
WebSphere® Process Server for z/OS

Business Process Choreographer

Version 6.0.2

���

Note

Before using this information, be sure to read the general information in “Notices” on page 353.

30March2007

This edition applies to version 6, release 0, modification 2 of WebSphere Process Server for z/OS (product number

5655-N53) and to all subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing

from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Planning to use Business Process Choreographer 1

About Business Process Choreographer . 2

Business Process Choreographer and Network Deployment . 2

Business Process Choreographer scenarios for clustering . 4

Chapter 2. Configuring Business Process Choreographer 11

Using the bpeconfig.jacl script file to configure Business Process Choreographer 13

Configuring the business process container using the installation wizard 25

Creating the queue manager and queues for the business process container 28

Creating the database for the business process container 30

Business process container installation wizard settings . 34

Business process container settings . 43

Customizing the WebSphere MQ JMS resources in a cluster 44

Configuring the human task container, using the installation wizard 46

Human task container installation wizard settings . 48

Human task container settings . 51

Configuring the LDAP staff plug-in provider . 54

Staff service settings . 56

Staff plug-in provider collection . 56

Staff plug-in provider settings . 57

Staff plug-in configuration collection . 58

Staff plug-in configuration settings . 59

About the staff service . 60

Overview: Configuring Business Process Choreographer Explorer 81

About Business Process Choreographer Explorer . 81

Configuring Business Process Choreographer Explorer . 82

Configuring the Business Process Choreographer Observer infrastructure 84

About Business Process Choreographer Observer . 85

Configuring the Business Process Choreographer event collector 86

Configuring Business Process Choreographer Observer . 89

Activating Business Process Choreographer . 90

Verifying that Business Process Choreographer works . 91

Understanding the startup behavior of the business process container 91

Configuring Business Process Choreographer to use an LDAP user registry 92

Federating a stand-alone node that has Business Process Choreographer configured 95

Promoting a server that has Business Process Choreographer configured to a cluster 96

Chapter 3. Removing the Business Process Choreographer configuration 97

Using a script to remove the Business Process Choreographer configuration 97

Using the administrative console to remove the Business Process Choreographer configuration 99

Using the administrative console to remove the Business Process Choreographer event collector 103

Using the administrative console to remove Business Process Choreographer Observer 105

Chapter 4. Administering . 107

Using Business Process Choreographer Explorer . 107

Business Process Choreographer Explorer user interface 107

Business Process Choreographer Explorer navigation pane 108

Starting Business Process Choreographer Explorer . 110

Customizing Business Process Choreographer Explorer 111

Administering Business Process Choreographer . 120

Using the administrative console to administer Business Process Choreographer 120

Using scripts to administer Business Process Choreographer 128

Administering business processes and human tasks . 139

About business processes . 139

About human tasks . 145

© Copyright IBM Corp. 2007 iii

Administering process templates and process instances 148

Administering task templates and task instances . 157

Reporting on business processes and activities . 164

Chapter 5. Developing . 165

Developing client applications for business processes and tasks 165

Developing EJB client applications for business processes and human tasks 165

Developing Web service API client applications . 243

Developing Web applications for business processes and human tasks, using JSF components 266

Chapter 6. Deploying . 287

Installing business process and human task applications . 287

Deployment of models . 287

Deploying business process applications interactively . 288

When you can install a process application on a cluster in which no servers are running 289

Uninstalling business process and human task applications, using the administrative console 291

Uninstalling business process and human task applications, using administrative commands 291

Chapter 7. Monitoring . 293

Monitoring business processes and human tasks . 293

Situation-independent event data . 293

Business process events . 294

Human task events . 305

Chapter 8. Tuning business processes . 313

Tuning long-running processes . 314

Specifying initial database settings . 314

Planning messaging engine settings . 317

Tuning the application server . 318

Fine-tuning the messaging provider . 319

Fine-tuning the database . 319

Tuning microflows . 321

Tuning business processes that contain human tasks . 321

Reduce concurrent access to human tasks . 322

Reduce query response time . 322

Avoid scanning whole tables . 322

Chapter 9. Troubleshooting Business Process Choreographer 325

Troubleshooting the Business Process Choreographer configuration 325

Business Process Choreographer log files . 325

Enabling tracing for Business Process Choreographer . 326

The task container application fails to start . 326

Troubleshooting the Business Process Choreographer database and data source 327

Troubleshooting business process and human tasks . 329

Troubleshooting the installation of business process and human task applications 329

