
WebSphere® Process Server for z/OS

Developing and Deploying Modules

Version 6.0.2

���

Note

Before using this information, be sure to read the general information in “Notices” on page 43.

30 March 2007

This edition applies to version 6, release 0, modification 2 of WebSphere Process Server for z/OS (product number

5655-N53) and to all subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing

from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Overview of developing modules . 1

Developing service modules . 2

Developing service components . 3

Invoking components . 5

Overview of isolating modules and targets . 8

Chapter 2. Overview of preparing and installing modules 13

Libraries and JAR files overview . 13

EAR file overview . 15

Preparing to deploy to a server . 15

Considerations for installing service applications on clusters 17

Chapter 3. Installing a module on a production server 19

Creating an installable EAR file using serviceDeploy . 19

Deploying applications using ANT tasks . 20

Chapter 4. Installing business process and human task applications 23

Deployment of models . 23

Deploying business process applications interactively . 24

Configuring process application data source and set reference settings 24

When you can install a process application on a cluster in which no servers are running 25

Uninstalling business process and human task applications, using the administrative console 27

Uninstalling business process and human task applications, using administrative commands 28

Chapter 5. Installing applications with embedded WebSphere Adapters 29

WebSphere Adapter . 30

WebSphere Adapter deployment considerations . 31

Installing Standalone WebSphere Adapters . 31

WebSphere Adapter applications as members of clusters . 32

WebSphere Business Integration Adapter applications as members of clusters 33

Chapter 6. Installing EIS applications . 35

Deploying an EIS application module to the J2SE platform 36

Deploying an EIS application module to the J2EE platform 36

Chapter 7. Troubleshooting a failed deployment 39

Deleting J2C activation specifications . 40

Deleting SIBus destinations . 41

Notices . 43

Programming interface information . 45

Trademarks and service marks . 45

© Copyright IBM Corp. 2006, 2007 iii

iv IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Chapter 1. Overview of developing modules

A module is a basic deployment unit for a WebSphere Process Server application.

A module contains one or more component libraries and staging modules used by

the application. A component may reference other service components. Developing

modules involves ensuring that the components, staging modules, and libraries

(collections of artifacts referenced by the module) required by the application are

available on the production server.

WebSphere® Integration Developer is the main tool for developing modules for

deployment to WebSphere Process Server. Although you can develop modules in

other environments, it is best to use WebSphere Integration Developer.

WebSphere Process Server supports two types of service modules: modules for

business services and mediation modules. A module for business services

implements the logic of a process. A mediation module allows communication

between applications by transforming the service invocation to a format

understood by the target, passing the request to the target and returning the result

to the originator.

The following sections address how to implement and update modules on

WebSphere Process Server.

A synopsis on components

A component is the basic building block to encapsulate reusable business logic. A

service component is associated with interfaces, references and implementations.

The interface defines a contract between a service component and a calling

component. With WebSphere Process Server, a service module can either export a

service component for use by other modules or import a service component for

use. To invoke a service component, a calling module references the interface to the

service component. The references to the interfaces are resolved by configuring the

references from the calling module to their respective interfaces.

To develop a module you must do the following activities:

1. Define interfaces for the components in the module

2. Define, modify, or manipulate business objects used by service components

3. Define or modify service components through its interfaces.

Note: A service component is defined through its interface.

4. Optionally, export or import service components.

5. Create an EAR file you use to install a module that uses components. You

create the file using either the export EAR feature in WebSphere Integration

Developer or the serviceDeploy command to create an EAR file to install a

service module that uses service components.

Development types

WebSphere Process Server provides a component programming model to facilitate

a service-oriented programming paradigm. To use this model, a provider exports

interfaces of a service component so that a consumer can import those interfaces

and use the service component as if it were local. A developer uses either

© Copyright IBM Corp. 2006, 2007 1

strongly-typed interfaces or dynamically-typed interfaces to implement or invoke

the service component. The interfaces and their methods are described in the

References section within this information center.

After installing service modules to your servers, you can use the administrative

console to change the target component for a reference from an application. The

new target must accept the same business object type and perform the same

operation that the reference from the application is requesting.

Service component development considerations

When developing a service component, ask yourself the following questions:

v Will this service component be exported and used by another module?

If so, make sure the interface you define for the component can be used by

another module.

v Will the service component take a relatively long time to run?

If so, consider implementing an asynchronous interface to the service

component.

v Is it beneficial to decentralize the service component?

If so, consider having a copy of the service component in a service module that

is deployed on a cluster of servers to benefit from parallel processing.

v Does your application require a mixture of 1-phase and 2-phase commit

resources?

If so, make sure you enable last participant support for the application.

Note: If you create your application using WebSphere Integration Developer or

create the installable EAR file using the serviceDeploy command, these

tools automatically enable the support for the application. See the topic,

“Using one-phase and two-phase commit resources in the same

transaction” in the WebSphere Application Server for z/OS information

center.

Developing service modules

A service component must be contained within a service module. Developing

service modules to contain service components is key to providing services to

other modules.

This task assumes that an analysis of requirements shows that implementing a

service component for use by other modules is beneficial.

After analyzing your requirements, you might decide that providing and using

service components is an efficient way to process information. If you determine

that reusable service components would benefit your environment, create a service

module to contain the service components.

1. Identify service components other modules can use.

Once you have identified the service components, continue with Developing

service components.

2. Identify service components within an application that could use service

components in other service modules.

Once you have identified the service components and their target components,

continue with Invoking components.

3. Connect the client components with the target components through wires.

2 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Developing service components

Develop service components to provide reusable logic to multiple applications

within your server.

This task assumes that you have already developed and identified processing that

is useful for multiple modules.

Multiple modules can use a service component. Exporting a service component

makes it available to other modules that refer to the service component through an

interface. This task describes how to build the service component so that other

modules can use it.

Note: A single service component can contain multiple interfaces.

 1. Define the data object to move data between the caller and the service

component.

The data object and its type is part of the interface between the callers and the

service component.

 2. Define an interface that the callers will use to reference the service component.

This interface definition names the service component and lists any methods

available within the service component.

 3. Develop the class that defines the implementation.

v If the component is long running (or asynchronous), continue with step 4.

v If the component is not long running (or synchronous), continue with step

5.
 4. Develop an asynchronous implementation.

Important: An asynchronous component interface cannot have a

joinsTransaction property set to true.

a. Define the interface that represents the synchronous service component.

b. Define the implementation of the service component.

c. Continue with step 6.
 5. Develop a synchronous implementation.

a. Define the interface that represents the synchronous service component.

b. Define the implementation of the service component.
 6. Save the component interfaces and implementations in files with a .java

extension.

 7. Package the service module and necessary resources in a JAR file.

See “Deploying a module to a production server” in this information center

for a description of steps 7 through 9.

 8. Run the serviceDeploy command to create an installable EAR file containing

the application.

 9. Install the application on the server node.

10. Optional: Configure the wires between the callers and the corresponding

service component, if calling a service component in another service module.

The “Administering” section of this information center describes configuring

the wires.

Chapter 1. Overview of developing modules 3

Examples of developing components

This example shows a synchronous service component that implements a single

method, CustomerInfo. The first section defines the interface to the service

component that implements a method called getCustomerInfo.

public interface CustomerInfo {

 public Customer getCustomerInfo(String customerID);

}

The following block of code implements the service component.

public class CustomerInfoImpl implements CustomerInfo {

 public Customer getCustomerInfo(String customerID) {

 Customer cust = new Customer();

 cust.setCustNo(customerID);

 cust.setFirstName("Victor");

 cust.setLastName("Hugo");

 cust.setSymbol("IBM");

 cust.setNumShares(100);

 cust.setPostalCode(10589);

 cust.setErrorMsg("");

 return cust;

 }

}

This example develops an asynchronous service component. The first section of

code defines the interface to the service component that implements a method

called getQuote.

public interface StockQuote {

 public float getQuote(String symbol);

}

The following section is the implementation of the class associated with

StockQuote.

public class StockQuoteImpl implements StockQuote {

 public float getQuote(String symbol) {

 return 100.0f;

 }

}

This next section of code implements the asynchronous interface,

StockQuoteAsync.

public interface StockQuoteAsync {

 // deferred response

 public Ticket getQuoteAsync(String symbol);

 public float getQuoteResponse(Ticket ticket, long timeout);

 // callback

 public Ticket getQuoteAsync(String symbol, StockQuoteCallback callback);

}

This section is the interface, StockQuoteCallback, which defines the

onGetQuoteResponse method.

