STRING_VALUE = ’v2’"

Order-by clause:

The order-by clause in the query function specifies the sort criteria for the query

result set.

 You can specify a list of columns from the views by which the result is sorted.

These columns must be fully qualified by the name of the view and the column. It

is a best practice to specify columns that are in the select clause.

The order-by clause syntax is similar to the syntax of an SQL order-by clause; use

commas to separate each part of the clause. You can also specify ASC to sort the

30 Developing and deploying

columns in ascending order, and DESC to sort the columns in descending order. If

you do not want to sort the query result set, you must specify null for the

order-by clause.

Sort criteria are applied on the server, that is, the locale of the server is used for

sorting. If you specify more than one column, the query result set is ordered by the

values of the first column, then by the values of the second column, and so on.

You cannot specify the columns in the order-by clause by position as you can with

an SQL query.

Examples of order-by clauses

v ″PROCESS_TEMPLATE.NAME″

Sorts the query result alphabetically by the process-template name.

v ″PROCESS_INSTANCE.CREATED, PROCESS_INSTANCE.NAME DESC″

Sorts the query result by the creation date and, for a specific date, sorts the

results alphabetically by the process-instance name in reverse order.

v ″ACTIVITY.OWNER, ACTIVITY.TEMPLATE_NAME, ACTIVITY.STATE″

Sorts the query result by the activity owner, then the activity-template name,

and then the state of the activity.

Skip-tuples parameter:

The skip-tuples parameter specifies the number of query-result-set tuples from the

beginning of the query result set that are to be ignored and not to be returned to

the caller in the query result set.

 Use this parameter with the threshold parameter to implement paging in a client

application, for example, to retrieve the first 20 items, then the next 20 items, and

so on.

If this parameter is set to null and the threshold parameter is not set, all of the

qualifying tuples are returned.

Example of a skip-tuples parameter

v new Integer(5)

Specifies that the first five qualifying tuples are not to be returned.

Threshold parameter:

The threshold parameter in the query function restricts the number of objects

returned from the server to the client in the query result set.

 Because query result sets in production scenarios can contain thousands or even

millions of items, it is a best practice to always specify a threshold. The threshold

parameter can be useful, for example, in a graphical user interface where only a

small number of items should be displayed at one time. If you set the threshold

parameter accordingly, the database query is faster and less data needs to transfer

from the server to the client.

If this parameter is set to null and the skip-tuples parameter is not set, all of the

qualifying objects are returned.

Example of a threshold parameter

v new Integer(50)

Specifies that 50 qualifying tuples are to be returned.

Chapter 2. Developing client applications for business processes and tasks 31

Timezone parameter:

The time-zone parameter in the query function defines the time zone for

time-stamp constants in the query.

 Time zones can differ between the client that starts the query and the server that

processes the query. Use the time-zone parameter to specify the time zone of the

time-stamp constants used in the where clause, for example, to specify local times.

The dates returned in the query result set have the same time zone that is specified

in the query.

If the parameter is set to null, the timestamp constants are assumed to be

Coordinated Universal Time (UTC) times.

Examples of time-zone parameters

v process.query("ACTIVITY.AIID",

 "ACTIVITY.STARTED > TS(’2005-01-01T17:40’)",

 (String)null,

 (Integer)null,

 java.util.TimeZone.getDefault());

Returns object IDs for activities that started later than 17:40 local time on 1

January 2005.

v process.query("ACTIVITY.AIID",

 "ACTIVITY.STARTED > TS(’2005-01-01T17:40’)",

 (String)null, (Integer)null, (TimeZone)null);

Return object IDs for activities that started later than 17:40 UTC on 1 January

2005. This specification is, for example, 6 hours earlier in Eastern Standard Time.

Parameters in stored queries:

A stored query is a query that is stored in the database and identified by a name.

The qualifying tuples are assembled dynamically when the query is run. To make

stored queries reusable, you can use parameters in the query definition that are

resolved at runtime.

 For example, you have defined custom properties to store customer names. You

can define queries to return the tasks that are associated with a particular

customer, ACME Co. To query this information, the where clause in your query

might look similar to the following example:

String whereClause =

 "TASK.STATE = TASK.STATE.STATE_READY

 AND WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER

 AND TASK_CPROP.NAME = ’company’ AND TASK_CPROP.STRING_VALUE = ’ACME Co.’";

To make this query reusable so that you can also search for the customer, BCME

Ltd, you can use parameters for the values of the custom property. If you add

parameters to the task query, it might look similar to the following example:

String whereClause =

 "TASK.STATE = TASK.STATE.STATE_READY

 AND WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER

 AND TASK_CPROP.NAME = ’company’ AND TASK_CPROP.STRING_VALUE = ’@param1’";

The @param1 parameter is resolved at runtime from the list of parameters that is

passed to the query method. The following rules apply to the use of parameters in

queries:

v Parameters can only be used in the where clause.

v Parameters are strings.

32 Developing and deploying

v Parameters are replaced at runtime using string replacement. If you need special

characters you must specify these in the where clause or passed-in at runtime as

part of the parameter.

v Parameter names consist of the string @param concatenated with an integer

number. The lowest number is 1, which points to the first item in the list of

parameters that is passed to the query API at runtime.

v A parameter can be used multiple times within a where clause; all occurrences

of the parameter are replaced by the same value.
 Related tasks

 “Managing stored queries” on page 58
Stored queries provide a way to save queries that are run often. The stored

query can be either a query that is available to all users (public query), or a

query that belongs to a specific user (private query).

Query results:

A query result set contains the results of a query.

 The elements of the result set are properties of the objects that satisfy the where

clause given by the caller, and that the caller is authorized to see. You can read

elements in a relative fashion using the API next method or in an absolute fashion

using the first and last methods. Because the implicit cursor of a query result set is

initially positioned before the first element, you must call either the first or next

methods before reading an element. You can use the size method to determine the

number of elements in the set.

An element of the query result set comprises the selected attributes of work items

and their associated referenced objects, such as activity instances and process

instances. The first attribute (column) of a QueryResultSet element specifies the

value of the first attribute specified in the select clause of the query request. The

second attribute (column) of a QueryResultSet element specifies the value of the

second attribute specified in the select clause of the query request, and so on.

You can retrieve the values of the attributes by calling a method that is compatible

with the attribute type and by specifying the appropriate column index. The

numbering of the column indexes starts with 1.

 Attribute type Method

String getString

OID getOID

Timestamp getTimestamp

getString

getTimestampAsLong

Integer getInteger

getShort

getLong

getString

getBoolean

Boolean getBoolean

getShort

getInteger

getLong

getString

byte[] getBinary

Chapter 2. Developing client applications for business processes and tasks 33

Example:

The following query is run:

QueryResultSet resultSet = process.query("ACTIVITY.STARTED,

 ACTIVITY.TEMPLATE_NAME AS NAME,

 WORK_ITEM.WIID, WORK_ITEM.REASON",

 (String)null, (String)null,

 (Integer)null, (TimeZone)null);

The returned query result set has four columns:

v Column 1 is a time stamp

v Column 2 is a string

v Column 3 is an object ID

v Column 4 is an integer

You can use the following methods to retrieve the attribute values:

while (resultSet.next())

{

 java.util.Calendar activityStarted = resultSet.getTimestamp(1);

 String templateName = resultSet.getString(2);

 WIID wiid = (WIID) resultSet.getOID(3);

 Integer reason = resultSet.getInteger(4);

}

You can use the display names of the result set, for example, as headings for a

printed table. These names are the column names of the view or the name defined

by the AS clause in the query. You can use the following method to retrieve the

display names in the example:

resultSet.getColumnDisplayName(1) returns "STARTED"

resultSet.getColumnDisplayName(2) returns "NAME"

resultSet.getColumnDisplayName(3) returns "WIID"

resultSet.getColumnDisplayName(4) returns "REASON"

User-specific access conditions:

User-specific access conditions are added when the SQL SELECT statement is

generated from the API query. These conditions guarantee that only those objects

are returned to the caller that satisfy the condition specified by the caller and to

which the caller is authorized.

 The access condition that is added depends on whether the user is a system

administrator.

Queries invoked by users who are not system administrators

The generated SQL WHERE clause combines the API where clause with an access

control condition that is specific to the user. The query retrieves only those objects

that the user is authorized to access, that is, only those objects for which the user

has a work item. A work item represents the assignment of a user or user group to

an authorization role of a business object, such as a task or process. If, for example,

the user, John Smith, is a member of the potential owners role of a given task, a

work item object exists that represents this relationship.

For example, if a user, who is not a system administrator, queries tasks, the

following access condition is added to the WHERE clause if group work items are

not enabled:

34 Developing and deploying

FROM TASK TA, WORK_ITEM WI

WHERE WI.OBJECT_ID = TA.TKIID

AND (WI.OWNER_ID = ’user’

 OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

So, if John Smith wants to get a list of tasks for which he is the potential owner,

the API where clause might look as follows:

"WORK_ITEM.REASON == WORK_ITEM.REASON.REASON_POTENTIAL_OWNER"

This API where clause results in the following access condition in the SQL

statement:

FROM TASK TA, WORK_ITEM WI

WHERE WI.OBJECT_ID = TA.TKIID

AND (WI.OWNER_ID = ’JohnSmith’

 OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

AND WI.REASON = 1

This also means that if John Smith wants to see the activities and tasks for which

he is a process reader or a process administrator and for which he does not have a

work item, then a property from the PROCESS_INSTANCE view must be added to

the select, where, or order-by clause of the query, for example,

PROCESS_INSTANCE.PIID.

If group work items are enabled, an additional access condition is added to the

WHERE clause that allows a user to access objects that the group has access to.

Queries invoked by system administrators

System administrators can invoke the query method to retrieve objects that have

associated work items. In this case, a join with the WORK_ITEM view is added to

the generated SQL query, but no access control condition for the

WORK_ITEM.OWNER_ID.

In this case, the SQL query for tasks contains the following:

FROM TASK TA, WORK_ITEM WI

WHERE WI.OBJECT_ID = TA.TKIID

queryAll queries

This type of query can be invoked only by system administrators or system

monitors. Neither conditions for access control nor a join to the WORK_ITEM view

are added. This type of query returns all of the data for all of the objects.

Examples of the query and queryAll methods:

These examples show the syntax of various typical API queries and the associated

SQL statements that are generated when the query is processed.

Example: querying tasks in the ready state:

This example shows how to use the query method to retrieve tasks that the

logged-on user can work with.

 John Smith wants to get a list of the tasks that have been assigned to him. For a

user to be able to work on a task, the task must be in the ready state. The

logged-on user must also have a potential owner work item for the task. The

following code snippet shows the query method call for this query:

Chapter 2. Developing client applications for business processes and tasks 35

query("DISTINCT TASK.TKIID",

 "TASK.KIND IN (TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING)

 AND " +

 "TASK.STATE = TASK.STATE.STATE_READY AND " +

 "WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

 (String)null, (String)null, (Integer)null, (TimeZone)null)

The following actions are taken when the SQL SELECT statement is generated:

v A condition for access control is added to the where clause. This example

assumes that group work items are not enabled.

v Constants, such as TASK.STATE.STATE_READY, are replaced by their numeric

values.

v A FROM clause and join conditions are added.

The following code snippet shows the SQL statement that is generated from the

API query:

SELECT DISTINCT TASK.TKIID

 FROM TASK TA, WORK_ITEM WI,

 WHERE WI.OBJECT_ID = TA.TKIID

 AND TA.KIND IN (101, 105)

 AND TA.STATE = 2

 AND WI.REASON = 1

 AND (WI.OWNER_ID = ’JohnSmith’ OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

To restrict the API query to tasks for a specific process, for example,

sampleProcess, the query looks as follows:

query("DISTINCT TASK.TKIID",

 "PROCESS_TEMPLATE.NAME = ’sampleProcess’ AND "+

 "TASK.KIND IN (TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING)

 AND " +

 "TASK.STATE = TASK.STATE.STATE_READY AND " +

 "WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

 (String)null, (String)null, (Integer)null, (TimeZone)null)

Example: querying tasks in the claimed state:

This example shows how to use the query method to retrieve tasks that the

logged-on user has claimed.

 The user, John Smith, wants to search for tasks that he has claimed and are still in

the claimed state. The condition that specifies ″claimed by John Smith″ is

TASK.OWNER = ’JohnSmith’. The following code snippet shows the query method

call for the query:

query("DISTINCT TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_CLAIMED AND " +

 "TASK.OWNER = ’JohnSmith’",

 (String)null, (String)null, (Integer)null, (TimeZone)null)

The following code snippet shows the SQL statement that is generated from the

API query:

SELECT DISTINCT TASK.TKIID

 FROM TASK TA, WORK_ITEM WI,

 WHERE WI.OBJECT_ID = TA.TKIID

 AND TA.STATE = 8

 TA.OWNER = ’JohnSmith’

 AND (WI.OWNER_ID = ’JohnSmith’ OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

36 Developing and deploying

When a task is claimed, work items are created for the owner of the task. So, an

alternative way of forming the query for John Smith’s claimed tasks is to add the

following condition to the query instead of using TASK.OWNER = ’JohnSmith’:

WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_OWNER

The query then looks like the following code snippet:

query("DISTINCT TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_CLAIMED AND " +

 "WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_OWNER",

 (String)null, (String)null, (Integer)null, (TimeZone)null)

The following actions are taken when the SQL SELECT statement is generated:

v A condition for access control is added to the where clause. This example

assumes that group work items are not enabled.

v Constants, such as TASK.STATE.STATE_READY, are replaced by their numeric

values.

v A FROM clause and join conditions are added.

The following code snippet shows the SQL statement that is generated from the

API query:

SELECT DISTINCT TASK.TKIID

 FROM TASK TA, WORK_ITEM WI,

 WHERE WI.OBJECT_ID = TA.TKIID

 AND TA.STATE = 8

 AND WI.REASON = 4

 AND (WI.OWNER_ID = ’JohnSmith’ OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

John is about to go on vacation so his team lead, Anne Grant, wants to check on

his current work load. Anne has system administrator rights. The query she

invokes is the same as the one John invoked. However, the SQL statement that is

generated is different because Anne is an administrator. The following code

snippet shows the generated SQL statement:

SELECT DISTINCT TASK.TKIID

 FROM TASK TA, WORK_ITEM WI,

 WHERE TA.TKIID = WI.OBJECT_ID =

 AND TA.STATE = 8

 AND TA.OWNER = ’JohnSmith’)

Because Anne is an administrator, an access control condition is not added to the

WHERE clause.

Example: querying escalations:

This example shows how to use the query method to retrieve escalations for the

logged-on user.

 When a task is escalated, and escalation receiver work item is created. The user,

Mary Jones wants to see a list of tasks that have been escalated to her. The

following code snippet shows the query method call for the query:

query("DISTINCT ESCALATION.ESIID, ESCALATION.TKIID",

 "WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_ESCALATION_RECEIVER",

 (String)null, (String)null, (Integer)null, (TimeZone)null)

The following actions are taken when the SQL SELECT statement is generated:

v A condition for access control is added to the where clause. This example

assumes that group work items are not enabled.

Chapter 2. Developing client applications for business processes and tasks 37

v Constants, such as TASK.STATE.STATE_READY, are replaced by their numeric

values.

v A FROM clause and join conditions are added.

The following code snippet shows the SQL statement that is generated from the

API query:

 SELECT DISTINCT ESCALATION.ESIID, ESCALATION.TKIID

 FROM ESCALATION ESC, WORK_ITEM WI

 WHERE ESC.ESIID = WI.OBJECT_ID

 AND WI.REASON = 10

 AND

 (WI.OWNER_ID = ’MaryJones’ OR WI.OWNER_ID = null AND WI.EVERYBODY = true)

Example: using the queryAll method:

This example shows how to use the queryAll method to retrieve all of the activities

that belong to a process template.

 The queryAll method is available only to users with system administrator or

system monitor rights. The following code snippet shows the queryAll method call

for the query to retrieve all of the activities that belong to the process template,

sampleProcess:

queryAll("DISTINCT ACTIVITY.AIID",

 "PROCESS_TEMPLATE.NAME = ’sampleProcess’",

 (String)null, (String)null, (Integer)null, (TimeZone)null)

The following code snippet shows the SQL query that is generated from the API

query:

 SELECT DISTINCT ACTIVITY.AIID

 FROM ACTIVITY AI, PROCESS_TEMPLATE PT

 WHERE AI.PTID = PT.PTID

 AND PT.NAME = ’sampleProcess’

Because the call is invoked by an administrator, an access control condition is not

added to the generated SQL statement. A join with the WORK_ITEM view is also

not added. This means that the query retrieves all of the activities for the process

template, including those activities without work items.

Example: including query properties in a query:

This example shows how to use the query method to retrieve tasks that belong to

a business process. The process has query properties defined for it that you want

to include in the search.

 For example, you want to search for all of the human tasks in the ready state that

belong to a business process. The process has a query property, customerID, with

the value CID_12345, and a namespace. The following code snippet shows the

query method call for the query:

 query (" DISTINCT TASK.TKIID, TASK_TEMPL.NAME, TASK.STATE,

 PROCESS_INSTANCE.NAME",

 " QUERY_PROPERTY.NAME = ’customerID’ AND " +

 " QUERY_PROPERTY.STRING_VALUE = ’CID_12345’ AND " +

 " QUERY_PROPERTY.NAMESPACE =

 ’http://www.ibm.com/xmlns/prod/websphere/mqwf/bpel/’ AND " +

 " TASK.KIND IN

 (TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING) AND " +

 " TASK.STATE = TASK.STATE.STATE_READY ",

 (String)null, (String)null, (Integer)null, (TimeZone)null);

38 Developing and deploying

If you now want to add a second query property to the query, for example,

Priority, with a given namespace, the query method call for the query looks as

follows:

 query (" DISTINCT TASK.TKIID, TASK_TEMPL.NAME, TASK.STATE,

 PROCESS_INSTANCE.NAME",

 " QUERY_PROPERTY1.NAME = ’customerID’ AND " +

 " QUERY_PROPERTY1.STRING_VALUE = ’CID_12345’ AND " +

 " QUERY_PROPERTY1.NAMESPACE =

 ’http://www.ibm.com/xmlns/prod/websphere/mqwf/bpel/’ AND " +

 " QUERY_PROPERTY2.NAME = ’Priority’ AND " +

 " QUERY_PROPERTY2.NAMESPACE =

 ’http://www.ibm.com/xmlns/prod/websphere/mqwf/bpel/’ AND " +

 " TASK.KIND IN

 (TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING) AND " +

 " TASK.STATE = TASK.STATE.STATE_READY ",

 (String)null, (String)null, (Integer)null, (TimeZone)null);

If you add more than one query property to the query, you must number each of

the properties that you add as shown in the code snippet. However, querying

custom properties affects performance; performance decreases with the number of

custom properties in the query.

Example: including custom properties in a query:

This example shows how to use the query method to retrieve tasks that have

custom properties.

 For example, you want to search for all of the human tasks in the ready state that

have a custom property, customerID, with the value CID_12345. The following code

snippet shows the query method call for the query:

 query (" DISTINCT TASK.TKIID ",

 " TASK_CPROP.NAME = ’customerID’ AND " +

 " TASK_CPROP.STRING_VALUE = ’CID_12345’ AND " +

 " TASK.KIND IN

 (TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING) AND " +

 " TASK.STATE = TASK.STATE.STATE_READY ",

 (String)null, (String)null, (Integer)null, (TimeZone)null);

If you now want to retrieve the tasks and their custom properties, the query

method call for the query looks as follows:

 query (" DISTINCT TASK.TKIID, TASK_CPROP.NAME, TASK_CPROP.STRING_VALUE",

 " TASK.KIND IN

 (TASK.KIND.KIND_HUMAN, TASK.KIND.KIND_PARTICIPATING) AND " +

 " TASK.STATE = TASK.STATE.STATE_READY ",

 (String)null, (String)null, (Integer)null, (TimeZone)null);

The SQL statement that is generated from this API query is shown in the following

code snippet:

SELECT DISTINCT TA.TKIID , TACP.NAME , TACP.STRING_VALUE

 FROM TASK TA LEFT JOIN TASK_CPROP TACP ON (TA.TKIID = TACP.TKIID),

 WORK_ITEM WI

 WHERE WI.OBJECT_ID = TA.TKIID

 AND TA.KIND IN (101, 105)

 AND TA.STATE = 2

 AND (WI.OWNER_ID = ’JohnSmith’ OR WI.OWNER_ID IS NULL AND WI.EVERYBODY = 1)

This SQL statement contains an outer join between the TASK view and the

TASK_CPROP view. This means that tasks that satisfy the WHERE clause are

retrieved even if they do not have any custom properties.

Chapter 2. Developing client applications for business processes and tasks 39

Predefined views for queries on business-process and human-task objects:

Predefined database views are provided for business-process and human-task

objects. Use these views when you query reference data for these objects.

 When you use the predefined views, you do not need to explicitly add join

predicates for view columns, these constructs are added automatically for you. You

can use the generic query function of the service API

(BusinessFlowManagerService or HumanTaskManagerService) to query this data.

You can also use the corresponding method of the HumanTaskManagerDelegate

API or your predefined queries provided by your implementations of the

ExecutableQuery interface.

Note: The views might contain columns that are not described. These columns are

for internal use only.

ACTIVITY view:

Use this predefined database view for queries on activities.

 Table 3. Columns in the ACTIVITY view

Column name Type Comments

PIID ID The process instance ID.

AIID ID The activity instance ID.

PTID ID The process template ID.

ATID ID The activity template ID.

KIND Integer The kind of activity. Possible values are:

 KIND_INVOKE (21)

KIND_RECEIVE (23)

KIND_REPLY (24)

KIND_THROW (25)

KIND_RETHROW (46)

KIND_TERMINATE (26)

KIND_WAIT (27)

KIND_COMPENSATE (29)

KIND_SEQUENCE (30)

KIND_EMPTY (3)

KIND_SWITCH (32)

KIND_WHILE (34)

KIND_PICK (36)

KIND_FLOW (38)

KIND_SCOPE (40)

KIND_SCRIPT (42)

KIND_STAFF (43)

KIND_ASSIGN (44)

KIND_CUSTOM (45)

KIND_FOR_EACH_PARALLEL (49)

KIND_FOR_EACH_SERIAL (47)

COMPLETED Timestamp The time the activity is completed.

ACTIVATED Timestamp The time the activity is activated.

FIRST_ACTIVATED Timestamp The time at which the activity was

activated for the first time.

STARTED Timestamp The time the activity is started.

40 Developing and deploying

Table 3. Columns in the ACTIVITY view (continued)

Column name Type Comments

STATE Integer The state of the activity. Possible values

are:

 STATE_INACTIVE (1)

STATE_READY (2)

STATE_RUNNING (3)

STATE_PROCESSING_UNDO (14)

STATE_SKIPPED (4)

STATE_FINISHED (5)

STATE_FAILED (6)

STATE_TERMINATED (7)

STATE_CLAIMED (8)

STATE_TERMINATING (9)

STATE_FAILING (10)

STATE_WAITING (11)

STATE_EXPIRED (12)

STATE_STOPPED (13)

OWNER String Principal ID of the owner.

DESCRIPTION String If the activity template description

contains placeholders, this column

contains the description of the activity

instance with the placeholders resolved.

TEMPLATE_NAME String Name of the associated activity

template.

TEMPLATE_DESCR String Description of the associated activity

template.

BUSINESS_RELEVANCE Boolean Specifies whether the activity is

business relevant. Possible values are:

TRUE The activity is business

relevant. You can view the

activity status in Business

Process Choreographer

Explorer.

FALSE The activity is not business

relevant.

EXPIRES Timestamp The date and time when the activity is

due to expire. If the activity has

expired, the date and time when this

event occurred.

ACTIVITY_ATTRIBUTE view:

Use this predefined database view for queries on custom properties for activities.

 Table 4. Columns in the ACTIVITY_ATTRIBUTE view

Column name Type Comments

AIID ID The ID of the activity instance that

has a custom property.

NAME String The name of the custom property.

VALUE String The value of the custom property.

Chapter 2. Developing client applications for business processes and tasks 41

ACTIVITY_SERVICE view:

Use this predefined database view for queries on activity services.

 Table 5. Columns in the ACTIVITY_SERVICE view

Column name Type Comments

EIID ID The ID of the event instance.

AIID ID The ID of the activity instance that

is waiting for the event.

PIID ID The ID of the process instance that

contains the event.

VTID ID The ID of the service template that

describes the event.

PORT_TYPE String The name of the port type.

NAME_SPACE_URI String The URI of the namespace.

OPERATION String The operation name of the service.

APPLICATION_COMP view:

Use this predefined database view to query the application component ID and

default settings for tasks.

 Table 6. Columns in the APPLICATION_COMP view

Column name Type Comments

ACOID String The ID of the application component.

BUSINESS_ RELEVANCE Boolean The default task business-relevance policy of the

component. This value can be overwritten by a

definition in the task template or the task. The

attribute affects logging to the audit trail.

Possible values are:

TRUE The task is business relevant and it is

audited.

FALSE The task is not business relevant and it

is not audited.

NAME String Name of the application component.

SUPPORT_ AUTOCLAIM Boolean The default automatic-claim policy of the

component. If this attribute is set to TRUE, the

task can be automatically claimed if a single user

is the potential owner. This value can be

overwritten by a definition in the task template

or task.

SUPPORT_CLAIM_ SUSP Boolean The default setting of the component that

determines whether suspended tasks can be

claimed. If this attribute is set to TRUE,

suspended tasks can be claimed. This value can

be overwritten by a definition in the task

template or the task.

SUPPORT_ DELEGATION Boolean The default task delegation policy of the

component. If this attribute is set to TRUE, the

work item assignments for the task can be

modified. This means that work items can be

created, deleted, or transferred.

42 Developing and deploying

Table 6. Columns in the APPLICATION_COMP view (continued)

Column name Type Comments

SUPPORT_ FOLLOW_ON Boolean The default follow-on task policy of the

component. If this attribute is set to TRUE,

follow-on tasks can be created for tasks. This

value can be overwritten by a definition in the

task template or the task.

SUPPORT_ SUB_TASK Boolean The default subtask policy of the component. If

this attribute is set to TRUE, subtasks can be

created for tasks. This value can be overwritten

by a definition in the task template or the task.

ESCALATION view:

Use this predefined database view to query data for escalations.

 Table 7. Columns in the ESCALATION view

Column name Type Comments

ESIID String The ID of the escalation instance.

ACTION Integer The action triggered by the escalation. Possible

values are:

ACTION_CREATE_WORK_ITEM (1)

Creates a work item for each escalation

receiver.

ACTION_SEND_EMAIL (2)

Sends an e-mail to each escalation receiver.

ACTION_CREATE_EVENT (3)

Creates and publishes an event.

ACTIVATION_STATE Integer An escalation instance is created if the

corresponding task reaches one of the following

states:

ACTIVATION_STATE_READY (2)

Specifies that the human or participating

task is ready to be claimed.

ACTIVATION_STATE_RUNNING (3)

Specifies that the originating task is started

and running.

ACTIVATION_STATE_CLAIMED (8)

Specifies that the task is claimed.

ACTIVATION_STATE_WAITING_

FOR_SUBTASK (20)

Specifies that the task is waiting for the

completion of subtasks.

ACTIVATION_TIME Timestamp The time when the escalation is activated.

Chapter 2. Developing client applications for business processes and tasks 43

Table 7. Columns in the ESCALATION view (continued)

Column name Type Comments

AT_LEAST_

EXP_STATE

Integer The state of the task that is expected by the

escalation. If a timeout occurs, the task state is

compared with the value of this attribute. Possible

values are:

AT_LEAST_EXPECTED_STATE_CLAIMED (8)

Specifies that the task is claimed.

AT_LEAST_EXPECTED_STATE_ENDED (20)

Specifies that the task is in a final state

(FINISHED, FAILED, TERMINATED or

EXPIRED).

AT_LEAST_EXPECTED_STATE_

SUBTASKS_COMPLETED (21)

Specifies that all of the subtasks of the task

are complete.

ESTID String The ID of the corresponding escalation template.

FIRST_ESIID String The ID of the first escalation in the chain.

INCREASE_PRIORITY Integer Indicates how the task priority will be increased.

Possible values are:

INCREASE_PRIORITY_NO (1)

The task priority is not increased.

INCREASE_PRIORITY_ONCE (2)

The task priority is increased once by one.

INCREASE_PRIORITY_REPEATED (3)

The task priority is increased by one each

time the escalation repeats.

NAME String The name of the escalation.

STATE Integer The state of the escalation. Possible values are:

 STATE_INACTIVE (1)

STATE_WAITING (2)

STATE_ESCALATED (3)

STATE_SUPERFLUOUS (4)

TKIID String The task instance ID to which the escalation

belongs.

ESCALATION_CPROP view:

Use this predefined database view to query custom properties for escalations.

 Table 8. Columns in the ESCALATION_CPROP view

Column name Type Comments

ESIID String The escalation ID.

NAME String The name of the property.

DATA_TYPE String The type of the class for non-string custom

properties.

STRING_VALUE String The value for custom properties of type String.

ESCALATION_DESC view:

44 Developing and deploying

Use this predefined database view to query multilingual descriptive data for

escalations.

 Table 9. Columns in the ESCALATION_DESC view

Column name Type Comments

ESIID String The escalation ID.

LOCALE String The name of the locale associated with the

description or display name.

DESCRIPTION String A description of the task template.

DISPLAY_NAME String The descriptive name of the escalation.

ESC_TEMPL view:

Use this predefined database view to query data for escalation templates.

 Table 10. Columns in the ESC_TEMPL view

Column name Type Comments

ESTID String The ID of the escalation template.

ACTION Integer The action triggered by the escalation. Possible

values are:

ACTION_CREATE_WORK_ITEM (1)

Creates a work item for each escalation

receiver.

ACTION_SEND_EMAIL (2)

Sends an e-mail to each escalation receiver.

ACTION_CREATE_EVENT (3)

Creates and publishes an event.

ACTIVATION_STATE Integer An escalation instance is created if the

corresponding task reaches one of the following

states:

ACTIVATION_STATE_READY (2)

Specifies that the human or participating

task is ready to be claimed.

ACTIVATION_STATE_RUNNING (3)

Specifies that the originating task is started

and running.

ACTIVATION_STATE_CLAIMED (8)

Specifies that the task is claimed.

ACTIVATION_STATE_WAITING_

FOR_SUBTASK (20)

Specifies that the task is waiting for the

completion of subtasks.

Chapter 2. Developing client applications for business processes and tasks 45

Table 10. Columns in the ESC_TEMPL view (continued)

Column name Type Comments

AT_LEAST_

EXP_STATE

Integer The state of the task that is expected by the

escalation. If a timeout occurs, the task state is

compared with the value of this attribute. Possible

values are:

AT_LEAST_EXPECTED_STATE_CLAIMED (8)

Specifies that the task is claimed.

AT_LEAST_EXPECTED_STATE_ENDED (20)

Specifies that the task is in a final state

(FINISHED, FAILED, TERMINATED or

EXPIRED).

AT_LEAST_EXPECTED_STATE_

SUBTASKS_COMPLETED (21)

Specifies that all of the subtasks of the task

are complete.

CONTAINMENT_

CTX_ID

String If the escalation template belongs to an inline task

template, the containment context is the process

template. If the escalation template context belongs

to a stand-alone task template, the containment

context is the task template.

FIRST_ESTID String The ID of the first escalation template in a chain of

escalation templates.

INCREASE_PRIORITY Integer Indicates how the task priority will be increased.

Possible values are:

INCREASE_PRIORITY_NO (1)

The task priority is not increased.

INCREASE_PRIORITY_ONCE (2)

The task priority is increased once by one.

INCREASE_PRIORITY_REPEATED (3)

The task priority is increased by one each

time the escalation repeats.

NAME String The name of the escalation template.

PREVIOUS_ESTID String The ID of the previous escalation template in a

chain of escalation templates.

TKTID String The task template ID to which the escalation

template belongs.

ESC_TEMPL_CPROP view:

Use this predefined database view to query custom properties for escalation

templates.

 Table 11. Columns in the ESC_TEMPL_CPROP view

Column name Type Comments

ESTID String The ID of the escalation template.

NAME String The name of the property.

TKTID String The task template ID to which the escalation

template belongs.

46 Developing and deploying

Table 11. Columns in the ESC_TEMPL_CPROP view (continued)

Column name Type Comments

DATA_TYPE String The type of the class for non-string custom

properties.

VALUE String The value for custom properties of type String.

ESC_TEMPL_DESC view:

Use this predefined database view to query multilingual descriptive data for

escalation templates.

 Table 12. Columns in the ESC_TEMPL_DESC view

Column name Type Comments

ESTID String The ID of the escalation template.

LOCALE String The name of the locale associated with the

description or display name.

TKTID String The task template ID to which the escalation

template belongs.

DESCRIPTION String A description of the task template.

DISPLAY_NAME String The descriptive name of the escalation.

PROCESS_ATTRIBUTE view:

Use this predefined database view for queries on custom properties for processes.

 Table 13. Columns in the PROCESS_ATTRIBUTE view

Column name Type Comments

PIID ID The ID of the process instance that

has a custom property.

NAME String The name of the custom property.

VALUE String The value of the custom property.

PROCESS_INSTANCE view:

Use this predefined database view for queries on process instances.

 Table 14. Columns in the PROCESS_INSTANCE view

Column name Type Comments

PTID ID The process template ID.

PIID ID The process instance ID.

NAME String The name of the process instance.

Chapter 2. Developing client applications for business processes and tasks 47

Table 14. Columns in the PROCESS_INSTANCE view (continued)

Column name Type Comments

STATE Integer The state of the process instance. Possible values

are:

 STATE_READY (1)

STATE_RUNNING (2)

STATE_FINISHED (3)

STATE_COMPENSATING (4)

STATE_INDOUBT (10)

STATE_FAILED (5)

STATE_TERMINATED (6)

STATE_COMPENSATED (7)

STATE_COMPENSATION_FAILED (12)

STATE_TERMINATING (8)

STATE_FAILING (9)

STATE_SUSPENDED (11)

CREATED Timestamp The time the process instance is created.

STARTED Timestamp The time the process instance started.

COMPLETED Timestamp The time the process instance completed.

PARENT_PIID ID The ID of the parent process instance.

PARENT_NAME String The name of the parent process instance.

TOP_LEVEL_PIID ID The process instance ID of the top-level process

instance. If there is no top-level process instance,

this is the process instance ID of the current process

instance.

TOP_LEVEL_NAME String The name of the top-level process instance. If there

is no top-level process instance, this is the name of

the current process instance.

STARTER String The principal ID of the starter of the process

instance.

DESCRIPTION String If the description of the process template contains

placeholders, this column contains the description

of the process instance with the placeholders

resolved.

TEMPLATE_NAME String The name of the associated process template.

TEMPLATE_DESCR String Description of the associated process template.

RESUMES Timestamp The time when the process instance is to be

resumed automatically.

PROCESS_TEMPLATE view:

Use this predefined database view for queries on process templates.

 Table 15. Columns in the PROCESS_TEMPLATE view

Column name Type Comments

PTID ID The process template ID.

NAME String The name of the process template.

VALID_FROM Timestamp The time from when the process template can be

instantiated.

TARGET_NAMESPACE String The target namespace of the process template.

48 Developing and deploying

Table 15. Columns in the PROCESS_TEMPLATE view (continued)

Column name Type Comments

APPLICATION_NAME String The name of the enterprise application to which

the process template belongs.

VERSION String User-defined version.

CREATED Timestamp The time the process template is created in the

database.

STATE Integer Specifies whether the process template is available

to create process instances. Possible values are:

 STATE_STARTED (1)

STATE_STOPPED (2)

EXECUTION_MODE Integer Specifies how process instances that are derived

from this process template can be run. Possible

values are:

 EXECUTION_MODE_MICROFLOW (1)

EXECUTION_MODE_LONG_RUNNING (2)

DESCRIPTION String Description of the process template.

COMP_SPHERE Integer Specifies the compensation behavior of instances of

microflows in the process template; either an

existing compensation sphere is joined or a

compensation sphere is created.

Possible values are:

 COMP_SPHERE_REQUIRED (2)

COMP_SPHERE_SUPPORTS (4)

DISPLAY_NAME String The descriptive name of the process.

QUERY_PROPERTY view:

Use this predefined database view for queries on process-level variables.

 Table 16. Columns in the QUERY_PROPERTY view

Column name Type Comments

PIID ID The process instance ID.

VARIABLE_NAME String The name of the process-level

variable.

NAME String The name of the query property.

NAMESPACE String The namespace of the query

property.

GENERIC_VALUE String A string representation for

property types that do not map to

one of the defined types:

STRING_VALUE,

NUMBER_VALUE,

DECIMAL_VALUE, or

TIMESTAMP_VALUE.

STRING_VALUE String If a property type is mapped to a

string type, this is the value of the

string.

Chapter 2. Developing client applications for business processes and tasks 49

Table 16. Columns in the QUERY_PROPERTY view (continued)

Column name Type Comments

NUMBER_VALUE Integer If a property type is mapped to an

integer type, this is the value of

the integer.

DECIMAL_VALUE Decimal If a property type is mapped to a

floating point type, this is the

value of the decimal.

TIMESTAMP_VALUE Timestamp If a property type is mapped to a

timestamp type, this is the value of

the timestamp.

TASK view:

Use this predefined database view for queries on task objects.

 Table 17. Columns in the TASK view

Column name Type Comments

TKIID ID The ID of the task instance.

ACTIVATED Timestamp The time when the task was activated.

APPLIC_

DEFAULTS_ID

ID The ID of the application component that specifies

the defaults for the task.

APPLIC_NAME String The name of the enterprise application to which the

task belongs.

BUSINESS_

RELEVANCE

Boolean Specifies whether the task is business relevant. The

attribute affects logging to the audit trail. Possible

values are:

TRUE The task is business relevant and it is

audited.

FALSE The task is not business relevant and it is

not audited.

