
WebSphere® Process Server for z/OS

Developing and Deploying Modules

Version 6.0.1

���

Note

Before using this information, be sure to read the general information in “Notices” on page 121.

23 June 2006

This edition applies to version 6, release 0, modification 1 of WebSphere Process Server for z/OS (product number

5655-N53) and to all subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing

from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Developing and deploying modules . 1

Overview of developing modules . 1

Developing service modules . 2

Developing applications for business processes and tasks . 17

Accessing the generic APIs . 18

Developing applications for business processes . 22

Developing applications for human tasks . 39

Querying business-process and task-related objects . 57

Handling exceptions and faults . 78

Developing Web applications for business processes and human tasks, using JSF components 80

Developing event handlers for human task events . 99

Overview of preparing and installing modules . 100

Libraries and JAR files overview . 101

EAR file overview . 103

Preparing to deploy to a server . 103

Considerations for installing service applications on clusters 105

Installing a module on a production server . 105

Creating an installable EAR file using serviceDeploy . 106

Deploying applications using ANT tasks . 106

Installing business process and human task applications . 107

Deployment of models . 108

When you can install a process application on a cluster in which no servers are running 108

Uninstalling business process and human task applications, using the administrative console 110

Uninstalling business process and human task applications, using administrative commands 110

Installing applications with embedded WebSphere Adapters 111

WebSphere Adapter . 113

WebSphere Adapter deployment considerations . 113

Installing Standalone WebSphere Adapters . 114

WebSphere Adapter applications as members of clusters 115

WebSphere Business Integration Adapter applications as members of clusters 115

Installing EIS applications . 116

Deploying an EIS application module to the J2SE platform 116

Deploying an EIS application module to the J2EE platform 116

Troubleshooting a failed deployment . 118

Deleting J2C activation specifications . 119

Deleting SIBus destinations . 120

Notices . 121

Programming interface information . 123

Trademarks and service marks . 123

© Copyright IBM Corp. 2006 iii

iv IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Developing and deploying modules

Developing and deploying modules are fundamental tasks.

WebSphere Process Server documentation (in PDF format)

The following topics describe the concepts and tasks involved in developing

modules for use with WebSphere® Process Server and deploying modules to the

server.

Overview of developing modules

A module is a basic deployment unit for a WebSphere Process Server application.

A module contains one or more component libraries and staging modules used by

the application. A component may reference other service components. Developing

modules involves ensuring that the components, staging modules, and libraries

(collections of artifacts referenced by the module) required by the application are

available on the production server.

WebSphere Integration Developer is the main tool for developing modules for

deployment to WebSphere Process Server. Although you can develop modules in

other environments, it is best to use WebSphere Integration Developer.

WebSphere Process Server supports two types of service modules:

modules for business services and mediation modules. A module for business

services implements the logic of a process. A mediation module allows

communication between applications by transforming the service invocation to a

format understood by the target, passing the request to the target and returning

the result to the originator.

The following sections address how to implement and update modules on

WebSphere Process Server.

A synopsis on components

A component is the basic building block to encapsulate reusable business logic. A

service component is associated with interfaces, references and implementations.

The interface defines a contract between a service component and a calling

component. With WebSphere Process Server, a service module can either export a

service component for use by other modules or import a service component for

use. To invoke a service component, a calling module references the interface to the

service component. The references to the interfaces are resolved by configuring the

references from the calling module to their respective interfaces.

To develop a module you must do the following activities:

1. Define interfaces for the components in the module

2. Define, modify, or manipulate business objects used by service components

3. Define or modify service components through its interfaces.

Note: A service component is defined through its interface.

4. Optionally, export or import service components.

© Copyright IBM Corp. 2006 1

http://www.ibm.com/software/integration/wps/library/infocenter/doc/

5. Create an EAR file you use to install a module that uses components. You

create the file using either the export EAR feature in WebSphere Integration

Developer or the serviceDeploy command to create an EAR file to install a

service module that uses service components.

Development types

WebSphere Process Server provides a component programming model to facilitate

a service-oriented programming paradigm. To use this model, a provider exports

interfaces of a service component so that a consumer can import those interfaces

and use the service component as if it were local. A developer uses either

strongly-typed interfaces or dynamically-typed interfaces to implement or invoke

the service component. The interfaces and their methods are described in the

References section within this information center.

After installing service modules to your servers, you can use the administrative

console to change the target component for a reference from an application. The

new target must accept the same business object type and perform the same

operation that the reference from the application is requesting.

Service component development considerations

When developing a service component, ask yourself the following questions:

v Will this service component be exported and used by another module?

If so, make sure the interface you define for the component can be used by

another module.

v Will the service component take a relatively long time to run?

If so, consider implementing an asynchronous interface to the service

component.

v Is it beneficial to decentralize the service component?

If so, consider having a copy of the service component in a service module that

is deployed on a cluster of servers to benefit from parallel processing.

v Does your application require a mixture of 1-phase and 2-phase commit

resources?

If so, make sure you enable last participant support for the application.

Note: If you create your application using WebSphere Integration Developer or

create the installable EAR file using the serviceDeploy command, these

tools automatically enable the support for the application. See the topic,

“Using one-phase and two-phase commit resources in the same

transaction” in the WebSphere Application Server for z/OS information

center.

Developing service modules

A service component must be contained within a service module. Developing

service modules to contain service components is key to providing services to

other modules.

This task assumes that an analysis of requirements shows that implementing a

service component for use by other modules is beneficial.

After analyzing your requirements, you might decide that providing and using

service components is an efficient way to process information. If you determine

2 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

that reusable service components would benefit your environment, create a service

module to contain the service components.

1. Identify service components other modules can use.

Once you have identified the service components, continue with Developing

service components.

2. Identify service components within an application that could use service

components in other service modules.

Once you have identified the service components and their target components,

continue with Invoking components.

3. Connect the client components with the target components through wires.

Developing service components

Develop service components to provide reusable logic to multiple applications

within your server.

This task assumes that you have already developed and identified processing that

is useful for multiple modules.

Multiple modules can use a service component. Exporting a service component

makes it available to other modules that refer to the service component through an

interface. This task describes how to build the service component so that other

modules can use it.

Note: A single service component can contain multiple interfaces.

 1. Define the data object to move data between the caller and the service

component.

The data object and its type is part of the interface between the callers and the

service component.

 2. Define an interface that the callers will use to reference the service component.

This interface definition names the service component and lists any methods

available within the service component.

 3. Develop the class that defines the implementation.

v If the component is long running (or asynchronous), continue with step 4.

v If the component is not long running (or synchronous), continue with step

5.
 4. Develop an asynchronous implementation.

Important: An asynchronous component interface cannot have a

joinsTransaction property set to true.

a. Define the interface that represents the synchronous service component.

b. Define the implementation of the service component.

c. Continue with step 6.
 5. Develop a synchronous implementation.

a. Define the interface that represents the synchronous service component.

b. Define the implementation of the service component.
 6. Save the component interfaces and implementations in files with a .java

extension.

 7. Package the service module and necessary resources in a JAR file.

See “Deploying a module to a production server” in this information center

for a description of steps 7 through 9 on page 4.

Developing and deploying modules 3

8. Run the serviceDeploy command to create an installable EAR file containing

the application.

 9. Install the application on the server node.

10. Optional: Configure the wires between the callers and the corresponding

service component, if calling a service component in another service module.

The “Administering” section of this information center describes configuring

the wires.

Examples of developing components

This example shows a synchronous service component that implements a single

method, CustomerInfo. The first section defines the interface to the service

component that implements a method called getCustomerInfo.

public interface CustomerInfo {

 public Customer getCustomerInfo(String customerID);

}

The following block of code implements the service component.

public class CustomerInfoImpl implements CustomerInfo {

 public Customer getCustomerInfo(String customerID) {

 Customer cust = new Customer();

 cust.setCustNo(customerID);

 cust.setFirstName("Victor");

 cust.setLastName("Hugo");

 cust.setSymbol("IBM");

 cust.setNumShares(100);

 cust.setPostalCode(10589);

 cust.setErrorMsg("");

 return cust;

 }

}

This example develops an asynchronous service component. The first section of

code defines the interface to the service component that implements a method

called getQuote.

public interface StockQuote {

 public float getQuote(String symbol);

}

The following section is the implementation of the class associated with

StockQuote.

public class StockQuoteImpl implements StockQuote {

 public float getQuote(String symbol) {

 return 100.0f;

 }

}

This next section of code implements the asynchronous interface,

StockQuoteAsync.

public interface StockQuoteAsync {

 // deferred response

 public Ticket getQuoteAsync(String symbol);

4 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

public float getQuoteResponse(Ticket ticket, long timeout);

 // callback

 public Ticket getQuoteAsync(String symbol, StockQuoteCallback callback);

}

This section is the interface, StockQuoteCallback, which defines the

onGetQuoteResponse method.

public interface StockQuoteCallback {

 public void onGetQuoteResponse(Ticket ticket, float quote);

}

Invoke the service.

Invoking components

Components with modules can use components on any node of a WebSphere

Process Server cluster.

Before invoking a component, make sure that the module containing the

component is installed on WebSphere Process Server.

Components can use any service component available within a WebSphere Process

Server cluster by using the name of the component and passing the data type the

component expects. Invoking a component in this environment involves locating

and then creating the reference to the required component.

Note: A component in a module can invoke a component within the same module,

known as an intra-module invocation. Implement external calls

(inter-module invocations) by exporting the interface in the providing

component and importing the interface in the calling component.

Important: When invoking a component that resides on a different server than the

one on which the calling module is running, you must perform

additional configurations to the servers. The configurations required

depend on whether the component is called asynchronously or

synchronously. How to configure the application servers in this case is

described in related tasks.

1. Determine the components required by the calling module.

Note the name of the interface within a component and the data type that

interface requires.

2. Define a data object.

Although the input or return can be a Java™ class, a service data object is

optimal.

3. Locate the component.

a. Use the ServiceManager class to obtain the references available to the

calling module.

b. Use the locateService() method to find the component.

Depending on the component, the interface can either be a Web Service

Descriptor Language (WSDL) port type or a Java interface.
4. Invoke the component either synchronously or asynchronously.

You can either invoke the component through a Java interface or use the

invoke() method to dynamically invoke the component.

5. Process the return.

Developing and deploying modules 5

The component might generate an exception, so the client has to be able to

process that possibility.

Example of invoking a component

The following example creates a ServiceManager class.

ServiceManager serviceManager = new ServiceManager();

The following example uses the ServiceManager class to obtain a list of

components from a file that contains the component references.

InputStream myReferences = new FileInputStream("MyReferences.references");

ServiceManager serviceManager = new ServiceManager(myReferences);

The following code locates a component that implements the StockQuote Java

interface.

StockQuote stockQuote = (StockQuote)serviceManager.locateService("stockQuote");

The following code locates a component that implements either a Java or WSDL

port type interface. The calling module uses the Service interface to interact with

the component.

Tip: If the component implements a Java interface, the component can be invoked

through either the interface or the invoke() method.
Service stockQuote = (Service)serviceManager.locateService("stockQuote");

The following example shows MyValue, code that calls another component.

public class MyValueImpl implements MyValue {

 public float myValue throws MyValueException {

 ServiceManager serviceManager = new ServiceManager();

 // variables

 Customer customer = null;

 float quote = 0;

 float value = 0;

 // invoke

 CustomerInfo cInfo =

 (CustomerInfo)serviceManager.locateService("customerInfo");

 customer = cInfo.getCustomerInfo(customerID);

 if (customer.getErrorMsg().equals("")) {

 // invoke

 StockQuoteAsync sQuote =

 (StockQuoteAsync)serviceManager.locateService("stockQuote");

 Ticket ticket = sQuote.getQuoteAsync(customer.getSymbol());

 // ... do something else ...

 quote = sQuote.getQuoteResponse(ticket, Service.WAIT);

 // assign

 value = quote * customer.getNumShares();

 } else {

 // throw

 throw new MyValueException(customer.getErrorMsg());

 }

6 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

// reply

 return value;

 }

}

Configure the wires between the calling module references and the component

interfaces.

Dynamically invoking a component:

When an module invokes a component that has a Web Service Descriptor

Language (WSDL) port type interface, the module must invoke the component

dynamically using the invoke() method.

 This task assumes that a calling component is invoking a component dynamically.

With a WSDL port type interface, a calling component must use the invoke()

method to invoke the component. A calling module can also invoke a component

that has a Java

interface this way.

1. Determine the module that contains the component required.

2. Determine the array required by the component.

The input array can be one of three types:

v Primitive uppercase Java types or arrays of this type

v Ordinary Java classes or arrays of the classes

v Service Data Objects (SDOs)
3. Define an array to contain the response from the component.

The response array can be of the same types as the input array.

4. Use the invoke() method to invoke the required component and pass the array

object to the component.

5. Process the result.

Examples of dynamically invoking a component

In the following example, a module uses the invoke() method to call a component

that uses primitive uppercase Java data types.

Service service = (Service)serviceManager.locateService("multiParamInf");

 Reference reference = service.getReference();

 OperationType methodMultiType =

 reference.getOperationType("methodWithMultiParameter");

 Type t = methodMultiType.getInputType();

 BOFactory boFactory = (BOFactory)serviceManager.locateService

 ("com/ibm/websphere/bo/BOFactory");

 DataObject paramObject = boFactory.createbyType(t);

 paramObject.set(0,"input1")

 paramObject.set(1,"input2")

 paramObject.set(2,"input3")

 service.invoke("methodMultiParamater",paramObject);

Developing and deploying modules 7

The following example uses the invoke method with a WSDL port type interface as

the target.

Service serviceOne = (Service)serviceManager.locateService("multiParamInfWSDL");

 DataObject dob = factory.create("http://MultiCallWSServerOne/bos", "SameBO");

 dob.setString("attribute1", stringArg);

 DataObject wrapBo = factory.createByElement

 ("http://MultiCallWSServerOne/wsdl/ServerOneInf", "methodOne");

 wrapBo.set("input1", dob); //wrapBo encapsulates all the parameters of methodOne

 wrapBo.set("input2", "XXXX");

 wrapBo.set("input3", "yyyy");

 DataObject resBo= (DataObject)serviceOne.invoke("methodOne", wrapBo);

Considerations when invoking services on different servers

One of the benefits of Service Oriented Architecture is the ability for consumers to

use services that already exist in other service modules. To balance the workload

equitably, you may install applications on different servers within a cell and those

applications may reside on different physical servers.

One of the advantages of WebSphere Process Server is the ability to distribute the

application workload across multiple servers in a cell. This distribution allows for

better workload balancing amongst the various servers within the cell and

maximizes the maintainability of the computing resources because there is only

one copy of an application or service within the server. Thus, an application on

server A may require a service installed in server B within the cell. To use services

in this manner, you must configure communications between the servers. The type

of configuration you perform depends on whether the calling service component

invokes the service asynchronously or synchronously.

Related topics describe how to configure the systems for both asynchronous and

synchronous invocations.

Configuring servers to invoke services asynchronously:

To enable service components on different servers to communicate, you have to

configure the servers similarly. This topic describes the configuration you perform

to enable the communication for applications that asynchronously invoke services

on a different server.

 The task assumes that you have already installed WebSphere Process Server on the

systems for which you are configuring the communications but have not yet

installed the applications involved. You are using an administrative console that

can examine and change the configuration for both servers involved.

Before installing an application that requires the services of a service component

installed on another system, you must configure the systems so they can

communicate the requests. For service modules that use asynchronous invocations,

the process involves foreign buses and Service Integration Bus (SIBus) mediations.

Note: For the purposes of this task, the invoking service module resides on system

A and the target resides on system B.

For the purposes of this task, Figure 1 on page 9 contains the information to use in

the configuration.

8 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Note: For simplicity, only the servers involved in this communication in each cell

is shown and each server resides on a different physical machine.

1. Collect information about each server involved in the communication. You will

need the following information for both the originator and target servers:

v Host IP address

v Cell

v Node

v Server

v Bus name

v Messaging engine

v Failed Event Queue name
2. Install the applications.

Figure 1. Invoking a service on a different system

Developing and deploying modules 9

3. Create a foreign bus on each server pointing to the other server and set the

routing definition type to Direct, service integration bus link.

See “Adding a foreign bus” in the WebSphere Application Server Network

Deployment, version 6 information center for more information.

From the example, the foreign bus on System A would be

SCA.SYSTEM.SRIKANTHCNode01Cell.Bus. The foreign bus on System B

would be SCA.SYSTEM.WBIDev-BGMNode01Cell.Bus.

4. Set up an SIB mediation link on each server pointing to the messaging engine

on the other server.

See “Adding a service integration bus link” in the WebSphere Application

Server Network Deployment, version 6 information center for more

information.

From the example, the SIB mediation link on System A would be:

SIB Link: TestCrossCell

Remote ME: SRIKANTHCNode01.server1-SCA.SYSTEM.SRIKANTHCNode01Cell.Bus

Bootstrap: 9.26.237.144:7277:BootstrapBasicMessaging

The SIB mediation link on System B would be:

SIB Link: TestCrossCell

Remote ME: WPSNode.server1.SCA.SYSTEM.WBIDev-BGMNode01.Cell.Bus

Bootstrap: 9.26.237.118:7276:BootstrapBasicMessaging

Attention: The port number in the bootstrap is the SIB endpoint address port.

If you enabled security, you must use the secure SIB endpoint address port.

5. Synchronize the SIB mediation links by restarting the servers.

You should see messages similar to: [8/24/05 11:00:09:741 PDT] 00000086

SibMessage I [SCA.SYSTEM.WBIDev-BGMNode01Cell.Bus:WPSNode.server1-
SCA.SYSTEM.WBIDev-BGMNode01Cell.Bus] CWSIP0382I: messaging engine

2D7333574B0CD70B responded to subscription request, Publish Subscribe

topology now consistent.

6. Display the destinations for each service module.

7. Modify the forwarding path of outgoing destinations of the invoking service

module that must be wired to targets on the other system.

The destination to wire will have importlink in the destination name, for

example on System A the destination would be sca/SimpleBoCrsmA/
importlink/test/sca/cros/simple/custinfo/CustomerInfo. Modify the path by

prefixing the foreign bus name to the destination name. From the example, the

foreign bus name for the second system is

SCA.SYSTEM.SRIKANTHCNode01Cell.Bus. The result is

SCA.SYSTEM.SRIKANTHCNode01Cell.Bus:sca/SimpleBoCrsmA/importlink/

test/sca/cros/simple/custinfo/CustomerInfo

8. Create two destinations on the target server and configure them to point back

to the invoking service module on the other server.

From the example, on System B you would create:

sca/SimpleBOCrsmA/import/test/sca/cros/simple/custinfo/CustomerInfo

sca/SimpleBOCrsmA/component/test/sca/cros/simple/cust/Customer

Then set the forwarding paths to point to their counterparts on invoking server.

This would look like:

SCA.SYSTEM.WBIDev-BGMNode01Cell.Bus:

sca/SimpleBOCrsmA/import/test/sca/cros/simple/custinfo/CustomerInfo

SCA.SYSTEM.WBIDev-BGMNode01Cell.Bus:

sca/SimpleBOCrsmA/component/test/sca/cros/simple/cust/Customer

a. Set the exception destination to the Failed Event queue for both of the

destinations you created.

10 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

From the example, the value would

be:WBI.FailedEventSRIKANTHCNode01.server1.
9. Optional: Add sender roles to the foreign buses, if you enabled security on the

systems. Make sure to define the user each application uses on both systems

from the operating system command prompt. The command to add the role is:

wsadmin $AdminTask addUserToForeignBusRole -bus busName

 -foreignBus foreignBusName -role roleName -user userName

Where:

busName

Is the name of the bus on the system you enter the command.

foreignBusName

Is the foreign bus to which you are adding the user.

userName

Is the userid to add to the foreign bus.

Start the applications.

Configuring servers to invoke services synchronously:

When a service component invokes another service component synchronously, you

must configure the invoking service component to point to the system running the

target so the target service can communicate results to the invoking service

component.

 The task assumes that you have already installed WebSphere Process Server on the

systems for which you are configuring the communications but have not yet

installed the applications involved. You are using an administrative console that

can examine and change the configuration for both servers involved.

A service component invoking another service synchronously can communicate

with the target only by configuring the export Java Naming and Directory Interface

(JNDI) name on the target system to a JNDI name on the invoking system.

Note: For the purposes of this task, the invoking service module resides on system

A and the target resides on system B.

For the purposes of this task, Figure 2 on page 12 contains the information to use

in the configuration.

Developing and deploying modules 11

Note: For simplicity, only the servers involved in this communication in each cell

is shown and each server resides on a different physical machine.

1. Install the applications on each server.

2. Create a new namespace binding on the invoking system (System A, in the

example) pointing to the export on the target system.

On the Name Space Bindings panel, select a scope of Cell and click Apply.

With the changed scope, click New in the display to create the new binding.

In the wizard, specify the following (the values are appropriate for the example

configuration):

a. Binding type is CORBA

b. The basic properties are:

v Binding identifier is a unique string, in our example:

sca_import_test_sca_cross_simple_custinfo_CustomerInfo

Figure 2. Invoking a service on a different system

12 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

v Name in Name space is the JNDI name of the enterprise Java bean (EJB)

you are invoking on the target system, for example:

sca/SimpleBOCrsmB/export/test/sca/cros/simple/custinfo/CustomerInfo

This names the export interface on the target system.

v Corbaname URL is the IP address and port number of the naming service

on the target system, for example:

corbaname:iiop:9.26.237.144:2809/NameServiceServerRoot#sca/

 impleBOCrsmB/export/test/sca/cros/simple/custinfo/CustomerInfo

When finished, click Next and verify the values on the Summary page.

After verifying, click Finish.

Your system displays your new binding.

3. Save your changes by clicking Save.

Start the applications. The service component on System A can now synchronously

invoke the service on System B.

Overview of isolating modules and targets

When developing modules, you will identify services that multiple modules can

use. Leveraging services this way minimizes your development cycle and costs.

When you have a service used by many modules, you should isolate the invoking

modules from the target so that if the target is upgraded, switching to the new

service is transparent to the calling module. This topic contrasts the simple

invocation model and the isolated invocation model and provides an example of

how isolation can be useful. While describing a specific example, this is not the

only way to isolate modules from targets.

Simple invocation model

While developing a module, you might use services that are located in other

modules. You do this by importing the service into the module and then invoking

that service. The imported service is “wired” to the service exported by the other

module either in WebSphere Integration Developer or by binding the service in the

administrative console. Simple invocation model illustrates this model.

Developing and deploying modules 13

Isolated invocation model

To change the target of an invocation without stopping invoking modules, you can

isolate the invoking modules from the target of the invocation. This allows the

modules to continue processing while you change the target because you are not

changing the module itself but the downstream target. Example of isolating

applications shows how isolation allows you to change the target without affecting

the status of the invoking module.

Example of isolating applications

Using the simple invocation model, multiple modules invoking the same service

would look much like Multiple applications invoking a single service . APPA,

APPB, and APPC all invoke CalculateFinalCost.

MyModule
DifferentModule

Invoke ServiceA ServiceA

ServiceB

Figure 3. Simple invocation model

14 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

The service provided by CalculateFinalCost needs updating so that new costs are

reflected in all modules that use the service. The development team builds and

tests a new service UpdatedCalculateFinal to incorporate the changes. You are

ready to bring the new service into production. Without isolation, you would have

to update all of the modules invoking CalculateFinalCost to invoke

UpdateCalculateFinal. With isolation, you only have to change the binding that

connects the buffer module to the target.

Note: Changing the service this way allows you to continue to provide the original

service to other modules that may need it.

Using isolation, you create a buffer module between the applications and the target

(see Isolated invocation model invoking UpdateCalculateFinal).

ModA

ModB

ModC

DifferentMod

CalculateFinalCost

Figure 4. Multiple applications invoking a single service

Developing and deploying modules 15

With this model, the invoking modules do not change, you just have to change the

binding from the buffer module import to the target (see Isolated invocation model

invoking UpdatedCalculateFinal).

ModA

ModB

ModC

BufferMod ActualMod

CalculateFinalCost

CalculateFinalCost

UpdateFinalCost

Figure 5. Isolated invocation model invoking UpdateCalculateFinal

16 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

If the buffer module invokes the target synchronously, when you restart the buffer

module (whether a mediation module or a service for business module) the results

returned to the original application come from the new target. If the buffer module

invokes the target asynchronously, the results returned to the original application

come from the new target on the next invocation.

Developing applications for business processes and tasks

You can use a modeling tool, such as WebSphere Integration Developer to build

and deploy business processes and tasks. These processes and tasks are interacted

with at runtime, for example, a process is started, tasks are claimed and completed,

and running processes are terminated. You can use Business Process

Choreographer Explorer to interact with processes and tasks, or the Business

Process Choreographer APIs to develop customized applications for these

interactions.

The API provides generic methods that can be used with all processes and tasks

that are installed on a WebSphere Process Server. The Business Process

Choreographer API is provided as two stateless session enterprise beans:

v BusinessFlowManagerService interface provides the methods for business

process applications

v HumanTaskManagerService interface provides the methods for task-based

applications

ModA

ModB

ModC

BufferMod ActualMod

CalculateFinalCost

CalculateFinalCost

UpdateFinalCost

Figure 6. Isolated invocation model invoking UpdatedCalculateFinal

Developing and deploying modules 17

For more information on the Business Process Choreographer APIs, see the Javadoc

in the com.ibm.bpe.api package and the com.ibm.task.api package.

1. Decide on the functionality that the application is to provide.

Examples for typical business process and human task functionality are

provided.

2. Decide which of the Business Choreographer APIs you are going to use.

Depending on the scenarios that you want to implement with your application,

you can use one, or both, of the session beans.

3. Determine the authorization authorities needed by users of the application.

The users of your application must be authorized to call the methods that you

include in your application, and view the objects and the attributes of these

objects that these methods return. When an instance of the appropriate

Business Process Choreographer API session bean is created, WebSphere

Application Server associates a session context with the instance. The session

context contains the caller’s principal role. This information is used to check the

caller’s authorization for each call.

The Javadoc contains authorization information for each of the methods.

Choose the methods that best fit the users of your application.

4. Decide how to render the application.

The Business Process Choreographer APIs can be called locally or remotely.

5. Develop the application.

a. Access the API.

b. Use the API to interact with processes or tasks.

v Query the data.

v Work with the data.

Accessing the generic APIs

Business process applications and task applications access the appropriate session

bean through the home interface of the bean.

