
WebSphere® Process Server

Developing and deploying modules

Version 6.0

���

Note

Before using this information, be sure to read the general information in “Notices” on page 95.

September 29 2005

This edition applies to version 6, release 0, of WebSphere Process Server (product number 5724-L01) and to all

subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing

from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Developing and deploying modules . 1

Overview of developing modules . 1

Developing modules . 2

Developing applications for business processes and tasks . 7

Accessing the generic APIs . 8

Developing applications for business processes . 12

Developing applications for human tasks . 22

Querying business-process and task-related objects . 27

Handling exceptions and faults . 48

Authorization for business-process applications . 49

Authorization for human-task applications . 52

BusinessFlowManagerService interface . 54

HumanTaskManagerService interface . 56

Overview of preparing and installing modules . 59

Libraries and JAR files overview . 59

EAR file overview . 61

Preparing to deploy to a server . 61

Installing a module on a production server . 63

Creating an installable EAR file using serviceDeploy . 63

Deploying applications using ANT tasks . 64

Installing and uninstalling business process and human task applications 65

Deployment of models . 65

Application management . 66

Uninstalling business process and human task applications 67

Installing applications with embedded WebSphere Adapters 68

WebSphere Adapter . 69

WebSphere Adapter deployment considerations . 70

Installing Standalone WebSphere Adapters . 70

WebSphere Adapter applications as members of clusters 71

WebSphere Business Integration Adapter applications as members of clusters 72

Installing EIS applications . 72

Deploying an EIS application module to the J2SE platform 72

Deploying an EIS application module to the J2EE platform 73

Troubleshooting a failed deployment . 74

References . 75

Programming interfaces . 75

Commands . 92

Notices . 95

Programming interface information . 97

Trademarks and service marks . 97

© Copyright IBM Corp. 2005 iii

iv IBM WebSphere Process Server: Developing and deploying modules

Developing and deploying modules

Developing and deploying modules are fundamental tasks.

WebSphere Process Server documentation PDFs

The following topics describe the concepts and tasks involved in developing

modules for use with WebSphere® Process Server and deploying modules to the

server.

Overview of developing modules

A module is a basic deployment unit for a WebSphere Process Server application.

A module contains one or more component libraries and staging modules used by

the application. A component may reference other components. Developing

modules involves ensuring that the components, staging modules, and libraries

(collections of artifacts referenced by the module) required by the application are

available on the production server.

WebSphere Integration Developer is the main tool for developing modules for

deployment to WebSphere Process Server. Although you can develop modules in

other environments, it is best to use WebSphere Integration Developer.

The following sections address how to implement and update modules on

WebSphere Process Server.

A synopsis on components

A component is the basic building block to encapsulate reusable business logic. A

component is associated with interfaces, references and implementations. The

interface defines a contract between a component and a calling component. With

WebSphere Process Server, a module can either export a component for use by

other modules or import a component for use. To invoke a component, a calling

module references the interface to the component. The references to the interfaces

are resolved by configuring the references from the calling module to their

respective interfaces.

To develop a module you must do the following activities:

v Define, modify, or manipulate business objects used by components

v Define or modify components through its interfaces.

Note: A component is defined through its interface.

v Export or import components.

v Use the serviceDeploy command to create an EAR file to install a module that

uses components.

Development types

WebSphere Process Server provides a component programming model to facilitate

a service-oriented programming paradigm. To use this model, a provider exports

interfaces of a component so that a consumer can import those interfaces and use

the component as if it were local. A developer uses either strongly-typed interfaces

© Copyright IBM Corp. 2005 1

http://www.ibm.com/software/integration/wps/library/infocenter/doc

or dynamically-typed interfaces to implement or invoke the component. The

interfaces and their methods are described in the References section within this

information center.

After installing modules to your servers, you can use the administrative console to

change the target component for a reference from an application. The new target

must accept the same business object type and perform the same operation that the

reference from the application is requesting.

Component development considerations

When developing a component, ask yourself the following questions:

v Will this component be exported and used by another module?

If so, provide an interface that can be used by another module.

v Will the component take a relatively long time to run?

If so, consider implementing an asynchronous interface to the component.

v Is it beneficial to decentralize the component?

If so, consider having a copy of the component in a module that is deployed on

a cluster of servers to benefit from parallel processing.

v Does your application require a mixture of 1-phase and 2-phase commit

resources?

If so, make sure you enable last participant support for the application.

Note: If you create your application using WebSphere Integration Developer or

create the installable EAR file using the serviceDeploy command, these

tools automatically enable the support for the application. See the topic,

“Using one-phase and two-phase commit resources in the same

transaction” in the WebSphere Application Server Network Deployment

v6.0 information center.

Developing modules

A component must be contained within a module. Developing modules to contain

components is key to providing services to other modules.

This task assumes that an analysis of requirements shows that implementing a

component for use by other modules is beneficial.

After analyzing your requirements, you might decide that providing and using

components is an efficient way to process information. If you determine that

reusable components would benefit your environment, create a module to contain

the components.

1. Identify components other modules can use.

Once you have identified the components, continue with “Developing

components” on page 3.

2. Identify components within an application that could use components in other

modules.

Once you have identified the components and their target components,

continue with “Invoking components” on page 5.

3. Connect the client components with the target components through wires.

4. Configure the wires to the correct bus.

The “Administering” section of this information center describes how to

configure the wires to the correct bus.

2 IBM WebSphere Process Server: Developing and deploying modules

Developing components

Develop components to provide reusable logic to multiple components within your

server.

This task assumes that you have already developed and identified processing that

is useful for multiple modules.

Multiple modules can use a component. Exporting a component makes it available

to other modules that refer to the component through an interface. This task

describes how to build the component so that other moduels can use it.

Note: A single component can contain multiple interfaces.

 1. Define the data object to move data between the caller and the component.

The data object and its type is part of the interface between the callers and the

component.

 2. Define an interface that the callers will use to reference the component.

This interface definition names the component and lists any methods available

within the component.

 3. Develop the class that defines the implementation.

v If the component is long running (or asynchronous), continue with step 4.

v If the component is not long running (or synchronous), continue with step

5.
 4. Develop an asynchronous implementation.

a. Define the interface that represents the synchronous component.

b. Define the interface that modules use to asynchronously invoke the

component.

Important: An asynchronous component interface cannot have a

joinsTransaction property set to true.

c. Define the implementation of the component.

d. Define the interface that contacts the calling modules when the response is

ready.

e. Continue with step 6.
 5. Develop a synchronous implementation.

a. Define the interface that represents the synchronous component.

b. Define the implementation of the component.
 6. Save the component interfaces and implementations in files with a .java

extension.

 7. Package the module and necessary resources in a JAR file.

See “Deploying a module to a production server” in this information center

for a description of steps 7 through 9.

 8. Run the serviceDeploy command to create an installable EAR file containing

the application.

 9. Install the application on the server node.

10. Optional: Configure the wires between the callers and the corresponding

component, if calling a component in another module.

The “Administering” section of this information center describes configuring

the wires.

Developing and deploying modules 3

Examples of developing components

This example shows a synchronous component that implements a single method,

CustomerInfo. The first section defines the interface to the component that

implements a method called getCustomerInfo.

public interface CustomerInfo {

 public Customer getCustomerInfo(String customerID);

}

The following block of code implements the component.

public class CustomerInfoImpl implements CustomerInfo {

 public Customer getCustomerInfo(String customerID) {

 Customer cust = new Customer();

 cust.setCustNo(customerID);

 cust.setFirstName("Victor");

 cust.setLastName("Hugo");

 cust.setSymbol("IBM");

 cust.setNumShares(100);

 cust.setPostalCode(10589);

 cust.setErrorMsg("");

 return cust;

 }

}

This example develops an asynchronous component. The first section of code

defines the interface to the component that implements a method called getQuote.

public interface StockQuote {

 public float getQuote(String symbol);

}

The following section is the implementation of the class associated with

StockQuote.

public class StockQuoteImpl implements StockQuote {

 public float getQuote(String symbol) {

 return 100.0f;

 }

}

This next section of code implements the asynchronous interface,

StockQuoteAsync.

public interface StockQuoteAsync {

 // deferred response

 public Ticket getQuoteAsync(String symbol);

 public float getQuoteResponse(Ticket ticket, long timeout);

 // callback

 public Ticket getQuoteAsync(String symbol, StockQuoteCallback callback);

}

This section is the interface, StockQuoteCallback, which defines the

onGetQuoteResponse method.

4 IBM WebSphere Process Server: Developing and deploying modules

public interface StockQuoteCallback {

 public void onGetQuoteResponse(Ticket ticket, float quote);

}

Invoke the service.

Invoking components

Modules can use components on any node of a WebSphere Process Server cluster.

Before invoking a component, make sure that the module containing the

component is installed on a WebSphere Process Server.

Modules can use any component available within a WebSphere Process Server

cluster by using the name of the component and passing the data type the

component expects. Invoking a component in this environment involves a number

of steps to locate and then create the reference to the required component.

Note: A module can also call a component within itself, known as an intra-module

invocation. Implement eExternal calls (inter-module invocations) by

exporting the interface in the providing component and importing the

interface in the calling component.

1. Determine the components required by the calling module.

Note the name of the interface within a component and the data type that

interface requires.

2. Define a data object.

Although the input or return can be a Java™ class, a service data object is

optimal.

3. Locate the component.

a. Use the ServiceManager class to obtain the references available to the

calling module.

b. Use the locateService() method to find the component.

Depending on the component, the interface can either be a Web Service

Descriptor Language (WSDL) port type or a Java interface.
4. Invoke the component either synchronously or asynchronously.

You can either invoke the component through a Java interface or use the

invoke() method to dynamically invoke the component.

5. Process the return.

The component might generate an exception, so the client has to be able to

process that possibility.

Example of invoking a component

The following example uses the ServiceManager class to obtain a list of

components that the calling module can access directly.

ServiceManager serviceManager = new ServiceManager();

The following example uses the ServiceManager class to obtain a list of

components from a file that contains the component references.

InputStream myReferences = new FileInputStream(“MyReferences.references”);

ServiceManager serviceManager = new ServiceManager(myReferences);

Developing and deploying modules 5

The following code locates a component that implements the StockQuote Java

interface.

StockQuote stockQuote = (StockQuote)serviceManager.locateService(“stockQuote");

The following code locates a component that implements either a Java or WSDL

port type interface. The calling module uses the Service interface to interact with

the component.

Tip: If the component implements a Java interface, the component can be invoked

through either the interface or the invoke() method.

Service stockQuote = (Service)serviceManager.locateService(“stockQuote");

The following example shows a component, MyValue, that also calls other

components.

public class MyValueImpl implements MyValue {

 public float myValue(String customerID) throws MyValueException {

 ServiceManager serviceManager = new ServiceManager();

 // variables

 Customer customer = null;

 float quote = 0;

 float value = 0;

 // invoke

 CustomerInfo cInfo =

 (CustomerInfo)serviceManager.locateService("customerInfo");

 customer = cInfo.getCustomerInfo(customerID);

 if (customer.getErrorMsg().equals("")) {

 // invoke

 StockQuoteAsync sQuote =

 (StockQuoteAsync)serviceManager.locateService("stockQuote");

 Ticket ticket = sQuote.getQuoteAsync(customer.getSymbol());

 // ... do something else ...

 quote = sQuote.getQuoteResponse(ticket, JService.WAIT);

 // assign

 value = quote * customer.getNumShares();

 } else {

 // throw

 throw new MyValueException(customer.getErrorMsg());

 }

 // reply

 return value;

 }

}

Configure the wires between the calling module references and the component

interfaces.

Dynamically invoking a component:

When an module invokes a component that has a Web Service Descriptor

Language (WSDL) port type interface, the module must invoke the component

dynamically using the invoke() method.

 This task assumes that a calling component is invoking a component dynamically.

6 IBM WebSphere Process Server: Developing and deploying modules

With a WSDL port type interface, a calling component must use the invoke()

method to invoke the component. A calling module can also invoke a component

that has a Java interface this way.

1. Determine the module that contains the component required.

2. Determine the array required by the component.

The input array can be one of three types:

v Primitive uppercase Java types or arrays of this type

v Ordinary Java classes or arrays of the classes

v Service Data Objects (SDOs)
3. Define an array to contain the response from the component.

The response array can be of the same types as the input array.

4. Use the invoke() method to invoke the required component and pass the array

object to the component.

5. Process the result.

Example of dynamically invoking a component

In the following example, a module uses the invoke() method to call a component

that uses primitive uppercase Java data types.

Service stockQuote = (Service)serviceManager.locateService(“stockQuote");

Float quote = (Float)stockQuote.invoke(“getQuote”, new Object[] {“IBM”})[0];

Developing applications for business processes and tasks

You can use a modeling tool, such as WebSphere Integration Developer to build

and deploy business processes and tasks. These processes and tasks are interacted

with at runtime, for example, a process is started, tasks are claimed and completed,

and running processes are terminated. You can use Business Process

Choreographer Explorer to interact with processes and tasks, or the Business

Process Choreographer APIs to develop customized applications for these

interactions.

The API provides generic methods that can be used with all processes and tasks

that are deployed to Business Process Choreographer. The Business Process

Choreographer API is provided as two stateless session enterprise beans:

v BusinessFlowManagerService interface provides the methods for business

process applications

v HumanTaskManagerService interface provides the methods for task-based

applications

For more information on the Business Process Choreographer APIs, see the Javadoc

in the com.ibm.bpe.api package and the com.ibm.task.api package.

1. Decide on the functionality that the application is to provide.

Examples for the following business process and human task functionality are

provided:

v “Developing applications for human tasks” on page 22

v “Managing the life cycle of a business process” on page 18

v “Sending a message to a waiting activity” on page 16

v Administering applications, such as deleting process instances or managing

work items
2. Decide which of the Business Choreographer APIs you are going to use.

Developing and deploying modules 7

Depending on the scenarios that you want to implement with your application,

you can use one, or both, of the session beans.

3. Determine the authorization authorities needed by users of the application.

When an instance of the appropriate Business Process Choreographer API

session bean is created, WebSphere Application Server associates a session

context with the instance. The session context contains the caller’s principal

role. This information is used to check the caller’s authorization for each call.

The caller must be authorized to call methods, and view objects and the

attributes of these objects.

4. Decide how to render the application.

The Business Process Choreographer APIs can be called locally or remotely.

5. Develop the application.

a. Access the API.

b. Use the API to interact with processes or tasks.

v Query the data.

v Work with the data.

Accessing the generic APIs

Business process applications and task applications access the appropriate session

bean through the home interface of the bean.

The BusinessFlowManagerService interface and the HumanTaskManagerService

interface are the common interfaces for the session beans. These interfaces expose

the functions that can be called by an application program. The application

program can be any Java program, including another Enterprise JavaBeans™ (EJB)

application.

You can access the generic APIs in one of the following ways.

v Access the remote session bean.

v Access the local session bean.

Accessing the remote session bean

An application accesses the appropriate remote session bean through the home

interface of the bean.

The session bean can be either the BusinessFlowManager session bean for process

applications or the HumanTaskManager session bean for task applications.

1. Add a reference to the remote session bean to the application deployment

descriptor. Add the reference to one of the following files:

v The application-client.xml file, for a Java 2 Platform, Enterprise Edition

(J2EE) client application

v The web.xml file, for a Web application

v The ejb-jar.xml file, for an Enterprise JavaBeans (EJB) application

The reference to the remote home interface for process applications is shown in

the following example:

<ejb-ref>

 <ejb-ref-name>ejb/BusinessFlowManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.bpe.api.BusinessFlowManagerHome</home>

 <remote>com.ibm.bpe.api.BusinessFlowManager</remote>

</ejb-ref>

The reference to the remote home interface for task applications is shown in the

following example:

8 IBM WebSphere Process Server: Developing and deploying modules

<ejb-ref>

 <ejb-ref-name>ejb/HumanTaskManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.task.api.HumanTaskManagerHome</home>

 <remote>com.ibm.task.api.HumanTaskManager</remote>

</ejb-ref>

If you use WebSphere Integration Developer to add the EJB reference to the

deployment descriptor, the binding for the EJB reference is automatically

created when the application is deployed. For more information on adding EJB

references, refer to the WebSphere Integration Developer documentation.

2. Package the generated stubs with your application. If your application runs on

a different Java Virtual Machine (JVM) from the one where the BPEContainer

application or the TaskContainer application runs, complete the following

actions:

a. For process applications, package the files contained in the

WebSphere/AppServer/ProcessChoreographer/client/bpe137650.jar file with

the enterprise archive (EAR) file of your application.

b. For task applications, package the files contained in the

WebSphere/AppServer/ProcessChoreographer/client/task137650.jar file

with the enterprise archive (EAR) file of your application.

c. Set the Class-Path parameter in the manifest file of the application module

to include the JAR file. The application module can be a J2EE application, a

Web application, or an EJB application.
3. Make the home interface of the session bean available to the application using

Java Naming and Directory Interface (JNDI) lookup mechanisms. The following

example shows this step for a process application:

// Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

 // Lookup the remote home interface of the BusinessFlowManager bean

 Object result =

 initialContext.lookup("java:comp/env/ejb/BusinessFlowManagerHome");

// Convert the lookup result to the proper type

 BusinessFlowManagerHome processHome =

 (BusinessFlowManagerHome)javax.rmi.PortableRemoteObject.narrow

 (result,BusinessFlowManagerHome.class);

The home interface of the session bean contains a create method for EJB objects.

The method returns the remote interface of the session bean.

4. Access the remote interface of the session bean. The following example shows

this step for a process application:

BusinessFlowManager process = processHome.create();

5. Call the business functions exposed by the service interface. The following

example shows this step for a process application:

process.initiate("MyProcessModel",input);

Calls from applications are run as transactions. A transaction is established and

ended in one of the following ways:

v Automatically by WebSphere Application Server (the deployment descriptor

specifies TX_REQUIRED).

v Explicitly by the application. You can bundle application calls into one

transaction:

// Obtain user transaction interface

 UserTransaction transaction=

 (UserTransaction)initialContext.lookup("jta/usertransaction");

Developing and deploying modules 9

// Begin a transaction

 transaction.begin();

 // Applications calls ...

 // On successful return, commit the transaction

 transaction.commit();

Here is an example of how steps 3 through 5 might look for a task application.

// Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

 // Lookup the remote home interface of the HumanTaskManager bean

 Object result =

 initialContext.lookup("java:comp/env/ejb/HumanTaskManagerHome");

// Convert the lookup result to the proper type

 HumanTaskManagerHome taskHome =

 (HumanTaskManagerHome)javax.rmi.PortableRemoteObject.narrow

 (result,HumanTaskManagerHome.class);

...

//Access the remote interface of the session bean.

HumanTaskManager task = taskHome.create();

...

//Call the business functions exposed by the service interface

task.callTask(tkiid,input);

Accessing the local session bean

An application accesses the appropriate local session bean through the home

interface of the bean.

The session bean can be either the LocalBusinessFlowManager session bean for

process applications or the LocalHumanTaskManager session bean for human task

applications.

1. Add a reference to the local session bean to the application deployment

descriptor. Add the reference to one of the following files:

v The application-client.xml file, for a Java 2 Platform, Enterprise Edition

(J2EE) client application

v The web.xml file, for a Web application

v The ejb-jar.xml file, for an Enterprise JavaBeans (EJB) application

The reference to the local home interface for process applications is shown in

the following example:

<ejb-local-ref>

 <ejb-ref-name>ejb/LocalBusinessFlowManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home>com.ibm.bpe.api.LocalBusinessFlowManagerHome</local-home>

 <local>com.ibm.bpe.api.LocalBusinessFlowManager</local>

</ejb-local-ref>

The reference to the local home interface for task applications is shown in the

following example:

<ejb-local-ref>

 <ejb-ref-name>ejb/LocalHumanTaskManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home>com.ibm.task.api.LocalHumanTaskManagerHome</local-home>

 <local>com.ibm.task.api.LocalHumanTaskManager</local>

</ejb-local-ref>

10 IBM WebSphere Process Server: Developing and deploying modules

If you use WebSphere Integration Developer to add the EJB reference to the

deployment descriptor, the binding for the EJB reference is automatically

created when the application is deployed. For more information on adding EJB

references, refer to the WebSphere Integration Developer documentation.

2. Make the local home interface of the local session bean available to the

application, using Java Naming and Directory Interface (JNDI) lookup

mechanisms. The following example shows this step for a process application:

// Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

 // Lookup the local home interface of the LocalBusinessFlowManager bean

 LocalBusinessFlowManagerHome processHome =

 (LocalBusinessFlowManagerHome)initialContext.lookup

 ("java:comp/env/ejb/LocalBusinessFlowManagerHome");

The home interface of the local session bean contains a create method for EJB

objects. The method returns the local interface of the session bean.

3. Access the local interface of the local session bean. The following example

shows this step for a process application:

LocalBusinessFlowManager process = processHome.create();

4. Call the business functions exposed by the service interface. The following

example shows this step for a process application:

process.initiate("MyProcessModel",input);

Calls from applications are run as transactions. A transaction is established and

ended in one of the following ways:

v Automatically by WebSphere Application Server (the deployment descriptor

specifies TX_REQUIRED).

v Explicitly by the application. You can bundle application calls into one

transaction:

// Obtain user transaction interface

 UserTransaction transaction=

 (UserTransaction)initialContext.lookup("jta/usertransaction");

 // Begin a transaction

 transaction.begin();

 // Applications calls ...

 // On successful return, commit the transaction

 transaction.commit();

Here is an example of how steps 2 through 4 might look for a task application.

// Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

 // Lookup the local home interface of the LocalHumanTaskManager bean

 LocalHumanTaskManagerHome taskHome =

 (LocalHumanTaskManagerHome)initialContext.lookup

 ("java:comp/env/ejb/LocalHumanTaskManagerHome");

...

//Access the local interface of the local session bean

LocalHumanTaskManager task = taskHome.create();

...

//Call the business functions exposed by the service interface

task.callTask(tkiid,input);

Developing and deploying modules 11

Developing applications for business processes

A business process is a set of business-related activities that are invoked in a

specific sequence to a achieve a business goal. A business process can be either a

microflow or a long-running process:

v Microflows are short running business processes. A microflow is invoked with

input parameters, and the caller waits while the process is executed

synchronously. After a very short time, the result is returned to the caller.

v Long-running, interruptible processes are executed as a sequence of activities

that are chained together. Parallel branches of the process can be navigated

synchronously. Depending on the type and the transaction setting of the activity,

an activity can be run in its own transaction.

Examples are provided that show how you might develop applications for the

following typical actions on microflows and long-running processes.

v Start a process.

v Send a message to a waiting activity.

v Handle events.

v Analyze the results of a process.

v Manage the life cycle of a process.

v Delete process instances.

Starting business processes

The way in which a business process is started depends on whether the process is

a microflow or a long-running process. The service that starts the process is also

important to the way in which a process is started; the process can have either a

unique starting service or several starting services.

Examples are provided that show how you might develop applications for typical

starting scenarios.

v Run a microflow.

Examples are provided for microflows that contain a and those that contain a .

v Start a long-running process.

Examples are provided for long-running processes that contain a and those

processes that contain a .

Running a microflow that contains a unique starting service:

A microflow can be started by a receive activity or a pick activity. If the microflow

implements a request-response operation, that is, the process contains a reply, you

can use the call method to run the process.

The starting service is unique if the microflow starts with a receive activity or

when the pick activity has only one onMessage definition. You can start this type

of process with the call method and pass the process template name as a

parameter.

1. Optional: List the process templates to find the name of the process you want

to run.

This step is optional if you already know the name of the process.

12 IBM WebSphere Process Server: Developing and deploying modules

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

("PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_MICROFLOW",

 "PROCESS_TEMPLATE_NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started by the call method.

2. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained.

ProcessTemplateData template = processTemplates[0];

//create a message for the single starting receive activity

ClientObjectWrapper input = process.createMessage

 (template.getID(),

 template.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//run the process

ClientObjectWrapper output = process.call(template.getName(), input);

DataObject myOutput = null;

if (output.getObject() != null && output.getObject() instanceof DataObject)

{

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

}

This action creates an instance of the process template, CustomerTemplate, and

passes some customer data. The operation returns only when the process is

complete. The result of the process, OrderNo, is returned to the caller.

Running a microflow that contains a non-unique starting service:

 A microflow can be started by a receive activity or a pick activity. If the microflow

implements a request-response operation, that is, the process contains a reply, you

can use the call method to execute the process.

If the starting service is not unique, that is, the process starts with a pick activity

that has multiple onMessage definitions, then you must identify the service to be

called.

1. Optional: List the process templates to find the name of the process you want

to run.

This step is optional if you already know the name of the process.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

("PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_MICROFLOW",

 "PROCESS_TEMPLATE_NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started as long-running processes.

2. Determine the starting service to be called.

ProcessTemplateData template = processTemplates[0];

ActivityServiceTemplateData[] startActivities =

 process.getStartActivities(template.getID());

Developing and deploying modules 13

3. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained.

ActivityServiceTemplateData activity = startActivities[0];

//create a message for the service to be called

ClientObjectWrapper input =

 process.createMessage(activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 activity.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//run the process

ClientObjectWrapper output = process.call(activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 input);

//check the output of the process, for example, an order number

DataObject myOutput = null;

if (output.getObject() != null && output.getObject() instanceof DataObject)

{

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

}

This action creates an instance of the process template, CustomerTemplate, and

passes some customer data. The operation returns only when the process is

complete. The result of the process, OrderNo, is returned to the caller.

Starting a long-running process that contains a unique starting service:

If the starting service is unique, you can use the initiate method and pass the

process template name as a parameter. This is the case when the long-running

process starts with either a single receive or pick activity and when the single pick

activity has only one onMessage definition.

1. Optional: List the process templates to find the name of the process you want

to start.

This step is optional if you already know the name of the process.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

 ("PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_LONG_RUNNING",

 "PROCESS_TEMPLATE.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started by the initiate method.

2. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained. If you specify a process-instance name, it

must not start with an underscore. If a process-instance name is not specified,

the process instance ID (PIID) in String format is used as the name.

ProcessTemplateData template = processTemplates[0];

//create a message for the single starting receive activity

ClientObjectWrapper input = process.createMessage

 (template.getID(),

 template.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

14 IBM WebSphere Process Server: Developing and deploying modules

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//start the process

PIID piid = process.initiate(template.getName(), "CustomerOrder", input);

This action creates an instance, CustomerOrder, and passes some customer

data. When the process starts, the operation returns the object ID of the new

process instance to the caller.

The starter of the process instance is set to the caller of the request. This person

receives a work item for the process instance. The process administrators,

readers, and editors of the process instance are determined and receive work

items for the process instance. The follow-on activity instances are determined.

These are started automatically or, if they are staff, receive, or pick activities,

work items are created for the potential owners.

Starting a long-running process that contains a non-unique starting service:

A long-running process can be started through multiple initiating receive or pick

activities. You can use the initiate method to start the process. If the starting service

is not unique, for example, the process starts with multiple receive activities or a

pick activity that has multiple onMessage definitions, then you must identify the

service to be called.

1. Optional: List the process templates to find the name of the process you want

to start.

This step is optional if you already know the name of the process.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

 ("PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_LONG_RUNNING",

 "PROCESS_TEMPLATE.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started as long-running processes.

2. Determine the starting service to be called.

ProcessTemplateData template = processTemplates[0];

ActivityServiceTemplateData[] startActivities =

 process.getStartActivities(template.getID());

3. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained. If you specify a process-instance name, it

must not start with an underscore. If a process-instance name is not specified,

the process instance ID (PIID) in String format is used as the name.

ActivityServiceTemplateData activity = startActivities[0];

//create a message for the service to be called

ClientObjectWrapper input = process.createMessage

 (activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 activity.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//start the process

Developing and deploying modules 15

PIID piid = process.initiate(activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 "CustomerOrder",

 input);

This action creates an instance, CustomerOrder, and passes some customer

data. When the process starts, the operation returns the object ID of the new

process instance to the caller.

The starter of the process instance is set to the caller of the request and receives

a work item for the process instance. The process administrators, readers, and

editors of the process instance are determined and receive work items for the

process instance. The follow-on activity instances are determined. These are

started automatically or, if they are staff, receive, or pick activities, work items

are created for the potential owners.

Sending a message to a waiting activity

Pick, receive, and onMessage activities can be used to synchronize a running

process with events from the ″outside world″. For example, the receipt of an e-mail

from a customer in response to a request for information might be such an event.

1. List the activity service templates that are waiting for a message from the

logged-on user.

QueryResultSet result =

 process.query("ACTIVITY_SERVICE.VTID,ACTIVITY.ATID",

 "ACTIVITY.STATE=ACTIVITY.STATE.STATE_WAITING AND

 WORK_ITEM.REASON=WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

 null, null, null);

2. Send a message.

The caller must be a potential owner of the activity that receives the message,

or an administrator of the process instance.

if (result.size() > 0)

{

 result.first();

 VTID vtid = (VTID)result.getOID(1);

 ATID atid = (ATID)result.getOID(2);

 ActivityServiceTemplateData activity =

 process.getActivityServiceTemplate(vtid,atid);

 // create a message for the service to be called

 ClientObjectWrapper message =

 process.createMessage(vtid,atid,activity.getInputMessageTypeName());

 DataObject myMessage = null;

 if (message.getObject()!= null && message.getObject() instanceof DataObject)

 {

 myMessage = (DataObject)message.getObject();

 //set the strings in the message, for example, chocolate is to be ordered

 myMessage.setString("Order", "chocolate");

 }

 // send the message to the waiting activity

 process.sendMessage(vtid, atid, message);

}

This action sends the specified message to the waiting activity service and

passes some order data.

You can also specify the process instance ID to ensure that the message is sent

to the specified process instance. If the process instance ID is not specified, the

message is sent to the activity service, and the process instance that is

identified by the correlation values in the message. If the process instance ID is

specified, the process instance that is found using the correlation values is

checked to ensure that it has the specified process instance ID.

16 IBM WebSphere Process Server: Developing and deploying modules

Handling events

An entire business process and each of its scopes can be associated with event

handlers that are invoked if the associated event occurs. Event handlers are similar

to receive or pick activities in that a process can provide Web service operations

using event handlers. You can invoke an event handler any number of times. In

addition, multiple instances of an event handler can be activated concurrently.

The following code snippet shows how to get the active event handlers for a given

process instance and how to send an input message.

1. Determine the data of the process instance ID and list the active event handlers

for the process.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder2711");

EventHandlerTemplateData[] events = process.getActiveEventHandlers(

 processInstance.getID());

2. Send the input message.

EventHandlerTemplateData event = null;

if (events.length > 0)

{

 event = events[0];

 // create a message for the service to be called

 ClientObjectWrapper input = process.createMessage(

 event.getID(), event.getInputMessageTypeName());

 if (input.getObject() != null && input.getObject() instanceof DataObject)

 {

 DataObject inputMessage = (DataObject)input.getObject();

 // set content of the message, for example, a customer name, order number

 inputMessage.setString("CustomerName", "Smith");

 inputMessage.setString("OrderNo", "2711");

 // send the message

 process.sendMessage(event.getProcessTemplateName(),

 event.getPortTypeNamespace(),

 event.getPortTypeName(),

 event.getOperationName(),

 input);

 }

 }

This action sends the specified message to the active event handler for the

process.

Analyzing the results of a process

A long-running process runs asynchronously. Its output message is not

automatically returned when the process completes. The message must be

retrieved explicitly. The results of the process are stored in the database only if the

process template from which the process instance was derived does not specify

automatic deletion of the derived process instances.

Analyze the results of the process, for example, check the order number.

QueryResultSet result = process.query

 ("PROCESS_INSTANCE.PIID",

 "PROCESS_INSTANCE.NAME = ’CustomerOrder’ AND

 PROCESS_INSTANCE.STATE =

 PROCESS_INSTANCE.STATE.STATE_FINISHED",

 null, null, null);

if (result.size() > 0)

Developing and deploying modules 17

{

 result.first();

 PIID piid = (PIID) result.getOID(1);

 ClientObjectWrapper output = process.getOutputMessage(piid);

 DataObject myOutput = null;

 if (output.getObject() != null && output.getObject() instanceof DataObject)

 {

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

 }

}

Managing the life cycle of a business process

A process instance comes into existence when a Business Process Choreographer

API method that can start a process is invoked. The navigation of the process

instance continues until all of its activities are in an end state. Valid end states are

finished, skipped, failed, expired, or terminated.

Sometimes, the process instance, or one of its activities, might encounter a fault

that cannot be processed as part of the process logic. In these cases, a process

administrator can act on the activity or the process instance in a number of ways.

Examples are provided that show how you might develop applications for the

following typical life-cycle actions on processes.

v Force the completion of an activity.

v Retry the execution of a stopped activity.

v Suspend and resume a process instance.

v Restart a process instance.

v Terminate a process instance.

Forcing the completion of an activity:

If an activity in a long-running process encounters a fault and the fault is not

caught in the enclosing scope and the associated activity template specifies that the

activity stops when an error occurs, the activity is put into the stopped state so

that it can be repaired. In this state, you can force the completion of the activity.

Additional requirements exist for certain types of activities.

Staff activities

You can pass parameters in the force-complete call, such as the message

that should have been sent or the fault that should have been raised.

Script activities

You cannot pass parameters in the force-complete call. However, you must

set the variables that need to be repaired.

Invoke activities

You can also force the completion of invoke activities that call an

asynchronous service that is not a subprocess if these activities are in the

running state. You might want to do this, for example, if the asynchronous

service is called and it does not respond.
1. List the stopped activities.

QueryResultSet result =

 process.query("DISTINCT ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND

 PROCESS_INSTANCE.NAME=’CustomerOrder’",

 null, null, null);

18 IBM WebSphere Process Server: Developing and deploying modules

This action returns the stopped activities for the CustomerOrder process

instance.

2. Complete the activity.

In this example, an output message is passed:

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ActivityInstanceData activity = process.getActivityInstance(aiid);

 ClientObjectWrapper output =

 process.createMessage(aiid, activity.getOutputMessageTypeName());

 DataObject myMessage = null;

 if (output.getObject()!= null && output.getObject() instanceof DataObject)

 {

 myMessage = (DataObject)output.getObject();

 //set the parts in your message, for example, an order number

 myMessage.setInt("OrderNo", 4711);

 }

 boolean continueOnError = true;

 process.forceComplete(aiid, output, continueOnError);

}

This action completes the activity. If an error occurs, the continueOnError

parameter determines whether the activity stays in the stopped state. In the

example, continueOnError is true. This value means that if an error occurs

during processing of the forceComplete request, the activity is put into the

failed state. The fault is propagated to the enclosing scopes of the activity until

it is either handled or the process scope is reached. The process is then put into

the failing state and it eventually reaches the failed state.

Retrying the execution of a stopped activity:

If an activity in a long-running process encounters an uncaught fault in the

enclosing scope and if the associated activity template specifies that the activity

stops when an error occurs, the activity is put into the stopped state so that it can

be repaired. You can retry the execution of the activity.

You can set variables that are used by the activity. With the exception of script

activities, you can also pass parameters in the force-retry call, such as the message

that was expected by the activity.

1. List the stopped activities.

QueryResultSet result =

 process.query("DISTINCT ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND

 PROCESS_INSTANCE.NAME=’CustomerOrder’",

 null, null, null);

This action returns the stopped activities for the CustomerOrder process

instance.

2. Retry the execution of the activity.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ActivityInstanceData activity = process.getActivityInstance(aiid);

 ClientObjectWrapper input =

 process.createMessage(aiid, activity.getOutputMessageTypeName());

 DataObject myMessage = null;

 if (input.getObject()!= null && input.getObject() instanceof DataObject)

 {

Developing and deploying modules 19

myMessage = (DataObject)input.getObject();

 //set the strings in your message, for example, chocolate is to be ordered

 myMessage.setString("OrderNo", "chocolate");

 }

 boolean continueOnError = true;

 process.forceRetry(aiid, input, continueOnError);

}

This action retries the activity. If an error occurs, the continueOnError

parameter determines whether the activity stays in the stopped state. In the

example, continueOnError is true. This means that if an error occurs during

processing of the forceRetry request, the activity is put into the failed state. The

fault is propagated to the enclosing scopes of the activity until it is either

handled or the process scope is reached. The process is then put into the failing

state and it eventually reaches the failed state.

Suspending and resuming a business process:

You can suspend a process instance and resume it again to complete it.

 The caller must be an administrator of the process instance or a business process

administrator. To suspend a process instance, it must be in the running or failing

state.

You can suspend a long-running, top-level process instance while it is running. You

might want to do this, for example, so that you can configure access to a back-end

system that is used later in the process. When the prerequisites for the process are

met, you can resume the process instance.

1. Get the process that you want to suspend.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder");

2. Suspend the process instance.

PIID piid = processInstance.getID();

process.suspend(piid);

This action suspends the specified top-level process instance and its

subprocesses. The process instance is put into the suspended state.

Subprocesses are suspended if they are in the running, failing, terminating, or

compensating state.

3. Resume the process instance.

process.resume(piid);

This action puts the process instance and its subprocesses into the states they

had before they were suspended.

Restarting a business process:

You can restart a process instance that is in the finished, terminated, failed, or

compensated state.

 The caller must be an administrator of the process instance or a business process

administrator.

Restarting a process instance is similar to starting a process instance for the first

time. However, when a process instance is restarted, the process instance ID is

known and the input message for the instance is available.

1. Get the process that you want to restart.

20 IBM WebSphere Process Server: Developing and deploying modules

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder");

2. Restart the process instance.

PIID piid = processInstance.getID();

process.restart(piid);

This action restarts the specified process instance.

Terminating a process instance:

Sometimes, it is necessary for someone with process administrator authorization to

terminate a process instance that is known to be in an unrecoverable state. For

example, when an application is invoked and fails, and it does not return to a

dormant state.

Because a process instance terminates immediately, without waiting for any

outstanding subprocesses or activities, you should terminate a process instance

only in exceptional situations.

1. Retrieve the process instance that is to be terminated.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder");

2. Terminate the process instance.

If you terminate a process instance, you can terminate the process instance with

or without compensation.

To terminate the process instance with compensation:

PIID piid = processInstance.getID();

process.forceTerminate(piid, CompensationBehaviour.INVOKE_COMPENSATION);

To terminate the process instance without compensation:

PIID piid = processInstance.getID();

process.forceTerminate(piid);

If you terminate the process instance with compensation, the compensation

handler defined for the process template is called. If the process template does

not have a compensation handler defined, the default compensation handler is

called. If you terminated the process instance without compensation, the

process instance is terminated immediately without waiting for activities to end

normally.

Deleting process instances

Completed processes instances are automatically deleted from the Business Process

Choreographer database if the corresponding property is set for the process

template in the process model.

You might want to keep process instances in your database, for example, to query

data from process instances that are not written to the audit log, or if you want to

defer the deletion of processes to off-peak times. However, process instance data

that is no longer needed can impact disk space and performance. Therefore, you

should regularly delete process instance data.

The following example shows how to delete all of the finished process instances.

1. List the process instances that are finished.

QueryResultSet result =

 process.query("DISTINCT PROCESS_INSTANCE.PIID",

 "PROCESS_INSTANCE.STATE =

 PROCESS_INSTANCE.STATE.STATE_FINISHED",

 null, null, null);

Developing and deploying modules 21

This action returns a query result set that lists process instances that are

finished.

2. Delete the process instances that are finished.

while (result.next())

{

 PIID piid = (PIID) result.getOID(1);

 process.delete(piid);

}

This action deletes the selected process instance from the database.

Developing applications for human tasks

A task is the means by which components invoke humans as services or by which

humans invoke services. Examples of the following typical applications for human

tasks are provided.

v “Starting an originating task that implements a synchronous interface”

v “Starting an originating task that implements an asynchronous interface” on

page 23

v “Processing participating or purely human tasks” on page 23

v “Analyzing the results of a task” on page 25

v “Terminating a task instance” on page 25

v “Deleting task instances” on page 25

v “Canceling a claimed task” on page 26

v “Managing work items” on page 26

For more information on the Business Process Choreographer API, see the Javadoc

in the com.ibm.task.api package.

Starting an originating task that implements a synchronous

interface

This scenario creates an instance of a task template and passes some customer

data. The operation returns only when the task is complete. The result of the task,

OrderNo, is returned to the caller.

1. Optional: List the task templates to find the name of the originating task you

want to run.

This step is optional if you already know the name of the task.

TaskTemplate[] taskTemplates = task.queryTaskTemplates

("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_ORIGINATING",

 "TASK_TEMPL.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted originating templates.

2. Create an input message of the appropriate type.

TaskTemplate template = taskTemplates[0];

// create a message for the selected task

ClientObjectWrapper input = task.createInputMessage(template.getID());

DataObject myMessage = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

22 IBM WebSphere Process Server: Developing and deploying modules

myMessage = (DataObject)input.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

3. Create the task and run it synchronously.

For a task to run synchronously, it must be a two-way operation.

ClientObjectWrapper output = task.createAndCallTask(template.getName(),

 template.getNamespace(),

 input);

4. Analyze the result of the task.

DataObject myOutput = null;

if (output.getObject() != null && output.getObject() instanceof DataObject)

{

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

}

Starting an originating task that implements an asynchronous

interface

This scenario creates an instance of a task template and passes some customer

data.

1. Optional: List the task templates to find the name of the originating task you

want to run.

This step is optional if you already know the name of the task.

TaskTemplate[] taskTemplates = task.queryTaskTemplates

 ("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_ORIGINATING",

 "TASK_TEMPL.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted originating templates.

2. Create an input message of the appropriate type.

TaskTemplate template = taskTemplates[0];

// create a message for the selected task

ClientObjectWrapper input = task.createInputMessage(template.getID());

DataObject myMessage = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

3. Create the task and run it asynchronously.

task.createAndStartTask(template.getName(),

 template.getNamespace(),

 input,

 null);

Processing participating or purely human tasks

Participating or purely human tasks are assigned to various people in your

organization through work items. Participating tasks and their associated work

items are created, for example, when a process navigates to a staff activity. One of

the potential owners claims the task associated with the work item. This person is

responsible for providing the relevant information and completing the task.

1. List the tasks belonging to a logged-on person that are ready to be worked on.

Developing and deploying modules 23

QueryResultSet result =

 task.query("TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_READY AND

 (TASK.KIND = TASK.KIND.KIND_PARTICIPATING OR

 TASK.KIND = TASK.KIND.KIND_HUMAN)AND

 WORK_ITEM.REASON =

 WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

 null, null, null);

This action returns a query result set that contains the tasks that can be worked

on by the logged-on person.

2. Claim the task to be worked on.

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 ClientObjectWrapper input = task.claim(tkiid);

 DataObject taskInput = null ;

 if (input.getObject()!= null && input.getObject() instanceof DataObject)

 {

 taskInput = (DataObject)input.getObject();

 // read the values

 ...