COMPLETED Timestamp The time when the task completed.

CONTAINMENT_

CTX_ID

ID The containment context for this task. This attribute

determines the life cycle of the task. When the

containment context of a task is deleted, the task is

also deleted.

CTX_

AUTHORIZATION

Integer Allows the task owner to access the task context.

Possible values are:

AUTH_NONE

No authorization rights for the associated

context object.

AUTH_READER

Operations on the associated context object

require reader authority, for example,

reading the properties of a process

instance.

DUE Timestamp The time when the task is due.

EXPIRES Timestamp The date when the task expires.

FIRST_ACTIVATED Timestamp The time when the task was activated for the first

time.

50 Developing and deploying

Table 17. Columns in the TASK view (continued)

Column name Type Comments

FOLLOW_ON_TKIID ID The ID of the instance of the follow-on task.

HIERARCHY_

POSITION

Integer Possible values are:

HIERARCHY_POSITION_TOP_TASK (0)

The top-level task in the task hierarchy.

HIERARCHY_POSITION_SUB_TASK (1)

The task is a subtask in the task hierarchy.

HIERARCHY_POSITION_FOLLOW_ON_TASK

(2) The task is a follow-on task in the task

hierarchy.

IS_AD_HOC Boolean Indicates whether this task was created dynamically

at runtime or from a task template.

IS_ESCALATED Boolean Indicates whether an escalation of this task has

occurred.

IS_INLINE Boolean Indicates whether the task is an inline task in a

business process.

IS_WAIT_FOR_

SUB_TK

Boolean Indicates whether the parent task is waiting for a

subtask to reach an end state.

KIND Integer The kind of task. Possible values are:

KIND_HUMAN (101)

States that the task is a collaboration task

that is created and processed by a human.

KIND_WPC_STAFF_ACTIVITY (102)

States that the task is a human task that is

a staff activity of a WebSphere Business

Integration Server Foundation, version 5

business process.

KIND_ORIGINATING (103)

States that the task is an invocation task that

supports person-to-computer interactions,

which enables people to create, initiate,

and start services.

KIND_PARTICIPATING (105)

States that the task is a to-do task that

supports computer-to-person interactions,

which enable a person to implement a

service.

KIND_ADMINISTRATIVE (106)

States that the task is an administration

task.

LAST_MODIFIED Timestamp The time when the task was last modified.

LAST_STATE_

CHANGE

Timestamp The time when the state of the task was last

modified.

NAME String The name of the task.

NAME_SPACE String The namespace that is used to categorize the task.

ORIGINATOR String The principal ID of the task originator.

OWNER String The principal ID of the task owner.

Chapter 2. Developing client applications for business processes and tasks 51

Table 17. Columns in the TASK view (continued)

Column name Type Comments

PARENT_

CONTEXT_ID

String The parent context for this task. This attribute

provides a key to the corresponding context in the

calling application component. The parent context is

set by the application component that creates the

task.

PRIORITY Integer The priority of the task.

RESUMES Timestamp The time when the task is to be resumed

automatically.

STARTED Timestamp The time when the task was started

(STATE_RUNNING, STATE_CLAIMED).

STARTER String The principal ID of the task starter.

STATE Integer The state of the task. Possible values are:

STATE_READY (2)

States that the task is ready to be claimed.

STATE_RUNNING (3)

States that the task is started and running.

STATE_FINISHED (5)

States that the task finished successfully.

STATE_FAILED (6)

States that the task did not finish

successfully.

STATE_TERMINATED (7)

States that the task has been terminated

because of an external or internal request.

STATE_CLAIMED (8)

States that the task is claimed.

STATE_EXPIRED (12)

States that the task ended because it

exceeded its specified duration.

STATE_FORWARDED (101)

States that task completed with a follow-on

task.

SUPPORT_

AUTOCLAIM

Boolean Indicates whether this task is claimed automatically

if it is assigned to a single user.

SUPPORT_CLAIM_

SUSP

Boolean Indicates whether this task can be claimed if it is

suspended.

SUPPORT_

DELEGATION

Boolean Indicates whether this task supports work

delegation through creating, deleting, or

transferring work items.

SUPPORT_

FOLLOW_ON

Boolean Indicates whether this task supports the creation of

follow-on tasks.

SUPPORT_SUB_TASK Boolean Indicates whether this task supports the creation of

subtasks.

SUSPENDED Boolean Indicates whether the task is suspended.

TKTID ID The task template ID.

TOP_TKIID ID The top parent task instance ID if this is a subtask.

TYPE String The type used to categorize the task.

52 Developing and deploying

TASK_CPROP view:

Use this predefined database view to query custom properties for task objects.

 Table 18. Columns in the TASK_CPROP view

Column name Type Comments

TKIID String The task instance ID.

NAME String The name of the property.

DATA_TYPE String The type of the class for non-string custom

properties.

STRING_VALUE String The value for custom properties of type String.

TASK_DESC view:

Use this predefined database view to query multilingual descriptive data for task

objects.

 Table 19. Column in the TASK_DESC view

Column name Type Comments

TKIID String The task instance ID.

LOCALE String The name of the locale associated with the

description or display name.

DESCRIPTION String A description of the task.

DISPLAY_NAME String The descriptive name of the task.

TASK_TEMPL view:

This predefined database view holds data that you can use to instantiate tasks.

 Table 20. Columns in the TASK_TEMPL view

Column name Type Comments

TKTID String The task template ID.

VALID_FROM Timestamp The time when the task template becomes available

for instantiation.

APPLIC_

DEFAULTS_ID

String The ID of the application component that specifies

the defaults for the task template.

APPLIC_NAME String The name of the enterprise application to which the

task template belongs.

BUSINESS_

RELEVANCE

Boolean Specifies whether the task template is business

relevant. The attribute affects logging to the audit

trail. Possible values are:

TRUE The task is business relevant and it is

audited.

FALSE The task is not business relevant and it is

not audited.

Chapter 2. Developing client applications for business processes and tasks 53

Table 20. Columns in the TASK_TEMPL view (continued)

Column name Type Comments

CONTAINMENT_

CTX_ID

ID The containment context for this task template. This

attribute determines the life cycle of the task

template. When a containment context is deleted,

the task template is also deleted.

CTX_

AUTHORIZATION

Integer Allows the task owner to access the task context.

Possible values are:

AUTH_NONE

No authorization rights for the associated

context object.

AUTH_READER

Operations on the associated context object

require reader authority, for example,

reading the properties of a process

instance.

DEFINITION_NAME String The name of the task template definition in the

Task Execution Language (TEL) file.

DEFINITION_NS String The namespace of the task template definition in

the TEL file.

IS_AD_HOC Boolean Indicates whether this task template was created

dynamically at runtime or when the task was

deployed as part of an EAR file.

IS_INLINE Boolean Indicates whether this task template is modeled as

a task within a business process.

KIND Integer The kind of tasks that are derived from this task

template. Possible values are:

KIND_HUMAN (101)

States that the task is a collaboration task

that is created and processed by a human.

KIND_ORIGINATING (103)

States that the task is an invocation task that

supports person-to-computer interactions,

which enables people to create, initiate,

and start services.

KIND_PARTICIPATING (105)

States that the task is a to-do task that

supports computer-to-person interactions,

which enable a person to implement a

service.

KIND_ADMINISTRATIVE (106)

States that the task is an administration

task.

NAME String The name of the task template.

NAMESPACE String The namespace that is used to categorize the task

template.

PRIORITY Integer The priority of the task template.

54 Developing and deploying

Table 20. Columns in the TASK_TEMPL view (continued)

Column name Type Comments

STATE Integer The state of the task template. Possible values are:

STATE_STARTED (1)

Specifies that the task template is available

for creating task instances.

STATE_STOPPED (2)

Specifies that the task template is stopped.

Task instances cannot be created from the

task template in this state.

SUPPORT_

AUTOCLAIM

Boolean Indicates whether tasks derived from this task

template can be claimed automatically if they are

assigned to a single user.

SUPPORT_CLAIM_

SUSP

Boolean Indicates whether tasks derived from this task

template can be claimed if they are suspended.

SUPPORT_

DELEGATION

Boolean Indicates whether tasks derived from this task

template support work delegation using creation,

deletion, or transfer of work items.

SUPPORT_

FOLLOW_ON

Boolean Indicates whether the task template supports the

creation of follow-on tasks.

SUPPORT_SUB_TASK Boolean Indicates whether the task template supports the

creation of subtasks.

TYPE String The type used to categorize the task template.

TASK_TEMPL_CPROP view:

Use this predefined database view to query custom properties for task templates.

 Table 21. Columns in the TASK_TEMPL_CPROP view

Column name Type Comments

TKTID String The task template ID.

NAME String The name of the property.

DATA_TYPE String The type of the class for non-string custom

properties.

STRING_VALUE String The value for custom properties of type String.

TASK_TEMPL_DESC view:

Use this predefined database view to query multilingual descriptive data for task

template objects.

 Table 22. Columns in the TASK_TEMPL_DESC view

Column name Type Comments

TKTID String The task template ID.

LOCALE String The name of the locale associated with the

description or display name.

DESCRIPTION String A description of the task template.

DISPLAY_NAME String The descriptive name of the task template.

Chapter 2. Developing client applications for business processes and tasks 55

WORK_ITEM view:

Use this predefined database view for queries on work items and authorization

data for process, tasks, and escalations.

 Table 23. Columns in the WORK_ITEM view

Column name Type Comments

WIID ID The work item ID.

OWNER_ID String The principal ID of the owner.

GROUP_NAME String The name of the associated group worklist.

EVERYBODY Boolean Specifies whether everybody owns this

work item.

OBJECT_TYPE Integer The type of the associated object. Possible

values are:

OBJECT_TYPE_ACTIVITY (1)

Specifies that the work item was

created for an activity.

OBJECT_TYPE_PROCESS_INSTANCE (3)

Specifies that the work item was

created for a process instance.

OBJECT_TYPE_TASK_INSTANCE (5)

Specifies that the work item was

created for a task.

OBJECT_TYPE_TASK_TEMPLATE (6)

Specifies that the work item was

created for a task template.

OBJECT_TYPE_ESCALATION_

INSTANCE (7)

Specifies that the work item was

created for an escalation instance.

OBJECT_TYPE_APPLICATION_

COMPONENT (9)

Specifies that the work item was

created for an application

component.

OBJECT_ID ID The ID of the associated object, for example,

the associated process or task.

ASSOC_OBJECT_TYPE Integer The type of the object referenced by the

ASSOC_OID attribute, for example, task,

process, or external objects. Use the values

for the OBJECT_TYPE attribute.

ASSOC_OID ID The ID of the object associated object with

the work item. For example, the process

instance ID (PIID) of the process instance

containing the activity instance for which

this work item was created.

56 Developing and deploying

Table 23. Columns in the WORK_ITEM view (continued)

Column name Type Comments

REASON Integer The reason for the assignment of the work

item. Possible values are:

 REASON_POTENTIAL_STARTER (5)

REASON_POTENTIAL_INSTANCE_

 CREATOR (11)

REASON_POTENTIAL_STARTER (1)

REASON_EDITOR (2)

REASON_READER (3)

REASON_ORIGINATOR (9)

REASON_OWNER (4)

REASON_STARTER (6)

REASON_ESCALATION_RECEIVER (10)

REASON_ADMINISTRATOR (7)

CREATION_TIME Timestamp The date and time when the work item was

created.

Filtering data using variables in queries

A query result returns the objects that match the query criteria. You might want to

filter these results on the values of variables.

About this task

You can define variables that are used by a process at runtime in its process model.

For these variables, you declare which parts can be queried.

For example, John Smith, calls his insurance company’s service number to find out

the progress of his insurance claim for his damaged car. The claims administrator

uses the customer ID to the find the claim.

Procedure

1. Optional: List the properties of the variables in a process that can be queried.

Use the process template ID to identify the process. You can skip this step if

you know which variables can be queried.

List variableProperties = process.getQueryProperties(ptid);

for (int i = 0; i < variableProperties.size(); i++)

{

 QueryProperty queryData = (QueryProperty)variableProperties.get(i);

 String variableName = queryData.getVariableName();

 String name = queryData.getName();

 int mappedType = queryData.getMappedType();

 ...

}

2. List the process instances with variables that match the filter criteria.

For this process, the customer ID is modeled as part of the variable

customerClaim that can be queried. You can therefore use the customer’s ID to

find the claim.

QueryResultSet result = process.query

 ("PROCESS_INSTANCE.NAME, QUERY_PROPERTY.STRING_VALUE",

 "QUERY_PROPERTY.VARIABLE_NAME = ’customerClaim’ AND " +

 "QUERY_PROPERTY.NAME = ’customerID’ AND " +

 "QUERY_PROPERTY.STRING_VALUE like ’Smith%’",

 (String)null, (Integer)null,

 (Integer)null, (TimeZone)null);

Chapter 2. Developing client applications for business processes and tasks 57

This action returns a query result set that contains the process instance names

and the values of the customer IDs for customers whose IDs start with Smith.

Managing stored queries

Stored queries provide a way to save queries that are run often. The stored query

can be either a query that is available to all users (public query), or a query that

belongs to a specific user (private query).

About this task

A stored query is a query that is stored in the database and identified by a name.

A private and a public stored query can have the same name; private stored

queries from different owners can also have the same name.

You can have stored queries for business process objects, task objects, or a

combination of these two object types.

 Related concepts

 “Parameters in stored queries” on page 32
A stored query is a query that is stored in the database and identified by a

name. The qualifying tuples are assembled dynamically when the query is run.

To make stored queries reusable, you can use parameters in the query

definition that are resolved at runtime.

Managing public stored queries:

Public stored queries are created by the system administrator. These queries are

available to all users.

 About this task

As the system administrator, you can create, view, and delete public stored queries.

If you do not specify a user ID in the API call, it is assumed that the stored query

is a public stored query.

Procedure

1. Create a public stored query.

For example, the following code snippet creates a stored query for process

instances and saves it with the name CustomerOrdersStartingWithA.

process.createStoredQuery("CustomerOrdersStartingWithA",

 "DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",

 "PROCESS_INSTANCE.NAME LIKE ’A%’",

 "PROCESS_INSTANCE.NAME",

 (Integer)null, (TimeZone)null);

The result of the stored query is a sorted list of all the process-instance names

that begin with the letter A and their associated process instance IDs (PIID).

2. Run the query defined by the stored query.

QueryResultSet result = process.query("CustomerOrdersStartingWithA",

 new Integer(0));

This action returns the objects that fulfill the criteria. In this case, all of the

customer orders that begin with A.

3. List the names of the available public stored queries.

The following code snippet shows how to limit the list of returned queries to

just the public queries.

String[] storedQuery = process.getStoredQueryNames(StoredQueryData.KIND_PUBLIC);

58 Developing and deploying

4. Optional: Check the query that is defined by a specific stored query.

A stored private query can have the same name as a stored public query. If

these names are the same, the private stored query is returned. The following

code snippet shows how to return only the public query with the specified

name. If you want to run this query for task-based objects, specify StoredQuery

as the returned object type instead of StoredQueryData.

StoredQueryData storedQuery = process.getStoredQuery

 (StoredQueryData.KIND_PUBLIC, "CustomerOrdersStartingWithA");

String selectClause = storedQuery.getSelectClause();

String whereClause = storedQuery.getWhereClause();

String orderByClause = storedQuery.getOrderByClause();

Integer threshold = storedQuery.getThreshold();

String owner = storedQuery.getOwner();

5. Delete a public stored query.

The following code snippet shows how to delete the stored query that you

created in step 1.

process.deleteStoredQuery("CustomerOrdersStartingWithA");

Managing private stored queries for other users:

Private queries can be created by any user. These queries are available only to the

owner of the query and the system administrator.

 About this task

As the system administrator, you can manage private stored queries that belong to

a specific user.

Procedure

1. Create a private stored query for the user ID Smith.

For example, the following code snippet creates a stored query for process

instances and saves it with the name CustomerOrdersStartingWithA for the

user ID Smith.

process.createStoredQuery("Smith", "CustomerOrdersStartingWithA",

 "DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",

 "PROCESS_INSTANCE.NAME LIKE ’A%’",

 "PROCESS_INSTANCE.NAME",

 (Integer)null, (TimeZone)null,

 (List)null, (String)null);

The result of the stored query is a sorted list of all the process-instance names

that begin with the letter A and their associated process instance IDs (PIID).

2. Run the query defined by the stored query.

QueryResultSet result = process.query

 ("Smith", "CustomerOrdersStartingWithA",

 (Integer)null, (Integer)null, (List)null);

new Integer(0));

This action returns the objects that fulfill the criteria. In this case, all of the

customer orders that begin with A.

3. Get a list of the names of the private queries that belong to a specific user.

For example, the following code snippet shows how to get a list of private

queries that belongs to the user Smith.

String[] storedQuery = process.getStoredQueryNames("Smith");

4. View the details of a specific query.

The following code snippet shows how to view the details of the

CustomerOrdersStartingWithA query that is owned by the user Smith.

Chapter 2. Developing client applications for business processes and tasks 59

StoredQuery storedQuery = process.getStoredQuery

 ("Smith", "CustomerOrdersStartingWithA");

String selectClause = storedQuery.getSelectClause();

String whereClause = storedQuery.getWhereClause();

String orderByClause = storedQuery.getOrderByClause();

Integer threshold = storedQuery.getThreshold();

String owner = storedQuery.getOwner();

5. Delete a private stored query.

The following code snippet shows how to delete a private query that is owned

by the user Smith.

process.deleteStoredQuery("Smith", "CustomerOrdersStartingWithA");

Working with your private stored queries:

If you are not a system administrator, you can create, run, and delete your own

private stored queries. You can also use the public stored queries that the system

administrator created.

 Procedure

1. Create a private stored query.

For example, the following code snippet creates a stored query for process

instances and saves it with a specific name. If a user ID is not specified, it is

assumed that the stored query is a private stored query for the logged-on user.

process.createStoredQuery("CustomerOrdersStartingWithA",

 "DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",

 "PROCESS_INSTANCE.NAME LIKE ’A%’",

 "PROCESS_INSTANCE.NAME",

 (Integer)null, (TimeZone)null);

This query returns a sorted list of all the process-instance names that begin

with the letter A and their associated process instance IDs (PIID).

2. Run the query defined by the stored query.

QueryResultSet result = process.query("CustomerOrdersStartingWithA",

 new Integer(0));

This action returns the objects that fulfill the criteria. In this case, all of the

customer orders that begin with A.

3. Get a list of the names of the stored queries that the logged-on user can access.

The following code snippet shows how to get both the public and the private

stored queries that the user can access.

String[] storedQuery = process.getStoredQueryNames();

4. View the details of a specific query.

The following code snippet shows how to view the details of the

CustomerOrdersStartingWithA query that is owned by the user Smith.

StoredQuery storedQuery = process.getStoredQuery

 ("CustomerOrdersStartingWithA");

String selectClause = storedQuery.getSelectClause();

String whereClause = storedQuery.getWhereClause();

String orderByClause = storedQuery.getOrderByClause();

Integer threshold = storedQuery.getThreshold();

String owner = storedQuery.getOwner();

5. Delete a private stored query.

The following code snippet shows how to delete a private stored query.

process.deleteStoredQuery("CustomerOrdersStartingWithA");

60 Developing and deploying

Developing applications for business processes

A business process is a set of business-related activities that are invoked in a

specific sequence to achieve a business goal. Examples are provided that show

how you might develop applications for typical actions on processes.

About this task

A business process can be either a microflow or a long-running process:

v Microflows are short running business processes that are executed

synchronously. After a very short time, the result is returned to the caller.

v Long-running, interruptible processes are executed as a sequence of activities

that are chained together. The use of certain constructs in a process causes

interruptions in the process flow, for example, invoking a human task, invoking

a service using an synchronous binding, or using timer-driven activities.

Parallel branches of the process are usually navigated asynchronously, that is,

activities in parallel branches are executed concurrently. Depending on the type

and the transaction setting of the activity, an activity can be run in its own

transaction.

Required roles for actions on process instances

Access to the BusinessFlowManager interface does not guarantee that the caller can

perform all of the actions on a process. The caller must be logged on to the client

application with a role that is authorized to perform the action.

The following table shows the actions on a process instance that a specific role can

take.

 Action Caller’s principal role

Reader Starter Administrator

createMessage x x x

createWorkItem x

delete x

deleteWorkItem x

forceTerminate x

getActiveEventHandlers x x

getActivityInstance x x

getAllActivities x x

getAllWorkItems x x

getClientUISettings x x x

getCustomProperties x x x

getCustomProperty x x x

getCustomPropertyNames x x x

getFaultMessage x x x

getInputClientUISettings x x x

getInputMessage x x x

getOutputClientUISettings x x x

getOutputMessage x x x

getProcessInstance x x x

Chapter 2. Developing client applications for business processes and tasks 61

Action Caller’s principal role

Reader Starter Administrator

getVariable x x x

getWaitingActivities x x x

getWorkItems x x

restart x

resume x

setCustomProperty x x

setVariable x

suspend x

transferWorkItem x

Required roles for actions on business-process activities

Access to the BusinessFlowManager interface does not guarantee that the caller can

perform all of the actions on an activity. The caller must be logged on to the client

application with a role that is authorized to perform the action.

The following table shows the actions on an activity instance that a specific role

can take.

 Action Caller’s principal role

Reader Editor Potential owner Owner Administrator

cancelClaim x x

claim x x

complete x x

createMessage x x x x x

createWorkItem x

deleteWorkItem x

forceComplete x

forceRetry x

getActivityInstance x x x x x

getAllWorkItems x x x x x

getClientUISettings x x x x x

getCustomProperties x x x x x

getCustomProperty x x x x x

getCustomPropertyNames x x x x x

getFaultMessage x x x x x

getFaultNames x x x x x

getInputMessage x x x x x

getOutputMessage x x x x x

getVariable x x x x x

getVariableNames x x x x x

getInputVariableNames x x x x x

getOutputVariableNames x x x x x

62 Developing and deploying

Action Caller’s principal role

Reader Editor Potential owner Owner Administrator

getWorkItems x x x x x

setCustomProperty x x x

setFaultMessage x x x

setOutputMessage x x x

setVariable x

transferWorkItem x

To potential

owners or

administrators

only

x

Managing the life cycle of a business process

A process instance comes into existence when a Business Process Choreographer

API method that can start a process is invoked. The navigation of the process

instance continues until all of its activities are in an end state. Various actions can

be taken on the process instance to manage its life cycle.

About this task

Examples are provided that show how you might develop applications for the

following typical life-cycle actions on processes.

Starting business processes:

The way in which a business process is started depends on whether the process is

a microflow or a long-running process. The service that starts the process is also

important to the way in which a process is started; the process can have either a

unique starting service or several starting services.

 About this task

Examples are provided that show how you might develop applications for typical

scenarios for starting microflows and long-running processes.

Running a microflow that contains a unique starting service:

A microflow can be started by a receive activity or a pick activity. The starting

service is unique if the microflow starts with a receive activity or when the pick

activity has only one onMessage definition.

 About this task

If the microflow implements a request-response operation, that is, the process

contains a reply, you can use the call method to run the process passing the

process template name as a parameter in the call.

If the microflow is a one-way operation, use the sendMessage method to run the

process. This method is not covered in this example.

Procedure

Chapter 2. Developing client applications for business processes and tasks 63

1. Optional: List the process templates to find the name of the process you want

to run.

This step is optional if you already know the name of the process.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

("PROCESS_TEMPLATE.EXECUTION_MODE =

 PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_MICROFLOW",

 "PROCESS_TEMPLATE.NAME",

 new Integer(50),

 (TimeZone)null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started by the call method.

2. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained.

ProcessTemplateData template = processTemplates[0];

//create a message for the single starting receive activity

ClientObjectWrapper input = process.createMessage

 (template.getID(),

 template.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//run the process

ClientObjectWrapper output = process.call(template.getName(), input);

DataObject myOutput = null;

if (output.getObject() != null && output.getObject() instanceof DataObject)

{

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

}

This action creates an instance of the process template, CustomerTemplate, and

passes some customer data. The operation returns only when the process is

complete. The result of the process, OrderNo, is returned to the caller.

Running a microflow that contains a non-unique starting service:

A microflow can be started by a receive activity or a pick activity. The starting

service is not unique if the microflow starts with a pick activity that has multiple

onMessage definitions.

 About this task

If the microflow implements a request-response operation, that is, the process

contains a reply, you can use the call method to run the process passing the ID of

the starting service in the call.

If the microflow is a one-way operation, use the sendMessage method to run the

process. This method is not covered in this example.

Procedure

1. Optional: List the process templates to find the name of the process you want

to run.

This step is optional if you already know the name of the process.

64 Developing and deploying

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

("PROCESS_TEMPLATE.EXECUTION_MODE =

 PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_MICROFLOW",

 "PROCESS_TEMPLATE.NAME",

 new Integer(50),

 (TimeZone)null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started as microflows.

2. Determine the starting service to be called.

This example uses the first template that is found.

ProcessTemplateData template = processTemplates[0];

ActivityServiceTemplateData[] startActivities =

 process.getStartActivities(template.getID());

3. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained.

ActivityServiceTemplateData activity = startActivities[0];

//create a message for the service to be called

ClientObjectWrapper input =

 process.createMessage(activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 activity.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//run the process

ClientObjectWrapper output = process.call(activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 input);

//check the output of the process, for example, an order number

DataObject myOutput = null;

if (output.getObject() != null && output.getObject() instanceof DataObject)

{

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

}

This action creates an instance of the process template, CustomerTemplate, and

passes some customer data. The operation returns only when the process is

complete. The result of the process, OrderNo, is returned to the caller.

Starting a long-running process that contains a unique starting service:

If the starting service is unique, you can use the initiate method and pass the

process template name as a parameter. This is the case when the long-running

process starts with either a single receive or pick activity and when the single pick

activity has only one onMessage definition.

 Procedure

1. Optional: List the process templates to find the name of the process you want

to start.

This step is optional if you already know the name of the process.

Chapter 2. Developing client applications for business processes and tasks 65

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

 ("PROCESS_TEMPLATE.EXECUTION_MODE =

 PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_LONG_RUNNING",

 "PROCESS_TEMPLATE.NAME",

 new Integer(50),

 (TimeZone)null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started by the initiate method.

2. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained. If you specify a process-instance name, it

must not start with an underscore. If a process-instance name is not specified,

the process instance ID (PIID) in String format is used as the name.

ProcessTemplateData template = processTemplates[0];

//create a message for the single starting receive activity

ClientObjectWrapper input = process.createMessage

 (template.getID(),

 template.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//start the process

PIID piid = process.initiate(template.getName(), "CustomerOrder", input);

This action creates an instance, CustomerOrder, and passes some customer

data. When the process starts, the operation returns the object ID of the new

process instance to the caller.

The starter of the process instance is set to the caller of the request. This person

receives a work item for the process instance. The process administrators,

readers, and editors of the process instance are determined and receive work

items for the process instance. The follow-on activity instances are determined.

These are started automatically or, if they are human task, receive, or pick

activities, work items are created for the potential owners.

Starting a long-running process that contains a non-unique starting service:

A long-running process can be started through multiple initiating receive or pick

activities. You can use the initiate method to start the process. If the starting service

is not unique, for example, the process starts with multiple receive or pick

activities, or a pick activity that has multiple onMessage definitions, then you must

identify the service to be called.

 Procedure

1. Optional: List the process templates to find the name of the process you want

to start.

This step is optional if you already know the name of the process.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

 ("PROCESS_TEMPLATE.EXECUTION_MODE =

 PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_LONG_RUNNING",

 "PROCESS_TEMPLATE.NAME",

 new Integer(50),

 (TimeZone)null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started as long-running processes.

66 Developing and deploying

2. Determine the starting service to be called.

ProcessTemplateData template = processTemplates[0];

ActivityServiceTemplateData[] startActivities =

 process.getStartActivities(template.getID());

3. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained. If you specify a process-instance name, it

must not start with an underscore. If a process-instance name is not specified,

the process instance ID (PIID) in String format is used as the name.

ActivityServiceTemplateData activity = startActivities[0];

//create a message for the service to be called

ClientObjectWrapper input = process.createMessage

 (activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 activity.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//start the process

PIID piid = process.sendMessage(activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 input);

This action creates an instance and passes some customer data. When the

process starts, the operation returns the object ID of the new process instance to

the caller.

The starter of the process instance is set to the caller of the request and receives

a work item for the process instance. The process administrators, readers, and

editors of the process instance are determined and receive work items for the

process instance. The follow-on activity instances are determined. These are

started automatically or, if they are human task, receive, or pick activities, work

items are created for the potential owners.

Suspending and resuming a business process:

You can suspend long-running, top-level process instance while it is running and

resume it again to complete it.

 Before you begin

The caller must be an administrator of the process instance or a business process

administrator. To suspend a process instance, it must be in the running or failing

state.

About this task

You might want to suspend a process instance, for example, so that you can

configure access to a back-end system that is used later in the process. When the

prerequisites for the process are met, you can resume the process instance. You

might also want to suspend a process to fix a problem that is causing the process

instance to fail, and then resume it again when the problem is fixed.

Procedure

1. Get the running process, CustomerOrder, that you want to suspend.

Chapter 2. Developing client applications for business processes and tasks 67

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder");

2. Suspend the process instance.

PIID piid = processInstance.getID();

process.suspend(piid);

This action suspends the specified top-level process instance. The process

instance is put into the suspended state. Subprocesses with the autonomy

attribute set to child are also suspended if they are in the running, failing,

terminating, or compensating state. Inline tasks that are associated with this

process instance are also suspended; stand-alone tasks associated with this

process instance are not suspended.

In this state, activities that are started can still be finished but no new activities

are activated, for example, a human task activity in the claimed state can be

completed.

3. Resume the process instance.

process.resume(piid);

This action puts the process instance and its subprocesses into the states they

had before they were suspended.

Restarting a business process:

You can restart a process instance that is in the finished, terminated, failed, or

compensated state.

 Before you begin

The caller must be an administrator of the process instance or a business process

administrator.

About this task

Restarting a process instance is similar to starting a process instance for the first

time. However, when a process instance is restarted, the process instance ID is

known and the input message for the instance is available.

If the process has more than one receive activity or pick activity (also known as a

receive choice activity) that can create the process instance, all of the messages that

belong to these activities are used to restart the process instance. If any of these

activities implement a request-response operation, the response is sent again when

the associated reply activity is navigated.

Procedure

1. Get the process that you want to restart.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder");

2. Restart the process instance.

PIID piid = processInstance.getID();

process.restart(piid);

This action restarts the specified process instance.

Terminating a process instance:

Sometimes, it is necessary for someone with process administrator authorization to

terminate a top-level process instance that is known to be in an unrecoverable

68 Developing and deploying

state. Because a process instance terminates immediately, without waiting for any

outstanding subprocesses or activities, you should terminate a process instance

only in exceptional situations.

 Procedure

1. Retrieve the process instance that is to be terminated.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder");

2. Terminate the process instance.

If you terminate a process instance, you can terminate the process instance with

or without compensation.

To terminate the process instance with compensation:

PIID piid = processInstance.getID();

process.forceTerminate(piid, CompensationBehaviour.INVOKE_COMPENSATION);

To terminate the process instance without compensation:

PIID piid = processInstance.getID();

process.forceTerminate(piid);

If you terminate the process instance with compensation, the compensation of

the process is run as if a fault had occurred on the top-level scope. If you

terminate the process instance without compensation, the process instance is

terminated immediately without waiting for activities, to-do tasks, or inline

invocation tasks to end normally.

Applications that are started by the process and standalone tasks that are

related to the process are not terminated by the force terminate request. If these

applications are to be terminated, you must add statements to your process

application that explicitly terminate the applications started by the process.

Deleting process instances:

Completed process instances are automatically deleted from the Business Process

Choreographer database if the corresponding property is set for the process

template in the process model. You might want to keep process instances in your

database, for example, to query data from process instances that are not written to

the audit log. However, stored process instance data does not only impact disk

space and performance but also prevents process instances that use the same

correlation set values from being created. Therefore, you should regularly delete

process instance data from the database.

 About this task

To delete a process instance, you need process administrator rights and the process

instance must be a top-level process instance.

The following example shows how to delete all of the finished process instances.

Procedure

1. List the process instances that are finished.

QueryResultSet result =

 process.query("DISTINCT PROCESS_INSTANCE.PIID",

 "PROCESS_INSTANCE.STATE =

 PROCESS_INSTANCE.STATE.STATE_FINISHED",

 (String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that lists process instances that are

finished.

Chapter 2. Developing client applications for business processes and tasks 69

2. Delete the process instances that are finished.

while (result.next())

{

 PIID piid = (PIID) result.getOID(1);

 process.delete(piid);

}

This action deletes the selected process instance and its inline tasks from the

database.

Processing human task activities

Human task activities in business processes are assigned to various people in your

organization through work items. When a process is started, work items are

created for the potential owners.

About this task

When a human task activity is activated, both an activity instance and an

associated to-do task are created. Handling of the human task activity and the

work item management is delegated to Human Task Manager. Any state change of

the activity instance is reflected in the task instance and vice versa.

A potential owner claims the activity. This person is responsible for providing the

relevant information and completing the activity.

Procedure

1. List the activities belonging to a logged-on person that are ready to be worked

on:

QueryResultSet result =

 process.query("ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_READY AND

 ACTIVITY.KIND = ACTIVITY.KIND.KIND_STAFF AND

 WORK_ITEM.REASON =

 WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

 (String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that contains the activities that can be

worked on by the logged-on person.

2. Claim the activity to be worked on:

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ClientObjectWrapper input = process.claim(aiid);

 DataObject activityInput = null ;

 if (input.getObject()!= null && input.getObject() instanceof DataObject)

 {

 activityInput = (DataObject)input.getObject();

 // read the values

 ...

 }

}

When the activity is claimed, the input message of the activity is returned.

3. When work on the activity is finished, complete the activity. The activity can be

completed either successfully or with a fault message. If the activity is

successful, an output message is passed. If the activity is unsuccessful, the

activity is put into the failed or stopped state and a fault message is passed.

70 Developing and deploying

You must create the appropriate messages for these actions. When you create

the message, you must specify the message type name so that the message

definition is contained.

a. To complete the activity successfully, create an output message.

ActivityInstanceData activity = process.getActivityInstance(aiid);

ClientObjectWrapper output =

 process.createMessage(aiid, activity.getOutputMessageTypeName());

DataObject myMessage = null ;

if (output.getObject()!= null && output.getObject() instanceof DataObject)

{

 myMessage = (DataObject)output.getObject();

 //set the parts in your message, for example, an order number

 myMessage.setInt("OrderNo", 4711);

}

//complete the activity

process.complete(aiid, output);

This action sets an output message that contains the order number.

b. To complete the activity when a fault occurs, create a fault message.

//retrieve the faults modeled for the human task activity

List faultNames = process.getFaultNames(aiid);

//create a message of the appropriate type

ClientObjectWrapper myFault =

 process.createMessage(aiid, faultNames.get(0));

// set the parts in your fault message, for example, an error number

DataObject myMessage = null ;

if (myFault.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)myFault.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setInt("error",1304);

}

process.complete(aiid, (String)faultNames.get(0), myFault);

This action sets the activity in either the failed or the stopped state. If the

continueOnError parameter for the activity in the process model is set to

true, the activity is put into the failed state and the navigation continues. If

the continueOnError parameter is set to false and the fault is not caught on

the surrounding scope, the activity is put into the stopped state. In this state

the activity can be repaired using force complete or force retry.

Processing a single person workflow

Some workflows are performed by only one person, for example, ordering books

from an online bookstore. This type of workflow has no parallel paths. The

completeAndClaimSuccessor API supports the processing of this type of workflow.

About this task

In an online bookstore, the purchaser completes a sequence of actions to order a

book. This sequence of actions can be implemented as a series of human task

activities (to-do tasks). If the purchaser decides to order several books, this is

equivalent to claiming the next human task activity. This type of workflow is also

known as page flow because user interface definitions are associated with the

activities to control the flow of the dialogs in the user interface.

Chapter 2. Developing client applications for business processes and tasks 71

The completeAndClaimSuccessor API completes a human task activity and claims

the next one in the same process instance for the logged-on person. It returns

information about the next claimed activity, including the input message to be

worked on. Because the next activity is made available within the same transaction

of the activity that completed, the transactional behavior of all the human task

activities in the process model must be set to participates.

Compare this example with the example that uses both the Business Flow Manager

API and the Human Task Manager API.

Procedure

1. Claim the first activity in the sequence of activities.

//

//Query the list of activities that can be claimed by the logged-on user

//

QueryResultSet result =

 process.query("ACTIVITY.AIID",

 "PROCESS_INSTANCE.NAME = ’CustomerOrder’ AND

 ACTIVITY.STATE = ACTIVITY.STATE.STATE_READY AND

 ACTIVITY.KIND = ACTIVITY.KIND.KIND_STAFF AND

 WORK_ITEM.REASON =

 WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

 (String)null, (Integer)null, (TimeZone)null);

...

//

//Claim the first activity

//

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ClientObjectWrapper input = process.claim(aiid);

 DataObject activityInput = null ;

 if (input.getObject()!= null && input.getObject() instanceof DataObject)

 {

 activityInput = (DataObject)input.getObject();

 // read the values

 ...

 }

}

When the activity is claimed, the input message of the activity is returned.

2. When work on the activity is finished, complete the activity, and claim the next

activity.

To complete the activity, an output message is passed. When you create the

output message, you must specify the message type name so that the message

definition is contained.

ActivityInstanceData activity = process.getActivityInstance(aiid);

ClientObjectWrapper output =

 process.createMessage(aiid, activity.getOutputMessageTypeName());

DataObject myMessage = null ;

if (output.getObject()!= null && output.getObject() instanceof DataObject)

{

 myMessage = (DataObject)output.getObject();

 //set the parts in your message, for example, an order number

 myMessage.setInt("OrderNo", 4711);

}

//complete the activity and claim the next one

CompleteAndClaimSuccessorResult successor =

 process.completeAndClaimSuccessor(aiid, output);

72 Developing and deploying

This action sets an output message that contains the order number and claims

the next activity in the sequence. If AutoClaim is set for successor activities and

if there are multiple paths that can be followed, all of the successor activities

are claimed and a random activity is returned as the next activity. If there are

no more successor activities that can be assigned to this user, Null is returned.