The BusinessFlowManagerService interface and the HumanTaskManagerService

interface are the common interfaces for the session beans. These interfaces expose

the functions that can be called by an application program. The application

program can be any Java program, including another Enterprise JavaBeans™ (EJB)

application.

You can access the generic APIs using either the remote session bean or the local

session bean.

Accessing the remote session bean

An application accesses the appropriate remote session bean through the home

interface of the bean.

The session bean can be either the BusinessFlowManager session bean for process

applications or the HumanTaskManager session bean for task applications.

1. Add a reference to the remote session bean to the application deployment

descriptor. Add the reference to one of the following files:

v The application-client.xml file, for a Java 2 Platform, Enterprise Edition

(J2EE) client application

v The web.xml file, for a Web application

v The ejb-jar.xml file, for an Enterprise JavaBeans (EJB) application

18 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

The reference to the remote home interface for process applications is shown in

the following example:

<ejb-ref>

 <ejb-ref-name>ejb/BusinessFlowManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.bpe.api.BusinessFlowManagerHome</home>

 <remote>com.ibm.bpe.api.BusinessFlowManager</remote>

</ejb-ref>

The reference to the remote home interface for task applications is shown in the

following example:

<ejb-ref>

 <ejb-ref-name>ejb/HumanTaskManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.task.api.HumanTaskManagerHome</home>

 <remote>com.ibm.task.api.HumanTaskManager</remote>

</ejb-ref>

If you use WebSphere Integration Developer to add the EJB reference to the

deployment descriptor, the binding for the EJB reference is automatically

created when the application is deployed. For more information on adding EJB

references, refer to the WebSphere Integration Developer documentation.

2. Package the generated stubs with your application.

If your application runs on a different Java Virtual Machine (JVM) from the one

where the BPEContainer application or the TaskContainer application runs,

complete the following actions:

a. For process applications, package the <install_root>/
ProcessChoreographer/client/bpe137650.jar file with the enterprise

archive (EAR) file of your application.

b. For task applications, package the <install_root>/ProcessChoreographer/
client/task137650.jar file with the EAR file of your application.

c. Set the Class-Path parameter in the manifest file of the application module

to include the JAR file. The application module can be a J2EE application, a

Web application, or an EJB application.
3. Make the home interface of the session bean available to the application using

Java Naming and Directory Interface (JNDI) lookup mechanisms. The following

example shows this step for a process application:

// Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

 // Lookup the remote home interface of the BusinessFlowManager bean

 Object result =

 initialContext.lookup("java:comp/env/ejb/BusinessFlowManagerHome");

// Convert the lookup result to the proper type

 BusinessFlowManagerHome processHome =

 (BusinessFlowManagerHome)javax.rmi.PortableRemoteObject.narrow

 (result,BusinessFlowManagerHome.class);

The home interface of the session bean contains a create method for EJB objects.

The method returns the remote interface of the session bean.

4. Access the remote interface of the session bean. The following example shows

this step for a process application:

BusinessFlowManager process = processHome.create();

5. Call the business functions exposed by the service interface. The following

example shows this step for a process application:

process.initiate("MyProcessModel",input);

Developing and deploying modules 19

Calls from applications are run as transactions. A transaction is established and

ended in one of the following ways:

v Automatically by WebSphere Application Server (the deployment descriptor

specifies TX_REQUIRED).

v Explicitly by the application. You can bundle application calls into one

transaction:

// Obtain user transaction interface

 UserTransaction transaction=

 (UserTransaction)initialContext.lookup("jta/usertransaction");

 // Begin a transaction

 transaction.begin();

 // Applications calls ...

 // On successful return, commit the transaction

 transaction.commit();

Here is an example of how steps 3 through 5 might look for a task application.

// Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

 // Lookup the remote home interface of the HumanTaskManager bean

 Object result =

 initialContext.lookup("java:comp/env/ejb/HumanTaskManagerHome");

// Convert the lookup result to the proper type

 HumanTaskManagerHome taskHome =

 (HumanTaskManagerHome)javax.rmi.PortableRemoteObject.narrow

 (result,HumanTaskManagerHome.class);

...

//Access the remote interface of the session bean.

HumanTaskManager task = taskHome.create();

...

//Call the business functions exposed by the service interface

task.callTask(tkiid,input);

Accessing the local session bean

An application accesses the appropriate local session bean through the home

interface of the bean.

The session bean can be either the LocalBusinessFlowManager session bean for

process applications or the LocalHumanTaskManager session bean for human task

applications.

1. Add a reference to the local session bean to the application deployment

descriptor. Add the reference to one of the following files:

v The application-client.xml file, for a Java 2 Platform, Enterprise Edition

(J2EE) client application

v The web.xml file, for a Web application

v The ejb-jar.xml file, for an Enterprise JavaBeans (EJB) application

The reference to the local home interface for process applications is shown in

the following example:

20 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

<ejb-local-ref>

 <ejb-ref-name>ejb/LocalBusinessFlowManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home>com.ibm.bpe.api.LocalBusinessFlowManagerHome</local-home>

 <local>com.ibm.bpe.api.LocalBusinessFlowManager</local>

</ejb-local-ref>

The reference to the local home interface for task applications is shown in the

following example:

<ejb-local-ref>

 <ejb-ref-name>ejb/LocalHumanTaskManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home>com.ibm.task.api.LocalHumanTaskManagerHome</local-home>

 <local>com.ibm.task.api.LocalHumanTaskManager</local>

</ejb-local-ref>

If you use WebSphere Integration Developer to add the EJB reference to the

deployment descriptor, the binding for the EJB reference is automatically

created when the application is deployed. For more information on adding EJB

references, refer to the WebSphere Integration Developer documentation.

2. Make the local home interface of the local session bean available to the

application, using Java Naming and Directory Interface (JNDI) lookup

mechanisms. The following example shows this step for a process application:

// Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

 // Lookup the local home interface of the LocalBusinessFlowManager bean

 LocalBusinessFlowManagerHome processHome =

 (LocalBusinessFlowManagerHome)initialContext.lookup

 ("java:comp/env/ejb/LocalBusinessFlowManagerHome");

The home interface of the local session bean contains a create method for EJB

objects. The method returns the local interface of the session bean.

3. Access the local interface of the local session bean. The following example

shows this step for a process application:

LocalBusinessFlowManager process = processHome.create();

4. Call the business functions exposed by the service interface. The following

example shows this step for a process application:

process.initiate("MyProcessModel",input);

Calls from applications are run as transactions. A transaction is established and

ended in one of the following ways:

v Automatically by WebSphere Application Server (the deployment descriptor

specifies TX_REQUIRED).

v Explicitly by the application. You can bundle application calls into one

transaction:

// Obtain user transaction interface

 UserTransaction transaction=

 (UserTransaction)initialContext.lookup("jta/usertransaction");

 // Begin a transaction

 transaction.begin();

 // Applications calls ...

 // On successful return, commit the transaction

 transaction.commit();

Here is an example of how steps 2 through 4 might look for a task application.

Developing and deploying modules 21

// Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

 // Lookup the local home interface of the LocalHumanTaskManager bean

 LocalHumanTaskManagerHome taskHome =

 (LocalHumanTaskManagerHome)initialContext.lookup

 ("java:comp/env/ejb/LocalHumanTaskManagerHome");

...

//Access the local interface of the local session bean

LocalHumanTaskManager task = taskHome.create();

...

//Call the business functions exposed by the service interface

task.callTask(tkiid,input);

Developing applications for business processes

A business process is a set of business-related activities that are invoked in a

specific sequence to achieve a business goal. A business process can be either a

microflow or a long-running process:

v Microflows are short running business processes. A microflow is invoked with

input parameters, and the caller waits while the process is executed

synchronously. After a very short time, the result is returned to the caller.

v Long-running, interruptible processes are executed as a sequence of activities

that are chained together. Parallel branches of the process can be navigated

synchronously. Depending on the type and the transaction setting of the activity,

an activity can be run in its own transaction.

Examples are provided that show how you might develop applications for the

following typical actions on microflows and long-running processes.

Authorization roles for business processes

Actions that you can take on business processes depend on your authorization

role. This role can be a J2EE role or an instance-based role.

A role is a group of employees who share the same level of authority. Java 2

Platform, Enterprise Edition (J2EE) roles are set up when the business process

container is configured. Instance-based roles are assigned to processes and

activities when the process is modeled. Role-based authorization requires that

global security is enabled in WebSphere Application Server.

J2EE roles

The following J2EE roles are supported:

v J2EE BPESystemAdministrator. Users assigned to this role have all privileges.

v J2EE BPESystemMonitor. Users assigned to this role can view the properties of

all business process objects.

You can use the administrative console to change the assignment of users and

groups to these roles.

Setting up Roles using RACF security: These RACF permissions apply when the

following security fields are specified:

v com.ibm.security.SAF.authorization= true

22 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

RDEFINE EJBROLE BPESystemAdministrator UACC(NONE)

PERMIT BPESystemAdministrator CLASS(EJBROLE) ID(userid) ACCESS(READ)

RDEFINE EJBROLE BPESystemMonitor UACC(NONE)

PERMIT BPESystemMonitor CLASS(EJBROLE) ID(userid) ACCESS(READ)

v com.ibm.security.SAF.delegation= true

RDEFINE EJBROLE JMSAPIUser UACC(NONE) APPLDATA(’ userid’)

You can use Security Authorization Facility (SAF)-based authorization (for

example, using the RACF EJBROLE profile) to control access by a client to Java 2

Platform, Enterprise Edition (J2EE) roles in EJB and Enterprise applications,

including the Business process container. For more information on using SAF, see

System Authorization Facility for role-based authorization in the WebSphere

Application Server for z/OS information center.

Instance-based roles

A process instance or an activity is not assigned directly to a staff member in the

process model, instead it is assigned to one of the available roles. Any staff

member that is assigned to an instance-based role can perform the actions for that

role. The association of users to instance-based roles is determined at runtime

using staff resolution.

The following instance-based roles are supported:

v For processes: reader, starter, administrator

v For activities: reader, editor, potential owner, owner, administrator

These roles are authorized to perform the following actions:

 Role Authorized actions

Activity reader View the properties of the associated activity instance, and its

input and output messages.

Activity editor Actions that are authorized for the activity reader, and write

access to messages and other data associated with the activity.

Potential activity owner Actions that are authorized for the activity reader. Members of

this role can claim the activity, and send messages to receive or

pick activities.

Activity owner Work on and complete an activity. Members of this role can

transfer owned work items to an administrator or a potential

owner.

Activity administrator Repair activities that are stopped due to unexpected errors, and

force terminate long-running activities.

Process starter View the properties of the associated process instance, and its

input and output messages.

Process reader View the properties of the associated process instance, its input

and output messages, and everything that the activity reader

supports for all of the contained activities but not those of the

subprocesses.

Process administrator Members of this role can administer process instances and

intervene in a process that has started; create, delete, and

transfer work items. Members of this role also have activity

administrator authorization.

Developing and deploying modules 23

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/csec_ejbroleandg.html

Do not delete the user ID of the process starter from your user registry if the

process instance still exists. If you do, the navigation of this process cannot

continue. You receive the following exception in the system log file:

no unique ID for: <user ID>

Required roles for actions on process instances:

Access to the LocalBusinessFlowManager or the BusinessFlowManager interface

does not guarantee that the caller can perform all of the actions on a process; the

caller must also be authorized to perform the action. The following table shows the

actions on a process instance that a specific role can take.

 Action Caller’s principal role

Reader Starter Administrator

createMessage x x x

createWorkItem x

delete x

deleteWorkItem x

forceTerminate x

getActiveHandlers x x x

getAllActivities x x

getAllWorkItems x x

getClientUISettings x x

getCustomProperties x x x

getCustomProperty x x x

getCustomPropertyNames x x x

getFaultMessage x x x

getInputClientUISettings x x

getInputMessage x x x

getOutputClientUISettings x x

getOutputMessage x x x

getProcessInstance x x x

getVariable x x x

getWaitingActivities x x x

getWorkItems x x

resume x

restart x

setCustomProperty x x

setVariable x

suspend x

transferWorkItem x

Required roles for actions on business-process activities:

Access to the LocalBusinessFlowManager or the BusinessFlowManager interface

does not guarantee that the caller can perform all of the actions on an activity; the

24 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

caller must also be authorized to perform the action. The following table shows the

actions on an activity instance that a specific role can take.

 Action Caller’s principal role

Reader Editor Potential owner Owner Administrator

cancelClaim x x

claim x x

complete x x

createMessage x x x x x

createWorkItem x

deleteWorkItem x

forceComplete x

forceRetry x

getActivityInstance x x x x x

getAllWorkItems x x

getClientUISettings x x x x x

getCustomProperties x x x x x

getCustomProperty x x x x x

getCustomPropertyNames x x x x x

getFaultMessage x x x x x

getFaultNames x x x x x

getInputMessage x x x x x

getOutputMessage x x x x x

getVariable x x x x x

getWorkItems x x x x x

setCustomProperty x x x

setFaultMessage x x x

setOutputMessage x x x

setVariable x

transferWorkItem x

To potential

owners or

administrators

only

x

Starting business processes

The way in which a business process is started depends on whether the process is

a microflow or a long-running process. The service that starts the process is also

important to the way in which a process is started; the process can have either a

unique starting service or several starting services.

Examples are provided that show how you might develop applications for typical

starting scenarios for microflows and long-running processes.

Running a microflow that contains a unique starting service:

Developing and deploying modules 25

A microflow can be started by a receive activity or a pick activity. The starting

service is unique if the microflow starts with a receive activity or when the pick

activity has only one onMessage definition.

 If the microflow implements a request-response operation, that is, the process

contains a reply, you can use the call method to run the process passing the

process template name as a parameter in the call.

If the microflow is a one-way operation, use the sendMessage method to run the

process. This method is not covered in this example.

1. Optional: List the process templates to find the name of the process you want

to run.

This step is optional if you already know the name of the process.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

("PROCESS_TEMPLATE.EXECUTION_MODE =

 PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_MICROFLOW",

 "PROCESS_TEMPLATE.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started by the call method.

2. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained.

ProcessTemplateData template = processTemplates[0];

//create a message for the single starting receive activity

ClientObjectWrapper input = process.createMessage

 (template.getID(),

 template.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//run the process

ClientObjectWrapper output = process.call(template.getName(), input);

DataObject myOutput = null;

if (output.getObject() != null && output.getObject() instanceof DataObject)

{

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

}

This action creates an instance of the process template, CustomerTemplate, and

passes some customer data. The operation returns only when the process is

complete. The result of the process, OrderNo, is returned to the caller.

Running a microflow that contains a non-unique starting service:

A microflow can be started by a receive activity or a pick activity. The starting

service is not unique if the microflow starts with a pick activity that has multiple

onMessage definitions.

 If the microflow implements a request-response operation, that is, the process

contains a reply, you can use the call method to run the process passing the ID of

the starting service in the call.

26 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

If the microflow is a one-way operation, use the sendMessage method to run the

process. This method is not covered in this example.

1. Optional: List the process templates to find the name of the process you want

to run.

This step is optional if you already know the name of the process.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

("PROCESS_TEMPLATE.EXECUTION_MODE =

 PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_MICROFLOW",

 "PROCESS_TEMPLATE.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started as long-running processes.

2. Determine the starting service to be called.

This example uses the first template that is found.

ProcessTemplateData template = processTemplates[0];

ActivityServiceTemplateData[] startActivities =

 process.getStartActivities(template.getID());

3. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained.

ActivityServiceTemplateData activity = startActivities[0];

//create a message for the service to be called

ClientObjectWrapper input =

 process.createMessage(activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 activity.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//run the process

ClientObjectWrapper output = process.call(activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 input);

//check the output of the process, for example, an order number

DataObject myOutput = null;

if (output.getObject() != null && output.getObject() instanceof DataObject)

{

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

}

This action creates an instance of the process template, CustomerTemplate, and

passes some customer data. The operation returns only when the process is

complete. The result of the process, OrderNo, is returned to the caller.

Starting a long-running process that contains a unique starting service:

If the starting service is unique, you can use the initiate method and pass the

process template name as a parameter. This is the case when the long-running

process starts with either a single receive or pick activity and when the single pick

activity has only one onMessage definition.

1. Optional: List the process templates to find the name of the process you want

to start.

This step is optional if you already know the name of the process.

Developing and deploying modules 27

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

 ("PROCESS_TEMPLATE.EXECUTION_MODE =

 PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_LONG_RUNNING",

 "PROCESS_TEMPLATE.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started by the initiate method.

2. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained. If you specify a process-instance name, it

must not start with an underscore. If a process-instance name is not specified,

the process instance ID (PIID) in String format is used as the name.

ProcessTemplateData template = processTemplates[0];

//create a message for the single starting receive activity

ClientObjectWrapper input = process.createMessage

 (template.getID(),

 template.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//start the process

PIID piid = process.initiate(template.getName(), "CustomerOrder", input);

This action creates an instance, CustomerOrder, and passes some customer

data. When the process starts, the operation returns the object ID of the new

process instance to the caller.

The starter of the process instance is set to the caller of the request. This person

receives a work item for the process instance. The process administrators,

readers, and editors of the process instance are determined and receive work

items for the process instance. The follow-on activity instances are determined.

These are started automatically or, if they are staff, receive, or pick activities,

work items are created for the potential owners.

Starting a long-running process that contains a non-unique starting service:

A long-running process can be started through multiple initiating receive or pick

activities. You can use the initiate method to start the process. If the starting service

is not unique, for example, the process starts with multiple receive or pick

activities, or a pick activity that has multiple onMessage definitions, then you must

identify the service to be called.

1. Optional: List the process templates to find the name of the process you want

to start.

This step is optional if you already know the name of the process.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

 ("PROCESS_TEMPLATE.EXECUTION_MODE =

 PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_LONG_RUNNING",

 "PROCESS_TEMPLATE.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started as long-running processes.

2. Determine the starting service to be called.

28 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

ProcessTemplateData template = processTemplates[0];

ActivityServiceTemplateData[] startActivities =

 process.getStartActivities(template.getID());

3. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained. If you specify a process-instance name, it

must not start with an underscore. If a process-instance name is not specified,

the process instance ID (PIID) in String format is used as the name.

ActivityServiceTemplateData activity = startActivities[0];

//create a message for the service to be called

ClientObjectWrapper input = process.createMessage

 (activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 activity.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//start the process

PIID piid = process.initiate(activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 null,

 input);

This action creates an instance and passes some customer data. When the

process starts, the operation returns the object ID of the new process instance to

the caller.

The starter of the process instance is set to the caller of the request and receives

a work item for the process instance. The process administrators, readers, and

editors of the process instance are determined and receive work items for the

process instance. The follow-on activity instances are determined. These are

started automatically or, if they are staff, receive, or pick activities, work items

are created for the potential owners.

Processing staff activities

Staff activities in business processes are assigned to various people in your

organization through work items. When a process is started, work items are

created for the potential owners. One of these owners claims the activity. This

person is responsible for providing the relevant information and completing the

activity.

1. List the activities belonging to a logged-on person that are ready to be worked

on:

QueryResultSet result =

 process.query("ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_READY AND

 ACTIVITY.KIND = ACTIVITY.KIND.KIND_STAFF AND

 WORK_ITEM.REASON =

 WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

 null, null, null);

This action returns a query result set that contains the activities that can be

worked on by the logged-on person.

2. Claim the activity to be worked on:

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

Developing and deploying modules 29

ClientObjectWrapper input = process.claim(aiid);

 DataObject activityInput = null ;

 if (input.getObject()!= null && input.getObject() instanceof DataObject)

 {

 activityInput = (DataObject)input.getObject();

 // read the values

 ...

 }

}

When the activity is claimed, the input message of the activity is returned.

3. When work on the activity is finished, complete the activity. The activity can be

completed either successfully or with a fault message. If the activity is

successful, an output message is passed. If the activity is unsuccessful, the

activity is put into the failed or stopped state and a fault message is passed.

You must create the appropriate messages for these actions. When you create

the message, you must specify the message type name so that the message

definition is contained.

a. To complete the activity successfully, create an output message.

ActivityInstanceData activity = process.getActivityInstance(aiid);

ClientObjectWrapper output =

 process.createMessage(aiid, activity.getOutputMessageTypeName());

DataObject myMessage = null ;

if (output.getObject()!= null && output.getObject() instanceof DataObject)

{

 myMessage = (DataObject)output.getObject();

 //set the parts in your message, for example, an order number

 myMessage.setInt("OrderNo", 4711);

}

//complete the activity

process.complete(aiid, output);

This action sets an output message that contains the order number.

b. To complete the activity when a fault occurs, create a fault message.

//retrieve the faults modeled for the staff activity

List faultNames = process.getFaultNames(aiid);

//create a message of the appropriate type

ClientObjectWrapper myFault =

 process.createMessage(aiid, faultNames.get(0));

// set the parts in your fault message, for example, an error number

DataObject myMessage = null ;

if (myFault.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)myFault.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setInt("error",1304);

}

process.complete(aiid, (String)faultNames.get(0), myFault);

This action sets the activity in either the failed or the stopped state. If the

continueOnError parameter for the activity in the process model is set to

true, the activity is put into the failed state and the navigation continues. If

the continueOnError parameter is set to false, the activity is put into the

stopped state. In this state the activity can be repaired using force terminate

or force retry.

30 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Sending a message to a waiting activity

Pick activities (also known as receive choice activities) and receive activities can be

used to synchronize a running process with events from the ″outside world″. For

example, the receipt of an e-mail from a customer in response to a request for

information might be such an event.

1. List the activity service templates that are waiting for a message from the

logged-on user.

QueryResultSet result =

 process.query("ACTIVITY_SERVICE.VTID,ACTIVITY.ATID",

 "ACTIVITY.STATE=ACTIVITY.STATE.STATE_WAITING AND

 ACTIVITY_SERVICE.PORT_TYPE=’Confectionery’ AND

 ACTIVITY_SERVICE.OPERATION=’OrderRequest’ AND

 WORK_ITEM.REASON=WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

 null, null, null);

2. Send a message.

The caller must be a potential owner of the activity that receives the message,

or an administrator of the process instance.

if (result.size() > 0)

{

 result.first();

 VTID vtid = (VTID)result.getOID(1);

 ATID atid = (ATID)result.getOID(2);

 ActivityServiceTemplateData activity =

 process.getActivityServiceTemplate(vtid,atid);

 // create a message for the service to be called

 ClientObjectWrapper message =

 process.createMessage(vtid,atid,activity.getInputMessageTypeName());

 DataObject myMessage = null;

 if (message.getObject()!= null && message.getObject() instanceof DataObject)

 {

 myMessage = (DataObject)message.getObject();

 //set the strings in the message, for example, chocolate is to be ordered

 myMessage.setString("Order", "chocolate");

 }

 // send the message to the waiting activity

 process.sendMessage(vtid, atid, message);

}

This action sends the specified message to the waiting activity service and

passes some order data.

You can also specify the process instance ID to ensure that the message is sent

to the specified process instance. If the process instance ID is not specified, the

message is sent to the activity service, and the process instance that is

identified by the correlation values in the message. If the process instance ID is

specified, the process instance that is found using the correlation values is

checked to ensure that it has the specified process instance ID.

Handling events

An entire business process and each of its scopes can be associated with event

handlers that are invoked if the associated event occurs. Event handlers are similar

to receive or pick activities in that a process can provide Web service operations

using event handlers. You can invoke an event handler any number of times as

long as the corresponding scope is running. In addition, multiple instances of an

event handler can be activated concurrently.

The following code snippet shows how to get the active event handlers for a given

process instance and how to send an input message.

Developing and deploying modules 31

1. Determine the data of the process instance ID and list the active event handlers

for the process.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder2711");

EventHandlerTemplateData[] events = process.getActiveEventHandlers(

 processInstance.getID());

2. Send the input message.

This example uses the first event handler that is found.

EventHandlerTemplateData event = null;

if (events.length > 0)

{

 event = events[0];

 // create a message for the service to be called

 ClientObjectWrapper input = process.createMessage(

 event.getID(), event.getInputMessageTypeName());

 if (input.getObject() != null && input.getObject() instanceof DataObject)

 {

 DataObject inputMessage = (DataObject)input.getObject();

 // set content of the message, for example, a customer name, order number

 inputMessage.setString("CustomerName", "Smith");

 inputMessage.setString("OrderNo", "2711");

 // send the message

 process.sendMessage(event.getProcessTemplateName(),

 event.getPortTypeNamespace(),

 event.getPortTypeName(),

 event.getOperationName(),

 input);

 }

 }

This action sends the specified message to the active event handler for the

process.

Analyzing the results of a process

A long-running process runs asynchronously. Its output message is not

automatically returned when the process completes. The message must be

retrieved explicitly. The results of the process are stored in the database only if the

process template from which the process instance was derived does not specify

automatic deletion of the derived process instances.

Analyze the results of the process, for example, check the order number.

QueryResultSet result = process.query

 ("PROCESS_INSTANCE.PIID",

 "PROCESS_INSTANCE.NAME = ’CustomerOrder’ AND

 PROCESS_INSTANCE.STATE =

 PROCESS_INSTANCE.STATE.STATE_FINISHED",

 null, null, null);

if (result.size() > 0)

{

 result.first();

 PIID piid = (PIID) result.getOID(1);

 ClientObjectWrapper output = process.getOutputMessage(piid);

 DataObject myOutput = null;

 if (output.getObject() != null && output.getObject() instanceof DataObject)

 {

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

 }

}

32 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Managing the life cycle of a business process

A process instance comes into existence when a Business Process Choreographer

API method that can start a process is invoked. The navigation of the process

instance continues until all of its activities are in an end state. Valid end states are

finished, skipped, failed, expired, or terminated.

Sometimes, the process instance, or one of its activities, might encounter a fault

that cannot be processed as part of the process logic. In these cases, a process

administrator can act on the activity or the process instance in a number of ways.

Examples are provided that show how you might develop applications for the

following typical life-cycle actions on processes.

Suspending and resuming a business process:

You can suspend a process instance and resume it again to complete it.

 The caller must be an administrator of the process instance or a business process

administrator. To suspend a process instance, it must be in the running or failing

state.

You can suspend a long-running, top-level process instance while it is running. You

might want to do this, for example, so that you can configure access to a back-end

system that is used later in the process. When the prerequisites for the process are

met, you can resume the process instance.

1. Get the running process, CustomerOrder, that you want to suspend.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder");

2. Suspend the process instance.

PIID piid = processInstance.getID();

process.suspend(piid);

This action suspends the specified top-level process instance. The process

instance is put into the suspended state. Subprocesses with the autonomy

attribute set to child are also suspended if they are in the running, failing,

terminating, or compensating state.