4 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

public interface StockQuoteCallback {

 public void onGetQuoteResponse(Ticket ticket, float quote);

}

Invoke the service.

Invoking components

Components with modules can use components on any node of a WebSphere

Process Server cluster.

Before invoking a component, make sure that the module containing the

component is installed on WebSphere Process Server.

Components can use any service component available within a WebSphere Process

Server cluster by using the name of the component and passing the data type the

component expects. Invoking a component in this environment involves locating

and then creating the reference to the required component.

Note: A component in a module can invoke a component within the same module,

known as an intra-module invocation. Implement external calls

(inter-module invocations) by exporting the interface in the providing

component and importing the interface in the calling component.

Important: When invoking a component that resides on a different server than the

one on which the calling module is running, you must perform

additional configurations to the servers. The configurations required

depend on whether the component is called asynchronously or

synchronously. How to configure the application servers in this case is

described in related tasks.

1. Determine the components required by the calling module.

Note the name of the interface within a component and the data type that

interface requires.

2. Define a data object.

Although the input or return can be a Java™ class, a service data object is

optimal.

3. Locate the component.

a. Use the ServiceManager class to obtain the references available to the

calling module.

b. Use the locateService() method to find the component.

Depending on the component, the interface can either be a Web Service

Descriptor Language (WSDL) port type or a Java interface.
4. Invoke the component either synchronously or asynchronously.

You can either invoke the component through a Java interface or use the

invoke() method to dynamically invoke the component.

5. Process the return.

The component might generate an exception, so the client has to be able to

process that possibility.

Example of invoking a component

The following example creates a ServiceManager class.

ServiceManager serviceManager = new ServiceManager();

Chapter 1. Overview of developing modules 5

The following example uses the ServiceManager class to obtain a list of

components from a file that contains the component references.

InputStream myReferences = new FileInputStream("MyReferences.references");

ServiceManager serviceManager = new ServiceManager(myReferences);

The following code locates a component that implements the StockQuote Java

interface.

StockQuote stockQuote = (StockQuote)serviceManager.locateService("stockQuote");

The following code locates a component that implements either a Java or WSDL

port type interface. The calling module uses the Service interface to interact with

the component.

Tip: If the component implements a Java interface, the component can be invoked

through either the interface or the invoke() method.
Service stockQuote = (Service)serviceManager.locateService("stockQuote");

The following example shows MyValue, code that calls another component.

public class MyValueImpl implements MyValue {

 public float myValue throws MyValueException {

 ServiceManager serviceManager = new ServiceManager();

 // variables

 Customer customer = null;

 float quote = 0;

 float value = 0;

 // invoke

 CustomerInfo cInfo =

 (CustomerInfo)serviceManager.locateService("customerInfo");

 customer = cInfo.getCustomerInfo(customerID);

 if (customer.getErrorMsg().equals("")) {

 // invoke

 StockQuoteAsync sQuote =

 (StockQuoteAsync)serviceManager.locateService("stockQuote");

 Ticket ticket = sQuote.getQuoteAsync(customer.getSymbol());

 // ... do something else ...

 quote = sQuote.getQuoteResponse(ticket, Service.WAIT);

 // assign

 value = quote * customer.getNumShares();

 } else {

 // throw

 throw new MyValueException(customer.getErrorMsg());

 }

 // reply

 return value;

 }

}

Configure the wires between the calling module references and the component

interfaces.

6 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Dynamically invoking a component

When an module invokes a component that has a Web Service Descriptor

Language (WSDL) port type interface, the module must invoke the component

dynamically using the invoke() method.

This task assumes that a calling component is invoking a component dynamically.

With a WSDL port type interface, a calling component must use the invoke()

method to invoke the component. A calling module can also invoke a component

that has a Java interface this way.

1. Determine the module that contains the component required.

2. Determine the array required by the component.

The input array can be one of three types:

v Primitive uppercase Java types or arrays of this type

v Ordinary Java classes or arrays of the classes

v Service Data Objects (SDOs)
3. Define an array to contain the response from the component.

The response array can be of the same types as the input array.

4. Use the invoke() method to invoke the required component and pass the array

object to the component.

5. Process the result.

Examples of dynamically invoking a component

In the following example, a module uses the invoke() method to call a component

that uses primitive uppercase Java data types.

Service service = (Service)serviceManager.locateService("multiParamInf");

 Reference reference = service.getReference();

 OperationType methodMultiType =

 reference.getOperationType("methodWithMultiParameter");

 Type t = methodMultiType.getInputType();

 BOFactory boFactory = (BOFactory)serviceManager.locateService

 ("com/ibm/websphere/bo/BOFactory");

 DataObject paramObject = boFactory.createbyType(t);

 paramObject.set(0,"input1")

 paramObject.set(1,"input2")

 paramObject.set(2,"input3")

 service.invoke("methodMultiParamater",paramObject);

The following example uses the invoke method with a WSDL port type interface as

the target.

Service serviceOne = (Service)serviceManager.locateService("multiParamInfWSDL");

 DataObject dob = factory.create("http://MultiCallWSServerOne/bos", "SameBO");

 dob.setString("attribute1", stringArg);

 DataObject wrapBo = factory.createByElement

 ("http://MultiCallWSServerOne/wsdl/ServerOneInf", "methodOne");

 wrapBo.set("input1", dob); //wrapBo encapsulates all the parameters of methodOne

 wrapBo.set("input2", "XXXX");

Chapter 1. Overview of developing modules 7

wrapBo.set("input3", "yyyy");

 DataObject resBo= (DataObject)serviceOne.invoke("methodOne", wrapBo);

Overview of isolating modules and targets

When developing modules, you will identify services that multiple modules can

use. Leveraging services this way minimizes your development cycle and costs.

When you have a service used by many modules, you should isolate the invoking

modules from the target so that if the target is upgraded, switching to the new

service is transparent to the calling module. This topic contrasts the simple

invocation model and the isolated invocation model and provides an example of

how isolation can be useful. While describing a specific example, this is not the

only way to isolate modules from targets.

Simple invocation model

While developing a module, you might use services that are located in other

modules. You do this by importing the service into the module and then invoking

that service. The imported service is “wired” to the service exported by the other

module either in WebSphere Integration Developer or by binding the service in the

administrative console. Simple invocation model illustrates this model.

Isolated invocation model

To change the target of an invocation without stopping invoking modules, you can

isolate the invoking modules from the target of the invocation. This allows the

modules to continue processing while you change the target because you are not

changing the module itself but the downstream target. Example of isolating

applications shows how isolation allows you to change the target without affecting

the status of the invoking module.

MyModule
DifferentModule

Invoke ServiceA ServiceA

ServiceB

Figure 1. Simple invocation model

8 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Example of isolating applications

Using the simple invocation model, multiple modules invoking the same service

would look much like Multiple applications invoking a single service . MODA,

MODB, and MODC all invoke CalculateFinalCost.

The service provided by CalculateFinalCost needs updating so that new costs are

reflected in all modules that use the service. The development team builds and

tests a new service UpdatedCalculateFinal to incorporate the changes. You are

ready to bring the new service into production. Without isolation, you would have

to update all of the modules invoking CalculateFinalCost to invoke

UpdateCalculateFinal. With isolation, you only have to change the binding that

connects the buffer module to the target.

Note: Changing the service this way allows you to continue to provide the original

service to other modules that may need it.

Using isolation, you create a buffer module between the applications and the target

(see Isolated invocation model invoking UpdateCalculateFinal).