If the process contains parallel paths that can be followed and these paths

contain human task activities for which the logged-on user is a potential owner

of more than one of these activities, a random activity is claimed automatically

and returned as the next activity.

3. Work on the next activity.

String name = successor.getActivityName();

ClientObjectWrapper nextInput = successor.getInputMessage();

if (nextInput.getObject()!=

 null && nextInput.getObject() instanceof DataObject)

{

 activityInput = (DataObject)input.getObject();

 // read the values

 ...

}

aiid = successor.getAIID();

4. Continue with step 2 to complete the activity.

 Related tasks

 “Processing a single person workflow that includes human tasks” on page 100
Some workflows are performed by only one person, for example, ordering

books from an online bookstore. This example shows how to implement the

sequence of actions for ordering the book as a series of human task activities

(to-do tasks). Both the Business Flow Manager and the Human Task Manager

APIs are used to process the workflow.

Sending a message to a waiting activity

You can use inbound message activities (receive activities, onMessage in pick

activities, onEvent in event handlers) to synchronize a running process with events

from the ″outside world″. For example, the receipt of an e-mail from a customer in

response to a request for information might be such an event.

About this task

You can use originating tasks to send the message to the activity.

Procedure

1. List the activity service templates that are waiting for a message from the

logged-on user in a process instance with a specific process instance ID.

ActivityServiceTemplateData[] services = process.getWaitingActivities(piid);

2. Send a message to the first waiting service.

It is assumed that the first service is the one that you want serve. The caller

must be a potential starter of the activity that receives the message, or an

administrator of the process instance.

VTID vtid = services[0].getServiceTemplateID();

ATID atid = services[0].getActivityTemplateID();

String inputType = services[0].getInputMessageTypeName();

// create a message for the service to be called

 ClientObjectWrapper message =

 process.createMessage(vtid,atid,inputMessageTypeName);

 DataObject myMessage = null;

Chapter 2. Developing client applications for business processes and tasks 73

if (message.getObject()!= null && message.getObject() instanceof DataObject)

 {

 myMessage = (DataObject)message.getObject();

 //set the strings in the message, for example, chocolate is to be ordered

 myMessage.setString("Order", "chocolate");

 }

 // send the message to the waiting activity

 process.sendMessage(vtid, atid, message);

}

This action sends the specified message to the waiting activity service and

passes some order data.

You can also specify the process instance ID to ensure that the message is sent

to the specified process instance. If the process instance ID is not specified, the

message is sent to the activity service, and the process instance that is

identified by the correlation values in the message. If the process instance ID is

specified, the process instance that is found using the correlation values is

checked to ensure that it has the specified process instance ID.

Handling events

An entire business process and each of its scopes can be associated with event

handlers that are invoked if the associated event occurs. Event handlers are similar

to receive or pick activities in that a process can provide Web service operations

using event handlers.

About this task

You can invoke an event handler any number of times as long as the

corresponding scope is running. In addition, multiple instances of an event handler

can be activated concurrently.

The following code snippet shows how to get the active event handlers for a given

process instance and how to send an input message.

Procedure

1. Determine the data of the process instance ID and list the active event handlers

for the process.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder2711");

EventHandlerTemplateData[] events = process.getActiveEventHandlers(

 processInstance.getID());

2. Send the input message.

This example uses the first event handler that is found.

EventHandlerTemplateData event = null;

if (events.length > 0)

{

 event = events[0];

 // create a message for the service to be called

 ClientObjectWrapper input = process.createMessage(

 event.getID(), event.getInputMessageTypeName());

 if (input.getObject() != null && input.getObject() instanceof DataObject)

 {

 DataObject inputMessage = (DataObject)input.getObject();

 // set content of the message, for example, a customer name, order number

 inputMessage.setString("CustomerName", "Smith");

 inputMessage.setString("OrderNo", "2711");

74 Developing and deploying

// send the message

 process.sendMessage(event.getProcessTemplateName(),

 event.getPortTypeNamespace(),

 event.getPortTypeName(),

 event.getOperationName(),

 input);

 }

 }

This action sends the specified message to the active event handler for the

process.

Analyzing the results of a process

A process can expose Web services operations that are modeled as Web Services

Description Language (WSDL) one-way or request-response operations. The results

of long-running processes with one-way interfaces cannot be retrieved using the

getOutputMessage method, because the process has no output. However, you can

query the contents of variables, instead.

About this task

The results of the process are stored in the database only if the process template

from which the process instance was derived does not specify automatic deletion

of the derived process instances.

Procedure

Analyze the results of the process, for example, check the order number.

QueryResultSet result = process.query

 ("PROCESS_INSTANCE.PIID",

 "PROCESS_INSTANCE.NAME = ’CustomerOrder’ AND

 PROCESS_INSTANCE.STATE =

 PROCESS_INSTANCE.STATE.STATE_FINISHED",

 (String)null, (Integer)null, (TimeZone)null);

if (result.size() > 0)

{

 result.first();

 PIID piid = (PIID) result.getOID(1);

 ClientObjectWrapper output = process.getOutputMessage(piid);

 DataObject myOutput = null;

 if (output.getObject() != null && output.getObject() instanceof DataObject)

 {

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

 }

}

Repairing activities

A long-running process can contain activities that are also long running. These

activities might encounter uncaught errors and go into the stopped state. An

activity in the running state might also appear to be not responding. In both of

these cases, a process administrator can act on the activity in a number of ways so

that the navigation of the process can continue.

About this task

The Business Process Choreographer API provides the forceRetry and

forceComplete methods for repairing activities. Examples are provided that show

how you might add repair actions for activities to your applications.

Forcing the completion of an activity: About this task

Chapter 2. Developing client applications for business processes and tasks 75

Activities in long-running processes can sometimes encounter faults. If these faults

are not caught by a fault handler in the enclosing scope and the associated activity

template specifies that the activity stops when an error occurs, the activity is put

into the stopped state so that it can be repaired. In this state, you can force the

completion of the activity.

You can also force the completion of activities in the running state if, for example,

an activity is not responding.

Additional requirements exist for certain types of activities.

Human task activities

You can pass parameters in the force-complete call, such as the message

that should have been sent or the fault that should have been raised.

Script activities

You cannot pass parameters in the force-complete call. However, you must

set the variables that need to be repaired.

Invoke activities

You can also force the completion of invoke activities that call an

asynchronous service that is not a subprocess if these activities are in the

running state. You might want to do this, for example, if the asynchronous

service is called and it does not respond.

Procedure

1. List the stopped activities in the stopped state.

QueryResultSet result =

 process.query("DISTINCT ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND

 PROCESS_INSTANCE.NAME=’CustomerOrder’",

 (String)null, (Integer)null, (TimeZone)null);

This action returns the stopped activities for the CustomerOrder process

instance.

2. Complete the activity, for example, a stopped human task activity.

In this example, an output message is passed.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ActivityInstanceData activity = process.getActivityInstance(aiid);

 ClientObjectWrapper output =

 process.createMessage(aiid, activity.getOutputMessageTypeName());

 DataObject myMessage = null;

 if (output.getObject()!= null && output.getObject() instanceof DataObject)

 {

 myMessage = (DataObject)output.getObject();

 //set the parts in your message, for example, an order number

 myMessage.setInt("OrderNo", 4711);

 }

 boolean continueOnError = true;

 process.forceComplete(aiid, output, continueOnError);

}

This action completes the activity. If an error occurs, the continueOnError

parameter determines the action to be taken if a fault is provided with the

forceComplete request.

In the example, continueOnError is true. This value means that if a fault is

provided, the activity is put into the failed state. The fault is propagated to the

76 Developing and deploying

enclosing scopes of the activity until it is either handled or the process scope is

reached. The process is then put into the failing state and it eventually reaches

the failed state.

Retrying the execution of a stopped activity: About this task

If an activity in a long-running process encounters an uncaught fault in the

enclosing scope and if the associated activity template specifies that the activity

stops when an error occurs, the activity is put into the stopped state so that it can

be repaired. You can retry the execution of the activity.

You can set variables that are used by the activity. With the exception of script

activities, you can also pass parameters in the force-retry call, such as the message

that was expected by the activity.

Procedure

1. List the stopped activities.

QueryResultSet result =

 process.query("DISTINCT ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND

 PROCESS_INSTANCE.NAME=’CustomerOrder’",

 (String)null, (Integer)null, (TimeZone)null);

This action returns the stopped activities for the CustomerOrder process

instance.

2. Retry the execution of the activity, for example, a stopped human task activity.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ActivityInstanceData activity = process.getActivityInstance(aiid);

 ClientObjectWrapper input =

 process.createMessage(aiid, activity.getOutputMessageTypeName());

 DataObject myMessage = null;

 if (input.getObject()!= null && input.getObject() instanceof DataObject)

 {

 myMessage = (DataObject)input.getObject();

 //set the strings in your message, for example, chocolate is to be ordered

 myMessage.setString("OrderNo", "chocolate");

 }

 boolean continueOnError = true;

 process.forceRetry(aiid, input, continueOnError);

}

This action retries the activity. If an error occurs, the continueOnError

parameter determines the action to be taken if an error occurs during

processing of the forceRetry request.

In the example, continueOnError is true. This means that if an error occurs

during processing of the forceRetry request, the activity is put into the failed

state. The fault is propagated to the enclosing scopes of the activity until it is

either handled or the process scope is reached. The process is then put into the

failing state and a fault handler on the process level is run before the process

state ends in the failed state.

BusinessFlowManagerService interface

The BusinessFlowManagerService interface exposes business-process functions that

can be called by a client application.

Chapter 2. Developing client applications for business processes and tasks 77

The methods that can be called by the BusinessFlowManagerService interface

depend on the state of the process or the activity and the authorization of the

person that uses the application containing the method. The main methods for

manipulating business process objects are listed here. For more information about

these methods and the other methods that are available in the

BusinessFlowManagerService interface, see the Javadoc in the com.ibm.bpe.api

package.

Process templates

A process template is a versioned, deployed, and installed process model that

contains the specification of a business process. It can be instantiated and started

by issuing appropriate requests, for example, sendMessage(). The execution of the

process instance is driven automatically by the server.

 Table 24. API methods for process templates

Method Description

getProcessTemplate Retrieves the specified process template.

queryProcessTemplates Retrieves process templates that are stored

in the database.

Process instances

The following API methods are related to starting process instances.

 Table 25. API methods are related to starting process instances

Method Description

call Creates and runs a microflow.

callWithReplyContext Creates and runs a microflow with a unique

starting service or a long-running process

with a unique starting service from the

specified process template. The call waits

asynchronously for the result.

callWithUISettings Creates and runs a microflow and returns

the output message and the client user

interface (UI) settings.

initiate Creates a process instance and initiates

processing of the process instance. Use this

method for long-running processes. You can

also use this method for microflows that you

want to fire and forget.

sendMessage Sends the specified message to the specified

activity service and process instance. If a

process instance with the same correlation

set values does not exist, it is created. The

process can have either unique or

non-unique starting services.

getStartActivities Returns information about the activities that

can start a process instance from the

specified process template.

getActivityServiceTemplate Retrieves the specified activity service

template.

78 Developing and deploying

Table 26. API methods for controlling the life cycle of process instances

Method Description

suspend Suspends the execution of a long-running,

top-level process instance that is in the

running or failing state.

resume Resumes the execution of a long-running,

top-level process instance that is in the

suspended state.

restart Restarts a long-running, top-level process

instance that is in the finished, failed, or

terminated state.

forceTerminate Terminates the specified top-level process

instance, its subprocesses with child

autonomy, and its running, claimed, or

waiting activities.

delete Deletes the specified top-level process

instance and its subprocesses with child

autonomy.

query Retrieves the properties from the database

that match the search criteria.

Activities

For invoke activities, you can specify in the process model that these activities

continue in error situations. If the continueOnError flag is set to false and an

unhandled error occurs, the activity is put into the stopped state. A process

administrator can then repair the activity. The continueOnError flag and the

associated repair functions can, for example, be used in a long-running process

where an invoke activity fails occasionally, but the effort required to model

compensation and fault handling is too high.

The following methods are available for working with and repairing activities.

 Table 27. API methods for controlling the life cycle of activity instances

Method Description

claim Claims a ready activity instance for a user to

work on the activity.

cancelClaim Cancels the claim of the activity instance.

complete Completes the activity instance.

completeAndClaimSuccessor Completes the activity instance and claims

the next one in the same process instance for

the logged-on person.

forceComplete Forces the completion of an activity instance

that is in the running or stopped state.

forceRetry Forces the repetition of an activity instance

that is in the running or stopped state.

query Retrieves the properties from the database

that match the search criteria.

Chapter 2. Developing client applications for business processes and tasks 79

Variables and custom properties

The interface provides a get and a set method to retrieve and set values for

variables. You can also associate named properties with, and retrieve named

properties from, process and activity instances. Custom property names and values

must be of the java.lang.String type.

 Table 28. API methods for variables and custom properties

Method Description

getVariable Retrieves the specified variable.

setVariable Sets the specified variable.

getCustomProperty Retrieves the named custom property of the

specified activity or process instance.

getCustomProperties Retrieves the custom properties of the

specified activity or process instance.

getCustomPropertyNames Retrieves the names of the custom properties

for the specified activity or process instance.

setCustomProperty Stores custom-specific values for the

specified activity or process instance.

Developing applications for human tasks

A task is the means by which components invoke humans as services or by which

humans invoke services. Examples of typical applications for human tasks are

provided.

About this task

For more information on the Human Task Manager API, see the Javadoc in the

com.ibm.task.api package.

Starting an invocation task that invokes a synchronous interface

An invocation task is associated with a Service Component Architecture (SCA)

component. When the task is started, it invokes the SCA component. Start an

invocation task synchronously only if the associated SCA component can be called

synchronously.

About this task

Such an SCA component can, for example, be implemented as a microflow or as a

simple Java class.

This scenario creates an instance of a task template and passes some customer

data. The task remains in the running state until the two-way operation returns.

The result of the task, OrderNo, is returned to the caller.

Procedure

1. Optional: List the task templates to find the name of the invocation task you

want to run.

This step is optional if you already know the name of the task.

80 Developing and deploying

TaskTemplate[] taskTemplates = task.queryTaskTemplates

("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_ORIGINATING",

 "TASK_TEMPL.NAME",

 new Integer(50),

 (TimeZone)null);

The results are sorted by name. The query returns an array containing the first

50 sorted originating templates.

2. Create an input message of the appropriate type.

TaskTemplate template = taskTemplates[0];

// create a message for the selected task

ClientObjectWrapper input = task.createInputMessage(template.getID());

DataObject myMessage = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

3. Create the task and run the task synchronously.

For a task to run synchronously, it must be a two-way operation. The example

uses the createAndCallTask method to create and run the task.

ClientObjectWrapper output = task.createAndCallTask(template.getName(),

 template.getNamespace(),

 input);

4. Analyze the result of the task.

DataObject myOutput = null;

if (output.getObject() != null && output.getObject() instanceof DataObject)

{

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

}

Starting an invocation task that invokes an asynchronous

interface

An invocation task is associated with a Service Component Architecture (SCA)

component. When the task is started, it invokes the SCA component. Start an

invocation task asynchronously only if the associated SCA component can be called

asynchronously.

About this task

Such an SCA component can, for example, be implemented as a long-running

process or a one-way operation.

This scenario creates an instance of a task template and passes some customer

data.

Procedure

1. Optional: List the task templates to find the name of the invocation task you

want to run.

This step is optional if you already know the name of the task.

TaskTemplate[] taskTemplates = task.queryTaskTemplates

 ("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_ORIGINATING",

 "TASK_TEMPL.NAME",

 new Integer(50),

 (TimeZone)null);

Chapter 2. Developing client applications for business processes and tasks 81

The results are sorted by name. The query returns an array containing the first

50 sorted originating templates.

2. Create an input message of the appropriate type.

TaskTemplate template = taskTemplates[0];

// create a message for the selected task

ClientObjectWrapper input = task.createInputMessage(template.getID());

DataObject myMessage = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

3. Create the task and run it asynchronously.

The example uses the createAndStartTask method to create and run the task.

task.createAndStartTask(template.getName(),

 template.getNamespace(),

 input,

 (ReplyHandlerWrapper)null);

Creating and starting a task instance

This scenario shows how to create an instance of a task template that defines a

collaboration task (also known as a human task in the API) and start the task

instance.

Procedure

1. Optional: List the task templates to find the name of the collaboration task you

want to run.

This step is optional if you already know the name of the task.

TaskTemplate[] taskTemplates = task.queryTaskTemplates

("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_HUMAN",

 "TASK_TEMPL.NAME",

 new Integer(50),

 (TimeZone)null);

The results are sorted by name. The query returns an array containing the first

50 sorted task templates.

2. Create an input message of the appropriate type.

TaskTemplate template = taskTemplates[0];

// create a message for the selected task

ClientObjectWrapper input = task.createInputMessage(template.getID());

DataObject myMessage = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

3. Create and start the collaboration task; a reply handler is not specified in this

example.

The example uses the createAndStartTask method to create and start the task.

TKIID tkiid = task.createAndStartTask(template.getName(),

 template.getNamespace(),

 input,

 (ReplyHandlerWrapper)null);

Work items are created for the people concerned with the task instance. For

example, a potential owner can claim the new task instance.

82 Developing and deploying

4. Claim the task instance.

ClientObjectWrapper input2 = task.claim(tkiid);

DataObject taskInput = null ;

if (input2.getObject()!= null && input2.getObject() instanceof DataObject)

{

 taskInput = (DataObject)input2.getObject();

 // read the values

 ...

}

When the task instance is claimed, the input message of the task is returned.

Processing to-do tasks or collaboration tasks

To-do tasks (also known as participating tasks in the API) or collaboration tasks

(also known as human tasks in the API) are assigned to various people in your

organization through work items. To-do tasks and their associated work items are

created, for example, when a process navigates to a human task activity.

About this task

One of the potential owners claims the task associated with the work item. This

person is responsible for providing the relevant information and completing the

task.

Procedure

1. List the tasks belonging to a logged-on person that are ready to be worked on.

QueryResultSet result =

 task.query("TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_READY AND

 (TASK.KIND = TASK.KIND.KIND_PARTICIPATING OR

 TASK.KIND = TASK.KIND.KIND_HUMAN)AND

 WORK_ITEM.REASON =

 WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

 (String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that contains the tasks that can be worked

on by the logged-on person.

2. Claim the task to be worked on.

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 ClientObjectWrapper input = task.claim(tkiid);

 DataObject taskInput = null ;

 if (input.getObject()!= null && input.getObject() instanceof DataObject)

 {

 taskInput = (DataObject)input.getObject();

 // read the values

 ...

 }

}

When the task is claimed, the input message of the task is returned.

3. When work on the task is finished, complete the task.

The task can be completed either successfully or with a fault message. If the

task is successful, an output message is passed. If the task is unsuccessful, a

fault message is passed. You must create the appropriate messages for these

actions.

a. To complete the task successfully, create an output message.

Chapter 2. Developing client applications for business processes and tasks 83

ClientObjectWrapper output =

 task.createOutputMessage(tkiid);

DataObject myMessage = null ;

if (output.getObject()!= null && output.getObject() instanceof DataObject)

{

 myMessage = (DataObject)output.getObject();

 //set the parts in your message, for example, an order number

 myMessage.setInt("OrderNo", 4711);

}

//complete the task

task.complete(tkiid, output);

This action sets an output message that contains the order number. The task

is put into the finished state.

b. To complete the task when a fault occurs, create a fault message.

//retrieve the faults modeled for the task

List faultNames = task.getFaultNames(tkiid);

//create a message of the appropriate type

ClientObjectWrapper myFault =

 task.createFaultMessage(tkiid, (String)faultNames.get(0));

// set the parts in your fault message, for example, an error number

DataObject myMessage = null ;

if (myFault.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)myFault.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setInt("error",1304);

}

task.complete(tkiid, (String)faultNames.get(0), myFault);

This action sets a fault message that contains the error code. The task is put

into the failed state.

Suspending and resuming a task instance

You can suspend collaboration task instances (also known as human tasks in the

API) or to-do task instances (also known as participating tasks in the API).

Before you begin

The task instance can be in the ready or claimed state. It can be escalated. The

caller must be the owner, originator, or administrator of the task instance.

About this task

You can suspend a task instance while it is running. You might want to do this, for

example, so that you can gather information that is needed to complete the task.

When the information is available, you can resume the task instance.

Procedure

1. Get a list of tasks that are claimed by the logged-on user.

QueryResultSet result = task.query("DISTINCT TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_CLAIMED",

 (String)null,

 (Integer)null,

 (TimeZone)null);

This action returns a query result set that contains a list of the tasks that are

claimed by the logged-on user.

84 Developing and deploying

2. Suspend the task instance.

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 task.suspend(tkiid);

}

This action suspends the specified task instance. The task instance is put into

the suspended state.

3. Resume the process instance.

task.resume(tkiid);

This action puts the task instance into the state it had before it was suspended.

Analyzing the results of a task

A to-do task (also known as a participating task in the API) or a collaboration task

(also known as a human task in the API) runs asynchronously. If a reply handler is

specified when the task starts, the output message is automatically returned when

the task completes. If a reply handler is not specified, the message must be

retrieved explicitly.

About this task

The results of the task are stored in the database only if the task template from

which the task instance was derived does not specify automatic deletion of the

derived task instances.

Procedure

Analyze the results of the task.

The example shows how to check the order number of a successfully completed

task.

QueryResultSet result = task.query("DISTINCT TASK.TKIID",

 "TASK.NAME = ’CustomerOrder’ AND

 TASK.STATE = TASK.STATE.STATE_FINISHED",

 (String)null, (Integer)null, (TimeZone)null);

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 ClientObjectWrapper output = task.getOutputMessage(tkiid);

 DataObject myOutput = null;

 if (output.getObject() != null && output.getObject() instanceof DataObject)

 {

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

 }

}

Terminating a task instance

Sometimes it is necessary for someone with administrator rights to terminate a task

instance that is known to be in an unrecoverable state. Because the task instance is

terminated immediately, you should terminate a task instance only in exceptional

situations.

Procedure

1. Retrieve the task instance to be terminated.

Task taskInstance = task.getTask(tkiid);

Chapter 2. Developing client applications for business processes and tasks 85

2. Terminate the task instance.

TKIID tkiid = taskInstance.getID();

task.terminate(tkiid);

The task instance is terminated immediately without waiting for any

outstanding tasks.

Deleting task instances

Task instances are only automatically deleted when they complete if this is

specified in the associated task template from which the instances are derived. This

example shows how to delete all of the task instances that are finished and are not

automatically deleted.

Procedure

1. List the task instances that are finished.

QueryResultSet result =

 task.query("DISTINCT TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_FINISHED",

 (String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that lists task instances that are finished.

2. Delete the task instances that are finished.

while (result.next())

{

 TKIID tkiid = (TKIID) result.getOID(1);

 task.delete(tkiid);

}

Releasing a claimed task

When a potential owner claims a task, this person is responsible for completing the

task. However, sometimes the claimed task must be released so that another

potential owner can claim it.

About this task

Sometimes it is necessary for someone with administrator rights to release a

claimed task. This situation might occur, for example, when a task must be

completed but the owner of the task is absent. The owner of the task can also

release a claimed task.

Procedure

1. List the claimed tasks owned by a specific person, for example, Smith.

QueryResultSet result =

 task.query("DISTINCT TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_CLAIMED AND

 TASK.OWNER = ’Smith’",

 (String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that lists the tasks claimed by the

specified person, Smith.

2. Release the claimed task.

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 task.cancelClaim(tkiid, true);

}

86 Developing and deploying

This action returns the task to the ready state so that it can be claimed by one

of the other potential owners. Any output or fault data that is set by the

original owner is kept.

Managing work items

During the lifetime of an activity instance or a task instance, the set of people

associated with the object can change, for example, because a person is on

vacation, new people are hired, or the workload needs to be distributed differently.

To allow for these changes, you can develop applications to create, delete, or

transfer work items.

About this task

A work item represents the assignment of an object to a user or group of users for

a particular reason. The object is typically a human task activity instance, a process

instance, or a task instance. The reasons are derived from the role that the user has

for the object. An object can have multiple work items because a user can have

different roles in association with the object, and a work item is created for each of

these roles. For example, a to-do task instance can have an administrator, reader,

editor, and owner work item at the same time.

The actions that can be taken to manage work items depend on the role that the

user has, for example, an administrator can create, delete and transfer work items,

but the task owner can transfer work items only.

v Create a work item.

// query the task instance for which an additional

// administrator is to be specified

QueryResultSet result = task.query("TASK.TKIID",

 "TASK.NAME=’CustomerOrder’",

 (String)null, (Integer)null,

 (TimeZone)null);

if (result.size() > 0)

{

 result.first();

 // create the work item

 task.createWorkItem((TKIID)(result.getOID(1)),

 WorkItem.REASON_ADMINISTRATOR,"Smith");

}

This action creates a work item for the user Smith who has the administrator

role.

v Delete a work item.

// query the task instance for which a work item is to be deleted

QueryResultSet result = task.query("TASK.TKIID",

 "TASK.NAME=’CustomerOrder’",

 (String)null, (Integer)null,

 (TimeZone)null);

if (result.size() > 0)

{

 result.first();

 // delete the work item

 task.deleteWorkItem((TKIID)(result.getOID(1)),

 WorkItem.REASON_READER,"Smith");

}

This action deletes the work item for the user Smith who has the reader role.

v Transfer a work item.

// query the task that is to be rescheduled

QueryResultSet result =

 task.query("DISTINCT TASK.TKIID",

 "TASK.NAME=’CustomerOrder’ AND

Chapter 2. Developing client applications for business processes and tasks 87

TASK.STATE=TASK.STATE.STATE_READY AND

 WORK_ITEM.REASON=WORK_ITEM.REASON.REASON_POTENTIAL_OWNER AND

 WORK_ITEM.OWNER_ID=’Miller’",

 (String)null, (Integer)null, (TimeZone)null);

if (result.size() > 0)

{

 result.first();

 // transfer the work item from user Miller to user Smith

 // so that Smith can work on the task

 task.transferWorkItem((TKIID)(result.getOID(1)),

 WorkItem.REASON_POTENTIAL_OWNER,"Miller","Smith");

}

This action transfers the work item to the user Smith so that he can work on it.

Creating task templates and task instances at runtime

You usually use a modeling tool, such as WebSphere Integration Developer to

build task templates. You then install the task templates in WebSphere Process

Server and create instances from these templates, for example, using Business

Process Choreographer Explorer. However, you can also create human or

participating task instances or templates at runtime.

About this task

You might want to do this, for example, when the task definition is not available

when the application is deployed, the tasks that are part of a workflow are not yet

known, or you need a task to cover some ad-hoc collaboration between a group of

people.

You can model ad-hoc To-do or Collaboration tasks by creating instances of the

com.ibm.task.api.TaskModel class, and using them to either create a reusable task

template, or directly create a run-once task instance. To create an instance of the

TaskModel class, a set of factory methods is available in the

com.ibm.task.api.ClientTaskFactory factory class. Modeling human tasks at runtime

is based on the Eclipse Modeling Framework (EMF).

Procedure

1. Create an org.eclipse.emf.ecore.resource.ResourceSet using the

createResourceSet factory method.

2. Optional: If you intend to use complex message types, you can either define

them using the org.eclipse.xsd.XSDFactory that you can get using the factory

method getXSDFactory(), or directly import an existing XML schema using the

loadXSDSchema factory method .

To make the complex types available to the WebSphere Process Server, deploy

them as part of an enterprise application.

3. Create or import a Web Services Definition Language (WSDL) definition of the

type javax.wsdl.Definition.

You can create a new WSDL definition using the createWSDLDefinition

method. Then you can add it a port type and operation. You can also directly

import an existing WSDL definition using the loadWSDLDefinition factory

method.

4. Create the task definition using the createTTask factory method.

If you want to add or manipulate more complex task elements, you can use the

com.ibm.wbit.tel.TaskFactory class that you can retrieve using the

getTaskFactory factory method .

88 Developing and deploying

5. Create the task model using the createTaskModel factory method, and pass it

the resource bundle that you created in the step 1 and which aggregates all

other artifacts you created in the meantime.

6. Optional: Validate the model using the TaskModel validate method.

Results

Use one of the Human Task Manager EJB API create methods that have a

TaskModel parameter to either create a reusable task template, or a run-once task

instance.

Creating runtime tasks that use simple Java types:

This example creates a runtime task that uses only simple Java types in its

interface, for example, a String object.

 About this task

The example runs only inside the context of the calling enterprise application, for

which the resources are loaded.

Procedure

1. Access the ClientTaskFactory and create a resource set to contain the definitions

of the new task model.

ClientTaskFactory factory = ClientTaskFactory.newInstance();

ResourceSet resourceSet = factory.createResourceSet();

2. Create the WSDL definition and add the descriptions of your operations.

// create the WSDL interface

Definition definition = factory.createWSDLDefinition

 (resourceSet, new QName("http://www.ibm.com/task/test/", "test"));

// create a port type

PortType portType = factory.createPortType(definition, "doItPT");

// create an operation; the input and output messages are of type String:

// a fault message is not specified

Operation operation = factory.createOperation

 (definition, portType, "doIt",

 new QName("http://www.w3.org/2001/XMLSchema", "string"),

 new QName("http://www.w3.org/2001/XMLSchema", "string"),

 (Map)null);

3. Create the EMF model of your new human task.

If you are creating a task instance, a valid-from date (UTCDate) is not required.

TTask humanTask = factory.createTTask(resourceSet,

 TTaskKinds.HTASK_LITERAL,

 "TestTask",

 new UTCDate("2005-01-01T00:00:00"),

 "http://www.ibm.com/task/test/",

 portType,

 operation);

This step initializes the properties of the task model with default values.

4. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,

humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements

TaskFactory taskFactory = factory.getTaskFactory();

Chapter 2. Developing client applications for business processes and tasks 89

// specify escalation settings

TVerb verb = taskFactory.createTVerb();

verb.setName("John");

// create escalationReceiver and add verb

TEscalationReceiver escalationReceiver =

 taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver

TEscalation escalation = taskFactory.createTEscalation();

escalation.setEscalationReceiver(escalationReceiver);

5. Create the task model that contains all the resource definitions.

TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validate the task model and correct any validation problems that are found.

ValidationProblem[] validationProblems = taskModel.validate();

7. Create the runtime task instance or template.

Use the HumanTaskManagerService interface to create the task instance or the

task template. Because the application uses simple Java types only, you do not

need to specify an application name.

v The following snippet creates a task instance:

atask.createTask(taskModel, (String)null, "HTM");

v The following snippet creates a task template:

task.createTaskTemplate(taskModel, (String)null);

Results

If a runtime task instance is created, it can now be started. If a runtime task

template is created, you can now create task instances from the template.

Creating runtime tasks that use complex types:

This example creates a runtime task that uses complex types in its interface. The

complex types are already defined, that is, the local file system on the client has

XSD files that contain the description of the complex types.

 About this task

The example runs only inside the context of the calling enterprise application, for

which the resources are loaded.

Procedure

1. Access the ClientTaskFactory and create a resource set to contain the definitions

of the new task model.

ClientTaskFactory factory = ClientTaskFactory.newInstance();

ResourceSet resourceSet = factory.createResourceSet();

2. Add the XSD definitions of your complex types to the resource set so that they

are available when you define your operations.

The files are located relative to the location where the code is executed.

factory.loadXSDSchema(resourceSet, "InputBO.xsd");

factory.loadXSDSchema(resourceSet, "OutputBO.xsd");

3. Create the WSDL definition and add the descriptions of your operations.

// create the WSDL interface

Definition definition = factory.createWSDLDefinition

 (resourceSet, new QName("http://www.ibm.com/task/test/", "test"));

90 Developing and deploying

// create a port type

PortType portType = factory.createPortType(definition, "doItPT");

// create an operation; the input message is an InputBO and

// the output message an OutputBO;

// a fault message is not specified

Operation operation = factory.createOperation

 (definition, portType, "doIt",

 new QName("http://Input", "InputBO"),

 new QName("http://Output", "OutputBO"),

 (Map)null);

4. Create the EMF model of your new human task.

If you are creating a task instance, a valid-from date (UTCDate) is not required.

TTask humanTask = factory.createTTask(resourceSet,

 TTaskKinds.HTASK_LITERAL,

 "TestTask",

 new UTCDate("2005-01-01T00:00:00"),

 "http://www.ibm.com/task/test/",

 portType,

 operation);

This step initializes the properties of the task model with default values.

5. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,

humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements

TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings

TVerb verb = taskFactory.createTVerb();

verb.setName("John");

// create escalationReceiver and add verb

TEscalationReceiver escalationReceiver =

 taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver

TEscalation escalation = taskFactory.createTEscalation();

escalation.setEscalationReceiver(escalationReceiver);

6. Create the task model that contains all the resource definitions.

TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

7. Validate the task model and correct any validation problems that are found.

ValidationProblem[] validationProblems = taskModel.validate();

8. Create the runtime task instance or template.

Use the HumanTaskManagerService interface to create the task instance or the

task template. You must provide an application name that contains the data

type definitions so that they can be accessed. The application must also contain

a dummy task or process so that the application is loaded by Business Process

Choreographer.

v The following snippet creates a task instance:

task.createTask(taskModel, "BOapplication", "HTM");

v The following snippet creates a task template:

task.createTaskTemplate(taskModel, "BOapplication");

Results

Chapter 2. Developing client applications for business processes and tasks 91

If a runtime task instance is created, it can now be started. If a runtime task

template is created, you can now create task instances from the template.

Creating runtime tasks that use an existing interface:

This example creates a runtime task that uses an interface that is already defined,

that is, the local file system on the client has a file that contains the description of

the interface.

 About this task

The example runs only inside the context of the calling enterprise application, for

which the resources are loaded.

Procedure

1. Access the ClientTaskFactory and create a resource set to contain the definitions

of the new task model.

ClientTaskFactory factory = ClientTaskFactory.newInstance();

ResourceSet resourceSet = factory.createResourceSet();

2. Access the WSDL definition and the descriptions of your operations.

The interface description is located relative to the location where the code is

executed.

Definition definition = factory.loadWSDLDefinition(

 resourceSet, "interface.wsdl");

PortType portType = definition.getPortType(

 new QName(definition.getTargetNamespace(), "doItPT"));

Operation operation = portType.getOperation

 ("doIt", (String)null, (String)null);

3. Create the EMF model of your new human task.

If you are creating a task instance, a valid-from date (UTCDate) is not required.

TTask humanTask = factory.createTTask(resourceSet,

 TTaskKinds.HTASK_LITERAL,

 "TestTask",

 new UTCDate("2005-01-01T00:00:00"),

 "http://www.ibm.com/task/test/",

 portType,

 operation);

This step initializes the properties of the task model with default values.

4. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,

humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements

TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings

TVerb verb = taskFactory.createTVerb();

verb.setName("John");

// create escalationReceiver and add verb

TEscalationReceiver escalationReceiver =

 taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver

TEscalation escalation = taskFactory.createTEscalation();

escalation.setEscalationReceiver(escalationReceiver);

5. Create the task model that contains all the resource definitions.

92 Developing and deploying

TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validate the task model and correct any validation problems that are found.

ValidationProblem[] validationProblems = taskModel.validate();

7. Create the runtime task instance or template.

Use the HumanTaskManagerService interface to create the task instance or the

task template. You must provide an application name that contains the data

type definitions so that they can be accessed. The application must also contain

a dummy task or process so that the application is loaded by Business Process

Choreographer.

v The following snippet creates a task instance:

task.createTask(taskModel, "BOapplication", "HTM");

v The following snippet creates a task template:

task.createTaskTemplate(taskModel, "BOapplication");

Results

If a runtime task instance is created, it can now be started. If a runtime task

template is created, you can now create task instances from the template.

Creating runtime tasks that use an interface from the calling application:

This example creates a runtime task that uses an interface that is part of the calling

application. For example, the runtime task is created in a Java snippet of a business

process and uses an interface from the process application.

 About this task

The example runs only inside the context of the calling enterprise application, for

which the resources are loaded.

Procedure

1. Access the ClientTaskFactory and create a resource set to contain the definitions

of the new task model.

ClientTaskFactory factory = ClientTaskFactory.newInstance();

// specify the context class loader so that following resources are found

ResourceSet resourceSet = factory.createResourceSet

 (Thread.currentThread().getContextClassLoader());

2. Access the WSDL definition and the descriptions of your operations.

Specify the path within the containing package JAR file.

Definition definition = factory.loadWSDLDefinition(resourceSet,

 "com/ibm/workflow/metaflow/interface.wsdl");

 PortType portType = definition.getPortType(

 new QName(definition.getTargetNamespace(), "doItPT"));

Operation operation = portType.getOperation

 ("doIt", (String)null, (String)null);

3. Create the EMF model of your new human task.

If you are creating a task instance, a valid-from date (UTCDate) is not required.

TTask humanTask = factory.createTTask(resourceSet,

 TTaskKinds.HTASK_LITERAL,

 "TestTask",

 new UTCDate("2005-01-01T00:00:00"),

 "http://www.ibm.com/task/test/",

 portType,

 operation);

Chapter 2. Developing client applications for business processes and tasks 93

This step initializes the properties of the task model with default values.

4. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,

humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements

TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings

TVerb verb = taskFactory.createTVerb();

verb.setName("John");

// create escalationReceiver and add verb

TEscalationReceiver escalationReceiver =

 taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver

TEscalation escalation = taskFactory.createTEscalation();

escalation.setEscalationReceiver(escalationReceiver);

5. Create the task model that contains all the resource definitions.

TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validate the task model and correct any validation problems that are found.