3. Resume the process instance.

process.resume(piid);

This action puts the process instance and its subprocesses into the states they

had before they were suspended.

Restarting a business process:

You can restart a process instance that is in the finished, terminated, failed, or

compensated state.

 The caller must be an administrator of the process instance or a business process

administrator.

Restarting a process instance is similar to starting a process instance for the first

time. However, when a process instance is restarted, the process instance ID is

known and the input message for the instance is available.

If the process has more than one receive activity or pick activity (also known as a

receive choice activity) that can create the process instance, all of the messages that

Developing and deploying modules 33

belong to these activities are used to restart the process instance. If any of these

activities implement a request-response operation, the response is sent again when

the associated reply activity is navigated.

1. Get the process that you want to restart.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder");

2. Restart the process instance.

PIID piid = processInstance.getID();

process.restart(piid);

This action restarts the specified process instance.

Terminating a process instance:

Sometimes, it is necessary for someone with process administrator authorization to

terminate a top-level process instance that is known to be in an unrecoverable

state. For example, when an application is invoked and fails, and it does not return

to a dormant state.

Because a process instance terminates immediately, without waiting for any

outstanding subprocesses or activities, you should terminate a process instance

only in exceptional situations.

1. Retrieve the process instance that is to be terminated.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder");

2. Terminate the process instance.

If you terminate a process instance, you can terminate the process instance with

or without compensation.

To terminate the process instance with compensation:

PIID piid = processInstance.getID();

process.forceTerminate(piid, CompensationBehaviour.INVOKE_COMPENSATION);

To terminate the process instance without compensation:

PIID piid = processInstance.getID();

process.forceTerminate(piid);

If you terminate the process instance with compensation, the compensation

handler defined for the process template is called. If the process template does

not have a compensation handler defined, the default compensation handler is

called. If you terminated the process instance without compensation, the

process instance is terminated immediately without waiting for activities to end

normally.

Applications that are started by the process are not affected by the force

terminate request. If these applications are to be terminated, you must add

statements to your process application that explicitly terminate the applications

started by the process.

Deleting process instances:

Completed process instances are automatically deleted from the Business Process

Choreographer database if the corresponding property is set for the process

template in the process model.

You might want to keep process instances in your database, for example, to query

data from process instances that are not written to the audit log, or if you want to

defer the deletion of processes to off-peak times. However, process instance data

that is no longer needed can impact disk space and performance. Therefore, you

34 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

should regularly delete process instance data. To delete a process instance, you

need process administrator rights and the process instance must be a top-level

process instance.

The following example shows how to delete all of the finished process instances.

1. List the process instances that are finished.

QueryResultSet result =

 process.query("DISTINCT PROCESS_INSTANCE.PIID",

 "PROCESS_INSTANCE.STATE =

 PROCESS_INSTANCE.STATE.STATE_FINISHED",

 null, null, null);

This action returns a query result set that lists process instances that are

finished.

2. Delete the process instances that are finished.

while (result.next())

{

 PIID piid = (PIID) result.getOID(1);

 process.delete(piid);

}

This action deletes the selected process instance from the database.

Repairing activities

A long-running process can contain activities that are also long running. These

activities might encounter uncaught errors and go into the stopped state. An

activity in the running state might also appear to be not responding. In both of

these cases, you can repair the activities so that the navigation of the process can

continue.

The Business Process Choreographer API provides the forceRetry and

forceComplete methods for repairing activities. Examples are provided that show

how you might add repair actions for activities to your applications.

Forcing the completion of an activity:

Activities in long-running processes can sometimes encounter faults. If these faults

are not caught by a fault handler in the enclosing scope and the associated activity

template specifies that the activity stops when an error occurs, the activity is put

into the stopped state so that it can be repaired. In this state, you can force the

completion of the activity.

You can also force the completion of activities in the running state if, for example,

an activity is not responding.

Additional requirements exist for certain types of activities.

Staff activities

You can pass parameters in the force-complete call, such as the message

that should have been sent or the fault that should have been raised.

Script activities

You cannot pass parameters in the force-complete call. However, you must

set the variables that need to be repaired.

Invoke activities

You can also force the completion of invoke activities that call an

asynchronous service that is not a subprocess if these activities are in the

Developing and deploying modules 35

running state. You might want to do this, for example, if the asynchronous

service is called and it does not respond.
1. List the stopped activities in the stopped state.

QueryResultSet result =

 process.query("DISTINCT ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND

 PROCESS_INSTANCE.NAME=’CustomerOrder’",

 null, null, null);

This action returns the stopped activities for the CustomerOrder process

instance.

2. Complete the activity, for example, a stopped staff activity.

In this example, an output message is passed.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ActivityInstanceData activity = process.getActivityInstance(aiid);

 ClientObjectWrapper output =

 process.createMessage(aiid, activity.getOutputMessageTypeName());

 DataObject myMessage = null;

 if (output.getObject()!= null && output.getObject() instanceof DataObject)

 {

 myMessage = (DataObject)output.getObject();

 //set the parts in your message, for example, an order number

 myMessage.setInt("OrderNo", 4711);

 }

 boolean continueOnError = true;

 process.forceComplete(aiid, output, continueOnError);

}

This action completes the activity. If an error occurs, the continueOnError

parameter determines the action to be taken if an error occurs during

processing of the forceComplete request.

In the example, continueOnError is true. This value means that if an error

occurs during processing of the forceComplete request, the activity is put into

the failed state. The fault is propagated to the enclosing scopes of the activity

until it is either handled or the process scope is reached. The process is then

put into the failing state and it eventually reaches the failed state.

Retrying the execution of a stopped activity:

If an activity in a long-running process encounters an uncaught fault in the

enclosing scope and if the associated activity template specifies that the activity

stops when an error occurs, the activity is put into the stopped state so that it can

be repaired. You can retry the execution of the activity.

You can set variables that are used by the activity. With the exception of script

activities, you can also pass parameters in the force-retry call, such as the message

that was expected by the activity.

1. List the stopped activities.

QueryResultSet result =

 process.query("DISTINCT ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND

 PROCESS_INSTANCE.NAME=’CustomerOrder’",

 null, null, null);

This action returns the stopped activities for the CustomerOrder process

instance.

36 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

2. Retry the execution of the activity, for example, a stopped staff activity.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ActivityInstanceData activity = process.getActivityInstance(aiid);

 ClientObjectWrapper input =

 process.createMessage(aiid, activity.getOutputMessageTypeName());

 DataObject myMessage = null;

 if (input.getObject()!= null && input.getObject() instanceof DataObject)

 {

 myMessage = (DataObject)input.getObject();

 //set the strings in your message, for example, chocolate is to be ordered

 myMessage.setString("OrderNo", "chocolate");

 }

 boolean continueOnError = true;

 process.forceRetry(aiid, input, continueOnError);

}

This action retries the activity. If an error occurs, the continueOnError

parameter determines the action to be taken if an error occurs during

processing of the forceRetry request.

In the example, continueOnError is true. This means that if an error occurs

during processing of the forceRetry request, the activity is put into the failed

state. The fault is propagated to the enclosing scopes of the activity until it is

either handled or the process scope is reached. The process is then put into the

failing state and it eventually reaches the failed state.

BusinessFlowManagerService interface

The BusinessFlowManagerService interface exposes business-process functions that

can be called by a client application.

The methods that can be called by the BusinessFlowManagerService interface

depend on the state of the process or the activity and the authorization of the

person that uses the application containing the method. The main methods for

manipulating business process objects are listed here. For more information about

these methods and the other methods that are available in the

BusinessFlowManagerService interface, see the Javadoc in the com.ibm.bpe.api

package.

Process templates

A process template is a versioned, deployed, and installed process model that

contains the specification of a business process. It can be instantiated and started

by issuing appropriate requests, for example, initiate(). The execution of the

process instance is driven automatically by the server.

 Table 1. API methods for process templates

Method Description

getProcessTemplate Retrieves the specified process template.

queryProcessTemplate Retrieves process templates that are stored

in the database.

Developing and deploying modules 37

Process instances

The following API methods start process instances.

 Table 2. API methods for starting process instances

Method Description

call Creates and runs a microflow.

callWithReplyContext Creates and runs a microflow with a unique

starting service or a long-running process

with a unique starting service from the

specified process template. The call waits

asynchronously for the result.

callWithUISettings Creates and runs a microflow and returns

the output message and the client user

interface (UI) settings.

initiate Creates a process instance and initiates

processing of the process instance. Use this

method for long-running processes. You can

also use this method for microflows that you

want to fire and forget.

sendMessage Sends the specified message to the specified

activity service and process instance. The

process instance can be either a microflow or

a long-running process. These processes can

either unique or non-unique starting

services.

getStartActivities Returns information about the activities that

can start a process instance from the

specified process template.

getActivityServiceTemplate Retrieves the specified activity service

template.

 Table 3. API methods for controlling the life cycle of process instances

Method Description

suspend Suspends the execution of a long-running,

top-level process instance that is in the

running or failing state.

resume Resumes the execution of a long-running,

top-level process instance that is in the

suspended state.

restart Restarts a long-running, top-level process

instance that is in the finished, failed, or

terminated state.

forceTerminate Terminates the specified top-level process

instance, its subprocesses with child

autonomy, and its running, claimed, or

waiting activities.

delete Deletes the specified top-level process

instance and its subprocesses with child

autonomy.

query Retrieves the properties from the database

that match the search criteria.

38 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Activities

For invoke activities, you can specify in the process model that these activities

continue in error situations. If the continue-on-error flag is set to false and an

unhandled error occurs, the activity is put into the stopped state. A process

administrator can then repair the activity. The continue-on-error flag and the

associated repair functions can, for example, be used in a long-running process

where an invoke activity fails occasionally, but the effort required to model

compensation and fault handling is too high.

The following methods are available for working with and repairing activities.

 Table 4. API methods for controlling the life cycle of activity instances

Method Description

claim Claims a ready activity instance for a user to

work on the activity.

cancelClaim Cancels the claim of the activity instance.

complete Completes the activity instance.

forceComplete Forces the completion of an activity instance

that is in the running or stopped state.

forceRetry Forces the repetition of an activity instance

that is in the running or stopped state.

query Retrieves the properties from the database

that match the search criteria.

Variables and custom properties

The interface provides a get and a set method to retrieve and set values for

variables. You can also associate named properties with, and retrieve named

properties from, process and activity instances. Custom property names and values

must be of the java.lang.String type.

 Table 5. API methods for variables and custom properties

Method Description

getVariable Retrieves the specified variable.

setVariable Sets the specified variable.

getCustomProperty Retrieves the named custom property of the

specified activity or process instance.

getCustomProperties Retrieves the named custom properties of

the specified activity or process instance.

getCustomPropertyNames Retrieves the names of the custom properties

for the specified activity or process instance.

setCustomProperty Stores custom-specific values for the

specified activity or process instance.

Developing applications for human tasks

A task is the means by which components invoke humans as services or by which

humans invoke services. Examples of typical applications for human tasks are

provided.

Developing and deploying modules 39

For more information on the Business Process Choreographer API, see the Javadoc

in the com.ibm.task.api package.

Authorization roles for human tasks

Actions that you can take on human tasks depend on your authorization role. This

role can be a J2EE role or an instance-based role.

A role is a group of employees who share the same level of authority. Java 2

Platform, Enterprise Edition (J2EE) roles are set up when the human task container

is configured. Instance-based roles are assigned to human tasks and escalations

when the task is modeled. Role-based authorization requires that global security is

enabled in WebSphere Application Server.

J2EE roles

The following J2EE roles are supported:

v J2EE TaskSystemAdministrator. Users assigned to this role have all privileges.

v J2EE TaskSystemMonitor. Users assigned to this role can view the properties of

all of the task objects.

You can use the administrative console to change the assignment of users and

groups to these roles.

Setting up Roles using RACF security: These RACF permissions apply when the

following security fields are specified:

v com.ibm.security.SAF.authorization= true

RDEFINE EJBROLE TaskSystemAdministrator UACC(NONE)

PERMIT TaskSystemAdministrator CLASS(EJBROLE) ID(userid) ACCESS(READ)

RDEFINE EJBROLE TaskSystemMonitor UACC(NONE)

PERMIT TaskSystemMonitor CLASS(EJBROLE) ID(userid) ACCESS(READ)

v com.ibm.security.SAF.delegation= true

RDEFINE EJBROLE JMSAPIUser UACC(NONE) APPLDATA(’ userid’)

You can use Security Authorization Facility (SAF)-based authorization (for

example, using the RACF EJBROLE profile) to control access by a client to Java 2

Platform, Enterprise Edition (J2EE) roles in EJB and Web applications, including

the WebSphere Application Server administrative console application. For more

information, see System Authorization Facility for role-based authorization in the

WebSphere Application Server for z/OS information center.

Instance-based roles

A task instance or an escalation instance is not assigned directly to a staff member

in the task model, instead it is assigned to one of the available roles. Any staff

member that is assigned to an instance-based role can perform the actions for that

role. The association of users to instance-based roles is determined at runtime

using staff resolution.

The following instance-based roles are supported:

v For tasks: potential instance creator, originator, potential starter, starter, potential

owner, owner, reader, editor, administrator

v For escalations: escalation receiver

40 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/csec_ejbroleandg.html

These roles are authorized to perform the following actions:

 Role Authorized actions

Potential instance creator Members of this role can create an instance of the task. If no

potential instance creator is defined for the task template or the

application components, then all users are considered to be a

member of this role.

Originator Members of this role have administrative rights until the task

starts. When the task starts, the originator has the authority of a

reader and can perform some administrative actions, such as

suspending and resuming tasks, and transferring work items.

Potential starter Members of this role can start an existing task instance. If a

potential starter is not specified, the originator becomes the

potential starter. For inline tasks without a potential starter, the

default is everybody.

Starter Members of this role have the authority of a reader and can

perform some administrative actions, such as transferring work

items.

Potential owner Members of this role can claim a task. If no potential owner is

defined for the task template or the application components,

then all users are considered to be a member of this role.

Owner Work on and complete a task.

Reader View the properties of all of the task objects, but cannot work

on them.

Editor Members of this role can work with the content of a task, but

cannot claim or complete it

Administrator Members of this role can administer tasks, task templates, and

escalations.

Escalation receiver Members of this role have the authority of a reader.

Required roles for actions on tasks:

Access to the LocalHumanTaskManager or the HumanTaskManager interface does

not guarantee that the caller can perform all of the actions on a task; the caller

must also be authorized to perform the action. The following table shows the

actions that a specific role can take.

 Action Caller’s principal role

Owner Pot

owner

Starter Pot

starter

Origin Admin Editor Reader Esc

receiver

callTask X1 X1 X1

cancelClaim X X

claim X X

complete X X

createFaultMessage X X X X X1 X X X X

createInputMessage X X X X X1 X X X X

createOutputMessage X X X X X1 X X X X

createWorkItem X1, 2 X

delete X3 X

deleteWorkItem X1, 2 X

Developing and deploying modules 41

Action Caller’s principal role

Owner Pot

owner

Starter Pot

starter

Origin Admin Editor Reader Esc

receiver

getCustomProperty X X X X X1 X X X X

getDocumentation X X X X X1 X X X X

getFaultMessage X X X X X1 X X X X

getFaultNames X X X X X1 X X X X

getInputMessage X X X X X1 X X X X

getOutputMessage X X X X X1 X X X X

getRoleInfo X X X X X1 X X X X

getTask X X X X X1 X X X X

getUISettings X X X X X1 X X X X

resume X X1 X

setCustomProperty X X X X

setFaultMessage X X X

setOutputMessage X X X

startTask X X1 X

suspend X X1 X

terminate X X1 X

transferWorkItem X X X1 X

update X X X X

Notes:

1. For stand-alone tasks and task templates only.

2. For tasks in the inactive state only.

3. The originator can delete tasks that are in the inactive state only.

Abbreviations:

Admin Administrator

Esc receiver

Escalation receiver

Origin Originator

Pot owner

Potential owner

Pot starter

Potential starter

Starting an originating task that invokes a synchronous interface

Originating tasks that invoke a synchronous interface include inline originating

tasks in a microflow, stand-alone originating tasks in a microflow, and originating

tasks that start, for example, a simple Java class.

This scenario creates an instance of a task template and passes some customer

data. The task remains in the running state until the two-way operation returns.

The result of the task, OrderNo, is returned to the caller.

42 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

1. Optional: List the task templates to find the name of the originating task you

want to run.

This step is optional if you already know the name of the task.

TaskTemplate[] taskTemplates = task.queryTaskTemplates

("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_ORIGINATING",

 "TASK_TEMPL.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted originating templates.

2. Create an input message of the appropriate type.

TaskTemplate template = taskTemplates[0];

// create a message for the selected task

ClientObjectWrapper input = task.createInputMessage(template.getID());

DataObject myMessage = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

3. Create the task and run the task synchronously.

For a task to run synchronously, it must be a two-way operation. The example

uses the createAndCallTask method to create and run the task.

ClientObjectWrapper output = task.createAndCallTask(template.getName(),

 template.getNamespace(),

 input);

4. Analyze the result of the task.

DataObject myOutput = null;

if (output.getObject() != null && output.getObject() instanceof DataObject)

{

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

}

Starting an originating task that invokes an asynchronous

interface

Originating tasks that invoke a synchronous interface include inline originating

tasks in a microflow, stand-alone originating tasks in a microflow, and originating

tasks that start, for example, a simple Java class.

This scenario creates an instance of a task template and passes some customer

data.

1. Optional: List the task templates to find the name of the originating task you

want to run.

This step is optional if you already know the name of the task.

TaskTemplate[] taskTemplates = task.queryTaskTemplates

 ("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_ORIGINATING",

 "TASK_TEMPL.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted originating templates.

2. Create an input message of the appropriate type.

Developing and deploying modules 43

TaskTemplate template = taskTemplates[0];

// create a message for the selected task

ClientObjectWrapper input = task.createInputMessage(template.getID());

DataObject myMessage = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

3. Create the task and run it asynchronously.

The example uses the createAndStartTask method to create and run the task.

task.createAndStartTask(template.getName(),

 template.getNamespace(),

 input,

 null);

Creating and starting a task instance

This scenario shows how to create an instance of a task template that defines a

human task and start the task instance.

1. Optional: List the task templates to find the name of the originating task you

want to run.

This step is optional if you already know the name of the task.

TaskTemplate[] taskTemplates = task.queryTaskTemplates

("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_HUMAN",

 "TASK_TEMPL.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted human task templates.

2. Create an input message of the appropriate type.

TaskTemplate template = taskTemplates[0];

// create a message for the selected task

ClientObjectWrapper input = task.createInputMessage(template.getID());

DataObject myMessage = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

3. Create and start the human task; a reply handler is not specified in this

example.

The example uses the createAndStartTask method to create and start the task.

TKIID tkiid = task.createAndStartTask(template.getName(),

 template.getNamespace(),

 input

 null);

Work items are created for the people concerned with the task instance. For

example, a potential owner can claim the new task instance.

4. Claim the task instance.

ClientObjectWrapper input2 = task.claim(tkiid);

DataObject taskInput = null ;

if (input2.getObject()!= null && input2.getObject() instanceof DataObject)

{

44 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

taskInput = (DataObject)input2.getObject();

 // read the values

 ...

}

When the task instance is claimed, the input message of the task is returned.

Processing participating or purely human tasks

Participating or purely human tasks are assigned to various people in your

organization through work items. Participating tasks and their associated work

items are created, for example, when a process navigates to a staff activity. One of

the potential owners claims the task associated with the work item. This person is

responsible for providing the relevant information and completing the task.

1. List the tasks belonging to a logged-on person that are ready to be worked on.

QueryResultSet result =

 task.query("TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_READY AND

 (TASK.KIND = TASK.KIND.KIND_PARTICIPATING OR

 TASK.KIND = TASK.KIND.KIND_HUMAN)AND

 WORK_ITEM.REASON =

 WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

 null, null, null);

This action returns a query result set that contains the tasks that can be worked

on by the logged-on person.

2. Claim the task to be worked on.

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 ClientObjectWrapper input = task.claim(tkiid);

 DataObject taskInput = null ;

 if (input.getObject()!= null && input.getObject() instanceof DataObject)

 {

 taskInput = (DataObject)input.getObject();

 // read the values

 ...

 }

}

When the task is claimed, the input message of the task is returned.

3. When work on the task is finished, complete the task.

The task can be completed either successfully or with a fault message. If the

task is successful, an output message is passed. If the task is unsuccessful, a

fault message is passed. You must create the appropriate messages for these

actions.

a. To complete the task successfully, create an output message.

ClientObjectWrapper output =

 task.createOutputMessage(tkiid);

DataObject myMessage = null ;

if (output.getObject()!= null && output.getObject() instanceof DataObject)

{

 myMessage = (DataObject)output.getObject();

 //set the parts in your message, for example, an order number

 myMessage.setInt("OrderNo", 4711);

}

//complete the task

task.complete(tkiid, output);

Developing and deploying modules 45

This action sets an output message that contains the order number. The task

is put into the finished state.

b. To complete the task when a fault occurs, create a fault message.

//retrieve the faults modeled for the task

List faultNames = task.getFaultNames(tkiid);

//create a message of the appropriate type

ClientObjectWrapper myFault =

 task.createFaultMessage(tkiid, (String)faultNames.get(0));

// set the parts in your fault message, for example, an error number

DataObject myMessage = null ;

if (myFault.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)myFault.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setInt("error",1304);

}

task.complete(tkiid, (String)faultNames.get(0), myFault);

This action sets a fault message that contains the error code. The task is put

into the failed state.

Suspending and resuming a task instance

You can suspend human task instances or participating task instances and resume

them again to complete them.

The task instance can be in the ready or claimed state. It can be escalated. The

caller must be the owner, originator, or administrator of the task instance.

You can suspend a task instance while it is running. You might want to do this, for

example, so that you can gather information that is needed to complete the task.

When the information is available, you can resume the task instance.

1. Get a list of tasks that are claimed by the logged-on user.

QueryResultSet result = task.query("DISTINCT TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_CLAIMED",

 null, null, null);

This action returns a query result set that contains a list of the tasks that are

claimed by the logged-on user.

2. Suspend the task instance.

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 task.suspend(tkiid);

}

This action suspends the specified task instance. The task instance is put into

the suspended state.

3. Resume the process instance.

task.resume(tkiid);

This action puts the task instance into the state it had before it was suspended.

46 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Analyzing the results of a task

A participating or purely human task runs asynchronously. If a reply handler is

specified when the task starts, the output message is automatically returned when

the task completes. If a reply handler is not specified, the message must be

retrieved explicitly.

The results of the task are stored in the database only if the task template from

which the task instance was derived does not specify automatic deletion of the

derived task instances.

Analyze the results of the task.

The example shows how to check the order number of a successfully completed

task.

QueryResultSet result = task.query("DISTINCT TASK.TKIID",

 "TASK.NAME = ’CustomerOrder’ AND

 TASK.STATE = TASK.STATE.STATE_FINISHED",

 null, null, null);

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 ClientObjectWrapper output = task.getOutputMessage(tkiid);

 DataObject myOutput = null;

 if (output.getObject() != null && output.getObject() instanceof DataObject)

 {

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

 }

}

Terminating a task instance

Sometimes it is necessary for someone with administrator rights to terminate a task

instance that is known to be in an unrecoverable state. For example, when an

application is invoked and fails and does not return to a dormant state.

It is recommended that you terminate a task instance only in exceptional

situations. The task instance is terminated immediately.

1. Retrieve the task instance to be terminated.

Task taskInstance = task.getTask(tkiid);

2. Terminate the task instance.

TKIID tkiid = taskInstance.getID();

task.terminate(tkiid);

The task instance is terminated immediately without waiting for any

outstanding tasks.

Deleting task instances

Task instances are only automatically deleted when they complete if this is

specified in the associated task template from which the instances are derived. The

following example shows how to delete all of the task instances that are finished

and are not automatically deleted.

1. List the task instances that are finished.

QueryResultSet result =

 task.query("DISTINCT TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_FINISHED",

 null, null, null);

Developing and deploying modules 47

This action returns a query result set that lists task instances that are finished.

2. Delete the task instances that are finished.

while (result.next())

{

 TKIID tkiid = (TKIID) result.getOID(1);

 task.delete(tkiid);

}

Releasing a claimed task

Sometimes it is necessary for someone with administrator rights to release a task

that is claimed by someone else. This situation might occur, for example, when a

task must be completed but the owner of the task is absent. The owner of the task

can also release a claimed task.

1. List the claimed tasks owned by a specific person, for example, Smith.

QueryResultSet result =

 task.query("DISTINCT TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_CLAIMED AND

 TASK.OWNER = ’Smith’",

 null, null, null);

This action returns a query result set that lists the tasks claimed by the

specified person, Smith.

2. Release the claimed task.

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 task.cancelClaim(tkiid);

}

This action returns the task to the ready state so that it can be claimed by one

of the other potential owners.

Managing work items

A work item represents the assignment of an object to a user or group of users for

a particular reason. The object is typically a staff activity instance, a process

instance, or a human task. The reasons are derived from the role that the user has

for an activity or task. An activity or task can have multiple work items because a

user can have different roles in association with the activity or task, and a work

item is created for each of these roles.

During the lifetime of an activity instance or a task instance, the set of people

associated with the object can change, for example, because a person is on

vacation, new people are hired, or the workload needs to be distributed differently.

To allow for these changes, you can develop applications to create, delete, or

transfer work items.

The actions that can be taken to manage work items depend on the role that the

user has, for example, an administrator can create, delete and transfer work items,

but the task owner can transfer work items only.

v Create a work item.

// query the task instance for which an additional

// administrator is to be specified

QueryResultSet result = task.query("TASK.TKIID",

 "TASK.NAME=’CustomerOrder’",

 null, null, null);

if (result.size() > 0)

{

48 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

result.first();

 // create the work item

 task.createWorkItem((TKIID)(result.getOID(1)),

 WorkItem.REASON_ADMINISTRATOR,"Smith");

}

This action creates a work item for the user Smith who has the administrator

role.

v Delete a work item.

// query the task instance for which a work item is to be deleted

QueryResultSet result = task.query("TASK.TKIID",

 "TASK.NAME=’CustomerOrder’",

 null, null, null);

if (result.size() > 0)

{

 result.first();

 // delete the work item

 task.deleteWorkItem((TKIID)(result.getOID(1)),

 WorkItem.REASON_READER,"Smith");

}

This action deletes the work item for the user Smith who has the reader role.

v Transfer a work item.