 }

}

When the task is claimed, the input message of the task is returned.

3. When work on the task is finished, complete the task.

The task can be completed either successfully or with a fault message. If the

task is successful, an output message is passed. If the task is unsuccessful, a

fault message is passed. You must create the appropriate messages for these

actions.

a. To complete the task successfully, create an output message.

ClientObjectWrapper output =

 task.createOutputMessage(tkiid);

DataObject myMessage = null ;

if (output.getObject()!= null && output.getObject() instanceof DataObject)

{

 myMessage = (DataObject)output.getObject();

 //set the parts in your message, for example, an order number

 myMessage.setInt("OrderNo", 4711);

}

//complete the task

task.complete(tkiid, output);

This action sets an output message that contains the order number. The task

is put into the finished state.

b. To complete the task when a fault occurs, create a fault message.

//retrieve the faults modeled for the task

List faultNames = task.getFaultNames(tkiid);

//create a message of the appropriate type

ClientObjectWrapper myFault =

 task.createMessage(tkiid, (String)faultNames.get(0));

// set the parts in your fault message, for example, an error number

DataObject myMessage = null ;

if (myFault.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)myFault.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setInt("error",1304);

24 IBM WebSphere Process Server: Developing and deploying modules

}

task.complete(tkiid, (String)faultNames.get(0), myFault);

This action sets a fault message that contains the error code. The task is put

into the failed state.

Analyzing the results of a task

A participating or purely human task runs asynchronously. Its output message is

not automatically returned when the task completes. The message must be

retrieved explicitly. The results of the task are stored in the database only if the

task template from which the task instance was derived does not specify automatic

deletion of the derived task instances.

Analyze the results of the task, for example, check the order number.

QueryResultSet result = task.query("DISTINCT TASK.TKIID",

 "TASK.NAME = ’CustomerOrder’ AND

 TASK.STATE = TASK.STATE.STATE_FINISHED",

 null, null, null);

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 ClientObjectWrapper output = task.getOutputMessage(tkiid);

 DataObject myOutput = null;

 if (output.getObject() != null && output.getObject() instanceof DataObject)

 {

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

 }

}

Terminating a task instance

Sometimes it is necessary for someone with administrator rights to terminate a task

instance that is known to be in an unrecoverable state. For example, when an

application is invoked and fails and does not return to a dormant state.

It is recommended that you terminate a task instance only in exceptional

situations. The task instance is terminated immediately.

1. Retrieve the task instance to be terminated.

Task taskInstance = task.getTask(tkiid);

2. Terminate the task instance.

TKIID tkiid = taskInstance.getID();

task.terminate(tkiid);

The task instance is terminated immediately without waiting for any

outstanding tasks.

Deleting task instances

Task instances are only automatically deleted when they complete if this is

specified in the associated task template from which the instances are derived. The

following example shows how to delete all of the task instances that are finished.

1. List the task instances that are finished.

QueryResultSet result =

 task.query("DISTINCT TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_FINISHED",

 null, null, null);

Developing and deploying modules 25

This action returns a query result set that lists task instances that are finished.

2. Delete the task instances that are finished.

while (result.next())

{

 TKIID tkiid = (TKIID) result.getOID(1);

 task.delete(tkiid);

}

Canceling a claimed task

Sometimes it is necessary for someone with administrator rights to cancel a task

that is claimed by someone else. This situation might occur, for example, when a

task must be completed but the owner of the task is absent.

1. List the claimed tasks owned by a specific person, for example, Smith.

QueryResultSet result =

 task.query("DISTINCT TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_CLAIMED AND

 TASK.OWNER = ’Smith’",

 null, null, null);

This action returns a query result set that lists the tasks claimed by the

specified person, Smith.

2. Cancel the claimed task.

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 task.cancelClaim(tkiid);

}

This action returns the task to the ready state so that it can be claimed by one

of the other potential owners.

Managing work items

A work item represents the assignment of an object to a user or group of users for

a particular reason. The object is typically a staff activity instance, a process

instance, or a human task. The reasons are derived from the role that the user has

for an activity or task. An activity or task can have multiple work items because a

user can have different roles in association with the activity or task, and a work

item is created for each of these roles.

During the lifetime of an activity instance or a task instance, the set of people

associated with the object can change, for example, because a person is on

vacation, new people are hired, or the workload needs to be distributed differently.

To allow for these changes, you can develop applications to create, delete, or

transfer work items.

v Create a work item.

// query the task instance for which an additional

// administrator is to be specified

QueryResultSet result = task.query("TASK.TKIID",

 "TASK.NAME=’CustomerOrder’",

 null, null, null);

if (result.size() > 0)

{

 result.first();

 // create the work item

 task.createWorkItem((TKIID)(result.getOID(1)),

 WorkItem.REASON_ADMINISTRATOR,"Smith");

}

26 IBM WebSphere Process Server: Developing and deploying modules

This action creates a work item for the user Smith who has the administrator

role.

v Delete a work item.

// query the task instance for which a work item is to be deleted

QueryResultSet result = task.query("TASK.TKIID",

 "TASK.NAME=’CustomerOrder’",

 null, null, null);

if (result.size() > 0)

{

 result.first();

 // delete the work item

 task.deleteWorkItem((TKIID)(result.getOID(1)),

 WorkItem.REASON_READER,"Smith");

}

This action deletes the work item for the user Smith who has the reader role.

v Transfer a work item.

// query the task that is to be rescheduled

QueryResultSet result =

 task.query("DISTINCT TASK.TKIID",

 "TASK.NAME=’CustomerOrder’ AND

 TASK.STATE=TASK.STATE.STATE_READY AND

 WORK_ITEM.REASON=WORK_ITEM.REASON.REASON_POTENTIAL_OWNER AND

 WORK_ITEM.OWNER_ID=’Miller’",

 null, null, null);

if (result.size() > 0)

{

 result.first();

 // transfer the work item from user Miller to user Smith

 // so that Smith can work on the task

 task.transferWorkItem((TKIID)(result.getOID(1)),

 WorkItem.REASON_POTENTIAL_OWNER,"Miller","Smith");

}

This action transfers the work item to the user Smith so that he can work on it.

Querying business-process and task-related objects

You can query business-process and task-related objects in the database to retrieve

specific properties of these objects.

During the configuration of Business Process Choreographer, a relational database

is associated with both the business process container and the task container. The

database stores all of the template (model) and instance (runtime) data for

managing business processes and tasks. You use SQL-like syntax to query this

data.

You can perform a one-off query to retrieve a specific property of an object. You

can also save queries that you use often and include these stored queries in your

application.

Queries on business-process and task-related objects

Use the query interface of the service API to retrieve stored information about

business processes and tasks.

Predefined database views are provided for you to query the object properties. For

process templates and task templates, the query function has the following syntax.

The example shows the syntax for querying process templates.

Developing and deploying modules 27

ProcessTemplateData[] queryProcessTemplates

 (java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

For the other business-process and task-related objects, the query function has the

following syntax:

QueryResultSet query (java.lang.String selectClause,

 java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer skipTuples

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

The query is made up of:

v Select clause

v Where clause

v Order-by clause

v Skip-tuples parameter

v Threshold parameter

v Time-zone parameter

For example, a list of work items IDs accessible to the caller of the function is

retrieved by:

QueryResultSet result = process.query("WORK_ITEM.WIID",

 null, null, null, null, null);

The query function returns objects according to the caller’s authorization. The

query result set contains the properties of only those objects that the caller is

authorized to see.

The query interface also contains a queryAll method. You can use this method to

retrieve all of the relevant data about an object, for example, for monitoring

purposes. The caller of the queryAll method must have Java 2 Platform, Enterprise

Edition (J2EE) system administrator or system monitor rights. Authorization

checking using the corresponding work item of the object is not applied.

For more information on the Business Process Choreographer APIs, see the Javadoc

in the com.ibm.bpe.api package for process-related methods and in the

com.ibm.task.api package for task-related methods.

Select clause:

The select clause in the query function identifies the object properties that are to be

returned by a query.

 The select clause describes the query result. It specifies a list of names that identify

the object properties (columns of the result) to return. Its syntax is the same as an

SQL select clause; use commas to separate parts of the clause. Each part of the

clause must specify a property from one of the predefined views. The columns

returned in the QueryResultSet object appear in the same order as the properties

specified in the select clause.

The select clause does not support SQL aggregation functions, such as AVG(),

SUM(), MIN(), or MAX().

28 IBM WebSphere Process Server: Developing and deploying modules

To select properties of name-value pairs, such as custom properties, add a one-digit

suffix to the view name.

Examples of select clauses

v ″WORK_ITEM.OBJECT_TYPE, WORK_ITEM.REASON″

Gets the object types of the associated objects and the assignment reasons for the

work items.

v ″DISTINCT WORK_ITEM.OBJECT_ID″

Gets all of the IDs of objects, without duplicates, for which the caller has a work

item.

v ″ACTIVITY.TEMPLATE_NAME, WORK_ITEM.REASON″

Gets the names of the activities the caller has work items for and their

assignment reasons.

v ″ACTIVITY.STATE, PROCESS_INSTANCE.STARTER″

Gets the states of the activities and the starters of their associated process

instances.

v ″DISTINCT TASK.TKIID, TASK.NAME″

Gets all of the IDs and names of tasks, without duplicates, for which the caller

has a work item.

v ″TASK_CPROP1.STRING_VALUE, TASK_CPROP2.STRING_VALUE″

Gets the values of the custom properties that are specified further in the where

clause.

v ″COUNT(DISTINCT TASK.TKIID)″

Counts the number of work items for unique tasks that satisfy the where clause.

If an error occurs during the processing of the select clause, a QueryUnknownTable

or a QueryUnknownColumn exception is thrown with the name of the property

that is not recognized as a table or column name.

Where clause:

The where clause in the query function describes the filter criteria to apply to the

query domain.

 The syntax of a where clause is the same as an SQL where clause. You do not need

to explicitly add an SQL from clause or join predicates to the where clause, these

constructs are added automatically when the query runs. If you do not want to

apply filter criteria, you must specify null for the where clause.

The where-clause syntax supports:

v Keywords: AND, OR, NOT

v Comparison operators: =, <=, <, <>, >,>=, LIKE

v Set operation: IN

The LIKE operation supports the wildcard characters that are defined for the

queried database.

The following rules also apply:

v Specify object ID constants as ID(’string-rep-of-oid’).

v Specify binary constants as BIN(’UTF-8 string’).

Developing and deploying modules 29

v Use symbolic constants instead of integer enumerations. For example, instead of

specifying an activity state expression ACTIVITY.STATE=2, specify

ACTIVITY.STATE=ACTIVITY.STATE.STATE_READY.

v Refer to properties of name-value pairs, such as custom properties, by adding a

one-digit suffix to the view name. For example: "TASK_CPROP1.NAME=’prop1’ AND

"TASK_CPROP2.NAME=’prop2’"

v Specify time-stamp constants as TS(’yyyy-mm-ddThh:mm:ss’). To refer to the

current date, specify CURRENT_DATE as the timestamp.

You must specify at least a date or a time value in the timestamp:

– If you specify a date only, the time value is set to zero.

– If you specify a time only, the date is set to the current date.

– If you specify a date, the year must consist of four digits; the month and day

values are optional. Missing month and day values are set to 01. For example,

TS(’2003’) is the same as TS(’2003-01-01T00:00:00’).

– If you specify a time, these values are expressed in the 24-hour system. For

example, if the current date is 1 January 2003, TS(’T16:04’) or TS(’16:04’) is

the same as TS(’2003-01-01T16:04:00’).

Examples of where clauses

v Comparing an object ID with an existing ID

"WORK_ITEM.WIID = ID(’_WI:800c00ed.df8d7e7c.feffff80.38’)"

This type of where clause is usually created dynamically with an existing object

ID from a previous call. If this object ID is stored in a wiid1 variable, the clause

can be constructed as:

"WORK_ITEM.WIID = ID(’" + wiid1.toString() + "’)"

v Using time stamps

"ACTIVITY.STARTED >= TS(’2002-06-1T16.00.00’)"

v Using symbolic constants

"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_OWNER"

v Using Boolean values true and false

"ACTIVITY.BUSINESS_RELEVANCE = TRUE"

v Using custom properties

"TASK_CPROP1.NAME = ’prop1’ AND " TASK_CPROP1.STRING_VALUE = ’v1’ OR

 TASK_CPROP2.NAME = ’prop2’ AND " TASK_CPROP2.STRING_VALUE = ’v2’"

Order-by clause:

The order-by clause in the query function specifies the sort criteria for the query

result set.

 The order-by clause syntax is the same as an SQL order-by clause; use commas to

separate each part of the clause. Each part of the clause must specify a property

from one of the predefined views.

Sort criteria are applied to the server, that is, the locale of the server is used for

sorting. If you identify more than one property, the query result set is ordered by

the values of the first property, then by the values of the second property, and so

on.

If you do not want to sort the query result set, you must specify null for the

order-by clause.

30 IBM WebSphere Process Server: Developing and deploying modules

Examples of order-by clauses

v ″PROCESS_TEMPLATE.NAME″

Sorts the query result alphabetically by the process-template name.

v ″PROCESS_INSTANCE.CREATED, PROCESS_INSTANCE.NAME DESC″

Sorts the query result by the creation date and, for a specific date, sorts the

results alphabetically by the process-instance name in reverse order.

v ″ACTIVITY.OWNER, ACTIVITY_TEMPLATE.NAME, ACTIVITY.STATE″

Sorts the query result by the activity owner, then the activity-template name,

and then the state of the activity.

Skip-tuples parameter:

The skip-tuples parameter specifies the number of query-result-set tuples that are

to be ignored and not to be returned to the caller in the query result set.

 Use this parameter with the threshold parameter to implement paging in a client

application.

If this parameter is set to null and the threshold parameter is not set, all of the

qualifying tuples are returned.

Example of a skip-tuples parameter

v new Integer(5)

Specifies that the first five qualifying tuples are not to be returned.

Threshold parameter:

The threshold parameter in the query function restricts the number of objects

returned from the server to the client in the query result set.

 The threshold parameter can be useful, for example, in a graphical user interface

where only a small number of items should be displayed. If you set the threshold

parameter accordingly, the database query is faster and less data needs to transfer

from the server to the client.

If this parameter is set to null and the skip-tuples parameter is not set, all of the

qualifying objects are returned.

Example of a threshold parameter

v new Integer(50)

Specifies that 50 qualifying tuples are to be returned.

Timezone parameter:

The time-zone parameter in the query function defines the time zone for

time-stamp constants in the query.

 Time zones can differ between the client that starts the query and the server that

processes the query. Use the time-zone parameter to specify the time zone of the

time-stamp constants used in the where clause, for example, to specify local times.

The dates returned in the query result set have the same time zone that is specified

in the query.

If the parameter is set to null, the timestamp constants are assumed to be

Coordinated Universal Time (UTC) times.

Developing and deploying modules 31

Examples of time-zone parameters

v process.query("ACTIVITY.AIID",

 "ACTIVITY.STARTED > TS(’2005-01-01T17:40’)",

 null,

 null,

 java.util.TimeZone.getDefault());

Returns object IDs for activities that started later than 17:40 local time on 1

January 2005.

v process.query("ACTIVITY.AIID",

 "ACTIVITY.STARTED > TS(’2005-01-01T17:40’)",

 null, null, null);

Return object IDs for activities that started later than 17:40 UTC on 1 January

2005. This specification is, for example, 6 hours earlier in Eastern Standard Time.

Query results:

A query result set contains the results of a query.

 The elements of the result set are objects that the caller is authorized to see. You

can read elements in a relative fashion using the next method or in an absolute

fashion using the first and last methods. Because the implicit cursor of a query

result set is initially positioned before the first element, you must call either the

first or next methods before reading an element. You can use the size method to

determine the number of elements in the set.

An element of the query result set comprises the selected attributes of work items

and their associated referenced objects, such as activity instances and process

instances. The first attribute (column) of a QueryResultSet element specifies the

value of the first attribute specified in the select clause of the query request. The

second attribute (column) of a QueryResultSet element specifies the value of the

second attribute specified in the select clause of the query request, and so on.

You can retrieve the values of the attributes by calling a method that is compatible

with the attribute type and by specifying the appropriate column index. The

numbering of the column indexes starts with 1.

 Attribute type Method

String getString

ID getOID

Timestamp getTimestamp

getString

Integer getInteger

getShort

getLong

getString

getBoolean

Boolean getBoolean

getShort

getInteger

getLong

getString

CHAR FOR BIT DATA getBinary

Example:

32 IBM WebSphere Process Server: Developing and deploying modules

The following query is run:

QueryResultSet resultSet = process.query("ACTIVITY.STARTED,

 ACTIVITY.TEMPLATE_NAME AS NAME,

 WORK_ITEM.WIID, WORK_ITEM.REASON",

 null, null, null, null);

The returned query result set has four columns:

v Column 1 is a time stamp

v Column 2 is a string

v Column 3 is an object ID

v Column 4 is an integer

You can use the following methods to retrieve the attribute values:

while (resultSet.next())

{

 java.util.Calendar activityStarted = resultSet.getTimestamp(1);

 String templateName = resultSet.getString(2);

 WIID wiid = (WIID) resultSet.getOID(3);

 Integer reason = resultSet.getInteger(4);

}

You can use the display names of the result set, for example, as headings for a

printed table. These names are the column names of the view or the name defined

by the AS clause in the query. You can use the following method to retrieve the

display names in the example:

resultSet.getColumnDisplayName(1) returns "STARTED"

resultSet.getColumnDisplayName(2) returns "NAME"

resultSet.getColumnDisplayName(3) returns "WIID"

resultSet.getColumnDisplayName(4) returns "REASON"

Managing stored queries

A stored query is a query that is stored in the database and identified by a name.

Although the query definitions are stored in the database, items contained in the

stored query are assembled dynamically when they are queried. All stored queries

are publicly accessible. You can have stored queries for business process objects,

task objects, or a combination of these two object types.

1. Create a stored query.

For example, the following code snippet creates a query for process instances

and saves it with a specific name.

process.createStoredQuery("CustomerOrdersStartingWithA",

 "DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",

 "PROCESS_INSTANCE.NAME LIKE ’A%’",

 "PROCESS_INSTANCE.NAME",

 null,null);

This query returns a sorted list of all the process-instance names that begin

with the letter A and their associated process instance IDs (PIID).

2. Run the query defined by the stored query.

QueryResultSet result = process.query("CustomerOrdersStartingWithA",

 new Integer(0));

This action returns the objects that fulfill the criteria. In this case, all of the

customer orders that begin with A.

3. Optional: List the available stored queries.

For example, the following code snippet shows how to get a list of stored

queries for process objects:

String[] storedQuery = process.getStoredQueryNames();

Developing and deploying modules 33

4. Optional: Check the query defined by a specific stored query.

StoredQuery storedQuery = process.getStoredQuery("CustomerOrdersStartingWithA");

String selectClause = storedQuery.getSelectClause();

String whereClause = storedQuery.getWhereClause();

String orderByClause = storedQuery.getOrderByClause();

Integer threshold = storedQuery.getThreshold();

5. Delete a stored query.

The following code snippet shows how to delete the stored query that you

created in step 1.

process.deleteStoredQuery("CustomerOrdersStartingWithA");

Predefined views for queries on business-process and

human-task objects

Predefined database views are provided for business-process and human-task

objects. Use these views when you query reference data for these objects. When

you use these views, you do not need to explicitly add join predicates for view

columns, these constructs are added automatically for you. You can use the generic

query function of the service API (BusinessFlowManagerService or

HumanTaskManagerService) to query this data. You can also use the corresponding

method of the HumanTaskManagerDelegate API or your predefined queries

provided by your implementations of the ExecutableQuery interface.

ACTIVITY view:

Use this predefined database view for queries on activities.

 Table 1. Columns in the ACTIVITY view

Column name Type Comments

PIID ID The process instance ID.

AIID ID The activity instance ID.

PTID ID The process template ID.

ATID ID The activity template ID.

KIND Integer The kind of activity. Possible values are:

 KIND_INVOKE

KIND_RECEIVE

KIND_REPLY

KIND_THROW

KIND_RETHROW

KIND_TERMINATE

KIND_WAIT

KIND_COMPENSATE

KIND_SEQUENCE

KIND_EMPTY

KIND_SWITCH

KIND_WHILE

KIND_PICK

KIND_FLOW

KIND_SCOPE

KIND_SCRIPT

KIND_STAFF

KIND_ASSIGN

KIND_CUSTOM

COMPLETED Timestamp The time the activity is completed.

ACTIVATED Timestamp The time the activity is activated.

34 IBM WebSphere Process Server: Developing and deploying modules

Table 1. Columns in the ACTIVITY view (continued)

Column name Type Comments

FIRST_ACTIVATED Timestamp The time at which the activity was

activated for the first time.

STARTED Timestamp The time the activity is started.

STATE Integer The state of the activity. Possible values

are:

 STATE_INACTIVE

STATE_READY

STATE_RUNNING

STATE_PROCESSING_UNDO

STATE_SKIPPED

STATE_FINISHED

STATE_FAILED

STATE_TERMINATED

STATE_CLAIMED

STATE_TERMINATING

STATE_FAILING

STATE_WAITING

STATE_EXPIRED

STATE_STOPPED

OWNER String Principal ID of the owner.

DESCRIPTION String If the activity template description

contains placeholders, this column

contains the description of the activity

instance with the placeholders resolved.