Troubleshooting the execution of business processes . 330

Working with process-related or task-related messages 335

Troubleshooting Business Process Choreographer Explorer 336

Troubleshooting the administration of business processes and human tasks 337

Troubleshooting the staff service, staff plug-ins, and staff resolution 337

Using process-related and task-related audit trail information 342

Notices . 353

Programming interface information . 355

Trademarks and service marks . 355

iv IBM WebSphere Process Server for z/OS: Business Process Choreographer

Chapter 1. Planning to use Business Process Choreographer

For each application server or cluster that runs business processes or human tasks,

you will have to configure the business process container and the human task

container before installing any enterprise applications that contain business

processes or human tasks.

1. If you intend to use Business Process Choreographer on a cluster plan your

cluster.

2. Decide which database system to use:

Note: The Business Process Choreographer Observer requires a database that is

either Cloudscape or DB2.

v Cloudscape

Note:

– Because Cloudscape™ Network Server has no XA support, Business

Process Choreographer can only use the embedded Cloudscape

version that cannot be accessed remotely. This restriction is why

Cloudscape cannot be used as database system for Business Process

Choreographer in a clustered environment.

– Cloudscape serializes database access. Activities are therefore

always performed sequentially, even in flows that are modeled to

support the parallel execution of activities.
v DB2® for z/OS®

3. Check the requirements for the DB2 for z/OS Universal JDBC Driver provider

and data source.

4. Decide which server you want to host the database. If the database server is

remote, you need a suitable database client or a type-4 JDBC driver that has

XA-support.

5. Decide which Java™ Message Service (JMS) provider you will use:

v WebSphere® default messaging

v WebSphere MQ
6. Plan the settings that are described in “Business process container installation

wizard settings” on page 34.

7. Plan the settings that are described in “Human task container installation

wizard settings” on page 48.

8. Decide if you will configure the business process container manually

(recommended) or if you will use the installation wizard to configure the

business process container.

v If you are going to configure the business process container manually, plan

the settings as described in “Business process container settings” on page 43.

v If you are going to use the installation wizard, plan the settings described in

“Business process container installation wizard settings” on page 34.

After installing WebSphere Process Server, you are ready to perform Configuring

Business Process Choreographer.

© Copyright IBM Corp. 2007 1

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/cdat_jdbcdrvsuptzos.html

About Business Process Choreographer

Describes the facilities provided by the business process container and the human

task container.

Business Process Choreographer is an enterprise workflow engine that supports

both business processes and human tasks in a WebSphere Application Server

environment. These constructs can be used to integrate J2EE resources, services,

and activities that require human interaction. Business Process Choreographer

manages the life cycle of business processes and human tasks, navigates through

the associated model, and invokes the appropriate services.

Business Process Choreographer provides the following facilities:

v Support for business processes and human tasks. Business processes offer the

standard way to model your business process using the Web Services Business

Process Execution Language (WS-BPEL, abbreviated to BPEL). With human

tasks, you can use the Task Execution Language (TEL) to model the interactions

that involve humans, such as human-to-human, human-to-computer,

computer-to-human. Both business processes and human tasks are exposed as

services in a Service Oriented Architecture (SOA) or Service Component

Architecture (SCA); they also support both simple data objects and business

objects.

v Application programming interfaces for developing customized applications for

interacting with business processes and human tasks.

v Business Process Choreographer Explorer. This Web application offers functions

for managing and administering business process and human tasks. For more

information refer to “About Business Process Choreographer Observer” on page

85.

v Business Process Choreographer Observer. This Web applications allows you to

observe the states of running business processes and human tasks. For more

information refer to “About Business Process Choreographer Explorer” on page

81.
 Related concepts

 “Business Process Choreographer and Network Deployment”
Describes special considerations when using Business Process Choreographer in

a Network Deployment environment.

 “Business Process Choreographer scenarios for clustering” on page 4
Describes different configuration options and considerations for Business

Process Choreographer scenarios that use clusters.

Business Process Choreographer and Network Deployment

Describes special considerations when using Business Process Choreographer in a

Network Deployment environment.

If you use Network Deployment (ND), the following points must be considered.