ValidationProblem[] validationProblems = taskModel.validate();

7. Create the runtime task instance or template.

Use the HumanTaskManagerService interface to create the task instance or the

task template. You must provide an application name that contains the data

type definitions so that they can be accessed.

v The following snippet creates a task instance:

task.createTask(taskModel, "WorkflowApplication", "HTM");

v The following snippet creates a task template:

task.createTaskTemplate(taskModel, "WorkflowApplication");

Results

If a runtime task instance is created, it can now be started. If a runtime task

template is created, you can now create task instances from the template.

HumanTaskManagerService interface

The HumanTaskManagerService interface exposes task-related functions that can be

called by a local or a remote client.

The methods that can be called depend on the state of the task and the

authorization of the person that uses the application containing the method. The

main methods for manipulating task objects are listed here. For more information

about these methods and the other methods that are available in the

HumanTaskManagerService interface, see the Javadoc in the com.ibm.task.api

package.

Task templates

The following methods are available to work with task templates.

 Table 29. API methods for task templates

Method Description

getTaskTemplate Retrieves the specified task template.

94 Developing and deploying

Table 29. API methods for task templates (continued)

Method Description

createAndCallTask Creates and runs a task instance from the

specified task template and waits

synchronously for the result.

createAndStartTask Creates and starts a task instance from the

specified task template.

createTask Creates a task instance from the specified

task template.

createInputMessage Creates an input message for the specified

task template. For example, create a message

that can be used to start a task.

queryTaskTemplates Retrieves task templates that are stored in

the database.

Task instances

The following methods are available to work with task instances.

 Table 30. API methods for task instances

Method Description

getTask Retrieves a task instance; the task instance

can be in any state.

callTask Starts an invocation task synchronously.

startTask Starts a task that has already been created.

suspend Suspends the collaboration or to-do task.

resume Resumes the collaboration or to-do task.

terminate Terminates the specified task instance. If an

invocation task is terminated, this action has

no impact on the invoked service.

delete Deletes the specified task instance.

claim Claims the task for processing.

update Updates the task instance.

complete Completes the task instance.

cancelClaim Releases a claimed task instance so that it

can be worked on by another potential

owner.

createWorkItem Creates a work item for the task instance.

transferWorkItem Transfers the work item to a specified

owner.

deleteWorkItem Deletes the work item.

Chapter 2. Developing client applications for business processes and tasks 95

Escalations

The following methods are available to work with escalations.

 Table 31. API methods for working with escalations

Method Description

getEscalation Retrieves the specified escalation instance.

Custom properties

Tasks, task templates, and escalations can all have custom properties. The interface

provides a get and a set method to retrieve and set values for custom properties.

You can also associate named properties with, and retrieve named properties from

task instances. Custom property names and values must be of the java.lang.String

type. The following methods are valid for tasks, task templates, and escalations.

 Table 32. API methods for variables and custom properties

Method Description

getCustomProperty Retrieves the named custom property of the

specified task instance.

getCustomProperties Retrieves the custom properties of the

specified task instance.

getCustomPropertyNames Retrieves the names of the custom properties

for the task instance.

setCustomProperty Stores custom-specific values for the

specified task instance.

Allowed actions for tasks:

The actions that can be carried out on a task depend on whether the task is a to-do

task, a collaboration task, an invocation task, or an administration task.

 You cannot use all of the actions provided by the HumanTaskManager interface for

all kinds of tasks. The following table shows the actions that you can carry out on

each kind of task.

Action

Kind of task

To-do task Collaboration

task

Invocation task Administration

task

callTask X

cancelClaim X X1

claim X X1

complete X X1 X

completeWithFollowOnTask4 X X1

completeWithFollowOnTask5 X3 X3

createFaultMessage X X X X

createInputMessage X X X X

createOutputMessage X X X X

createWorkItem X X1 X X

96 Developing and deploying

Action

Kind of task

To-do task Collaboration

task

Invocation task Administration

task

delete X1 X1 X X1

deleteWorkItem X X1 X X

getCustomProperty X X1 X X

getDocumentation X X1 X X

getFaultNames X X1

getFaultMessage X X1 X

getInputMessage X X1 X

getOutputMessage X X1 X

getUsersInRole X X1 X X

getTask X X1 X X

getUISettings X X1 X X

resume X X1

setCustomProperty X X1 X X

setFaultMessage X X1

setOutputMessage X X1

startTask X1 X1 X X

startTaskAsSubtask6 X X1

startTaskAsSubtask7 X3 X3

suspend X X1

suspendWithCancelClaim X X1

terminate X1 X1 X1

transferWorkItem X X1 X X

update X X1 X X

Notes:

1. For stand-alone tasks, ad-hoc tasks, and task templates only

2. For stand-alone tasks, inline tasks in business processes, and ad-hoc tasks only

3. For stand-alone tasks and ad-hoc tasks only

4. The tasks kinds that can have follow-on tasks

5. The task kinds that can be used as follow-on tasks

6. The tasks kinds that can have subtasks

7. The task kinds that can be used as subtasks

Developing applications for business processes and human

tasks

People are involved in most business process scenarios. For example, a business

process requires people interaction when the process is started or administered, or

when human task activities are performed. To support these scenarios, you need to

use both the Business Flow Manager API and the Human Task Manager API.

About this task

Chapter 2. Developing client applications for business processes and tasks 97

To involve people in business process scenarios, you can include the following task

kinds in the business process:

v An inline invocation task (also known as an originating task in the API).

You can provide an invocation task for every receive activity, for each

onMessage element of a pick activity, and for each onEvent element of an event

handler. This task then controls who is authorized to start a process or

communicate with a running process instance.

v An administration task.

You can provide an administration task to specify who is authorized to

administer the process or perform administrative operations on the failed

activities of the process.

v A to-do task (also known as a participating task in the API).

A to-do task implements a human task activity. This type of activity allows you

to involve people in the process.

Human task activities in the business process represent the to-do tasks that people

perform in the business process scenario. You can use both the Business Flow

Manager API and the Human Task Manager API to realize these scenarios:

v The business process is the container for all of the activities that belong to the

process, including the human task activities that are represented by to-do tasks.

When a process instance is created, a unique object ID (PIID) is assigned.

v When a human task activity is activated during the execution of the process

instance, an activity instance is created, which is identified by its unique object

ID (AIID). At the same time, an inline to-do task instance is also created, which

is identified by its object ID (TKIID). The relationship of the human task activity

to the task instance is achieved by using the object IDs:

– The to-do task ID of the activity instance is set to the TKIID of the associated

to-do task.

– The containment context ID of the task instance is set to the PIID of the

process instance that contains the associated activity instance.

– The parent context ID of the task instance is set to the AIID of the associated

activity instance.
v The life cycles of all inline to-do task instances are managed by the process

instance. When the process instance is deleted, then the task instances are also

deleted. In other words, all of the tasks that have the containment context ID set

to the PIID of the process instance are automatically deleted.

Determining the process templates or activities that can be

started

A business process can be started by invoking the call, initiate, or sendMessage

methods of the Business Flow Manager API. If the process has only one starting

activity, you can use the method signature that requires a process template name

as a parameter. If the process has more than one starting activity, you must

explicitly identify the starting activity.

About this task

When a business process is modeled, the modeler can decide that only a subset of

users can create a process instance from the process template. This is done by

associating an inline invocation task to a starting activity of the process and by

specifying authorization restrictions on that task. Only the people that are potential

starters or administrators of the task are allowed to create an instance of the task,

and thus an instance of the process template.

98 Developing and deploying

If an inline invocation task is not associated with the starting activity, or if

authorization restrictions are not specified for the task, everybody can create a

process instance using the starting activity.

A process can have more than one starting activity, each with different people

queries for potential starters or administrators. This means that a user can be

authorized to start a process using activity A but not using activity B.

Procedure

1. Use the Business Flow Manager API to create a list of the current versions of

process templates that are in the started state.

Tip: The queryProcessTemplates method excludes only those process templates

that are part of applications that are not yet started. So, if you use this method

without filtering the results, the method returns all of the versions of the

process templates regardless of which state they are in.
// current timestamp in UTC format, converted to yyyy-mm-ddThh:mm:ss

String now = (new UTCDate()).toXsdString();

String whereClause = "PROCESS_TEMPLATE.STATE =

 PROCESS_TEMPLATE.STATE.STATE_STARTED AND

 PROCESS_TEMPLATE.VALID_FROM =

 (SELECT MAX(VALID_FROM) FROM PROCESS_TEMPLATE

 WHERE NAME=PROCESS_TEMPLATE.NAME AND

 VALID_FROM <= TS(’" + now + "’))";

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

 (whereClause,

 "PROCESS_TEMPLATE.NAME",

 (Integer)null, (TimeZone)null);

The results are sorted by process template name.

2. Create the list of process templates and the list of starting activities for which

the user is authorized.

The list of process templates contains those process templates that have a single

starting activity. These activities are either not secured or the logged-on user is

allowed to start them. Alternatively, you might want to gather the process

templates that can be started by at least one of the starting activities.

Tip: A process administrator can also start a process instance. To get a

complete list of templates, you also need to read the administration task

template that is associated with the process template, and check whether the

logged-on user is an administrator.
List authorizedProcessTemplates = new ArrayList();

List authorizedActivityServiceTemplates = new ArrayList();

3. Determine the starting activities for each of the process templates.

for(int i=0; i<processTemplates.length; i++)

{

 ProcessTemplateData template = processTemplates[i];

 ActivityServiceTemplateData[] startActivities =

 process.getStartActivities(template.getID());

4. For each starting activity, retrieve the ID of the associated inline invocation task

template.

for(int j=0; j<startActivities.length; j++)

{

 ActivityServiceTemplateData activity = startActivities[j];

 TKTID tktid = activity.getTaskTemplateID();

a. If an invocation task template does not exist, the process template is not

secured by this starting activity.

Chapter 2. Developing client applications for business processes and tasks 99

In this case, everybody can create a process instance using this start activity.

boolean isAuthorized = false;

 if (tktid == null)

 {

 isAuthorized = true;

 authorizedActivityServiceTemplates.add(activity);

 }

b. If an invocation task template exists, use the Human Task Manager API to

check the authorization for the logged-on user.

In the example, the logged-on user is Smith. The logged-on user must be a

potential starter of the invocation task or an administrator.

if (tktid != null)

 {

 isAuthorized =

 task.isUserInRole

 (tkid, "Smith", WorkItem.REASON_POTENTIAL_STARTER) ||

 task.isUserInRole(tktid, "Smith", WorkItem.REASON_ADMINISTRATOR);

 if (isAuthorized)

 {

 authorizedActivityServiceTemplates.add(activity);

 }

 }

If the user has the specified role, or if people assignment criteria for the role

are not specified, the isUserInRole method returns the value true.
5. Check whether the process can be started using only the process template

name.

if (isAuthorized && startActivities.length == 1)

 {

 authorizedProcessTemplates.add(template);

 }

6. End the loops.

 } // end of loop for each activity service template

} // end of loop for each process template

Processing a single person workflow that includes human tasks

Some workflows are performed by only one person, for example, ordering books

from an online bookstore. This example shows how to implement the sequence of

actions for ordering the book as a series of human task activities (to-do tasks). Both

the Business Flow Manager and the Human Task Manager APIs are used to

process the workflow.

About this task

In an online bookstore, the purchaser completes a sequence of actions to order a

book. This sequence of actions can be implemented as a series of human task

activities (to-do tasks). If the purchaser decides to order several books, this is

equivalent to claiming the next human task activity. Information about the

sequence of tasks is maintained by Business Flow Manager, while the tasks

themselves are maintained by Human Task Manager.

Compare this example with the example that uses only the Business Flow Manager

API.

Procedure

1. Use the Business Flow Manager API to get the process instance that you want

to work on.

100 Developing and deploying

In this example, an instance of the CustomerOrder process.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder");

String piid = processInstance.getID().toString();

2. Use the Human Task Manager API to query the ready to-do tasks (kind

participating) that are part of the specified process instance.

Use the containment context ID of the task to specify the containing process

instance. For a single person workflow, the query returns the to-do task that is

associated with the first human task activity in the sequence of human task

activities.

//

 // Query the list of to-do tasks that can be claimed by the logged-on user

 // for the specified process instance

//

QueryResultSet result =

 task.query("DISTINCT TASK.TKIID",

 "TASK.CONTAINMENT_CTX_ID = ID(’" + piid + "’) AND

 TASK.STATE = TASK.STATE.STATE_READY AND

 TASK.KIND = TASK.KIND.KIND_PARTICIPATING AND

 WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

 (String)null, (Integer)null, (TimeZone)null);

3. Claim the to-do task that is returned.

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 ClientObjectWrapper input = task.claim(tkiid);

 DataObject activityInput = null ;

 if (input.getObject()!= null && input.getObject() instanceof DataObject)

 {

 taskInput = (DataObject)input.getObject();

 // read the values

 ...

 }

}

When the task is claimed, the input message of the task is returned.

4. Determine the human task activity that is associated with the to-do task.

You can use one of the following methods to correlate activities to their tasks.

v The task.getActivityID method:

AIID aiid = task.getActivityID(tkiid);

v The parent context ID that is part of the task object:

AIID aiid = null;

Task taskInstance = task.getTask(tkiid);

OID oid = taskInstance.getParentContextID();

if (oid != null and oid instanceof AIID)

{

 aiid = (AIID)oid;

}

5. When work on the task is finished, use the Business Flow Manager API to

complete the task and its associated human task activity, and claim the next

human task activity in the process instance.

To complete the human task activity, an output message is passed. When you

create the output message, you must specify the message type name so that the

message definition is contained.

Chapter 2. Developing client applications for business processes and tasks 101

ActivityInstanceData activity = process.getActivityInstance(aiid);

ClientObjectWrapper output =

 process.createMessage(aiid, activity.getOutputMessageTypeName());

DataObject myMessage = null ;

if (output.getObject()!= null && output.getObject() instanceof DataObject)

{

 myMessage = (DataObject)output.getObject();

 //set the parts in your message, for example, an order number

 myMessage.setInt("OrderNo", 4711);

}

//complete the human task activity and its associated to-do task,

// and claim the next human task activity

CompleteAndClaimSuccessorResult successor =

 process.completeAndClaimSuccessor(aiid, output);

This action sets an output message that contains the order number and claims

the next human task activity in the sequence. If AutoClaim is set for successor

activities and if there are multiple paths that can be followed, all of the

successor activities are claimed and a random activity is returned as the next

activity. If there are no more successor activities that can be assigned to this

user, Null is returned.

If the process contains parallel paths that can be followed and these paths

contain human task activities for which the logged-on user is a potential owner

of more than one of these activities, a random activity is claimed automatically

and returned as the next activity.

6. Work on the next human task activity.

ClientObjectWrapper nextInput = successor.getInputMessage();

if (nextInput.getObject()!=

 null && nextInput.getObject() instanceof DataObject)

{

 activityInput = (DataObject)input.getObject();

 // read the values

 ...

}

aiid = successor.getAIID();

7. Continue with step 5 to complete the human task activity and to retrieve the

next human task activity.

 Related tasks

 “Processing a single person workflow” on page 71
Some workflows are performed by only one person, for example, ordering

books from an online bookstore. This type of workflow has no parallel paths.

The completeAndClaimSuccessor API supports the processing of this type of

workflow.

Handling exceptions and faults

A BPEL process might encounter a fault at different points in the process.

About this task

Business Process Execution Language (BPEL) faults originate from:

v Web service invocations (Web Services Description Language (WSDL) faults)

v Throw activities

v BPEL standard faults that are recognized by Business Process Choreographer

102 Developing and deploying

Mechanisms exist to handle these faults. Use one of the following mechanisms to

handle faults that are generated by a process instance:

v Pass control to the corresponding fault handlers

v Compensate previous work in the process

v Stop the process and let someone repair the situation (force-retry, force-complete)

A BPEL process can also return faults to a caller of an operation provided by the

process. You can model the fault in the process as a reply activity with a fault

name and fault data. These faults are returned to the API caller as checked

exceptions.

If a BPEL process does not handle a BPEL fault or if an API exception occurs, a

runtime exception is returned to the API caller. An example for an API exception is

when the process model from which an instance is to be created does not exist.

The handling of faults and exceptions is described in the following tasks.

Handling API exceptions

About this task

If a method in the BusinessFlowManagerService interface or the

HumanTaskManagerService interface does not complete successfully, an exception

is thrown that denotes the cause of the error. You can handle this exception

specifically to provide guidance to the caller.

However, it is common practice to handle only a subset of the exceptions

specifically and to provide general guidance for the other potential exceptions. All

specific exceptions inherit from a generic ProcessException or TaskException. It is a

best practice to catch generic exceptions with a final catch(ProcessException) or

catch(TaskException) statement. This statement helps to ensure the upward

compatibility of your application program because it takes account of all of the

other exceptions that can occur.

Checking which fault is set for an activity

Procedure

1. List the task activities that are in a failed or stopped state.

QueryResultSet result =

 process.query("ACTIVITY.AIID",

 "(ACTIVITY.STATE = ACTIVITY.STATE.STATE_FAILED OR

 ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED) AND

 ACTIVITY.KIND=ACTIVITY.KIND.KIND_STAFF",

 (String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that contains failed or stopped activities.

2. Read the name of the fault.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ClientObjectWrapper faultMessage = process.getFaultMessage(aiid);

 DataObject fault = null ;

 if (faultMessage.getObject() != null && faultMessage.getObject()

 instanceof DataObject)

 {

 fault = (DataObject)faultMessage.getObject();

 Type type = fault.getType();

Chapter 2. Developing client applications for business processes and tasks 103

String name = type.getName();

 String uri = type.getURI();

 }

}

This returns the fault name. You can also analyze the unhandled exception for

a stopped activity instead of retrieving the fault name.

Checking which fault occurred for a stopped invoke activity

About this task

If an activity causes a fault to occur, the fault type determines the actions that you

can take to repair the activity.

Procedure

1. List the human task activities that are in a stopped state.

QueryResultSet result =

 process.query("ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND

 ACTIVITY.KIND=ACTIVITY.KIND.KIND_INVOKE",

 (String)null, (Integer)null, (TimeZone)null);

This action returns a query result set that contains stopped invoke activities.

2. Read the name of the fault.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ActivityInstanceData activity = process.getActivityInstance(aiid);

 ProcessException excp = activity.getUnhandledException();

 if (excp instanceof ApplicationFaultException)

 {

 ApplicationFaultException fault = (ApplicationFaultException)excp;

 String faultName = fault.getFaultName();

 }

}

Developing Web service API client applications

You can develop client applications that access business process applications and

human task applications through Web services APIs.

About this task

Client applications can be developed in any Web service client environment,

including Java Web services and Microsoft .NET.

Introduction: Web services

Web services are Web-based enterprise applications that use open, XML-based

standards and transport protocols to exchange data with client applications. Web

services allow the use of a language- and environment-neutral programming

model.

Web services use the following core technologies:

v XML (Extensible Markup Language). XML solves the problem of data

independence. You use it to describe data, and also to map that data into and

out of any application or programming language

104 Developing and deploying

http://www.w3.org/XML/

v WSDL (Web Services Description Language). You use this XML-based language

to create a description of an underlying application. It is this description that

turns an application into a Web service, by acting as the interface between the

underlying application and other Web-enabled applications.

v SOAP (Simple Object Access Protocol). SOAP is the core communications

protocol for the Web, and most Web services use this protocol to talk to each

other.

Web service components and sequence of control

A number of client-side and server-side components participate in the sequence of

control that represents a Web service request and response.

A typical sequence of control is as follows.

1. On the client side:

a. A client application (provided by the user) issues a request for a Web

service.

b. A proxy client (also provided by the user, but which can be automatically

generated using client-side utilities) wraps the service request in a SOAP

request envelope.

c. The client-side development infrastructure forwards the request to a URL

defined as the Web service’s endpoint.
2. The network transmits the request to the Web service endpoint using HTTP or

HTTPS.

3. On the server side:

a. The generic Web services API receives and decodes the request.

b. The request is either handled directly by the generic Business Flow Manager

or Human Task Manager component, or forwarded to the specified business

process or human task.

c. The returned data is wrapped in a SOAP response envelope.
4. The network transmits the response to the client-side environment using HTTP

or HTTPS.

5. Back on the client side:

a. The client-side development infrastructure unwraps the SOAP response

envelope.

b. The proxy client extracts the data from the SOAP response and passes it to

the client application.

c. The client application processes the returned data as necessary.

Overview of the Web services APIs

Web services APIs allow you to develop client applications that use Web services

to access business processes and human tasks running in the Business Process

Choreographer environment.

The Business Process Choreographer Web services API provides two separate Web

service interfaces (WSDL port types):

v The Business Flow Manager API. Allows client applications to interact with

microflows and long-running processes, for example:

– Create process templates and process instances

– Claim existing processes

– Query a process by its ID

Chapter 2. Developing client applications for business processes and tasks 105

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Refer to “Developing applications for business processes” on page 61 for a

complete list of possible actions.

v The Human Task Manager API. Allows client applications to:

– Create and start tasks

– Claim existing tasks

– Complete tasks

– Query a task by its ID

– Query a collection of tasks.

Refer to “Developing applications for human tasks” on page 80 for a complete

list of possible actions.

Client applications can use either or both of the Web service interfaces.

Example

The following is a possible outline for a client application that accesses the Human

Task Manager Web services API to process a participating human task:

1. The client application issues a query Web service call to the WebSphere Process

Server requesting a list of participating tasks to be worked on by a user.

2. The list of participating tasks is returned in a SOAP/HTTP response envelope.

3. The client application then issues a claim Web service call to claim one of the

participating tasks.

4. The WebSphere Process Server returns the task’s input message.

5. The client application issues a complete Web service call to complete the task

with an output or fault message.

Requirements for business processes and human tasks

Business processes and human tasks developed with the WebSphere Integration

Developer to run on the Business Process Choreographer must conform to specific

rules to be accessible through the Web services APIs.

The requirements are:

1. The interfaces of business processes and human tasks must be defined using

the ″document/literal wrapped″ style defined in the Java API for XML-based

RPC (JAX-RPC 1.1) specification. This is the default style for all business

processes and human tasks developed with the WID.

2. Fault messages exposed by business processes and human tasks for Web service

operations must comprise a single WSDL message part defined with an XML

Schema element. For example:

<wsdl:part name="myFault" element="myNamespace:myFaultElement"/>

 Related information

Java API for XML based RPC (JAX-RPC) downloads page

Which style of WSDL should I use?

Developing client applications

The client application development process consists of a number of steps.

Procedure

106 Developing and deploying

http://java.sun.com/xml/downloads/jaxrpc.html
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

1. Decide which Web services API your client application needs to use: the

Business Flow Manager API, Human Task Manager API, or both.

2. Export the necessary files from the WebSphere Process Server environment.

Alternatively, you can copy the files from the WebSphere Process Server client

CD.

3. In your chosen client application development environment, generate a proxy

client using the exported artifacts.

4. Optional: Generate helper classes. Helper classes are required if your client

application interacts directly with concrete processes or tasks on the WebSphere

server. They are not, however, necessary if your client application is only going

to perform generic tasks such as issuing queries.

5. Develop the code for your client application.

6. Add any necessary security mechanisms to your client application.

Copying artifacts

A number of artifacts must be copied from the WebSphere environment to help in

the creation of client applications.

There are two ways to obtain these artifacts:

v Publish and export them from the WebSphere Process Server environment.

v Copy files from the WebSphere Process Server client CD.

Publishing and exporting artifacts from the server environment

Before you can develop client applications to access the Web services APIs, you

must publish and export a number of artifacts from the WebSphere server

environment.

About this task

The artifacts to be exported are:

v Web Service Definition Language (WSDL) files describing the port types and

operations that make up the Web services APIs.

v XML Schema Definition (XSD) files containing definitions of data types

referenced by services and methods in the WSDL files.

v Additional WSDL and XSD files describing business objects. Business objects

describe concrete business processes or human tasks running on the WebSphere

server. These additional files are only required if your client application needs to

interact directly with the concrete business processes or human tasks through

the Web services APIs. They are not necessary if your client application is only

going to perform generic tasks, such as issuing queries.

After these artifacts are published, you need to copy them to your client

programming environment, where they are used to generate a proxy client and

helper classes.

Specifying the Web service endpoint address:

The Web service endpoint address is the URL that a client application must specify

to access the Web services APIs. The endpoint address is written into the WSDL

file that you export to generate a proxy client for your client application.

 About this task

Chapter 2. Developing client applications for business processes and tasks 107

The Web service endpoint address to use depends on your WebSphere server

configuration:

v Scenario 1. A single WebSphere server. The WebSphere endpoint address to

specify is the host name and port number of the server, for example host1:9080.

v Scenario 2. A WebSphere cluster composed of several servers. The WebSphere

endpoint address to specify is the host name and port of the server that is

hosting the Web services APIs, for example, host2:9081.

v Scenario 3. A Web server is used as a front end. The WebSphere endpoint

address to specify is the host name and port of the Web server, for example:

host:80.

By default, the Web service endpoint address takes the form protocol://host:port/
context_root/fixed_path. Where:

v protocol. The communications protocol to be used between the client application

and the WebSphere server. The default protocol is HTTP. You can instead choose

to use the more secure HTTPS (HTTP over SSL) protocol. It is recommended to

use HTTPS.

v host:port. The host name and port number used to access the machine that is

hosting the Web services APIs. These values vary depending on the WebSphere

server configuration; for example, whether your client application is to access

the application directly or through a Web server front end.

v context_root. You are free to choose any value for the context root. The value

you choose must, however, be unique within each WebSphere cell. The default

value uses a ″node_server/cluster″ suffix that eliminates the risk of naming

conflicts.

v fixed_path is either /sca/com/ibm/bpe/api/BFMWS (for the Business Flow Manager

API) or /sca/com/ibm/task/api/HTMWS (for the Human Task Manager API) and

cannot be modified.

The Web service endpoint address is initially specified when configuring the

business process container or human task container:

Procedure

1. Log on to the administrative console with a user ID with administrator rights.

2. Choose Applications → SCA modules.

Note: You can also select Applications → Enterprise applications to display a

list of all available enterprise applications.

3. Select BPEContainer (for the business process container) or TaskContainer (for

the human task container) from the list of SCA modules or applications.

4. Choose Provide HTTP endpoint URL information from the list of Additional

properties.

5. Select one of the default prefixes from the list, or enter a custom prefix. Use a

prefix from the default prefix list if your client applications are to connect

directly to the application server hosting the Web services API. Otherwise,

specify a custom prefix.

6. Click Apply to copy the selected prefix to the SCA module.

7. Click OK. The URL information is saved to your workspace.

Results

108 Developing and deploying

You can view the current value in the administrative console (for example, for the

business process container: Enterprise Applications → BPEContainer → View

Deployment Descriptor).

In the exported WSDL file, the location attribute of the soap:address element

contains the specified Web services endpoint address. For example:

<wsdl:service name="BFMWSService">

 <wsdl:port name="BFMWSPort" binding="this:BFMWSBinding">

 <soap:address location=

 "https://myserver:9080/WebServicesAPIs/sca/com/ibm/bpe/api/BFMWS"/>

 Related concepts

 “Adding security (Java Web services)” on page 120
You must secure Web service communications by implementing security

mechanisms in your client application.
 Related tasks

 “Adding security (.NET)” on page 128
You can secure Web service communications by integrating security

mechanisms into your client application.

Publishing WSDL files:

A Web Service Definition Language (WSDL) file contains a detailed description of

all the operations available with a Web services API. Separate WSDL files are

available for the Business Flow Manager and Human Task Manager Web services

APIs. You must first publish these WSDL files then copy them from the WebSphere

environment to your development environment, where they are used to generate a

proxy client.

 Before you begin

Before publishing the WSDL files, be sure to specify the correct Web services

endpoint address. This is the URL that your client application uses to access the

Web services APIs.

About this task

You only need to publish WSDL files once.

Note: If you have the WebSphere Process Server client CD, you can copy the files

directly from there to your client programming environment instead.

Publishing the business process WSDL:

Use the administrative console to publish the WSDL file.

 Procedure

1. Log on to the administrative console with a user ID with administrator rights.

2. Select Applications → SCA modules

Note: You can also select Applications → Enterprise applications to display a

list of all available enterprise applications.

3. Choose the BPEContainer application from the list of SCA modules or

applications.

4. Select Publish WSDL files from the list of Additional properties

Chapter 2. Developing client applications for business processes and tasks 109

5. Click on the zip file in the list.

6. On the File Download window that appears, click Save.

7. Browse to a local folder and click Save.

Results

The exported zip file is named BPEContainer_WSDLFiles.zip. The zip file contains

a WSDL file that describes the Web services, and any XSD files referenced from

within the WSDL file.

Publishing the human task WSDL:

Use the administrative console to publish the WSDL file.

 Procedure

1. Log on to the administrative console with a user ID with administrator rights.

2. Select Applications → SCA modules

Note: You can also select Applications → Enterprise applications to display a

list of all available enterprise applications.

3. Choose the TaskContainer application from the list of SCA modules or

applications.

4. Select Publish WSDL files from the list of Additional properties

5. Click on the zip file in the list.

6. On the File Download window that appears, click Save.

7. Browse to a local folder and click Save.

Results

The exported zip file is named TaskContainer_WSDLFiles.zip. The zip file contains

a WSDL file that describes the Web services, and any XSD files referenced from

within the WSDL file.

Exporting business objects:

Business processes and human tasks have well-defined interfaces that allow them

to be accessed externally as Web services. If these interfaces reference business

objects, you need to export the interface definitions and business objects to your

client programming environment.

 About this task

This procedure must be repeated for each business object that your client

application needs to interact with.

In WebSphere Process Server, business objects define the format of request,

response and fault messages that interact with business processes or human tasks.

These messages can also contain definitions of complex data types.

For example, to create and start a human task, the following items of information

must be passed to the task interface:

v The task template name

v The task template namespace

110 Developing and deploying

v An input message, containing formatted business data

v A response wrapper for returning the response message

v A fault message for returning faults and exceptions

These items are encapsulated within a single business object. All operations of the

Web service interface are modeled as a ″document/literal wrapped″ operation.

Input and output parameters for these operations are encapsulated in wrapper

documents. Other business objects define the corresponding response and fault

message formats.

In order to create and start the business process or human task through a Web

service, these wrapper objects must be made available to the client application on

the client side.

This is achieved by exporting the business objects from the WebSphere

environment as Web Service Definition Language (WSDL) and XML Schema

Definition (XSD) files, importing the data type definitions into your client

programming environment, then converting them to helper classes for use by the

client application.

Procedure

1. Launch the WebSphere Integration Developer Workspace if it is not already

running.

2. Select the Library module containing the business objects to be exported. A

Library module is a compressed file that contains the necessary business

objects.

3. Export the Library module.

4. Copy the exported files to your client application development environment.

Example

Assume a business process exposes the following Web service operation:

<wsdl:operation name="updateCustomer">

 <wsdl:input message="tns:updateCustomerRequestMsg"

 name="updateCustomerRequest"/>

 <wsdl:output message="tns:updateCustomerResponseMsg"

 name="updateCustomerResponse"/>

 <wsdl:fault message="tns:updateCustomerFaultMsg"

 name="updateCustomerFault"/>

 </wsdl:operation>

with the WSDL messages defined as:

<wsdl:message name="updateCustomerRequestMsg">

 <wsdl:part element="types:updateCustomer"

 name="updateCustomerParameters"/>

 </wsdl:message>

 <wsdl:message name="updateCustomerResponseMsg">

 <wsdl:part element="types:updateCustomerResponse"

 name="updateCustomerResult"/>

 </wsdl:message>

 <wsdl:message name="updateCustomerFaultMsg">

 <wsdl:part element="types:updateCustomerFault"

 name="updateCustomerFault"/>

 </wsdl:message>

The concrete customer-defined elements types:updateCustomer,

types:updateCustomerResponse, and types:updateCustomerFault must be passed to

Chapter 2. Developing client applications for business processes and tasks 111

and received from the Web services APIs using <xsd:any> parameters in all generic

operations (call, sendMessage, and so on) performed by the client application.

These customer-defined elements are created, serialized and deserialized on the

client application side using helper classes that are generated using the exported

XSD files.

 Related tasks

 “Creating helper classes for BPEL processes (.NET)” on page 125
Certain Web services API operations require client applications to use

″document/literal″ style wrapped elements. Client applications require helper

classes to help them generate the necessary wrapper elements.

Using files on the client CD

As an alternative to exporting artifacts from the WebSphere server environment,

you can copy the files necessary for generating a client application from the

WebSphere Process Server client CD.

In this case, you must manually modify the default Web services endpoint address

of the Business Flow Manager API or Human Task Manager API.

If the client application is to access both APIs, you must edit the default endpoint

address for both APIs.

Copying files from the client CD:

The files necessary to access the Web services APIs are available on the WebSphere

Process Server client CD.

 Procedure

1. Access the client CD and browse to the ProcessChoreographer\client directory.

2. Copy the necessary files to your client application development environment.

For the Business Flow Manager API, copy:

BFMWS.wsdl

Describes the Web services available in the Business Flow Manager Web

services API. This file contains the endpoint address.

BFMIF.wsdl

Describes the parameters and data type of each Web service in the

Business Flow Manager Web services API.

BFMIF.xsd

Describes data types used in the Business Flow Manager Web services

API.

BPCGEN.xsd

Contains data types that are common between the Business Flow

Manager and Human Task Manager Web services APIs.
For the Human Task Manager API, copy:

HTMWS.wsdl

Describes the Web services available in the Human Task Manager Web

services API. This file contains the endpoint address.

HTMIF.wsdl

Describes the parameters and data type of each Web service in the

Human Task Manager Web services API.

112 Developing and deploying

HTMIF.xsd

Describes data types used in the Human Task Manager Web services

API.

BPCGEN.xsd

Contains data types that are common between the Business Flow

Manager and Human Task Manager Web services APIs.

Note: The BPCGen.xsd file is common to both APIs.

After you copy the files, you must manually change the Web services API endpoint

address the BFMWS.wsdl or HTMWS.wsdl files to that of the WebSphere

application server that is hosting the Web services APIs.

Manually changing the Web service endpoint address:

If you copy files from the client CD, you must change the default Web service

endpoint address specified in WSDL files to that of the server that is hosting the

Web services APIs.

 About this task

You can use the administrative console to set the Web service endpoint address

before exporting the WSDL files. If, however, you copy the WSDL files from the

WebSphere Process Server client CD, you must modify the default Web service

endpoint address manually.

The Web service endpoint address to use depends on your WebSphere server

configuration:

v Scenario 1. There is a single WebSphere server. The WebSphere endpoint address

to specify is the host name and port number of the server, for example

host1:9080.

v Scenario 2. A WebSphere cluster composed of several servers. The WebSphere

endpoint address to specify is the host name and port of the server that is

hosting the Web services APIs, for example, host2:9081.

v Scenario 3. A Web server is used as a front end. The WebSphere endpoint

address to specify is the host name and port of the Web server, for example:

host:80.

Changing the Business Flow Manager API endpoint:

If you copy the Business Flow Manager API files from the WebSphere Process

Server client CD, you must manually edit the default endpoint address.

 Procedure

1. Navigate to the directory containing the files copied from the client CD.

2. Open the BFMWS.wsdl file in a text editor or XML editor.

3. Locate the soap:address element (towards the bottom of the file).

4. Modify the value of the location attribute with the HTTP URL of the server on

which the Web service API is running. To do this:

a. Optionally, replace http with https to use the more secure HTTPS protocol.

b. Replace localhost with the host name or IP address of the Web services APIs

server endpoint address.

c. Replace 9080 with the port number of the application server.

Chapter 2. Developing client applications for business processes and tasks 113

d. Replace BPEContainer_N1_server1 with the context root of the application

running the Web services API. The default context root is composed of:

v BPEContainer. The application name.

v N1. The node name.

v server1. The server name.
e. Do not modify the fixed portion of the URL (/sca/com/ibm/bpe/api/BFMWS) .

For example, if the application is running on the server s1.n1.ibm.com and the

server is accepting SOAP/HTTP requests at port 9080, modify the soap:address

element as follows:

<soap:address location="http://si.n1.ibm.com:9080/

 BPEContainer_N1_server1/sca/com/ibm/bpe/api/BFMWS"/>

 Related concepts

 “Adding security (Java Web services)” on page 120
You must secure Web service communications by implementing security

mechanisms in your client application.
 Related tasks

 “Adding security (.NET)” on page 128
You can secure Web service communications by integrating security

mechanisms into your client application.

Changing the Human Task Manager API endpoint:

If you copy the Human Task Manager API files from the WebSphere Process Server

client CD, you must manually edit the default endpoint address.

 Procedure

1. Navigate to the directory containing the files copied from the client CD.

2. Open the HTMWS.wsdl file in a text editor or XML editor.

3. Locate the soap:address element (towards the bottom of the file).

4. Modify the value of the location attribute with the correct endpoint address.

To do this:

a. Optionally, replace http with https to use the more secure HTTPS protocol.

b. Replace localhost with the host name or IP address of the Web services API

server’s endpoint address.

c. Replace 9080 with the port number of the application server.

d. Replace HTMContainer_N1_server1 with the context root of the application

running the Web services API. The default context root is composed of:

v HTMContainer. The application name.

v N1. The node name.

v server1. The server name.
e. Do not modify the fixed portion of the URL (/sca/com/ibm/task/api/HTMWS).

For example, if the application is running on the server s1.n1.ibm.com and the

server is accepting SOAP/HTTPS requests at port 9081, modify the

soap:address element as follows:

<soap:address location="https://si.n1.ibm.com:9081/

 HTMContainer_N1_server1/sca/com/ibm/task/api/HTMWS"/>

 Related concepts

 “Adding security (Java Web services)” on page 120
You must secure Web service communications by implementing security

mechanisms in your client application.

114 Developing and deploying

Related tasks

 “Adding security (.NET)” on page 128
You can secure Web service communications by integrating security

mechanisms into your client application.