// query the task that is to be rescheduled

QueryResultSet result =

 task.query("DISTINCT TASK.TKIID",

 "TASK.NAME=’CustomerOrder’ AND

 TASK.STATE=TASK.STATE.STATE_READY AND

 WORK_ITEM.REASON=WORK_ITEM.REASON.REASON_POTENTIAL_OWNER AND

 WORK_ITEM.OWNER_ID=’Miller’",

 null, null, null);

if (result.size() > 0)

{

 result.first();

 // transfer the work item from user Miller to user Smith

 // so that Smith can work on the task

 task.transferWorkItem((TKIID)(result.getOID(1)),

 WorkItem.REASON_POTENTIAL_OWNER,"Miller","Smith");

}

This action transfers the work item to the user Smith so that he can work on it.

Creating task templates and task instances at runtime

You usually use a modeling tool, such as WebSphere Integration Developer to

build task templates. You then install the task templates in WebSphere Process

Server and create instances from these templates, for example, using Business

Process Choreographer Explorer. However, you can also create human or

participating task instances or templates at runtime. You might want to do this, for

example, when the task definition is not available when the application is

deployed, the tasks that are part of a workflow are not yet known, or you need a

task to cover some ad-hoc collaboration between a group of people.

1. Optional: If your interfaces contain types that are not simple Java types, create

or identify an application that contains the data types that are used by the

runtime task or template.

The runtime task or task template runs in the context of the application and

gets access to the data types. Ensure that your application also contains a task

or process definition so that the application is loaded by Business Process

Choreographer. These tasks or processes can be dummy tasks or processes.

2. Create a task model.

The model refers to the data types in the application identified in step 1.

Developing and deploying modules 49

3. Validate the task model.

4. Create the task template or the task instance.

Use the HumanTaskManagerService interface to complete this action. If your

interfaces contain types other than simple Java types, specify the name of the

application that contains the data type definitions when you create your task

instance or template.

Creating runtime tasks that use simple Java types:

This example creates a runtime task that uses only simple Java types in its

interface, for example, a String object.

 The example runs only inside the context of the calling enterprise application, for

which the resources are loaded.

1. Access the ClientTaskFactory and create a resource set to contain the definitions

of the new task model.

ClientTaskFactory factory = ClientTaskFactory.newInstance();

ResourceSet resourceSet = factory.createResourceSet();

2. Create the WSDL definition and add the descriptions of your operations.

// create the WSDL interface

Definition definition = factory.createWSDLDefinition

 (resourceSet, new QName("http://www.ibm.com/task/test/", "test"));

// create a port type

PortType portType = factory.createPortType(definition, "doItPT");

// create an operation; the input and output messages are of type String:

// a fault message is not specified

Operation operation = factory.createOperation

 (definition, portType, "doIt",

 new QName("http://www.w3.org/2001/XMLSchema", "string"),

 new QName("http://www.w3.org/2001/XMLSchema", "string"),

 null);

3. Create the EMF model of your new human task.

If you are creating a task instance, a valid-from date (UTCDate) is not required.

TTask humanTask = factory.createTTask(resourceSet,

 TTaskKinds.HTASK_LITERAL,

 "TestTask",

 new UTCDate("2005-01-01T00:00:00"),

 "http://www.ibm.com/task/test/",

 portType,

 operation);

This step initializes the properties of the task model with default values.

4. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,

humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements

TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings

TVerb verb = taskFactory.createTVerb();

verb.setName("John");

// create escalationReceiver and add verb

TEscalationReceiver escalationReceiver =

 taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

50 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

// create escalation and add escalation receiver

TEscalation escalation = taskFactory.createTEscalation();

escalation.setEscalationReceiver(escalationReceiver);

5. Create the task model that contains all the resource definitions.

TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validate the task model and correct any validation problems that are found.

ValidationProblem[] validationProblems = taskModel.validate();

7. Create the runtime task instance or template.

Use the HumanTaskManagerService interface to create the task instance or the

task template. Because the application uses simple Java types only, you do not

need to specify an application name.

v The following snippet creates a task instance:

task.createTask(taskModel, null, "HTM");

v The following snippet creates a task template:

task.createTaskTemplate(taskModel, null);

If a runtime task instance is created, it can now be started. If a runtime task

template is created, you can now create task instances from the template.

Creating runtime tasks that use complex types:

This example creates a runtime task that uses complex types in its interface. The

complex types are already defined, that is, the local file system on the client has

XSD files that contain the description of the complex types.

 The example runs only inside the context of the calling enterprise application, for

which the resources are loaded.

1. Access the ClientTaskFactory and create a resource set to contain the definitions

of the new task model.

ClientTaskFactory factory = ClientTaskFactory.newInstance();

ResourceSet resourceSet = factory.createResourceSet();

2. Add the XSD definitions of your complex types to the resource set so that they

are available when you define your operations.

The files are located relative to the location where the code is executed.

factory.loadXSDSchema(resourceSet, "InputBO.xsd");

factory.loadXSDSchema(resourceSet, "OutputBO.xsd");

3. Create the WSDL definition and add the descriptions of your operations.

// create the WSDL interface

Definition definition = factory.createWSDLDefinition

 (resourceSet, new QName("http://www.ibm.com/task/test/", "test"));

// create a port type

PortType portType = factory.createPortType(definition, "doItPT");

// create an operation; the input message is an InputBO and

// the output message an OutputBO;

// a fault message is not specified

Operation operation = factory.createOperation

 (definition, portType, "doIt",

 new QName("http://Input", "InputBO"),

 new QName("http://Output", "OutputBO"),

 null);

4. Create the EMF model of your new human task.

If you are creating a task instance, a valid-from date (UTCDate) is not required.

Developing and deploying modules 51

TTask humanTask = factory.createTTask(resourceSet,

 TTaskKinds.HTASK_LITERAL,

 "TestTask",

 new UTCDate("2005-01-01T00:00:00"),

 "http://www.ibm.com/task/test/",

 portType,

 operation);

This step initializes the properties of the task model with default values.

5. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,

humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements

TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings

TVerb verb = taskFactory.createTVerb();

verb.setName("John");

// create escalationReceiver and add verb

TEscalationReceiver escalationReceiver =

 taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver

TEscalation escalation = taskFactory.createTEscalation();

escalation.setEscalationReceiver(escalationReceiver);

6. Create the task model that contains all the resource definitions.

TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

7. Validate the task model and correct any validation problems that are found.

ValidationProblem[] validationProblems = taskModel.validate();

8. Create the runtime task instance or template.

Use the HumanTaskManagerService interface to create the task instance or the

task template. You must provide an application name that contains the data

type definitions so that they can be accessed. The application must also contain

a dummy task or process so that the application is loaded by Business Process

Choreographer.

v The following snippet creates a task instance:

task.createTask(taskModel, "BOapplication", "HTM");

v The following snippet creates a task template:

task.createTaskTemplate(taskModel, "BOapplication");

If a runtime task instance is created, it can now be started. If a runtime task

template is created, you can now create task instances from the template.

Creating runtime tasks that use an existing interface:

This example creates a runtime task that uses an interface that is already defined,

that is, the local file system on the client has a file that contains the description of

the interface.

 The example runs only inside the context of the calling enterprise application, for

which the resources are loaded.

1. Access the ClientTaskFactory and create a resource set to contain the definitions

of the new task model.

ClientTaskFactory factory = ClientTaskFactory.newInstance();

ResourceSet resourceSet = factory.createResourceSet();

52 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

2. Access the WSDL definition and the descriptions of your operations.

The interface description is located relative to the location where the code is

executed.

Definition definition = factory.loadWSDLDefinition(

 resourceSet, "interface.wsdl");

PortType portType = definition.getPortType(

 new QName(definition.getTargetNamespace(), "doItPT"));

Operation operation = portType.getOperation("doIt", null, null);

3. Create the EMF model of your new human task.

If you are creating a task instance, a valid-from date (UTCDate) is not required.

TTask humanTask = factory.createTTask(resourceSet,

 TTaskKinds.HTASK_LITERAL,

 "TestTask",

 new UTCDate("2005-01-01T00:00:00"),

 "http://www.ibm.com/task/test/",

 portType,

 operation);

This step initializes the properties of the task model with default values.

4. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,

humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements

TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings

TVerb verb = taskFactory.createTVerb();

verb.setName("John");

// create escalationReceiver and add verb

TEscalationReceiver escalationReceiver =

 taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver

TEscalation escalation = taskFactory.createTEscalation();

escalation.setEscalationReceiver(escalationReceiver);

5. Create the task model that contains all the resource definitions.

TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validate the task model and correct any validation problems that are found.

ValidationProblem[] validationProblems = taskModel.validate();

7. Create the runtime task instance or template.

Use the HumanTaskManagerService interface to create the task instance or the

task template. You must provide an application name that contains the data

type definitions so that they can be accessed. The application must also contain

a dummy task or process so that the application is loaded by Business Process

Choreographer.

v The following snippet creates a task instance:

task.createTask(taskModel, "BOapplication", "HTM");

v The following snippet creates a task template:

task.createTaskTemplate(taskModel, "BOapplication");

If a runtime task instance is created, it can now be started. If a runtime task

template is created, you can now create task instances from the template.

Creating runtime tasks that use an interface from the calling application:

Developing and deploying modules 53

This example creates a runtime task that uses an interface that is part of the calling

application. For example, the runtime task is created in a Java snippet of a business

process and uses an interface from the process application.

 The example runs only inside the context of the calling enterprise application, for

which the resources are loaded.

1. Access the ClientTaskFactory and create a resource set to contain the definitions

of the new task model.

ClientTaskFactory factory = ClientTaskFactory.newInstance();

// specify the context class loader so that following resources are found

ResourceSet resourceSet = factory.createResourceSet

 (Thread.currentThread().getContextClassLoader());

2. Access the WSDL definition and the descriptions of your operations.

Specify the path within the containing package JAR file.

Definition definition = factory.loadWSDLDefinition(resourceSet,

 "com/ibm/workflow/metaflow/interface.wsdl");

 PortType portType = definition.getPortType(

 new QName(definition.getTargetNamespace(), "doItPT"));

Operation operation = portType.getOperation("doIt", null, null);

3. Create the EMF model of your new human task.

If you are creating a task instance, a valid-from date (UTCDate) is not required.

TTask humanTask = factory.createTTask(resourceSet,

 TTaskKinds.HTASK_LITERAL,

 "TestTask",

 new UTCDate("2005-01-01T00:00:00"),

 "http://www.ibm.com/task/test/",

 portType,

 operation);

This step initializes the properties of the task model with default values.

4. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,

humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements

TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings

TVerb verb = taskFactory.createTVerb();

verb.setName("John");

// create escalationReceiver and add verb

TEscalationReceiver escalationReceiver =

 taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver

TEscalation escalation = taskFactory.createTEscalation();

escalation.setEscalationReceiver(escalationReceiver);

5. Create the task model that contains all the resource definitions.

TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validate the task model and correct any validation problems that are found.

ValidationProblem[] validationProblems = taskModel.validate();

7. Create the runtime task instance or template.

Use the HumanTaskManagerService interface to create the task instance or the

task template. You must provide an application name that contains the data

type definitions so that they can be accessed.

54 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

v The following snippet creates a task instance:

task.createTask(taskModel, "WorkflowApplication", "HTM");

v The following snippet creates a task template:

task.createTaskTemplate(taskModel, "WorkflowApplication");

If a runtime task instance is created, it can now be started. If a runtime task

template is created, you can now create task instances from the template.

HumanTaskManagerService interface

The HumanTaskManagerService interface exposes task-related functions that can be

called by a local or a remote client.

The methods that can be called depend on the state of the task and the

authorization of the person that uses the application containing the method. The

main methods for manipulating task objects are listed here. For more information

about these methods and the other methods that are available in the

HumanTaskManagerService interface, see the Javadoc in the com.ibm.task.api

package.

Task templates

The following methods are available to work with task templates.

 Table 6. API methods for task templates

Method Description

getTaskTemplate Retrieves the specified task template.

createAndCallTask Creates and runs a task instance from the

specified task template and waits

synchronously for the result.

createAndStartTask Creates and starts a task instance from the

specified task template.

createTask Creates a task instance from the specified

task template.

createInputMessage Creates an input message for the specified

task template. For example, create a message

that can be used to start a task.

queryTaskTemplates Retrieves task templates that are stored in

the database.

Task instances

The following methods are available to work with task instances.

 Table 7. API methods for task instances

Method Description

getTask Retrieves a task instance; the task instance

can be in any state.

callTask Starts an originating task synchronously.

startTask Starts a task that has already been created.

suspend Suspends the human or participating task.

resume Resumes the human or participating task.

Developing and deploying modules 55

Table 7. API methods for task instances (continued)

Method Description

terminate Terminates the specified task instance. If an

originating task is terminated, this action has

no impact on the invoked service.

delete Deletes the specified task instance.

claim Claims the task for processing.

update Updates the task instance.

complete Completes the task instance.

cancelClaim Releases a claimed task instance so that it

can be worked on by another potential

owner.

createWorkItem Creates a work item for the task instance.

transferWorkItem Transfers the work item to a specified

owner.

deleteWorkItem Deletes the work item.

Escalations

The following methods are available to work with escalations.

 Table 8. API methods for working with escalations

Method Description

getEscalation Retrieves the specified escalation instance.

Variables and custom properties

The interface provides a get and a set method to retrieve and set values for

variables. You can also associate named properties with, and retrieve named

properties from task instances. Custom property names and values must be of the

java.lang.String type.

 Table 9. API methods for variables and custom properties

Method Description

getCustomProperty Retrieves the named custom property of the

specified task instance.

getCustomProperties Retrieves the named custom properties of

the specified task instance.

getCustomPropertyNames Retrieves the names of the custom properties

for the task instance.

setCustomProperty Stores custom-specific values for the

specified task instance.

Allowed actions for tasks:

The actions that can be carried out on a task depend on whether the task is a

participating task, a purely human task, an originating task, or an administrative

task.

56 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

You cannot use all of the actions provided by the LocalHumanTaskManager or the

HumanTaskManager interface for all kinds of tasks. The following table shows the

actions that you can carry out on each kind of task.

Action

Kind of task

Participating task Human task Originating task Administrative task

callTask X1

cancelClaim X X1

claim X X1

complete X X1 X

createFaultMessage X X X X

createInputMessage X X X X

createOutputMessage X X X X

createWorkItem X X1 X X

delete X1 X1 X X1

deleteWorkItem X X1 X X

getCustomProperty X X1 X X

getDocumentation X X1 X X

getFaultMessage X X1 X

getInputMessage X X1 X

getOutputMessage X X1 X

getRoleInfo X X1 X X

getTask X X1 X X

getUISettings X X1 X X

resume X X1

setCustomProperty X X1 X X

setFaultMessage X X1

setOutputMessage X X1

startTask X1 X1 X X

suspend X X1

terminate X1 X1 X1

transferWorkItem X X1 X X

updateInactiveTask X2 X3 X2 X2

updateTask X X1 X X

Notes:

1. For stand-alone and runtime tasks and task templates only

2. For stand-alone tasks, inline tasks in business processes, and runtime tasks only

3. For stand-alone tasks and runtime tasks only

Querying business-process and task-related objects

You can query business-process and task-related objects in the database to retrieve

specific properties of these objects.

Developing and deploying modules 57

During the configuration of Business Process Choreographer, a relational database

is associated with both the business process container and the task container. The

database stores all of the template (model) and instance (runtime) data for

managing business processes and tasks. You use SQL-like syntax to query this

data.

You can perform a one-off query to retrieve a specific property of an object. You

can also save queries that you use often and include these stored queries in your

application.

Queries on business-process and task-related objects

Use the query interface of the service API to retrieve stored information about

business processes and tasks.

Predefined database views are provided for you to query the object properties. For

process templates, the query function has the following syntax:

ProcessTemplateData[] queryProcessTemplates

 (java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

For task templates, the query function has the following syntax:

TaskTemplate[] queryTaskTemplates

 (java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

For the other business-process and task-related objects, the query function has the

following syntax:

QueryResultSet query (java.lang.String selectClause,

 java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer skipTuples

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

The query is made up of:

v Select clause

v Where clause

v Order-by clause

v Skip-tuples parameter

v Threshold parameter

v Time-zone parameter

For example, a list of work items IDs that are accessible to the caller of the

function is retrieved by:

QueryResultSet result = process.query("WORK_ITEM.WIID",

 null, null, null, null, null);

The query function returns objects according to the caller’s authorization. The

query result set contains the properties of only those objects that the caller is

authorized to see.

58 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

The query interface also contains a queryAll method. You can use this method to

retrieve all of the relevant data about an object, for example, for monitoring

purposes. The caller of the queryAll method must have one of the following Java 2

Platform, Enterprise Edition (J2EE) roles: BPESystemAdministrator,

BPESystemMonitor, TaskSystemAdministrator, or TaskSystemMonitor.

Authorization checking using the corresponding work item of the object is not

applied.

For more information on the Business Process Choreographer APIs, see the Javadoc

in the com.ibm.bpe.api package for process-related methods and in the

com.ibm.task.api package for task-related methods.

Select clause:

The select clause in the query function identifies the object properties that are to be

returned by a query.

 The select clause describes the query result. It specifies a list of names that identify

the object properties (columns of the result) to return. Its syntax is the same as an

SQL select clause; use commas to separate parts of the clause. Each part of the

clause must specify a property from one of the predefined views. The columns

returned in the QueryResultSet object appear in the same order as the properties

specified in the select clause.

The select clause does not support SQL aggregation functions, such as AVG(),

SUM(), MIN(), or MAX().

To select properties of name-value pairs, such as custom properties, add a one-digit

suffix to the view name.

Examples of select clauses

v ″WORK_ITEM.OBJECT_TYPE, WORK_ITEM.REASON″

Gets the object types of the associated objects and the assignment reasons for the

work items.

v ″DISTINCT WORK_ITEM.OBJECT_ID″

Gets all of the IDs of objects, without duplicates, for which the caller has a work

item.

v ″ACTIVITY.TEMPLATE_NAME, WORK_ITEM.REASON″

Gets the names of the activities the caller has work items for and their

assignment reasons.

v ″ACTIVITY.STATE, PROCESS_INSTANCE.STARTER″

Gets the states of the activities and the starters of their associated process

instances.

v ″DISTINCT TASK.TKIID, TASK.NAME″

Gets all of the IDs and names of tasks, without duplicates, for which the caller

has a work item.

v ″TASK_CPROP1.STRING_VALUE, TASK_CPROP2.STRING_VALUE″

Gets the values of the custom properties that are specified further in the where

clause.

v ″COUNT(DISTINCT TASK.TKIID)″

Counts the number of work items for unique tasks that satisfy the where clause.

Developing and deploying modules 59

If an error occurs during the processing of the select clause, a QueryUnknownTable

or a QueryUnknownColumn exception is thrown with the name of the property

that is not recognized as a table or column name.

Where clause:

The where clause in the query function describes the filter criteria to apply to the

query domain.

 The syntax of a where clause is the same as an SQL where clause. You do not need

to explicitly add an SQL from clause or join predicates to the where clause, these

constructs are added automatically when the query runs. If you do not want to

apply filter criteria, you must specify null for the where clause.

The where-clause syntax supports:

v Keywords: AND, OR, NOT

v Comparison operators: =, <=, <, <>, >,>=, LIKE

v Set operation: IN

The LIKE operation supports the wildcard characters that are defined for the

queried database.

The following rules also apply:

v Specify object ID constants as ID(’string-rep-of-oid’).

v Specify binary constants as BIN(’UTF-8 string’).

v Use symbolic constants instead of integer enumerations. For example, instead of

specifying an activity state expression ACTIVITY.STATE=2, specify

ACTIVITY.STATE=ACTIVITY.STATE.STATE_READY.

v If the value of the property in the comparison statement contains single

quotation marks (’), double the quotation marks, for example,

″TASK_CPROP.STRING_VALUE=’d’’automatisation’″.

v Refer to properties of name-value pairs, such as custom properties, by adding a

one-digit suffix to the view name. For example: "TASK_CPROP1.NAME=’prop1’ AND

"TASK_CPROP2.NAME=’prop2’"

v Specify time-stamp constants as TS(’yyyy-mm-ddThh:mm:ss’). To refer to the

current date, specify CURRENT_DATE as the timestamp.

You must specify at least a date or a time value in the timestamp:

– If you specify a date only, the time value is set to zero.

– If you specify a time only, the date is set to the current date.

– If you specify a date, the year must consist of four digits; the month and day

values are optional. Missing month and day values are set to 01. For example,

TS(’2003’) is the same as TS(’2003-01-01T00:00:00’).

– If you specify a time, these values are expressed in the 24-hour system. For

example, if the current date is 1 January 2003, TS(’T16:04’) or TS(’16:04’) is

the same as TS(’2003-01-01T16:04:00’).

Examples of where clauses

v Comparing an object ID with an existing ID

"WORK_ITEM.WIID = ID(’_WI:800c00ed.df8d7e7c.feffff80.38’)"

This type of where clause is usually created dynamically with an existing object

ID from a previous call. If this object ID is stored in a wiid1 variable, the clause

can be constructed as:

60 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

"WORK_ITEM.WIID = ID(’" + wiid1.toString() + "’)"

v Using time stamps

"ACTIVITY.STARTED >= TS(’2002-06-1T16.00.00’)"

v Using symbolic constants

"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_OWNER"

v Using Boolean values true and false

"ACTIVITY.BUSINESS_RELEVANCE = TRUE"

v Using custom properties

"TASK_CPROP1.NAME = ’prop1’ AND " TASK_CPROP1.STRING_VALUE = ’v1’ OR

 TASK_CPROP2.NAME = ’prop2’ AND " TASK_CPROP2.STRING_VALUE = ’v2’"

Order-by clause:

The order-by clause in the query function specifies the sort criteria for the query

result set.

 The order-by clause syntax is the same as an SQL order-by clause; use commas to

separate each part of the clause. Each part of the clause must specify a property

from one of the predefined views.

Sort criteria are applied to the server, that is, the locale of the server is used for

sorting. If you identify more than one property, the query result set is ordered by

the values of the first property, then by the values of the second property, and so

on.

If you do not want to sort the query result set, you must specify null for the

order-by clause.

Examples of order-by clauses

v ″PROCESS_TEMPLATE.NAME″

Sorts the query result alphabetically by the process-template name.

v ″PROCESS_INSTANCE.CREATED, PROCESS_INSTANCE.NAME DESC″

Sorts the query result by the creation date and, for a specific date, sorts the

results alphabetically by the process-instance name in reverse order.

v ″ACTIVITY.OWNER, ACTIVITY_TEMPLATE.NAME, ACTIVITY.STATE″

Sorts the query result by the activity owner, then the activity-template name,

and then the state of the activity.

Skip-tuples parameter:

The skip-tuples parameter specifies the number of query-result-set tuples that are

to be ignored and not to be returned to the caller in the query result set.

 Use this parameter with the threshold parameter to implement paging in a client

application.

If this parameter is set to null and the threshold parameter is not set, all of the

qualifying tuples are returned.

Example of a skip-tuples parameter

v new Integer(5)

Specifies that the first five qualifying tuples are not to be returned.

Developing and deploying modules 61

Threshold parameter:

The threshold parameter in the query function restricts the number of objects

returned from the server to the client in the query result set.

 The threshold parameter can be useful, for example, in a graphical user interface

where only a small number of items should be displayed. If you set the threshold

parameter accordingly, the database query is faster and less data needs to transfer

from the server to the client.

If this parameter is set to null and the skip-tuples parameter is not set, all of the

qualifying objects are returned.

Example of a threshold parameter

v new Integer(50)

Specifies that 50 qualifying tuples are to be returned.

Timezone parameter:

The time-zone parameter in the query function defines the time zone for

time-stamp constants in the query.

 Time zones can differ between the client that starts the query and the server that

processes the query. Use the time-zone parameter to specify the time zone of the

time-stamp constants used in the where clause, for example, to specify local times.

The dates returned in the query result set have the same time zone that is specified

in the query.

If the parameter is set to null, the timestamp constants are assumed to be

Coordinated Universal Time (UTC) times.

Examples of time-zone parameters

v process.query("ACTIVITY.AIID",

 "ACTIVITY.STARTED > TS(’2005-01-01T17:40’)",

 null,

 null,

 java.util.TimeZone.getDefault());

Returns object IDs for activities that started later than 17:40 local time on 1

January 2005.

v process.query("ACTIVITY.AIID",

 "ACTIVITY.STARTED > TS(’2005-01-01T17:40’)",

 null, null, null);

Return object IDs for activities that started later than 17:40 UTC on 1 January

2005. This specification is, for example, 6 hours earlier in Eastern Standard Time.

Query results:

A query result set contains the results of a query.

 The elements of the result set are objects that the caller is authorized to see. You

can read elements in a relative fashion using the next method or in an absolute

fashion using the first and last methods. Because the implicit cursor of a query

result set is initially positioned before the first element, you must call either the

first or next methods before reading an element. You can use the size method to

determine the number of elements in the set.

62 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

An element of the query result set comprises the selected attributes of work items

and their associated referenced objects, such as activity instances and process

instances. The first attribute (column) of a QueryResultSet element specifies the

value of the first attribute specified in the select clause of the query request. The

second attribute (column) of a QueryResultSet element specifies the value of the

second attribute specified in the select clause of the query request, and so on.

You can retrieve the values of the attributes by calling a method that is compatible

with the attribute type and by specifying the appropriate column index. The

numbering of the column indexes starts with 1.

 Attribute type Method

String getString

ID getOID

Timestamp getTimestamp

getString

Integer getInteger

getShort

getLong

getString

getBoolean

Boolean getBoolean

getShort

getInteger

getLong

getString

CHAR FOR BIT DATA getBinary

Example:

The following query is run:

QueryResultSet resultSet = process.query("ACTIVITY.STARTED,

 ACTIVITY.TEMPLATE_NAME AS NAME,

 WORK_ITEM.WIID, WORK_ITEM.REASON",

 null, null, null, null);

The returned query result set has four columns:

v Column 1 is a time stamp

v Column 2 is a string

v Column 3 is an object ID

v Column 4 is an integer

You can use the following methods to retrieve the attribute values:

while (resultSet.next())

{

 java.util.Calendar activityStarted = resultSet.getTimestamp(1);

 String templateName = resultSet.getString(2);

 WIID wiid = (WIID) resultSet.getOID(3);

 Integer reason = resultSet.getInteger(4);

}

Developing and deploying modules 63

You can use the display names of the result set, for example, as headings for a

printed table. These names are the column names of the view or the name defined

by the AS clause in the query. You can use the following method to retrieve the

display names in the example:

resultSet.getColumnDisplayName(1) returns "STARTED"

resultSet.getColumnDisplayName(2) returns "NAME"

resultSet.getColumnDisplayName(3) returns "WIID"

resultSet.getColumnDisplayName(4) returns "REASON"

Managing stored queries

A stored query is a query that is stored in the database and identified by a name.