Deployment manager must have access to the Business Process

Choreographer databases

The deployment manager must have access to all the Business Process

Choreographer databases that are used by business process containers and human

task containers in the cell. You must install an appropriate database client or JDBC

driver on the computer that hosts the deployment manager and set the WebSphere

2 IBM WebSphere Process Server for z/OS: Business Process Choreographer

environment variable for the JDBC provider’s classpath on the deployment

manager’s node scope. The following figure shows this configuration.

Before you install Business Process Choreographer on a cluster

Make sure that you have prepared your cluster as described in the Administering

WebSphere Process Server PDF.

Customization required after installing and configuring Business

Process Choreographer on a cluster

If you are creating a clustered setup that uses WebSphere MQ clusters of queue

managers, you must perform some manual customization to make each Business

Process Choreographer instance use its own queue managers. The necessary

actions are described in Configuring the business process container.

For more information about using clustering with Business Process Choreographer,

see Business Process Choreographer scenarios for clustering

Business
process
container

Application
server B2

Application
server B1
Business
process
container

Process
choreographer
database B2

Process
choreographer
database B1

Business
process
container

Application
server A2

Machine A

Optional
database tier

Machine D

Machine B

Machine C

Deployment
Manager

Application
server A1
Business
process
container

Process
choreographer
database A2

Process
choreographer
database A1

Chapter 1. Planning to use Business Process Choreographer 3

Before installing an application that contains business

processes, or human tasks, or both

Make sure that the servers where you want to install the application are running

before installing the application. At least one server must be running for Java

Naming and Directory Interface (JNDI) names to be resolved.

 Related concepts

 “About Business Process Choreographer” on page 2
Describes the facilities provided by the business process container and the

human task container.

Business Process Choreographer scenarios for clustering

Describes different configuration options and considerations for Business Process

Choreographer scenarios that use clusters.

The main advantages of using WebSphere Process Server clusters for Business

Process Choreographer instances are:

v High service availability due to failover

v Increased workload capacity

v Improved resource utilization

v Workload sharing

v Easier administration

Configuration options

You can configure Business Process Choreographer in many different ways, so

cluster configurations are usually very complex. Some of the main options to

consider before you start creating application servers are outlined in the following

descriptions:

Number of nodes in the WebSphere Process Server cell

One or more. All nodes are administered from a single deployment

manager.

Number of nodes in each WebSphere Process Server cluster

One or more. Horizontal WebSphere clustering can increase service

availability and the total workload capacity.

Number of application servers in each node

One or more. Vertical WebSphere Process Server clustering can increase

resource utilization.

Database host

v Remote, on a dedicated server

v Local to one of the application servers in the cluster

It is recommended to host the database on a dedicated server, preferably

one with a hot standby.

Application messaging queues

v Local queues

v Remote queues
Connection (WebSphere Platform Messaging)

When WebSphere Platform Messaging (WPM) is used, you can configure

the message engines in the same cluster or in a remote cluster. For

Business Process Choreographer, you should use the same approach used

for the other WebSphere Process Server components. For more details

about possible scenarios, see ″Preparing a server or cluster to support

service applications″ in the Administering WebSphere Process Server PDF. The

recommended configuration is to have the messaging engines run in a

4 IBM WebSphere Process Server for z/OS: Business Process Choreographer

different cluster than the cluster in which Business Process Choreographer

is installed. This is similar to the central queue manager configuration that

can be used with WebSphere MQ.

Connection (WebSphere MQ queue managers)

Restriction: Support for WebSphere MQ messaging in this product is

limited to Business Process Choreographer (BPC). Except in

BPC, WebSphere MQ messaging is not supported in this

product.

v One central (remote) queue manager hosting the queues for the

application servers within one cluster. This configuration is generally

recommended.

v One local queue manager per application server. This provides no

failover and no intraprocess workload sharing.

v Two local queue managers per node, and WebSphere MQ clustering

used to balance workload across several application servers.

Workload distribution between different Business Process Choreographer

instances requires that the queue managers that are used by the business

process container of each application server are members of the same

WebSphere MQ cluster. This configuration provides no failover and is

not generally recommended.

WebSphere MQ is not recommended as JMS provider if a clustered

scenario is used.

Database system

You can use any of the supported databases except Cloudscape.