Developing client applications in the Java Web services

environment

You can use any Java-based development environment compatible with Java Web

services to develop client applications for the Web services APIs.

Generating a proxy client (Java Web services)

Java Web service client applications use a proxy client to interact with the Web

services APIs.

About this task

A proxy client for Java Web services contains a number of Java Bean classes that

the client application calls to perform Web service requests. The proxy client

handles the assembly of service parameters into SOAP messages, sends SOAP

messages to the Web service over HTTP, receives responses from the Web service,

and passes any returned data to the client application.

Basically, therefore, a proxy client allows a client application to call a Web service

as if it were a local function.

Note: You only need to generate a proxy client once. All client applications

accessing the same Web services API can then use the same proxy client.

In the IBM® Web services environment, there are two ways to generate a proxy

client:

v Using Rational® Application Developer or WebSphere Integration Developer

integrated development environments.

v Using the WSDL2Java command-line tool.

Other Java Web services development environments usually include either the

WSDL2Java tool or proprietary client application generation facilities.

Using Rational Application Developer to generate a proxy client:

The Rational Application Developer integrated development environment allows

you to generate a proxy client for your client application.

 Before you begin

Before generating a proxy client, you must have previously exported the WSDL

files that describe the business process or human task Web services interfaces from

the WebSphere environment (or the WebSphere Process Server client CD) and

copied them to your client programming environment.

Procedure

1. Add the appropriate WSDL file to your project:

v For business processes:

Chapter 2. Developing client applications for business processes and tasks 115

a. Unzip the exported file

BPEContainer_nodename_servername_WSDLFiles.zip to a temporary

directory.

b. Import the subdirectory META-INF from the unzipped directory

BPEContainer_nodename_servername.ear/b.jar.
v For human tasks:

a. Unzip the exported file

TaskContainer_nodename_servername_WSDLFiles.zip to a temporary

directory.

b. Import the subdirectory META-INF from the unzipped directory

TaskContainer_nodename_servername.ear/h.jar.

A new directory wsdl and subdirectory structure are created in your project.

2. Modify the Web Service wizard properties:

a. In Rational Application Developer, choose Preferences → Web services →

Code generation → IBM WebSphere runtime.

b. Select the Generate Java from WSDL using the no wrapped style option.

Note: If you cannot select the Web services option in the Preferences menu,

you must first enable the required capabilities as follows: Window →

Preferences → Workbench → Capabilities. Click on Web Service Developer and

click OK. Then reopen the Preferences window and change the Code

Generation option.

3. Select the BFMWS.WSDL or HTMWS.WSDL file located in the newly-created

wsdl directory.

4. Right-click and choose Web services → Generate client.

Before continuing with the remaining steps, ensure that the server has started.

5. On the Web Services window, click Next to accept all defaults.

6. On the Web Service Selection window, click Next to accept all defaults.

7. On the Client Environment Configuration window:

a. Click Edit and change the Web service runtime option to IBM WebSphere

b. Change the J2EE Version option to 1.4.

c. Click OK.

d. Click Next.
8. This step is only necessary if you need to generate a Web Services client that

includes both Business Process and Human Task Web Services APIs, as there

are duplicate methods in both WSDL files.

a. On the Web Service Proxy window, select Define custom mapping for

namespace to package then click OK.

b. On the Web Service Client namespace to package mapping window, add the

following namespaces and package:

For BFMWS.wsdl:

 Namespace Package

http://www.ibm.com/xmlns/prod/websphere/business-process/
types/6.0

com.ibm.sca.bpe

http://www.ibm.com/xmlns/prod/websphere/business-process/
services/6.0

com.ibm.sca.bpe

http://www.ibm.com/xmlns/prod/websphere/business-process/
services/6.0/Binding

com.ibm.sca.bpe

116 Developing and deploying

Namespace Package

http://www.ibm.com/xmlns/prod/websphere/bpc-common/
types/6.0

com.ibm.sca.bpe

For HTMWS.wsdl:

 Namespace Package

http://www.ibm.com/xmlns/prod/websphere/human-task/
types/6.0

com.ibm.sca.task

http://www.ibm.com/xmlns/prod/websphere/human-task/
services/6.0

com.ibm.sca.task

http://www.ibm.com/xmlns/prod/websphere/human-task/
services/6.0/Binding

com.ibm.sca.task

http://www.ibm.com/xmlns/prod/websphere/bpc-common/
types/6.0

com.ibm.sca.task

If asked to confirm overwriting, click YesToAll.
9. Click Finish.

Results

A proxy client, made up of a number of proxy, locator and helper Java classes, is

generated and added to your project. The deployment descriptor is also updated.

Using WSDL2Java to generate a proxy client:

WSDL2Java is a command-line tool that generates a proxy client. A proxy client

make it easier to program client applications.

 Before you begin

Before generating a proxy client, you must have previously exported the WSDL

files that describe the business process or human task Web services APIs from the

WebSphere environment (or the WebSphere Process Server client CD) and copied

them to your client programming environment.

About this task

Procedure

1. Use the WSDL2Java tool to generate a proxy client: Type:

wsdl2java options WSDLfilepath

Where:

v options include:

-noWrappedOperations (-w)

Disables the detection of wrapped operations. Java beans for request

and response messages are generated.

Note: This is not the default value.

-role (-r)

Specify the value client to generate files and binding files for

client-side development.

Chapter 2. Developing client applications for business processes and tasks 117

-container (-c)

The client-side container to use. Valid arguments include:

client A client container

ejb An Enterprise JavaBeans (EJB) container.

none No container

web A Web container

-output (-o)

The folder in which to store the generated files.
For a complete list of WSDL2Java parameters, use the -help command line

switch, or refer to the online help for the WSDL2Java tool in the WID/RAD.

v WSDLfilepath is the path and filename of the WSDL file that you exported

from WebSphere environment or copied from the client CD.

The following example generates a proxy client for the Human Task Activities

Web services API:

call wsdl2java.bat -r client -c client -noWrappedOperations

 -output c:\ws\proxyClient c:\ws\bin\HTMWS.wsdl

2. Include the generated class files in your project.

Creating helper classes for BPEL processes (Java Web services)

Business objects referenced in concrete API requests (for example, sendMessage, or

call) require client applications to use ″document/literal wrapped″ style elements.

Client applications require helper classes to help them generate the necessary

wrapper elements.

Before you begin

To create helper classes, you must have exported the WSDL file of the Web services

API from the WebSphere Process Server environment.

About this task

The call() and sendMessage() operations of the Web services APIs allow interaction

with BPEL processes on the WebSphere Process Server. The input message of the

call() operation expects the document/literal wrapper of the process input message

to be provided.

There are a number of possible techniques for generating helper classes for a BPEL

process or human task, including:

1. Use the SoapElement object.

In the Rational Application Developer environment available in WebSphere

Integration Developer, the Web service engine supports JAX-RPC 1.1. In

JAX-RPC 1.1, the SoapElement object extends a Document Object Model (DOM)

element, so it is possible to use the DOM API to create, read, load, and save

SOAP messages.

For example, assume the WSDL file contains the following input message for a

workflow process or human task:

<xsd:element name="operation1">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="input1" nillable="true" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

118 Developing and deploying

The WSDL file is created when you develop a process or human task module.

To create the corresponding SOAP message in your client application using the

DOM API:

SOAPFactory soapfactoryinstance = SOAPFactory.newInstance();

SOAPElement soapmessage = soapfactoryinstance.createElement

 ("operation1", namespaceprefix, interfaceURI);

SOAPElement inputelement = soapfactoryinstance.createElement("input1");

inputelement.addTextNode(message value);

soapmessage.addChildElement(outputelement);

The following example shows how to create input parameters for the

sendMessage operation in your client application:

SendMessage inWsend = new SendMessage();

inWsend.setProcessTemplateName(processtemplatename);

inWsend.setPortType(porttype);

inWsend.setOperation(operationname);

inWsend.set_any(soapmessage);

2. Use the WebSphere Custom Data Binding feature.

This technique is described in the following developerWorks articles:

v How to choose a custom mapping technology for Web services

v Developing Web Services with EMF SDOs for complex XML schema

Interoperability With Patterns and Strategies for Document-Based Web

Services

Web Services support for Schema/WSDL(s) containing optional JAX-RPC

1.0/1.1 XML Schema Types

Creating a client application (Java Web services)

A client application sends requests to and receives responses from the Web services

APIs. By using a proxy client to manage communications and helper classes to

format complex data types, a client application can invoke Web service methods as

if they were local functions.

Before you begin

Before starting to create a client application, generate the proxy client and any

necessary helper classes.

About this task

You can develop client applications using any Web services-compatible

development tool, for example IBM Rational Application Developer (RAD). You

can build any type of Web services application to call the Web services APIs.

Procedure

1. Create a new client application project.

2. Generate the proxy client and add the Java helper classes to your project.

3. Code your client application.

4. Build the project.

5. Run the client application.

The following example shows how to use the Business Flow Manager Web service

API.

Chapter 2. Developing client applications for business processes and tasks 119

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0601_gallardo/0601_gallardo.html?ca=dnw-704
http://www-128.ibm.com/developerworks/webservices/library/ws-emfsdo/
http://java.sun.com/developer/technicalArticles/xml/jaxrpcpatterns2/
http://java.sun.com/developer/technicalArticles/xml/jaxrpcpatterns2/
http://www-1.ibm.com/support/docview.wss?uid=swg21207642
http://www-1.ibm.com/support/docview.wss?uid=swg21207642

// create the proxy

 BFMIFProxy proxy = new BFMIFProxy();

 // prepare the input data for the operation

 GetProcessTemplate iW = new GetProcessTemplate();

 iW.setIdentifier(your_process_template_name);

 // invoke the operation

 GetProcessTemplateResponse oW = proxy.getProcessTemplate(iW);

 // process output of the operation

 ProcessTemplateType ptd = oW.getProcessTemplate();

 System.out.println("getName= " + ptd.getName());

 System.out.println("getPtid= " + ptd.getPtid());

 Related tasks

 “Generating a proxy client (Java Web services)” on page 115
Java Web service client applications use a proxy client to interact with the Web

services APIs.

 “Creating helper classes for BPEL processes (Java Web services)” on page 118
Business objects referenced in concrete API requests (for example, sendMessage,

or call) require client applications to use ″document/literal wrapped″ style

elements. Client applications require helper classes to help them generate the

necessary wrapper elements.

Adding security (Java Web services)

You must secure Web service communications by implementing security

mechanisms in your client application.

WebSphere Application Server currently supports the following security

mechanisms for the Web services APIs:

v The user name token

v Lightweight Third Party Authentication (LTPA)
 Related concepts

 Authorization roles for business processes
A role is a set of people who share the same level of authorization. Actions that

you can take on business processes depend on your authorization role. This

role can be a J2EE role or an instance-based role.
 Related information

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/
com.ibm.websphere.bpc.610.doc/doc/bpc/c6task_auth.html

Implementing the user name token:

The user name token security mechanism provides user name and password

credentials.

 About this task

With the user name token security mechanism, you can choose to implement

various callback handlers. Depending on your choice:

v You are prompted to supply a user name and password each time you run the

client application.

v The user name and password are written into the deployment descriptor.

120 Developing and deploying

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.bpc.610.doc/doc/bpc/c6task_auth.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.bpc.610.doc/doc/bpc/c6task_auth.html

In either case, the supplied user name and password must match those of an

authorized role in the corresponding business process container or human task

container.

The user name and password are encapsulated in the request message envelope,

and so appear ″in clear″ in the SOAP message header. It is therefore strongly

recommended that you configure the client application to use the HTTPS (HTTP

over SSL) communications protocol. All communications are then encrypted. You

can select the HTTPS communications protocol when you specify the Web service

API’s endpoint URL address.

To define a user name token:

Procedure

1. Create a security token:

a. Open the Deployment Editor of your module

b. Click the WS Extension tab.

c. Under Service References, the following Web Service References may be

listed:

v service/BFMWSService for business processes

v service/HTMWSService for human tasks

Which are listed depends on whether BFMWS.wsdl (for business process),

HTMWS.wsdl (for human tasks), or both, were added when generating the

proxy client.

d. For both service references:

1) Select one of the Service References.

2) Expand the Request Generator Configuration section.

3) Expand the Security Token subsection.

4) Click Add. The Security Token window opens.

5) In the Name field, type a name for the new security token:

UserNameTokenBFM or UserNameTokenHTM .

6) In the Token type drop-down list, select Username. (The Local name

field is automatically populated with a default value.)

7) Leave the URI field blank. No URI value is required for a user name

token.

8) Click OK.
2. Create a token generator:

a. Open the Deployment Editor of your module

b. Click on the WS Binding tab

c. Under Service References, the same Web Service References are listed as in

the previous step:

v service/BFMWSService for business processes

v service/HTMWSService for human tasks
d. For both service references:

 1) Select one of the Service References.

 2) Expand the Security Request Generator Binding Configuration

section.

 3) Expand the Token Generator subsection.

 4) Click Add. The Token Generator window opens.

Chapter 2. Developing client applications for business processes and tasks 121

5) In the Name field, type a name for the new token generator, such as

″UserNameTokenGeneratorBFM″ or ″UserNameTokenGeneratorHTM″.

 6) In the Token generator class field, ensure that the following token

generator class is selected:

com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator.

 7) In the Security token drop-down list, select the appropriate security

token that you created earlier.

 8) Select the Use value type check box.

 9) In the Value type field, select Username Token. (The Local name field

is automatically populated to reflect your choice of Username Token.)

10) In the Call back handler field, type either

″com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler″

(which prompts for the user name and password when you run the

client application) or

″com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler″.

11) If you choose NonPromptCallbackHandler, you must specify a valid

user name and password in the corresponding field of the deployment

descriptor.

12) Click OK.

 Related tasks

 “Specifying the Web service endpoint address” on page 107
The Web service endpoint address is the URL that a client application must

specify to access the Web services APIs. The endpoint address is written into

the WSDL file that you export to generate a proxy client for your client

application.
 Related information

IBM WebSphere Developer Technical Journal: Web services security with

WebSphere Application Server V6

Implementing the LTPA security mechanism:

The Lightweight Third Party Authentication (LTPA) security mechanism can be

used when the client application is running within a previously established

security context.

 About this task

The LTPA security mechanism is only available if your client application is running

in a secure environment in which a security context has already been established.

For example, if your client application is running in an Enterprise JavaBeans (EJB)

container, then the EJB client must log in before being able to invoke the client

application. A security context is then established. If the EJB client application then

invokes a Web service, the LTPA callback handler retrieves the LTPA token from

the security context and adds it to the SOAP request message. On the server side,

the LTPA token is handled by the LTPA mechanism.

To implement the LTPA security mechanism:

Procedure

1. In the Rational Application Developer environment available in WebSphere

Integration Developer, choose WS Binding → Security Request Generator

Binding Configuration → Token Generator.

122 Developing and deploying

http://www-128.ibm.com/developerworks/websphere/techjournal/0604_singh/0604_singh.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0604_singh/0604_singh.html

2. Create a security token:

a. Open the Deployment Editor of your module

b. Click the WS Extension tab.

c. Under Service References, the following Web Service References may be

listed:

v service/BFMWSService for business processes

v service/HTMWSService for human tasks

Which are listed depends on whether BFMWS.wsdl (for business process),

HTMWS.wsdl (for human tasks), or both, were added when generating the

proxy client.

d. For both service references:

1) Select one of the Service References.

2) Expand the Request Generator Configuration section.

3) Expand the Security Token subsection.

4) Click Add. The Security Token window opens.

5) In the Name field, type a name for the new security token:

LTPATokenBFM or LTPATokenHTM .

6) In the Token type drop-down list, select LTPAToken. (The URI and

Local name fields are automatically populated with default values.)

7) Click OK.
3. Create a token generator:

a. Open the Deployment Editor of your module

b. Click on the WS Binding tab

c. Under Service References, the same Web Service References are listed as in

the previous step:

v service/BFMWSService for business processes

v service/HTMWSService for human tasks
d. For both service references:

 1) Select one of the Service References.

 2) Expand the Security Request Generator Binding Configuration

section.

 3) Expand the Token Generator subsection.

 4) Click Add. The Token Generator window opens.

 5) In the Name field, type a name for the new token generator, such as

″LTPATokenGeneratorBFM″ or ″LTPATokenGeneratorHTM″.

 6) In the Token generator class field, ensure that the following token

generator class is selected:

com.ibm.wsspi.wssecurity.token.LTPATokenGenerator.

 7) In the Security token drop-down list, select the appropriate security

token that you created earlier.

 8) Select the Use value type check box.

 9) In the Value type field, select LTPAToken. (The URI and Local name

fields are automatically populated to reflect your choice of LTPA

Token.)

10) In the Call back handler field, type either

″com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler″.

11) Click OK.

Chapter 2. Developing client applications for business processes and tasks 123

Results

At runtime, the LTPATokenCallbackHandler retrieves the LTPA token from the

existing security context and adds it to the SOAP request message.

Adding transaction support (Java Web services)

Java Web service client applications can be configured to allow server-side request

processing to participate in the client’s transaction, by passing a client application

context as part of the service request. This atomic transaction support is defined in

the Web Services-Atomic Transaction (WS-AT) specification.

About this task

WebSphere Application Server runs each Web services API request as a separate

atomic transaction. Client applications can be configured to use transaction support

in one of the following ways:

v Participate in the transaction. Server-side request processing is performed within

the client application transaction context. Then, if the server encounters a

problem while the Web services API request is running and rolls back, the client

application’s request is also rolled back.

v Not use transaction support. WebSphere Application Server still creates a new

transaction in which to run the request, but server-side request processing is not

performed with the client application transaction context.

Developing client applications in the .NET environment

Microsoft .NET offers a powerful development environment in which to connect

applications through Web services.

Generating a proxy client (.NET)

.NET client applications use a proxy client to interact with the Web service APIs. A

proxy client shields client applications from the complexity of the Web service

messaging protocol.

Before you begin

To create a proxy client, you must first export a number of WSDL files from the

WebSphere environment and copy them to your client programming environment.

Note: If you have the WebSphere Process Server client CD, you can copy the files

from there instead.

About this task

A proxy client comprises a set of C# bean classes. Each class contains all the

methods and objects exposed by a single Web service. The service methods handle

the assembly of parameters into complete SOAP messages, send SOAP messages to

the Web service over HTTP, receives responses from the Web service, and handle

any returned data.

Note: You only need to generate a proxy client once. All client applications

accessing the Web services APIs can then use the same proxy client.

Procedure

1. Use the WSDL command to generate a proxy client: Type:

wsdl options WSDLfilepath

124 Developing and deploying

Where:

v options include:

/language

Allows you to specify the language used to create the proxy class.

The default is C#. You can also specify VB (Visual Basic), JS (JScript),

or VJS (Visual J#) as the language argument.

/output

The name of the output file, with the appropriate suffix. For

example, proxy.cs

/protocol

The protocol implemented in the proxy class. SOAP is the default

setting.
For a complete list of WSDL.exe parameters , use the /? command line

switch, or refer to the online help for the WSDL tool in Visual Studio.

v WSDLfilepath is the path and filename of the WSDL file that you exported

from the WebSphere environment or copied from the client CD.

The following example generates a proxy client for the Human Task Manager

Web services API:

 wsdl /language:cs /output:proxyclient.cs c:\ws\bin\HTMWS.wsdl

2. Compile the proxy client as a Dynamic Link Library (DLL) file.

Creating helper classes for BPEL processes (.NET)

Certain Web services API operations require client applications to use

″document/literal″ style wrapped elements. Client applications require helper

classes to help them generate the necessary wrapper elements.

Before you begin

To create helper classes, you must have exported the WSDL file of the Web services

API from the WebSphere Process Server environment.

About this task

The call() and sendMessage() operations of the Web services APIs cause BPEL

processes to be launched within WebSphere Process Server. The input message of

the call() operation expects the document/literal wrapper of the BPEL process

input message to be provided. To generate the necessary beans and classes for the

BPEL process, copy the <wsdl:types> element into a new XSD file, then use the

xsd.exe tool to generate helper classes.

Procedure

1. If you have not already done so, export the WSDL file of the BPEL process

interface from WebSphere Integration Developer.

2. Open the WSDL file in a text editor or XML editor.

3. Copy the contents of all child elements of the <wsdl:types> element and paste

it into a new, skeleton, XSD file.

4. Run the xsd.exe tool on the XSD file:

call xsd.exe file.xsd /classes /o

Where:

file.xsd

The XML Schema Definition file to convert.

Chapter 2. Developing client applications for business processes and tasks 125

/classes (/c)

Generate helper classes that correspond to the contents of the specified

XSD file or files.

/output (/o)

Specify the output directory for generated files. If this directory is

omitted, the default is the current directory.
For example:

call xsd.exe ProcessCustomer.xsd /classes /output:c:\temp

5. Add the class file that is generated to your client application. If you are using

Visual Studio, for example, you can do this using the Project → Add Existing

Item menu option.

If the ProcessCustomer.wsdl file contains the following:

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:bons1="http://com/ibm/bpe/unittest/sca"

 xmlns:tns="http://ProcessTypes/bpel/ProcessCustomer"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 name="ProcessCustomer"

 targetNamespace="http://ProcessTypes/bpel/ProcessCustomer">

 <wsdl:types>

 <xsd:schema targetNamespace="http://ProcessTypes/bpel/ProcessCustomer"

 xmlns:bons1="http://com/ibm/bpe/unittest/sca"

 xmlns:tns="http://ProcessTypes/bpel/ProcessCustomer"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace="http://com/ibm/bpe/unittest/sca"

 schemaLocation="xsd-includes/http.com.ibm.bpe.unittest.sca.xsd"/>

 <xsd:element name="doit">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="input1" nillable="true" type="bons1:Customer"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="doitResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="output1" nillable="true" type="bons1:Customer"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

 </wsdl:types>

 <wsdl:message name="doitRequestMsg">

 <wsdl:part element="tns:doit" name="doitParameters"/>

 </wsdl:message>

 <wsdl:message name="doitResponseMsg">

 <wsdl:part element="tns:doitResponse" name="doitResult"/>

 </wsdl:message>

 <wsdl:portType name="ProcessCustomer">

 <wsdl:operation name="doit">

 <wsdl:input message="tns:doitRequestMsg" name="doitRequest"/>

 <wsdl:output message="tns:doitResponseMsg" name="doitResponse"/>

 </wsdl:operation>

 </wsdl:portType>

</wsdl:definitions>

The resulting XSD file contains:

<xsd:schema xmlns:bons1="http://com/ibm/bpe/unittest/sca"

 xmlns:tns="http://ProcessTypes/bpel/ProcessCustomer"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://ProcessTypes/bpel/ProcessCustomer">

126 Developing and deploying

<xsd:import namespace="http://com/ibm/bpe/unittest/sca"

 schemaLocation="Customer.xsd"/>

 <xsd:element name="doit">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="input1" type="bons1:Customer" nillable="true"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="doitResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="output1" type="bons1:Customer" nillable="true"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

 Related information

Microsoft documentation for the XML Schema Definition Tool (XSD.EXE)

Creating a client application (.NET)

A client application sends requests to and receives responses from the Web services

APIs. By using a proxy client to manage communications and helper classes to

format complex data types, a client application can invoke Web service methods as

if they were local functions.

Before you begin

Before starting to create a client application, generate the proxy client and any

necessary helper classes.

About this task

You can develop .NET client applications using any .NET-compatible development

tool, for example, Visual Studio .NET. You can build any type of .NET application

to call the generic Web service APIs.

Procedure

1. Create a new client application project. For example, create a WinFX Windows®

Application in Visual Studio.

2. In the project options, add a reference to the Dynamic Link Library (DLL) file

of the proxy client. Add all of the helper classes that contain business object

definitions to your project. In Visual Studio, for example, you can do this using

the Project → Add existing item option.

3. Create a proxy client object. For example:

HTMClient.HTMReference.HumanTaskManagerComponent1Export_HumanTaskManagerHttpService service =

 new HTMClient.HTMReference.HumanTaskManagerComponent1Export_HumanTaskManagerHttpService();

4. Declare any business object data types used in messages to be sent to or

received from the Web service. For example:

HTMClient.HTMReference.TKIID id = new HTMClient.HTMReference.TKIID();

ClipBG bg = new ClipBG();

Clip clip = new Clip();

5. Call specific Web service functions and specify any required parameters. For

example, to create and start a human task:

Chapter 2. Developing client applications for business processes and tasks 127

http://msdn2.microsoft.com/en-us/library/x6c1kb0s(vs.71).aspx

HTMClient.HTMReference.createAndStartTask task =

 new HTMClient.HTMReference.createAndStartTask();

HTMClient.HTMReference.StartTask sTask = new HTMClient.HTMReference.StartTask();

sTask.taskName = "SimpleTask";

sTask.taskNamespace = "http://myProcess/com/acme/task";

sTask.inputMessage = bg;

task.inputTask = sTask;

id = service.createAndStartTask(task).outputTask;

6. Remote processes and tasks are identified with persistent IDs (id in the

example in the previous step). For example, to claim a previously created

human task:

HTMClient.HTMReference.claimTask claim = new HTMClient.HTMReference.claimTask();

claim.inputTask = id;

 Related tasks

 “Generating a proxy client (.NET)” on page 124
.NET client applications use a proxy client to interact with the Web service APIs.

A proxy client shields client applications from the complexity of the Web

service messaging protocol.

 “Creating helper classes for BPEL processes (.NET)” on page 125
Certain Web services API operations require client applications to use

″document/literal″ style wrapped elements. Client applications require helper

classes to help them generate the necessary wrapper elements.

Adding security (.NET)

You can secure Web service communications by integrating security mechanisms

into your client application.

About this task

These security mechanisms can include user name token (user name and

password), or custom binary and XML-based security tokens.

Procedure

1. Download and install the Web Services Enhancements (WSE) 2.0 SP3 for

Microsoft .NET. This is available from:

http://www.microsoft.com/downloads/details.aspx?familyid=1ba1f631-c3e7-
420a-bc1e-ef18bab66122&displaylang=en

2. Modify the generated proxy client code as follows.

Change:

public class Export1_MyMicroflowHttpService : System.Web.Services.Protocols.SoapHttpClientProtocol {

To:

public class Export1_MyMicroflowHttpService : Microsoft.Web.Services2.WebServicesClientProtocol {

Note: These modifications are lost if you regenerate the proxy client by

running the WSDL.exe tool.

3. Modify the client application code by adding the following lines at the top of

the file:

 using System.Web.Services.Protocols;

 using Microsoft.Web.Services2;

 using Microsoft.Web.Services2.Security.Tokens;

 ...

4. Add code to implement the desired security mechanism. For example, the

following code adds user name and password protection:

128 Developing and deploying

http://www.microsoft.com/downloads/details.aspx?familyid=1ba1f631-c3e7-420a-bc1e-ef18bab66122&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=1ba1f631-c3e7-420a-bc1e-ef18bab66122&displaylang=en

string user = "U1";

 string pwd = "password";

 UsernameToken token =

 new UsernameToken(user, pwd, PasswordOption.SendPlainText);

 me._proxy.RequestSoapContext.Security.Tokens.Clear();

 me._proxy.RequestSoapContext.Security.Tokens.Add(token);

Querying business-process and task-related objects

You can use the Web services APIs to query business-process and task-related

objects in the Business Process Choreographer database to retrieve specific

properties of these objects.

About this task

The Business Process Choreographer database stores template (model) and instance

(runtime) data for managing business processes and tasks.

Through the Web services APIs, client applications can issue queries to retrieve

information from the database about business processes and tasks.

Client applications can issue a one-off query to retrieve a specific property of an

object. Queries that you use often can be saved. These stored queries can then be

retrieved and used by your client application.

Queries on business-process and task-related objects

Use the query interface of the Web services APIs to obtain information about

business processes and tasks.

Client applications use an SQL-like syntax to query the database.

Example for Java Web services

string processTemplateName = "ProcessCustomerLR";

query query1 = new query();

query1.selectClause = "DISTINCT PROCESS_INSTANCE.STARTED, PROCESS_INSTANCE.PIID";

query1.whereClause =

 "PROCESS_INSTANCE.TEMPLATE_NAME = ’" + processTemplateName + "’";

query1.orderByClause = "PROCESS_INSTANCE.STARTED";

query1.threshold = null;

query1.timeZone = "UTC"; query1.skipTuples = null;

queryResponse queryResponse1 = proxy.query(query1);

Information retrieved from the database is returned through the Web services APIs

as a query result set.

For example:

QueryResultSetType queryResultSet = queryResponse1.queryResultSet;

if (queryResultSet != null) {

 Console.WriteLine("--> QueryResultSetType");

 Console.WriteLine(" . size= " + queryResultSet.size);

 Console.WriteLine(" . numberColumns= " + queryResultSet.numberColumns);

 string indent = " . ";

 // -- the query column info

 QueryColumnInfoType[] queryColumnInfo = queryResultSet.QueryColumnInfo;

 if (queryColumnInfo.Length > 0) {

 Console.WriteLine();

 Console.WriteLine("= . QueryColumnInfoType size= " + queryColumnInfo.Length);

 Console.Write(" | tableName ");

 for (int i = 0; i < queryColumnInfo.Length ; i++) {

Chapter 2. Developing client applications for business processes and tasks 129

Console.Write(" | " + queryColumnInfo[i].tableName.PadLeft(20));

 }

 Console.WriteLine();

 Console.Write(" | columnName ");

 for (int i = 0; i < queryColumnInfo.Length ; i++) {

 Console.Write(" | " + queryColumnInfo[i].columnName.PadLeft(20));

 }

 Console.WriteLine();

 Console.Write(" | data type ");

 for (int i = 0; i < queryColumnInfo.Length ; i++) {

 QueryColumnInfoTypeType tt = queryColumnInfo[i].type;

 Console.WriteLine(" | " + tt.ToString());

 }

 Console.WriteLine();

 }

 else {

 Console.WriteLine("--> queryColumnInfo= <null>");

 }

 // - the query result values

 string[][] result = queryResultSet.result;

 if (result !=null) {

 Console.WriteLine();

 Console.WriteLine("= . result size= " + result.Length);

 for (int i = 0; i < result.Length; i++) {

 Console.Write(indent +i);

 string[] row = result[i];

 for (int j = 0; j < row.Length; j++) {

 Console.Write(" | " + row[j]);

 }

 Console.WriteLine();

 }

 }

 else {

 Console.WriteLine("--> result= <null>");

 }

}

else {

 Console.WriteLine("--> QueryResultSetType= <null>");

}

The query function returns objects according to the caller’s authorization. The

query result set only contains the properties of those objects that the caller is

authorized to see.

Predefined database views are provided for you to query the object properties. For

process templates, the query function has the following syntax:

ProcessTemplateData[] queryProcessTemplates

 (java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

For task templates, the query function has the following syntax:

TaskTemplate[] queryTaskTemplates

 (java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

For the other business-process and task-related objects, the query function has the

following syntax:

130 Developing and deploying

QueryResultSet query (java.lang.String selectClause,

 java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer skipTuples

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

The query interface also contains a queryAll method. You can use this method to

retrieve all of the relevant data about an object, for example, for monitoring

purposes. The caller of the queryAll method must have one of the following Java 2

Platform, Enterprise Edition (J2EE) roles: BPESystemAdministrator,

BPESystemMonitor, TaskSystemAdministrator, or TaskSystemMonitor.

Authorization checking using the corresponding work item of the object is not

applied.

Example for .NET

ProcessTemplateType[] templates = null;

 try {

 queryProcessTemplates iW = new queryProcessTemplates();

 iW.whereClause = "PROCESS_TEMPLATE.STATE=PROCESS_TEMPLATE.STATE.STATE_STARTED";

 iW.orderByClause = null;

 iW.threshold = null;

 iW.timeZone = null;

 Console.WriteLine("--> queryProcessTemplates ... ");

 Console.WriteLine("--> query: WHERE " + iW.whereClause + " ORDER BY " +

 iW.orderByClause + " THRESHOLD " + iW.threshold + " TIMEZONE" + iW.timeZone);

 templates = proxy.queryProcessTemplates(iW);

 if (templates.Length < 1) {

 Console.WriteLine("--> No templates found :-(");

 }

 else {

 for (int i = 0; i < templates.Length ; i++) {

 Console.Write("--> found template with ptid: " + templates[i].ptid);

 Console.WriteLine(" and name: " + templates[i].name);

 /* ... other properties of ProcessTemplateType ... */

 }

 }

 }

 catch (Exception e) {

 Console.WriteLine("exception= " + e);

 }

Query parameters:

Each query must specify a number of SQL-like clauses and parameters.

 A query is made up of:

v Select clause

v Where clause

v Order-by clause

v Skip-tuples parameter

v Threshold parameter

v Time-zone parameter

Chapter 2. Developing client applications for business processes and tasks 131

Predefined views for queries on business-process and

human-task objects

Predefined database views are provided for business-process and human-task

objects.

Use these views when you query reference data for these objects. When you use

these views, you do not need to explicitly add join predicates for view columns,

these constructs are added automatically for you. You can use the query function

of the Web services APIs to query this data.

Managing stored queries

Stored queries provide a way to save queries that are run often. The stored query

can be either a query that is available to all users (public query), or a query that

belongs to a specific user (private query).

About this task

A stored query is a query that is stored in the database and identified by a name.

A private and a public stored query can have the same name; private stored

queries from different owners can also have the same name.

You can have stored queries for business process objects, task objects, or a

combination of these two object types.

 Managing public stored queries
Public stored queries are created by the system administrator. These queries are

available to all users.

 Managing private stored queries for other users
Private queries can be created by any user. These queries are available only to

the owner of the query and the system administrator.

 Working with your private stored queries
If you are not a system administrator, you can create, run, and delete your own

private stored queries. You can also use the public stored queries that the

system administrator created.

Developing JMS client applications

You can develop client applications that access business process applications

through the Java Messaging Service (JMS) API.

About this task

Introduction to JMS

WebSphere Process Server Version 6.1 supports asynchronous messaging, based on

the Java Messaging Service (JMS) programming interface, as a method of

communication.

JMS provides a common way for Java clients (client applications or J2EE

applications) to create, send, receive, and read requests as JMS messages.

JMS is an asynchronous message-based interface that:

v Uses either point-to-point or publish/subscribe messaging. Message-based

frameworks can push information to other applications without their requesting

132 Developing and deploying

it explicitly. The same information can be delivered to many subscribers in

parallel. The Business Process Choreographer’s JMS interface supports

point-to-point messaging only.

v Offers rhythm independence. JMS frameworks function asynchronously, but are

also able to simulate a synchronous request/response mode. This allows source

and target systems to work simultaneously without having to wait for each

other. This ability is extremely useful for the Business Process Choreographer, as

it provides the ability to interact asynchronously with long-running business

processes.

v Supports transactions. Transactions enable client applications to handle groups

of messages sent or received as a single atomic unit. JMS transactions run within

the server’s transaction. For the Business Process Choreographer’s JMS interface,

you typically send and receive a single message for each transaction.

v Guarantees information delivery. JMS frameworks can manage messages in

transactional mode and ensure message delivery (though without any guarantee

of timeliness of delivery). For the Business Process Choreographer, this reliable

message delivery capability is particularly important because it is dealing with

business processes.

v Ensures interoperability between heterogeneous frameworks. The source and

target applications can operate in heterogeneous environments without having to

handle problems of communication and execution related to their respective

frameworks.

v Makes exchanges more fluid. Switching to message mode allows finer-grained

information to be exchanged.

Requirements for business processes

Business processes developed with the WebSphere Integration Developer to run on

the Business Process Choreographer must conform to specific rules to be accessible

through the JMS API.

The requirements are:

1. The interfaces of business processes must be defined using the

″document/literal wrapped″ style defined in the Java API for XML-based RPC

(JAX-RPC 1.1) specification. This is the default style for all business processes

and human tasks developed with the WebSphere Integration Developer.

2. Fault messages exposed by business processes and human tasks for Web service

operations must comprise a single WSDL message part defined with an XML

Schema element. For example:

<wsdl:part name="myFault" element="myNamespace:myFaultElement"/>

 Related information

Java API for XML based RPC (JAX-RPC) downloads page

Which style of WSDL should I use?

Accessing the JMS interface

To send and receive messages through the JMS interface, an application must first

create a connection to the BPC.cellname.Bus, create a session, then generate

message producers and consumers.

About this task

Chapter 2. Developing client applications for business processes and tasks 133

http://java.sun.com/xml/downloads/jaxrpc.html
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

The process server accepts Java Message Service (JMS) messages that follow the

point-to-point paradigm. An application that sends or receives JMS messages must

perform the following actions.

The following example assumes that the JMS client is executed in a managed

environment (EJB, application client, or Web client container). If you want to

execute the JMS client in a J2SE environment, refer to ″IBM Client for JMS on J2SE

with IBM WebSphere Application Server″ at http://www-1.ibm.com/support/
docview.wss?uid=swg24012804.

Procedure

1. Create a connection to the BPC.cellname.Bus. No preconfigured connection

factory exists for a client application’s requests: a client application can either

use the JMS API’s ReplyConnectionFactory or create its own connection factory,

in which case it can use Java Naming and Directory Interface (JNDI) lookup to

retrieve the connection factory. The JNDI-lookup name must be the same as the

name specified when configuring the Business Process Choreographer’s

external request queue. The following example assumes the client application

creates its own connection factory named ″jms/clientCF″.

//Obtain the default initial JNDI context.

Context initialContext = new InitialContext();

// Look up the connection factory.

// Create a connection factory that connects to the BPC bus.

// Call it, for example, "jms/clientCF".

// Also configure an appropriate authentication alias.

ConnectionFactory connectionFactory =

 (ConnectionFactory)initialcontext.lookup("jms/clientCF");

// Create the connection.

Connection connection = connectionFactory.createConnection();

2. Create a session so that message producers and consumers can be created.

// Create a transaction session using auto-acknowledgement.

Session session = connection.createSession(true, Session.AUTO_ACKNOWLEDGE);

3. Create a message producer to send messages. The JNDI-lookup name must be

the same as the name specified when configuring the Business Process

Choreographer’s external request queue.