TEMPLATE_NAME String Name of the associated activity

template.

TEMPLATE_DESCR String Description of the associated activity

template.

BUSINESS_RELEVANCE Boolean Specifies whether the activity is

business relevant. The attribute affects

logging to the audit trail. Possible

values are:

TRUE The activity is business

relevant and it is audited.

FALSE The activity is not business

relevant and it is not audited.

ACTIVITY_ATTRIBUTE view:

Use this predefined database view for queries on custom properties for activities.

 Table 2. Columns in the ACTIVITY_ATTRIBUTE view

Column name Type Comments

AIID ID The ID of the activity instance that

has a custom property.

NAME String The name of the custom property.

VALUE String The value of the custom property.

ACTIVITY_SERVICE view:

Developing and deploying modules 35

Use this predefined database view for queries on activity services.

 Table 3. Columns in the ACTIVITY_SERVICE view

Column name Type Comments

EIID ID The ID of the event instance.

AIID ID The ID of the activity waiting for

the event.

PIID ID The ID of the process instance that

contains the event.

VTID ID The ID of the service template that

describes the event.

PORT_TYPE String The name of the port type.

NAME_SPACE_URI String The URI of the namespace.

OPERATION String The operation name of the service.

APPLICATION_COMP view:

Use this predefined database view to query the application component ID and

default settings for tasks.

 Table 4. Columns in the APPLICATION_COMP view

Column name Type Comments

ACOID String The ID of the application component.

BUSINESS_ RELEVANCE Boolean The default task business-relevance policy of the

component. This value can be overwritten by a

definition in the task template or the task. The

attribute affects logging to the audit trail.

Possible values are:

TRUE The task is business relevant and it is

audited.

FALSE The task is not business relevant and it

is not audited.

NAME String Name of the application component.

SUPPORT_ AUTOCLAIM Boolean The default automatic-claim policy of the

component. If this attribute is set to TRUE, the

task can be automatically claimed if a single user

is the potential owner. This value can be

overwritten by a definition in the task template

or task.

SUPPORT_CLAIM_ SUSP Boolean The default setting of the component that

determines whether suspended tasks can be

claimed. If this attribute is set to TRUE,

suspended tasks can be claimed. This value can

be overwritten by a definition in the task

template or the task.

SUPPORT_ DELEGATION Boolean The default task delegation-support policy of the

component. If this attribute is set to TRUE, the

task can be delegated. This value can be

overwritten by a definition in the task template

or task.

36 IBM WebSphere Process Server: Developing and deploying modules

ESCALATION view:

Use this predefined database view to query data for escalations.

 Table 5. Columns in the ESCALATION view

Column name Type Comments

ESIID String The ID of the escalation instance.

ACTION Integer The action triggered by the escalation. Possible

values are:

ACTION_CREATE_WORK_ITEM

Creates a work item for each escalation

receiver.

ACTION_SEND_EMAIL

Sends an e-mail to each escalation receiver.

ACTION_CREATE_EVENT

Creates and publishes an event.

ACTIVATION_STATE Integer An escalation instance is created if the

corresponding task reaches one of the following

states:

ACTIVATION_STATE_READY

Specifies that the human or participating

task is ready to be claimed.

ACTIVATION_STATE_RUNNING

Specifies that the originating task is started

and running.

ACTIVATION_STATE_WAITING_

FOR_SUBTASK

Specifies that the task is waiting for the

completion of subtasks.

ACTIVATION_STATE_CLAIMED

Specifies that the task is claimed.

ACTIVATION_TIME Timestamp The time when the escalation is activated.

AT_LEAST_

EXP_STATE

Integer The state of the task that is expected by the

escalation. If a timeout occurs, the task state is

compared with the value of this attribute. Possible

values are:

AT_LEAST_EXPECTED_STATE_CLAIMED

Specifies that the task is claimed.

AT_LEAST_EXPECTED_STATE_ENDED

Specifies that the task is in a final state

(FINISHED, FAILED, TERMINATED or

EXPIRED).

AT_LEAST_EXPECTED_STATE_

SUBTASKS_COMPLETED

Specifies that all of the subtasks of the task

are complete.

ESTID String The ID of the corresponding escalation template.

FIRST_ESIID String The ID of the first escalation in the chain.

Developing and deploying modules 37

Table 5. Columns in the ESCALATION view (continued)

Column name Type Comments

INCREASE_PRIORITY Integer Indicates how the task priority will be increased.

Possible values are:

INCREASE_PRIORITY_NO

The task priority is not increased.

INCREASE_PRIORITY_ONCE

The task priority is increased once by one.

INCREASE_PRIORITY_REPEATED

The task priority is increased by one each

time the escalation repeats.

NAME String The name of the escalation.

STATE Integer The state of the escalation. Possible values are:

 STATE_INACTIVE

STATE_WAITING

STATE_ESCALATED

STATE_SUPERFLUOUS

TKIID String The task instance ID to which the escalation

belongs.

ESCALATION_CPROP view:

Use this predefined database view to query custom properties for escalations.

 Table 6. Columns in the ESCALATION_CPROP view

Column name Type Comments

ESIID String The escalation ID.

NAME String The name of the property.

DATA_TYPE String The type of the class for non-string custom

properties.

STRING_VALUE String The value for custom properties of type String.

ESCALATION_DESC view:

Use this predefined database view to query multilingual descriptive data for

escalations.

 Table 7. Columns in the ESCALATION_DESC view

Column name Type Comments

ESIID String The escalation ID.

LOCALE String The name of the locale associated with the

description or display name.

DESCRIPTION String A description of the task template.

DISPLAY_NAME String The descriptive name of the escalation.

PROCESS_ATTRIBUTE view:

Use this predefined database view for queries on custom properties for processes.

38 IBM WebSphere Process Server: Developing and deploying modules

Table 8. Columns in the PROCESS_ATTRIBUTE view

Column name Type Comments

PIID ID The ID of the process instance that

has a custom property.

NAME String The name of the custom property.

VALUE String The value of the custom property.

PROCESS_INSTANCE view:

Use this predefined database view for queries on process instances.

 Table 9. Columns in the PROCESS_INSTANCE view

Column name Type Comments

PTID ID The process template ID.

PIID ID The process instance ID.

NAME String The name of the process instance.

STATE Integer The state of the process instance.

Possible values are:

 STATE_READY

STATE_RUNNING

STATE_FINISHED

STATE_COMPENSATING

STATE_INDOUBT

STATE_FAILED

STATE_TERMINATED

STATE_COMPENSATED

STATE_COMPENSATION_FAILED

STATE_TERMINATING

STATE_FAILING

STATE_SUSPENDED

CREATED Timestamp The time the process instance is

created.

STARTED Timestamp The time the process instance

started.

COMPLETED Timestamp The time the process instance

completed.

PARENT_NAME String The name of the parent process

instance.

TOP_LEVEL_NAME String The name of the top-level process

instance. If there is no top-level

process instance, this is the name

of the current process instance.

STARTER String The principal ID of the starter of

the process instance.

DESCRIPTION String If the description of the process

template contains placeholders,

this column contains the

description of the process instance

with the placeholders resolved.

TEMPLATE_NAME String The name of the associated process

template.

Developing and deploying modules 39

Table 9. Columns in the PROCESS_INSTANCE view (continued)

Column name Type Comments

TEMPLATE_DESCR String Description of the associated

process template.

PROCESS_TEMPLATE view:

Use this predefined database view for queries on process templates.

 Table 10. Columns in the PROCESS_TEMPLATE view

Column name Type Comments

PTID ID The process template ID.

NAME String The name of the process template.

VALID_FROM Timestamp The time from when the process template

can be instantiated.

TARGET_NAMESPACE String The target namespace of the process

template.

APPLICATION_NAME String The name of the enterprise application to

which the process template belongs.

VERSION String User-defined version.

CREATED Timestamp The time the process template is created in

the database.

STATE Integer Specifies whether the process template is

available to create process instances.

Possible values are:

 STATE_STARTED

STATE_STOPPED

EXECUTION_MODE Integer Specifies how process instances that are

derived from this process template can be

run. Possible values are:

 EXECUTION_MODE_MICROFLOW

EXECUTION_MODE_LONG_RUNNING

DESCRIPTION String Description of the process template.

COMP_SPHERE Integer Specifies the compensation behavior of

instances of microflows in the process

template; either an existing compensation

sphere is joined or a compensation sphere is

created.

Possible values are:

 COMP_SPHERE_REQUIRED

COMP_SPHERE_REQUIRES_NEW

COMP_SPHERE_SUPPORTS

COMP_SPHERE_NOT_SUPPORTED

TASK view:

Use this predefined database view for queries on task objects.

40 IBM WebSphere Process Server: Developing and deploying modules

Table 11. Columns in the TASK view

Column name Type Comments

TKIID ID The ID of the task instance.

ACTIVATED Timestamp The time when the task was activated.

APPLIC_

DEFAULTS_ID

ID The ID of the application component that specifies

the defaults for the task.

APPLIC_NAME String The name of the enterprise application to which the

task belongs.

BUSINESS_

RELEVANCE

Boolean Specifies whether the task is business relevant. The

attribute affects logging to the audit trail. Possible

values are:

TRUE The task is business relevant and it is

audited.

FALSE The task is not business relevant and it is

not audited.

COMPLETED Timestamp The time when the task completed.

CONTAINMENT_

CTX_ID

ID The containment context for this task. This attribute

determines the life cycle of the task. When the

containment context of a task is deleted, the task is

also deleted.

CTX_

AUTHORIZATION

Integer Allows the task owner to access the task context.

Possible values are:

AUTH_NONE

No authorization rights for the associated

context object.

AUTH_READER

Operations on the associated context object

require reader authority, for example,

reading the properties of a process

instance.

DUE Timestamp The time when the task is due.

EXPIRES Timestamp The date when the task expires.

FIRST_ACTIVATED Timestamp The time when the task was activated for the first

time.

IS_ESCALATED Boolean Indicates whether an escalation of this task has

occurred.

IS_INLINE Boolean Indicates whether the task is an inline participating

task in a business process.

Developing and deploying modules 41

Table 11. Columns in the TASK view (continued)

Column name Type Comments

KIND Integer The kind of task. Possible values are:

KIND_HUMAN

States that the task is created and

processed by a human.

KIND_WPC_STAFF_ACTIVITY

States that the task is a human task that is

part of a business process.

KIND_ORIGINATING

States that the task supports

person-to-computer interactions, which

enables people to create, initiate, and start

services.

KIND_PARTICIPATING

States that the task supportd

computer-to-person interactions, which

enable a person to implement a service.

KIND_ADMINISTRATIVE

States that the task is an administrative

task.

LAST_MODIFIED Timestamp The time when the task was last modified.

LAST_STATE_

CHANGE

Timestamp The time when the state of the task was last

modified.

NAME String The name of the task.

NAME_SPACE String The namespace that is used to categorize the task.

ORIGINATOR String The principal ID of the task originator.

OWNER String The principal ID of the task owner.

PARENT_

CONTEXT_ID

String The parent context for this task. This attribute

provides a key to the corresponding context in the

calling application component. The parent context is

set by the application component that creates the

task.

PRIORITY Integer The priority of the task.

STARTED Timestamp The time when the task was started

(STATE_RUNNING, STATE_CLAIMED).

STARTER String The principal ID of the task starter.

42 IBM WebSphere Process Server: Developing and deploying modules

Table 11. Columns in the TASK view (continued)

Column name Type Comments

STATE Integer The state of the task. Possible values are:

STATE_READY

States that the task is ready to be claimed.

STATE_RUNNING

States that the task is started and running.

STATE_FINISHED

States that the task finished successfully.

STATE_FAILED

States that the task did not finish

successfully.

STATE_TERMINATED

States that the task has been terminated

because of an external or internal request.

STATE_CLAIMED

States that the task is claimed.

STATE_EXPIRED

States that the task ended because it

exceeded its specified duration.

STATE_FORWARDED

States that task completed with a follow-on

task.

SUPPORT_

AUTOCLAIM

Boolean Indicates whether this task is claimed automatically

if it is assigned to a single user.

SUPPORT_CLAIM_

SUSP

Boolean Indicates whether this task can be claimed if it is

suspended.

SUPPORT_

DELEGATION

Boolean Indicates whether this task supports work

delegation with follow-on tasks.

SUSPENDED Boolean Indicates whether the task is suspended.

TKTID String The task template ID.

TOP_TKIID String The top parent task instance ID of the subtask.

TYPE String The type used to categorize the task.

TASK_CPROP view:

Use this predefined database view to query custom properties for task objects.

 Table 12. Columns in the TASK_CPROP view

Column name Type Comments

TKIID String The task instance ID.

NAME String The name of the property.

DATA_TYPE String The type of the class for non-string custom

properties.

STRING_VALUE String The value for custom properties of type String.

TASK_DESC view:

Developing and deploying modules 43

Use this predefined database view to query multilingual descriptive data for task

objects.

 Table 13. Column in the TASK_DESC view

Column name Type Comments

TKIID String The task instance ID.

LOCALE String The name of the locale associated with the

description or display name.

DESCRIPTION String A description of the task.

DISPLAY_NAME String The descriptive name of the task.

TASK_TEMPL view:

This predefined database view holds data that you can use to instantiate tasks.

 Table 14. Columns in the TASK_TEMPL view

Column name Type Comments

TKTID String The task template ID.

VALID_FROM Timestamp The time when the task template becomes available

for instantiation.

APPLIC_

DEFAULTS_ID

String The ID of the application component that specifies

the defaults for the task template.

APPLIC_NAME String The name of the enterprise application to which the

task template belongs.

BUSINESS_

RELEVANCE

Boolean Specifies whether the task template is business

relevant. The attribute affects logging to the audit

trail. Possible values are:

TRUE The task is business relevant and it is

audited.

FALSE The task is not business relevant and it is

not audited.

CONTAINMENT_

CTX_ID

ID The containment context for this task template. This

attribute determines the life cycle of the task

template. When a containment context is deleted,

the task template is also deleted.

CTX_

AUTHORIZATION

Integer Allows the task owner to access the task context.

Possible values are:

AUTH_NONE

No authorization rights for the associated

context object.

AUTH_READER

Operations on the associated context object

require reader authority, for example,

reading the properties of a process

instance.

IS_INLINE Boolean Indicates whether this task template describes a

staff activity in a business process.

44 IBM WebSphere Process Server: Developing and deploying modules

Table 14. Columns in the TASK_TEMPL view (continued)

Column name Type Comments

KIND Integer The kind of tasks that are derived from this task

template. Possible values are:

KIND_HUMAN

Specifies that the task is created and

processed by a human.

KIND_ORIGINATING

Specifies that a human can assign a task to

a computer. In this case, a human invokes

an automated service.

KIND_PARTICIPATING

Specifies that a service component (such as

a business process) assigns a task to a

human.

KIND_ADMINISTRATIVE

Specifies that the task is an administrative

task.

NAME String The name of the task template.

NAMESPACE String The namespace that is used to categorize the task

template.

PRIORITY Integer The priority of the task template.

STATE Integer The state of the task template. Possible values are:

STATE_STARTED

Specifies that the task template is available

for creating task instances.

STATE_STOPPED

Specifies that the task template is stopped.

Task instances cannot be created from the

task template in this state.

SUPPORT_

AUTOCLAIM

Boolean Indicates whether tasks derived from this task

template can be claimed automatically if they are

assigned to a single user.

SUPPORT_CLAIM_

SUSP

Boolean Indicates whether tasks derived from this task

template can be claimed if they are suspended.

SUPPORT_

DELEGATION

Boolean Indicates whether tasks derived from this task

template support work delegation with follow-on

tasks.

TYPE String The type used to categorize the task template.

TASK_TEMPL_CPROP view:

Use this predefined database view to query custom properties for task templates.

 Table 15. Columns in the TASK_TEMPL_CPROP view

Column name Type Comments

TKTID String The task template ID.

NAME String The name of the property.

DATA_TYPE String The type of the class for non-string custom

properties.

Developing and deploying modules 45

Table 15. Columns in the TASK_TEMPL_CPROP view (continued)

Column name Type Comments

STRING_VALUE String The value for custom properties of type String.

TASK_TEMPL_DESC view:

Use this predefined database view to query multilingual descriptive data for task

template objects.

 Table 16. Columns in the TASK_TEMPL_DESC view

Column name Type Comments

TKTID String The task template ID.

LOCALE String The name of the locale associated with the

description or display name.

DESCRIPTION String A description of the task template.

DISPLAY_NAME String The descriptive name of the task template.

WORK_ITEM view:

Use this predefined database view for queries on work items and authorization

data for process, tasks, and escalations.

 Table 17. Columns in the WORK_ITEM view

Column name Type Comments

WIID ID The work item ID.

OWNER_ID String The principal ID of the owner.

GROUP_NAME String The name of the associated group worklist.

EVERYBODY Boolean Specifies whether everybody owns this

work item.

46 IBM WebSphere Process Server: Developing and deploying modules

Table 17. Columns in the WORK_ITEM view (continued)

Column name Type Comments

OBJECT_TYPE Integer The type of the associated object. Possible

values are:

OBJECT_TYPE_ACTIVITY

Specifies that the work item was

created for an activity.

OBJECT_TYPE_PROCESS_INSTANCE

Specifies that the work item was

created for a process instance.

OBJECT_TYPE_TASK_INSTANCE

Specifies that the work item was

created for a task.

OBJECT_TYPE_TASK_TEMPLATE

Specifies that the work item was

created for a task template.

OBJECT_TYPE_ESCALATION_

INSTANCE

Specifies that the work item was

created for an escalation instance.

OBJECT_TYPE_APPLICATION_

COMPONENT

Specifies that the work item was

created for an application

component.

OBJECT_ID ID The ID of the associated object, for example,

the associated process or task.

ASSOC_OBJECT_TYPE Integer The type of the object referenced by the

ASSOC_OID attribute, for example, task,

process, or external objects. Use the values

for the OBJECT_TYPE attribute.

ASSOC_OID ID The ID of the object associated object with

the work item. For example, the process

instance ID (PIID) of the process instance

containing the activity instance for which

this work item was created.

REASON Integer The reason for the assignment of the work

item. Possible values are:

 REASON_POTENTIAL_STARTER

REASON_POTENTIAL_INSTANCE_

 CREATOR

REASON_POTENTIAL_OWNER

REASON_EDITOR

REASON_READER

REASON_ORIGINATOR

REASON_OWNER

REASON_STARTER

REASON_ESCALATION_RECEIVER

REASON_ADMINISTRATOR

CREATION_TIME Timestamp The date and time when the work item was

created.

Developing and deploying modules 47

Handling exceptions and faults

Faults can occur when a process instance is created or when operations that are

invoked as part of the navigation of a process instance fail. Mechanisms exist to

handle these faults and they include:

v Passing control to the corresponding fault handlers

v Stopping the process and let someone repair the situation (force-retry,

force-complete)

v Compensating the process

v Passing the fault to the client application as an API exception, for example, an

exception is thrown when the process model from which an instance is to be

created does not exist

The handling of faults and exceptions is described in the following tasks:

v “Handling API exceptions”

v “Checking which fault is set for an activity”

v “Checking which fault occurred for a stopped invoke activity” on page 49

Handling API exceptions

If a method in the BusinessFlowManagerService interface or the

HumanTaskManagerService interface does not complete successfully, an exception

is thrown that denotes the cause of the error. You can handle this exception

specifically to provide guidance to the caller.

However, it is common practice to handle only a subset of the exceptions

specifically and to provide general guidance for the other potential exceptions. All

specific exceptions inherit from a generic ProcessException or TaskException. It is a

best practice to catch generic exceptions with a final catch(ProcessException) or

catch(TaskException) statement. This statement helps to ensure the upward

compatibility of your application program because it takes account of all of the

other exceptions that can occur.

Checking which fault is set for an activity

1. List the task activities that are in a failed or stopped state.

QueryResultSet result =

 process.query("ACTIVITY.AIID",

 "(ACTIVITY.STATE = ACTIVITY.STATE.STATE_FAILED OR

 ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED) AND

 ACTIVITY.KIND=ACTIVITY.KIND.KIND_STAFF",

 null, null, null);

This action returns a query result set that contains failed or stopped activities.

2. Read the name of the fault.

This fault name is the local part of the fault queue name.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ClientObjectWrapper faultMessage = process.getFaultMessage(aiid);

 DataObject fault = null ;

 if (faultMessage.getObject() != null && faultMessage.getObject()

 instanceof DataObject)

 {

 fault = (DataObject)faultMessage.getObject();

 Type type = fault.getType();

48 IBM WebSphere Process Server: Developing and deploying modules

String name = type.getName();

 String uri = type.getURI();

 }

}

This returns the fault name. You can also analyze the unhandled exception for

a stopped activity instead of retrieving the fault name.

Checking which fault occurred for a stopped invoke activity

If an activity causes a fault to occur, the fault type determines the actions that you

can take to repair the activity.

1. List the staff activities that are in a stopped state.

QueryResultSet result =

 process.query("ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND

 ACTIVITY.KIND=ACTIVITY.KIND.KIND_INVOKE",

 null, null, null);

This action returns a query result set that contains stopped invoke activities.

2. Read the name of the fault.

This is the local part of the fault queue name.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ActivityInstanceData activity = process.getActivityInstance(aiid);

 ProcessException excp = activity.getUnhandledException();

 if (excp instanceof ApplicationFaultException)

 {

 ApplicationFaultException fault = (ApplicationFaultException)excp;

 String faultName = fault.getFaultName();

 }

}

Authorization for business-process applications

Ensure that you enable global security in WebSphere Application Server.