ModA

ModB

ModC

DifferentMod

CalculateFinalCost

Figure 2. Multiple applications invoking a single service

Chapter 1. Overview of developing modules 9

With this model, the invoking modules do not change, you just have to change the

binding from the buffer module import to the target (see Isolated invocation model

invoking UpdatedCalculateFinal).

ModA

ModB

ModC

BufferMod ActualMod

CalculateFinalCost

CalculateFinalCost

UpdateFinalCost

Figure 3. Isolated invocation model invoking UpdateCalculateFinal

10 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

If the buffer module invokes the target synchronously, when you restart the buffer

module (whether a mediation module or a service for business module) the results

returned to the original application come from the new target. If the buffer module

invokes the target asynchronously, the results returned to the original application

come from the new target on the next invocation.

ModA

ModB

ModC

BufferMod ActualMod

CalculateFinalCost

CalculateFinalCost

UpdateFinalCost

Figure 4. Isolated invocation model invoking UpdatedCalculateFinal

Chapter 1. Overview of developing modules 11

12 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Chapter 2. Overview of preparing and installing modules

Installing modules (also known as deploying) activates the modules in either a test

environment or a production environment. This overview briefly describes the test

and production environments and some of the steps involved in installing

modules.

Note: The process for installing applications in a production environment is

similar to the process described in “Developing and deploying applications”

in the WebSphere Application Server for z/OS information center. If you are

unfamiliar with those topics, review those first.

Before installing a module to a production environment, always verify changes in a

test environment. To install modules to a test environment, use WebSphere

Integration Developer (see the WebSphere Integration Developer information center

for more information). To install modules to a production environment, use

WebSphere Process Server.

This topic describes the concepts and tasks needed to prepare and install modules

to a production environment. Other topics describe the files that house the objects

that your module uses and help you move your module from your test

environment into your production environment. It is important to understand

these files and what they contain so you can be sure that you have correctly

installed your modules.

Libraries and JAR files overview

Modules often use artifacts that are located in libraries. Artifacts and libraries are

contained in Java archive (JAR) files that you identify when you deploy a module.

While developing a module, you might identify certain resources or components

that could be used by various pieces of the module. These resources or

components could be objects that you created while developing the module or

already existing objects that reside in a library that is already deployed on the

server. This topic describes the libraries and files that you will need when you

install an application.

What is a library?

A library contains objects or resources used by multiple modules within

WebSphere Integration Developer. The artifacts can be in JAR, resource archive

(RAR), or Web service archive (WAR) files. Some of these artifacts include:

v Interfaces or Web services descriptors (files with a .wsdl extension)

v Business object XML schema definitions (files with an .xsd extension)

v Business object maps (files with a .map extension)

v Relationship and role definitions (files with a .rel and .rol extension)

When a module needs an artifact, the server locates the artifact from the EAR class

path and loads the artifact, if it is not already loaded, into memory. From that

point on, any request for the artifact uses that copy until it is replaced. Figure 5 on

page 14 shows how an application contains components and related libraries.

© Copyright IBM Corp. 2006, 2007 13

What are JAR, RAR, and WAR files?

There are a number of files that can contain components of a module. These files

are fully described in the Java Platform, Enterprise Edition specification. Details

about JAR files can be found in the JAR specification.

In WebSphere Process Server, a JAR file also contains an application, which is the

assembled version of the module with all the supporting references and interfaces

to any other service components used by the module. To completely install the

application, you need this JAR file, any other libraries such as JAR files, Web

services archive (WAR) files, resource archive (RAR) files, staging libraries

(Enterprise Java Beans - EJB) JAR files, or any other archives, and create an

installable EAR file using the serviceDeploy command (see Installing a module on

a production server).

Naming conventions for staging modules

Within the library, there are requirements for the names of the staging modules.

These names are unique for a specific module. Name any other modules required

to deploy the application so that conflicts with the staging module names do not

occur. For a module named myService, the staging module names are:

Figure 5. Relationship amongst module, component and library

14 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

http://java.sun.com/javaee/reference/index.jsp

v myServiceApp

v myServiceEJB

v myServiceEJBClient

v myServiceWeb

Note: The serviceDeploy command only creates the myService Web staging module

if the service includes a WSDL port type service.

Considerations when using libraries

Using libraries provides consistency of business objects and consistency of

processing amongst modules because each calling module has its own copy of a

specific component. To prevent inconsistencies and failures it is important to make

sure that changes to components and business objects used by calling modules are

coordinated with all of the calling modules. Update the calling modules by:

1. Copying the module and the latest copy of the libraries to the production

server

2. Rebuilding the installable EAR file using the serviceDeploy command

3. Stopping the running application containing the calling module and reinstall it

4. Restarting the application containing the calling module

EAR file overview

An EAR file is a critical piece in deploying a service application to a production

server.

An enterprise archive (EAR) file is a compressed file that contains the libraries,

enterprise beans, and JAR files that the application requires for deployment.

You create a JAR file when you export your application modules from WebSphere

Integration Developer. Use this JAR file and any other artifact libraries or objects as

input to the installation process. The serviceDeploy command creates an EAR file

from the input files that contain the component descriptions and Java code that

comprise the application.

Preparing to deploy to a server

After developing and testing a module, you must export the module from a test

system and bring it into a production environment for deployment. To install an

application you also should be aware of the paths needed when exporting the

module and any libraries the module requires.

Before beginning this task, you should have developed and tested your modules

on a test server and resolved problems and performance issues.

This task verifies that all of the necessary pieces of an application are available and

packaged into the correct files to bring to the production server.

Note: You can also export an enterprise archive (EAR) file from WebSphere

Integration Developer and install that file directly into WebSphere Process

Server.

Important: If the services within a component use a database, install the

application on a server directly connected to the database.

Chapter 2. Overview of preparing and installing modules 15

1. Locate the folder that contains the components for the module you are to

deploy.

The component folder should be named module-name with a file in it named

module.module, the base module.

2. Verify that all components contained in the module are in component

subfolders beneath the module folder.

For ease of use, name the subfolder similar to module/component.

3. Verify that all files that comprise each component are contained in the

appropriate component subfolder and have a name similar to

component-file-name.component.

The component files contain the definitions for each individual component

within the module.

4. Verify that all other components and artifacts are in the subfolders of the

component that requires them.

In this step you ensure that any references to artifacts required by a component

are available. Names for components should not conflict with the names the

serviceDeploy command uses for staging modules. See Naming conventions for

staging modules.

5. Verify that a references file, module.references, exists in the module folder of

step 1.

The references file defines the references and the interfaces within the module.

6. Verify that a wires file, module.wires, exists in the component folder.

The wires file completes the connections between the references and the

interfaces within the module.

7. Verify that a manifest file, module.manifest, exists in the component folder.

The manifest lists the module and all the components that comprise the

module. It also contains a classpath statement so that the serviceDeploy

command can locate any other modules needed by the module.

8. Create a compressed file or a JAR file of the module as input to the

serviceDeploy command that you will use to prepare the module for

installation to the production server.

Example folder structure for MyValue module prior to

deployment

The following example illustrates the directory structure for the module

MyValueModule, which is made up of the components MyValue, CustomerInfo,

and StockQuote.

MyValueModule

 MyValueModule.manifest

 MyValueModule.references

 MyValueModule.wiring

 MyValueClient.jsp

process/myvalue

 MyValue.component

 MyValue.java

 MyValueImpl.java

service/customerinfo

 CustomerInfo.component

 CustomerInfo.java

 Customer.java

 CustomerInfoImpl.java

service/stockquote

 StockQuote.component

16 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

StockQuote.java

 StockQuoteAsynch.java

 StockQuoteCallback.java

 StockQuoteImpl.java

Install the module onto the production systems as described in Installing a module

on a production server.

Considerations for installing service applications on clusters

Installing a service application on a cluster places additional requirements on you.

It is important that you keep these considerations in mind as you install any

service applications on a cluster.

Clusters can provide many benefits to your processing environment by providing

economies of scale to help you balance request workload across servers and

provide a level of availability for clients of the applications. Consider the following

before installing an application that contains services on a cluster:

v Will users of the application require the processing power and availability

provided by clustering?