Although the query definitions are stored in the database, items contained in the

stored query are assembled dynamically when they are queried. All stored queries

are publicly accessible. However, you can create and delete these stored queries

only if you have business process administrator or task administrator rights. You

can have stored queries for business process objects, task objects, or a combination

of these two object types.

1. Create a stored query.

For example, the following code snippet creates a query for process instances

and saves it with a specific name.

process.createStoredQuery("CustomerOrdersStartingWithA",

 "DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",

 "PROCESS_INSTANCE.NAME LIKE ’A%’",

 "PROCESS_INSTANCE.NAME",

 null,null);

This query returns a sorted list of all the process-instance names that begin

with the letter A and their associated process instance IDs (PIID).

2. Run the query defined by the stored query.

QueryResultSet result = process.query("CustomerOrdersStartingWithA",

 new Integer(0));

This action returns the objects that fulfill the criteria. In this case, all of the

customer orders that begin with A.

3. Optional: List the available stored queries.

For example, the following code snippet shows how to get a list of stored

queries for process objects:

String[] storedQuery = process.getStoredQueryNames();

4. Optional: Check the query defined by a specific stored query.

StoredQuery storedQuery = process.getStoredQuery("CustomerOrdersStartingWithA");

String selectClause = storedQuery.getSelectClause();

String whereClause = storedQuery.getWhereClause();

String orderByClause = storedQuery.getOrderByClause();

Integer threshold = storedQuery.getThreshold();

5. Delete a stored query.

The following code snippet shows how to delete the stored query that you

created in step 1.

process.deleteStoredQuery("CustomerOrdersStartingWithA");

Predefined views for queries on business-process and

human-task objects

Predefined database views are provided for business-process and human-task

objects. Use these views when you query reference data for these objects. When

you use these views, you do not need to explicitly add join predicates for view

columns, these constructs are added automatically for you. You can use the generic

query function of the service API (BusinessFlowManagerService or

64 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

HumanTaskManagerService) to query this data. You can also use the corresponding

method of the HumanTaskManagerDelegate API or your predefined queries

provided by your implementations of the ExecutableQuery interface.

ACTIVITY view:

Use this predefined database view for queries on activities.

 Table 10. Columns in the ACTIVITY view

Column name Type Comments

PIID ID The process instance ID.

AIID ID The activity instance ID.

PTID ID The process template ID.

ATID ID The activity template ID.

KIND Integer The kind of activity. Possible values are:

 KIND_INVOKE

KIND_RECEIVE

KIND_REPLY

KIND_THROW

KIND_RETHROW

KIND_TERMINATE

KIND_WAIT

KIND_COMPENSATE

KIND_SEQUENCE

KIND_EMPTY

KIND_SWITCH

KIND_WHILE

KIND_PICK

KIND_FLOW

KIND_SCOPE

KIND_SCRIPT

KIND_STAFF

KIND_ASSIGN

KIND_CUSTOM

COMPLETED Timestamp The time the activity is completed.

ACTIVATED Timestamp The time the activity is activated.

FIRST_ACTIVATED Timestamp The time at which the activity was

activated for the first time.

STARTED Timestamp The time the activity is started.

Developing and deploying modules 65

Table 10. Columns in the ACTIVITY view (continued)

Column name Type Comments

STATE Integer The state of the activity. Possible values

are:

 STATE_INACTIVE

STATE_READY

STATE_RUNNING

STATE_PROCESSING_UNDO

STATE_SKIPPED

STATE_FINISHED

STATE_FAILED

STATE_TERMINATED

STATE_CLAIMED

STATE_TERMINATING

STATE_FAILING

STATE_WAITING

STATE_EXPIRED

STATE_STOPPED

OWNER String Principal ID of the owner.

DESCRIPTION String If the activity template description

contains placeholders, this column

contains the description of the activity

instance with the placeholders resolved.

TEMPLATE_NAME String Name of the associated activity

template.

TEMPLATE_DESCR String Description of the associated activity

template.

BUSINESS_RELEVANCE Boolean Specifies whether the activity is

business relevant. The attribute affects

logging to the audit trail. Possible

values are:

TRUE The activity is business

relevant and it is audited.

FALSE The activity is not business

relevant and it is not audited.

ACTIVITY_ATTRIBUTE view:

Use this predefined database view for queries on custom properties for activities.

 Table 11. Columns in the ACTIVITY_ATTRIBUTE view

Column name Type Comments

AIID ID The ID of the activity instance that

has a custom property.

NAME String The name of the custom property.

VALUE String The value of the custom property.

ACTIVITY_SERVICE view:

Use this predefined database view for queries on activity services.

66 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Table 12. Columns in the ACTIVITY_SERVICE view

Column name Type Comments

EIID ID The ID of the event instance.

AIID ID The ID of the activity waiting for

the event.

PIID ID The ID of the process instance that

contains the event.

VTID ID The ID of the service template that

describes the event.

PORT_TYPE String The name of the port type.

NAME_SPACE_URI String The URI of the namespace.

OPERATION String The operation name of the service.

APPLICATION_COMP view:

Use this predefined database view to query the application component ID and

default settings for tasks.

 Table 13. Columns in the APPLICATION_COMP view

Column name Type Comments

ACOID String The ID of the application component.

BUSINESS_ RELEVANCE Boolean The default task business-relevance policy of the

component. This value can be overwritten by a

definition in the task template or the task. The

attribute affects logging to the audit trail.

Possible values are:

TRUE The task is business relevant and it is

audited.

FALSE The task is not business relevant and it

is not audited.

NAME String Name of the application component.

SUPPORT_ AUTOCLAIM Boolean The default automatic-claim policy of the

component. If this attribute is set to TRUE, the

task can be automatically claimed if a single user

is the potential owner. This value can be

overwritten by a definition in the task template

or task.

SUPPORT_CLAIM_ SUSP Boolean The default setting of the component that

determines whether suspended tasks can be

claimed. If this attribute is set to TRUE,

suspended tasks can be claimed. This value can

be overwritten by a definition in the task

template or the task.

SUPPORT_ DELEGATION Boolean The default task delegation-support policy of the

component. If this attribute is set to TRUE, the

work item assignments for the task can be

modified. This means that work items can be

created, deleted, or transferred.

ESCALATION view:

Developing and deploying modules 67

Use this predefined database view to query data for escalations.

 Table 14. Columns in the ESCALATION view

Column name Type Comments

ESIID String The ID of the escalation instance.

ACTION Integer The action triggered by the escalation. Possible

values are:

ACTION_CREATE_WORK_ITEM

Creates a work item for each escalation

receiver.

ACTION_SEND_EMAIL

Sends an e-mail to each escalation receiver.

ACTION_CREATE_EVENT

Creates and publishes an event.

ACTIVATION_STATE Integer An escalation instance is created if the

corresponding task reaches one of the following

states:

ACTIVATION_STATE_READY

Specifies that the human or participating

task is ready to be claimed.

ACTIVATION_STATE_RUNNING

Specifies that the originating task is started

and running.

ACTIVATION_STATE_CLAIMED

Specifies that the task is claimed.

ACTIVATION_TIME Timestamp The time when the escalation is activated.

AT_LEAST_

EXP_STATE

Integer The state of the task that is expected by the

escalation. If a timeout occurs, the task state is

compared with the value of this attribute. Possible

values are:

AT_LEAST_EXPECTED_STATE_CLAIMED

Specifies that the task is claimed.

AT_LEAST_EXPECTED_STATE_ENDED

Specifies that the task is in a final state

(FINISHED, FAILED, TERMINATED or

EXPIRED).

ESTID String The ID of the corresponding escalation template.

FIRST_ESIID String The ID of the first escalation in the chain.

INCREASE_PRIORITY Integer Indicates how the task priority will be increased.

Possible values are:

INCREASE_PRIORITY_NO

The task priority is not increased.

INCREASE_PRIORITY_ONCE

The task priority is increased once by one.

INCREASE_PRIORITY_REPEATED

The task priority is increased by one each

time the escalation repeats.

NAME String The name of the escalation.

68 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Table 14. Columns in the ESCALATION view (continued)

Column name Type Comments

STATE Integer The state of the escalation. Possible values are:

 STATE_INACTIVE

STATE_WAITING

STATE_ESCALATED

STATE_SUPERFLUOUS

TKIID String The task instance ID to which the escalation

belongs.

ESCALATION_CPROP view:

Use this predefined database view to query custom properties for escalations.

 Table 15. Columns in the ESCALATION_CPROP view

Column name Type Comments

ESIID String The escalation ID.

NAME String The name of the property.

STRING_VALUE String The value for custom properties of type String.

ESCALATION_DESC view:

Use this predefined database view to query multilingual descriptive data for

escalations.

 Table 16. Columns in the ESCALATION_DESC view

Column name Type Comments

ESIID String The escalation ID.

LOCALE String The name of the locale associated with the

description or display name.

DESCRIPTION String A description of the task template.

DISPLAY_NAME String The descriptive name of the escalation.

PROCESS_ATTRIBUTE view:

Use this predefined database view for queries on custom properties for processes.

 Table 17. Columns in the PROCESS_ATTRIBUTE view

Column name Type Comments

PIID ID The ID of the process instance that

has a custom property.

NAME String The name of the custom property.

VALUE String The value of the custom property.

PROCESS_INSTANCE view:

Use this predefined database view for queries on process instances.

Developing and deploying modules 69

Table 18. Columns in the PROCESS_INSTANCE view

Column name Type Comments

PTID ID The process template ID.

PIID ID The process instance ID.

NAME String The name of the process instance.

STATE Integer The state of the process instance.

Possible values are:

 STATE_READY

STATE_RUNNING

STATE_FINISHED

STATE_COMPENSATING

STATE_INDOUBT

STATE_FAILED

STATE_TERMINATED

STATE_COMPENSATED

STATE_COMPENSATION_FAILED

STATE_TERMINATING

STATE_FAILING

STATE_SUSPENDED

CREATED Timestamp The time the process instance is

created.

STARTED Timestamp The time the process instance

started.

COMPLETED Timestamp The time the process instance

completed.

PARENT_NAME String The name of the parent process

instance.

TOP_LEVEL_NAME String The name of the top-level process

instance. If there is no top-level

process instance, this is the name

of the current process instance.

STARTER String The principal ID of the starter of

the process instance.

DESCRIPTION String If the description of the process

template contains placeholders,

this column contains the

description of the process instance

with the placeholders resolved.

TEMPLATE_NAME String The name of the associated process

template.

TEMPLATE_DESCR String Description of the associated

process template.

PROCESS_TEMPLATE view:

Use this predefined database view for queries on process templates.

 Table 19. Columns in the PROCESS_TEMPLATE view

Column name Type Comments

PTID ID The process template ID.

NAME String The name of the process template.

70 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Table 19. Columns in the PROCESS_TEMPLATE view (continued)

Column name Type Comments

VALID_FROM Timestamp The time from when the process template

can be instantiated.

TARGET_NAMESPACE String The target namespace of the process

template.

APPLICATION_NAME String The name of the enterprise application to

which the process template belongs.

VERSION String User-defined version.

CREATED Timestamp The time the process template is created in

the database.

STATE Integer Specifies whether the process template is

available to create process instances.

Possible values are:

 STATE_STARTED

STATE_STOPPED

EXECUTION_MODE Integer Specifies how process instances that are

derived from this process template can be

run. Possible values are:

 EXECUTION_MODE_MICROFLOW

EXECUTION_MODE_LONG_RUNNING

DESCRIPTION String Description of the process template.

COMP_SPHERE Integer Specifies the compensation behavior of

instances of microflows in the process

template; either an existing compensation

sphere is joined or a compensation sphere is

created.

Possible values are:

 COMP_SPHERE_REQUIRED

COMP_SPHERE_REQUIRES_NEW

COMP_SPHERE_SUPPORTS

COMP_SPHERE_NOT_SUPPORTED

TASK view:

Use this predefined database view for queries on task objects.

 Table 20. Columns in the TASK view

Column name Type Comments

TKIID ID The ID of the task instance.

ACTIVATED Timestamp The time when the task was activated.

APPLIC_

DEFAULTS_ID

ID The ID of the application component that specifies

the defaults for the task.

APPLIC_NAME String The name of the enterprise application to which the

task belongs.

Developing and deploying modules 71

Table 20. Columns in the TASK view (continued)

Column name Type Comments

BUSINESS_

RELEVANCE

Boolean Specifies whether the task is business relevant. The

attribute affects logging to the audit trail. Possible

values are:

TRUE The task is business relevant and it is

audited.

FALSE The task is not business relevant and it is

not audited.

COMPLETED Timestamp The time when the task completed.

CONTAINMENT_

CTX_ID

ID The containment context for this task. This attribute

determines the life cycle of the task. When the

containment context of a task is deleted, the task is

also deleted.

CTX_

AUTHORIZATION

Integer Allows the task owner to access the task context.

Possible values are:

AUTH_NONE

No authorization rights for the associated

context object.

AUTH_READER

Operations on the associated context object

require reader authority, for example,

reading the properties of a process

instance.

DUE Timestamp The time when the task is due.

EXPIRES Timestamp The date when the task expires.

FIRST_ACTIVATED Timestamp The time when the task was activated for the first

time.

IS_ESCALATED Boolean Indicates whether an escalation of this task has

occurred.

IS_INLINE Boolean Indicates whether the task is an inline task in a

business process.

72 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Table 20. Columns in the TASK view (continued)

Column name Type Comments

KIND Integer The kind of task. Possible values are:

KIND_HUMAN

States that the task is created and

processed by a human.

KIND_WPC_STAFF_ACTIVITY

States that the task is a human task that is

a staff activity of a WebSphere Business

Integration Server Foundation, version 5

business process.

KIND_ORIGINATING

States that the task supports

person-to-computer interactions, which

enables people to create, initiate, and start

services.

KIND_PARTICIPATING

States that the task supports

computer-to-person interactions, which

enable a person to implement a service.

KIND_ADMINISTRATIVE

States that the task is an administrative

task.

LAST_MODIFIED Timestamp The time when the task was last modified.

LAST_STATE_

CHANGE

Timestamp The time when the state of the task was last

modified.

NAME String The name of the task.

NAME_SPACE String The namespace that is used to categorize the task.

ORIGINATOR String The principal ID of the task originator.

OWNER String The principal ID of the task owner.

PARENT_

CONTEXT_ID

String The parent context for this task. This attribute

provides a key to the corresponding context in the

calling application component. The parent context is

set by the application component that creates the

task.

PRIORITY Integer The priority of the task.

STARTED Timestamp The time when the task was started

(STATE_RUNNING, STATE_CLAIMED).

STARTER String The principal ID of the task starter.

Developing and deploying modules 73

Table 20. Columns in the TASK view (continued)

Column name Type Comments

STATE Integer The state of the task. Possible values are:

STATE_READY

States that the task is ready to be claimed.

STATE_RUNNING

States that the task is started and running.

STATE_FINISHED

States that the task finished successfully.

STATE_FAILED

States that the task did not finish

successfully.

STATE_TERMINATED

States that the task has been terminated

because of an external or internal request.

STATE_CLAIMED

States that the task is claimed.

STATE_EXPIRED

States that the task ended because it

exceeded its specified duration.

SUPPORT_

AUTOCLAIM

Boolean Indicates whether this task is claimed automatically

if it is assigned to a single user.

SUPPORT_CLAIM_

SUSP

Boolean Indicates whether this task can be claimed if it is

suspended.

SUPPORT_

DELEGATION

Boolean Indicates whether this task supports work

delegation through creating, deleting, or

transferring work items.

SUSPENDED Boolean Indicates whether the task is suspended.

TKTID String The task template ID.

TYPE String The type used to categorize the task.

TASK_CPROP view:

Use this predefined database view to query custom properties for task objects.

 Table 21. Columns in the TASK_CPROP view

Column name Type Comments

TKIID String The task instance ID.

NAME String The name of the property.

STRING_VALUE String The value for custom properties of type String.

TASK_DESC view:

Use this predefined database view to query multilingual descriptive data for task

objects.

74 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Table 22. Column in the TASK_DESC view

Column name Type Comments

TKIID String The task instance ID.

LOCALE String The name of the locale associated with the

description or display name.

DESCRIPTION String A description of the task.

DISPLAY_NAME String The descriptive name of the task.

TASK_TEMPL view:

This predefined database view holds data that you can use to instantiate tasks.

 Table 23. Columns in the TASK_TEMPL view

Column name Type Comments

TKTID String The task template ID.

VALID_FROM Timestamp The time when the task template becomes available

for instantiation.

APPLIC_

DEFAULTS_ID

String The ID of the application component that specifies

the defaults for the task template.

APPLIC_NAME String The name of the enterprise application to which the

task template belongs.

BUSINESS_

RELEVANCE

Boolean Specifies whether the task template is business

relevant. The attribute affects logging to the audit

trail. Possible values are:

TRUE The task is business relevant and it is

audited.

FALSE The task is not business relevant and it is

not audited.

CONTAINMENT_

CTX_ID

ID The containment context for this task template. This

attribute determines the life cycle of the task

template. When a containment context is deleted,

the task template is also deleted.

CTX_

AUTHORIZATION

Integer Allows the task owner to access the task context.

Possible values are:

AUTH_NONE

No authorization rights for the associated

context object.

AUTH_READER

Operations on the associated context object

require reader authority, for example,

reading the properties of a process

instance.

IS_INLINE Boolean Indicates whether this task template is modeled as

a task within a business process.

Developing and deploying modules 75

Table 23. Columns in the TASK_TEMPL view (continued)

Column name Type Comments

KIND Integer The kind of tasks that are derived from this task

template. Possible values are:

KIND_HUMAN

Specifies that the task is created and

processed by a human.

KIND_ORIGINATING

Specifies that a human can assign a task to

a computer. In this case, a human invokes

an automated service.

KIND_PARTICIPATING

Specifies that a service component (such as

a business process) assigns a task to a

human.

KIND_ADMINISTRATIVE

Specifies that the task is an administrative

task.

NAME String The name of the task template.

NAMESPACE String The namespace that is used to categorize the task

template.

PRIORITY Integer The priority of the task template.

STATE Integer The state of the task template. Possible values are:

STATE_STARTED

Specifies that the task template is available

for creating task instances.

STATE_STOPPED

Specifies that the task template is stopped.

Task instances cannot be created from the

task template in this state.

SUPPORT_

AUTOCLAIM

Boolean Indicates whether tasks derived from this task

template can be claimed automatically if they are

assigned to a single user.

SUPPORT_CLAIM_

SUSP

Boolean Indicates whether tasks derived from this task

template can be claimed if they are suspended.

SUPPORT_

DELEGATION

Boolean Indicates whether tasks derived from this task

template support work delegation using creation,

deletion, or transfer of work items.

TYPE String The type used to categorize the task template.

TASK_TEMPL_CPROP view:

Use this predefined database view to query custom properties for task templates.

 Table 24. Columns in the TASK_TEMPL_CPROP view

Column name Type Comments

TKTID String The task template ID.

NAME String The name of the property.

STRING_VALUE String The value for custom properties of type String.

76 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

TASK_TEMPL_DESC view:

Use this predefined database view to query multilingual descriptive data for task

template objects.

 Table 25. Columns in the TASK_TEMPL_DESC view

Column name Type Comments

TKTID String The task template ID.

LOCALE String The name of the locale associated with the

description or display name.

DESCRIPTION String A description of the task template.

DISPLAY_NAME String The descriptive name of the task template.

WORK_ITEM view:

Use this predefined database view for queries on work items and authorization

data for process, tasks, and escalations.

 Table 26. Columns in the WORK_ITEM view

Column name Type Comments

WIID ID The work item ID.

OWNER_ID String The principal ID of the owner.

GROUP_NAME String The name of the associated group worklist.

EVERYBODY Boolean Specifies whether everybody owns this

work item.

OBJECT_TYPE Integer The type of the associated object. Possible

values are:

OBJECT_TYPE_ACTIVITY

Specifies that the work item was

created for an activity.

OBJECT_TYPE_PROCESS_INSTANCE

Specifies that the work item was

created for a process instance.

OBJECT_TYPE_TASK_INSTANCE

Specifies that the work item was

created for a task.

OBJECT_TYPE_TASK_TEMPLATE

Specifies that the work item was

created for a task template.

OBJECT_TYPE_ESCALATION_

INSTANCE

Specifies that the work item was

created for an escalation instance.

OBJECT_TYPE_APPLICATION_

COMPONENT

Specifies that the work item was

created for an application

component.

OBJECT_ID ID The ID of the associated object, for example,

the associated process or task.

Developing and deploying modules 77

Table 26. Columns in the WORK_ITEM view (continued)

Column name Type Comments

ASSOC_OBJECT_TYPE Integer The type of the object referenced by the

ASSOC_OID attribute, for example, task,

process, or external objects. Use the values

for the OBJECT_TYPE attribute.

ASSOC_OID ID The ID of the object associated object with

the work item. For example, the process

instance ID (PIID) of the process instance

containing the activity instance for which

this work item was created.

REASON Integer The reason for the assignment of the work

item. Possible values are:

 REASON_POTENTIAL_STARTER

REASON_POTENTIAL_INSTANCE_

 CREATOR

REASON_POTENTIAL_OWNER

REASON_EDITOR

REASON_READER

REASON_ORIGINATOR

REASON_OWNER

REASON_STARTER

REASON_ESCALATION_RECEIVER

REASON_ADMINISTRATOR

CREATION_TIME Timestamp The date and time when the work item was

created.

Handling exceptions and faults

Faults can occur when a process instance is created or when operations that are

invoked as part of the navigation of a process instance fail. Mechanisms exist to

handle these faults and they include:

v Passing control to the corresponding fault handlers

v Stopping the process and let someone repair the situation (force-retry,

force-complete)

v Compensating the process

v Passing the fault to the client application as an API exception, for example, an

exception is thrown when the process model from which an instance is to be

created does not exist

The handling of faults and exceptions is described in the following tasks.

Handling API exceptions

If a method in the BusinessFlowManagerService interface or the

HumanTaskManagerService interface does not complete successfully, an exception

is thrown that denotes the cause of the error. You can handle this exception

specifically to provide guidance to the caller.

However, it is common practice to handle only a subset of the exceptions

specifically and to provide general guidance for the other potential exceptions. All

specific exceptions inherit from a generic ProcessException or TaskException. It is a

best practice to catch generic exceptions with a final catch(ProcessException) or

78 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

catch(TaskException) statement. This statement helps to ensure the upward

compatibility of your application program because it takes account of all of the

other exceptions that can occur.

Checking which fault is set for an activity

1. List the task activities that are in a failed or stopped state.

QueryResultSet result =

 process.query("ACTIVITY.AIID",

 "(ACTIVITY.STATE = ACTIVITY.STATE.STATE_FAILED OR

 ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED) AND

 ACTIVITY.KIND=ACTIVITY.KIND.KIND_STAFF",

 null, null, null);

This action returns a query result set that contains failed or stopped activities.

2. Read the name of the fault.

This fault name is the local part of the fault queue name.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ClientObjectWrapper faultMessage = process.getFaultMessage(aiid);

 DataObject fault = null ;

 if (faultMessage.getObject() != null && faultMessage.getObject()

 instanceof DataObject)

 {

 fault = (DataObject)faultMessage.getObject();

 Type type = fault.getType();

 String name = type.getName();

 String uri = type.getURI();

 }

}

This returns the fault name. You can also analyze the unhandled exception for

a stopped activity instead of retrieving the fault name.

Checking which fault occurred for a stopped invoke activity

If an activity causes a fault to occur, the fault type determines the actions that you

can take to repair the activity.

1. List the staff activities that are in a stopped state.

QueryResultSet result =

 process.query("ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND

 ACTIVITY.KIND=ACTIVITY.KIND.KIND_INVOKE",

 null, null, null);

This action returns a query result set that contains stopped invoke activities.

2. Read the name of the fault.

This is the local part of the fault queue name.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ActivityInstanceData activity = process.getActivityInstance(aiid);

 ProcessException excp = activity.getUnhandledException();

 if (excp instanceof ApplicationFaultException)

 {

 ApplicationFaultException fault = (ApplicationFaultException)excp;

 String faultName = fault.getFaultName();

 }

}

Developing and deploying modules 79

Developing Web applications for business processes and

human tasks, using JSF components

Business Process Choreographer Explorer provides several JavaServer Faces (JSF)

components. You can extend and integrate these components to add

business-process and human-task functionality to Web applications.

You can use WebSphere Integration Developer to build your Web application.

1. Create a dynamic project and change the Web Project Features properties of the

Web project to include the Faces Base Components.

For more information on creating a Web project, go to the information center

for WebSphere Integration Developer.

2. Add the prerequisite Business Process Choreographer Explorer Java archive

(JAR files).

Add the following files to the WEB-INF/lib directory of your project:

v bpcclientcore.jar

v bfmclientmodel.jar

v htmclientmodel.jar

v bpcjsfcomponents.jar

These files are in the install_root/ProcessChoreographer/client directory.

3. Add the EJB references that you need to the Web application deployment

descriptor, web.xml file.

 <ejb-ref id="EjbRef_1">

 <ejb-ref-name>ejb/BusinessProcessHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.bpe.api.BusinessFlowManagerHome</home>

 <remote>com.ibm.bpe.api.BusinessFlowManager</remote>

 </ejb-ref>

 <ejb-ref id="EjbRef_2">

 <ejb-ref-name>ejb/HumanTaskManagerEJB</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.task.api.HumanTaskManagerHome</home>

 <remote>com.ibm.task.api.HumanTaskManager</remote>

 </ejb-ref>

 <ejb-local-ref id="EjbLocalRef_1">

 <ejb-ref-name>ejb/LocalBusinessProcessHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home>com.ibm.bpe.api.LocalBusinessFlowManagerHome</local-home>

 <local>com.ibm.bpe.api.LocalBusinessFlowManager</local>

 </ejb-local-ref>

 <ejb-local-ref id="EjbLocalRef_2">

 <ejb-ref-name>ejb/LocalHumanTaskManagerEJB</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home>com.ibm.task.api.LocalHumanTaskManagerHome</local-home>

 <local>com.ibm.task.api.LocalHumanTaskManager</local>

 </ejb-local-ref>

4. Add the Business Process Choreographer Explorer JSF components to the JSF

application.

a. Add the tag libraries that you need for your applications to the JavaServer

Pages (JSP) files. Typically, you need the JSF and HTML tag libraries, and

the tag library required by the JSF components.

v <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

v <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

v <%@ taglib uri="http://com.ibm.bpe.jsf/taglib" prefix="bpe" %>

b. Add an <f:view> tag to the body of the JSP page, and an <h:form> tag to

the <f:view> tag.