When an instance of the LocalBusinessFlowManager or the BusinessFlowManager

session bean is created, WebSphere Application Server associates a session context

with the instance. The session context contains the caller’s principal role. This

information is used to check the caller’s authorization for each call. The caller must

be authorized to call methods, and view objects and the attributes of these objects.

The following reasons for a work-item assignment are used:

v For processes: reader, starter, administrator

v For activities: reader, editor, potential owner, owner, administrator, potential

starter

These assignment reasons are mapped to authorizations:

v Activity reader: can see properties of the associated activity instance, and its

input and output messages.

v Activity editor: has the authority of the activity reader, and has write access to

messages and other data associated with the activity.

v Potential activity owner: has the authority of the activity editor, and has the

right to claim the activity.

Developing and deploying modules 49

v Activity owner: has the authority of the potential activity owner, and has the

right to complete the activity. Has the authority to transfer owned work items to

an administrator or potential owner.

v Activity administrator: can repair activities that are stopped due to unexpected

errors, and force terminate long-running activities.

v Activity potential starter: can send messages to receive or pick activities.

v Process starter: can see properties of the associated process instance, and its

input and output messages.

v Process reader: can see properties of the associated process instance, its input

and output messages, and everything that the activity reader supports for all of

the contained activities but not those of the subprocesses.

v Process administrator: has the authority of the process reader and the process

starter, and the right to intervene in a process that has started. Has the authority

to create, delete, and transfer work items.

Special authorization authority is granted to people with the following roles:

v Business process administrator and the Java 2 Platform, Enterprise Edition (J2EE)

BPESystemAdministrator. These roles have all privileges.

v Business process monitor and the J2EE BPESystemMonitor. These roles can read

all of the objects.

Do not delete the user ID of the process starter from your user registry if the

process instance still exists. If you do, the navigation of this process cannot

continue. You receive the following exception in the system log file:

no unique ID for: <user ID>

Required authorizations for actions on business processes

Access to the LocalBusinessFlowManager or the BusinessFlowManager interface

does not guarantee that the caller can perform all of the actions on a process; the

caller must also be authorized to perform the action. The following minimum

authorization authorities are needed for actions on business processes.

 Table 18. Required authorizations for actions on business processes

Action Required authorization

createMessage process reader

createWorkItem process administrator

getAllActivities process reader

getActivityInstance process reader

getWaitingActivities process reader

getAllWorkItems process reader

geClientUISettings process reader

getCustomProperty process reader

getCustomProperties process reader

getCustomPropertyNames process reader

getActiveEventHandler process reader

getFaultMessage process reader

getInputClientUISettings process reader

getInputMessage process reader

getOutputClientUISettings process reader

50 IBM WebSphere Process Server: Developing and deploying modules

Table 18. Required authorizations for actions on business processes (continued)

Action Required authorization

getOutputMessage process reader

getProcessInstance process reader

getVariable process reader

getWorkItems process reader

setCustomProperty process starter

setVariable process administrator

delete process administrator

deleteWorkItem process administrator

transferWorkItem process administrator

forceTerminate process administrator

suspend process administrator

resume process administrator

restart process administrator

Required authorizations for actions on business-process

activities

Access to the LocalBusinessFlowManager or the BusinessFlowManager interface

does not guarantee that the caller can perform all of the actions on an activity; the

caller must also be authorized to perform the action. The following minimum

authorization authorities are needed for actions on business-process activities.

 Table 19. Required authorizations for actions on activities in business processes

Action Required authorization

createMessage activity reader or process reader

createWorkItem process administrator or activity administrator

getActivityInstance activity reader or process reader

getCustomProperty activity reader or process reader

getCustomProperties activity reader or process reader

getCustomPropertyNames activity reader or process reader

getVariable activity reader or process reader

getFaultMessage activity reader or process reader

getFaultNames activity reader or process reader

getInputMessage activity reader or process reader

getOutputMessage activity reader or process reader

getClientUISettings activity reader or process reader

getWorkItems activity reader or process administrator

getAllWorkItems process reader or process administrator

setCustomProperty activity editor or process administrator

setOutputMessage activity editor or process administrator

setFaultMessage activity editor or process administrator

setVariable activity editor or process administrator

Developing and deploying modules 51

Table 19. Required authorizations for actions on activities in business

processes (continued)

Action Required authorization

claim potential activity owner or process administrator

cancelClaim activity owner or process administrator

complete activity owner or process administrator

forceRetry process administrator or activity administrator

forceComplete process administrator or activity administrator

forceTerminate process administrator or activity administrator

deleteWorkItem process administrator or activity administrator

transferWorkItem activity owner or process administrator

sendMessage potential activity owner or process administrator

Authorization for human-task applications

Ensure that you enable global security in WebSphere Application Server.

When an instance of the LocalHumanTaskManager or the HumanTaskManager

session bean is created, WebSphere Application Server associates a session context

with the instance. The session context contains the caller’s principal role. This

information is used to check the caller’s authorization for each call.

The following reasons for a work-item assignment are used:

v Potential owner is the person or group of people to whom the human or

participating task is assigned.

v Owner is the potential owner that claimed the task.

v Editor is the person or group of people that can modify the data that belongs to

the human or participating task although they are not owners or administrators

of the task.

v Reader is the person or group of people that can read the task, task template, or

escalation data although they are not owners, editors, or administrators of the

task.

v Originator is the person who created the task.

v Potential starter is the person or group of people that can start an existing

originating task. If a potential starter is not specified, the originator becomes the

potential starter. For inline tasks without a potential starter, the default is

everybody.

v Starter is the person who started an originating task.

v Administrator is the person or group of people that can administer the task, task

template, or escalation.

v Escalation receiver is the person or group of people that receive an escalation if

the escalation is triggered.

v E-mail receiver is the person or group of people that receive an e-mail if the

escalation is triggered.

v Potential instance creator is the person or group of people that can create an

instance of a task template.

Special authority is granted to people with the following roles:

v Administrator and the Java 2 Platform, Enterprise Edition (J2EE)

TaskSystemAdministrator. These roles have all privileges.

v Reader and the J2EE TaskSystemMonitor. These roles can read all of the objects.

52 IBM WebSphere Process Server: Developing and deploying modules

Required roles for actions on tasks

Access to the LocalHumanTaskManager or the HumanTaskManager interface does

not guarantee that the caller can perform all of the actions on a task; the caller

must also be authorized to perform the action. The following table shows the

actions that a specific role can take.

 Action Caller’s principal role

Owner Pot

owner

Starter Pot

starter

Origin Admin Editor Reader Esc

receiver

callTask X1 X1 X1

cancelClaim X X

claim X X

complete X X

createFaultMessage X X X X X1 X X X X

createInputMessage X X X X X1 X X X X

createOutputMessage X X X X X1 X X X X

createWorkItem X1, 2 X

delete X3 X

deleteWorkItem X1, 2 X

getCustomProperty X X X X X1 X X X X

getDocumentation X X X X X1 X X X X

getFaultMessage X X X X X1 X X X X

getFaultNames X X X X X1 X X X X

getInputMessage X X X X X1 X X X X

getOutputMessage X X X X X1 X X X X

getRoleInfo X X X X X1 X X X X

getTask X X X X X1 X X X X

getUISettings X X X X X1 X X X X

resume X X1 X

setCustomProperty X X X X

setFaultMessage X X X

setOutputMessage X X X

startTask X X1 X

suspend X X1 X

terminate X X1 X

transferWorkItem X X X1 X

update X X X X

Developing and deploying modules 53

Action Caller’s principal role

Owner Pot

owner

Starter Pot

starter

Origin Admin Editor Reader Esc

receiver

Notes:

1. For stand-alone tasks and task templates only.

2. For tasks in the inactive state only.

3. The originator can delete tasks that are in the inactive state only.

Abbreviations:

Admin Administrator

Esc receiver

Escalation receiver

Origin Originator

Pot owner

Potential owner

Pot starter

Potential starter

BusinessFlowManagerService interface

The BusinessFlowManagerService interface exposes business-process functions that

can be called by a client application.

The methods that can be called by the BusinessFlowManagerService interface

depend on the state of the process or the activity and the authorization of the

person that uses the application containing the method. The main methods for

manipulating business process objects are listed here. For more information about

these methods and the other methods that are available in the

BusinessFlowManagerService interface, see the Javadoc in the com.ibm.bpe.api

package.

Process templates

A process template is a versioned, deployed, and installed process model that

contains the specification of a business process. It can be instantiated and started

by issuing appropriate requests, for example, initiate(). The execution of the

process instance is driven automatically by the server.

 Table 20. API methods for process templates

Method Description

getProcessTemplate Retrieves the specified process template.

queryProcessTemplate Retrieves process templates that are stored

in the database.

Process instances

The following API methods start process instances.

 Table 21. API methods for starting process instances

Method Description

call Creates and runs a process instance.

54 IBM WebSphere Process Server: Developing and deploying modules

Table 21. API methods for starting process instances (continued)

Method Description

callWithReplyContext Creates and runs a process instance from the

specified process template and waits

asynchronously for the result.

callWithUISettings Creates and runs a process instance and

returns the output message and the client

user interface (UI) settings.

initiate Creates a process instance and initiates

processing of the process instance.

sendMessage Sends the specified message to the specified

activity service and process instance.

getStartActivities (for processes with a

non-unique starting service)

Returns information about the activities that

can start a process instance from the

specified process template.

getActivityServiceTemplate Retrieves the specified activity service

template.

 Table 22. API methods for controlling the life cycle of process instances

Method Description

suspend Suspends the execution of a long-running,

top-level process instance that is in the

running or failing state.

resume Resumes the execution of a long-running,

top-level process instance that is in the

suspended state.

restart Restarts a long-running, top-level process

instance that is in the finished, failed,

compensated, or terminated state.

forceComplete Forces the completion of an activity instance

that is in the running or stopped state.

forceRetry Forces the repetition of an activity instance

that is in the running or stopped state.

forceTerminate Terminates the specified top-level process

instance, its subprocesses, and its running,

claimed, or waiting activities.

delete Deletes the specified top-level process

instance and its subprocesses.

query Retrieves the properties from the database

that match the search criteria.

Activities

For invoke activities, you can specify in the process model that these activities

continue in error situations. If the continue-on-error flag is set to false and an

unhandled error occurs, the activity is put into the stopped state. A process

administrator can then repair the activity. The continue-on-error flag and the

associated repair functions can, for example, be used in a long-running process

where an invoke activity fails occasionally, but the effort required to model

compensation and fault handling is too high. The following methods are available

for repairing activities.

Developing and deploying modules 55

Table 23. API methods for controlling the life cycle of activity instances

Method Description

claim Claims a ready activity instance for a user to

work on the activity.

cancelClaim Cancels the claim of the activity instance.

complete Completes the activity instance.

forceComplete Forces the completion of an activity instance

that is in the running or stopped state.

forceRetry Forces the repetition of an activity instance

that is in the running or stopped state.

query Retrieves the properties from the database

that match the search criteria.

Variables and custom properties

The interface provides a get and a set method to retrieve and set values for

variables. You can also associate named properties with, and retrieve named

properties from, process and activity instances. Custom property names and values

must be of the java.lang.String type.

 Table 24. API methods for variables and custom properties

Method Description

getVariable Retrieves the specified variable.

setVariable Sets the specified variable.

getCustomProperty Retrieves the named custom property of the

specified activity or process instance.

getCustomProperties Retrieves the named custom properties of

the specified activity or process instance.

getCustomPropertyNames Retrieves the names of the custom properties

for the specified activity or process instance.

setCustomProperty Stores custom-specific values for the

specified activity or process instance.

HumanTaskManagerService interface

The HumanTaskManagerService interface exposes task-related functions that can be

called by a local or a remote client.

The methods that can be called depend on the state of the task and the

authorization of the person that uses the application containing the method. The

main methods for manipulating task objects are listed here. For more information

about these methods and the other methods that are available in the

HumanTaskManagerService interface, see the Javadoc in the com.ibm.task.api

package.

56 IBM WebSphere Process Server: Developing and deploying modules

Task templates

The following methods are available to work with task templates.

 Table 25. API methods for task templates

Method Description

getTaskTemplate Retrieves the specified task template.

createAndCallTask Creates and runs a task instance from the

specified task template and waits

asynchronously for the result.

createAndStartTask Creates and starts a task instance from the

specified task template.

createTask Creates a task instance from the specified

task template.

createInputMessage Creates an input message for the specified

task template using a string representation

of the task template ID. For example, create

a message that can be used to start a task.

queryTaskTemplates Retrieves task templates that are stored in

the database.

Task instances

The following methods are available to work with task instances.

 Table 26. API methods for task instances

Method Description

getTask Retrieves a task instance; the task instance

can be in any state.

startTask Starts a task that has already been created.

resume Resumes the human or participating task.

suspend Suspends the human or participating task.

terminate Terminates the specified task instance. If an

originating task is terminated, this action has

no impact on the invoked service.

delete Deletes the specified task instance.

Escalations

The following methods are available to work with escalations.

 Table 27. API methods for working with escalations

Method Description

getEscalation Retrieves the specified escalation instance.

Variables and custom properties

The interface provides a get and a set method to retrieve and set values for

variables. You can also associate named properties with, and retrieve named

properties from, process and activity instances. Custom property names and values

Developing and deploying modules 57

must be of the java.lang.String type.

 Table 28. API methods for variables and custom properties

Method Description

getCustomProperty Retrieves the named custom property of the

specified task instance.

getCustomProperties Retrieves the named custom properties of

the specified task instance.

getCustomPropertyNames Retrieves the names of the custom properties

for the task instance.

setCustomProperty Stores custom-specific values for the

specified task instance.

Allowed actions for tasks types

The actions that can be carried out on a task depend on whether the task is a

participating task, a purely human task, an originating task, or an administrative

task.

You cannot use all of the actions provided by the LocalHumanTaskManager or the

HumanTaskManager interface for all types of tasks. The following table shows the

actions that you can carry out on each type of task type.

Action

Task type

Participating task Human task Originating task Administrative task

callTask X1

cancelClaim X X1

claim X X1

complete X X1 X

createFaultMessage X X X X

createInputMessage X X X X

createOutputMessage X X X X

createWorkItem X X1 X X

delete X1 X1 X X1

deleteWorkItem X X1 X X

getCustomProperty X X1 X X

getDocumentation X X1 X X

getFaultMessage X X1 X

getInputMessage X X1 X

getOutputMessage X X1 X

getRoleInfo X X1 X X

getTask X X1 X X

getUISettings X X1 X X

resume X X1

setCustomProperty X X1 X X

setFaultMessage X X1

setOutputMessage X X1

58 IBM WebSphere Process Server: Developing and deploying modules

Action

Task type

Participating task Human task Originating task Administrative task

startTask X1 X1 X X

suspend X X1

terminate X1 X1 X1

transferWorkItem X X1 X X

updateTask X X1 X X

Notes:

1. For stand-alone tasks and task templates only.

Overview of preparing and installing modules

Installing modules (also known as deploying) activates the modules in either a test

environment or a production environment. This overview briefly describes the test

and production environments and some of the steps involved in installing

modules.

Note: The process for installing applications in a production environment is

similar to the process described in “Developing and deploying applications”

in the WebSphere Application Server Network Deployment, v6.0 information

center. If you are unfamiliar with those topics, review those first.

Before installing a module to a production environment, always verify changes in a

test environment. To install modules to a test environment, use WebSphere

Integration Developer (see the WebSphere Integration Developer information center

for more information). To install modules to a production environment, use

WebSphere Process Server.

This topic describes the concepts and tasks needed to prepare and install modules

to a production environment. Other topics describe the files that house the objects

that your module uses and help you move your module from your test

environment into your production environment. It is important to understand

these files and what they contain so you can be sure that you have correctly

installed your modules.

Libraries and JAR files overview

Modules often use artifacts that are located in libraries. Artifacts and libraries are

contained in Java archive (JAR) files that you identify when you deploy a module.

While developing a module, you might identify certain resources or components

that could be used by various pieces of the module. These resources or

components could be objects that you created while developing the module or

already existing objects that reside in a library that is already deployed on the

server. This topic describes the libraries and files that you will need when you

install an application.

What is a library?

A library contains objects or resources used by multiple modules within

WebSphere Integration Developer. The artifacts can be in JAR, resource archive

(RAR), or Web service archive (WAR) files. Some of these artifacts include:

v Interfaces or Web services descriptors (files with a .wsdl extension)

Developing and deploying modules 59

v Business object XML schema definitions (files with an .xsd extension)

v Business object maps (files with a .map extension)

v Relationship and role definitions (files with a .rel and .rol extension)

When a module needs an artifact, the server locates the artifact from the EAR class

path and loads the artifact, if it is not already loaded, into memory. From that

point on, any request for the artifact uses that copy until it is replaced. Figure 1

shows how an application contains components and related libraries.

What are JAR, RAR, and WAR files?

There are a number of files that can contain components of a module. These files

are fully described in the Java 2 Enterprise Edition (J2EE) specification. Details

about JAR files can be found in the JAR specification.

In WebSphere Process Server, a JAR file also contains an application, which is the

assembled version of the module with all the supporting references and interfaces

to any other components used by the module. To completely install the application,

you need this JAR file, any other libraries such as JAR files, Web services archive

(WAR) files, resource archive (RAR) files, staging libraries (Enterprise Java Beans -

EJB) JAR files, or any other archives, and create an installable EAR file using the

Figure 1. Relationship amongst module, component and libary

60 IBM WebSphere Process Server: Developing and deploying modules

http://java.sun.com/j2ee/1.4/index.jsp
https://jsecom16b.sun.com/ECom/EComActionServlet%3bjsessionid=E165BD5B8C22B7992C63F641A32D62BC

serviceDeploy command (see “Installing a module on a production server” on page

63).

Naming conventions for staging modules

Within the library, there are requirements for the names of the staging modules.

These names are unique for a specific module. Name any other modules required

to deploy the application so that conflicts with the staging module names do not

occur. For a module named myService, the staging module names are:

v myServiceApp

v myServiceEJB

v myServiceEJBClient

v myServiceWeb

Note: The serviceDeploy command only creates the myService Web staging module

if the service includes a WSDL port type service.

Considerations when using libraries

Using libraries provides consistency of business objects and consistency of

processing amongst modules because each calling module has its own copy of a

specific component. To prevent inconsistencies and failures it is important to make

sure that changes to components and business objects used by calling modules are

coordinated with all of the calling modules. Update the calling modules by:

1. Copying the module and the latest copy of the libraries to the production

server

2. Rebuilding the installable EAR file using the serviceDeploy command

3. Stopping the running application containing the calling module and reinstall it

4. Restarting the application containing the calling module

EAR file overview

An EAR file is a critical piece in deploying a service application to a production

server.

An enterprise archive (EAR) file is a compressed file that contains the libraries,

enterprise beans, and JAR files that the application requires for deployment.

You create a JAR file when you export your application modules from WebSphere

Integration Developer. Use this JAR file and any other artifact libraries or objects as

input to the installation process. The serviceDeploy command creates an EAR file

from the input files that contain the component descriptions and Java code that

comprise the application.

Preparing to deploy to a server

After developing and testing a module, you must export the module from a test

system and bring it into a production environment for deployment. To install an

application you also should be aware of the paths needed when exporting the

module and any libraries the module requires.

Before beginning this task, you should have developed and tested your modules

on a test server and resolved problems and performance issues.

This task verifies that all of the necessary pieces of an application are available and

packaged into the correct files to bring to the production server.

Developing and deploying modules 61

Note: You can also export an enterprise archive (EAR) file from WebSphere

Integration Developer and install that file directly into WebSphere Process

Server.

Important: If the services within a component use a database, install the

application on a server directly connected to the database.

1. Locate the folder that contains the components for the module you are to

deploy.

The component folder should be named module-name with a file in it named

module.module, the base module.

2. Verify that all components contained in the module are in component

subfolders beneath the module folder.

For ease of use, name the subfolder similar to module/component.

3. Verify that all files that comprise each component are contained in the

appropriate component subfolder and have a name similar to

component-file-name.component.

The component files contain the definitions for each individual component

within the module.

4. Verify that all other components and artifacts are in the subfolders of the

component that requires them.

In this step you ensure that any references to artifacts required by a component

are available. Names for components should not conflict with the names the

serviceDeploy command uses for staging modules. See “Naming conventions

for staging modules” on page 61.

5. Verify that a references file, module.references, exists in the module folder of

step 1.

The references file defines the references and the interfaces within the module.

6. Verify that a wires file, module.wires, exists in the component folder.

The wires file completes the connections between the references and the

interfaces within the module.

7. Verify that a manifest file, module.manifest, exists in the component folder.

The manifest lists the module and all the components that comprise the

module. It also contains a classpath statement so that the serviceDeploy

command can locate any other modules needed by the module.

8. Create a compressed file or a JAR file of the module as input to the

serviceDeploy command that you will use to prepare the module for

installation to the production server.

Example folder structure for MyValue module prior to

deployment

The following example illustrates the directory structure for the module

MyValueModule, which is made up of the components MyValue, CustomerInfo,

and StockQuote.

MyValueModule

 MyValueModule.manifest

 MyValueModule.references

 MyValueModule.wiring

 MyValueClient.jsp

process/myvalue

 MyValue.component

 MyValue.java

 MyValueImpl.java

service/customerinfo

62 IBM WebSphere Process Server: Developing and deploying modules

CustomerInfo.component

 CustomerInfo.java

 Customer.java

 CustomerInfoImpl.java

service/stockquote

 StockQuote.component

 StockQuote.java

 StockQuoteAsynch.java

 StockQuoteCallback.java

 StockQuoteImpl.java

Install the module onto the production systems as described in “Installing a

module on a production server.”