Hot standby servers

You have the following options for hot standby servers:

v None

v For the database

v For a central queue manager

Cluster types: This topic refers to two different types of cluster. A WebSphere cluster

groups application servers together to share workload and increase service

availability. A WebSphere MQ cluster, previously known as an MQSeries® cluster,

groups together WebSphere MQ queue managers and can be used to achieve

intraprocess workload balancing.

High availability

To achieve high availability of Business Process Choreographer services, consider

the following items:

v By creating cloned application servers in a WebSphere cluster, the services

provided by the application servers become highly available.

v The Business Process Choreographer database is a single point of failure that can

be protected using a hot standby system.

v A central queue manager can be protected by hot standby hardware.

Vertical clustering to maximize resource utilization

To improve performance, you might have to create multiple application server

instances on the same node so that Business Process Choreographer can use the

available system resources.

Chapter 1. Planning to use Business Process Choreographer 5

Workload sharing

If you are using WebSphere MQ messaging and you want different instances of

Business Process Choreographer to share the same workloads, they must use one

of the following queue manager configurations:

Central queue manager

A central queue manager hosts the queues that are needed by Business

Process Choreographer. All Business Process Choreographer instances in

the WebSphere cluster read from the same queues.

WebSphere MQ cluster

Each application server has two queue managers. One queue manager

hosts local queues and is used for getting messages, the other queue

manager hosts no queues and is used only for putting messages. All the

queue managers of all the Business Process Choreographer instances in the

WebSphere cluster are made members of a WebSphere MQ cluster.

 The result of only putting to queue managers that host no queues is that

the messages are distributed evenly across all the get queue managers in

the cluster. After using the installation wizard to install and configure the

business process container on the cluster, you must manually change the

two connection factories per application server to point to the local get and

put queue managers.

Business Process Choreographer database

Hosting the database on a dedicated server, preferably one with a hot standby is

recommended. The database can be on a server that is outside the WebSphere cell,

however the deployment manager must have access to it.

When planning the database, consider the following points:

v All business process containers in the same WebSphere cluster access the same

database. By contrast, any business process container that is not in a WebSphere

cluster must have its own database.

v To enable access to a remote Business Process Choreographer database, you

must install the appropriate database client, or a type-4 Java Database

Connectivity (JDBC) driver on all application servers that do not have a local

database.

v The deployment manager requires access to all databases for Business Process

Choreographer instances in the WebSphere cell. You must enable this access

before you can use the deployment manager to install a business process.

v Your database can be any of the supported databases except Cloudscape,

because Cloudscape Network Server has no XA support and embedded

Cloudscape cannot be accessed remotely.

v Each database that is used by Business Process Choreographer instances in the

same WebSphere cell must be accessible using a unique name. For DB2, the

same database name must be used on the deployment manager and on the

application server.

v The database is a single point of failure. This problem can be solved only by

using a high-availability hot standby solution, such as High Availability Cluster

Multiprocessing (HACMP™) on AIX®.

Business Process Choreographer Observer database

Business Process Choreographer Observer requires a database. It can use the same

database as the Business Process Choreographer business process container, but in

6 IBM WebSphere Process Server for z/OS: Business Process Choreographer

a production system, it is preferable for performance reasons, to have a separate

database.

WebSphere Platform Messaging JMS provider

Business Process Choreographer can use WebSphere Platform Messaging (WPM),

which supports clustering, workload management, and failover.

Two topologies are supported:

v The messaging resources are hosted by a different cluster than the applications.

This is the recommended topology since it provides failover capabilities together

with low administration overheads. This topology is similar to the central queue

manager approach in the WebSphere MQ case.

v The messaging resources and the applications are hosted by the same cluster.

This topology is ideal for high performance, though it requires more

administration effort, especially when changes are applied.

For more information about considerations that apply when WPM is used, refer to

″Creating a clustered environment″ in the Administering WebSphere Process Server

PDF.

WebSphere MQ

Restriction: Support for WebSphere MQ messaging in this product is limited to

Business Process Choreographer (BPC). Except in BPC, WebSphere

MQ messaging is not supported in this product.

Business Process Choreographer can use WebSphere MQ queues for receiving

requests and sending replies. WebSphere MQ is not recommended as the JMS

provider if a clustered scenario is used. If you use WebSphere MQ, you must still

configure the default messaging for the Service Component Architecture (SCA),

which Business Process Choreographer uses for inbound and outbound service

invocation. Each application server that hosts Business Process Choreographer

requires one of the following options:

v Access to a central queue manager that hosts all queues

v A local queue manager that is not a member of a WebSphere MQ cluster

v Two local queue managers that are members of a WebSphere MQ cluster

Central queue manager

By using a central queue manager for all queues, administration becomes easier.