80 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

c. Add the JSF components to the JSP files.

Depending on your application, add the List component, the Details

component, the CommandBar component, or the Message component to the

JSP files. You can add multiple instances of each component.

d. Configure the managed beans in the JSF configuration file.

By default, the configuration file is the faces-config.xml file. This file is in

the WEB-INF directory of the Web application. Depending on the

component that you add to your JSP file, you also need to add the

references to the query and other wrapper objects to the JSF configuration

file.

e. Implement the custom code that you need to support the JSF components.
5. Deploy the application.

Map the EJB references to the Java Naming and Directory Interface (JNDI)

names or manually add the references to the ibm-web-bnd.xmi file.The

following table lists the reference bindings and their default mappings.

 Table 27. Mapping of the reference bindings to JNDI names

Reference binding JNDI name Comments

ejb/BusinessProcessHome com/ibm/bpe/api/BusinessFlowManagerHome Remote session bean

ejb/LocalBusinessProcessHome com/ibm/bpe/api/BusinessFlowManagerHome Local session bean

ejb/HumanTaskManagerEJB com/ibm/task/api/HumanTaskManagerHome Remote session bean

ejb/LocalHumanTaskManagerEJB com/ibm/task/api/HumanTaskManagerHome Local session bean

Your deployed Web application contains the functionality provided by the Business

Process Choreographer Explorer components.

Business Process Choreographer Explorer components

The Business Process Choreographer Explorer components are a set of

configurable, reusable elements that are based on the JavaServer Faces (JSF)

technology.

You can imbed these elements in Web applications. These applications can then

access installed business process and human task applications.

The components consist of a set of JSF components and a set of client model

objects. The relationship of the components to Business Process Choreographer,

Business Process Choreographer Explorer, and other custom clients is shown in the

following figure.

Developing and deploying modules 81

JSF components

The Business Process Choreographer Explorer components include the following

JSF components. You imbed these JSF components in your JavaServer Pages (JSP)

files when you build Web applications for working with business process and

human tasks.

v List component

The List component displays a list of application objects in a table, for example,

tasks, activities, process instances, process templates, work items, or escalations.

This component has an associated list handler.

v Details component

The Details component displays the properties of tasks, work items, activities,

process instances, and process templates. This component has an associated

details handler.

v CommandBar component

The CommandBar component displays a bar with buttons. These buttons

represent commands that operate on the object in a details view or the selected

objects in a list. These objects are provided by a list handler or a details handler.

v Message component

The Message component displays a message that can contain either a Service

Data Object (SDO) or a simple type.

Client model objects

The client model objects are used with the JSF components. The objects implement

some of the interfaces of the underlying Business Process Choreographer API and

wrap the original object. The client model objects provide national-language

support for labels and converters for some properties.

List handling in the List component:

82 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Every instance of the List component is associated with an instance of the

com.ibm.bpe.jsf.handler.BPCListHandler class.

 This list handler tracks which items in the associated list are selected and it

provides a notification mechanism. The list handler is bound to the List component

through the model attribute of the bpe:list tag.

The notification mechanism of the list handler is implemented using the

com.ibm.bpe.jsf.handler.ItemListener interface. Business Process Choreographer

Explorer uses this notification mechanism to associate the list entries with the

details pages for the different kinds of items. The trigger for a notification event is

typically one of the properties of the items that is displayed in the current list.

To exploit the notification mechanism, set the value of the action attribute of the

bpe:column tag for the property to the JSF navigation target your application is to

continue with when the notification event is triggered. The List component renders

the entry in the column as a JSF command link. If the link is triggered, the object

that represents the entry in the list is determined, and it is passed to all of the

registered item listeners. You can register implementations of this interface in the

configuration file of your JavaServer Faces (JSF) application.

The BPCListHandler class also provides a refreshList method. You can use this

method in JSF method bindings to implement a user interface control for running

the query again.

Query implementations

You can use the list handler to display all kinds of objects and their properties. The

content of the list that is displayed depends on the list of objects that is returned

by the implementation of the com.ibm.bpc.clientcore.Query interface that is

configured for the list handler. You can set the query either programmatically

using the setQuery method of the BPCListHandler class, or you can configure it in

the JSF configuration files of the application.

You can run queries not only against the Business Process Choreographer APIs, but

also against any other source of information that is accessible from your

application, for example, a content management system, or a database. The only

requirement is that the result of the query is returned as a java.util.List of

objects by the execute method.

The type of the objects returned must guarantee that the appropriate getter

methods are available for all of the properties that are displayed in the columns of

the list for which the query is defined. To ensure that the type of the object that is

returned fits the list definitions, you can set the value of the type property on the

BPCListHandler instance that is defined in the faces configuration file to the fully

qualified class name of the returned objects. You can return this name in the

getType call of the query implementation. At runtime, the list handler checks that

the object types conform to the definitions.

To map error messages to specific entries in a list, the objects returned by the

query must implement a method with the signature: public Object getID().

Error handling

You can take advantage of the error handling functions provided by the

BPCListHandler class in the following error situations.

Developing and deploying modules 83

v Errors that occur when queries are run or commands are executed

If an error occurs during the execution of a query, the BPCListHandler class

distinguishes between errors that were caused by insufficient access rights, and

other exceptions. To catch errors due to insufficient access rights, the rootCause

parameter of the ClientException that is thrown by the execute method of the

query must be a com.ibm.bpe.api.EngineNotAuthorizedException or a

com.ibm.task.api.NotAuthorizedException exception. The List component

displays the error message instead of the result of the query.

If the error is not caused by insufficient access rights, the BPCListHandler class

passes the exception object to the implementation of the

com.ibm.bpc.clientcore.util.ErrorBean interface that is defined by the BPCError

key in your JSF application configuration file. When the exception is set, the

error navigation target is called.

v Errors that occur when working with items that are displayed in a list

The BPCListHandler class implements the com.ibm.bpe.jsf.handler.ErrorHandler

interface. Exploiters can provide information about these errors with the map

parameter of type java.util.Map in the setErrors method. This map contains

identifiers as keys and the exceptions as values. The identifiers must be the

values returned by the getID method of the object that caused the error. When

the list is rendered again, the list handler displays the error messages for the

qualifying list entries in a separate column. If the map is set and any of the IDs

match any of the items displayed in the list, the list handler automatically adds

a column containing the error message to the list.

To avoid outdated error messages in the list, reset the errors map. In the

following situations, the map is reset automatically:

– The refreshList method BPCListHandler class is called.

– A new query is set on the BPCListHandler class.

– The CommandBar component is used to trigger actions on items of the list.

The CommandBar component uses this mechanism as one of the methods for

error handling.

CommandBar component:

Use the CommandBar component to integrate action buttons in your application.

The component creates the buttons for the actions in the user interface and handles

the events that are created when a button is clicked.

 These buttons trigger functions that act on the objects that are returned by a

com.ibm.bpe.jsf.handler.ItemProvider interface, such as the BPCListHandler class,

or the BPCDetailsHandler class. The CommandBar component uses the item

provider that is defined by the value of the model attribute in the bpe:commandbar

tag.

How commands are processed

When a button in the command-bar section of the application’s user interface is

clicked, the associated event is handled by the CommandBar component in the

following way.

1. The CommandBar component identifies the implementation of the

com.ibm.bpc.clientcore.Command interface that is specified for the button that

generated the event.

2. If the model associated with the CommandBar component implements the

com.ibm.bpe.jsf.handler.ErrorHandler interface, the clearErrorMap method is

invoked to remove error messages from previous events.

84 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

3. The getSelectedItems method of the ItemProvider interface is called. The list of

items that is returned is passed to the execute method of the command, and the

command is invoked.

4. The CommandBar component determines the JavaServer Faces (JSF) navigation

target. If an action attribute is not specified in the bpe:commandbar tag, the

return value of the execute method specifies the navigation target. If the action

attribute is set to a JSF method binding, the string returned by the method is

interpreted as the navigation target. The action attribute can also specify an

explicit navigation target.

Error handling

A command is triggered only if one of the following conditions are true:

v An exception is not thrown

v If an exception is thrown, it is an ErrorsInCommandException exception

There are several ways in which you can implement error handling in the

CommandBar component:

v You can decide not to use any of the features of the CommandBar component.

If, for example, you want to display the errors on a page that is specific to the

selected command, the implementation of the command can catch the exceptions

that occur and propagate them to a page bean that is used for the error page.

You can make the page bean available to the command implementation using

the context attribute of the bpe:commandbar tag. After the exception is set on the

page bean, the command returns the string of the JSF navigation rule that is

defined for the error page.

v If you want to display an error message below the command-bar section in the

user interface, create an exception class that implements the

com.ibm.bpc.clientcore.exception.CommandBarMessage marker interface. This

interface provides a message catalog of error messages.

v If the command operates on a list of items, you might want to track the success

of the command for each of the items in the list. To track the errors, map each

exception to the item for which the operation failed. The CommandBar

component can pass a map, which contains the identifiers as keys and the

exceptions as values, to the model object that is defined for the CommandBar

component.

For this mechanism to work, the model object must implement the

com.ibm.bpe.jsf.handler.ErrorHandler interface and the command must throw a

com.ibm.bpc.clientcore.exception.ErrorsInCommandException exception. The

CommandBar component then passes the map contained in the exception to the

error handler. The action method is triggered although an error occurred, and

the current view is refreshed. The Business Process Choreographer Explorer

application makes use of this method to display exceptions in lists.

v If you throw a ClientException exception that does not implement the

CommandBarMessage interface and the exception is not an

ErrorsInCommandException, the CommandBar component propagates the

exception to the BPCError error bean that is defined in the configuration file of

your application. The error processing continues with the error navigation target.

Utilities provided by the Business Process Choreographer Explorer JSF

components:

The JavaServer Faces (JSF) components provide utilities for user-specific time zone

information and error handling.

Developing and deploying modules 85

User-specific time zone information

The BPCListHandler class uses the com.ibm.bpc.clientcore.util.User interface to get

information about the time zone and locale of each user. The List component

expects the implementation of the interface to be configured with user as the

managed-bean name in your JavaServer Faces (JSF) configuration file. If this entry

is missing from the configuration file, the time zone in which WebSphere Process

Server is running is returned.

The com.ibm.bpc.clientcore.util.User interface is defined as follows:

public interface User {

 /**

 * The locale used by the client of the user.

 * @return Locale.

 */

 public Locale getLocale();

 /**

 * The time zone used by the client of the user.

 * @return TimeZone.

 */

 public TimeZone getTimeZone();

 /**

 * The name of the user.

 * @return name of the user.

 */

 public String getName();

}

ErrorBean interface for error handling

Sometimes, the JSF components exploit a predefined managed bean, BPCError, for

error handling. This bean implements the com.ibm.bpc.clientcore.util.ErrorBean

interface. In error situations that trigger the error page, the exception is set on the

error bean. The error page is displayed in the following situations:

v If an error occurs during the execution of a query that is defined for a list

handler, and the error is thrown as a ClientException error by the execute

method of a command

v If a ClientException error is thrown by the execute method of a command and

this error is not an ErrorsInCommandException error nor does it implement the

CommandBarMessage interface

v If an error message is displayed in the component, and you follow the hyperlink

for the message

A default implementation of the com.ibm.bpc.clientcore.util.ErrorBeanImpl

interface is available.

The interface is defined as follows:

public interface ErrorBean {

 public void setException(Exception ex);

 /*

 * This setter method call allows a locale and

 * the exception to be passed. This allows the

 * getExceptionMessage methods to return localized Strings

 *

 */

 public void setException(Exception ex, Locale locale);

86 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

public Exception getException();

 public String getStack();

 public String getNestedExceptionMessage();

 public String getNestedExceptionStack();

 public String getRootExceptionMessage();

 public String getRootExceptionStack();

 /*

 * This method returns the exception message

 * concatenated recursively with the messages of all

 * the nested exceptions.

 */

 public String getAllExceptionMessages();

 /*

 * This method is returns the exception stack

 * concatenated recursively with the stacks of all

 * the nested exceptions.

 */

 public String getAllExceptionStacks();

}

Adding the List component to a JSF application

Use the Business Process Choreographer Explorer List component to display a list

of client model objects, for example, business process instances or task instances.

1. Add the List component to the JavaServer Pages (JSP) file.

Add the bpe:list tag to the h:form tag. The bpe:list tag must include a

model attribute. Add bpe:column tags to the bpe:list tag to add the properties

of the objects that are to appear in each of the rows in the list.

The following example shows how to add a List component to display task

instances.

<h:form>

 <bpe:list model="#{TaskPool}">

 <bpe:column name="name" action="taskInstanceDetails" />

 <bpe:column name="state" />

 <bpe:column name="kind" />

 <bpe:column name="owner" />

 <bpe:column name="originator" />

 </bpe:list>

</h:form>

The model attribute refers to a managed bean, TaskPool. The managed bean

provides the list of Java objects over which the list iterates and then displays in

individual rows.

2. Configure the managed bean referred to in the bpe:list tag.

For the List component, this managed bean must be an instance of the

com.ibm.bpe.jsf.handler.BPCListHandler class.

The following example shows how to add the TaskPool managed bean to the

configuration file.

<managed-bean>

<managed-bean-name>TaskPool</managed-bean-name>

<managed-bean-class>com.ibm.bpe.jsf.handler.BPCListHandler</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>query</property-name>

 <value>#{TaskPoolQuery}</value>

 </managed-property>

Developing and deploying modules 87

<managed-property>

 <property-name>type</property-name>

 <value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

 </managed-property>

</managed-bean>

<managed-bean>

<managed-bean-name>htmConnection</managed-bean-name>

<managed-bean-class>com.ibm.task.clientmodel.HTMConnection</managed-bean-class>

<managed-bean-scope>application</managed-bean-scope>

 <managed-property>

 <property-name>jndiName</property-name>

 <value>java:comp/env/ejb/LocalHumanTaskManagerEJB</value>

 </managed-property>

The example shows that TaskPool has two configurable properties: query and

type. The value of the query property refers to another managed bean,

TaskPoolQuery. The value of the type property specifies the bean class, the

properties of which are shown in the columns of the displayed list. The

associated query instance can also have a property type. If a property type is

specified, it must be the same as the type specified for the list handler.

To provide a connection to Human Task Manager, the TaskPool managed bean

is implemented using the htmConnection managed bean.

3. Add the custom code for the managed bean that is referred to by the list

handler.

The following example shows how to add custom code for the TaskPool

managed bean.

public class MyTaskQuery implements Query {

 public List execute throws ClientException {

 // Examine the faces-config file for a managed bean "htmConnection".

 //

 FacesContext ctx = FacesContext.getCurrentInstance();

 Application app = ctx.getApplication();

 ValueBinding htmVb = app.createValueBinding("#{htmConnection}");

 htmConnection = (HTMConnection) htmVb.getValue(ctx);

 HumanTaskManagerService taskService =

 htmConnection.getHumanTaskManagerService();

 // Then call the actual query method on the Human Task Manager service.

 //

 QueryResultSet queryResult = taskService.query(

 "DISTINCT TASK.TKIID, TASK.NAME, TASK.KIND, TASK.STATE, TASK.TYPE,"

 + "TASK.STARTED, TASK.ACTIVATED, TASK.DUE, TASK.EXPIRES, TASK.PRIORITY" ,

 "TASK.KIND IN(101,102,105) AND TASK.STATE IN(2)

 AND WORK_ITEM.REASON IN (1)",

 null,

 null,

 null);

 List applicationObjects = transformToTaskList (queryResult);

 return applicationObjects ;

 }

 private List transformToTaskList(QueryResultSet result) {

ArrayList array = null;

int entries = result.size();

array = new ArrayList(entries);

// Transforms each row in the QueryResultSet to a task instance beans.

 for (int i = 0; i < entries; i++) {

88 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

result.next();

 array.add(new TaskInstanceBean(result, connection));

 }

 return array ;

 }

}

The TaskPoolQuery bean queries the properties of the Java objects. This bean

must implement the com.ibm.bpc.clientcore.Query interface. When the list

handler refreshes its contents, it calls the execute method of the query. The call

returns a list of Java objects. The getType method must return the class name of

the returned Java objects.

Your JSF application now contains a JavaServer page that displays the properties of

the requested list of objects, for example, the state, kind, owner, and originator of

the task instances that are available to you.

List component: Tag definitions:

The Business Process Choreographer Explorer List component displays a list of

objects in a table, for example, tasks, activities, process instances, process

templates, work items, and escalations.

 The List component consists of the JSF component tags: bpe:list and bpe:column,

the bpe:column tag is a subelement of the bpe:list tag.

Component class

com.ibm.bpe.jsf.component.ListComponent

Example syntax

<bpe:list model="#{ProcessTemplateList}">

 rows="20"

 styleClass="list"

 headerStyleClass="listHeader"

 rowClasses="normal">

 <bpe:column name="name" action="processTemplateDetails"/>

 <bpe:column name="validFromTime"/>

 <bpe:column name="executionMode" label="Execution mode"/>

 <bpe:column name="state" converterID="my.state.converter"/>

 <bpe:column name="autoDelete"/>

 <bpe:column name="description"/>

</bpe:list>

Tag attributes

The body of the bpe:list tag can contain only bpe:column tags. When the table is

rendered, the list component iterates over the list of application objects and

provides the specific object for each column.

 Table 28. bpe:list attributes

Attribute Required Description

model yes A value binding for a managed bean of

the

com.ibm.bpe.jsf.handler.BPCListHandler

class.

Developing and deploying modules 89

Table 28. bpe:list attributes (continued)

Attribute Required Description

styleClass no The cascading style sheet (CSS) style for

rendering the overall table containing

titles, rows, and paging buttons.

headerStyleClass no The CSS style class for rendering the table

header.

cellStyleClass no The CSS style class for rendering

individual table cells.

buttonStyleClass no The CSS style class for rendering the

buttons in the footer area.

rowClasses no The CSS style class for rendering the rows

in the table.

rows no The number of rows that are shown on a

page. If the number of items exceeds the

number of rows, paging buttons are

displayed at the end of the table.

checkbox no Determines whether the check box for

selecting multiple items is rendered. The

attribute has the value true or false.

 Table 29. bpe:column attributes

Attribute Required Description

name yes The name of the object property that is

shown in this column. This name must

correspond to a named property as

defined in the corresponding client model

class.

action no If this attribute is specified as an outcome

string, it defines an outcome used by the

JavaServer Faces (JSF) navigation handler

to determine the next page.

If this attribute is specified as a method

binding (#{.....}), the method to be called

has the signature String method() and its

return value is used by the JSF navigation

handler to determine the next page.

label no The label displayed in the header of the

column or the cell of the table header row.

If this attribute is not set, a default label is

provided by the client model class.

converterID no The ID used to register the converter in

the JSF configuration file. If a converter

ID is not specified, the implementation of

the objects displayed in the list can

contain a definition of a converter for the

current property. The list component uses

this converter.

Adding the Details component to a JSF application

Use the Business Process Choreographer Explorer Details component to display the

properties of tasks, work items, activities, process instances, and process templates.

90 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

1. Add the Details component to the JavaServer Pages (JSP) file.

Add the bpe:details tag to the <h:form> tag. The bpe:details tag must contain

a model attribute. You can add properties to the Details component with the

bpe:property tag. If the Details component does not contain any properties, all

of the properties of the object are displayed.

The following example shows how to add a Details component to display some

of the properties for a task instance.

<h:form>

 <bpe:details model="#{TaskInstanceDetails}">

 <bpe:property name="displayName" />

 <bpe:property name="owner" />

 <bpe:property name="kind" />

 <bpe:property name="state" />

 <bpe:property name="escalated" />

 <bpe:property name="suspended" />

 <bpe:property name="originator" />

 <bpe:property name="activationTime" />

 <bpe:property name="expirationTime" />

 </bpe:details>

</h:form>

The model attribute refers to a managed bean, TaskInstanceDetails. The bean

provides the properties of the Java object.

2. Configure the managed bean referred to in the bpe:details tag.

For the Details component, this managed bean must be an instance of the

com.ibm.bpe.jsf.handler.BPCDetailsHandler class. This handler class wraps a

Java object and exposes its public properties to the details component.

The following example shows how to add the TaskInstanceDetails managed

bean to the configuration file.

<managed-bean>

 <managed-bean-name>TaskInstanceDetails</managed-bean-name>

 <managed-bean-class>com.ibm.bpe.jsf.handler.BPCDetailsHandler</managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>type</property-name>

 <value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

 </managed-property>

</managed-bean>

The example shows that the TaskInstanceDetails bean has a configurable type

property. The value of the type property specifies the bean class

(com.ibm.task.clientmodel.bean.TaskInstanceBean), the properties of which are

shown in the rows of the displayed details.

Your JSF application now contains a JavaServer page that displays the details of

the specified object, for example, the details of a task instance.

Details component: Tag definitions:

The Business Process Choreographer Explorer Details component displays the

properties of tasks, work items, activities, process instances, and process templates.

 The Details component consists of the JSF component tags: bpe:details and

bpe:property, the bpe:property tag is a subelement of the bpe:details tag.

Component class

com.ibm.bpe.jsf.component.DetailsComponent

Developing and deploying modules 91

Example syntax

<bpe:details model=”#{MyActivityDetails}”>

 <bpe:property name=”name”/>

 <bpe:property name=”owner”/>

 <bpe:property name=”activated”/>

</bpe:details>

<bpe:details model=”#{MyActivityDetails}” style=”style” styleClass=”cssStyle”>

 style=”style”

 styleClass=”cssStyle”

</bpe:details>

Tag attributes

Use bpe:property tags to specify both the subset of attributes that are shown and

the order in which these attributes are shown. If the details tag does not contain

any attribute tags, it renders all of the available attributes of the model object.

 Table 30. bpe:details attributes

Attribute Required Description

model yes A value binding for a managed bean of the

com.ibm.bpe.jsf.handler.BPCDetailsHandler

class.

styleClass no The cascading style sheet style class for

rendering the HTML element.

columnClasses no A list of CSS styles, separated by commas,

for rendering columns.

rowClasses no A list of CSS styles, separated by commas,

for rendering rows.

 Table 31. bpe:property attributes

Attribute Required Description

name yes The name of the property to be displayed.

This name must correspond to a named

property as defined in the corresponding

client model class.

label no The label for the property. If this attribute

is not set, a default label is provided by

the client model class.

converterID no The ID used to register the converter in the

JavaServer Faces (JSF) configuration file.

Adding the CommandBar component to a JSF application

Use the Business Process Choreographer Explorer CommandBar component to

display a bar with buttons. These buttons represent commands that operate on the

details view of an object or the selected objects in a list.

When the user clicks a button in the user interface, the corresponding command is

run on the selected objects. You can add and extend the CommandBar component

in your JSF application.

1. Add the CommandBar component to the JavaServer Pages (JSP) file.

Add the bpe:commandbar tag to the <h:form> tag. The bpe:commandbar tag must

contain a model attribute.

92 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

The following example shows how to add a CommandBar component to

display some of the properties of a task instance.

<h:form>

 <bpe:commandbar model="#{TaskInstanceList}">

 <bpe:command commandID="Refresh" >

 action="#{TaskInstanceList.refreshList}"

 label="Refresh"/>

 <bpe:command commandID="MyClaimCommand" >

 label="Claim" >

 commandClass="<customcode>"/>

 </bpe:commandbar>

</h:form>

The model attribute refers to a managed bean. This bean must implement the

ItemProvider interface and provide the selected Java objects. The CommandBar

component is usually used with either the List component or the Details

component in the same JSP file. Generally, the model specified in the tag is the

same as the model that is specified in the List component or Details component

on the same page. So for the List component, for example, the command acts

on the selected items in the list.

In this example, the model attribute refers to the TaskInstanceList managed

bean. This bean provides the properties of the Java objects and it must

implement the ItemProvider interface. This interface is implemented by the

BPCListHandler class and the BPCDetailsHandler class. It also includes a

custom claim command.

2. Optional: Configure the managed bean that is referred to in the

bpe:commandbar tag.

If the CommandBar model attribute refers to a managed bean that is already

configured, for example, for a list or details handler, no further configuration is

required. If you have changed the configuration of either of these handlers or

you have used a different managed bean, add a managed bean that implements

the ItemProvider interface to the JSF configuration file.

3. Add the code that implements the custom commands to the JSF application.

The following code snippet shows how to write a command class that extends

the command bar. This command class (MyClaimCommand) is referred to by

the bpe:command tag in the JSP file.

The command checks the preconditions and any other prerequisites, for

example, the correct number of selected items. It then retrieves a reference to

the human task API, HumanTaskManagerService. The command iterates over

the selected objects and tries to process them. The task is claimed through the

HumanTaskManagerService API by an ID. If an exception does not occur, the

state is updated for the corresponding TaskInstanceBean object. This action

avoids retrieving the value of the object from the server again.

public class MyClaimCommand implements Command {

 public String execute(List selectedObjects) throws ClientException {

 if(selectedObjects != null && selectedObjects.size() > 0) {

 try {

 // Determine HumanTaskManagerService from an HTMConnection bean.

 // Configure the bean in the faces-config.xml for easy access

 // in the JSF application.

 FacesContext ctx = FacesContext.getCurrentInstance();

 ValueBinding vb =

 ctx.getApplication().createValueBinding("{htmConnection}");

 HTMConnection htmConnection = (HTMConnection) htmVB.getValue(ctx);

 HumanTaskManagerService htm =

Developing and deploying modules 93

htmConnection.getHumanTaskManagerService();

 Iterator iter = selectedObjects.iterator() ;

 while(iter.hasNext()) {

 try {

 TaskInstanceBean task = (TaskInstanceBean) iter.next() ;

 TKIID tiid = task.getID() ;

 htm.claim(tiid) ;

 task.setState(new Integer(TaskInstanceBean.STATE_CLAIMED)) ;

 }

 catch(Exception e) {

 ; // Error while iterating or claiming task instance.