If so, clustering is the correct solution. Clustering will increase the availability

and capacity of your applications.

v Is the cluster correctly prepared for service applications?

You must configure the cluster correctly before installing and starting the first

application that contains a service. Failure to configure the cluster correctly

prevents the applications from processing requests correctly.

v Does the cluster have a backup?

You must install the application on the backup cluster also.

Chapter 2. Overview of preparing and installing modules 17

18 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Chapter 3. Installing a module on a production server

This topic describes the steps involved in taking an application from a test server

and deploying it into a production environment.

Before deploying a service application to a production server, assemble and test the

application on a test server. After testing, export the relevant files as described in

Preparing to deploy to a server in the Developing and Deploying Modules PDF and

bring the files to the production system to deploy. See the information centers for

WebSphere Integration Developer and WebSphere Application Server for z/OS for

more information.

1. Copy the module and other files onto the production server.

The modules and resources (EAR, JAR, RAR, and WAR files) needed by the

application are moved to your production environment.

2. Run the serviceDeploy command to create an installable EAR file.

This step defines the module to the server in preparation for installing the

application into production.

a. Locate the JAR file that contains the module to deploy.

b. Issue the command using the JAR file from the previous step as input.
3. Install the EAR file from step 2. How you install the applications depends on

whether you are installing the application on a stand alone server or a server in

a cell.

Note: You can either use the administrative console or a script to install the

application. See the WebSphere Application Server information center for

additional information.

4. Save the configuration. The module is now installed as an application.

5. Start the application.

The application is now active and work should flow through the module.

Monitor the application to make sure the server is processing requests correctly.

Creating an installable EAR file using serviceDeploy

To install an application in the production environment, take the files copied to the

production server and create an installable EAR file.

Before starting this task, you must have a JAR file that contains the module and

services you are deploying to the server. See Preparing to deploy to a server for

more information.

The serviceDeploy command takes a JAR file, any other dependent EAR, JAR,

RAR, WAR and ZIP files and builds an EAR file that you can install on a server.

1. Locate the JAR file that contains the module to deploy.

2. Issue the command using the JAR file from the previous step as input.

This step creates an EAR file.

Note: Perform the following steps at an administrative console.

© Copyright IBM Corp. 2006, 2007 19

3. Select the EAR file to install in the administrative console of the server.

4. Click Save to install the EAR file.

Deploying applications using ANT tasks

This topic describes how to use ANT tasks to automate the deployment of

applications to WebSphere Process Server. By using ANT tasks, you can define the

deployment of multiple applications and have them run unattended on a server.

This task assumes the following:

v The applications being deployed have already been developed and tested.

v The applications are to be installed on the same server or servers.

v You have some knowledge of ANT tasks.

v You understand the deployment process.

Information about developing and testing applications is located in the WebSphere

Integration Developer information center.

The reference portion of the information center for WebSphere Application Server

for z/OS contains a section on application programming interfaces. ANT tasks are

described in the package com.ibm.websphere.ant.tasks. For the purpose of this

topic, the tasks of interest are ServiceDeploy and InstallApplication.

If you need to install multiple applications concurrently, develop an ANT task

before deployment. The ANT task can then deploy and install the applications on

the servers without your involvement in the process.

1. Identify the applications to deploy.

2. Create a JAR file for each application.

3. Copy the JAR files to the target servers.

4. Create an ANT task to run the ServiceDeploy command to create the EAR file

for each server.

5. Create an ANT task to run the InstallApplication command for each EAR file

from step 4 on the applicable servers.

6. Run the ServiceDeploy ANT task to create the EAR file for the applications.

7. Run the InstallApplication ANT task to install the EAR files from step 6.

The applications are correctly deployed on the target servers.

Example of deploying an application unattended

This example shows an ANT task contained in a file myBuildScript.xml.

<?xml version="1.0">

<project name="OwnTaskExample" default="main" basedir=".">

 <taskdef name="servicedeploy"

 classname="com.ibm.websphere.ant.tasks.ServiceDeployTask" />

 <target name="main" depends="main2">

 <servicedeploy scaModule="c:/synctest/SyncTargetJAR"

 ignoreErrors="true"

 outputApplication="c:/synctest/SyncTargetEAREAR"

 workingDirectory="c:/synctest"

 noJ2eeDeploy="true"

 cleanStagingModules="true"/>

 </target>

</project>

20 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

This statement shows how to invoke the ANT task.

${WAS}/bin/ws_ant -f myBuildScript.xml

Tip: Multiple applications can be deployed unattended by adding additional

project statements into the file.

Use the administrative console to verify that the newly installed applications are

started and processing the workflow correctly.

Chapter 3. Installing a module on a production server 21

22 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Chapter 4. Installing business process and human task

applications

You can distribute Service Component Architecture (SCA) Enterprise JavaBeans™

(EJB) modules that contain business processes or human tasks, or both, to

deployment targets. A deployment target can be a server or a cluster.

Verify that the business process container or task container is installed and

configured for each application server or cluster on which you want to install your

application.

Before you install a business process or human task application, make sure that the

following conditions are true:

v The servers on which you want to install the application are running.

v In each cluster, at least one server on which you want to install Enterprise

JavaBeans modules with processes or tasks is running.

You can install business process and task applications from the administrative

console, from the command line, or by running an administrative script, for

example. When you run an administrative script to install a business process

application or a human task application, a server connection is required. Do not

use the -conntype NONE option as an installation option.

1. If you are installing an application on a cluster, verify that the application uses

the data source that is named after the cluster.

For example, if the application was generated using the default data source

BPEDB, change the data source for the application to BPEDB_cluster_name, where

cluster_name is the name of the cluster on which you installed the application.

2. Install the application.

All business process templates and human task templates are put into the start

state. You can create process instances and task instances from these templates.

Before you can create process instances or task instances, you must start the

application.

Deployment of models

When WebSphere Integration Developer or service deploy generates the

deployment code for your process, the constructs in the process or task model are

mapped to various Java 2 Enterprise Edition (J2EE) constructs and artifacts. All

deployment code is packaged into the enterprise application (EAR) file. Each new

version of a model that is to be deployed must be packaged into a new enterprise

application.

When you install an enterprise application that contains business process model or

human task model J2EE constructs, the model constructs are stored as process

templates or task templates, as appropriate, in the Business Process Choreographer

database. If the database system is not running, or if it cannot be accessed, the

deployment fails. Newly installed templates are, by default, in the started state.

However, the newly installed enterprise application is in the stopped state. Each

installed enterprise application can be started and stopped individually.

© Copyright IBM Corp. 2006, 2007 23

New versions of a process template or task template have the same name, but a

different valid-from attribute. You can deploy many different versions of a process

template or task template, each in a different enterprise application. However, no

two versions of the same process can have the same valid-from date. If you want

to install different versions of the same process, specify a different valid-from date

for each version. All the different process versions are stored in the database.

If you do not specify a valid-from date, the date is determined as follows:

v For a human task, the valid-from date is the date on which the application was

installed.

v For a business process, the valid-from date is the date on which the process was

modeled.

Deploying business process applications interactively

You can install an application interactively at runtime using the wsadmin tool and

the installInteractive script. You can use this script to change settings that cannot

be changed if you use the administrative console to install the application.

Perform the following steps to install business process applications interactively.

1. Start the wsadmin tool.

In the profile_root/bin directory, enter wsadmin.

2. Install the application.

At the wsadmin command-line prompt, enter the following command:

$AdminApp installInteractive application.ear

where application.ear is the qualified name of the enterprise archive file that

contains your process application. You are prompted through a series of tasks

where you can change values for the application.

3. Save the configuration changes.

At the wsadmin command-line prompt, enter the following command:

$AdminConfig save

You must save your changes to transfer the updates to the master configuration

repository. If a scripting process ends and you have not saved your changes,

the changes are discarded.

Configuring process application data source and set reference

settings

You might need to configure process applications that run SQL statements for the

specific database infrastructure. These SQL statements can come from information

service activities or they can be statements that you run during process installation

or instance startup.