Installing a module on a production server

This topic describes the steps involved in taking an application from a test server

and deploying it into a production environment.

Before deploying a service application to a production server, assemble and test the

application on a test server. After testing, export the relevant files as described in

“Preparing to deploy to a server” on page 61 and bring the files to the production

system to deploy. See the information centers for WebSphere Integration Developer

and WebSphere Application Server Network Deployment, v6.0 for more

information.

1. Copy the module and other files onto the production server.

The modules and resources (EAR, JAR, RAR, and WAR files) needed by the

application are moved to your production environment.

2. Run the serviceDeploy command to create an installable EAR file.

This step defines the module to the server in preparation for installing the

application into production.

a. Locate the JAR file that contains the module to deploy.

b. Issue the serviceDeploy command using the JAR file from the previous step

as input.

c. Select the EAR file to install in the administrative console of the server.

d. Click Save to install the EAR file.
3. Save the configuration. The module is now installed as an application.

4. Start the application.

The application is now active and work should flow through the module.

Monitor the application to make sure the server is processing requests correctly.

Creating an installable EAR file using serviceDeploy

To install an application in the production environment, take the files copied to the

production server and create an installable EAR file.

Before starting this task, you must have a JAR file that contains the module and

services you are deploying to the server. See “Preparing to deploy to a server” on

page 61 for more information.

The serviceDeploy command takes a JAR file, any other dependent EAR, JAR,

RAR, WAR and ZIP files and builds an EAR file that you can install on a server.

1. Locate the JAR file that contains the module to deploy.

Developing and deploying modules 63

2. Issue the serviceDeploy command using the JAR file from the previous step as

input.

This step creates an EAR file.

3. Select the EAR file to install in the administrative console of the server.

4. Click Save to install the EAR file.

Deploying applications using ANT tasks

This topic describes how to use ANT tasks to automate the deployment of

applications to WebSphere Process Server, v6.0. By using ANT tasks, you can

define the deployment of multiple applications and have them run unattended on

a server.

This task assumes the following:

v The applications being deployed have already been developed and tested.

v The applications are to be installed on the same server or servers.

v You have some knowledge of ANT tasks.

v You understand the deployment process.

Information about developing and testing applications is located in the WebSphere

Integration Developer, v6.0 information center.

The reference portion of the information center for WebSphere Application Server,

v6.0 contains a section on application programming interfaces. ANT tasks are

described in the package com.ibm.websphere.ant.tasks. For the purpose of this

topic, the tasks of interest are ServiceDeploy and InstallApplication.

If you need to install multiple applications concurrently, develop an ANT task

before deployment. The ANT task can then deploy and install the applications on

the servers without your involvement in the process.

1. Identify the applications to deploy.

2. Create a JAR file for each application.

3. Copy the JAR files to the target servers.

4. Create an ANT task to run the ServiceDeploy command to create the EAR file

for each server.

5. Create an ANT task to run the InstallApplication command for each EAR file

from step 4 on the applicable servers.

6. Run the ServiceDeploy ANT task to create the EAR file for the applications.

7. Run the InstallApplication ANT task to install the EAR files from step 6.

The applications are correctly deployed on the target servers.

Example of deploying an application unattended

This example shows an ANT task contained in a file myBuildScript.xml.

<?xml version="1.0">

<project name="OwnTaskExample" default="main" basedir=".">

 <taskdef name="servicedeploy"

 classname="com.ibm.websphere.ant.tasks.ServiceDeployTask" />

 <target name="main" depends="main2">

 <servicedeploy scaModule="c:/synctest/SyncTargetJAR"

 ignoreErrors="true"

 outputApplication="c:/synctest/SyncTargetEAREAR"

 workingDirectory="c:/synctest"

64 IBM WebSphere Process Server: Developing and deploying modules

noJ2eeDeploy="true"

 cleanStagingModules="true"/>

 </target>

</project>

This statement shows how to invoke the ANT task.

${WAS}/bin/ws_ant -f myBuildScript.xml

Tip: Multiple applications can be deployed unattended by adding additional

project statements into the file.

Use the administrative console to verify that the newly installed applications are

started and processing the workflow correctly.

Installing and uninstalling business process and human task

applications

Verify that the business process container or task container is installed and

configured for each application server on which you want to install your

application.

Before you install a business process or human task application, make sure that the

following conditions are true:

v All stand-alone servers are running.

v In each cluster, at least one server on which you want to install Enterprise

JavaBeans modules with processes or tasks is running.

You can install business process and task applications from the administrative

console, from the command line, or by running an administrative script, for

example.

Attention: When you run the administrative commands to install a business

process application or a human task application, do not use the -conntype NONE

option as an installation option.

Deploy the application. For more information, see , which is in the WebSphere

Application Server information center.

All business process templates and human task templates are put into the start

state.

If you installed a process application on a cluster, verify that the application uses

the data source that is named after the cluster. For example, if the application was

generated using the default data source BPEDB, change the data source for the

application to BPEDB_cluster_name, where cluster_name is the name of the cluster

on which you installed the application.

Before you can create process instances or task instances, you must start the

application.

Deployment of models

When WebSphere Integration Developer generates the deployment code for your

process, the constructs in the process or task model are mapped to various Java 2

Enterprise Edition (J2EE) constructs and artifacts. All deployment code is packaged

Developing and deploying modules 65

into the enterprise application (EAR) file. Each new version of a model that is to be

deployed must be packaged into a new enterprise application.

When you install an enterprise application that contains business process model or

human task model J2EE constructs, the model constructs are stored as process

templates or task templates, as appropriate, in the Business Process Choreographer

database. If the database system is not running, or if it cannot be accessed, the

deployment fails. Newly installed templates are, by default, in the started state.

However, the newly installed enterprise application is in the stopped state. Each

installed enterprise application can be started and stopped individually.

New versions of a process template or task template have the same name, but a

different valid-from attribute. You can deploy many different versions of a process

template or task template, each in a different application. All the different process

versions are stored in the database.

If you do not specify a valid-from date, the date is determined as follows:

v For a human task, the valid-from date is the date on which the application was

installed.

v For a business process, the valid-from date is the date on which the process was

modeled.

Attention: No two versions of the same process can have the same valid-from

date. If you want to install different versions of the same process, specify a

different valid-from date for each version.

Application management

This topic explains application management considerations that are specific to

enterprise applications that contain business processes or human tasks.

Enterprise applications that contain business processes differ in some important

respects from enterprise applications that do not contain business processes or

human tasks.

Module distribution

You can distribute Service Component Architecture (SCA) Enterprise JavaBeans

(EJB) modules that contain business processes or human tasks, or both, to

deployment targets. A deployment target can be a server or a cluster.

Stopping a business process or human task application

Before you try to stop a business process or human task application, delete any

related business process instance or human task instance. Stop the process template

or task template, to prevent new instances from being created. Otherwise, an error

message is written to the SystemOut.log file, and the application does not stop.

Uninstalling a business process or human task application

Before you can successfully uninstall a business process application, all business

process templates must be stopped and all process instances must be deleted.

Before you can successfully uninstall a human task application, all human task

templates must be stopped and all task instances must be deleted.

66 IBM WebSphere Process Server: Developing and deploying modules

A process administrator can use Business Process Choreographer Explorer to

terminate and delete any surviving process instances and human task instances.

For details about how to stop business process templates and human task

templates, and uninstall these applications, see “Uninstalling business process and

human task applications.”

Uninstalling business process and human task applications

To uninstall an enterprise application that contains business processes or human

tasks, perform the following actions:

1. Stop all process and task templates in the application.

This action prevents the creation of process and task instances.

a. Click Applications → Enterprise Applications in the administrative console

navigation pane.

b. Select the application that you want to stop.

c. Under Related Items, click EJB Modules, then select an Enterprise

JavaBeans (EJB) module. If you have more than one EJB module in the list,

select the EJB that correspond to your Service Component Architecture

(SCA) module that contains the business process or human task. You can

find the corresponding EJB by appending EJB to the SCA module name. For

example, if your SCA module was named TestProcess, the EJB module is

TestProcessEJB.jar.

d. Under Additional Properties, click Business Processes or Human Tasks, or

both, as appropriate.

e. Select all process and task templates by clicking the appropriate check box.

f. Click Stop.
Repeat this step for all EJB modules that contain business process templates or

human task templates.

2. Verify that all the stand-alone servers, the database, and at least one application

server for each cluster are running:

v In a Network Deployment (ND) environment, the ND server, all

ND-managed stand-alone application servers, and at least one application

server must be running for each cluster where the application is installed.

v If you use the administrative commands to uninstall applications, make sure

that the administrative client is connected to a server process:

– In an ND environment, the process is the deployment manager.

– In a stand-alone environment, the process is the application server.
3. Verify that no process instances or task instances exist.

If necessary, a process administrator can use Business Process Choreographer

Explorer to delete any process instances.

4. Stop and uninstall the application:

a. Click Applications → Enterprise Applications in the administrative console

navigation pane.

b. Select the application that you want to uninstall and click Stop. This step

fails if any process instances still exist in the application.

c. Delete all process instances.

d. Select again the application that you want to uninstall.

e. Click Uninstall.

The process application is uninstalled.

Developing and deploying modules 67

Installing applications with embedded WebSphere Adapters

If an application is developed with a WebSphere Adapter embedded, the adapter is

deployed with the application. You do not need to install the adapter separately.

The steps to install an application with an embedded adapter are described.

This task should only be performed if the application is developed with an

embedded WebSphere Adapter.

1. Assemble an application with resource adapter archive (RAR) modules in it.

See Assembling applications.

2. Install the application following the steps in Installing a new application. In the

Map modules to servers step, specify target servers or clusters for each RAR

file. Be sure to map all other modules that use the resource adapters defined in

the RAR modules to the same targets. Also, specify the Web servers as targets

that serve as routers for requests to this application. The plug-in configuration

file (plugin-cfg.xml) for each Web server is generated based on the applications

that are routed through it.

Note: When installing a RAR file onto a server, WebSphere Application Server

looks for the manifest (MANIFEST.MF) for the connector module. It

looks first in the connectorModule.jar file for the RAR file and loads the

manifest from the _connectorModule.jar file. If the class path entry is in

the manifest from the connectorModule.jar file, then the RAR uses that

class path. To ensure that the installed connector module finds the

classes and resources that it needs, check the Class path setting for the

RAR using the console. For more information, see Resource Adapter

settings and WebSphere relational resource adapter settings.

3. Save the changes. Click Finish > Save.

4. Create connection factories for the newly installed application

a. Open the administrative console.

b. Select the newly installed application Click Applications > Enterprise

Applications > application name.

c. Click Connector Modules in the Related Items section of the page.

d. Select the RAR file. Click on filename.rar

e. Click Resource adapter in the Additional Properties section of the page.

f. Click J2C Connection Factories in the Additional Properties section of the

page.

g. Click on an existing connection factory to update it, or New to create a

new one.

Note: If the WebSphere Adapter was configured using an EIS Import or EIS

Export a ConnectionFactory or ActivationSpec will exist and can be

updated.
If you install an adapter that includes native path elements, consider the

following: If you have more than one native path element, and one of the

native libraries (native library A) is dependent on another library (native library

B), then you must copy native library B to a system directory. Because of

limitations on most UNIX systems, an attempt to load a native library does not

look in the current directory.

After you create and save the connection factories, you can modify the resource

references defined in various modules of the application and specify the Java

Naming and Directory Interface (JNDI) names of the connection factories

wherever appropriate.

68 IBM WebSphere Process Server: Developing and deploying modules

Note:

A given native library can only be loaded one time for each instance of

the Java virtual machine (JVM). Because each application has its own

classloader, separate applications with embedded RAR files cannot both

use the same native library. The second application receives an exception

when it tries to load the library.

If any application deployed on the application server uses an embedded

RAR file that includes native path elements, then you must always

ensure that you shut down the application server cleanly, with no

outstanding transactions. If the application server does not shut down

cleanly it performs recovery upon server restart and loads any required

RAR files and native libraries. On completion of recovery, do not attempt

any application-related work. Shut down the server and restart it. No

further recovery is attempted by the application server on this restart,

and normal application processing can proceed.

WebSphere Adapter

A WebSphere Adapter (or JCA Adapter, or J2C Adapter) is a system-level software

driver that a Java application uses to connect to an enterprise information system

(EIS). WebSphere Adapters conform to version 1.5 of the JCA specification.

A WebSphere Adapter plugs into an application server and provides connectivity

between the EIS, the application server, and the enterprise application.

An application server vendor extends its system once to support the J2EE

Connector Architecture (JCA) and is then assured of seamless connectivity to

multiple EISs. Likewise, an EIS vendor provides one standard WebSphere Adapter

with the capability to plug into any application server that supports the connector

architecture.

WebSphere Process Server provides the WebSphere Relational Resource Adapter

(RRA) implementation. This WebSphere Adapter provides data access through

JDBC calls to access the database dynamically. The connection management is

based on the JCA connection management architecture. It provides connection

pooling, transaction, and security support. WebSphere Process Server version 6.0

supports JCA version 1.5.

Data access for container-managed persistence (CMP) beans is managed by the

WebSphere Persistence Manager indirectly. The JCA specification supports

persistence manager delegation of the data access to the WebSphere Adapter

without specific knowledge of the back-end store. For the relational database

access, the persistence manager uses the relational resource adapter to access the

data from the database. You can find the supported database platforms for the

JDBC API at the WebSphere Process Server prerequisite Web site.

IBM supplies resource adapters for many enterprise systems separately from the

WebSphere Process Server package, including (but not limited to): the Customer

Information Control System (CICS), Host On-Demand (HOD), Information

Management System (IMS), and Systems, Applications, and Products (SAP) R/3.

In WebSphere Process Server, EIS Imports and EIS Exports are used to interface

with WebSphere Adapters. As an alternative, applications with WebSphere

Adapters can be written by developing EJB session beans or services with tools

Developing and deploying modules 69

such as Rational Application Developer. The session bean uses the

javax.resource.cci interfaces to communicate with an enterprise information system

through the WebSphere Adapter.

WebSphere Adapter deployment considerations

The deployment of WebSphere Adapters requires specific options regarding scope.

You can deploy a WebSphere Adapter in two ways, using the administrative

console:

v Standalone - the adapter is installed at the node level and is not associated with

a specific application.

Note: Deployment of standalone WebSphere Adapters is not supported in

WebSphere Process Server v6.0.

v Embedded - the adapter is part of an application, deploying the application also

deploys the adapter.

For embedded WebSphere Adapters:

v the RAR file can be application-scoped within an SCA module (with EIS imports

or exports).

v the RAR file can be application-scoped within a non-SCA module. The

application itself, containing the EIS imports and exports, is a separate SCA

module.

You should not install standalone WebSphere Adapters.

Note: The administrative console does not preclude the installation of standalone

WebSphere Adapters, but this should not be done. WebSphere Adapters

should be embedded in applications.

Only embedded WebSphere Adapters are appropriate for deployment in

WebSphere Process Server. Furthermore, deployment of an embedded WebSphere

Adapter is only supported for RAR files that are application-scoped within an SCA

module; deployment in a non-SCA module is not supported.

Installing Standalone WebSphere Adapters

WebSphere Adapters should be embedded in applications. Standalone WebSphere

Adapters are not support in WebSphere Process Server v6.0. These instructions are

for reference only. If you intend to use a standalone WebSphere Adapter you

should install it, as described here. You can alternatively use an embedded adapter,

which is installed automatically as part of the installation of the associated

application.

You should configure the database before installing the adapter.

You must have access to, and be part of the necessary security role for, the

administrative console to perform this task.

1. Open the Install RAR file dialog window.

On the administrative console:

a. Expand Resources

b. Click Resource Adapters

70 IBM WebSphere Process Server: Developing and deploying modules

c. Select the scope at which you want to define this resource adapter. (This

scope becomes the scope of your connection factory). You can choose cell,

node, cluster, or server.

d. Click Install RAR

A window opens in which you can install a JCA connector and create, for it, a

WebSphere Adapter. You can also use the New button, but the New button

creates only a new resource adapter (the JCA connector must already be

installed on the system).

Note: When installing a RAR file using this dialog, the scope you define on the

Resource Adapters page has no effect on where the RAR file is installed.

You can install RAR files only at the node level. The node on which the

file is installed is determined by the scope on the Install RAR page. (The

scope you set on the Resource Adapters page determines the scope of

the new resource adapters, which you can install at the server, node, or

cell level.)

2. Install the RAR file

From the dialog, install the WebSphere Adapter in the following manner:

a. Browse to the location of the JCA connector. If the RAR file is on the local

workstation select Local Path and browse to find the file. If the RAR file is

on a network server, select Server path and specify the fully qualified path

to the file.

b. Click Next

c. Enter the resource adapter name and any other properties needed under

General Properties. If you install a J2C Resource Adapter that includes

native path elements, consider the following: If you have more than one

native path element, and one of the native libraries (native library A) is

dependent on another library (native library B), then you must copy native

library B to a system directory. Because of limitations on most UNIX

systems, an attempt to load a native library does not look in the current

directory.

d. Click OK.

WebSphere Adapter applications as members of clusters

Cluster deployment is not supported in WebSphere Process Server v6.0. This

information is included for completeness. WebSphere Adapter module applications

can be cloned as members of a cluster under certain conditions.

WebSphere Adapter module applications can be one of three types, depending on

the flow of information through the adapter:

v A WebSphere Adapter application with only EIS exports - only inbound traffic.

v A WebSphere Adapter application with only EIS imports - only outbound traffic.

v A WebSphere Adapter application with both EIS imports and exports -

bidirectional traffic.

Clusters are used to provide scalability and availability to your applications in a

network deployment environment.

WebSphere Adapter module applications that have either inbound or bidirectional

traffic, cannot be cloned as members of a cluster. An application with purely

outbound traffic can be cloned as a member of a cluster.

Developing and deploying modules 71

An application which has an inbound or bidirectional WebSphere Adapter (i.e.,

including EIS exports) can still be given availability in a network deployment by

use of an external Operating System High Availability (HA) management software

package, such as HACMP, Veritas or Microsoft Cluster Server.

WebSphere Business Integration Adapter applications as

members of clusters

Cluster deployment is not supported in WebSphere Process Server v6.0. This

information is included for completeness. WebSphere Business Integration Adapter

module applications can be cloned as members of a cluster under certain

conditions.

WebSphere Business Integration Adapter module applications can be one of three

types, depending on the flow of information through the adapter:

v A WebSphere Business Integration Adapter application with only EIS exports -

only inbound traffic.

v A WebSphere Business Integration Adapter application with only EIS imports -

only outbound traffic.

v A WebSphere Business Integration Adapter application with both EIS imports

and exports - bidirectional traffic.

Clusters are used to provide scalability and availability to your applications in a

network deployment environment.

WebSphere Business Integration Adapter module applications that have either

inbound or bidirectional traffic, cannot be cloned as members of a cluster. An

application with purely outbound traffic can be cloned as a member of a cluster.

An application which has inbound or bidirectional WebSphere Business Integration

Adapter (i.e., including EIS exports) can still be given availability in a network

deployment by use of an external Operating System High Availability (HA)

management software package, such as HACMP, Veritas or Microsoft Cluster

Server.

Installing EIS applications

An EIS application module, a service component architecture (SCA) module that

follows EIS application module pattern can be deployed to either a J2SE platform

or a J2EE platform.

The steps required to deploy an EIS module depend on the platform.

See the subsequent tasks for detailed information.

Deploying an EIS application module to the J2SE platform

The EIS Module can be deployed to J2SE platform however only EIS Import will

be supported.

You need to create an EIS application module with a JMS Import binding in the

WebSphere Integration Development environment before commencing this task.

An EIS application module would be furnished with a JMS Import binding when

you want to access EIS systems asynchronously through the use of message

queues.

72 IBM WebSphere Process Server: Developing and deploying modules

Deploying to the J2SE platform is the only instance where the binding

implementation can be executed in the non-managed mode. The JMS Binding

requires asynchronous and JNDI support, neither of which is provided by the base

service component architecture or the J2SE. The J2EE Connector Architecture does

not support non-managed inbound communication thus eliminating EIS Export.

When the EIS application module with the EIS Import is deployed to J2SE, in

addition to the module dependencies, the WebSphere Adapter used by the import

has to be specified as the dependency, in the manifest or any other form supported

by SCA.

Deploying an EIS application module to the J2EE platform

The deployment of EIS module to the J2EE platform results in an application,

packaged as an EAR file deployed to the server. All the J2EE artifacts and

resources are created, the application is configured and ready to be run.

You need to create an EIS module with a JMS Import binding in the WebSphere

Integration Development environment before commencing this task.

The deployment to the J2EE platform creates the following J2EE artifacts and

resources:

 Table 29. Mapping from bindings to J2EE artifacts

Binding in the SCA module Generated J2EE artifacts Created J2EE resources

EIS Import Resource References

generated on the module

Session EJB.

ConnectionFactory

EIS Export Message Driven Bean,

generated or deployed,

depending on the listener

interface supported by the

Resource Adapter.