 // Ignore for better understanding of the sample.

 }

 }

 }

 catch(Exception e) {

 ; // Configuration or communication error.

 // Ignore for better understanding of the sample

 }

 }

 return null;

 }

 // Default implementations

 public boolean isMultiSelectEnabled() { return false; }

 public boolean[] isApplicable(List itemsOnList) {return null; }

 public void setContext(Object targetModel) {; // Not used here }

}

The command is processed in the following way:

a. A command is invoked when a user clicks the corresponding button in the

command bar. The CommandBar component retrieves the selected items

from the item provider that is specified in the model attribute and passes

the list of selected objects to the execute method of the commandClass

instance.

b. The commandClass attribute refers to a custom command implementation

that implements the Command interface. The command must implement

the public String execute(List selectedObjects)throws ClientException

method. The command returns an outcome that is used to determine the

next navigation rule for the JSF application.

c. After the command completes, the CommandBar component evaluates the

action attribute. The action attribute can be a static string or a method

binding to a JSF action method with the public String Method() signature.

Use the action attribute to override the outcome of a command class or to

explicitly specify an outcome for the navigation rules. The action attribute is

not processed if the command throws an exception other than an

ErrorsInCommandException exception.

Your JSF application now contains a JavaServer page that implements a customized

command bar.

CommandBar component: Tag definitions:

The Business Process Choreographer Explorer CommandBar component displays a

bar with buttons. These buttons operate on the object in a details view or the

selected objects in a list.

94 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

The CommandBar component consists of the JSF component tags: bpe:commandbar

and bpe:command, the bpe:command tag is a subelement of the bpe:commandbar tag.

Component class

com.ibm.bpe.jsf.component.CommandBarComponent

Example syntax

<bpe:commandbar model="#{TaskInstanceList}">

 <bpe:command

 commandID="Work on"

 label="Work on..."

 commandClass="com.ibm.bpc.explorer.command.WorkOnTaskCommand"

 context="#{TaskInstanceDetailsBean}"/>

 <bpe:command

 commandID="Cancel"

 label="Cancel"

 commandClass="com.ibm.task.clientmodel.command.CancelClaimTaskCommand"

 context="#{TaskInstanceList}"/>

</bpe:commandbar>

Tag attributes

 Table 32. bpe:commandbar attributes

Attribute Required Description

model yes A value binding expression to a managed

bean that implements the ItemProvider

interface. This managed bean is usually the

com.ibm.bpe.jsf.handler.BPCListHandler class

or the

com.ibm.bpe.jsf.handler.BPCDetailsHandler

class that is used by the List component or

Details component in the same JavaServer

Pages (JSP) file as the CommandBar

component.

styleClass no The cascading style sheet (CSS) style for

rendering the bar.

buttonStyleClass no The CSS style for rendering the buttons in

the command bar.

 Table 33. bpe:command attributes

Attribute Required Description

commandID yes The ID of the command.

commandClass yes The command class that is triggered.

Developing and deploying modules 95

Table 33. bpe:command attributes (continued)

Attribute Required Description

action no A JavaServer Faces (JSF) action method that

has the signature: String method(). The value

that is returned by the action method, or that

is directly specified as a literal overrides the

target returned by the execute method of the

command. The action attribute is not

processed if the command throws an

exception other than an

ErrorsInCommandException exception.

If this attribute is specified as an outcome

string, it defines an outcome used by the JSF

navigation handler to determine the

navigation rule and the next page to display.

If this attribute is specified as a method

binding (#{.....}), the method to be called has

the signature String method(). Its return

value is used by the JSF navigation handler

to determine the navigation rule and the next

page to display.

label yes The label of the button that is rendered in the

command bar.

styleClass no The CSS style for rendering the button. This

style overrides the button style defined for

the command bar.

context no A value binding expression, which refers to a

managed bean. Use this attribute if the

command needs to initialize the target page

or bean.

Adding the Message component to a JSF application

Use the Business Process Choreographer Explorer Message component to render

data objects and primitive types in a JavaServer Faces (JSF) application.

If the message type is a primitive type, a label and an input field are rendered. If

the message type is a data object, the component traverses the object and renders

the elements within the object.

1. Add the Message component to the JavaServer Pages (JSP) file.

Add the bpe:form tag to the <h:form> tag. The bpe:form tag must include a

model attribute.

The following example shows how to add a Message component.

<h:form>

 <h:outputText value="Input Message" />

 <bpe:form model="#{MyHandler.inputMessage}" readOnly="true" />

 <h:outputText value="Output Message" />

 <bpe:form model="#{MyHandler.outputMessage}" />

</h:form>

The model attribute of the Message component refers to a

com.ibm.bpc.clientcore.MessageWrapper object. This wrapper object wraps

96 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

either a Service Data Object (SDO) object or a Java primitive type, for example,

int or boolean. In the example, the message is provided by a property of the

MyHandler managed bean.

2. Configure the managed bean referred to in the bpe:form tag.

The following example shows how to add the MyHandler managed bean to the

configuration file.

<managed-bean>

<managed-bean-name>MyHandler</managed-bean-name>

<managed-bean-class>com.ibm.bpe.sample.jsf.MyHandler</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>type</property-name>

 <value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

 </managed-property>

</managed-bean>

3. Add the custom code to the JSF application.

The following example shows how to implement input and output messages.

public class MyHandler implements ItemListener {

 private TaskInstanceBean taskBean;

 private MessageWrapper inputMessage, outputMessage

 /* Listener method, e.g. when a task instance was selected in a list handler.

 * Ensure that the handler is registered in the faces-config.xml or manually.

 */

 public void itemChanged(Object item) {

 if(item instanceof TaskInstanceBean) {

 taskBean = (TaskInstanceBean) item ;

 }

 }

 /* Get the input message wrapper

 */

 public MessageWrapper getInputMessage() {

 try{

 inputMessage = taskBean.getInputMessageWrapper() ;

 }

 catch(Exception e) {

 ; //...ignore errors for simplicity

 }

 return inputMessage;

 }

 /* Get the output message wrapper

 */

 public MessageWrapper getOutputMessage() {

 // Retrieve the message from the bean. If there is no message, create

 // one if the task has been claimed by the user. Ensure that only

 // potential owners or owners can manipulate the output message.

 try{

 outputMessage = taskBean.getOutputMessageWrapper();

 if(outputMessage == null

 && taskBean.getState() == TaskInstanceBean.STATE_CLAIMED) {

 HumanTaskManagerService htm = getHumanTaskManagerService();

 outputMessage = new MessageWrapperImpl();

 outputMessage.setMessage(

 htm.createOutputMessage(taskBean.getID()).getObject()

);

 }

 }

 catch(Exception e) {

 ; //...ignore errors for simplicity

Developing and deploying modules 97

}

 return outputMessage

 }

}

The MyHandler managed bean implements the

com.ibm.jsf.handler.ItemListener interface so that it can register itself as an item

listener to list handlers. When the user clicks an item in the list, the MyHandler

bean is notified in its itemChanged(Object item) method about the selected

item. The handler checks the item type and then stores a reference to the

associated TaskInstanceBean object. To use this interface, add an entry to the

appropriate list handler in the faces-config.xml file.

The MyHandler bean provides the getInputMessage and getOutputMessage

methods. Both of these methods return a MessageWrapper object. The methods

delegate the calls to the referenced task instance bean. If the task instance bean

returns null, for example, because a message is not set, the handler creates and

stores a new, empty message. The Message component displays the messages

provided by the MyHandler bean.

Your JSF application now contains a JavaServer page that can render data objects

and primitive types.

Message component: Tag definitions:

The Business Process Choreographer Explorer Message component renders

commonj.sdo.DataObject objects and primitive types, such as integers and strings,

in a JavaServer Faces (JSF) application.

 The Message component consists of the JSF component tag: bpe:form.

Component class

com.ibm.bpe.jsf.component.MessageComponent

Example syntax

<bpe:form model="#{TaskInstanceDetailsBean.inputMessageWrapper}"

 simplification="true" readOnly="true"

 styleClass4table="messageData"

 styleClass4output="messageDataOutput">

</bpe:form>

Tag attributes

 Table 34. bpe:form attributes

Attribute Required Description

model yes A value binding expression expression that

refers to either a commonj.sdo.DataObject

object or a

com.ibm.bpc.clientcore.MessageWrapper

object.

simplification no If this attribute is set to true, properties

with a cardinality of zero or one are

shown. By default, this attribute is set to

false.

98 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Table 34. bpe:form attributes (continued)

Attribute Required Description

readOnly no If this attribute is set to true, a read-only

form is rendered. By default, this attribute

is set to false.

style4validinput no The cascading style sheet (CSS) style for

rendering input that is valid.

style4invalidinput no The CSS style for rendering input that is

not valid.

styleClass4validInput no The CSS class name for rendering input

that is valid.

styleClass4invalidInput no The CSS class name for rendering input

that is not valid.

styleClass4output no The CSS style class name for rendering the

output elements.

styleClass4table no The class name of the CSS table style for

rendering the tables rendered by the

message component.

buttonStyleClass no The CSS style for the buttons that work on

arrays or lists.

Mapping of client model objects

The client model objects implement the corresponding interfaces of the Business

Process Choreographer API.

This wrapping of the interfaces provides locale-sensitive labels and converters for a

set of properties. The following table shows the mapping of the Business Process

Choreographer interfaces to the corresponding client model objects.

 Table 35. How Business Process Choreographer interfaces are mapped to client model objects

Business Process Choreographer interface Client model object class

com.ibm.bpe.api.ActivityInstanceData com.ibm.bpe.clientmodel.bean.ActivityInstanceBean

com.ibm.bpe.api.ActivityServiceTemplateData com.ibm.bpe.clientmodel.bean.ActivityServiceTemplateBean

com.ibm.bpe.api.ProcessInstanceData com.ibm.bpe.clientmodel.bean.ProcessInstanceBean

com.ibm.bpe.api.ProcessTemplateData com.ibm.bpe.clientmodel.bean.ProcessTemplateBean

com.ibm.task.api.Escalation com.ibm.task.clientmodel.bean.EscalationBean

com.ibm.task.api.Task com.ibm.task.clientmodel.bean.TaskInstanceBean

com.ibm.task.api.TaskTemplate com.ibm.task.clientmodel.bean.TaskTemplateBean

Developing event handlers for human task events

You can create plug-ins for human task API events and escalation notification

events.

To work with the events that occur when a task is processed, you must specify the

event handler name in the task model.

You can create the following types of event handlers for human task events:

Developing and deploying modules 99

Notification event handler

To create an event handler for escalation notifications, you must implement

the com.ibm.task.spi.NotificationEventHandlerPlugin interface.

API event handler

To create an event handler for human task events, you must implement the

com.ibm.task.spi.APIEventHandlerPlugin interface.
1. Implement the event handler as a JAR file.

The JAR file requires the following:

v A class that implements the event handler interface. For example,

com.ibm.task.spi.NotificationEventHandlerPlugin for notification events or

com.ibm.task.spi.APIEventHandlerPlugin for API events. For example:

package com.ibm.task.spi ;

public interface NotificationEventHandlerPlugin

{

 public void interFaceMethod(Param param) ;

 :

}

v In the JAR file, you must have a property file in the directory

META-INF/services/ directory with the following file name:

com.ibm.task.spi.%identifier%%type%EventHandlerPlugin, where

%identifier% is the event handler name that is specified in your model, for

example, MyEventHandler, and %type% is the event type (either Notification

or API).

The first line of this file that is neither a comment line nor a blank line must

specify the name of the plug-in implementation. For example, the

META-INF/services/
com.ibm.task.spi.MyEventHandlerNotificationEventHandlerPlugin file

might contain the line

myevents.EventHandlerImplementation

2. Make the JAR file available to applications.

v If you want the event handler to be used by only one Java 2 Enterprise

Edition (J2EE) application, you can include the JAR file in the application

EAR file.

v If you want several applications to use the event handler, consider putting

the JAR file in a WebSphere Application Server shared library. You can then

explicitly associate the library with the applications that need access to the

event handler.
The event handler handles human task events that occur within the application.

Overview of preparing and installing modules

Installing modules (also known as deploying) activates the modules in either a test

environment or a production environment. This overview briefly describes the test

and production environments and some of the steps involved in installing

modules.

Note: The process for installing applications in a production environment is

similar to the process described in “Developing and deploying applications”

in the WebSphere Application Server Network Deployment, version 6

information center. If you are unfamiliar with those topics, review those

first.

100 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Before installing a module to a production environment, always verify changes in a

test environment. To install modules to a test environment, use WebSphere

Integration Developer (see the WebSphere Integration Developer information center

for more information). To install modules to a production environment, use

WebSphere Process Server.

This topic describes the concepts and tasks needed to prepare and install modules

to a production environment. Other topics describe the files that house the objects

that your module uses and help you move your module from your test

environment into your production environment. It is important to understand

these files and what they contain so you can be sure that you have correctly

installed your modules.

Libraries and JAR files overview

Modules often use artifacts that are located in libraries. Artifacts and libraries are

contained in Java archive (JAR) files that you identify when you deploy a module.

While developing a module, you might identify certain resources or components

that could be used by various pieces of the module. These resources or

components could be objects that you created while developing the module or

already existing objects that reside in a library that is already deployed on the

server. This topic describes the libraries and files that you will need when you

install an application.

What is a library?

A library contains objects or resources used by multiple modules within

WebSphere Integration Developer. The artifacts can be in JAR, resource archive

(RAR), or Web service archive (WAR) files. Some of these artifacts include:

v Interfaces or Web services descriptors (files with a .wsdl extension)

v Business object XML schema definitions (files with an .xsd extension)

v Business object maps (files with a .map extension)

v Relationship and role definitions (files with a .rel and .rol extension)

When a module needs an artifact, the server locates the artifact from the EAR class

path and loads the artifact, if it is not already loaded, into memory. From that

point on, any request for the artifact uses that copy until it is replaced. Figure 7 on

page 102 shows how an application contains components and related libraries.

Developing and deploying modules 101

What are JAR, RAR, and WAR files?

There are a number of files that can contain components of a module. These files

are fully described in the Java 2 Enterprise Edition (J2EE) specification. Details

about JAR files can be found in the JAR specification.

In WebSphere Process Server, a JAR file also contains an application, which is the

assembled version of the module with all the supporting references and interfaces

to any other service components used by the module. To completely install the

application, you need this JAR file, any other libraries such as JAR files, Web

services archive (WAR) files, resource archive (RAR) files, staging libraries

(Enterprise Java Beans - EJB) JAR files, or any other archives, and create an

installable EAR file using the serviceDeploy command (see Installing a module on

a production server).

Naming conventions for staging modules

Within the library, there are requirements for the names of the staging modules.

These names are unique for a specific module. Name any other modules required

to deploy the application so that conflicts with the staging module names do not

occur. For a module named myService, the staging module names are:

Figure 7. Relationship amongst module, component and library

102 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

http://java.sun.com/j2ee/1.4/index.jsp

v myServiceApp

v myServiceEJB

v myServiceEJBClient

v myServiceWeb

Note: The serviceDeploy command only creates the myService Web staging module

if the service includes a WSDL port type service.

Considerations when using libraries

Using libraries provides consistency of business objects and consistency of

processing amongst modules because each calling module has its own copy of a

specific component. To prevent inconsistencies and failures it is important to make

sure that changes to components and business objects used by calling modules are

coordinated with all of the calling modules. Update the calling modules by:

1. Copying the module and the latest copy of the libraries to the production

server

2. Rebuilding the installable EAR file using the serviceDeploy command

3. Stopping the running application containing the calling module and reinstall it

4. Restarting the application containing the calling module

EAR file overview

An EAR file is a critical piece in deploying a service application to a production

server.

An enterprise archive (EAR) file is a compressed file that contains the libraries,

enterprise beans, and JAR files that the application requires for deployment.

You create a JAR file when you export your application modules from WebSphere

Integration Developer. Use this JAR file and any other artifact libraries or objects as

input to the installation process. The serviceDeploy command creates an EAR file

from the input files that contain the component descriptions and Java code that

comprise the application.

Preparing to deploy to a server

After developing and testing a module, you must export the module from a test

system and bring it into a production environment for deployment. To install an

application you also should be aware of the paths needed when exporting the

module and any libraries the module requires.

Before beginning this task, you should have developed and tested your modules

on a test server and resolved problems and performance issues.

This task verifies that all of the necessary pieces of an application are available and

packaged into the correct files to bring to the production server.

Note: You can also export an enterprise archive (EAR) file from WebSphere

Integration Developer and install that file directly into WebSphere Process

Server.

Important: If the services within a component use a database, install the

application on a server directly connected to the database.

Developing and deploying modules 103

1. Locate the folder that contains the components for the module you are to

deploy.

The component folder should be named module-name with a file in it named

module.module, the base module.

2. Verify that all components contained in the module are in component

subfolders beneath the module folder.

For ease of use, name the subfolder similar to module/component.

3. Verify that all files that comprise each component are contained in the

appropriate component subfolder and have a name similar to

component-file-name.component.

The component files contain the definitions for each individual component

within the module.

4. Verify that all other components and artifacts are in the subfolders of the

component that requires them.

In this step you ensure that any references to artifacts required by a component

are available. Names for components should not conflict with the names the

serviceDeploy command uses for staging modules. See Naming conventions for

staging modules.

5. Verify that a references file, module.references, exists in the module folder of

step 1.

The references file defines the references and the interfaces within the module.

6. Verify that a wires file, module.wires, exists in the component folder.

The wires file completes the connections between the references and the

interfaces within the module.

7. Verify that a manifest file, module.manifest, exists in the component folder.

The manifest lists the module and all the components that comprise the

module. It also contains a classpath statement so that the serviceDeploy

command can locate any other modules needed by the module.

8. Create a compressed file or a JAR file of the module as input to the

serviceDeploy command that you will use to prepare the module for

installation to the production server.

Example folder structure for MyValue module prior to

deployment

The following example illustrates the directory structure for the module

MyValueModule, which is made up of the components MyValue, CustomerInfo,

and StockQuote.

MyValueModule

 MyValueModule.manifest

 MyValueModule.references

 MyValueModule.wiring

 MyValueClient.jsp

process/myvalue

 MyValue.component

 MyValue.java

 MyValueImpl.java

service/customerinfo

 CustomerInfo.component

 CustomerInfo.java

 Customer.java

 CustomerInfoImpl.java

service/stockquote

 StockQuote.component

104 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

StockQuote.java

 StockQuoteAsynch.java

 StockQuoteCallback.java

 StockQuoteImpl.java

Install the module onto the production systems as described in Installing a module

on a production server.

Considerations for installing service applications on clusters

Installing a service application on a cluster places additional requirements on you.

It is important that you keep these considerations in mind as you install any

service applications on a cluster.

Clusters can provide many benefits to your processing environment by providing

economies of scale to help you balance request workload across servers and

provide a level of availability for clients of the applications. Consider the following

before installing an application that contains services on a cluster:

v Will users of the application require the processing power and availability

provided by clustering?

If so, clustering is the correct solution. Clustering will increase the availability

and capacity of your applications.

v Is the cluster correctly prepared for service applications?

You must configure the cluster correctly before installing and starting the first

application that contains a service. Failure to configure the cluster correctly

prevents the applications from processing requests correctly.

v Does the cluster have a backup?

You must install the application on the backup cluster also.
 Related tasks

 Creating a clustered environment

Installing a module on a production server

This topic describes the steps involved in taking an application from a test server

and deploying it into a production environment.

Before deploying a service application to a production server, assemble and test the

application on a test server. After testing, export the relevant files as described in

Preparing to deploy to a server and bring the files to the production system to

deploy. See the information centers for WebSphere Integration Developer and

WebSphere Application Server Network Deployment, version 6 for more

information.

1. Copy the module and other files onto the production server.

The modules and resources (EAR, JAR, RAR, and WAR files) needed by the

application are moved to your production environment.

2. Run the serviceDeploy command to create an installable EAR file.

This step defines the module to the server in preparation for installing the

application into production.

a. Locate the JAR file that contains the module to deploy.

b. Issue the command using the JAR file from the previous step as input.
3. Install the EAR file from step 2. How you install the applications depends on

whether you are installing the application on a stand alone server or a server in

a cell.

Developing and deploying modules 105

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.wsps.adm.doc/doc/tadm_clusteringservers.html

Note: You can either use the administrative console or a script to install the

application. See the WebSphere Application Server information center for

additional information.

4. Save the configuration. The module is now installed as an application.

5. Start the application.

The application is now active and work should flow through the module.

Monitor the application to make sure the server is processing requests correctly.

Creating an installable EAR file using serviceDeploy

To install an application in the production environment, take the files copied to the

production server and create an installable EAR file.

Before starting this task, you must have a JAR file that contains the module and

services you are deploying to the server. See Preparing to deploy to a server for

more information.

The serviceDeploy command takes a JAR file, any other dependent EAR, JAR,

RAR, WAR and ZIP files and builds an EAR file that you can install on a server.

1. Locate the JAR file that contains the module to deploy.

2. Issue the command using the JAR file from the previous step as input.

This step creates an EAR file.

Note: Perform the following steps at an administrative console.

3. Select the EAR file to install in the administrative console of the server.

4. Click Save to install the EAR file.

Deploying applications using ANT tasks

This topic describes how to use ANT tasks to automate the deployment of

applications to WebSphere Process Server. By using ANT tasks, you can define the

deployment of multiple applications and have them run unattended on a server.

This task assumes the following:

v The applications being deployed have already been developed and tested.

v The applications are to be installed on the same server or servers.

v You have some knowledge of ANT tasks.

v You understand the deployment process.

Information about developing and testing applications is located in the WebSphere

Integration Developer information center.

The reference portion of the information center for WebSphere Application Server

Network Deployment, version 6 contains a section on application programming

interfaces. ANT tasks are described in the package com.ibm.websphere.ant.tasks.

For the purpose of this topic, the tasks of interest are ServiceDeploy and

InstallApplication.

If you need to install multiple applications concurrently, develop an ANT task

before deployment. The ANT task can then deploy and install the applications on

the servers without your involvement in the process.

1. Identify the applications to deploy.

106 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

2. Create a JAR file for each application.

3. Copy the JAR files to the target servers.

4. Create an ANT task to run the ServiceDeploy command to create the EAR file

for each server.

5. Create an ANT task to run the InstallApplication command for each EAR file

from step 4 on the applicable servers.

6. Run the ServiceDeploy ANT task to create the EAR file for the applications.

7. Run the InstallApplication ANT task to install the EAR files from step 6.

The applications are correctly deployed on the target servers.

Example of deploying an application unattended

This example shows an ANT task contained in a file myBuildScript.xml.

<?xml version="1.0">

<project name="OwnTaskExample" default="main" basedir=".">

 <taskdef name="servicedeploy"

 classname="com.ibm.websphere.ant.tasks.ServiceDeployTask" />

 <target name="main" depends="main2">

 <servicedeploy scaModule="c:/synctest/SyncTargetJAR"

 ignoreErrors="true"

 outputApplication="c:/synctest/SyncTargetEAREAR"

 workingDirectory="c:/synctest"

 noJ2eeDeploy="true"

 cleanStagingModules="true"/>

 </target>

</project>

This statement shows how to invoke the ANT task.

${WAS}/bin/ws_ant -f myBuildScript.xml

Tip: Multiple applications can be deployed unattended by adding additional

project statements into the file.

Use the administrative console to verify that the newly installed applications are

started and processing the workflow correctly.

Installing business process and human task applications

You can distribute Service Component Architecture (SCA) Enterprise JavaBeans

(EJB) modules that contain business processes or human tasks, or both, to

deployment targets. A deployment target can be a server or a cluster.

Verify that the business process container or task container is installed and

configured for each application server or cluster on which you want to install your

application.

Before you install a business process or human task application, make sure that the

following conditions are true:

v The servers on which you want to install the application are running.

v In each cluster, at least one server on which you want to install Enterprise

JavaBeans modules with processes or tasks is running.

You can install business process and task applications from the administrative

console, from the command line, or by running an administrative script, for

Developing and deploying modules 107

example. When you run an administrative script to install a business process

application or a human task application, a server connection is required. Do not

use the -conntype NONE option as an installation option.

1. If you are installing an application on a cluster, verify that the application uses

the data source that is named after the cluster.

For example, if the application was generated using the default data source

BPEDB, change the data source for the application to BPEDB_cluster_name, where

cluster_name is the name of the cluster on which you installed the application.

2. Install the application. For more information, see , which is in the WebSphere

Application Server information center.

All business process templates and human task templates are put into the start

state.

Before you can create process instances or task instances, you must start the

application.

Deployment of models

When WebSphere Integration Developer generates the deployment code for your

process, the constructs in the process or task model are mapped to various Java 2

Enterprise Edition (J2EE) constructs and artifacts. All deployment code is packaged

into the enterprise application (EAR) file. Each new version of a model that is to be

deployed must be packaged into a new enterprise application.

When you install an enterprise application that contains business process model or

human task model J2EE constructs, the model constructs are stored as process

templates or task templates, as appropriate, in the Business Process Choreographer

database. If the database system is not running, or if it cannot be accessed, the

deployment fails. Newly installed templates are, by default, in the started state.

However, the newly installed enterprise application is in the stopped state. Each

installed enterprise application can be started and stopped individually.

New versions of a process template or task template have the same name, but a

different valid-from attribute. You can deploy many different versions of a process

template or task template, each in a different application. However, no two

versions of the same process can have the same valid-from date. If you want to

install different versions of the same process, specify a different valid-from date for

each version. All the different process versions are stored in the database.

If you do not specify a valid-from date, the date is determined as follows:

v For a human task, the valid-from date is the date on which the application was

installed.

v For a business process, the valid-from date is the date on which the process was

modeled.

When you can install a process application on a cluster in

which no servers are running

This topic explains the exceptional circumstances in which you might need to

install an application on a cluster that has no running servers.

During the installation of a business process application on a server, the Java

Naming and Directory Interface (JNDI) name of the data source of the

corresponding business process container must be resolved. You cannot, therefore,

108 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

install an application without a server connection. In a Network Deployment (ND)

environment, this server is the deployment manager.

Restrictions lifted

If you want to install a business process application on a cluster in an ND

environment, no server in the cluster need be running if the following conditions

are true:

v The required data sources are defined at the cell level.

v The process application does not specify human tasks.