When you install the application, you can specify the following types of data

sources:

v Data sources to run SQL statements during process installation

v Data sources to run SQL statements during the startup of a process instance

v Data sources to run SQL snippet activities

The data source required to run an SQL snippet activity is defined in a BPEL

variable of type tDataSource. The database schema and table names that are

24 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

required by an SQL snippet activity are defined in BPEL variables of type

tSetReference. You can configure the initial values of both of these variables.

You can use the wsadmin tool to specify the data sources.

1. Install the process application interactively using the wsadmin tool.

2. Step through the tasks until you come to the tasks for updating data sources

and set references.

Configure these settings for your environment. The following example shows

the settings that you can change for each of these tasks.

3. Save your changes.

Example: Updating data sources and set references, using the

wsadmin tool

In the Updating data sources task, you can change data source values for initial

variable values and statements that are used during installation of the process or

when the process starts. In the Updating set references task, you can configure the

settings related to the database schema and the table names.

Task [24]: Updating data sources

//Change data source values for initial variable values at process start

Process name: Test

// Name of the process template

Process start or installation time: Process start

// Indicates whether the specified value is evaluated

//at process startup or process installation

Statement or variable: Variable

// Indicates that a data source variable is to be changed

Data source name: MyDataSource

// Name of the variable

JNDI name:[jdbc/sample]:jdbc/newName

// Sets the JNDI name to jdbc/newName

Task [25]: Updating set references

// Change set reference values that are used as initial values for BPEL variables

Process name: Test

// Name of the process template

Variable: SetRef

// The BPEL variable name

JNDI name:[jdbc/sample]:jdbc/newName

// Sets the JNDI name of the data source of the set reference to jdbc/newName

Schema name: [IISAMPLE]

// The name of the database schema

Schema prefix: []:

// The schema name prefix.

// This setting applies only if the schema name is generated.

Table name: [SETREFTAB]: NEWTABLE

// Sets the name of the database table to NEWTABLE

Table prefix: []:

// The table name prefix.

// This setting applies only if the prefix name is generated.

When you can install a process application on a cluster in which no

servers are running

This topic explains the exceptional circumstances in which you might need to

install an application on a cluster that has no running servers.

Chapter 4. Installing business process and human task applications 25

During the installation of a business process application on a server, the Java

Naming and Directory Interface (JNDI) name of the data source of the

corresponding business process container must be resolved. You cannot, therefore,

install an application without a server connection. In a Network Deployment (ND)

environment, this server is the deployment manager.

Restrictions lifted

If you want to install a business process application on a cluster in an ND

environment, no server in the cluster need be running if the following conditions

are true:

v The required data sources are defined at the cell level.

v The process application does not specify human tasks.

For process applications that have no human tasks, the data source lookup

operation is accomplished within the namespace of the deployment manager, when

a lookup operation in the namespace of the application server previously failed. If

the application is successfully installed, ignore any error messages in the

SystemOut.log file that indicate a failure of the data source lookup operation

within the application server namespace.

When it will work

v The lookup operation within the deployment manager namespace is successful

only if the data source JNDI name is defined at the cell level.

v If you use the wizard to configure a business process container or human task

container on a stand-alone server, the data source is defined at the server level.

The same is true if you use the configuration script bpeconfig.jacl, which is

provided in the ProcessChoreographer/config directory of your application

server installation. In this case, you must define the data source manually at the

cell level and use this data source when you install the business process

container.

v If you configure a business process container with the wizard on a cluster

member, the data source is automatically defined at the cell level. The JNDI

name is scoped by the cluster name. The same is true if you use the

configuration script bpeconfig.jacl, which is provided in the

ProcessChoreographer/config directory of your application server installation. In

this case, you do not need to change anything manually.

When it will not work

Process applications that contain human tasks require an additional JNDI name

lookup operation to locate the staff plug-in provider. Therefore, to help ensure

successful installation of such applications, make sure that the cluster includes a

running server.

Scoping side effects

A side effect of the name lookup is that if an application server is not running and

a data source is defined on its server or node level with the same name as a data

source at the cell level, the cell level data source takes precedence. This means that

you might end up using different data sources during deployment than you use at

run time.

26 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Attention: Avoid name clashes. If you define data sources at the cell level

manually, use JNDI names that have the scope of the cluster name or server name

and node name appended to them, for example, jdbc/BPEDB_cluster_name.

Uninstalling business process and human task applications, using the

administrative console

To uninstall an enterprise application that contains business processes or human

tasks, perform the following actions:

1. Stop all process and task templates in the application.

This action prevents the creation of process and task instances.

a. Click Applications → Enterprise Applications in the administrative console

navigation pane.

b. Select the application that you want to stop.

c. Under Related Items, click EJB Modules, then select an Enterprise

JavaBeans (EJB) module. If you have more than one EJB module, select the

EJB module that corresponds to the Service Component Architecture (SCA)

module that contains the business process or human task. You can find the

corresponding EJB module by appending EJB to the SCA module name. For

example, if your SCA module was named TestProcess, the EJB module is

TestProcessEJB.jar.

d. Under Additional Properties, click Business Processes or Human Tasks, or

both, as appropriate.

e. Select all process and task templates by clicking the appropriate check box.

f. Click Stop.
Repeat this step for all EJB modules that contain business process templates or

human task templates.

2. Verify that the database, at least one application server for each cluster, and the

stand-alone server where the application is deployed are running.

In a Network Deployment (ND) environment, the deployment manager, all

ND-managed stand-alone application servers, and at least one application

server must be running for each cluster where the application is installed.

3. Verify that no process instances or task instances are running nor that any are

in end states with the autoDelete flag set to false.

If necessary, an administrator can use Business Process Choreographer Explorer

to delete any process or task instances.

4. Stop and uninstall the application:

a. Click Applications → Enterprise Applications in the administrative console

navigation pane.

b. Select the application that you want to uninstall and click Stop.

This step fails if any process instances or task instances still exist in the

application.

c. Select again the application that you want to uninstall, and click Uninstall.

d. Click Save to save your changes.

The application is uninstalled.

Chapter 4. Installing business process and human task applications 27

Uninstalling business process and human task applications, using

administrative commands

Administrative commands provide an alternative to the administrative console for

uninstalling applications that contain business processes or human tasks.

If global security is enabled, verify that your user ID has operator authorization.

Ensure that the server process to which the administration client connects is

running.

v In an ND environment, the server process is the deployment manager.

v In a stand-alone environment, the server process is the application server.

To ensure that the administrative client automatically connects to the server

process, do not use the -conntype NONE option as a command option.

The following steps describe how to use the bpcTemplates.jacl script to uninstall

applications that contain business process templates or human task templates. You

must stop a template before you can uninstall the application to which it belongs.

You can use the bpcTemplates.jacl script to stop and uninstall templates in one

step.

Before you uninstall applications, you can delete process instances or task instances

associated with the templates in the applications, for example, using Business

Process Choreographer Explorer. You can also use the -force option with the

bpcTemplates.jacl script to delete any instances associated with the templates, stop

the templates, and uninstall them in one step.

CAUTION:

Because this option deletes all process instance and task instance data, you

should use this option with care.

1. Change to the Business Process Choreographer samples directory. Type the

following:

cd install_root/ProcessChoreographer/admin

2. Stop the templates and uninstall the corresponding application.

install_root/bin/wsadmin -f bpcTemplates.jacl

 [-user user_name]

 [-password user password]

 -uninstall application_name

 [-force]

Where:

user_name

If global security is enabled, provide the user ID for authentication.

user_password

If global security is enabled, provide the user password for authentication.

application_name

If global security is enabled, provide the user password for authentication.

-force

Causes any running instances to be stopped and deleted before the

application is uninstalled.

The application is uninstalled.

28 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Chapter 5. Installing applications with embedded WebSphere

Adapters

If an application is developed with a WebSphere Adapter embedded, the adapter is

deployed with the application. You do not need to install the adapter separately.

The steps to install an application with an embedded adapter are described.