One queue manager is used by all cloned containers for human tasks and business

processes. However, using a central queue manager creates a single point of failure

that needs to be hosted on a high availability system.

The following figure shows all the application servers in a WebSphere cluster using

a single central queue manager on another server. Every application server shown

with a business process container, can also have a human task container.

Chapter 1. Planning to use Business Process Choreographer 7

Local queue manager without WebSphere MQ clustering

This example presents the standard, stand-alone Business Process Choreographer

configuration. Each business process container has one local queue manager. This

approach does not offer intraprocess workload sharing nor failover service

availability.

WebSphere MQ clustering

This complex technique is not recommended. It supports intraprocess workload

sharing for Business Process Choreographer services in a WebSphere cluster. The

business processes in the cluster must all run on UNIX® only, or Windows®

workstations only; a combination of UNIX and Windows servers does not work.

Each application server requires two local queue managers, one for putting and

one for getting messages. All the queue managers become members of the same

WebSphere MQ cluster. On Windows systems, all the queue managers must use

the same binding protocol. On UNIX systems, the put and get queue managers

must use different protocols. For example, you can modify the queue connection

Machine A
(Node A)

Machine C

Machine B
(Node B)

Requests

Replies

WebSphere
cluster

Application
server A1

Central
queue

manager

Application
server B1

Application
server A2

Application
server B2

Business
process
container

Business
process
container

Business
process
container

Business
process
container

JMS
listener

Queues

JMS
listener

JMS
listener

JMS
listener

8 IBM WebSphere Process Server for z/OS: Business Process Choreographer

factories so that all the put queue managers use the binding protocol (interprocess

communications) and all the get queue managers use the default, client (TCP/IP)

protocol.

On Windows and UNIX systems, using the local bindings transport type is

approximately 5% faster than using the client transport type, but has the effect that

you must stop the entire application server to stop the local WebSphere MQ queue

manager.

Each business process container in the WebSphere cluster must be customized to

reflect its own queue managers.

It is recommended that more than one queue manager in the WebSphere MQ

cluster is made a cluster repository.

The following figure shows how the queue managers that are used by the

application servers are grouped together in a WebSphere MQ cluster. The

WebSphere MQ cluster of queue managers is parallel to the WebSphere cluster of

application servers. Requests are shared across the get queues in the cluster.

Machine A
(Node A)

Machine B
(Node B)

WebSphere
cluster

WebSphere MQ
cluster

Application
server A1

Application
server B1

Get queue
manager

Get queue
manager GetB

Put queue
manager

Put queue
manager PutB

Application
server A2

Application
server B2

Business
process
container

Business
process
container

Business
process
container

Business
process
container

JMS
listener

JMS
listener

Local
queues

Local
queues

JMS
listener

JMS
listener

Cluster
repository

Optional second
repository

Requests

Reply

Reply

Chapter 1. Planning to use Business Process Choreographer 9

How the WebSphere cluster is created

Several different sequences are available for you to follow when creating a cluster

for Business Process Choreographer. If you have already configured a standalone

server, perform “Promoting a server that has Business Process Choreographer

configured to a cluster” on page 96, otherwise, the following sequence is

recommended:

1. Create a cluster using the defaultProcessServer template as the server template

for the cluster members.

2. Add members to the cluster.

3. Enable the cluster for service applications.

4. If you want to use the Business Process Choreographer Observer to monitor

business processes and human tasks, make sure that the Common Event

Infrastructure (CEI) is configured on the cluster.

5. Configure Business Process Choreographer on the cluster.

6. If you are using WebSphere MQ, and your WebSphere MQ configuration is a

WebSphere MQ cluster of local queue managers, you must modify the

connection factories. Because each queue manager has a different name, you

must modify the connection factories in each of the cloned application servers

to reflect its unique differences from the cluster-wide, standard Business

Process Choreographer Install wizard configuration.
 Related concepts

 “About Business Process Choreographer” on page 2
Describes the facilities provided by the business process container and the

human task container.