For process applications that have no human tasks, the data source lookup

operation is accomplished within the namespace of the deployment manager, when

a lookup operation in the namespace of the application server previously failed. If

the application is successfully installed, ignore any error messages in the

SystemOut.log file that indicate a failure of the data source lookup operation

within the application server namespace.

When it will work

v The lookup operation within the deployment manager namespace is successful

only if the data source JNDI name is defined at the cell level.

v If you use the wizard to configure a business process container or human task

container on a stand-alone server, the data source is defined at the server level.

The same is true if you use the configuration script bpeconfig.jacl, which is

provided in the ProcessChoreographer/sample directory of your application

server installation. In this case, you must define the data source manually at the

cell level and use this data source when you install the business process

container.

v If you configure a business process container with the wizard on a cluster

member, the data source is automatically defined at the cell level. The JNDI

name is scoped by the cluster name. The same is true if you use the

configuration script bpeconfig.jacl, which is provided in the

ProcessChoreographer/sample directory of your application server installation. In

this case, you do not need to change anything manually.

When it will not work

Process applications that contain human tasks require an additional JNDI name

lookup operation to locate the staff plug-in provider. Therefore, to help ensure

successful installation of such applications, make sure that the cluster includes a

running server.

Scoping side effects

A side effect of the name lookup is that if an application server is not running and

a data source is defined on its server or node level with the same name as a data

source at the cell level, the cell level data source takes precedence. This means that

you are using a different data source during deployment and at run time.

Attention: Avoid name clashes. If you define data sources at the cell level

manually, use JNDI names that are scoped by the cluster name or server name and

node name, for example, jdbc/BPEDB_.

Developing and deploying modules 109

Uninstalling business process and human task applications,

using the administrative console

To uninstall an enterprise application that contains business processes or human

tasks, perform the following actions:

1. Stop all process and task templates in the application.

This action prevents the creation of process and task instances.

a. Click Applications → Enterprise Applications in the administrative console

navigation pane.

b. Select the application that you want to stop.

c. Under Related Items, click EJB Modules, then select an Enterprise

JavaBeans (EJB) module. If you have more than one EJB module, select the

EJB module that corresponds to the Service Component Architecture (SCA)

module that contains the business process or human task. You can find the

corresponding EJB module by appending EJB to the SCA module name. For

example, if your SCA module was named TestProcess, the EJB module is

TestProcessEJB.jar.

d. Under Additional Properties, click Business Processes or Human Tasks, or

both, as appropriate.

e. Select all process and task templates by clicking the appropriate check box.

f. Click Stop.
Repeat this step for all EJB modules that contain business process templates or

human task templates.

2. Verify that the database, at least one application server for each cluster, and the

stand-alone server where the application is deployed are running.

In a Network Deployment (ND) environment, the deployment manager, all

ND-managed stand-alone application servers, and at least one application

server must be running for each cluster where the application is installed.

3. Verify that no process instances or task instances exist.

If necessary, an administrator can use Business Process Choreographer Explorer

to delete any process or task instances.

4. Stop and uninstall the application:

a. Click Applications → Enterprise Applications in the administrative console

navigation pane.

b. Select the application that you want to uninstall and click Stop.

This step fails if any process instances or task instances still exist in the

application.

c. Select again the application that you want to uninstall, and click Uninstall.

d. Click Save to save your changes.

The application is uninstalled.

Uninstalling business process and human task applications,

using administrative commands

Administrative commands provide an alternative to the administrative console for

uninstalling applications that contain business processes or human tasks.

If global security is enabled, verify that your user ID has operator authorization.

Ensure that the server process to which the administration client connects is

running.

110 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

v In an ND environment, the server process is the deployment manager.

v In a stand-alone environment, the server process is the application server.

To ensure that the administrative client automatically connects to the server

process, do not use the -conntype NONE option as a command option.

Ensure that you delete any process instances or task instances associated with the

templates in the applications, for example, using Business Process Choreographer

Explorer.

The following steps describe how to use the bpcTemplates.jacl script to uninstall

applications that contain business process templates or human task templates. You

must stop a template before you can uninstall the application to which it belongs.

You can use the bpcTemplates.jacl script to stop and uninstall templates in one

step.

1. Change to the Business Process Choreographer samples directory. Type the

following:

cd install_root/ProcessChoreographer/sample

2. Stop the templates and uninstall the corresponding application.

install_root/bin/wsadmin -f bpcTemplates.jacl

 [-user user_name]

 [-password user password]

 -uninstall application_name

Where:

user_name

If global security is enabled, provide the user ID for authentication.

user_password

If global security is enabled, provide the user password for authentication.

application_name

If global security is enabled, provide the user password for authentication.

The application is uninstalled.

Installing applications with embedded WebSphere Adapters

If an application is developed with a WebSphere Adapter embedded, the adapter is

deployed with the application. You do not need to install the adapter separately.

The steps to install an application with an embedded adapter are described.

This task should only be performed if the application is developed with an

embedded WebSphere Adapter.

1. Assemble an application with resource adapter archive (RAR) modules in it.

See Assembling applications.

2. Install the application following the steps in Installing a new application. In the

Map modules to servers step, specify target servers or clusters for each RAR

file. Be sure to map all other modules that use the resource adapters defined in

the RAR modules to the same targets. Also, specify the Web servers as targets

that serve as routers for requests to this application. The plug-in configuration

file (plugin-cfg.xml) for each Web server is generated based on the applications

that are routed through it.

Note: When installing a RAR file onto a server, WebSphere Application Server

looks for the manifest (MANIFEST.MF) for the connector module. It

looks first in the connectorModule.jar file for the RAR file and loads the

Developing and deploying modules 111

manifest from the _connectorModule.jar file. If the class path entry is in

the manifest from the connectorModule.jar file, then the RAR uses that

class path. To ensure that the installed connector module finds the

classes and resources that it needs, check the Class path setting for the

RAR using the console. For more information, see Resource Adapter

settings and WebSphere relational resource adapter settings.

3. Save the changes. Click Finish > Save.

4. Create connection factories for the newly installed application

a. Open the administrative console.

b. Select the newly installed application Click Applications > Enterprise

Applications > application name.

c. Click Connector Modules in the Related Items section of the page.

d. Select the RAR file. Click on filename.rar

e. Click Resource adapter in the Additional Properties section of the page.

f. Click J2C Connection Factories in the Additional Properties section of the

page.

g. Click on an existing connection factory to update it, or New to create a

new one.

Note: If the WebSphere Adapter was configured using an EIS Import or EIS

Export a ConnectionFactory or ActivationSpec will exist and can be

updated.
If you install an adapter that includes native path elements, consider the

following: If you have more than one native path element, and one of the

native libraries (native library A) is dependent on another library (native library

B), then you must copy native library B to a system directory. Because of

limitations on most UNIX systems, an attempt to load a native library does not

look in the current directory.

After you create and save the connection factories, you can modify the resource

references defined in various modules of the application and specify the Java

Naming and Directory Interface (JNDI) names of the connection factories

wherever appropriate.

Note:

A given native library can only be loaded one time for each instance of

the Java virtual machine (JVM). Because each application has its own

classloader, separate applications with embedded RAR files cannot both

use the same native library. The second application receives an exception

when it tries to load the library.

If any application deployed on the application server uses an embedded

RAR file that includes native path elements, then you must always

ensure that you shut down the application server cleanly, with no

outstanding transactions. If the application server does not shut down

cleanly it performs recovery upon server restart and loads any required

RAR files and native libraries. On completion of recovery, do not attempt

any application-related work. Shut down the server and restart it. No

further recovery is attempted by the application server on this restart,

and normal application processing can proceed.

112 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

WebSphere Adapter

A WebSphere Adapter (or JCA Adapter, or J2C Adapter) is a system-level software

driver that a Java application uses to connect to an enterprise information system

(EIS). WebSphere Adapters conform to version 1.5 of the JCA specification.

A WebSphere Adapter plugs into an application server and provides connectivity

between the EIS, the application server, and the enterprise application.

An application server vendor extends its system once to support the J2EE

Connector Architecture (JCA) and is then assured of seamless connectivity to

multiple EISs. Likewise, an EIS vendor provides one standard WebSphere Adapter

with the capability to plug into any application server that supports the connector

architecture.

WebSphere Process Server provides the WebSphere Relational Resource Adapter

(RRA) implementation. This WebSphere Adapter provides data access through

JDBC calls to access the database dynamically. The connection management is

based on the JCA connection management architecture. It provides connection

pooling, transaction, and security support. WebSphere Process Server version 6.0

supports JCA version 1.5.

Data access for container-managed persistence (CMP) beans is managed by the

WebSphere Persistence Manager indirectly. The JCA specification supports

persistence manager delegation of the data access to the WebSphere Adapter

without specific knowledge of the back-end store. For the relational database

access, the persistence manager uses the relational resource adapter to access the

data from the database. You can find the supported database platforms for the

JDBC API at the WebSphere Process Server prerequisite Web site.

IBM supplies resource adapters for many enterprise systems separately from the

WebSphere Process Server package, including (but not limited to): the Customer

Information Control System (CICS), Host On-Demand (HOD), Information

Management System (IMS), and Systems, Applications, and Products (SAP) R/3.

In WebSphere Process Server, EIS Imports and EIS Exports are used to interface

with WebSphere Adapters. As an alternative, applications with WebSphere

Adapters can be written by developing EJB session beans or services with tools

such as Rational Application Developer. The session bean uses the

javax.resource.cci interfaces to communicate with an enterprise information system

through the WebSphere Adapter.

WebSphere Adapter deployment considerations

The deployment of WebSphere Adapters requires specific options regarding scope.

You can deploy a WebSphere Adapter in two ways, using the administrative

console:

v Standalone - the adapter is installed at the node level and is not associated with

a specific application.

Note: Deployment of standalone WebSphere Adapters is not supported in

WebSphere Process Server v6.0.

v Embedded - the adapter is part of an application, deploying the application also

deploys the adapter.

Developing and deploying modules 113

For embedded WebSphere Adapters:

v the RAR file can be application-scoped within an SCA module (with EIS imports

or exports).

v the RAR file can be application-scoped within a non-SCA module. The

application itself, containing the EIS imports and exports, is a separate SCA

module.

You should not install standalone WebSphere Adapters.

Note: The administrative console does not preclude the installation of standalone

WebSphere Adapters, but this should not be done. WebSphere Adapters

should be embedded in applications.

Only embedded WebSphere Adapters are appropriate for deployment in

WebSphere Process Server. Furthermore, deployment of an embedded WebSphere

Adapter is only supported for RAR files that are application-scoped within an SCA

module; deployment in a non-SCA module is not supported.

Installing Standalone WebSphere Adapters

WebSphere Adapters should be embedded in applications. Standalone WebSphere

Adapters are not support in WebSphere Process Server v6.0. These instructions are

for reference only. If you intend to use a standalone WebSphere Adapter you

should install it, as described here. You can alternatively use an embedded adapter,

which is installed automatically as part of the installation of the associated

application.

You should configure the database before installing the adapter.

You must have access to, and be part of the necessary security role for, the

administrative console to perform this task.

1. Open the Install RAR file dialog window.

On the administrative console:

a. Expand Resources

b. Click Resource Adapters

c. Select the scope at which you want to define this resource adapter. (This

scope becomes the scope of your connection factory). You can choose cell,

node, cluster, or server.

d. Click Install RAR

A window opens in which you can install a JCA connector and create, for it, a

WebSphere Adapter. You can also use the New button, but the New button

creates only a new resource adapter (the JCA connector must already be

installed on the system).

Note: When installing a RAR file using this dialog, the scope you define on the

Resource Adapters page has no effect on where the RAR file is installed.

You can install RAR files only at the node level. The node on which the

file is installed is determined by the scope on the Install RAR page. (The

scope you set on the Resource Adapters page determines the scope of

the new resource adapters, which you can install at the server, node, or

cell level.)

2. Install the RAR file

From the dialog, install the WebSphere Adapter in the following manner:

114 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

a. Browse to the location of the JCA connector. If the RAR file is on the local

workstation select Local Path and browse to find the file. If the RAR file is

on a network server, select Server path and specify the fully qualified path

to the file.

b. Click Next

c. Enter the resource adapter name and any other properties needed under

General Properties. If you install a J2C Resource Adapter that includes

native path elements, consider the following: If you have more than one

native path element, and one of the native libraries (native library A) is

dependent on another library (native library B), then you must copy native

library B to a system directory. Because of limitations on most UNIX

systems, an attempt to load a native library does not look in the current

directory.

d. Click OK.

WebSphere Adapter applications as members of clusters

WebSphere Adapter module applications can be cloned as members of a cluster

under certain conditions.

WebSphere Adapter module applications can be one of three types, depending on

the flow of information through the adapter:

v A WebSphere Adapter application with only EIS exports - only inbound traffic.

v A WebSphere Adapter application with only EIS imports - only outbound traffic.

v A WebSphere Adapter application with both EIS imports and exports -

bidirectional traffic.

Clusters are used to provide scalability and availability to your applications in a

network deployment environment.

WebSphere Adapter module applications that have either inbound or bidirectional

traffic, cannot be cloned as members of a cluster. An application with purely

outbound traffic can be cloned as a member of a cluster.

An application that has an inbound or bidirectional WebSphere Adapter (that is,

including EIS exports) can still be given availability in a network deployment by

use of an external Operating System High Availability (HA) management software

package, such as HACMP™, Veritas or Microsoft® Cluster Server.

WebSphere Business Integration Adapter applications as

members of clusters

WebSphere Business Integration Adapter module applications can be cloned as

members of a cluster under certain conditions.

WebSphere Business Integration Adapter module applications can be one of three

types, depending on the flow of information through the adapter:

v A WebSphere Business Integration Adapter application with only EIS exports -

only inbound traffic.

v A WebSphere Business Integration Adapter application with only EIS imports -

only outbound traffic.

v A WebSphere Business Integration Adapter application with both EIS imports

and exports - bidirectional traffic.

Developing and deploying modules 115

Clusters are used to provide scalability and availability to your applications in a

network deployment environment.

WebSphere Business Integration Adapter module applications that have either

inbound or bidirectional traffic, cannot be cloned as members of a cluster. An

application with purely outbound traffic can be cloned as a member of a cluster.

An application which has inbound or bidirectional WebSphere Business Integration

Adapter (i.e., including EIS exports) can still be given availability in a network

deployment by use of an external Operating System High Availability (HA)

management software package, such as HACMP, Veritas or Microsoft Cluster

Server.

Installing EIS applications

An EIS application module, a service component architecture (SCA) module that

follows EIS application module pattern can be deployed to either a J2SE platform

or a J2EE platform.

The steps required to deploy an EIS module depend on the platform.

See the subsequent tasks for detailed information.

Deploying an EIS application module to the J2SE platform

The EIS Module can be deployed to J2SE platform however only EIS Import will

be supported.

You need to create an EIS application module with a JMS Import binding in the

WebSphere Integration Development environment before commencing this task.

An EIS application module would be furnished with a JMS Import binding when

you want to access EIS systems asynchronously through the use of message

queues.

Deploying to the J2SE platform is the only instance where the binding

implementation can be executed in the non-managed mode. The JMS Binding

requires asynchronous and JNDI support, neither of which is provided by the base

service component architecture or the J2SE. The J2EE Connector Architecture does

not support non-managed inbound communication thus eliminating EIS Export.

When the EIS application module with the EIS Import is deployed to J2SE, in

addition to the module dependencies, the WebSphere Adapter used by the import

has to be specified as the dependency, in the manifest or any other form supported

by SCA.

Deploying an EIS application module to the J2EE platform

The deployment of EIS module to the J2EE platform results in an application,

packaged as an EAR file deployed to the server. All the J2EE artifacts and

resources are created, the application is configured and ready to be run.

You need to create an EIS module with a JMS Import binding in the WebSphere

Integration Development environment before commencing this task.

The deployment to the J2EE platform creates the following J2EE artifacts and

resources:

116 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Table 36. Mapping from bindings to J2EE artifacts

Binding in the SCA module Generated J2EE artifacts Created J2EE resources

EIS Import Resource References

generated on the module

Session EJB.

ConnectionFactory

EIS Export Message Driven Bean,

generated or deployed,

depending on the listener

interface supported by the

Resource Adapter.

ActivationSpec

JMS Import Message Driven Bean (MDB)

provided by the runtime is

deployed, resource references

generated on the module

Session EJB. Note that the

MDB is only created if the

import has a receive

destination.

v ConnectionFactory

v ActivationSpec

v Destinations

JMS Export Message Driven Bean

provided by the runtime is

deployed, resource references

generated on the module

Session EJB

v ActivationSpec

v ConnectionFactory

v Destinations

When the import or export defines a resource like a ConnectionFactory, the

resource reference is generated into the deployment descriptor of the module

Stateless Session EJB. Also, the appropriate binding is generated into the EJB

binding file. The name, to which resource reference is bound, is either the value of

the target attribute, if one is present, or default JNDI lookup name given to the

resource, based on the module name and import name.

Upon deployment, the implementation locates the module session bean and uses it

to lookup the resources.

During deployment of the application to the server, the EIS installation task will

check for the existence of the element resource to which it is bound. If it does not

exist, and the SCDL file specifies at least one property, the resource will be created

and configured by the EIS installation task. If the resource does not exist, no action

is taken, it is assumed that resource will be created before execution of the

application.

When the JMS Import is deployed with a receive destination, a Message Driver

Bean (MDB) is deployed. It listens for replies to requests that have been sent out.

The MDB is associated (listens on) the Destination sent with the request in the

JMSreplyTo header field of the JMS message. When the reply message arrives, the

MDB uses its correlation ID to retrieve the callback information stored in the

callback Destination and then invokes the callback object.

The installation task creates the ConnectionFactory and three destinations from the

information in the import file. In addition, it creates the ActivationSpec to enable

the runtime MDB to listen for replies on the receive Destination. The properties of

the ActivationSpec are derived from the Destination/ConnectionFactory properties.

If the JMS provider is a SIBus Resource Adapter, the SIBus Destinations

corresponding to the JMS Destination are created.

Developing and deploying modules 117

When the JMS Export is deployed, a Message Driven Bean (MDB) (not the same

MDB as the one deployed for JMS Import) is deployed. It listens for the incoming

requests on the receive Destination and then dispatches the requests to be

processed by the SCA. The installation task creates the set of resources similar to

the one for JMS Import, an ActivationSpec, ConnectionFactory used for sending a

reply and two Destinations. All the properties of these resources are specified in

the export file. If the JMS provider is an SIBus Resource Adapter, the SIBus

Destinations corresponding to JMS Destination are created.

Troubleshooting a failed deployment

This topic describes the steps to take to determine the cause of a problem when

deploying an application. It also presents some possible solutions.

This topic assumes the following things:

v You have a basic understanding of debugging a module.

v Logging and tracing is active while the module is being deployed.

The task of troubleshooting a deployment begins after you receive notification of

an error. There are various symptoms of a failed deployment that you have to

inspect before taking action.

1. Determine if the application installation failed.

Examine the system.out file for messages that specify the cause of failure. Some

of the reasons an application might not install include the following:

v You are attempting to install an application on multiple servers in the same

Network Deployment cell.

v An application has the same name as an existing module on the Network

Deployment cell to which you are installing the application.

v You are attempting to deploy J2EE modules within an EAR file to different

target servers.

Important: If the installation has failed and the application contains services,

you must remove any SIBus destinations or J2C activation

specifications created prior to the failure before attempting to

reinstall the application. The simplest way to remove these artifacts

is to click Save > Discard all after the failure. If you inadvertently

save the changes, you must manually remove the SIBus

destinations and J2C activation specifications (see Deleting SIBus

destinations and Deleting J2C activation specifications in the

Administering section).

2. If the application is installed correctly, examine it to determine if it started.

If the application is not running, the failure occurred when the server

attempted to initiate the resources for the application.

a. Examine the system.out file for messages that will direct you on how to

proceed.

b. Determine if the resources are started.

Resources that are not started prevent an application from running to

protect against lost information. The reasons for a resource not starting

include:

v Bindings are specified incorrectly

v Resources are not configured correctly

v Resources are not included in the resource archive (RAR) file

118 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

v Web resources not included in the Web services archive (WAR) file
c. Determine if any components are missing.

The reason for missing a component is an incorrectly built enterprise

archive (EAR) file. Make sure that the all of the components required by the

module are in the correct folders on the test system on which you built the

Java archive (JAR) file. Refer to Developing and deploying modules >

Overview of preparing and installing modules > Preparing to deploy to a

server for additional information.
3. Examine the application to see if there is information flowing through it.

Even a running application can fail to process information. Reasons for this are

similar to those mentioned in step 2b on page 118.

a. Determine if the applications uses any services contained in another

application. Make sure that the other application is installed and running.

b. Determine if the import and export bindings for all services contained in

other applications the failing application uses are configured correctly. Use

the administrative console to examine and correct the bindings.
4. Correct the problem and restart the application.

Deleting J2C activation specifications

The system builds J2C applications specifications when installing an application

that contains services. There are occasions when you must delete these

specifications before reinstalling the application.

If you are deleting the specification because of a failed application installation,

make sure the module in the Java Naming and Directory Interface (JNDI) name

matches the name of the module that failed to install. The second part of the JNDI

name is the name of the module that implemented the destination. For example in

sca/SimpleBOCrsmA/ActivationSpec, SimpleBOCrsmA is the module name.

Delete J2C activation specifications when you inadvertently saved a configuration

after installing an application that contains services and do not require the

specifications.

1. Locate the activation specification to delete.

The specifications are contained in the resource adapter panel. Navigate to this

panel by clicking Resources > Resource adapters.

a. Locate the Platform Messaging Component SPI Resource Adapter.

To locate this adapter, you must be at the node scope for a stand alone

server or at the server scope in a Network Deployment environment.
2. Display the J2C activation specifications associated with the Platform

Messaging Component SPI Resource Adapter.

Click on the resource adapter name and the next panel displays the associated

specifications.

3. Delete all of the specifications with a JNDI Name that matches the module

name that you are deleting.

a. Click the check box next to the appropriate specifications.

b. Click Delete.

The system removes selected specifications from the display.

Save the changes.

Developing and deploying modules 119

Deleting SIBus destinations

SIBus destinations are the connections that make services available to applications.

There will be times that you will have to remove destinations.

If you are deleting the destination because of a failed application installation, make

sure the module in the destination name matches the name of the module that

failed to install. The second part of the destination is the name of the module that

implemented the destination. For example in sca/SimpleBOCrsmA/component/
test/sca/cros/simple/cust/Customer, SimpleBOCrsmA is the module name.

Delete SIBus destinations when you inadvertently saved a configuration after

installing an application that contains services and you no longer need the

destinations.

Note: This task deletes the destination from the SCA system bus only. You must

remove the entries from the application bus also before reinstalling an

application that contains services (see Deleting J2C activation specifications

in the Administering section of this information center.

1. Log into the administrative console.

2. Display the destinations on the SCA system bus.

Navigate to the panel by clicking Service integration > buses

3. Select the SCA system bus destinations.

In the display, click on SCA.SYSTEM.cellname.Bus, where cellname is the name

of the cell that contains the module with the destinations you are deleting.

4. Delete the destinations that contain a module name that matches the module

that you are removing.

a. Click on the check box next to the pertinent destinations.

b. Click Delete.

The panel displays only the remaining destinations.

Delete the J2C activation specifications related to the module that created these

destinations.

120 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006 121

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

122 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

IBM, IBM (logo), AIX, CICS, Cloudscape, DB2, DB2 Connect, DB2 Universal

Database, developerWorks, Domino, IMS, Informix, iSeries, Lotus, MQSeries, MVS,

OS/390, Passport Advantage, pSeries, Rational, Redbooks, Tivoli, WebSphere,

z/OS, zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org/).

IBM Websphere Process Server for z/OS version 6.0.1

Notices 123

124 IBM WebSphere Process Server for z/OS: Developing and Deploying Modules

����

Printed in USA

	Contents
	Developing and deploying modules
	Overview of developing modules
	Developing service modules
	Developing service components
	Invoking components
	Considerations when invoking services on different servers
	Overview of isolating modules and targets

	Developing applications for business processes and tasks
	Accessing the generic APIs
	Accessing the remote session bean
	Accessing the local session bean

	Developing applications for business processes
	Authorization roles for business processes
	Starting business processes
	Processing staff activities
	Sending a message to a waiting activity
	Handling events
	Analyzing the results of a process
	Managing the life cycle of a business process
	Repairing activities
	BusinessFlowManagerService interface

	Developing applications for human tasks
	Authorization roles for human tasks
	Starting an originating task that invokes a synchronous interface
	Starting an originating task that invokes an asynchronous interface
	Creating and starting a task instance
	Processing participating or purely human tasks
	Suspending and resuming a task instance
	Analyzing the results of a task
	Terminating a task instance
	Deleting task instances
	Releasing a claimed task
	Managing work items
	Creating task templates and task instances at runtime
	HumanTaskManagerService interface

	Querying business-process and task-related objects
	Queries on business-process and task-related objects
	Managing stored queries
	Predefined views for queries on business-process and human-task objects

	Handling exceptions and faults
	Handling API exceptions
	Checking which fault is set for an activity
	Checking which fault occurred for a stopped invoke activity

	Developing Web applications for business processes and human tasks, using JSF components
	Business Process Choreographer Explorer components
	Adding the List component to a JSF application
	Adding the Details component to a JSF application
	Adding the CommandBar component to a JSF application
	Adding the Message component to a JSF application
	Mapping of client model objects

	Developing event handlers for human task events

	Overview of preparing and installing modules
	Libraries and JAR files overview
	EAR file overview
	Preparing to deploy to a server
	Considerations for installing service applications on clusters

	Installing a module on a production server
	Creating an installable EAR file using serviceDeploy
	Deploying applications using ANT tasks

	Installing business process and human task applications
	Deployment of models
	When you can install a process application on a cluster in which no servers are running
	Uninstalling business process and human task applications, using the administrative console
	Uninstalling business process and human task applications, using administrative commands

	Installing applications with embedded WebSphere Adapters
	WebSphere Adapter
	WebSphere Adapter deployment considerations
	Installing Standalone WebSphere Adapters
	WebSphere Adapter applications as members of clusters
	WebSphere Business Integration Adapter applications as members of clusters

	Installing EIS applications
	Deploying an EIS application module to the J2SE platform
	Deploying an EIS application module to the J2EE platform

	Troubleshooting a failed deployment
	Deleting J2C activation specifications
	Deleting SIBus destinations

	Notices
	Programming interface information
	Trademarks and service marks