This task should only be performed if the application is developed with an

embedded WebSphere Adapter.

1. Assemble an application with resource adapter archive (RAR) modules in it.

See Assembling applications.

2. Install the application following the steps in Installing a new application. In the

Map modules to servers step, specify target servers or clusters for each RAR

file. Be sure to map all other modules that use the resource adapters defined in

the RAR modules to the same targets. Also, specify the Web servers as targets

that serve as routers for requests to this application. The plug-in configuration

file (plugin-cfg.xml) for each Web server is generated based on the applications

that are routed through it.

Note: When installing a RAR file onto a server, WebSphere Process Server

looks for the manifest (MANIFEST.MF) for the connector module. It

looks first in the connectorModule.jar file for the RAR file and loads the

manifest from the connectorModule.jar file. If the class path entry is in

the manifest from the connectorModule.jar file, then the RAR uses that

class path. To ensure that the installed connector module finds the

classes and resources that it needs, check the Class path setting for the

RAR using the console. For more information, see Resource Adapter

settings and WebSphere relational resource adapter settings.

3. Save the changes. Click Finish > Save.

4. Create connection factories for the newly installed application.

a. Open the administrative console.

b. Select the newly installed application Click Applications > Enterprise

Applications > application name.

c. Click Connector Modules in the Related Items section of the page.

d. Select the RAR file. Click on filename.rar.

e. Click Resource adapter in the Additional Properties section of the page.

f. Click J2C Connection Factories in the Additional Properties section of the

page.

g. Click on an existing connection factory to update it, or New to create a

new one.

Note: If the WebSphere Adapter was configured using an EIS Import or EIS

Export a ConnectionFactory or ActivationSpec will exist and can be

updated.
Linux and UNIX: If you install an adapter that includes native path elements,

consider the following: If you have more than one native path element, and one

of the native libraries (native library A) is dependent on another library (native

© Copyright IBM Corp. 2006, 2007 29

library B), then you must copy native library B to a system directory. Because

of limitations on most UNIX® systems, an attempt to load a native library does

not look in the current directory.

After you create and save the connection factories, you can modify the resource

references defined in various modules of the application and specify the Java

Naming and Directory Interface (JNDI) names of the connection factories

wherever appropriate.

Note: A given native library can only be loaded one time for each instance of

the Java virtual machine (JVM). Because each application has its own

classloader, separate applications with embedded RAR files cannot both

use the same native library. The second application receives an exception

when it tries to load the library.

If any application deployed on the application server uses an embedded

RAR file that includes native path elements, then you must always

ensure that you shut down the application server cleanly, with no

outstanding transactions. If the application server does not shut down

cleanly it performs recovery upon server restart and loads any required

RAR files and native libraries. On completion of recovery, do not attempt

any application-related work. Shut down the server and restart it. No

further recovery is attempted by the application server on this restart,

and normal application processing can proceed.

WebSphere Adapter

A WebSphere Adapter (or JCA Adapter, or J2C Adapter) is a system-level software

driver that a Java application uses to connect to an enterprise information system

(EIS). WebSphere Adapters conform to version 1.5 of the JCA specification.

A WebSphere Adapter plugs into an application server and provides connectivity

between the EIS, the application server, and the enterprise application.

An application server vendor extends its system once to support the J2EE

Connector Architecture (JCA) and is then assured of seamless connectivity to

multiple EISs. Likewise, an EIS vendor provides one standard WebSphere Adapter

with the capability to plug into any application server that supports the connector

architecture.

WebSphere Process Server provides the WebSphere Relational Resource Adapter

(RRA) implementation. This WebSphere Adapter provides data access through

JDBC calls to access the database dynamically. The connection management is

based on the JCA connection management architecture. It provides connection

pooling, transaction, and security support. WebSphere Process Server version 6.0

supports JCA version 1.5.

Data access for container-managed persistence (CMP) beans is managed by the

WebSphere Persistence Manager indirectly. The JCA specification supports

persistence manager delegation of the data access to the WebSphere Adapter

without specific knowledge of the back-end store. For the relational database

access, the persistence manager uses the relational resource adapter to access the

data from the database. You can find the supported database platforms for the

JDBC API at the WebSphere Process Server prerequisite Web site.

IBM® supplies resource adapters for many enterprise systems separately from the

WebSphere Process Server package, including (but not limited to): the Customer

30 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Information Control System (CICS®), Host On-Demand (HOD), Information

Management System (IMS™), and Systems, Applications, and Products (SAP) R/3.

In WebSphere Process Server, EIS Imports and EIS Exports are used to interface

with WebSphere Adapters. As an alternative, applications with WebSphere

Adapters can be written by developing EJB session beans or services with tools

such as Rational® Application Developer. The session bean uses the

javax.resource.cci interfaces to communicate with an enterprise information system

through the WebSphere Adapter.

WebSphere Adapter deployment considerations

The deployment of WebSphere Adapters requires specific options regarding scope.

You can deploy a WebSphere Adapter in two ways, using the administrative

console:

v Standalone - the adapter is installed at the node level and is not associated with

a specific application.

Note: Deployment of standalone WebSphere Adapters is not supported in

WebSphere Process Server v6.0.

v Embedded - the adapter is part of an application, deploying the application also

deploys the adapter.

For embedded WebSphere Adapters:

v the RAR file can be application-scoped within an SCA module (with EIS imports

or exports).

v the RAR file can be application-scoped within a non-SCA module. The

application itself, containing the EIS imports and exports, is a separate SCA

module.

You should not install standalone WebSphere Adapters.

Note: The administrative console does not preclude the installation of standalone

WebSphere Adapters, but this should not be done. WebSphere Adapters

should be embedded in applications.

Only embedded WebSphere Adapters are appropriate for deployment in

WebSphere Process Server. Furthermore, deployment of an embedded WebSphere

Adapter is only supported for RAR files that are application-scoped within an SCA

module; deployment in a non-SCA module is not supported.

Installing Standalone WebSphere Adapters

If you intend to use a standalone WebSphere Adapter you should install it, as

described here. You can alternatively use an embedded adapter, which is installed

automatically as part of the installation of the associated application.

Note: WebSphere Adapters should be embedded in applications. Standalone

WebSphere Adapters are not support in WebSphere Process Server v6.0.

These instructions are for reference only.

You should configure the database before installing the adapter.

Chapter 5. Installing applications with embedded WebSphere Adapters 31

You must have access to, and be part of the necessary security role for, the

administrative console to perform this task.

1. Open the Install RAR file dialog window. On the administrative console:

a. Expand Resources

b. Click Resource Adapters

c. Select the scope at which you want to define this resource adapter. (This

scope becomes the scope of your connection factory). You can choose cell,

node, cluster, or server.

d. Click Install RAR

A window opens in which you can install a JCA connector and create, for it, a

WebSphere Adapter. You can also use the New button, but the New button

creates only a new resource adapter (the JCA connector must already be

installed on the system).

Note: When installing a RAR file using this dialog, the scope you define on the

Resource Adapters page has no effect on where the RAR file is installed.

You can install RAR files only at the node level. The node on which the

file is installed is determined by the scope on the Install RAR page. (The

scope you set on the Resource Adapters page determines the scope of

the new resource adapters, which you can install at the server, node, or

cell level.)

2. Install the RAR file

From the dialog, install the WebSphere Adapter in the following manner:

a. Browse to the location of the JCA connector. If the RAR file is on the local

workstation select Local Path and browse to find the file. If the RAR file is

on a network server, select Server path and specify the fully qualified path

to the file.

b. Click Next

c. Enter the resource adapter name and any other properties needed under

General Properties. If you install a J2C Resource Adapter that includes

native path elements, consider the following: If you have more than one

native path element, and one of the native libraries (native library A) is

dependent on another library (native library B), then you must copy native

library B to a system directory. Because of limitations on most UNIX

systems, an attempt to load a native library does not look in the current

directory.

d. Click OK.

WebSphere Adapter applications as members of clusters

WebSphere Adapter module applications can be cloned as members of a cluster

under certain conditions.