ActivationSpec

JMS Import Message Driven Bean (MDB)

provided by the runtime is

deployed, resource references

generated on the module

Session EJB. Note that the

MDB is only created if the

import has a receive

destination.

v ConnectionFactory

v ActivationSpec

v Destinations

JMS Export Message Driven Bean

provided by the runtime is

deployed, resource references

generated on the module

Session EJB

v ActivationSpec

v ConnectionFactory

v Destinations

When the import or export defines a resource like a ConnectionFactory, the

resource reference is generated into the deployment descriptor of the module

Stateless Session EJB. Also, the appropriate binding is generated into the EJB

binding file. The name, to which resource reference is bound, is either the value of

the target attribute, if one is present, or default JNDI lookup name given to the

resource, based on the module name and import name.

Upon deployment, the implementation locates the module session bean and uses it

to lookup the resources.

Developing and deploying modules 73

During deployment of the application to the server, the EIS installation task will

check for the existence of the element resource to which it is bound. If it does not

exist, and the SCDL file specifies at least one property, the resource will be created

and configured by the EIS installation task. If the resource does not exist, no action

is taken, it is assumed that resource will be created before execution of the

application.

When the JMS Import is deployed with a receive destination, a Message Driver

Bean (MDB) is deployed. It listens for replies to requests that have been sent out.

The MDB is associated (listens on) the Destination sent with the request in the

JMSreplyTo header field of the JMS message. When the reply message arrives, the

MDB uses its correlation ID to retrieve the callback information stored in the

callback Destination and then invokes the callback object.

The installation task creates the ConnectionFactory and three destinations from the

information in the import file. In addition, it creates the ActivationSpec to enable

the runtime MDB to listen for replies on the receive Destination. The properties of

the ActivationSpec are derived from the Destination/ConnectionFactory properties.

If the JMS provider is a SIBus Resource Adapter, the SIBus Destinations

corresponding to the JMS Destination are created.

When the JMS Export is deployed, a Message Driven Bean (MDB) (not the same

MDB as the one deployed for JMS Import) is deployed. It listens for the incoming

requests on the receive Destination and then dispatches the requests to be

processed by the SCA. The installation task creates the set of resources similar to

the one for JMS Import, an ActivationSpec, ConnectionFactory used for sending a

reply and two Destinations. All the properties of these resources are specified in

the export file. If the JMS provider is an SIBus Resource Adapter, the SIBus

Destinations corresponding to JMS Destination are created.

Troubleshooting a failed deployment

This topic describes the steps to take to determine the cause of a problem when

deploying an application. It also presents some possible solutions.

This topic assumes the following things:

v You have a basic understanding of debugging a module.

v Logging and tracing is active while the module is being deployed.

The task of troubleshooting a deployment begins after you receive notification of

an error. There are various symptoms of a failed deployment that you have to

inspect before taking action.

1. Determine if the application installation failed.

Examine the system.out file for messages that specify the cause of failure. Some

of the reasons an application might not install include the following:

v You are attempting to install an application on multiple servers in the same

Network Deployment cell.

v An application has the same name as an existing module on the Network

Deployment cell to which you are installing the application.

v You are attempting to deploy J2EE modules within an EAR file to different

target servers.
2. If the application is installed correctly, examine it to determine if it started.

If the application is not running, the failure occurred when the server

attempted to initiate the resources for the application.

74 IBM WebSphere Process Server: Developing and deploying modules

a. Examine the system.out file for messages that will direct you on how to

proceed.

b. Determine if the resources are started.

Resources that are not started prevent an application from running to

protect against lost information. The reasons for a resource not starting

include:

v Bindings are specified incorrectly

v Resources are not configured correctly

v Resources are not included in the resource archive (RAR) file

v Web resources not included in the Web services archive (WAR) file
c. Determine if any components are missing.

The reason for missing a component is an incorrectly built enterprise

archive (EAR) file. Make sure that the all of the components required by the

module are in the correct folders on the test system on which you built the

Java archive (JAR) file. “Preparing to deploy to a server” on page 61

contains additional information.
3. Examine the application to see if there is information flowing through it.

Even a running application can fail to process information. Reasons for this are

similar to those mentioned in step 2b.

4. Correct the problem and restart the application.

References

Programming interfaces

BOChangeSummary

This interface provides enhancements to the ChangeSummary interface so that it

can manage the Business Graph Change Summary header.

Purpose

BOChangeSummary adds the functionality to the ChangeSummary interface

enabling it to manage the Business Graph Change Summary header.

The ChangeSummary interface provides access to change history information for

the data objects in a data graph. Change history covers any modifications made to

the data graph starting from the point when logging was activated. If logging is no

longer active, the log includes only changes that are made up to the point when

logging was deactivated. Otherwise, it includes all changes up to the point at

which the ChangeSummary is being interrogated.

Note: The addOldValue application programming interface (API) allows you to set

the value if you do not have the old value. This API expects that the value

is not set prior to being called. If you attempt to call it and the value is

already set, you receive an exception.

Example

This example shows how to use BOChangeSummary.

BOFactory factoryService =

 (BOFactory) new

ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");

BOChangeSummary changeSummaryService =

Developing and deploying modules 75

(BOChangeSummary) new

ServiceManager().locateService("com/ibm/websphere/bo/BOChangeSummary");

BODataObject dataObjectService =

 (BODataObject) new

ServiceManager().locateService("com/ibm/websphere/bo/BODataObject");

DataObject productCategoryBG =

 factoryService.create("http://www.scm.com/ProductCategoryTypes/ProductCategoryBG",

 "ProductCategoryBG");

DataObject productCategory =

 productCategoryBG.createDataObject("productCategory");

DataObject product1 =

 productCategory.createDataObject("product");

DataObject product2 =

 productCategory.createDataObject("product");

// Two mechanisms to find the change summary:

//

// 1. From the Business Graph.

ChangeSummary changeSummary =

 (ChangeSummary) productCategoryBG.get("changeSummary");

// 2. From any data object using a convenience method.

ChangeSummary changeSummary2 =

 dataObjectService.getChangeSummary(productCategory);

changeSummary.beginLogging();

productCategory.setBoolean("domestic", false);

product1.set("description", "NewValue");

product1.set("description", "NewValue2");

product2.set("description", "NewValue");

product2.set("description", "NewValue2");

changeSummary.endLogging();

List changedDataObjects =

 changeSummary.getChangedDataObjects();

Iterator i = changedDataObjects.iterator();

while (i.hasNext()) {

 DataObject dataObject = (DataObject) i.next();

 if (changeSummary.isDeleted(dataObject)) {

 // ...

 continue;

 }

 if (changeSummary.isCreated(dataObject)) {

 // ...

 continue;

 }

 if (changeSummaryService.isUpdated(dataObject)) {

 // ...

 continue;

 }

}

// Annotate the product category object with an object changed event.

changeSummaryService.setCreated(productCategory);

// Annotate a property on the product category

// object with a property changed event.

changeSummaryService.addOldValue(productCategory, "ID", null, true);

List changeSummarySettings =

 changeSummary.getOldValues(productCategory);

76 IBM WebSphere Process Server: Developing and deploying modules

Iterator i2 = changeSummarySettings.iterator();

while (i2.hasNext()) {

 ChangeSummary.Setting setting = (ChangeSummary.Setting) i2.next();

 System.out.println("setting getProperty(): " + setting.getProperty());

 System.out.println("setting getValue(): " + setting.getValue());

 System.out.println("setting isSet(): " + setting.isSet());

}

DataObject product3 = productCategory.createDataObject(“product”);

//move product3 to location 0 in the list and

//Make the appropriate changes to the changesummary.

changeSummaryService.markListEntryMoved(product3, productCategory, “product”, 0);

product3.set(“description”, “NewValue”);

//Explicitly mark the list entry as created in the changesummary.

changeSummaryService.markSimpleTypeCreated(“NewValue”, product, “description”);

product3.set(“description”, “NewValue2”);

changeSummaryService.markSimpleTypeCreated(“NewValue2”, product, “description”);

//Delete the list entry and add a list change entry in the change summary.

changeSummaryService.markSimpleTypeDeleted(“NewValue2”, product, “description”);

product1.delete();

// The old container will return the productCategory object

// since that is the old container for product1.

changeSummaryService.getOldContainer(product1);

// This will return the old containment property that is

// what the property name is in the productCategory object.

changeSummaryService.getOldContainmentProperty(product1);

 Related information

 Interface BOChangeSummary APIs

BOCopy

This interface facilitates copying a graph of business objects or a business graph

that contains a graph of business objects.

Purpose

There are two forms of this interface. The first is used with a graph of a business

object or a business graph containing a graph of business objects. The only

requirement is that it is a service data object. The other is used when a subset of a

source business graph is being copied into a target business graph.

The business object framework defines two different forms of copy. The first is a

straightforward copy by the value, with a deep and a shallow variant. This means

that you can either copy only the top level, or also copy the children. This copy

mechanism can be applied to both a graph of business objects or a business graph

containing a graph of business objects. Its implementation is unrelated to the shape

of the source object.

The second form is intended for a use model where a subset of a source business

graph is being copied into a target business graph. This form not only copies the

source business object (and its descendants if it is the deep variant), but also copies

the Change, Event, and Verb Header information that is pertinent to the business

object(s) being copied into the target business graph.

Developing and deploying modules 77

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/bo/BOChangeSummary.html

Example

This is an example of the copy/Shallow form.

BOFactory factoryService =

 (BOFactory) new

ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");

BOCopy copyService =

 (BOCopy) new

ServiceManager().locateService("com/ibm/websphere/bo/BOCopy");

// Use the Factory Create model for the top level object.

DataObject productCategoryBG =

 factoryService.create("http://www.scm.com/ProductCategoryTypes/ProductCategoryBG",

 "ProductCategoryBG");

// Use the Containment Create model on the contained objects.

DataObject productCategory = productCategoryBG.createDataObject("productCategory");

DataObject product = productCategory.createDataObject("product");

// Copy a business graph (deep).

DataObject newProductCategoryBG = copyService.copy(productCategoryBG);

// Copy a business object (deep).

DataObject newProductCategory = copyService.copy(productCategory);

// Copy a business object (shallow).

DataObject newProductCategory2 = copyService.copyShallow(productCategory);

This is an example of the copyIntro form.

BOFactory factoryService =

 (BOFactory) new

ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");

BOCopy copyService =

 (BOCopy) new

ServiceManager().locateService("com/ibm/websphere/bo/BOCopy");

// Use the Factory Create model for the top level object.

DataObject productCategoryBG =

 factoryService.create("http://www.scm.com/ProductCategoryTypes/ProductCategoryBG",

 "ProductCategoryBG");

// Use the Containment Create model on the contained objects.

DataObject productCategory = productCategoryBG.createDataObject("productCategory");

DataObject product = productCategory.createDataObject("product");

// Copy a child business object with a business graph context,

// into a new business graph.

DataObject productBG =

 factoryService.create("http://www.scm.com/ProductTypes/ProductBG",

 "ProductBG");

copyService.copyInto(product, productBG, "product");

This is an example of the copyIntro Complex form.

BOFactory factoryService =

 (BOFactory) new

ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");

BOCopy copyService =

 (BOCopy) new ServiceManager().locateService("com/ibm/websphere/bo/BOCopy");

// If you want to perform a complex copy from a source business graph

// to a target business graph and maintain context where:

//

// - The source business graph contains:

// - ProductCategoryBG productCategoryBG

// - ProductCategory productCategory0 (parent productCategoryBG)

78 IBM WebSphere Process Server: Developing and deploying modules

// - ProductCategory productCategory1 (parent productCategory0)

// - ProductCategory productCategory2 (parent productCategory0)

// - Product product1 (parent productCategory1)

// - Product product2 (parent productCategory2)

//

// - The target business graph contains:

// - ProductInventoryBG productInventoryBG

// - ProductInventory productInventory (parent productInventoryBG)

// - Property oldProduct (initially empty)

// - Property newProduct (initially empty)

//

// The following code copies product1 from the source business graph

// to the target business graph’s ProductInventory business object’s

// oldProduct property, and product2 from the source business graph

// to the target business graph’s ProductInventory business object’s

// newProduct property.

// Create the source business graph and its graph of business objects.

DataObject productCategoryBG =

 factoryService.create("http://www.scm.com/ProductCategoryTypes/ProductCategoryBG",

 "ProductCategoryBG");

DataObject productCategory0 = productCategoryBG.createDataObject("productCategory");

DataObject productCategory1 = productCategory0.createDataObject("productCategory");

DataObject productCategory2 = productCategory0.createDataObject("productCategory");

DataObject product1 = productCategory1.createDataObject("product");

DataObject product2 = productCategory2.createDataObject("product");

// Create the target business graph.

DataObject productInventoryBG =

factoryService.create("http://www.scm.com/ProductCategoryTypes/ProductInventoryBG",

 "ProductInventoryBG");

DataObject productInventory =

 productInventoryBG.createDataObject("productInventory");

// Copy product1 and product2 from the source business

// graph, with their associated ChangeSummary/EventSummary context, into

// the target business graph’s ProductInventory business object’s oldProduct and

// newProduct properties. Use two mechanisms to demonstrate how path can be used.

copyService.copyInto(product1, productInventory, "oldProduct");

DataObject oldProduct = productInventory.getDataObject("oldProduct");

oldProduct.delete();

copyService.copyInto(product1, productInventoryBG, "productInventory/oldProduct");

 Related information

 Interface BOCopy APIs

BODataObject

This interface makes it easier to retrieve a data object business graph, Change

Summary, or Event Summary.

Purpose

BODataObject allows additional capability beyond what the data object interface

provides by making it easier to retrieve a data object business graph, Change

Summary, or Event Summary. If it is contained in a business graph hierarchy,

BODataObject provides helper methods.

Example

This example shows how to use BODataObject.

BOFactory factoryService =

 (BOFactory) new

ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");

Developing and deploying modules 79

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/bo/BOCopy.html

BODataObject dataObjectService =

 (BODataObject) new

ServiceManager().locateService("com/ibm/websphere/bo/BODataObject");

DataObject productCategoryBG =

 factoryService.create("http://www.scm.com/ProductCategoryTypes/ProductCategoryBG",

 "ProductCategoryBG");

DataObject productCategory =

 productCategoryBG.createDataObject("productCategory");

DataObject product =

 productCategory.createDataObject("product");

dataObjectService.getChangeSummary(product).beginLogging();

productCategory.setBoolean("domestic", false);

product.set("description", "NewValue");

product.set("description", "NewValue2");

DataObject businessGraph = dataObjectService.getBusinessGraph(productCategory);

ChangeSummary changeSummary = dataObjectService.getChangeSummary(productCategory);

BOEventSummary eventSummary = dataObjectService.getEventSummary(productCategory);

// This will return the productCategory DataObject

// which is the top level object

dataObjectService.getRootBusinessObject(product);

 Related information

 Interface BODataOBject APIs

BOEquality

This interface provides the ability to determine if two business graphs or business

objects are equivalent.

Purpose

BOEquality supports equality of business graphs or business objects. The default

form of equality is deep, but a shallow form can also be used. Therefore, you can

determine if two business graphs or business objects are equivalent based on

including various levels of descendants.

Example

This example shows how to use BOEquality.

BOEquality equalityService =

(BOEquality) newServiceManager().locateService("com/ibm/websphere/bo/BOEquality");

// Deep equality check.

if (equalityService.isEqual(dataObject1, dataObject2) == true) {

 // ...

}

// Shallow equality check.

if (equalityService.isEqualShallow(dataObject1, dataObject2) == true) {

 // ...

}

 Related information

 Interface BOEquality APIs

BOEventSummary

This interface provides the interface for managing the content of the business

graph Event Summary header.

80 IBM WebSphere Process Server: Developing and deploying modules

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/bo/BODataObject.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/bo/BOEquality.html

Purpose

BOEventSummary allows for managing the content of the business graph Event

Summary header by associating particular metadata with business objects.

Example

This example shows how to use the BOEventSummary interface.

BOFactory factoryService =

 (BOFactory) new

ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");

BODataObject dataObjectService =

 (BODataObject) new

ServiceManager().locateService("com/ibm/websphere/bo/BODataObject");

DataObject productCategoryBG =

factoryService.create("http://www.scm.com/ProductCategoryTypes/ProductCategoryBG",

 "ProductCategoryBG");

DataObject productCategory =

 productCategoryBG.createDataObject("productCategory");

DataObject product1 =

 productCategory.createDataObject("product");

DataObject product2 =

 productCategory.createDataObject("product");

// 1. If you have a business graph.

BOEventSummary eventSummary1 =

 (BOEventSummary) productCategoryBG.get("eventSummary");

// 2. If you do not have a business graph, obtain one.

DataObject businessGraph =

 dataObjectService.getBusinessGraph(product1);

BOEventSummary eventSummary2 =

 (BOEventSummary) productCategoryBG.get("eventSummary");

// 3. If you do not have a business graph, use a helper.

BOEventSummary eventSummary3 =

 dataObjectService.getEventSummary(product1);

// This is an alternate way to obtain the event summary.

eventSummary1.setObjectEventID(productCategory, "PC1_ID");

eventSummary1.setObjectEventID(product1, "P1_ID");

eventSummary1.setObjectEventID(product2, "P2_ID");

// Given a data object, obtain its object event ID.

String objectEventID = eventSummary1.getObjectEventID(product1);

 Related information

 Interface BOEventSummary APIs

BOFactory

This interface provides the capability to create a business graph or a business

object.

Purpose

There are three typical models used for creating a business graph or a business

object with the BOFactory interface:

v Factory Create - Used to create a data object independent of an existing graph of

data.

Developing and deploying modules 81

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/bo/BOEventSummary.html

v Containment Create (containment attach inferred) - Used to create a child data

object of an existing data object.

v Factory Create / Containment Attach - Uses a factory create mechanism to create

a business object that is attached to a graph of business objects using the

DataObject.setDataObject() method.

Examples

This example shows several different options for the Factory Create model.

BOFactory factoryService = (BOFactory) new

 ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");

BOType typeService = (BOType) new

 ServiceManager().locateService("com/ibm/websphere/bo/BOType");

// 1. Use the business object Factory Create model with a target namespace

// and a complex type definition name.

DataObject productCategory1 = factoryService.create

 ("http://www.scm.com/ProductCategoryTypes", "ProductCategory");

// 2. Use the business object Factory Create model with the type.

DataObject productCategory2 = factoryService.createByType(typeService.getType

 ("http://www.scm.com/ProductCategoryTypes", "ProductCategory"));

// 3. Use the business object Factory Create model with the class.

DataObject productCategory3 = factoryService.createByClass

 (com.scm.pc.model.Product.class);

// Use the business graph Factory Create model with a target namespace

// and a complex type definition name.

// It also automatically creates the ChangeSummary and EventSummary headers.

DataObject productCategoryBG = factoryService.create

 ("http://www.scm.com/ProductCategoryTypes/ProductCategoryBG",

 "ProductCategoryBG");

This is an example of the Containment Create model.

BOFactory factoryService = (BOFactory) new

 ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");

// Use the Factory Create model for the top level object.

DataObject productCategoryBG = factoryService.create

 ("http://www.scm.com/ProductCategoryTypes/ProductCategoryBG",

 "ProductCategoryBG");

// Use the Containment Create model on the contained objects.

DataObject productCategory = productCategoryBG.createDataObject

 ("productCategory");

DataObject product = productCategory.createDataObject("product");

This is an example of the Factory Create / Containment Attach model.

BOFactory factoryService = (BOFactory) new

 ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");

// Use the Factory Create model on the top level object.

DataObject productCategoryBG = factoryService.create

 ("http://www.scm.com/ProductCategoryTypes/ProductCategoryBG",

// Use the Factory Create model on what will eventually become a contained object.

DataObject productCategory = factoryService.create

 ("http://www.scm.com/ProductCategoryTypes", "ProductCategory");

// Containment attach

productCategoryBG.setDataObject("productCategory", productCategory);

 Related information

 Interface BOFactory APIs

82 IBM WebSphere Process Server: Developing and deploying modules

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/bo/BOFactory.html

BOType

This interface provides a mechanism to obtain the service data object (SDO) type of

a business graph or business object that mirrors what Class.forName() provides for

Java class names.

Purpose

Obtain the SDO type of a business graph or business object, mirroring what

Class.forName() provides for Java class names. This information can be obtained

by specifying the following information:

v The statically typed SDO interface class name.

v The target namespace and the complex type name of the dynamically typed

SDO.

v The target namespace and the global anonymous complex type name

Examples

This is an example of providing an interface class that represents a statically typed

SDO.

BOType typeService = (BOType) new

 ServiceManager().locateService("com/ibm/websphere/bo/BOType");

Type productType1 = typeService.getTypeByClass(com.scm.pc.model.Product.class);

This is an example of providing the target namespace and the complex type name.

BOType typeService = (BOType) new

 ServiceManager().locateService("com/ibm/websphere/bo/BOType");

Type productType2 =

 typeService.getType("http://www.scm.com/ProductTypes", "Product");

This is an example of providing the target namespace and the anonymous complex

type element name.

BOType typeService = (BOType) new

 ServiceManager().locateService("com/ibm/websphere/bo/BOType");

Type productType3 =

 typeService.getTypeByElement("http://www.scm.com/Product", "product");

 Related information

 Interface BOType APIs

BOTypeMetadata

This interface provides the capability of taking an annotation blob that conforms to

the BOTypeMetadata pattern and transforms it into a set of service data object

(SDO) (and performs the reserve transform).

Purpose

Annotations can be read at runtime by using the SDO implementation specific set

of APIs. However, the problem with these APIs is that they return a blob.

Therefore, the business object framework provides the BOTypeMetadata to read the

blob, validate it, and transform it into a usable data object structure.

Example

This example shows how to use the BOTypeMetadata interface.