10 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Chapter 2. Configuring Business Process Choreographer

This describes how to configure the Business Process Choreographer containers for

business processes and for human tasks. It also describes how to configure

Business Process Choreographer Explorer and Business Process Choreographer

Observer.

If you have a Network Deployment (ND) environment, make sure that the Service

Component Architecture (SCA) is configured. Click Servers → Application servers

→ server_name then in the Business Integration section, click Service Component

Architecture. If necessary, make changes and click Apply. If you want to install

Business Process Choreographer Observer in an ND environment, you must have

already configured the Common Event Infrastructure (CEI).

For information on installing Business Process Choreographer through the

WebSphere Process Server for z/OS installation and configuration scripts,

including information on how to create a sample Business Process Choreographer

configuration, see the WebSphere Process Server for z/OS installation and

configuration PDF.

Business Process Choreographer supports enterprise applications that include

business processes and human tasks. It provides a container for business processes

and a container for human tasks. These containers must be installed and

configured before being used. The human task container requires the business

process container and the staff service. The Business Process Choreographer

Explorer provides a Web client interface for human interaction and administrating

business processes and human tasks. Business Process Choreographer Observer

allows you to create reports on processes and tasks that have been completed. You

can also use Business Process Choreographer Observer to view the status of

running processes and tasks.

1. If you specified values for the Business Process Choreographer sample

configuration parameters in the response file, a sample configuration that

includes the business process container, the human task container and the

Business Process Choreographer Explorer already exists.

You can check to see if these components are configured by looking in the

administrative console for enterprise applications with names that start with

BPEContainer, BPCExplorer, and TaskContainer.

Depending on the response file used, the sample configuration can be for a

Cloudscape or a DB2 for z/OS database and the WebSphere default messaging

provider.

Note: The sample Business Process Choreographer configuration with a

Cloudscape database is not suitable for a production system. Because

you can only have one Business Process Choreographer configuration,

you must remove the sample configuration that utilizes Cloudscape, as

described in Chapter 3, “Removing the Business Process Choreographer

configuration,” on page 97 before you can continue configuring Business

Process Choreographer to use WebSphere MQ or a different database.

2. Configure the resources.

You can configure the resources in one of the following ways:

© Copyright IBM Corp. 2007 11

a. Manually (recommended), by setting properties on the administrative

console or through an administrative scripting process.

If you want to use an administrative script to configure Business Process

Choreographer, see “Using the bpeconfig.jacl script file to configure

Business Process Choreographer” on page 13.

b. Automatically, by using the installation wizard available on the

administrative console.

If you want to use the installation wizard available on the administrative

console, perform both of the following:

v “Configuring the business process container using the installation

wizard” on page 25

v “Configuring the human task container, using the installation wizard” on

page 46

Note: The installation wizard configures WebSphere resources only. If you

choose to configure the business process container by using the

installation wizard, you will still need to run the corresponding

manual step(s) to create a database (Cloudscape or DB2) and to

create the WebSphere MQ queues (if you are using WebSphere MQ as

your Java Message Service (JMS) provider).
3. If you are using an LDAP staff plug-in, perform: “Configuring the LDAP staff

plug-in provider” on page 54. The system and user registry staff plug-in

providers can be used without configuring them.

4. If you have a Network Deployment (ND) environment, and you either used the

human task container install wizard, or an error occurred when running the

bpeconfig.jacl script, then you must setup the scheduler calendars application.

Perform one of the following:

v If you have already installed the scheduler calendars application on a server,

install it on additional servers by performing the following steps:

a. Select Applications → Enterprise Applications.

b. Select SchedulerCalendars.

c. Under the Additional Properties section, select Map modules to servers.

d. Select the check box for the Module Calendars.

e. Select all the servers and the clusters on which you have configured a

business process container, be sure to also select any servers or clusters

where you want the SchedulerCalendars application to remain.

f. Select Apply.

g. Select OK.

h. Save and Synchronize changes with Nodes.
v If this is the first time that you are installing the scheduler calendars

application on a server, perform the following steps:

a. Select Applications → Install New Application.

b. In the file selector window, browse to the installableApps subdirectory

of the install_root directory.

c. Select ScheduleCalendars.ear.

d. Select Next.

e. Accept the default values and select Next again.

f. Continue to accept the default values until you get to the ’Map modules

to servers’ step, then select any servers and clusters on which you want to

load the ScheduleCalendars application, then select Next.