WebSphere Adapter module applications can be one of three types, depending on

the flow of information through the adapter:

v A WebSphere Adapter application with only EIS exports - only inbound traffic.

v A WebSphere Adapter application with only EIS imports - only outbound traffic.

v A WebSphere Adapter application with both EIS imports and exports -

bidirectional traffic.

Clusters are used to provide scalability and availability to your applications in a

network deployment environment.

32 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

WebSphere Adapter module applications that have either inbound or bidirectional

traffic, cannot be cloned as members of a cluster. An application with purely

outbound traffic can be cloned as a member of a cluster.

An application that has an inbound or bidirectional WebSphere Adapter (that is,

including EIS exports) can still be given availability in a network deployment by

use of an external Operating System High Availability (HA) management software

package, such as HACMP™, Veritas or Microsoft® Cluster Server.

WebSphere Business Integration Adapter applications as members of

clusters

WebSphere Business Integration Adapter module applications can be cloned as

members of a cluster under certain conditions.

WebSphere Business Integration Adapter module applications can be one of three

types, depending on the flow of information through the adapter:

v A WebSphere Business Integration Adapter application with only EIS exports -

only inbound traffic.

v A WebSphere Business Integration Adapter application with only EIS imports -

only outbound traffic.

v A WebSphere Business Integration Adapter application with both EIS imports

and exports - bidirectional traffic.

Clusters are used to provide scalability and availability to your applications in a

network deployment environment.

WebSphere Business Integration Adapter module applications that have either

inbound or bidirectional traffic, cannot be cloned as members of a cluster. An

application with purely outbound traffic can be cloned as a member of a cluster.

An application which has inbound or bidirectional WebSphere Business Integration

Adapter (i.e., including EIS exports) can still be given availability in a network

deployment by use of an external Operating System High Availability (HA)

management software package, such as HACMP, Veritas or Microsoft Cluster

Server.

Chapter 5. Installing applications with embedded WebSphere Adapters 33

34 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Chapter 6. Installing EIS applications

An EIS application module can be deployed to a J2EE platform. The deployment

results in an application, packaged as an EAR file deployed to the server. All the

J2EE artifacts and resources are created, the application is configured and ready to

be run.

The deployment to the J2EE platform creates the following J2EE artifacts and

resources:

 Table 1. Mapping from bindings to J2EE artifacts

Binding in the SCA module Generated J2EE artifacts Created J2EE resources

EIS Import Resource References

generated on the module

Session EJB.

ConnectionFactory

EIS Export Message Driven Bean,

generated or deployed,

depending on the listener

interface supported by the

Resource Adapter.

ActivationSpec

JMS Import Message Driven Bean (MDB)

provided by the runtime is

deployed, resource references

generated on the module

Session EJB. Note that the

MDB is only created if the

import has a receive

destination.

v ConnectionFactory

v ActivationSpec

v Destinations

JMS Export Message Driven Bean

provided by the runtime is

deployed, resource references

generated on the module

Session EJB

v ActivationSpec

v ConnectionFactory

v Destinations

When the import or export defines a resource like a ConnectionFactory, the

resource reference is generated into the deployment descriptor of the module

Stateless Session EJB. Also, the appropriate binding is generated into the EJB

binding file. The name, to which resource reference is bound, is either the value of

the target attribute, if one is present, or default JNDI lookup name given to the

resource, based on the module name and import name.

Upon deployment, the implementation locates the module session bean and uses it

to lookup the resources.

During deployment of the application to the server, the EIS installation task will

check for the existence of the element resource to which it is bound. If it does not

exist, and the SCDL file specifies at least one property, the resource will be created

and configured by the EIS installation task. If the resource does not exist, no action

is taken, it is assumed that resource will be created before execution of the

application.

When the JMS Import is deployed with a receive destination, a Message Driver

Bean (MDB) is deployed. It listens for replies to requests that have been sent out.

The MDB is associated (listens on) the Destination sent with the request in the

© Copyright IBM Corp. 2006, 2007 35

JMSreplyTo header field of the JMS message. When the reply message arrives, the

MDB uses its correlation ID to retrieve the callback information stored in the

callback Destination and then invokes the callback object.

The installation task creates the ConnectionFactory and three destinations from the

information in the import file. In addition, it creates the ActivationSpec to enable

the runtime MDB to listen for replies on the receive Destination. The properties of

the ActivationSpec are derived from the Destination/ConnectionFactory properties.

If the JMS provider is a SIBus Resource Adapter, the SIBus Destinations

corresponding to the JMS Destination are created.

When the JMS Export is deployed, a Message Driven Bean (MDB) (not the same

MDB as the one deployed for JMS Import) is deployed. It listens for the incoming

requests on the receive Destination and then dispatches the requests to be

processed by the SCA. The installation task creates the set of resources similar to

the one for JMS Import, an ActivationSpec, ConnectionFactory used for sending a

reply and two Destinations. All the properties of these resources are specified in

the export file. If the JMS provider is an SIBus Resource Adapter, the SIBus

Destinations corresponding to JMS Destination are created.

Deploying an EIS application module to the J2SE platform

The EIS Module can be deployed to J2SE platform however only EIS Import will

be supported.

You need to create an EIS application module with a JMS Import binding in the

WebSphere Integration Development environment before commencing this task.

An EIS application module would be furnished with a JMS Import binding when

you want to access EIS systems asynchronously through the use of message

queues.

Deploying to the J2SE platform is the only instance where the binding

implementation can be executed in the non-managed mode. The JMS Binding

requires asynchronous and JNDI support, neither of which is provided by the base

service component architecture or the J2SE. The J2EE Connector Architecture does

not support non-managed inbound communication thus eliminating EIS Export.

When the EIS application module with the EIS Import is deployed to J2SE, in

addition to the module dependencies, the WebSphere Adapter used by the import

has to be specified as the dependency, in the manifest or any other form supported

by SCA.

Deploying an EIS application module to the J2EE platform

The deployment of EIS module to the J2EE platform results in an application,

packaged as an EAR file deployed to the server. All the J2EE artifacts and

resources are created, the application is configured and ready to be run.

You need to create an EIS module with a JMS Import binding in the WebSphere

Integration Development environment before commencing this task.

The deployment to the J2EE platform creates the following J2EE artifacts and

resources:

36 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Table 2. Mapping from bindings to J2EE artifacts

Binding in the SCA module Generated J2EE artifacts Created J2EE resources

EIS Import Resource References

generated on the module

Session EJB.

ConnectionFactory

EIS Export Message Driven Bean,

generated or deployed,

depending on the listener

interface supported by the

Resource Adapter.

ActivationSpec

JMS Import Message Driven Bean (MDB)

provided by the runtime is

deployed, resource references

generated on the module

Session EJB. Note that the

MDB is only created if the

import has a receive

destination.

v ConnectionFactory

v ActivationSpec

v Destinations

JMS Export Message Driven Bean

provided by the runtime is

deployed, resource references

generated on the module

Session EJB

v ActivationSpec

v ConnectionFactory

v Destinations

When the import or export defines a resource like a ConnectionFactory, the

resource reference is generated into the deployment descriptor of the module

Stateless Session EJB. Also, the appropriate binding is generated into the EJB

binding file. The name, to which resource reference is bound, is either the value of

the target attribute, if one is present, or default JNDI lookup name given to the

resource, based on the module name and import name.

Upon deployment, the implementation locates the module session bean and uses it

to lookup the resources.

During deployment of the application to the server, the EIS installation task will

check for the existence of the element resource to which it is bound. If it does not

exist, and the SCDL file specifies at least one property, the resource will be created

and configured by the EIS installation task. If the resource does not exist, no action

is taken, it is assumed that resource will be created before execution of the

application.

When the JMS Import is deployed with a receive destination, a Message Driver

Bean (MDB) is deployed. It listens for replies to requests that have been sent out.

The MDB is associated (listens on) the Destination sent with the request in the

JMSreplyTo header field of the JMS message. When the reply message arrives, the

MDB uses its correlation ID to retrieve the callback information stored in the

callback Destination and then invokes the callback object.