// Look up the destination of the Business Process Choreographer input queue to

// send messages to.

Queue sendQueue = (Queue) initialcontext.lookup("jms/BFMJMSAPIQueue");

// Create a message producer.

MessageProducer producer = session.createProducer(sendQueue);

4. Create a message consumer to receive replies. The JNDI-lookup name of the

reply destination can specify a user-defined destination, but it can also specify

the default (Business Process Choreographer-defined) reply destination

jms/BFMJMSReplyQueue. In both cases, the reply destination must lie on the

BPC.<cellname>.Bus.

// Look up the destination of the reply queue.

Queue replyQueue = (Queue) initialcontext.lookup("jms/BFMJMSReplyQueue");

// Create a message consumer.

MessageConsumer consumer = session.createConsumer(replyQueue);

5. Send a message.

// Start the connection.

connection.start();

// Create a message - see the task descriptions for examples - and send it.

134 Developing and deploying

http://www-1.ibm.com/support/docview.wss?uid=swg24012804
http://www-1.ibm.com/support/docview.wss?uid=swg24012804

// This method is defined elsewhere ...

String payload = createXMLDocumentForRequest();

TextMessage requestMessage = session.createTextMessage(payload);

// Set mandatory JMS header.

// targetFunctionName is the operation name of JMS API

// (for example, getProcessTemplate, sendMessage)

requestMessage.setStringProperty("TargetFunctionName", targetFunctionName);

// Set the reply queue; this is mandatory if the replyQueue

// is not the default queue (as it is in this example).

requestMessage.setJMSReplyTo(replyQueue);

// Send the message.

producer.send(requestMessage);

// Get the message ID.

String jmsMessageID = requestMessage.getJMSMessageID();

session.commit();

6. Receive the reply.

// Receive the reply message and analyse the reply.

TextMessage replyMessage = (TextMessage) consumer.receive();

// Get the payload.

String payload = replyMessage.getText();

session.commit();

7. Close the connection and free the resources.

 // Final housekeeping; free the resources.

session.close();

connection.close();

Note: It is not necessary to close the connection after each transaction. Once a

connection has been started, any number of request and response messages can

be exchanged before the connection is closed. The example shows a simple case

with a single call within a single business method.

Structure of a Business Process Choreographer JMS message

The header and body of each JMS message must have a predefined structure.

A Java Message Service (JMS) message consists of:

v A message header for message identification and routing information.

v The body (payload) of the message that holds the content.

The Business Process Choreographer supports text message formats only.

Message header

JMS allows clients to access a number of message header fields.

The following header fields can be set by a Business Process Choreographer JMS

client:

v JMSReplyTo

The destination to send a reply to the request. If this field is not specified in the

request message, the reply is sent to the Export interface’s default reply

destination (an Export is a client interface rendering of a business process

Chapter 2. Developing client applications for business processes and tasks 135

component). This destination can be obtained using

initialContext.lookup(″jms/BFMJMSReplyQueue″);

v TargetFunctionName

The name of the WSDL operation, for example, ″queryProcessTemplates″. This

field must always be set. Note that the TargetFunctionName specifies the

operation of the generic JMS message interface described here. This should not

be confused with operations provided by concrete processes or tasks that can be

invoked indirectly, for example, using the call or sendMessage operations.

A Business Process Choreographer client can also access the following header

fields:

v JMSMessageID

Uniquely identifies a message. Set by the JMS provider when the message is

sent. If the client sets the JMSMessageID before sending the message, it is

overwritten by the JMS provider. If the ID of the message is required for

authentication purposes, the client can retrieve the JMSMessageID after sending

the message.

v JMSCorrelationID

Links messages. Do not set this field. A Business Process Choreographer reply

message contains the JMSMessageID of the request message.

Each response message contains the following JMS header fields:

v IsBusinessException

″False″ for WSDL output messages, or ″true″ for WSDL fault messages.

ServiceRuntimeExceptions are not returned to asynchronous client applications.

When a severe exception occurs during the processing of a JMS request message, it

results in a runtime failure, causing the transaction that is processing this request

message to roll back. The JMS request message is then delivered again. If the

failure occurs early, during processing of the message as part of the SCA Export

(for example, while deserializing the message), retries are attempted up to the

maximum number of failed deliveries specified by the SCA Export’s receive

destination. After the maximum number of failed deliveries is reached, the request

message is added to the system exception destination of the Business Process

Choreographer bus. If, however, the failure occurs during actual processing of the

request by the Business Flow Manager’s SCA component, the failed request

message is handled by the WebSphere Process Server’s failed event management

infrastructure, that is, it may end up in the failed event management database if

retries do not resolve the exceptional situation.

Message body

The JMS message body is a String containing an XML document representing the

document/literal wrapper element of the operation.

A simple example of a valid request message body is:

<?xml version="1.0" encoding="UTF-8"?>

<_6:queryProcessTemplates xmlns:_6="http://www.ibm.com/xmlns/prod/

 websphere/business-process/services/6.0">

<whereClause>PROCESS_TEMPLATE.STATE IN (1)</whereClause>

</_6:queryProcessTemplates>

Authorization for JMS renderings

To authorize use of the JMS interface, security settings must be enabled in

WebSphere Application Server.

136 Developing and deploying

When the business process container is installed, the role JMSAPIUser must be

mapped to a user ID. This user ID is used to issue all JMS API requests. For

example, if JMSAPIUser is mapped to ″User A″, all JMS API requests appear to

the process engine to originate from ″User A″.

The JMSAPIUser role must be assigned the following authorities:

 Request Required authorization

forceTerminate Process administrator

sendEvent Potential activity owner or process

administrator

Note: For all other requests, no special authorizations are required.

Special authority is granted to a person with the role of business process

administrator. A business process administrator is a special role; it is different from

the process administrator of a process instance. A business process administrator

has all privileges.

You cannot delete the user ID of the process starter from your user registry while

the process instance exists. If you delete this user ID, the navigation of this process

cannot continue. You receive the following exception in the system log file:

no unique ID for: <user ID>

Overview of the JMS API

The JMS message interface (hereafter referred to as the ″JMS API″) allows you to

develop client applications that asynchronously access business processes running

in the Business Process Choreographer environment.

The JMS API allows client applications to asynchronously interact with microflows

and long-running processes.

The JMS API exposes the same interface as the Web services API, with the

following exceptions:

v With the Web services API, the call operation can only be used to invoke

microflows. Using the JMS API, however, the call operation can be used to

invoke both microflows and long-running processes.

v The following operations are not exposed through the JMS API:

– The callAsync operation (together with its associated callback operations).

– The completeAndClaimSuccessor and getParticipatingTask operations

Example - executing a long-running process

For a generic client application to work with long-running processes, the sequence

of steps is:

1. Set up the JMS environment, as described in “Accessing the JMS interface” on

page 133.

2. Obtain a list of installed process definitions:

v Send queryProcessTemplates

v This returns a list of ProcessTemplate objects.
3. Obtain a list of start activities (receive or pick with createInstance="yes"):

v Send getStartActivities.

Chapter 2. Developing client applications for business processes and tasks 137

v This returns a list of InboundOperationTemplate objects.
4. Create an input message. This is environment-specific, and may require the use

of predeployed, process-specific artifacts.

5. Create a process instance:

v Issue a sendMessage.

With the JMS API, you may also use the call operation for interacting with

long-running request-response operations provided by a business process. This

operation returns the operation result or fault to the specified reply-to

destination, even after a long period of time. Therefore, if you use the call

operation, you do not need to use the query and getOutputMessage operations

to obtain the process’ output or fault message.

6. Optionally, obtain output messages from the process instances by repeating the

following steps:

v Issue query to obtain the finished state of the process instance.

v Issue getOutputMessage .
7. Optionally, work with additional operations exposed by the process:

v getWaitingActivities or getActiveEventHandlers to obtain a list of

InboundOperationTemplate objects.

v Create input messages

v Send messages with sendMessage

8. Optionally, get and set custom properties defined on the process or contained

activities with getCustomProperties and setCustomProperties.

9. Optionally, finish working with a process instance:

v Send delete and terminate to finish working with the long-running process.

Developing JMS applications

JMS client applications must be developed in Java using the Java 2 Enterprise

Edition (J2EE) environment.

About this task

JMS client applications exchange request and response messages with the JMS API.

To create a request message, the client application fills a JMS TextMessage message

body with an XML element representing the document/literal wrapper of the

corresponding operation.

Copying artifacts

A number of artifacts can be copied from the WebSphere environment to help in

the creation of JMS client applications.

Use of these artifacts is only mandatory if the BOXMLSerializer is used to create

the JMS message body.

There are two ways to obtain these artifacts:

v Publish and export them from the WebSphere Process Server environment.

For WebSphere Process Server 6.1, all client artifacts are to be found in the

install_root\ProcessChoreographer\client directory. For the JMS API, these

artifacts are:

 BFMIF.wsdl

 BFMIF.xsd

 BPCGen.xsd

138 Developing and deploying

v Copy files from the WebSphere Process Server client CD.

Publishing artifacts from the server environment:

To help develop client applications that access the JMS API, you can publish a

number of artifacts from the WebSphere server environment.

 About this task

For WebSphere Process Server 6.1, all client artifacts are to be found in the

was_home\ProcessChoreographer\client directory. For the JMS API, these artifacts

are:

 BFMIF.wsdl

 BFMIF.xsd

 BPCGen.xsd

After these artifacts are published, copy them to your client programming

environment.

Copying files from the client CD:

The files necessary to access the JMS API are available on the WebSphere Process

Server client CD.

 Procedure

1. Access the client CD and browse to the ProcessChoreographer\client directory.

2. Copy the necessary files to your client application development environment

For WebSphere Process Server 6.1, all client artifacts are to be found in the

\ProcessChoreographer\client directory. For the JMS API, these artifacts are:

 BFMIF.wsdl

 BFMIF.xsd

 BPCGen.xsd

Checking the response message for business exceptions

JMS client applications must check the message header of all response messages

for business exceptions.

About this task

A JMS client application must first check the IsBusinessException property in the

response message’s header.

For example:

// receive response message

Message receivedMessage = ((JmsProxy) getToBeInvokedUponObject().receiveMessage();

String strResponse = ((TextMessage) receivedMessage).getText();

if (receivedMessage.getStringProperty("IsBusinessException") {

 // strResponse is a bussiness fault

 // any api can end w/a processFaultMsg

 // the call api also w/a businessFaultMsg

 }

else {

 // strResponse is the output message

}

Chapter 2. Developing client applications for business processes and tasks 139

Developing Web applications for business processes and human

tasks, using JSF components

Business Process Choreographer provides several JavaServer Faces (JSF)

components. You can extend and integrate these components to add

business-process and human-task functionality to Web applications.

About this task

You can use WebSphere Integration Developer to build your Web application.

Procedure

1. Create a dynamic project and change the Web Project Features properties to

include the JSF base components.

For more information on creating a Web project, go to the information center

for WebSphere Integration Developer.

2. Add the prerequisite Business Process Choreographer Explorer Java archive

(JAR files).

Add the following files to the WEB-INF/lib directory of your project:

v bpcclientcore.jar

v bfmclientmodel.jar

v htmclientmodel.jar

v bpcjsfcomponents.jar

If you are deploying your Web application on a remote server, also add the

following files. These files are needed for remotely accessing the Business

Process Choreographer APIs.

v bpe137650.jar

v task137650.jar

In WebSphere Process Server, all of these files are in the following directory:

v On Windows systems: install_root\ProcessChoreographer\client

v On UNIX®, Linux®, and i5/OS® systems: install_root/ProcessChoreographer/
client

3. Add the EJB references that you need to the Web application deployment

descriptor, web.xml file.

 <ejb-ref id="EjbRef_1">

 <ejb-ref-name>ejb/BusinessProcessHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.bpe.api.BusinessFlowManagerHome</home>

 <remote>com.ibm.bpe.api.BusinessFlowManager</remote>

 </ejb-ref>

 <ejb-ref id="EjbRef_2">

 <ejb-ref-name>ejb/HumanTaskManagerEJB</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.task.api.HumanTaskManagerHome</home>

 <remote>com.ibm.task.api.HumanTaskManager</remote>

 </ejb-ref>

 <ejb-local-ref id="EjbLocalRef_1">

 <ejb-ref-name>ejb/LocalBusinessProcessHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home>com.ibm.bpe.api.LocalBusinessFlowManagerHome</local-home>

 <local>com.ibm.bpe.api.LocalBusinessFlowManager</local>

 </ejb-local-ref>

 <ejb-local-ref id="EjbLocalRef_2">

 <ejb-ref-name>ejb/LocalHumanTaskManagerEJB</ejb-ref-name>

140 Developing and deploying

<ejb-ref-type>Session</ejb-ref-type>

 <local-home>com.ibm.task.api.LocalHumanTaskManagerHome</local-home>

 <local>com.ibm.task.api.LocalHumanTaskManager</local>

 </ejb-local-ref>

4. Add the Business Process Choreographer Explorer JSF components to the JSF

application.

a. Add the tag library references that you need for your applications to the

JavaServer Pages (JSP) files. Typically, you need the JSF and HTML tag

libraries, and the tag library required by the JSF components.

v <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

v <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

v <%@ taglib uri="http://com.ibm.bpe.jsf/taglib" prefix="bpe" %>

b. Add an <f:view> tag to the body of the JSP page, and an <h:form> tag to

the <f:view> tag.

c. Add the JSF components to the JSP files.

Depending on your application, add the List component, the Details

component, the CommandBar component, or the Message component to the

JSP files. You can add multiple instances of each component.

d. Configure the managed beans in the JSF configuration file.

By default, the configuration file is the faces-config.xml file. This file is in

the WEB-INF directory of the Web application.

Depending on the component that you add to your JSP file, you also need

to add the references to the query and other wrapper objects to the JSF

configuration file. To ensure correct error handling, you also need to define

both an error bean and a navigation target for the error page in the JSF

configuration file.

<faces-config>

...

<managed-bean>

 <managed-bean-name>BPCError</managed-bean-name>

 <managed-bean-class>com.ibm.bpc.clientcore.util.ErrorBeanImpl

 </managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

</managed-bean>

...

<navigation-rule>

...

<navigation-case>

<description>

The general error page.

</description>

<from-outcome>error</from-outcome>

<to-view-id>/Error.jsp</to-view-id>

</navigation-case>

...

</navigation-rule>

</faces-config>

In error situations that trigger the error page, the exception is set on the

error bean.

e. Implement the custom code that you need to support the JSF components.
5. Deploy the application.

Chapter 2. Developing client applications for business processes and tasks 141

If you are deploying the application in a network deployment environment,

change the target resource Java Naming and Directory Interface (JNDI) names

to values where the Business Flow Manager and Human Task Manager APIs

can be found in your cell.

v If your business process containers are configured on another server in the

same managed cell, the names have the following structure:

cell/nodes/nodename/servers/servername/com/ibm/bpe/api/BusinessManagerHome

cell/nodes/nodename/servers/servername/com/ibm/task/api/HumanTaskManagerHome

v If your business process containers are configured on a cluster in the same

cell, the names have the following structure:

cell/clusters/clustername/com/ibm/bpe/api/BusinessFlowManagerHome

cell/clusters/clustername/com/ibm/task/api/HumanTaskManagerHome

Map the EJB references to the JNDI names or manually add the references to

the ibm-web-bnd.xmi file.

The following table lists the reference bindings and their default mappings.

 Table 33. Mapping of the reference bindings to JNDI names

Reference binding JNDI name Comments

ejb/BusinessProcessHome com/ibm/bpe/api/BusinessFlowManagerHome Remote session bean

ejb/LocalBusinessProcessHome com/ibm/bpe/api/BusinessFlowManagerHome Local session bean

ejb/HumanTaskManagerEJB com/ibm/task/api/HumanTaskManagerHome Remote session bean

ejb/LocalHumanTaskManagerEJB com/ibm/task/api/HumanTaskManagerHome Local session bean

Results

Your deployed Web application contains the functionality provided by the Business

Process Choreographer Explorer components.

What to do next

If you are using custom JSPs for the process and task messages, you must map the

Web modules that are used to deploy the JSPs to the same servers that the custom

JSF client is mapped to.

 Related concepts

 “Error handling in JSF components” on page 144
The JavaServer Faces (JSF) components exploit a predefined managed bean,

BPCError, for error handling. In error situations that trigger the error page, the

exception is set on the error bean.
 Related tasks

 “Accessing the remote interface of the session bean” on page 22
An EJB client application accesses the remote interface of the session bean

through the remote home interface of the bean.

Business Process Choreographer Explorer components

The Business Process Choreographer Explorer components are a set of

configurable, reusable elements that are based on the JavaServer Faces (JSF)

technology. You can imbed these elements in Web applications. The Web

applications can then access installed business process and human task

applications.

142 Developing and deploying

The components consist of a set of JSF components and a set of client model

objects. The relationship of the components to Business Process Choreographer,

Business Process Choreographer Explorer, and other custom clients is shown in the

following figure.

 JSF components

The Business Process Choreographer Explorer components include the following

JSF components. You imbed these JSF components in your JavaServer Pages (JSP)

files when you build Web applications for working with business processes and

human tasks.

v List component

The List component displays a list of application objects in a table, for example,

tasks, activities, process instances, process templates, work items, or escalations.

This component has an associated list handler.

v Details component

The Details component displays the properties of tasks, work items, activities,

process instances, and process templates. This component has an associated

details handler.

v CommandBar component

The CommandBar component displays a bar with buttons. These buttons

represent commands that operate on either the object in a details view or the

selected objects in a list. These objects are provided by a list handler or a details

handler.

v Message component

The Message component displays a message that can contain either a Service

Data Object (SDO) or a simple type.

Chapter 2. Developing client applications for business processes and tasks 143

Client model objects

The client model objects are used with the JSF components. The objects implement

some of the interfaces of the underlying Business Process Choreographer API and

wrap the original object. The client model objects provide national language

support for labels and converters for some properties.

Error handling in JSF components

The JavaServer Faces (JSF) components exploit a predefined managed bean,

BPCError, for error handling. In error situations that trigger the error page, the

exception is set on the error bean.

This bean implements the com.ibm.bpc.clientcore.util.ErrorBean interface. The error

page is displayed in the following situations:

v If an error occurs during the execution of a query that is defined for a list

handler, and the error is generated as a ClientException error by the execute

method of a command

v If a ClientException error is generated by the execute method of a command and

this error is not an ErrorsInCommandException error nor does it implement the

CommandBarMessage interface

v If an error message is displayed in the component, and you follow the hyperlink

for the message

A default implementation of the com.ibm.bpc.clientcore.util.ErrorBeanImpl

interface is available.

The interface is defined as follows:

public interface ErrorBean {

 public void setException(Exception ex);

 /*

 * This setter method call allows a locale and

 * the exception to be passed. This allows the

 * getExceptionMessage methods to return localized Strings

 *

 */

 public void setException(Exception ex, Locale locale);

 public Exception getException();

 public String getStack();

 public String getNestedExceptionMessage();

 public String getNestedExceptionStack();

 public String getRootExceptionMessage();

 public String getRootExceptionStack();

 /*

 * This method returns the exception message

 * concatenated recursively with the messages of all

 * the nested exceptions.

 */

 public String getAllExceptionMessages();

 /*

 * This method is returns the exception stack

 * concatenated recursively with the stacks of all

 * the nested exceptions.

 */

 public String getAllExceptionStacks();

}

144 Developing and deploying

Related concepts

 “Error handling in the List component” on page 149
When you use the List component to display lists in your JSF application, you

can take advantage of the error handling functions provided by the

com.ibm.bpe.jsf.handler.BPCListHandler class.

Default converters and labels for client model objects

The client model objects implement the corresponding interfaces of the Business

Process Choreographer API.

The List component and the Details component operate on any bean. You can

display all of the properties of a bean. However, if you want to set the converters

and labels that are used for the properties of a bean, you must use either the

column tag for the List component, or the property tag for the Details component.

Instead of setting the converters and labels, you can define default converter and

labels for the properties by defining the following static methods. You can define

the following static methods:

static public String getLabel(String property,Locale locale);

static public com.ibm.bpc.clientcore.converter.SimpleConverter

 getConverter(String property);

The following table shows the client model objects that implement the

corresponding Business Flow Manager and Human Task Manager API classes and

provide default labels and converter for their properties. This wrapping of the

interfaces provides locale-sensitive labels and converters for a set of properties. The

following table shows the mapping of the Business Process Choreographer

interfaces to the corresponding client model objects.

 Table 34. How Business Process Choreographer interfaces are mapped to client model objects

Business Process Choreographer interface Client model object class

com.ibm.bpe.api.ActivityInstanceData com.ibm.bpe.clientmodel.bean.ActivityInstanceBean

com.ibm.bpe.api.ActivityServiceTemplateData com.ibm.bpe.clientmodel.bean.ActivityServiceTemplateBean

com.ibm.bpe.api.ProcessInstanceData com.ibm.bpe.clientmodel.bean.ProcessInstanceBean

com.ibm.bpe.api.ProcessTemplateData com.ibm.bpe.clientmodel.bean.ProcessTemplateBean

com.ibm.task.api.Escalation com.ibm.task.clientmodel.bean.EscalationBean

com.ibm.task.api.Task com.ibm.task.clientmodel.bean.TaskInstanceBean

com.ibm.task.api.TaskTemplate com.ibm.task.clientmodel.bean.TaskTemplateBean

Adding the List component to a JSF application

Use the Business Process Choreographer Explorer List component to display a list

of client model objects, for example, business process instances or task instances.

Procedure

1. Add the List component to the JavaServer Pages (JSP) file.

Add the bpe:list tag to the h:form tag. The bpe:list tag must include a

model attribute. Add bpe:column tags to the bpe:list tag to add the properties

of the objects that are to appear in each of the rows in the list.

The following example shows how to add a List component to display task

instances.

Chapter 2. Developing client applications for business processes and tasks 145

<h:form>

 <bpe:list model="#{TaskPool}">

 <bpe:column name="name" action="taskInstanceDetails" />

 <bpe:column name="state" />

 <bpe:column name="kind" />

 <bpe:column name="owner" />

 <bpe:column name="originator" />

 </bpe:list>

</h:form>

The model attribute refers to a managed bean, TaskPool. The managed bean

provides the list of Java objects over which the list iterates and then displays in

individual rows.

2. Configure the managed bean referred to in the bpe:list tag.

For the List component, this managed bean must be an instance of the

com.ibm.bpe.jsf.handler.BPCListHandler class.

The following example shows how to add the TaskPool managed bean to the

configuration file.

<managed-bean>

<managed-bean-name>TaskPool</managed-bean-name>

<managed-bean-class>com.ibm.bpe.jsf.handler.BPCListHandler</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>query</property-name>

 <value>#{TaskPoolQuery}</value>

 </managed-property>

 <managed-property>

 <property-name>type</property-name>

 <value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

 </managed-property>

</managed-bean>

<managed-bean>

<managed-bean-name>TaskPoolQuery</managed-bean-name>

<managed-bean-class>sample.TaskPoolQuery</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>type</property-name>

 <value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

 </managed-property>

</managed-bean>

<managed-bean>

<managed-bean-name>htmConnection</managed-bean-name>

<managed-bean-class>com.ibm.task.clientmodel.HTMConnection</managed-bean-class>

<managed-bean-scope>application</managed-bean-scope>

 <managed-property>

 <property-name>jndiName</property-name>

 <value>java:comp/env/ejb/LocalHumanTaskManagerEJB</value>

 </managed-property>

</managed-bean>

The example shows that TaskPool has two configurable properties: query and

type. The value of the query property refers to another managed bean,

TaskPoolQuery. The value of the type property specifies the bean class, the

properties of which are shown in the columns of the displayed list. The

associated query instance can also have a property type. If a property type is

specified, it must be the same as the type specified for the list handler.

You can add any type of query logic to the JSF application as long as the result

of the query can be represented as list of strongly-typed beans. For example,

146 Developing and deploying

the TaskPoolQuery is implemented using a list of

com.ibm.task.clientmodel.bean.TaskInstanceBean objects.

3. Add the custom code for the managed bean that is referred to by the list

handler.

The following example shows how to add custom code for the TaskPool

managed bean.

public class TaskPoolQuery implements Query {

 public List execute throws ClientException {

 // Examine the faces-config file for a managed bean "htmConnection".

 //

 FacesContext ctx = FacesContext.getCurrentInstance();

 Application app = ctx.getApplication();

 ValueBinding htmVb = app.createValueBinding("#{htmConnection}");

 htmConnection = (HTMConnection) htmVb.getValue(ctx);

 HumanTaskManagerService taskService =

 htmConnection.getHumanTaskManagerService();

 // Then call the actual query method on the Human Task Manager service.

 //

 QueryResultSet queryResult = taskService.query(

 "DISTINCT TASK.TKIID, TASK.NAME, TASK.KIND, TASK.STATE, TASK.TYPE,"

 + "TASK.STARTED, TASK.ACTIVATED, TASK.DUE, TASK.EXPIRES, TASK.PRIORITY" ,

 "TASK.KIND IN(101,102,105) AND TASK.STATE IN(2)

 AND WORK_ITEM.REASON IN (1)",

 (String)null,

 (Integer)null,

 (TimeZone)null);

 List applicationObjects = transformToTaskList (queryResult);

 return applicationObjects ;

 }

 private List transformToTaskList(QueryResultSet result) {

ArrayList array = null;

int entries = result.size();

array = new ArrayList(entries);

// Transforms each row in the QueryResultSet to a task instance beans.

 for (int i = 0; i < entries; i++) {

 result.next();

 array.add(new TaskInstanceBean(result, connection));

 }

 return array ;

 }

}

The TaskPoolQuery bean queries the properties of the Java objects. This bean

must implement the com.ibm.bpc.clientcore.Query interface. When the list

handler refreshes its contents, it calls the execute method of the query. The call

returns a list of Java objects. The getType method must return the class name of

the returned Java objects.

Results

Your JSF application now contains a JavaServer page that displays the properties of

the requested list of objects, for example, the state, kind, owner, and originator of

the task instances that are available to you.

 Related concepts

Chapter 2. Developing client applications for business processes and tasks 147

“User-specific time zone information” on page 149
The JavaServer Faces (JSF) components provide a utility for handling

user-specific time zone information in the List component.
 Related reference

 “List component: Tag definitions” on page 150
The Business Process Choreographer Explorer List component displays a list of

objects in a table, for example, tasks, activities, process instances, process

templates, work items, and escalations.

How lists are processed

Every instance of the List component is associated with an instance of the

com.ibm.bpe.jsf.handler.BPCListHandler class.

This list handler tracks the selected items in the associated list and it provides a

notification mechanism to associate the list entries with the details pages for the

different kinds of items. The list handler is bound to the List component through

the model attribute of the bpe:list tag.

The notification mechanism of the list handler is implemented using the

com.ibm.bpe.jsf.handler.ItemListener interface. You can register implementations of

this interface in the configuration file of your JavaServer Faces (JSF) application.

The notification is triggered when a link in the list is clicked. Links are rendered

for all of the columns for which the action attribute is set. The value of the action

attribute is either a JSF navigation target, or a JSF action method that returns a JSF

navigation target.

The BPCListHandler class also provides a refreshList method. You can use this

method in JSF method bindings to implement a user interface control for running

the query again.

Query implementations

You can use the list handler to display all kinds of objects and their properties. The

content of the list that is displayed depends on the list of objects that is returned

by the implementation of the com.ibm.bpc.clientcore.Query interface that is

configured for the list handler. You can set the query either programmatically

using the setQuery method of the BPCListHandler class, or you can configure it in

the JSF configuration files of the application.

You can run queries not only against the Business Process Choreographer APIs, but

also against any other source of information that is accessible from your

application, for example, a content management system or a database. The only

requirement is that the result of the query is returned as a java.util.List of

objects by the execute method.

The type of the objects returned must guarantee that the appropriate getter

methods are available for all of the properties that are displayed in the columns of

the list for which the query is defined. To ensure that the type of the object that is

returned fits the list definitions, you can set the value of the type property on the

BPCListHandler instance that is defined in the faces configuration file to the fully

qualified class name of the returned objects. You can return this name in the

getType call of the query implementation. At runtime, the list handler checks that

the object types conform to the definitions.

148 Developing and deploying

To map error messages to specific entries in a list, the objects returned by the

query must implement a method with the signature public Object getID().

Default converters and labels

The items returned by a query must be beans and their class must match the class

specified as the type in the definition of the BPCListHandler class or

com.ibm.bpc.clientcore.Query interface. In addition, the List component checks

whether the item class or a superclass implements the following methods:

static public String getLabel(String property,Locale locale);

static public com.ibm.bpc.clientcore.converter.SimpleConverter

 getConverter(String property);

If these methods are defined for the beans, the List component uses the label as the

default label for the list and the SimpleConverter as the default converter for the

property. You can overwrite these settings with the label and converterID

attributes of the bpe:list tag. For more information, see the Javadoc for the

SimpleConverter interface and the ColumnTag class.

User-specific time zone information

The JavaServer Faces (JSF) components provide a utility for handling user-specific

time zone information in the List component.

The BPCListHandler class uses the com.ibm.bpc.clientcore.util.User interface to get

information about the time zone and locale of each user. The List component

expects the implementation of the interface to be configured with user as the

managed-bean name in your JavaServer Faces (JSF) configuration file. If this entry

is missing from the configuration file, the time zone in which WebSphere Process

Server is running is returned.

The com.ibm.bpc.clientcore.util.User interface is defined as follows:

public interface User {

 /**

 * The locale used by the client of the user.

 * @return Locale.

 */

 public Locale getLocale();

 /**

 * The time zone used by the client of the user.

 * @return TimeZone.

 */

 public TimeZone getTimeZone();

 /**

 * The name of the user.

 * @return name of the user.

 */

 public String getName();

}

Error handling in the List component

When you use the List component to display lists in your JSF application, you can

take advantage of the error handling functions provided by the

com.ibm.bpe.jsf.handler.BPCListHandler class.

Chapter 2. Developing client applications for business processes and tasks 149

Errors that occur when queries are run or commands are executed

If an error occurs during the execution of a query, the BPCListHandler class

distinguishes between errors that were caused by insufficient access rights and

other exceptions. To catch errors due to insufficient access rights, the rootCause

parameter of the ClientException that is thrown by the execute method of the

query must be a com.ibm.bpe.api.EngineNotAuthorizedException or a

com.ibm.task.api.NotAuthorizedException exception. The List component displays

the error message instead of the result of the query.

If the error is not caused by insufficient access rights, the BPCListHandler class

passes the exception object to the implementation of the

com.ibm.bpc.clientcore.util.ErrorBean interface that is defined by the BPCError key

in your JSF application configuration file. When the exception is set, the error

navigation target is called.

Errors that occur when working with items that are displayed in a list

The BPCListHandler class implements the com.ibm.bpe.jsf.handler.ErrorHandler

interface. You can provide information about these errors with the map parameter

of type java.util.Map in the setErrors method. This map contains identifiers as keys

and the exceptions as values. The identifiers must be the values returned by the

getID method of the object that caused the error. If the map is set and any of the

IDs match any of the items displayed in the list, the list handler automatically adds

a column containing the error message to the list.

To avoid outdated error messages in the list, reset the errors map. In the following

situations, the map is reset automatically:

v The refreshList method BPCListHandler class is called.

v A new query is set on the BPCListHandler class.

v The CommandBar component is used to trigger actions on items of the list. The

CommandBar component uses this mechanism as one of the methods for error

handling.
 Related concepts

 “Error handling in JSF components” on page 144
The JavaServer Faces (JSF) components exploit a predefined managed bean,

BPCError, for error handling. In error situations that trigger the error page, the

exception is set on the error bean.

List component: Tag definitions

The Business Process Choreographer Explorer List component displays a list of

objects in a table, for example, tasks, activities, process instances, process

templates, work items, and escalations.

The List component consists of the JSF component tags: bpe:list and bpe:column.

The bpe:column tag is a subelement of the bpe:list tag.

Component class

com.ibm.bpe.jsf.component.ListComponent

Example syntax

<bpe:list model="#{ProcessTemplateList}">

 rows="20"

 styleClass="list"

150 Developing and deploying

headerStyleClass="listHeader"

 rowClasses="normal">

 <bpe:column name="name" action="processTemplateDetails"/>

 <bpe:column name="validFromTime"/>

 <bpe:column name="executionMode" label="Execution mode"/>

 <bpe:column name="state" converterID="my.state.converter"/>

 <bpe:column name="autoDelete"/>

 <bpe:column name="description"/>

</bpe:list>

Tag attributes

The body of the bpe:list tag can contain only bpe:column tags. When the table is

rendered, the List component iterates over the list of application objects and

renders all of the columns for each of the objects.

 Table 35. bpe:list attributes

Attribute Required Description

buttonStyleClass no The cascading style sheet (CSS) style class

for rendering the buttons in the footer

area.

cellStyleClass no The CSS style class for rendering

individual table cells.

checkbox no Determines whether the check box for

selecting multiple items is rendered. The

attribute has a value of either true or

false. If the value is set to true, the check

box column is rendered.

headerStyleClass no The CSS style class for rendering the table

header.

model yes A value binding for a managed bean of

the

com.ibm.bpe.jsf.handler.BPCListHandler

class.

rows no The number of rows that are shown on a

page. If the number of items exceeds the

number of rows, paging buttons are

displayed at the end of the table. Value

expressions are not supported for this

attribute.

rowClasses no The CSS style class for rendering the rows

in the table.

selectAll no If this attribute is set to true, all of the

items in the list are selected by default.

styleClass no The CSS style class for rendering the

overall table containing titles, rows, and

paging buttons.

Chapter 2. Developing client applications for business processes and tasks 151

Table 36. bpe:column attributes

Attribute Required Description

action no If this attribute is specified, a link is

rendered in the column. Either a

JavaServer Faces action method or the

Faces navigation target is triggered when

this link is clicked. A JavaServer Faces

action method has the following

signature: String method().

converterID no The Faces converter ID that is used for

converting the property value. If this

attribute is not set, any Faces converter ID

that is provided by the model for this

property is used.

label no A literal or value binding expression that

is used as a label for the header of the

column or the cell of the table header row.

If this attribute is not set, any label that is

provided by the model for this property is

used.

name yes The name of the property that is

displayed in this column.

Adding the Details component to a JSF application

Use the Business Process Choreographer Explorer Details component to display the

properties of tasks, work items, activities, process instances, and process templates.

Procedure

1. Add the Details component to the JavaServer Pages (JSP) file.

Add the bpe:details tag to the <h:form> tag. The bpe:details tag must contain

a model attribute. You can add properties to the Details component with the

bpe:property tag.

The following example shows how to add a Details component to display some

of the properties for a task instance.

<h:form>

 <bpe:details model="#{TaskInstanceDetails}">

 <bpe:property name="displayName" />

 <bpe:property name="owner" />

 <bpe:property name="kind" />

 <bpe:property name="state" />

 <bpe:property name="escalated" />

 <bpe:property name="suspended" />

 <bpe:property name="originator" />

 <bpe:property name="activationTime" />

 <bpe:property name="expirationTime" />

 </bpe:details>

</h:form>

The model attribute refers to a managed bean, TaskInstanceDetails. The bean

provides the properties of the Java object.

2. Configure the managed bean referred to in the bpe:details tag.

For the Details component, this managed bean must be an instance of the

com.ibm.bpe.jsf.handler.BPCDetailsHandler class. This handler class wraps a

Java object and exposes its public properties to the details component.

152 Developing and deploying

The following example shows how to add the TaskInstanceDetails managed

bean to the configuration file.

<managed-bean>

 <managed-bean-name>TaskInstanceDetails</managed-bean-name>

 <managed-bean-class>com.ibm.bpe.jsf.handler.BPCDetailsHandler</managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>type</property-name>

 <value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

 </managed-property>

</managed-bean>

The example shows that the TaskInstanceDetails bean has a configurable type

property. The value of the type property specifies the bean class

(com.ibm.task.clientmodel.bean.TaskInstanceBean), the properties of which are

shown in the rows of the displayed details. The bean class can be any

JavaBeans class. If the bean provides default converter and property labels, the

converter and the label are used for the rendering in the same way as for the

List component.

Results

Your JSF application now contains a JavaServer page that displays the details of

the specified object, for example, the details of a task instance.

 Related reference

 “Details component: Tag definitions”
The Business Process Choreographer Explorer Details component displays the

properties of tasks, work items, activities, process instances, and process

templates.

Details component: Tag definitions

The Business Process Choreographer Explorer Details component displays the

properties of tasks, work items, activities, process instances, and process templates.

The Details component consists of the JSF component tags: bpe:details and

bpe:property. The bpe:property tag is a subelement of the bpe:details tag.

Component class

com.ibm.bpe.jsf.component.DetailsComponent

Example syntax

<bpe:details model=”#{MyActivityDetails}”>

 <bpe:property name=”name”/>

 <bpe:property name=”owner”/>

 <bpe:property name=”activated”/>

</bpe:details>

<bpe:details model=”#{MyActivityDetails}” style=”style” styleClass=”cssStyle”>

 style=”style”

 styleClass=”cssStyle”

</bpe:details>

Tag attributes

Use bpe:property tags to specify both the subset of attributes that are shown and

the order in which these attributes are shown. If the details tag does not contain

any attribute tags, it renders all of the available attributes of the model object.

Chapter 2. Developing client applications for business processes and tasks 153

Table 37. bpe:details attributes

Attribute Required Description

columnClasses no A list of cascading style sheet style (CSS)

style classes, separated by commas, for

rendering columns.

id no The JavaServer Faces ID of the component.

model yes A value binding for a managed bean of the

com.ibm.bpe.jsf.handler.BPCDetailsHandler

class.

rowClasses no A list of CSS style classes, separated by

commas, for rendering rows.

styleClass no The CSS class that is used for rendering

the HTML element.