Developing and deploying modules 83

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/bo/BOType.html

BOFactory factoryService = (BOFactory) new

 ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");

BOTypeMetadata typeMetadataService = (BOTypeMetadata) new

 ServiceManager().locateService("com/ibm/websphere/bo/BOTypeMetadata");

DataObject product =

 factoryService.create("http://www.scm.com/ProductTypes",

 "Product");

// Use EMF to get the annotation blob, then use the BOTypeMetadata service

// to convert it into a data object.

String productIDPropertyInfoString = (String) ((EObject)product).

 eClass().getEStructuralFeature("iD").

 getEAnnotation("http://www.ibm.com/xmlns/prod/websphere/bo/6.0.0").

 getDetails().get("appinfo");

DataObject productIDPropertyInfo =

 typeMetadataService.transformAnnotationToDataObject

 (productIDPropertyInfoString);

// Read and update the annotation.

// ...

// Use the BOTypeMetadata service to transform the data object graph back into

// a string, and then use EMF to set the string in the XML schema.

String productIDPropertyInfoString2 =

 typeMetadataService.transformDataObjectToAnnotation

 (productIDPropertyInfo);

((EObject)product).eClass().getEStructuralFeature("iD").

 getEAnnotation("http://www.ibm.com/xmlns/prod/websphere/bo/6.0.0").

 getDetails().put("appinfo",productIDPropertyInfoString2);

 Related information

 Interface BOTypeMetadata APIs

BOXMLDocument

This interface provides the mechanisms for creating and representing an XML

document in memory.

Purpose

This interface allows you to build and to represent an XML document.

Example

This is an example of the BOXMLDocument interface.

public interface BOXMLDocument

{

 /**

 * Returns the root DataObject for the XML Document.

 * This object is an instance of the root element’s type or subtype.

 *

 * @return root DataObject for the XMLDocument

 */

public DataObject

getDataObject();

 /**

 * Returns the targetnamespace for the root element and null

 * if there is no targetnamespace.

 * @return the targetnamespace URI for the root element.

 */

public String

getRootElementURI();

84 IBM WebSphere Process Server: Developing and deploying modules

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/bo/BOTypeMetadata.html

/**

 * Returns the name of the root element.

 *

 * @return name of the root element.

 */

public String

getRootElementName();

 /**

 * Returns the XML version of the document, or null if not specified.

 *

 * @return XML version of the XML Document

 */

public String

getXMLVersion();

 /**

 * Set the XML version of the document, or null if not specified.

 *

 * @param xmlVersion XML version of the XML Document

 */

public void

setXMLVersion(String xmlVersion);

 /**

 * Returns the XML encoding of the document, or null if not specified.

 * Default value is UTF-8.

 * @return Encoding of the XML Document

 */

public String

getEncoding();

 /**

 * Sets the XML encoding of the document, or null if not specified.

 *

 * @param encoding encoding used in the XML Document

 */

public void

setEncoding(String encoding);

 Related information

 Interface BOXMLDocument APIs

BOXMLSerializer

This interface provides the mechanisms for serializing and deserializing an XML

document.

Purpose

This interface is used to serialize and deserialize a business graph or a graph of

business objects.

Example

This is an example of the BOXMLSerializer interface.

BOFactory factoryService = BOFactory) new

 ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");

BOXMLSerializer xmlSerializerService =`(BOXMLSerializer) new

Developing and deploying modules 85

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/bo/BOXMLDocument.html

ServiceManager().locateService("com/ibm/websphere/bo/BOXMLSerializer");

// Create the business object graph.

DataObject productCategoryBG = factoryService.create

 ("http://www.scm.com/ProductCategoryTypes/ProductCategoryBG",

 "ProductCategoryBG");

DataObject productCategory =

 productCategoryBG.createDataObject("productCategory");

DataObject product =

 productCategory.createDataObject("product");

DataObject productCategory3 =

 productCategoryBG3.createDataObject("productCategory");

FileOutputStream outfile2 = new

 FileOutputStream("productCategoryBGDocument.xml");

xmlSerializerService.writeXMLDocument(productCategoryBGDoc, outfile2);

FileInputStream infile2 = new FileInputStream("productCategoryBGDocument.xml");

BOXMLDocument productCategoryBG4Document =

 xmlSerializerService.readXMLDocument(infile2);

DataObject productCategoryBG5 = productCategoryBG4Document.getDataObject();

 Related information

 Interface BOXMLSerializer APIs

Component interface

This interface represents a service component.

Purpose

Use the methods in this interface to obtain information about a component. These

methods:

v Return the interface type of a service component.

v Return a list of the interface types for interfaces within the service component.

v Return the component name.

v Return a reference object for a specific reference.

v Return a list of references within the service component.

Examples

This example is a list of interface type objects for the interfaces exposed by a

service named myService.

ServiceManager serviceManager = new ServiceManager();

Service service = (Service)serviceManager.locateService(“myService”);

list myList = myService.getInterfaceTypes();

This example is a list of references within a service named myService.

ServiceManager serviceManager = new ServiceManager();

Service service = (Service)serviceManager.locateService(“myService”);

list myReferences = myService.getReferences();

 Related information

 Interface Component APIs

DataFactory interface

This interface creates Service Data Objects (SDOs).

Purpose

Use the methods in this interface to create SDOs of specific interface classes, types,

or type and URI.

86 IBM WebSphere Process Server: Developing and deploying modules

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/bo/BOXMLSerializer.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/sca/scdl/Component.html

Examples

This example creates an SCartDO interface class SDO.

SCartDataAccessService scartDataAccessService =

 (SCartDataAccessService)serviceManager.locateService(“scartDataAccessService”);

 SCartDO scartDO = scartDataAccessService.create();

 Related information

 Interface DataFactory APIs

EndPointReference interface

This interface represents a Web service addressing endpoint reference.

Purpose

This interface provides the methods that support a service that has a Web Services

Description Language (WSDL) port type interface. Use the methods in this

interface to obtain information about or set properties for an interface.

Examples

This example shows a client obtaining the EndPointReference for the stockQuote

service.

ServiceManager serviceManager = new ServiceManager();

Service service = (Service)serviceManager.locateService(“stockQuote”);

EndpointReference endpointReference = service.getEndpointReference();

 Related information

 Interface EndPointReference APIs

EndPointReferenceFactory interface

This interface is a factory for creating Web Services addressing endpoint references.

Purpose

This interface provides the method needed for a service to create an external

EndPointReference. The properties can be set by the EndPointReference interface

methods.

After creating the reference, your module must import it before referencing it.

Examples

This example shows how a service would create an EndPointReference and set a

property.

ServiceManager sM = new ServiceManager();

EndpointReference endpointReference = sM.createEndpointReference(“myServicePort”);

enpointReference.setReferenceProperty(“myId”, “12345”);

 Related information

 Interface EndPointReferenceFactory APIs

Service exceptions

When processing errors occur, some APIs throw exceptions. Specific classes

represent these exceptions.

ServiceBusinessException class:

Developing and deploying modules 87

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/sca/sdo/DataFactory.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/sca/addressing/EndpointReference.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/sca/addressing/EndpointReferenceFactory.html

This class indicates a business exception during the execution of a business

operation.

 Purpose

This class contains the method that provides error information when a service

encounters an exception. The service has to build either a message or a business

object to return to the calling component upon failure.

 Related information

 Class ServiceBusinessException APIs

ServiceRuntimeException class:

This class indicates a timeout condition during the invocation or execution of a

service.

 Purpose

If a component has invoked a service asynchronously, it can request a response

when the component is ready to process the data. On that request, there is a wait

period for the response. If response exceeds the wait period, a

ServiceRuntimeException is thrown. The component can then determine the cause

of the exception using the getCause() or getMessage() methods.

Examples

StockQuoteAsync sQ = (StockQuoteAsync)ServiceManager.locateService(“stockQuote");

Ticket ticket = stockQuote.getQuoteRequest("IBM");

 // do something else

try {

 float quote = stockQuote.getQuoteResponse(ticket, Service.NO_WAIT);

 or

 float quote = stockQuote.getQuoteResponse(ticket, 10000);

} catch (ServiceTimeoutRuntimeException) {

 ...

}

 Related information

 Class ServiceRuntimeException APIs

InterfaceType interface

This interface represents a service interface.

Purpose

The methods in this interface provide information about a service interface. Use

the methods to obtain the name of a service interface, the URI for a service

interface and the valid operation types on the service interface.

Examples

The following example demonstrates how to get the URI for the stockQuote service

interface.

ServiceManager serviceManager = new ServiceManager();

Service service = (Service)serviceManager.locateService(“stockQuote”);

URI uri = service.getURI();

88 IBM WebSphere Process Server: Developing and deploying modules

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/sca/ServiceBusinessException.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/sca/ServiceTimeoutRuntimeException.html

Related information

 Interface InterfaceType APIs

Service interface

This interface provides an interface and access to a service. The ServiceManager

locateService() method implements this interface.

Purpose

The methods for this interface allow you to reference and determine information

about the service interface. Use the service interface methods to:

v Find the EndPointReference for a service.

v Determine the preferred interaction style for the service.

v Invoke, either synchronously or asynchronously, the service.

v Retrieve the response from invoking a service asynchronously.

Examples

somecall invokeAsynch(someTicket, someservice somedata);

response = invokeResponse(someTicket, 10000);

 Related information

 Interface Service APIs

ServiceCallback interface

Service components that need to handle asynchronous callback interactions

implement this interface.

Purpose

Use the method in this interface to return a response to a component that has

made an asynchronous request to the service. To succeed, the component must

pass the service a ticket when the client invokes the service.

Examples

This program implements a service that is an alarm for a client.

package sample.alarm;

import java.util.Date;

import com.ibm.websphere.sca.Service;

import com.ibm.websphere.sca.ServiceCallback;

import com.ibm.websphere.sca.ServiceManager;

import com.ibm.websphere.sca.Ticket;

import com.ibm.websphere.sca.scdl.OperationType;

import com.ibm.websphere.sca.scdl.Reference;

import com.ibm.websphere.sca.sdo.DataFactory;

import commonj.sdo.DataObject;

import commonj.sdo.Type;

/*

 * This code implements the alarm interface and invokes the timer asynchronously.

 */

public class SimpleDIIAlarmImpl implements SimpleAlarm, ServiceCallback {

 public void setAlarm(String name, int duration) {

 ServiceManager serviceManager = new ServiceManager();

Developing and deploying modules 89

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/sca/scdl/InterfaceType.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/sca/Service.html

// Submit the request

 // Get the setTimer input type and construct the argument accordingly

 Service asyncTimerService = (Service) serviceManager.locateService("timer");

 Reference reference = asyncTimerService.getReference();

 OperationType operationType = reference.getOperationType("startTimer");

 Type inputType = operationType.getInputType();

 DataFactory dataFactory = DataFactory.INSTANCE;

 DataObject input = dataFactory.create(inputType);

 input.set(0, new Integer(duration));

 input.set(1, name);

 // Invoke the timer service

 Ticket ticket =

 asyncTimerService.invokeAsyncWithCallback("startTimer", input);

 System.out.println("Sent async with callback.");

 }

 /*

 * @see com.ibm.websphere.sca.ServiceCallback#onInvokeResponse

 * (com.ibm.websphere.sca.Ticket, java.lang.Object, java.lang.Exception)

 */

 public void onInvokeResponse(Ticket arg0, Object arg1, Exception arg2) {

 System.out.println("onInvokeResponse()");

 if (arg2 != null) {

 System.out.println("Timer ran into exception: " + arg2.getMessage());

 } else {

 System.out.println("Alarm " + arg1 + " went off at " +

 new Date(System.currentTimeMillis()));

 }

 }

}

 Related information

 Interface ServiceCallback APIs

ServiceImplAsync interface

Service components that generically handle asynchronous service invocations

implement this interface.

Purpose

Use this interface to implement an asynchronous interface for a service. The

method in this class allows a client to invoke the service, passing it a ticket object

so that the service can call back the client once processing is complete.

Examples

The following example shows a client calling a service that has an asynchronous

implementation.

}

 // initiation and other processing.

 invokeAsynch(OperationType serviceOperation, inputObject,

 serviceCallback clientReturn, clientTicket)

 Related information

 Interface ServiceImplAsync APIs

ServiceImplSync interface

Service components that generically handle synchronous service invocations

implement this interface.

90 IBM WebSphere Process Server: Developing and deploying modules

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/sca/ServiceCallback.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/sca/ServiceImplAsync.html

Purpose

Use this interface to invoke a service with a synchronous interface. Generally, the

services have short duration and respond quickly to the component.

Examples

The following shows a client invoking the stockQuote service synchronously.

Service stockQuote = (Service)serviceManager.locateService(“stockQuote");

Float quote = (Float)stockQuote.invoke(“getQuote”, new Object[] {“IBM”})[0];

 Related information

 Interface ServiceImplSync APIs

ServiceManager class

The ServiceManager class provides an object that facilitates access to services

within WebSphere Process Server.

Purpose

Use ServiceManager() to create an instance of a ServiceManager object. Then use

the object to locate a service.

Examples

The following example shows using ServiceManager to create a ServiceManager

instance for a single service.

ServiceManager serviceManager = new ServiceManager();

The next example shows how to create a ServiceManager instance to manage

multiple services.

InputStream myReferences = new FileInputStream("MyReferences.references");

ServiceManager serviceManager = new ServiceManager(myReferences);

 Related information

 Class ServiceManager APIs

Ticket interface

This interface represents a correlation object that ties an asynchronous service

request and response together.

Purpose

Use this interface to provide communication between an asynchronous service and

a client. When the service completes processing a client request, it uses the ticket to

contact the client with the response through the serviceCallback interface.

A ticket is long lived, can be persisted and reused across threads and processes. A

ticket also implements the equals and hashCode methods, which allow it to be

used as a key.

Examples

This example shows the StockQuoteSync service implementing a ticket interface for

getQuoteAsync and getQuoteResponse.

Developing and deploying modules 91

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/sca/ServiceImplSync.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/sca/ServiceManager.html

public interface StockQuoteAsync {

 // deferred response

 public Ticket getQuoteAsync(String symbol);

 public float getQuoteResponse(Ticket ticket, long timeout);

 // callback

 public Ticket getQuoteAsync(String symbol, StockQuoteCallback callback);

}

This example shows the client invoking the StockQuoteAsync service and then

requesting the response.

StockQuoteAsync sQ = (StockQuoteAsync)serviceManager.locateService(“stockQuote");

Ticket ticket = stockQuote.getQuoteAsync("IBM");

 // do something else

float quote = stockQuote.getQuoteResponse(ticket, Service.WAIT);

 Related information

 Interface Ticket API

Commands

Enter commands from the command line on WebSphere Process Server.

serviceDeploy

Describes the purpose and syntax of the serviceDeploy command including a

description of all of the parameters and their values. An example of the command

is included.

Purpose

The serviceDeploy command builds an .ear file from a .jar or .zip file that contains

service components.

Note: Parameters are not case-sensitive.

Roles

This command can be issued by users with the following roles:

 Administrator

 Deployer

Syntax

serviceDeploy inputarchive [<-workingDirectory temppath> <-outputAppliation

outputpathname.ear> -noJ2eeDeploy -freeform -cleanStagingModules -keep

-ignoreErrors <-classpath jarpathname;rarpathname...> -help]

Parameters

inputarchive

A required, positional parameter that specifies the .jar, .zip or .ear file that

contains the application to be deployed. If the command is not issued from the

path in which the file resides, this must be the full path for the file. The .zip

file can be either a nested archive or an Eclipse ProjectInterchange format file.

-classpath

An optional parameter that specifies the locations of required resource files

92 IBM WebSphere Process Server: Developing and deploying modules

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.javadoc.doc/doc/com/ibm/websphere/sca/Ticket.html

(.jar and .rar) files. The path to each file should be a fully-qualified path

separated by semicolons (;) with no spaces.

-freeform

An optional parameter that specifies that the J2EE subdirectory in the

service.jar should be treated as a free-form project.

-help

An optional parameter used to display the parameters for this command.

-ignoreErrors

An optional parameter that specifies that the serviceDeploy command builds

an .ear file regardless of errors while building or validating the application. By

default, the serviceDeploy command does not generate an .ear file if there are

errors with an application.

-cleanStagingModules

An optional parameter that specifies whether to delete staging modules within

an input .ear file before deployment. By default, the serviceDeploy command

imports existing staging modules and their contents.

-keep

An optional parameter that specifies whether to save any temporary files

generated after deployment. By default, the serviceDeploy command deletes

the temporary workspace.

-noJ2eeDeploy

An optional parameter that specifies whether the application requires EJB

deployment after generating the .ear file. By default, the serviceDeploy

command runs the J2EE deployers for the application.

-outputApplication

An optional parameter that specifies the name of the .ear file the serviceDeploy

command creates. The default is inputjarfile.ear, where inputjarfile is the

filename minus the extension specified for the input .jar file.

-workingDirectory

An optional parameter that specifies a directory the serviceDeploy command

uses to write temporary files.

Inputs

The following file types can be used as input to the serviceDeploy command:

jar The most useful file type for the simplest applications. The resulting ear

file contains a single jar and any needed generated staging modules. The

jar must contain the service.module file.

zip (Project Interchange)

You can export from WebSphere Integration Developer an archive file in

project interchange format. This format is unique to the Eclipse

development. The exported zip file must contains exactly one project with

the service.module file. The resulting ear file contains any number of

modules, depending upon exactly what is in the project interchange.

zip You can create a zip file containing jar files, war files, and rar files. Exactly

one jar file must contain the service.module file. All contained archives

become members of the final exported ear file.

ear You can always run the serviceDeploy command against an ear file as long

as exactly one jar file in the ear contains a service.module file.

Developing and deploying modules 93

Output

When serviceDeploy completes processing, it creates an .ear file in the directory

from which the command is run unless the -outputApplication parameter is

specified.

Exceptions

N/A

Example of serviceDeploy command

The following command example:

v Creates an application file called MyValueModule.ear from the

MyValueModule.jar file.

v Specifies that the resources reside in the directories

c:\java\myvaluemoduleres.rar and c:\java\commonres.jar.

v Enables the J2EE subdirectory within the .jar file as free-form.

v Keeps the temporary files generated during deployment.
servicedeploy MyValueModule.jar

-classpath "c:\java\myvaluemoduleres.rar;c:\java\commonres.jar"

-noj2eedeploy -freeform true -keep

94 IBM WebSphere Process Server: Developing and deploying modules

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2005 95

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, a nd represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

96 IBM WebSphere Process Server: Developing and deploying modules

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

i5/OS

IBM

the IBM logo

AIX

AIX 5L

CICS

CrossWorlds

DB2

DB2 Universal Database

Domino

HelpNow

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MQSeries

MVS

Notes

OS/390

OS/400

Passport Advantage

pSeries

Redbooks

SupportPac

WebSphere

z/OS

 Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Notices 97

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org/).

WebSphere Process Server, Version 6.0

98 IBM WebSphere Process Server: Developing and deploying modules

����

Printed in USA

	Contents
	Developing and deploying modules
	Overview of developing modules
	Developing modules
	Developing components
	Invoking components

	Developing applications for business processes and tasks
	Accessing the generic APIs
	Accessing the remote session bean
	Accessing the local session bean

	Developing applications for business processes
	Starting business processes
	Sending a message to a waiting activity
	Handling events
	Analyzing the results of a process
	Managing the life cycle of a business process
	Deleting process instances

	Developing applications for human tasks
	Starting an originating task that implements a synchronous interface
	Starting an originating task that implements an asynchronous interface
	Processing participating or purely human tasks
	Analyzing the results of a task
	Terminating a task instance
	Deleting task instances
	Canceling a claimed task
	Managing work items

	Querying business-process and task-related objects
	Queries on business-process and task-related objects
	Managing stored queries
	Predefined views for queries on business-process and human-task objects

	Handling exceptions and faults
	Handling API exceptions
	Checking which fault is set for an activity
	Checking which fault occurred for a stopped invoke activity

	Authorization for business-process applications
	Required authorizations for actions on business processes
	Required authorizations for actions on business-process activities

	Authorization for human-task applications
	Required roles for actions on tasks

	BusinessFlowManagerService interface
	HumanTaskManagerService interface
	Allowed actions for tasks types

	Overview of preparing and installing modules
	Libraries and JAR files overview
	EAR file overview
	Preparing to deploy to a server

	Installing a module on a production server
	Creating an installable EAR file using serviceDeploy
	Deploying applications using ANT tasks

	Installing and uninstalling business process and human task applications
	Deployment of models
	Application management
	Uninstalling business process and human task applications

	Installing applications with embedded WebSphere Adapters
	WebSphere Adapter
	WebSphere Adapter deployment considerations
	Installing Standalone WebSphere Adapters
	WebSphere Adapter applications as members of clusters
	WebSphere Business Integration Adapter applications as members of clusters

	Installing EIS applications
	Deploying an EIS application module to the J2SE platform
	Deploying an EIS application module to the J2EE platform

	Troubleshooting a failed deployment
	References
	Programming interfaces
	BOChangeSummary
	BOCopy
	BODataObject
	BOEquality
	BOEventSummary
	BOFactory
	BOType
	BOTypeMetadata
	BOXMLDocument
	BOXMLSerializer
	Component interface
	DataFactory interface
	EndPointReference interface
	EndPointReferenceFactory interface
	Service exceptions
	InterfaceType interface
	Service interface
	ServiceCallback interface
	ServiceImplAsync interface
	ServiceImplSync interface
	ServiceManager class
	Ticket interface

	Commands
	serviceDeploy

	Notices
	Programming interface information
	Trademarks and service marks