The installation task creates the ConnectionFactory and three destinations from the

information in the import file. In addition, it creates the ActivationSpec to enable

the runtime MDB to listen for replies on the receive Destination. The properties of

the ActivationSpec are derived from the Destination/ConnectionFactory properties.

If the JMS provider is a SIBus Resource Adapter, the SIBus Destinations

corresponding to the JMS Destination are created.

Chapter 6. Installing EIS applications 37

When the JMS Export is deployed, a Message Driven Bean (MDB) (not the same

MDB as the one deployed for JMS Import) is deployed. It listens for the incoming

requests on the receive Destination and then dispatches the requests to be

processed by the SCA. The installation task creates the set of resources similar to

the one for JMS Import, an ActivationSpec, ConnectionFactory used for sending a

reply and two Destinations. All the properties of these resources are specified in

the export file. If the JMS provider is an SIBus Resource Adapter, the SIBus

Destinations corresponding to JMS Destination are created.

38 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Chapter 7. Troubleshooting a failed deployment

This topic describes the steps to take to determine the cause of a problem when

deploying an application. It also presents some possible solutions.

This topic assumes the following things:

v You have a basic understanding of debugging a module.

v Logging and tracing is active while the module is being deployed.

The task of troubleshooting a deployment begins after you receive notification of

an error. There are various symptoms of a failed deployment that you have to

inspect before taking action.

1. Determine if the application installation failed.

Examine the SystemOut.log file for messages that specify the cause of failure.

Some of the reasons an application might not install include the following:

v You are attempting to install an application on multiple servers in the same

Network Deployment cell.

v An application has the same name as an existing module on the Network

Deployment cell to which you are installing the application.

v You are attempting to deploy J2EE modules within an EAR file to different

target servers.

Important: If the installation has failed and the application contains services,

you must remove any SIBus destinations or J2C activation

specifications created prior to the failure before attempting to

reinstall the application. The simplest way to remove these artifacts

is to click Save > Discard all after the failure. If you inadvertently

save the changes, you must manually remove the SIBus

destinations and J2C activation specifications (see Deleting SIBus

destinations and Deleting J2C activation specifications in the

Administering section).

2. If the application is installed correctly, examine it to determine if it started

successfully.

If the application did not start successfully, the failure occurred when the server

attempted to initiate the resources for the application.

a. Examine the SystemOut.log file for messages that will direct you on how to

proceed.

b. Determine if resources required by the application are available and/or

have started successfully.

Resources that are not started prevent an application from running. This

protects against lost information. The reasons for a resource not starting

include:

v Bindings are specified incorrectly

v Resources are not configured correctly

v Resources are not included in the resource archive (RAR) file

v Web resources not included in the Web services archive (WAR) file
c. Determine if any components are missing.

The reason for missing a component is an incorrectly built enterprise

archive (EAR) file. Make sure that all of the components required by the

© Copyright IBM Corp. 2006, 2007 39

module are in the correct folders on the test system on which you built the

Java archive (JAR) file. Refer to Developing and deploying modules >

Overview of preparing and installing modules > Preparing to deploy to a

server for additional information.
3. Examine the application to see if there is information flowing through it.

Even a running application can fail to process information. Reasons for this are

similar to those mentioned in step 2b on page 39.

a. Determine if the application uses any services contained in another

application. Make sure that the other application is installed and has started

successfully.

b. Determine if the import and export bindings for devices contained in other

applications used by the failing application are configured correctly. Use the

administrative console to examine and correct the bindings.
4. Correct the problem and restart the application.

Deleting J2C activation specifications

The system builds J2C application specifications when installing an application that

contains services. There are occasions when you must delete these specifications

before reinstalling the application.

If you are deleting the specification because of a failed application installation,

make sure the module in the Java Naming and Directory Interface (JNDI) name

matches the name of the module that failed to install. The second part of the JNDI

name is the name of the module that implemented the destination. For example in

sca/SimpleBOCrsmA/ActivationSpec, SimpleBOCrsmA is the module name.

Delete J2C activation specifications when you inadvertently saved a configuration

after installing an application that contains services and do not require the

specifications.

1. Locate the activation specification to delete.

The specifications are contained in the resource adapter panel. Navigate to this

panel by clicking Resources > Resource adapters.

a. Locate the Platform Messaging Component SPI Resource Adapter.

To locate this adapter, you must be at the node scope for a stand alone

server or at the server scope in a Network Deployment environment.
2. Display the J2C activation specifications associated with the Platform

Messaging Component SPI Resource Adapter.

Click on the resource adapter name and the next panel displays the associated

specifications.

3. Delete all of the specifications with a JNDI Name that matches the module

name that you are deleting.

a. Click the check box next to the appropriate specifications.

b. Click Delete.

The system removes selected specifications from the display.

Save the changes.

40 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Deleting SIBus destinations

SIBus destinations are the connections that make services available to applications.

There will be times that you will have to remove destinations.

If you are deleting the destination because of a failed application installation, make

sure the module in the destination name matches the name of the module that

failed to install. The second part of the destination is the name of the module that

implemented the destination. For example in sca/SimpleBOCrsmA/component/
test/sca/cros/simple/cust/Customer, SimpleBOCrsmA is the module name.

Delete SIBus destinations when you inadvertently saved a configuration after

installing an application that contains services or you no longer need the

destinations.

Note: This task deletes the destination from the SCA system bus only. You must

remove the entries from the application bus also before reinstalling an

application that contains services (see Deleting J2C activation specifications

in the Administering section of this information center.

1. Log into the administrative console.

2. Display the destinations on the SCA system bus.

Navigate to the panel by clicking Service integration > buses

3. Select the SCA system bus destinations.

In the display, click on SCA.SYSTEM.cellname.Bus, where cellname is the name

of the cell that contains the module with the destinations you are deleting.

4. Delete the destinations that contain a module name that matches the module

that you are removing.

a. Click on the check box next to the pertinent destinations.

b. Click Delete.

The panel displays only the remaining destinations.

Delete the J2C activation specifications related to the module that created these

destinations.

Chapter 7. Troubleshooting a failed deployment 41

42 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006, 2007 43

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

44 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

IBM, IBM (logo), AIX, CICS, Cloudscape, DB2, DB2 Connect, DB2 Universal

Database, developerWorks, Domino, IMS, Informix, iSeries, Lotus, MQSeries, MVS,

OS/390, Passport Advantage, pSeries, Rational, Redbooks, Tivoli, WebSphere,

z/OS, zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org/).

IBM WebSphere Process Server for z/OS version 6.0.2

Notices 45

46 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

����

Printed in USA

	Contents
	Chapter 1. Overview of developing modules
	Developing service modules
	Developing service components
	Invoking components
	Dynamically invoking a component

	Overview of isolating modules and targets

	Chapter 2. Overview of preparing and installing modules
	Libraries and JAR files overview
	EAR file overview
	Preparing to deploy to a server
	Considerations for installing service applications on clusters

	Chapter 3. Installing a module on a production server
	Creating an installable EAR file using serviceDeploy
	Deploying applications using ANT tasks

	Chapter 4. Installing business process and human task applications
	Deployment of models
	Deploying business process applications interactively
	Configuring process application data source and set reference settings

	When you can install a process application on a cluster in which no servers are running
	Uninstalling business process and human task applications, using the administrative console
	Uninstalling business process and human task applications, using administrative commands

	Chapter 5. Installing applications with embedded WebSphere Adapters
	WebSphere Adapter
	WebSphere Adapter deployment considerations
	Installing Standalone WebSphere Adapters
	WebSphere Adapter applications as members of clusters
	WebSphere Business Integration Adapter applications as members of clusters

	Chapter 6. Installing EIS applications
	Deploying an EIS application module to the J2SE platform
	Deploying an EIS application module to the J2EE platform

	Chapter 7. Troubleshooting a failed deployment
	Deleting J2C activation specifications
	Deleting SIBus destinations

	Notices
	Programming interface information
	Trademarks and service marks