 Table 38. bpe:property attributes

Attribute Required Description

converterID no The ID used to register the converter in the

JavaServer Faces (JSF) configuration file.

label no The label for the property. If this attribute

is not set, a default label is provided by

the client model class.

name yes The name of the property to be displayed.

This name must correspond to a named

property as defined in the corresponding

client model class.

Adding the CommandBar component to a JSF application

Use the Business Process Choreographer Explorer CommandBar component to

display a bar with buttons. These buttons represent commands that operate on the

details view of an object or the selected objects in a list.

About this task

When the user clicks a button in the user interface, the corresponding command is

run on the selected objects. You can add and extend the CommandBar component

in your JSF application.

Procedure

1. Add the CommandBar component to the JavaServer Pages (JSP) file.

Add the bpe:commandbar tag to the <h:form> tag. The bpe:commandbar tag must

contain a model attribute.

The following example shows how to add a CommandBar component that

provides refresh and claim commands for a task instance list.

<h:form>

 <bpe:commandbar model="#{TaskInstanceList}">

 <bpe:command commandID="Refresh" >

 action="#{TaskInstanceList.refreshList}"

 label="Refresh"/>

 <bpe:command commandID="MyClaimCommand" >

 label="Claim" >

154 Developing and deploying

commandClass="<customcode>"/>

 </bpe:commandbar>

</h:form>

The model attribute refers to a managed bean. This bean must implement the

ItemProvider interface and provide the selected Java objects. The CommandBar

component is usually used with either the List component or the Details

component in the same JSP file. Generally, the model that is specified in the tag

is the same as the model that is specified in the List component or Details

component on the same page. So for the List component, for example, the

command acts on the selected items in the list.

In this example, the model attribute refers to the TaskInstanceList managed

bean. This bean provides the selected objects in the task instance list. The bean

must implement the ItemProvider interface. This interface is implemented by

the BPCListHandler class and the BPCDetailsHandler class.

2. Optional: Configure the managed bean that is referred to in the bpe:commandbar

tag.

If the CommandBar model attribute refers to a managed bean that is already

configured, for example, for a list or details handler, no further configuration is

required. If you change the configuration of either of these handlers or you use

a different managed bean, add a managed bean that implements the

ItemProvider interface to the JSF configuration file.

3. Add the code that implements the custom commands to the JSF application.

The following code snippet shows how to write a command class that

implements the Command interface. This command class (MyClaimCommand)

is referred to by the bpe:command tag in the JSP file.

public class MyClaimCommand implements Command {

 public String execute(List selectedObjects) throws ClientException {

 if(selectedObjects != null && selectedObjects.size() > 0) {

 try {

 // Determine HumanTaskManagerService from an HTMConnection bean.

 // Configure the bean in the faces-config.xml for easy access

 // in the JSF application.

 FacesContext ctx = FacesContext.getCurrentInstance();

 ValueBinding vb =

 ctx.getApplication().createValueBinding("{htmConnection}");

 HTMConnection htmConnection = (HTMConnection) htmVB.getValue(ctx);

 HumanTaskManagerService htm =

 htmConnection.getHumanTaskManagerService();

 Iterator iter = selectedObjects.iterator() ;

 while(iter.hasNext()) {

 try {

 TaskInstanceBean task = (TaskInstanceBean) iter.next() ;

 TKIID tiid = task.getID() ;

 htm.claim(tiid) ;

 task.setState(new Integer(TaskInstanceBean.STATE_CLAIMED)) ;

 }

 catch(Exception e) {

 ; // Error while iterating or claiming task instance.

 // Ignore for better understanding of the sample.

 }

 }

 }

 catch(Exception e) {

 ; // Configuration or communication error.

 // Ignore for better understanding of the sample

 }

Chapter 2. Developing client applications for business processes and tasks 155

}

 return null;

 }

 // Default implementations

 public boolean isMultiSelectEnabled() { return false; }

 public boolean[] isApplicable(List itemsOnList) {return null; }

 public void setContext(Object targetModel) {; // Not used here }

}

The command is processed in the following way:

a. A command is invoked when a user clicks the corresponding button in the

command bar. The CommandBar component retrieves the selected items

from the item provider that is specified in the model attribute and passes

the list of selected objects to the execute method of the commandClass

instance.

b. The commandClass attribute refers to a custom command implementation

that implements the Command interface. This means that the command

must implement the public String execute(List selectedObjects) throws

ClientException method. The command returns a result that is used to

determine the next navigation rule for the JSF application.

c. After the command completes, the CommandBar component evaluates the

action attribute. The action attribute can be a static string or a method

binding to a JSF action method with the public String Method() signature.

Use the action attribute to override the outcome of a command class or to

explicitly specify an outcome for the navigation rules. The action attribute is

not processed if the command generates an exception other than an

ErrorsInCommandException exception.

d. If the commandClass attribute does not have a command class specified,

the action is immediately called. For example, for the refresh command in

the example, the JSF value expression #{TaskInstanceList.refreshList} is

called instead of a command.

Results

Your JSF application now contains a JavaServer page that implements a customized

command bar.

 Related reference

 “CommandBar component: Tag definitions” on page 157
The Business Process Choreographer Explorer CommandBar component

displays a bar with buttons. These buttons operate on the object in a details

view or the selected objects in a list.

How commands are processed

Use the CommandBar component to add action buttons to your application. The

component creates the buttons for the actions in the user interface and handles the

events that are created when a button is clicked.

These buttons trigger functions that act on the objects that are returned by a

com.ibm.bpe.jsf.handler.ItemProvider interface, such as the BPCListHandler class,

or the BPCDetailsHandler class. The CommandBar component uses the item

provider that is defined by the value of the model attribute in the bpe:commandbar

tag.

When a button in the command-bar section of the application’s user interface is

clicked, the associated event is handled by the CommandBar component in the

following way.

156 Developing and deploying

1. The CommandBar component identifies the implementation of the

com.ibm.bpc.clientcore.Command interface that is specified for the button that

generated the event.

2. If the model associated with the CommandBar component implements the

com.ibm.bpe.jsf.handler.ErrorHandler interface, the clearErrorMap method is

invoked to remove error messages from previous events.

3. The getSelectedItems method of the ItemProvider interface is called. The list of

items that is returned is passed to the execute method of the command, and the

command is invoked.

4. The CommandBar component determines the JavaServer Faces (JSF) navigation

target. If an action attribute is not specified in the bpe:commandbar tag, the

return value of the execute method specifies the navigation target. If the action

attribute is set to a JSF method binding, the string returned by the method is

interpreted as the navigation target. The action attribute can also specify an

explicit navigation target.

CommandBar component: Tag definitions

The Business Process Choreographer Explorer CommandBar component displays a

bar with buttons. These buttons operate on the object in a details view or the

selected objects in a list.

The CommandBar component consists of the JSF component tags: bpe:commandbar

and bpe:command. The bpe:command tag is a subelement of the bpe:commandbar tag.

Component class

com.ibm.bpe.jsf.component.CommandBarComponent

Example syntax

<bpe:commandbar model="#{TaskInstanceList}">

 <bpe:command

 commandID="Work on"

 label="Work on..."

 commandClass="com.ibm.bpc.explorer.command.WorkOnTaskCommand"

 context="#{TaskInstanceDetailsBean}"/>

 <bpe:command

 commandID="Cancel"

 label="Cancel"

 commandClass="com.ibm.task.clientmodel.command.CancelClaimTaskCommand"

 context="#{TaskInstanceList}"/>

</bpe:commandbar>

Tag attributes

 Table 39. bpe:commandbar attributes

Attribute Required Description

buttonStyleClass no The cascading style sheet (CSS) style class

that is used for rendering the buttons in the

command bar.

id no The JavaServer Faces ID of the component.

Chapter 2. Developing client applications for business processes and tasks 157

Table 39. bpe:commandbar attributes (continued)

Attribute Required Description

model yes A value binding expression to a managed

bean that implements the ItemProvider

interface. This managed bean is usually the

com.ibm.bpe.jsf.handler.BPCListHandler class

or the

com.ibm.bpe.jsf.handler.BPCDetailsHandler

class that is used by the List component or

Details component in the same JavaServer

Pages (JSP) file as the CommandBar

component.

styleClass no The CSS style class that is used for rendering

the command bar.

 Table 40. bpe:command attributes

Attribute Required Description

action no A JavaServer Faces action method or the

Faces navigation target that is to be triggered

by the command button. The navigation

target that is returned by the action

overwrites all other navigation rules. The

action is called when either an exception is

not thrown or an ErrorsInCommandException

exception is thrown by the command.

commandClass no The name of the command class. An instance

of the class is created by the CommandBar

component and run if the command button is

selected.

commandID yes The ID of the command.

context no An object that provides context for

commands that are specified using the

commandClass attribute. The context object is

retrieved when the command bar is first

accessed.

immediate no Specifies when the command is triggered. If

the value of this attribute is true, the

command is triggered before the input of the

page is processed. The default is false.

label yes The label of the button that is rendered in the

command bar.

rendered no Determines whether a button is rendered. The

value of the attribute can be either a Boolean

value or a value expression.

styleClass no The CSS style class that is used for rendering

the button. This style overrides the button

style defined for the command bar.

Adding the Message component to a JSF application

Use the Business Process Choreographer Explorer Message component to render

data objects and primitive types in a JavaServer Faces (JSF) application.

About this task

158 Developing and deploying

If the message type is a primitive type, a label and an input field are rendered. If

the message type is a data object, the component traverses the object and renders

the elements within the object.

Procedure

1. Add the Message component to the JavaServer Pages (JSP) file.

Add the bpe:form tag to the <h:form> tag. The bpe:form tag must include a

model attribute.

The following example shows how to add a Message component.

<h:form>

 <h:outputText value="Input Message" />

 <bpe:form model="#{MyHandler.inputMessage}" readOnly="true" />

 <h:outputText value="Output Message" />

 <bpe:form model="#{MyHandler.outputMessage}" />

</h:form>

The model attribute of the Message component refers to a

com.ibm.bpc.clientcore.MessageWrapper object. This wrapper object wraps

either a Service Data Object (SDO) object or a Java primitive type, for example,

int or boolean. In the example, the message is provided by a property of the

MyHandler managed bean.

2. Configure the managed bean referred to in the bpe:form tag.

The following example shows how to add the MyHandler managed bean to the

configuration file.

<managed-bean>

<managed-bean-name>MyHandler</managed-bean-name>

<managed-bean-class>com.ibm.bpe.sample.jsf.MyHandler</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>type</property-name>

 <value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

 </managed-property>

</managed-bean>

3. Add the custom code to the JSF application.

The following example shows how to implement input and output messages.

public class MyHandler implements ItemListener {

 private TaskInstanceBean taskBean;

 private MessageWrapper inputMessage, outputMessage

 /* Listener method, e.g. when a task instance was selected in a list handler.

 * Ensure that the handler is registered in the faces-config.xml or manually.

 */

 public void itemChanged(Object item) {

 if(item instanceof TaskInstanceBean) {

 taskBean = (TaskInstanceBean) item ;

 }

 }

 /* Get the input message wrapper

 */

 public MessageWrapper getInputMessage() {

 try{

 inputMessage = taskBean.getInputMessageWrapper() ;

 }

 catch(Exception e) {

Chapter 2. Developing client applications for business processes and tasks 159

; //...ignore errors for simplicity

 }

 return inputMessage;

 }

 /* Get the output message wrapper

 */

 public MessageWrapper getOutputMessage() {

 // Retrieve the message from the bean. If there is no message, create

 // one if the task has been claimed by the user. Ensure that only

 // potential owners or owners can manipulate the output message.

 try{

 outputMessage = taskBean.getOutputMessageWrapper();

 if(outputMessage == null

 && taskBean.getState() == TaskInstanceBean.STATE_CLAIMED) {

 HumanTaskManagerService htm = getHumanTaskManagerService();

 outputMessage = new MessageWrapperImpl();

 outputMessage.setMessage(

 htm.createOutputMessage(taskBean.getID()).getObject()

);

 }

 }

 catch(Exception e) {

 ; //...ignore errors for simplicity

 }

 return outputMessage

 }

}

The MyHandler managed bean implements the

com.ibm.jsf.handler.ItemListener interface so that it can register itself as an item

listener to list handlers. When the user clicks an item in the list, the MyHandler

bean is notified in its itemChanged(Object item) method about the selected

item. The handler checks the item type and then stores a reference to the

associated TaskInstanceBean object. To use this interface, add an entry to the

itemListener list in the appropriate list handler in the faces-config.xml file.

The MyHandler bean provides the getInputMessage and getOutputMessage

methods. Both of these methods return a MessageWrapper object. The methods

delegate the calls to the referenced task instance bean. If the task instance bean

returns null, for example, because a message is not set, the handler creates and

stores a new, empty message. The Message component displays the messages

provided by the MyHandler bean.

Results

Your JSF application now contains a JavaServer page that can render data objects

and primitive types.

 Related reference

 “Message component: Tag definitions”
The Business Process Choreographer Explorer Message component renders

commonj.sdo.DataObject objects and primitive types, such as integers and

strings, in a JavaServer Faces (JSF) application.

Message component: Tag definitions

The Business Process Choreographer Explorer Message component renders

commonj.sdo.DataObject objects and primitive types, such as integers and strings,

in a JavaServer Faces (JSF) application.

The Message component consists of the JSF component tag: bpe:form.

160 Developing and deploying

Component class

com.ibm.bpe.jsf.component.MessageComponent

Example syntax

<bpe:form model="#{TaskInstanceDetailsBean.inputMessageWrapper}"

 simplification="true" readOnly="true"

 styleClass4table="messageData"

 styleClass4output="messageDataOutput">

</bpe:form>

Tag attributes

 Table 41. bpe:form attributes

Attribute Required Description

id no The JavaServer Faces ID of the component.

model yes A value binding expression that refers to

either a commonj.sdo.DataObject object or

a com.ibm.bpc.clientcore.MessageWrapper

object.

readOnly no If this attribute is set to true, a read-only

form is rendered. By default, this attribute

is set to false.

simplification no If this attribute is set to true, properties

that contain simple types and have a

cardinality of zero or one are shown. By

default, this attribute is set to true.

style4validinput no The cascading style sheet (CSS) style for

rendering input that is valid.

style4invalidinput no The CSS style for rendering input that is

not valid.

styleClass4invalidInput no The CSS style class name for rendering

input that is not valid.

styleClass4output no The CSS style class name for rendering the

output elements.

styleClass4table no The class name of the CSS table style for

rendering the tables rendered by the

message component.

styleClass4validInput no The CSS style class name for rendering

input that is valid.

Developing JSP pages for task and process messages

The Business Process Choreographer Explorer interface provides default input and

output forms for displaying and entering business data. You can use JSP pages to

provide customized input and output forms.

About this task

To include user-defined JavaServer Pages (JSP) pages in the Web client, you must

specify them when you model a human task in WebSphere Integration Developer.

For example, you can provide JSP pages for a specific task and its input and

Chapter 2. Developing client applications for business processes and tasks 161

output messages, and for a specific user role or all user roles. At runtime, the

user-defined JSP pages are included in the user interface to display output data

and collect input data.

The customized forms are not self-contained Web pages; they are HTML fragments

that Business Process Choreographer Explorer imbeds in an HTML form, for

example, fragments for all of the labels and input fields of a message.

When a button is clicked on the page that contains the customized forms, the input

is submitted and validated in Business Process Choreographer Explorer. The

validation is based on the type of the properties provided and the locale used in

the browser. If the input cannot be validated, the same page is shown again and

information about the validation errors is provided in the messageValidationErrors

request attribute. The information is provided as a map that maps the XML Path

Expression (XPath) of the properties that are not valid to the validation exceptions

that occurred.

To add customized forms to Business Process Choreographer Explorer, complete

the following steps using WebSphere Integration Developer.

Procedure

1. Create the customized forms.

The user-defined JSP pages for the input and output forms used in the Web

interface need access to the message data. Use Java snippets in a JSP or the JSP

execution language to access the message data. Data in the forms is available

through the request context.

2. Assign the JSP pages to a task.

Open the human task in the human task editor. In the client settings, specify

the location of the user-defined JSP pages and the role to which the customized

form applies, for example, administrator. The client settings for Business

Process Choreographer Explorer are stored in the task template. At runtime

these settings are retrieved with the task template.

3. Package the user-defined JSP pages in a Web archive (WAR file).

You can either include the WAR file in the enterprise archive with the module

that contains the tasks or deploy the WAR file separately. If the JSPs are

deployed separately, make the JSPs available on the server where the Business

Process Choreographer Explorer or the custom client is deployed.

If you are using custom JSPs for the process and task messages, you must map

the Web modules that are used to deploy the JSPs to the same servers that the

custom JSF client is mapped to.

Results

The customized forms are rendered in Business Process Choreographer Explorer at

runtime.

User-defined JSP fragments

The user-defined JavaServer Pages (JSP) fragments are imbedded in an HTML form

tag. At runtime, Business Process Choreographer Explorer includes these fragments

in the rendered page.

The user-defined JSP fragment for the input message is imbedded before the JSP

fragment for the output message.

162 Developing and deploying

<html....>

 ...

 <form...>

 Input JSP (display task input message)

 Output JSP (display task output message)

 </form>

 ...

</html>

Because the user-defined JSP fragments are embedded in an HTML form tag, you

can add input elements. The name of the input element must match the XML Path

Language (XPath) expression of the data element. It is important to prefix the

name of the input element with the provided prefix value:

<input id="address"

 type="text"

 name="${prefix}/selectPromotionalGiftResponse/address"

 value="${messageMap[’/selectPromotionalGiftResponse/address"]}

 size="60"

 align="left" />

The prefix value is provided as a request attribute. The attribute ensures that the

input name is unique in the enclosing form. The prefix is generated by Business

Process Choreographer Explorer and it should not be changed:

String prefix = (String)request.getAttribute("prefix");

The prefix element is set only if the message can be edited in the given context.

Output data can be displayed in different ways depending on the state of the

human task. For example, if the task is in the claimed state, the output data can be

modified. However, if the task is in the finished state, the data can be displayed

only. In your JSP fragment, you can test whether the prefix element exists and

render the message accordingly. The following JSTL statement shows how you

might test whether the prefix element is set.

...

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

...

<c:choose>

 <c:when test="${not empty prefix}">

 <!--Read/write mode-->

 </c:when>

 <c:otherwise>

 <!--Read-only mode-->

 </c:otherwise>

</c:choose>

Creating plug-ins to customize human task functionality

Business Process Choreographer provides an event handling infrastructure for

events that occur during the processing of human tasks. Plug-in points are also

provided so that you can adapt the functionality to your needs. You can use the

service provider interfaces (SPIs) to create customized plug-ins for handling events

and the processing of staff queries.

About this task

You can create plug-ins for human task API events and escalation notification

events. You can also create a plug-in that processes the results that are returned

Chapter 2. Developing client applications for business processes and tasks 163

from people resolution. For example, at peak periods you might want to add users

to the result list to help balance the workload.

You can register your plug-ins on different levels, for all tasks on a global level, for

the tasks in an application component, for all of the tasks associated with a task

template, or for a single task instance.

Creating API event handlers

An API event occurs when an API method manipulates a human task. Use the API

event handler plug-in service provider interface (SPI) to create plug-ins to handle

the task events sent by the API or the internal events that have equivalent API

events.

About this task

Complete the following steps to create an API event handler.

Procedure

1. Write a class that implements the APIEventHandlerPlugin2 interface or extends

the APIEventHandler implementation class. This class can invoke the methods

of other classes.

v If you use the APIEventHandlerPlugin2 interface, you must implement all of

the methods of the APIEventHandlerPlugin2 interface and the

APIEventHandlerPlugin interface.

v If you extend the SPI implementation class, overwrite the methods that you

need.

This class runs in the context of a Java 2 Enterprise Edition (J2EE) Enterprise

JavaBeans (EJB) application. Ensure that this class and its helper classes follow

the EJB specification.

Tip: If you want to call the HumanTaskManagerService interface from this

class, do not call a method that updates the task that produced the event. This

action results in a database deadlock.

2. Assemble the plug-in class and its helper classes into a JAR file.

If the helper classes are used by several J2EE applications, you can package

these classes in a separate JAR file that you register as a shared library.

3. Create a service provider configuration file for the plug-in in the

META-INF/services/ directory of your JAR file.

The configuration file provides the mechanism for identifying and loading the

plug-in. This file conforms to the Java 2 service provider interface specification.

a. Create a file with the name com.ibm.task.spi.plug-
in_nameAPIEventHandlerPlugin, where plug-in_name is the name of the

plug-in.

For example, if your plug-in is called Customer and it implements the

com.ibm.task.spi.APIEventHandlerPlugin interface, the name of the

configuration file is com.ibm.task.spi.CustomerAPIEventHandlerPlugin.

b. In the first line of the file that is neither a comment line nor a blank line,

specify the fully qualified name of the plug-in class that you created in step

1.

For example, if your plug-in class is called MyAPIEventHandler and it is in

the com.customer.plugins package, then the first line of the configuration

164 Developing and deploying

file must contain the following entry:

com.customer.plugins.MyAPIEventHandler.

Results

You have an installable JAR file that contains a plug-in that handles API events

and a service provider configuration file that can be used to load the plug-in.

Tip: You only have one eventHandlerName property available to register both API

event handlers and notification event handlers. If you want to use both an API

event handler and a notification event handler, the plug-in implementations must

have the same name, for example, Customer as the event handler name for the SPI

implementation.

You can implement both plug-ins using a single class, or two separate classes. In

both cases, you need to create two files in the META-INF/services/ directory of

your JAR file, for example,

com.ibm.task.spi.CustomerNotificationEventHandlerPlugin and

com.ibm.task.spi.CustomerAPIEventHandlerPlugin.

Package the plug-in implementation and the helper classes in a single JAR file.

What to do next

You now need to install and register the plug-in so that it is available to the

human task container at runtime. You can register API event handlers with a task

instance, a task template, or an application component.

API event handlers

API events occur when a human task is modified or it changes state. To handle

these API events, the event handler is invoked directly before the task is modified

(pre-event method) and just before the API call returns (post-event method).

If the pre-event method throws an ApplicationVetoException exception, the API

action is not performed, the exception is returned to the API caller, and the

transaction associated with the event is rolled back. If the pre-event method was

triggered by an internal event and an ApplicationVetoException exception is

thrown, the internal event, such as an automatic claim, is not performed but an

exception is not returned to the client application. In this case, an information

message is written to the SystemOut.log file. If the API method throws an

exception during processing, the exception is caught and passed to the post-event

method. The exception is passed again to the caller after the post-event method

returns.

The following rules apply to pre-event methods:

v Pre-event methods receive the parameters of the associated API method or

internal event.

v Pre-event methods can throw an ApplicationVetoException exception to prevent

processing from continuing.

The following rules apply to post-event methods:

v Post-event methods receive the parameters that were supplied to the API call,

and the return value. If an exception is thrown by the API method

implementation, the post-event method also receives the exception.

v Post-event methods cannot modify return values.

Chapter 2. Developing client applications for business processes and tasks 165

v Post-event methods cannot throw exceptions; runtime exceptions are logged but

they are ignored.

To implement API event handlers, you can use either the APIEventHandlerPlugin2

interface, which extends the APIEventHandlerPlugin interface, or extend the

default com.ibm.task.spi.APIEventHandler SPI implementation class. If your event

handler inherits from the default implementation class, it always implements the

most recent version of the SPI. If you upgrade to a newer version of Business

Process Choreographer, fewer changes are necessary if you want to exploit new SPI

methods.

If you have both a notification event handler and an API event handler, both of

these handlers must have the same name because you can register only one event

handler name.

Creating notification event handlers

Notification events are produced when human tasks are escalated. Business Process

Choreographer provides functionality for handling escalations, such as creating

escalation work items or sending e-mails. You can create notification event

handlers to customize the way in which escalations are handled.

About this task

To implement notification event handlers, you can use either the

NotificationEventHandlerPlugin interface, or you can extend the default

com.ibm.task.spi.NotificationEventHandler service provider interface (SPI)

implementation class.

Complete the following steps to create a notification event handler.

Procedure

1. Write a class that implements the NotificationEventHandlerPlugin interface or

extends the NotificationEventHandler implementation class. This class can

invoke the methods of other classes.

If you use the NotificationEventHandlerPlugin interface, you must implement

all of the interface methods. If you extend the SPI implementation class,

overwrite the methods that you need.

This class runs in the context of a Java 2 Enterprise Edition (J2EE) Enterprise

JavaBeans (EJB) application. Ensure that this class and its helper classes follow

the EJB specification.

The plug-in is invoked with the authority of the EscalationUser role. This role

is defined when the human task container is configured.

Tip: If you want to call the HumanTaskManagerService interface from this

class, do not call a method that updates the task or the escalation that

produced the event. This action results in a database deadlock.

2. Assemble the plug-in class and its helper classes into a JAR file.

If the helper classes are used by several J2EE applications, you can package

these classes in a separate JAR file that you register as a shared library.

3. Create a service provider configuration file for the plug-in in the

META-INF/services/ directory of your JAR file.

The configuration file provides the mechanism for identifying and loading the

plug-in. This file conforms to the Java 2 service provider interface specification.

166 Developing and deploying

a. Create a file with the name com.ibm.task.spi.plug-
in_nameNotificationEventHandlerPlugin, where plug-in_name is the name of

the plug-in.

For example, if your plug-in is called HelpDeskRequest (event handler name)

and it implements the com.ibm.task.spi.NotificationEventHandlerPlugin

interface, the name of the configuration file is

com.ibm.task.spi.HelpDeskRequestNotificationEventHandlerPlugin.

b. In the first line of the file that is neither a comment line nor a blank line,

specify the fully qualified name of the plug-in class that you created in step

1.

For example, if your plug-in class is called MyEventHandler and it is in the

com.customer.plugins package, then the first line of the configuration file

must contain the following entry: com.customer.plugins.MyEventHandler.

Results

You have an installable JAR file that contains a plug-in that handles notification

events and a service provider configuration file that can be used to load the

plug-in. You can register API event handlers with a task instance, a task template,

or an application component.

Tip: You only have one eventHandlerName property available to register both API

event handlers and notification event handlers. If you want to use both an API

event handler and a notification event handler, the plug-in implementations must

have the same name, for example, Customer as the event handler name for the SPI

implementation.

You can implement both plug-ins using a single class, or two separate classes. In

both cases, you need to create two files in the META-INF/services/ directory of

your JAR file, for example,

com.ibm.task.spi.CustomerNotificationEventHandlerPlugin and

com.ibm.task.spi.CustomerAPIEventHandlerPlugin.

Package the plug-in implementation and the helper classes in a single JAR file.

What to do next

You now need to install and register the plug-in so that it is available to the

human task container at runtime. You can register notification event handlers with

a task instance, a task template, or an application component.

Creating plug-ins to post-process people query results

Staff resolution returns a list of the users that are assigned to a specific role, for

example, potential owner of a task. You can create a plug-in to change the results

of people queries returned by people resolution. For example, to improve

workload balancing, you might have a plug-in that removes users from the query

result who already have a high workload.

About this task

You can have only one post-processing plug-in; this means that the plug-in must

handle the people query results from all tasks. Your plug-in can add or remove

users, or change user or group information. It can also change the result type, for

example, from a list of users to a group, or to everybody.

Chapter 2. Developing client applications for business processes and tasks 167

Because the plug-in runs after people resolution completes, any rules that you have

to preserve confidentiality or security have already been applied. The plug-in

receives information about users that have been removed during people resolution

(in the HTM_REMOVED_USERS map key). You must ensure that your plug-in

uses this context information to preserve any confidentiality or security rules you

might have.

To implement post-processing of people query results, you use the

StaffQueryResultPostProcessorPlugin interface. The interface has methods for

modifying the query results for tasks, escalations, task templates, and application

components.

Complete the following steps to create a plug-in to post-process people query

results.

Procedure

1. Write a class that implements the StaffQueryResultPostProcessorPlugin

interface.

You must implement all of the interface methods. This class can invoke

methods of other classes.

This class runs in the context of a Java 2 Enterprise Edition (J2EE) Enterprise

JavaBeans (EJB) application. Ensure that this class and its helper classes follow

the EJB specification.

Tip: If you want to call the HumanTaskManagerService interface from this

class, do not call a method that updates the task that produced the event. This

action results in a database deadlock.

The following example shows how you might change the editor role of a task

called SpecialTask.

public StaffQueryResult processStaffQueryResult

 (StaffQueryResult originalStaffQueryResult,

 Task task,

 int role,

 Map context)

{

 StaffQueryResult newStaffQueryResult = originalStaffQueryResult;

 StaffQueryResultFactory staffResultFactory =

 StaffQueryResultFactory.newInstance();

 if (role == com.ibm.task.api.WorkItem.REASON_EDITOR &&

 task.getName() != null &&

 task.getName().equals("SpecialTask"))

 {

 UserData user = staffResultFactory.newUserData

 ("SuperEditor",

 new Locale("en-US"),

 "SuperEditor@company.com");

 ArrayList userList = new ArrayList();

 userList.add(user);

 newStaffQueryResult = staffResultFactory.newStaffQueryResult(userList);

 }

 return(newStaffQueryResult);

}

2. Assemble the plug-in class and its helper classes into a JAR file.

If the helper classes are used by several J2EE applications, you can package

these classes in a separate JAR file that you register as a shared library.

3. Create a service provider configuration file for the plug-in in the

META-INF/services/ directory of your JAR file.

168 Developing and deploying

The configuration file provides the mechanism for identifying and loading the

plug-in. This file conforms to the Java 2 service provider interface specification.

a. Create a file with the name com.ibm.task.spi.plug-
in_nameStaffQueryResultPostProcessorPlugin, where plug-in_name is the

name of the plug-in.

For example, if your plug-in is called MyHandler and it implements the

com.ibm.task.spi.StaffQueryResultPostProcessorPlugin interface, the name of

the configuration file is

com.ibm.task.spi.MyHandlerStaffQueryResultPostProcessorPlugin.

b. In the first line of the file that is neither a comment line nor a blank line,

specify the fully qualified name of the plug-in class that you created in step

1.

For example, if your plug-in class is called StaffPostProcessor and it is in

the com.customer.plugins package, then the first line of the configuration

file must contain the following entry:

com.customer.plugins.StaffPostProcessor. You have an installable JAR file

that contains a plug-in that post processes people query results and a

service provider configuration file that can be used to load the plug-in.
4. Install the plug-in.

You can have only one post-processing plug-in for people query results. You

must install the plug-in as a shared library.

5. Register the plug-in.

a. In the administrative console, go to the Custom Properties page of the

Human Task Manager (Application servers → server_name → Human task

container → Custom properties).

b. Add a custom property with the name Staff.PostProcessorPlugin, and a

value of the name that you gave to your plug-in, MyHandler in this example.

Installing plug-ins

To use a plug-in, you must install the plug-in so that it can be accessed by the task

container.

About this task

The way in which you install the plug-in depends on whether the plug-in is to be

used by only one Java 2 Enterprise Edition (J2EE) application, or several

applications.

Complete one of the following steps to install a plug-in.

v Install a plug-in for use by a single J2EE application.

Add your plug-in JAR file to the application EAR file. In the deployment

descriptor editor in WebSphere Integration Developer, install the JAR file for

your plug-in as a project utility JAR file for the J2EE application of the main

enterprise JavaBeans (EJB) module.

v Install a plug-in for use by several J2EE applications.

Put the JAR file in a WebSphere Application Server shared library and associate

the library with the applications that need access to the plug-in. To make the

JAR file available in a network deployment environment, distribute the JAR file

on each server manually, and then install the shared library once for each cell.

What to do next

Chapter 2. Developing client applications for business processes and tasks 169

You can now register the plug-in.

Registering plug-ins

You can register your plug-ins on different levels in the task container artifact

hierarchy. For example, for all tasks on a global level, for the tasks of an

application component, for all of the tasks associated with a task template, or for a

single task instance.

About this task

When you register multiple plug-ins, scoping is supported. This means that a

plug-in that is registered on a lower level of the task container artifact hierarchy,

such as a task instance, is used instead of the plug-in that is registered on a higher

level, such as a task template or application component. Scoping is supported for

all of the hierarchy levels. The task container uses the plug-in that is registered on

the lowest level of the hierarchy.

You can register a plug-in in one of the following ways.

v Register the plug-in in the task model.

In the task editor in WebSphere Integration Developer in the Details page of the

properties area for the task, specify the name of the event handler in the Event

handler name field.

v Register the plug-in for ad-hoc tasks or task templates that you create at

runtime.

Use the setEventHandlerName method of the TTask class to register the name of

the event handler.

v Change the registered event handler for a task instance at runtime.

Use the update(Task task) method to use a different event handler for a task

instance at runtime. The caller must have task administrator authority to update

this property.

v Register the plug-in on a global level.

In the administration console on the Custom properties page for the human task

container, define a custom property for the plug-in. The value of the custom

property is the plug-in name.

170 Developing and deploying

Part 2. Deploying applications

© Copyright IBM Corp. 2005, 2008 171

172 Developing and deploying

Chapter 3. Overview of preparing and installing modules

Installing modules (also known as deploying) activates the modules in either a test

environment or a production environment. This overview briefly describes the test

and production environments and some of the steps involved in installing

modules.

Note: The process for installing applications in a production environment is

similar to the process described in “Developing and deploying applications” in the

WebSphere Application Server Network Deployment, version 6 information center.

If you are unfamiliar with those topics, review those first.

Before installing a module to a production environment, always verify changes in a

test environment. To install modules to a test environment, use WebSphere

Integration Developer (see the WebSphere Integration Developer information center

for more information). To install modules to a production environment, use

WebSphere Process Server.

This topic describes the concepts and tasks needed to prepare and install modules

to a production environment. Other topics describe the files that house the objects

that your module uses and help you move your module from your test

environment into your production environment. It is important to understand

these files and what they contain so you can be sure that you have correctly

installed your modules.

Libraries and JAR files overview

Modules often use artifacts that are located in libraries. Artifacts and libraries are

contained in Java archive (JAR) files that you identify when you deploy a module.

While developing a module, you might identify certain resources or components

that could be used by various pieces of the module. These resources or

components could be objects that you created while developing the module or

already existing objects that reside in a library that is already deployed on the

server. This topic describes the libraries and files that you will need when you

install an application.

What is a library?

A library contains objects or resources used by multiple modules within

WebSphere Integration Developer. The artifacts can be in JAR, resource archive

(RAR), or Web service archive (WAR) files. Some of these artifacts include:

v Interfaces or Web services descriptors (files with a .wsdl extension)

v Business object XML schema definitions (files with an .xsd extension)

v Business object maps (files with a .map extension)

v Relationship and role definitions (files with a .rel and .rol extension)

When a module needs an artifact, the server locates the artifact from the EAR class

path and loads the artifact, if it is not already loaded, into memory. From that

point on, any request for the artifact uses that copy until it is replaced. Figure 5 on

page 174 shows how an application contains components and related libraries.

© Copyright IBM Corp. 2005, 2008 173

What are JAR, RAR, and WAR files?

There are a number of files that can contain components of a module. These files

are fully described in the Java Platform, Enterprise Edition specification. Details

about JAR files can be found in the JAR specification.

In WebSphere Process Server, a JAR file also contains an application, which is the

assembled version of the module with all the supporting references and interfaces

to any other service components used by the module. To completely install the

application, you need this JAR file, any other libraries such as JAR files, Web

services archive (WAR) files, resource archive (RAR) files, staging libraries

(Enterprise Java Beans - EJB) JAR files, or any other archives, and create an

installable EAR file using the serviceDeploy command.

Naming conventions for staging modules

Within the library, there are requirements for the names of the staging modules.

These names are unique for a specific module. Name any other modules required

to deploy the application so that conflicts with the staging module names do not

occur. For a module named myService, the staging module names are:

v myServiceApp

Figure 5. Relationship amongst module, component and library

174 Developing and deploying

http://java.sun.com/javaee/reference/index.jsp

v myServiceEJB

v myServiceEJBClient

v myServiceWeb

Note: The serviceDeploy command only creates the myService Web staging module

if the service includes a WSDL port type service.

Considerations when using libraries

Using libraries provides consistency of business objects and consistency of

processing amongst modules because each calling module has its own copy of a

specific component. To prevent inconsistencies and failures it is important to make

sure that changes to components and business objects used by calling modules are

coordinated with all of the calling modules. Update the calling modules by:

1. Copying the module and the latest copy of the libraries to the production

server

2. Rebuilding the installable EAR file using the serviceDeploy command

3. Stopping the running application containing the calling module and reinstall it

4. Restarting the application containing the calling module
 Related reference

serviceDeploy command

Use the serviceDeploy command to package Service Component Architecture

(SCA) compliant modules as Java applications that can be installed on a server.

The command is useful when performing batch installs through wsadmin.

EAR file overview

An EAR file is a critical piece in deploying a service application to a production

server.

An enterprise archive (EAR) file is a compressed file that contains the libraries,

enterprise beans, and JAR files that the application requires for deployment.

You create a JAR file when you export your application modules from WebSphere

Integration Developer. Use this JAR file and any other artifact libraries or objects as

input to the installation process. The serviceDeploy command creates an EAR file

from the input files that contain the component descriptions and Java code that

comprise the application.

 Related reference

serviceDeploy command

Use the serviceDeploy command to package Service Component Architecture

(SCA) compliant modules as Java applications that can be installed on a server.

The command is useful when performing batch installs through wsadmin.

Preparing to deploy to a server

After developing and testing a module, you must export the module from a test

system and bring it into a production environment for deployment. To install an

application you also should be aware of the paths needed when exporting the

module and any libraries the module requires.

Before you begin

Chapter 3. Overview of preparing and installing modules 175

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/rdev_servicedeploy.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/rdev_servicedeploy.html

Before beginning this task, you should have developed and tested your modules

on a test server and resolved problems and performance issues.

About this task

This task verifies that all of the necessary pieces of an application are available and

packaged into the correct files to bring to the production server.

Note: You can also export an enterprise archive (EAR) file from WebSphere

Integration Developer and install that file directly into WebSphere Process Server.

Important: If the services within a component use a database, install the

application on a server directly connected to the database.

Procedure

1. Locate the folder that contains the components for the module you are to

deploy.

The component folder should be named module-name with a file in it named

module.module, the base module.

2. Verify that all components contained in the module are in component

subfolders beneath the module folder.

For ease of use, name the subfolder similar to module/component.

3. Verify that all files that comprise each component are contained in the

appropriate component subfolder and have a name similar to

component-file-name.component.

The component files contain the definitions for each individual component

within the module.

4. Verify that all other components and artifacts are in the subfolders of the

component that requires them.

In this step you ensure that any references to artifacts required by a component

are available. Names for components should not conflict with the names the

serviceDeploy command uses for staging modules. See Naming conventions for

staging modules.

5. Verify that a references file, module.references, exists in the module folder of

step 1.

The references file defines the references and the interfaces within the module.

6. Verify that a wires file, module.wires, exists in the component folder.

The wires file completes the connections between the references and the

interfaces within the module.

7. Verify that a manifest file, module.manifest, exists in the component folder.

The manifest lists the module and all the components that comprise the

module. It also contains a classpath statement so that the serviceDeploy

command can locate any other modules needed by the module.

8. Create a compressed file or a JAR file of the module as input to the

serviceDeploy command that you will use to prepare the module for

installation to the production server.

176 Developing and deploying

Example folder structure for MyValue module prior to

deployment

The following example illustrates the directory structure for the module

MyValueModule, which is made up of the components MyValue, CustomerInfo,

and StockQuote.

MyValueModule

 MyValueModule.manifest

 MyValueModule.references

 MyValueModule.wiring

 MyValueClient.jsp

process/myvalue

 MyValue.component

 MyValue.java

 MyValueImpl.java

service/customerinfo

 CustomerInfo.component

 CustomerInfo.java

 Customer.java

 CustomerInfoImpl.java

service/stockquote

 StockQuote.component

 StockQuote.java

 StockQuoteAsynch.java

 StockQuoteCallback.java

 StockQuoteImpl.java

Install the module onto the production systems as described in Installing a module

on a production serverInstalling a module on a production server.

 Related reference

serviceDeploy command

Use the serviceDeploy command to package Service Component Architecture

(SCA) compliant modules as Java applications that can be installed on a server.

The command is useful when performing batch installs through wsadmin.

Considerations for installing service applications on clusters

Installing a service application on a cluster places additional requirements on you.

It is important that you keep these considerations in mind as you install any

service applications on a cluster.

Clusters can provide many benefits to your processing environment by providing

economies of scale to help you balance request workload across servers and

provide a level of availability for clients of the applications. Consider the following

before installing an application that contains services on a cluster:

v Will users of the application require the processing power and availability

provided by clustering?

If so, clustering is the correct solution. Clustering will increase the availability

and capacity of your applications.

v Is the cluster correctly prepared for service applications?

You must configure the cluster correctly before installing and starting the first

application that contains a service. Failure to configure the cluster correctly

prevents the applications from processing requests correctly.

v Does the cluster have a backup?

You must install the application on the backup cluster also.

Chapter 3. Overview of preparing and installing modules 177

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/rdev_servicedeploy.html

178 Developing and deploying

Chapter 4. Installing a module on a production server

This topic describes the steps involved in taking an application from a test server

and deploying it into a production environment.

Before you begin

Before deploying a service application to a production server, assemble and test the

application on a test server. After testing, export the relevant files as described in

Preparing to deploy to a server in the Developing and Deploying Modules PDF and

bring the files to the production system to deploy. See the information centers for

WebSphere Integration Developer and WebSphere Application Server Network

Deployment for more information.

Procedure

1. Copy the module and other files onto the production server.

The modules and resources (EAR, JAR, RAR, and WAR files) needed by the

application are moved to your production environment.

2. Run the serviceDeploy command to create an installable EAR file.

This step defines the module to the server in preparation for installing the

application into production.

a. Locate the JAR file that contains the module to deploy.

b. Issue the command using the JAR file from the previous step as input.
3. Install the EAR file from step 2. How you install the applications depends on

whether you are installing the application on a stand alone server or a server in

a cell.

Note: You can either use the administrative console or a script to install the

application. See the WebSphere Application Server information center for

additional information.

4. Save the configuration. The module is now installed as an application.

5. Start the application.

Results

The application is now active and work should flow through the module.

What to do next

Monitor the application to make sure the server is processing requests correctly.

 Related reference

serviceDeploy command

Use the serviceDeploy command to package Service Component Architecture

(SCA) compliant modules as Java applications that can be installed on a server.

The command is useful when performing batch installs through wsadmin.

© Copyright IBM Corp. 2005, 2008 179

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/rdev_servicedeploy.html

Creating an installable EAR file using serviceDeploy

To install an application in the production environment, take the files copied to the

production server and create an installable EAR file.

Before you begin

Before starting this task, you must have a JAR file that contains the module and

services you are deploying to the server. See Preparing to deploy to a server for

more information.

About this task

The serviceDeploy command takes a JAR file, any other dependent EAR, JAR,

RAR, WAR and ZIP files and builds an EAR file that you can install on a server.

Procedure

1. Locate the JAR file that contains the module to deploy.

2. Issue the command using the JAR file from the previous step as input.

This step creates an EAR file.

Note: Perform the following steps at an administrative console.

3. Select the EAR file to install in the administrative console of the server.

4. Click Save to install the EAR file.

 Related reference

serviceDeploy command

Use the serviceDeploy command to package Service Component Architecture

(SCA) compliant modules as Java applications that can be installed on a server.

The command is useful when performing batch installs through wsadmin.

Deploying applications using Apache Ant tasks

This topic describes how to use Apache™ Ant tasks to automate the deployment of

applications to WebSphere Process Server. By using Apache Ant tasks, you can

define the deployment of multiple applications and have them run unattended on

a server.

Before you begin

This task assumes the following:

v The applications being deployed have already been developed and tested.

v The applications are to be installed on the same server or servers.

v You have some knowledge of Apache Ant tasks.

v You understand the deployment process.

Information about developing and testing applications is located in the WebSphere

Integration Developer information center.

The reference portion of the information center for WebSphere Application Server

Network Deployment contains a section on application programming interfaces.

Apache Ant tasks are described in the package com.ibm.websphere.ant.tasks. For

the purpose of this topic, the tasks of interest are ServiceDeploy and

InstallApplication.

180 Developing and deploying

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/rdev_servicedeploy.html

About this task

If you need to install multiple applications concurrently, develop an Apache Ant

task before deployment. The Apache Ant task can then deploy and install the

applications on the servers without your involvement in the process.

Procedure

1. Identify the applications to deploy.

2. Create a JAR file for each application.

3. Copy the JAR files to the target servers.

4. Create an Apache Ant task to run the ServiceDeploy command to create the

EAR file for each server.

5. Create an Apache Ant task to run the InstallApplication command for each

EAR file from step 4 on the applicable servers.

6. Run the ServiceDeploy Apache Ant task to create the EAR file for the

applications.

7. Run the InstallApplication Apache Ant task to install the EAR files from step 6.

Results

The applications are correctly deployed on the target servers.

Example of deploying an application unattended

This example shows an Apache Ant task contained in a file myBuildScript.xml.

<?xml version="1.0">

<project name="OwnTaskExample" default="main" basedir=".">

 <taskdef name="servicedeploy"

 classname="com.ibm.websphere.ant.tasks.ServiceDeployTask" />

 <target name="main" depends="main2">

 <servicedeploy scaModule="c:/synctest/SyncTargetJAR"

 ignoreErrors="true"

 outputApplication="c:/synctest/SyncTargetEAREAR"

 workingDirectory="c:/synctest"

 noJ2eeDeploy="true"

 cleanStagingModules="true"/>

 </target>

</project>

This statement shows how to invoke the Apache Ant task.

${WAS}/bin/ws_ant -f myBuildScript.xml

Tip: Multiple applications can be deployed unattended by adding additional

project statements into the file.

What to do next

Use the administrative console to verify that the newly installed applications are

started and processing the workflow correctly.

 Related reference

serviceDeploy command

Use the serviceDeploy command to package Service Component Architecture

(SCA) compliant modules as Java applications that can be installed on a server.

The command is useful when performing batch installs through wsadmin.

Chapter 4. Installing a module on a production server 181

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.websphere.wps.610.doc/doc/rdev_servicedeploy.html

182 Developing and deploying

Chapter 5. Installing business process and human task

applications

You can distribute Service Component Architecture (SCA) modules that contain

business processes or human tasks, or both, to deployment targets. A deployment

target can be a server or a cluster.

Before you begin

Verify that Business Flow Manager, Human Task Manager, or both are installed

and configured for each application server or cluster on which you want to install

your application.

About this task

You can install business process and task applications from the administrative

console, from the command line, or by running an administrative script, for

example.

Results

After a business process or human task application is installed, all of the business

process templates and human task templates are put into the start state. You can

create process instances and task instances from these templates.

What to do next

Before you can create process instances or task instances, you must start the

application.

 Related concepts

 “Deployment of business processes and human tasks” on page 184
When WebSphere Integration Developer or service deployment generates the

deployment code for your process or task, each process component or task

component is mapped to one session enterprise bean. All deployment code is

packaged in the enterprise application (EAR) file. Additionally, for each process,

a Java class which represents Java code in this process is generated and

embedded in the EAR file during installation of the enterprise application. Each

new version of a model that is to be deployed must be packaged in a new

enterprise application.

 “How business process and human task applications are installed in a network

deployment environment”
When process templates or human task templates are installed in a network

deployment environment, the following actions are performed automatically by

the application installation.

How business process and human task applications are installed in a

network deployment environment

When process templates or human task templates are installed in a network

deployment environment, the following actions are performed automatically by the

application installation.

© IBM Corporation 2005, 2007 183

The application is installed asynchronously in stages. Each stage must complete

successfully before the following stage can begin.

1. The application installation starts on the deployment manager.

During this stage, the business process templates and human task templates are

configured in the WebSphere configuration repository. The application is also

validated. If errors occur, they are reported in the System.out file, in the

System.err file, or as FFDC entries on the deployment manager.

2. The application installation continues on the node agent.

During this stage, the installation of the application on one application server

instance is triggered. This application server instance is either part of, or is, the

deployment target. If the deployment target is a cluster with multiple cluster

members, the server instance is chosen arbitrarily from the cluster members of

this cluster. If errors occur during this stage, they are reported in the

SystemOut.log file, in the SystemErr.log file, or as FFDC entries on the node

agent.

3. The application runs on the server instance.

During this stage, the process templates and human templates are deployed to

the Business Process Choreographer database on the deployment target. If

errors occur, they are reported in the System.out file, in the SystemErr.log file,

or as FFDC entries on this server instance.
 Related tasks

 Chapter 5, “Installing business process and human task applications,” on page

183
You can distribute Service Component Architecture (SCA) modules that contain

business processes or human tasks, or both, to deployment targets. A

deployment target can be a server or a cluster.

Deployment of business processes and human tasks

When WebSphere Integration Developer or service deployment generates the

deployment code for your process or task, each process component or task

component is mapped to one session enterprise bean. All deployment code is

packaged in the enterprise application (EAR) file. Additionally, for each process, a

Java class which represents Java code in this process is generated and embedded in

the EAR file during installation of the enterprise application. Each new version of a

model that is to be deployed must be packaged in a new enterprise application.

When you install an enterprise application that contains business processes or

human tasks, then these are stored as business process templates or human task

templates, as appropriate, in the Business Process Choreographer database. Newly

installed templates are, by default, in the started state. However, the newly

installed enterprise application is in the stopped state. Each installed enterprise

application can be started and stopped individually.

You can deploy many different versions of a process template or task template,

each in a different enterprise application. When you install a new enterprise

application, the version of the template that is installed is determined as follows:

v If the name of the template and the target namespace do not already exist, a

new template is installed

v If the template name and target namespace are the same as those of an existing

template, but the valid-from date is different, a new version of an existing

template is installed

184 Developing and deploying

Note: The template name is derived from the name of the component and not

from the business process or human task.

If you do not specify a valid-from date, the date is determined as follows:

v If you use WebSphere Integration Developer, the valid-from date is the date on

which the human task or the business process was modeled.

v If you use service deployment, the valid-from date is the date on which the

serviceDeploy command was run. Only collaboration tasks get the date on

which the application was installed as the valid-from date.
 Related tasks

 Chapter 5, “Installing business process and human task applications,” on page

183
You can distribute Service Component Architecture (SCA) modules that contain

business processes or human tasks, or both, to deployment targets. A

deployment target can be a server or a cluster.

Installing business process and human task applications interactively

You can install an application interactively at runtime using the wsadmin tool and

the installInteractive script. You can use this script to change settings that cannot

be changed if you use the administrative console to install the application.

About this task

Perform the following steps to install business process applications interactively.

Procedure

1. Start the wsadmin tool.

In the profile_root/bin directory, enter wsadmin.

2. Install the application.

At the wsadmin command-line prompt, enter the following command:

$AdminApp installInteractive application.ear

where application.ear is the qualified name of the enterprise archive file that

contains your process application. You are prompted through a series of tasks

where you can change values for the application.

3. Save the configuration changes.

At the wsadmin command-line prompt, enter the following command:

$AdminConfig save

You must save your changes to transfer the updates to the master configuration

repository. If a scripting process ends and you have not saved your changes,

the changes are discarded.

Configuring process application data source and set reference

settings

You might need to configure process applications that run SQL statements for the

specific database infrastructure. These SQL statements can come from information

service activities or they can be statements that you run during process installation

or instance startup.

About this task

Chapter 5. Installing business process and human task applications 185

When you install the application, you can specify the following types of data

sources:

v Data sources to run SQL statements during process installation

v Data sources to run SQL statements during the startup of a process instance

v Data sources to run SQL snippet activities

The data source required to run an SQL snippet activity is defined in a BPEL

variable of type tDataSource. The database schema and table names that are

required by an SQL snippet activity are defined in BPEL variables of type

tSetReference. You can configure the initial values of both of these variables.

You can use the wsadmin tool to specify the data sources.

Procedure

1. Install the process application interactively using the wsadmin tool.

2. Step through the tasks until you come to the tasks for updating data sources

and set references.

Configure these settings for your environment. The following example shows

the settings that you can change for each of these tasks.

3. Save your changes.

Example: Updating data sources and set references, using the

wsadmin tool

In the Updating data sources task, you can change data source values for initial

variable values and statements that are used during installation of the process or

when the process starts. In the Updating set references task, you can configure the

settings related to the database schema and the table names.

Task [24]: Updating data sources

//Change data source values for initial variable values at process start

Process name: Test

// Name of the process template

Process start or installation time: Process start

// Indicates whether the specified value is evaluated

//at process startup or process installation

Statement or variable: Variable

// Indicates that a data source variable is to be changed

Data source name: MyDataSource

// Name of the variable

JNDI name:[jdbc/sample]:jdbc/newName

// Sets the JNDI name to jdbc/newName

Task [25]: Updating set references

// Change set reference values that are used as initial values for BPEL variables

Process name: Test

// Name of the process template

Variable: SetRef

// The BPEL variable name

JNDI name:[jdbc/sample]:jdbc/newName

// Sets the JNDI name of the data source of the set reference to jdbc/newName

Schema name: [IISAMPLE]

// The name of the database schema

Schema prefix: []:

// The schema name prefix.

// This setting applies only if the schema name is generated.

Table name: [SETREFTAB]: NEWTABLE

186 Developing and deploying

// Sets the name of the database table to NEWTABLE

Table prefix: []:

// The table name prefix.

// This setting applies only if the prefix name is generated.

Uninstalling business process and human task applications, using the

administrative console

You can use the administrative console to uninstall applications that contain

business processes or human tasks.

Before you begin

To uninstall an application that contains business processes or human tasks, the

following prerequisites must be met:

v If the application is installed on a stand-alone server, the server must be running

and have access to the Business Process Choreographer database.

v If the application is installed on a cluster, the deployment manager and at least

one cluster member must be running. The cluster member have access to the

Business Process Choreographer database.

v If the application is installed on managed server, the deployment manager and

this server must be running. The server must have access to the Business Process

Choreographer database.

v All of the business process templates and human task templates that belong to

the application must be in the stopped state.

v There are no instances of business process or human task templates present in

any state.

v

For stand-alone server environments that are used as development and unit test

environments, the server can be configured to run in development mode. This

configuration does not require that the templates be stopped and no instances be

present. However, this configuration is not valid for production environments.

About this task

To uninstall an enterprise application that contains business processes or human

tasks, perform the following actions:

Procedure

1. Stop all process and task templates in the application.

This action prevents the creation of process and task instances.

a. Click Applications → SCA modules in the administrative console navigation

pane.

b. Select the module that contains the templates that you want to stop.

c. Under Additional Properties, click Business Processes or Human Tasks, or

both, as appropriate.

d. Select all process and task templates by clicking the appropriate check box.

e. Click Stop.
Repeat this step for all EJB modules that contain business process templates or

human task templates.

2. Verify that the database, at least one application server for each cluster, and the

stand-alone server where the application is deployed are running.

Chapter 5. Installing business process and human task applications 187

In a network deployment environment, the deployment manager, all managed

stand-alone application servers, and at least one application server must be

running for each cluster where the application is installed.

3. Verify that the application has no business process instances or human task

instances.

If necessary, an administrator can use Business Process Choreographer Explorer

to delete any process or task instances.

4. Stop and uninstall the application:

a. Click Applications → Enterprise Applications in the administrative console

navigation pane.

b. Select the application that you want to uninstall and click Stop.

This step fails if any process instances or task instances still exist in the

application.

c. Select again the application that you want to uninstall, and click Uninstall.

d. Click Save to save your changes.

Results

The application is uninstalled.

Uninstalling business process and human task applications, using

administrative commands

Administrative commands provide an alternative to the administrative console for

uninstalling applications that contain business processes or human tasks.

Before you begin

To uninstall an application that contains business processes or human tasks, the

following prerequisites must be met:

v If the application is installed on a stand-alone server, the server must be running

and have access to the Business Process Choreographer database.

v If the application is installed on a cluster, the deployment manager and at least

one cluster member must be running. The cluster member have access to the

Business Process Choreographer database.

v If the application is installed on managed server, the deployment manager and

this server must be running. The server must have access to the Business Process

Choreographer database.

v All of the business process templates and human task templates that belong to

the application must be in the stopped state.

v There are no instances of business process or human task templates present in

any state.

v

For stand-alone server environments that are used as development and unit test

environments, the server can be configured to run in development mode. This

configuration does not require that the templates be stopped and no instances be

present. However, this configuration is not valid for production environments.

In addition, if global security is enabled, verify that your user ID has operator

authorization.

188 Developing and deploying

Ensure that the server process to which the administration client connects is

running. To ensure that the administrative client automatically connects to the

server process, do not use the -conntype NONE option as a command option.

About this task

The following steps describe how to use the bpcTemplates.jacl script to uninstall

applications that contain business process templates or human task templates. You

must stop a template before you can uninstall the application to which it belongs.

You can use the bpcTemplates.jacl script to stop and uninstall templates in one

step.

Before you uninstall applications, you can delete process instances or task instances

associated with the templates in the applications, for example, using Business

Process Choreographer Explorer. You can also use the -force option with the

bpcTemplates.jacl script to delete any instances associated with the templates, stop

the templates, and uninstall them in one step.

CAUTION:

Because the -force option deletes all process instance and task instance data, you

should use this option with care.

Procedure

1. Change to the Business Process Choreographer samples directory.

On Windows platforms, enter:

cd install_root\ProcessChoreographer\admin

On Linux, UNIX, and i5/OS platforms, enter:

cd install_root/ProcessChoreographer/admin

2. Stop the templates and uninstall the corresponding application.

On Windows platforms, enter:

install_root\bin\wsadmin -f bpcTemplates.jacl

 [-user user_name]

 [-password user password]

 -uninstall application_name

 [-force]

On Linux, UNIX, and i5/OS platforms, enter:

install_root/bin/wsadmin -f bpcTemplates.jacl

 [-user user_name]

 [-password user password]

 -uninstall application_name

 [-force]

Where:

user_name

If global security is enabled, provide the user ID for authentication.

user_password

If global security is enabled, provide the user password for authentication.

application_name

If global security is enabled, provide the user password for authentication.

Results

The application is uninstalled.

Chapter 5. Installing business process and human task applications 189

190 Developing and deploying

Chapter 6. Installing adapters

Adapters allow your application to communicate with other components of your

enterprise information system.

The process you use to install adapters is described in Configuring and using

adapters in the WebSphere Integration Developer information center.

© Copyright IBM Corp. 2005, 2008 191

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.wbit.610.help.adapter.emd.ui.doc/topics/tcreatecmps.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/topic/com.ibm.wbit.610.help.adapter.emd.ui.doc/topics/tcreatecmps.html

192 Developing and deploying

Chapter 7. Installing EIS applications

An EIS application module can be deployed to a J2EE platform. The deployment

results in an application, packaged as an EAR file deployed to the server. All the

J2EE artifacts and resources are created, the application is configured and ready to

be run.

About this task

The deployment to the J2EE platform creates the following J2EE artifacts and

resources:

 Table 42. Mapping from bindings to J2EE artifacts

Binding in the SCA module Generated J2EE artifacts Created J2EE resources

EIS Import Resource References

generated on the module

Session EJB.

ConnectionFactory

EIS Export Message Driven Bean,

generated or deployed,

depending on the listener

interface supported by the

Resource Adapter.

ActivationSpec

JMS Import Message Driven Bean (MDB)

provided by the runtime is

deployed, resource references

generated on the module

Session EJB. Note that the

MDB is only created if the

import has a receive

destination.

v ConnectionFactory

v ActivationSpec

v Destinations

JMS Export Message Driven Bean

provided by the runtime is

deployed, resource references

generated on the module

Session EJB

v ActivationSpec

v ConnectionFactory

v Destinations

When the import or export defines a resource like a ConnectionFactory, the

resource reference is generated into the deployment descriptor of the module

Stateless Session EJB. Also, the appropriate binding is generated into the EJB

binding file. The name, to which resource reference is bound, is either the value of

the target attribute, if one is present, or default JNDI lookup name given to the

resource, based on the module name and import name.

Upon deployment, the implementation locates the module session bean and uses it

to lookup the resources.

During deployment of the application to the server, the EIS installation task will

check for the existence of the element resource to which it is bound. If it does not

exist, and the SCDL file specifies at least one property, the resource will be created

and configured by the EIS installation task. If the resource does not exist, no action

is taken, it is assumed that resource will be created before execution of the

application.

© Copyright IBM Corp. 2005, 2008 193

When the JMS Import is deployed with a receive destination, a Message Driver

Bean (MDB) is deployed. It listens for replies to requests that have been sent out.

The MDB is associated (listens on) the Destination sent with the request in the

JMSreplyTo header field of the JMS message. When the reply message arrives, the

MDB uses its correlation ID to retrieve the callback information stored in the

callback Destination and then invokes the callback object.

The installation task creates the ConnectionFactory and three destinations from the

information in the import file. In addition, it creates the ActivationSpec to enable

the runtime MDB to listen for replies on the receive Destination. The properties of

the ActivationSpec are derived from the Destination/ConnectionFactory properties.

If the JMS provider is a SIBus Resource Adapter, the SIBus Destinations

corresponding to the JMS Destination are created.

When the JMS Export is deployed, a Message Driven Bean (MDB) (not the same

MDB as the one deployed for JMS Import) is deployed. It listens for the incoming

requests on the receive Destination and then dispatches the requests to be

processed by the SCA. The installation task creates the set of resources similar to

the one for JMS Import, an ActivationSpec, ConnectionFactory used for sending a

reply and two Destinations. All the properties of these resources are specified in

the export file. If the JMS provider is an SIBus Resource Adapter, the SIBus

Destinations corresponding to JMS Destination are created.

Deploying an EIS application module to the J2SE platform

The EIS Module can be deployed to J2SE platform however only EIS Import will

be supported.

Before you begin

You need to create an EIS application module with a JMS Import binding in the

WebSphere Integration Development environment before commencing this task.

About this task

An EIS application module would be furnished with a JMS Import binding when

you want to access EIS systems asynchronously through the use of message

queues.

Deploying to the J2SE platform is the only instance where the binding

implementation can be executed in the non-managed mode. The JMS Binding

requires asynchronous and JNDI support, neither of which is provided by the base

service component architecture or the J2SE. The J2EE Connector Architecture does

not support non-managed inbound communication thus eliminating EIS Export.

When the EIS application module with the EIS Import is deployed to J2SE, in

addition to the module dependencies, the WebSphere Adapter used by the import

has to be specified as the dependency, in the manifest or any other form supported

by SCA.

194 Developing and deploying

Deploying an EIS application module to the J2EE platform

The deployment of EIS module to the J2EE platform results in an application,

packaged as an EAR file deployed to the server. All the J2EE artifacts and

resources are created, the application is configured and ready to be run.

Before you begin

You need to create an EIS module with a JMS Import binding in the WebSphere

Integration Development environment before commencing this task.

About this task

The deployment to the J2EE platform creates the following J2EE artifacts and

resources:

 Table 43. Mapping from bindings to J2EE artifacts

Binding in the SCA module Generated J2EE artifacts Created J2EE resources

EIS Import Resource References

generated on the module

Session EJB.

ConnectionFactory

EIS Export Message Driven Bean,

generated or deployed,

depending on the listener

interface supported by the

Resource Adapter.

ActivationSpec

JMS Import Message Driven Bean (MDB)

provided by the runtime is

deployed, resource references

generated on the module

Session EJB. Note that the

MDB is only created if the

import has a receive

destination.

v ConnectionFactory

v ActivationSpec

v Destinations

JMS Export Message Driven Bean

provided by the runtime is

deployed, resource references

generated on the module

Session EJB

v ActivationSpec

v ConnectionFactory

v Destinations

When the import or export defines a resource like a ConnectionFactory, the

resource reference is generated into the deployment descriptor of the module

Stateless Session EJB. Also, the appropriate binding is generated into the EJB

binding file. The name, to which resource reference is bound, is either the value of

the target attribute, if one is present, or default JNDI lookup name given to the

resource, based on the module name and import name.

Upon deployment, the implementation locates the module session bean and uses it

to lookup the resources.

During deployment of the application to the server, the EIS installation task will

check for the existence of the element resource to which it is bound. If it does not

exist, and the SCDL file specifies at least one property, the resource will be created

and configured by the EIS installation task. If the resource does not exist, no action

is taken, it is assumed that resource will be created before execution of the

application.

Chapter 7. Installing EIS applications 195

When the JMS Import is deployed with a receive destination, a Message Driver

Bean (MDB) is deployed. It listens for replies to requests that have been sent out.

The MDB is associated (listens on) the Destination sent with the request in the

JMSreplyTo header field of the JMS message. When the reply message arrives, the

MDB uses its correlation ID to retrieve the callback information stored in the

callback Destination and then invokes the callback object.

The installation task creates the ConnectionFactory and three destinations from the

information in the import file. In addition, it creates the ActivationSpec to enable

the runtime MDB to listen for replies on the receive Destination. The properties of

the ActivationSpec are derived from the Destination/ConnectionFactory properties.

If the JMS provider is a SIBus Resource Adapter, the SIBus Destinations

corresponding to the JMS Destination are created.

When the JMS Export is deployed, a Message Driven Bean (MDB) (not the same

MDB as the one deployed for JMS Import) is deployed. It listens for the incoming

requests on the receive Destination and then dispatches the requests to be

processed by the SCA. The installation task creates the set of resources similar to

the one for JMS Import, an ActivationSpec, ConnectionFactory used for sending a

reply and two Destinations. All the properties of these resources are specified in

the export file. If the JMS provider is an SIBus Resource Adapter, the SIBus

Destinations corresponding to JMS Destination are created.

196 Developing and deploying

Chapter 8. Troubleshooting a failed deployment

This topic describes the steps to take to determine the cause of a problem when

deploying an application. It also presents some possible solutions.

Before you begin

This topic assumes the following things:

v You have a basic understanding of debugging a module.

v Logging and tracing is active while the module is being deployed.

About this task

The task of troubleshooting a deployment begins after you receive notification of

an error. There are various symptoms of a failed deployment that you have to

inspect before taking action.

Procedure

1. Determine if the application installation failed.

Examine the SystemOut.log file for messages that specify the cause of failure.

Some of the reasons an application might not install include the following:

v You are attempting to install an application on multiple servers in the same

Network Deployment cell.

v An application has the same name as an existing module on the Network

Deployment cell to which you are installing the application.

v You are attempting to deploy J2EE modules within an EAR file to different

target servers.

Important: If the installation has failed and the application contains services,

you must remove any SIBus destinations or J2C activation specifications created

prior to the failure before attempting to reinstall the application. The simplest

way to remove these artifacts is to click Save > Discard all after the failure. If

you inadvertently save the changes, you must manually remove the SIBus

destinations and J2C activation specifications (see Deleting SIBus destinations

and Deleting J2C activation specifications in the Administering section).

2. If the application is installed correctly, examine it to determine if it started

successfully.

If the application did not start successfully, the failure occurred when the server

attempted to initiate the resources for the application.

a. Examine the SystemOut.log file for messages that will direct you on how to

proceed.

b. Determine if resources required by the application are available and/or

have started successfully.

Resources that are not started prevent an application from running. This

protects against lost information. The reasons for a resource not starting

include:

v Bindings are specified incorrectly

v Resources are not configured correctly

v Resources are not included in the resource archive (RAR) file

v Web resources not included in the Web services archive (WAR) file

© Copyright IBM Corp. 2005, 2008 197

c. Determine if any components are missing.

The reason for missing a component is an incorrectly built enterprise

archive (EAR) file. Make sure that the all of the components required by the

module are in the correct folders on the test system on which you built the

Java archive (JAR) file. “Preparing to deploy to a server” contains additional

information.
3. Examine the application to see if there is information flowing through it.

Even a running application can fail to process information. Reasons for this are

similar to those mentioned in step 2b on page 197.

a. Determine if the application uses any services contained in another

application. Make sure that the other application is installed and has started

successfully.

b. Determine if the import and export bindings for devices contained in other

applications used by the failing application are configured correctly. Use the

administrative console to examine and correct the bindings.
4. Correct the problem and restart the application.

Deleting J2C activation specifications

The system builds J2C application specifications when installing an application that

contains services. There are occasions when you must delete these specifications

before reinstalling the application.

Before you begin

If you are deleting the specification because of a failed application installation,

make sure the module in the Java Naming and Directory Interface (JNDI) name

matches the name of the module that failed to install. The second part of the JNDI

name is the name of the module that implemented the destination. For example in

sca/SimpleBOCrsmA/ActivationSpec, SimpleBOCrsmA is the module name.

Required security role for this task: When security and role-based authorization

are enabled, you must be logged in as administrator or configurator to perform

this task.

About this task

Delete J2C activation specifications when you inadvertently saved a configuration

after installing an application that contains services and do not require the

specifications.

Procedure

1. Locate the activation specification to delete.

The specifications are contained in the resource adapter panel. Navigate to this

panel by clicking Resources > Resource adapters.

a. Locate the Platform Messaging Component SPI Resource Adapter.

To locate this adapter, you must be at the node scope for a standalone

server or at the server scope in a deployment environment.
2. Display the J2C activation specifications associated with the Platform

Messaging Component SPI Resource Adapter.

Click on the resource adapter name and the next panel displays the associated

specifications.

198 Developing and deploying

3. Delete all of the specifications with a JNDI Name that matches the module

name that you are deleting.

a. Click the check box next to the appropriate specifications.

b. Click Delete.

Results

The system removes selected specifications from the display.

What to do next

Save the changes.

Deleting SIBus destinations

SIBus destinations are the connections that make services available to applications.

There will be times that you will have to remove destinations.

Before you begin

If you are deleting the destination because of a failed application installation, make

sure the module in the destination name matches the name of the module that

failed to install. The second part of the destination is the name of the module that

implemented the destination. For example in sca/SimpleBOCrsmA/component/
test/sca/cros/simple/cust/Customer, SimpleBOCrsmA is the module name.

Required security role for this task: When security and role-based authorization

are enabled, you must be logged in as administrator or configurator to perform

this task.

About this task

Delete SIBus destinations when you inadvertently saved a configuration after

installing an application that contains services or you no longer need the

destinations.

Note: This task deletes the destination from the SCA system bus only. You must

remove the entries from the application bus also before reinstalling an application

that contains services (see Deleting J2C activation specifications in the

Administering section of this information center.

Procedure

1. Log into the administrative console.

2. Display the destinations on the SCA system bus.

Navigate to the panel by clicking Service integration > Buses

3. Select the SCA system bus destinations.

In the display, click on SCA.SYSTEM.cellname.Bus, where cellname is the name

of the cell that contains the module with the destinations you are deleting.

4. Delete the destinations that contain a module name that matches the module

that you are removing.

a. Click on the check box next to the pertinent destinations.

b. Click Delete.

Chapter 8. Troubleshooting a failed deployment 199

Results

The panel displays only the remaining destinations.

What to do next

Delete the J2C activation specifications related to the module that created these

destinations.

200 Developing and deploying

Part 3. Appendixes

© Copyright IBM Corp. 2005, 2008 201

202 Developing and deploying

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2005, 2008 203

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows: (c) (your company name) (year). Portions of

204 Developing and deploying

this code are derived from IBM Corp. Sample Programs. (c) Copyright IBM Corp.

enter the year or years. All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

IBM, the IBM logo, developerWorks, WebSphere, and z/OS are registered

trademarks of International Business Machines Corporation in the United States,

other countries, or both.

Adobe is a registered trademark of Adobe Systems Incorporated in the United

States, and/or other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org).

 IBM WebSphere Process Server for Multiplatforms, Version 6.1.0

Notices 205

http://www.eclipse.org

206 Developing and deploying

����

Printed in USA

	Contents
	Figures
	Tables
	Part 1. Developing applications
	Chapter 1. Overview of developing modules
	Developing service modules
	Developing service components
	Invoking components
	Dynamically invoking a component

	Overview of isolating modules and targets
	HTTP bindings

	Overriding the generated Service Component Architecture implementation
	Overriding a Service Data Object to Java conversion
	Runtime rules used for Java to Service Data Objects conversion

	Chapter 2. Developing client applications for business processes and tasks
	Developing EJB client applications for business processes and human tasks
	Accessing the EJB APIs
	Accessing the remote interface of the session bean
	Accessing the local interface of the session bean

	Querying business-process and task-related objects
	Filtering data using variables in queries
	Managing stored queries

	Developing applications for business processes
	Required roles for actions on process instances
	Required roles for actions on business-process activities
	Managing the life cycle of a business process
	Processing human task activities
	Processing a single person workflow
	Sending a message to a waiting activity
	Handling events
	Analyzing the results of a process
	Repairing activities
	BusinessFlowManagerService interface

	Developing applications for human tasks
	Starting an invocation task that invokes a synchronous interface
	Starting an invocation task that invokes an asynchronous interface
	Creating and starting a task instance
	Processing to-do tasks or collaboration tasks
	Suspending and resuming a task instance
	Analyzing the results of a task
	Terminating a task instance
	Deleting task instances
	Releasing a claimed task
	Managing work items
	Creating task templates and task instances at runtime
	HumanTaskManagerService interface

	Developing applications for business processes and human tasks
	Determining the process templates or activities that can be started
	Processing a single person workflow that includes human tasks

	Handling exceptions and faults
	Handling API exceptions
	Checking which fault is set for an activity
	Checking which fault occurred for a stopped invoke activity

	Developing Web service API client applications
	Introduction: Web services
	Web service components and sequence of control
	Overview of the Web services APIs
	Requirements for business processes and human tasks
	Developing client applications
	Copying artifacts
	Publishing and exporting artifacts from the server environment
	Using files on the client CD

	Developing client applications in the Java Web services environment
	Generating a proxy client (Java Web services)
	Creating helper classes for BPEL processes (Java Web services)
	Creating a client application (Java Web services)
	Adding security (Java Web services)
	Adding transaction support (Java Web services)

	Developing client applications in the .NET environment
	Generating a proxy client (.NET)
	Creating helper classes for BPEL processes (.NET)
	Creating a client application (.NET)
	Adding security (.NET)

	Querying business-process and task-related objects
	Queries on business-process and task-related objects
	Predefined views for queries on business-process and human-task objects
	Managing stored queries

	Developing JMS client applications
	Introduction to JMS
	Requirements for business processes
	Accessing the JMS interface
	Structure of a Business Process Choreographer JMS message
	Authorization for JMS renderings
	Overview of the JMS API
	Developing JMS applications
	Copying artifacts
	Checking the response message for business exceptions

	Developing Web applications for business processes and human tasks, using JSF components
	Adding the List component to a JSF application
	Adding the Details component to a JSF application
	Adding the CommandBar component to a JSF application
	Adding the Message component to a JSF application

	Developing JSP pages for task and process messages
	User-defined JSP fragments

	Creating plug-ins to customize human task functionality
	Creating API event handlers
	API event handlers

	Creating notification event handlers
	Creating plug-ins to post-process people query results
	Installing plug-ins
	Registering plug-ins

	Part 2. Deploying applications
	Chapter 3. Overview of preparing and installing modules
	Libraries and JAR files overview
	EAR file overview
	Preparing to deploy to a server
	Considerations for installing service applications on clusters

	Chapter 4. Installing a module on a production server
	Creating an installable EAR file using serviceDeploy
	Deploying applications using Apache Ant tasks

	Chapter 5. Installing business process and human task applications
	Installing business process and human task applications interactively
	Configuring process application data source and set reference settings

	Uninstalling business process and human task applications, using the administrative console
	Uninstalling business process and human task applications, using administrative commands

	Chapter 6. Installing adapters
	Chapter 7. Installing EIS applications
	Deploying an EIS application module to the J2SE platform
	Deploying an EIS application module to the J2EE platform

	Chapter 8. Troubleshooting a failed deployment
	Deleting J2C activation specifications
	Deleting SIBus destinations

	Part 3. Appendixes
	Notices