12 IBM WebSphere Process Server for z/OS: Business Process Choreographer

g. On the summary step, select Finish.

h. After the application has finished installing, select Save to Master

Configuration.

i. Save and synchronize changes.
5. Activate Business Process Choreographer: Perform “Activating Business Process

Choreographer” on page 90.

6. Optional: If you have not yet installed and configured the Business Process

Choreographer Explorer, you can configure it now. Perform “Configuring

Business Process Choreographer Explorer” on page 82.

7. Optional: If you want to use Business Process Choreographer Observer, and

you did not use the option in the business process container installation wizard

to install it, and you did not run the bpeconfig.jacl script file in batch mode,

you can install Business Process Choreographer Observer from the

command-line by running a script. Perform, Perform “Configuring the Business

Process Choreographer Observer infrastructure” on page 84.

8. Optional: Verify that Business Process Choreographer works: Perform

“Verifying that Business Process Choreographer works” on page 91.

Business Process Choreographer is configured and working.

Now you can run enterprise applications that contain business processes or human

tasks, or both.

Using the bpeconfig.jacl script file to configure Business Process

Choreographer

This script file configures all the resources that are required by Business Process

Choreographer.

Purpose

This script can either be run interactively, or in batch mode. It configures a

working business process container, and human task container without using the

installation wizard or administrative console. It can create a local database, and the

necessary messaging resources, and also configure the Business Process

Choreographer Explorer. If the script is applied to an application server that is in a

cluster, all servers in the cluster will be configured for using Business Process

Choreographer. Running bpeconfig.jacl is the recommended method for

configuring Business Process Choreographer for WebSphere Process Server for

z/OS.

Location

The bpeconfig.jacl script file is located in the Business Process Choreographer

samples directory: smpe_root/ProcessChoreographer/config.

Restrictions

This script has the following restrictions:

In an ND environment or a cluster

To configure several application servers in an ND environment or a cluster,

the bpeconfig.jacl script must run interactively. The script cannot be used

to perform this type of configuration when run non-interactively.

Chapter 2. Configuring Business Process Choreographer 13

Using a DB2 for z/OS database

The bpeconfig.jacl script cannot create a DB2 for z/OS database. You must

create it manually.

 For information on creating the database and storage groups, see the

WebSphere Process Server for z/OS installation and configuration guide.

Runing the script in a stand-alone server environment

In a stand-alone server environment:

v Include the -conntype NONE option only if the application server is not running.

v If the server is running and global security is enabled, include the -username and

-password options.

v If you are not configuring the default profile, add the -profileName option.

Running the script in an ND environment

In a Network Deployment environment:

v Run the bpeconfig.jacl script on the deployment manager node.

v Include the -conntype NONE option only if the deployment manager is not

running.

v If global security is enabled, include the -username and -password options.

v If you are not configuring the default profile, add the -profileName option.

Configuring the business process container, Business Process

Choreographer Explorer, and Business Process Choreographer

Observer non-interactively non-interactively

If you provide the necessary parameters on the command line, you will not be

prompted for them. To configure Business Process Choreographer, the following

command: if your current directory is install_root/ProcessChoreographer, enter

bin/wsadmin.sh -f ProcessChoreographer/config/bpeconfig.jacl parameters

where parameters are as follows:

 -conntype NONE

 -user userName

 -password userPassword

 -profileName profileName

 {-node nodeName -server serverName}

 {-adminBFMUsers userList | -adminBFMGroups groupList}

 {-monitorBFMUsers userList | -monitorBFMGroups groupList}

 -jmsBFMRunAsUser userID

 -jmsBFMRunAsPwd password

 {-adminHTMUsers userList | -adminHTMGroups groupList}

 {-monitorHTMUsers userList | -monitorHTMGroups groupList}

 -jmsHTMRunAsUser userID

 -jmsHTMRunAsPwd password

 -contextRootBFM contextRootBFM

 -contextRootHTM contextRootHTM

 -mailServerName mailServerName

 -mailUser mailUserID

 -mailPwd mailPassword

 -hostName explorerVirtualHostname

 -explorerHost explorerURL

 -remoteNodeName nodeName

 -remoteServerName serverName

 -remoteClusterName clusterName

 -contextRootExplorer explorerContextRoot

14 IBM WebSphere Process Server for z/OS: Business Process Choreographer

-createDB { yes | no }

 -dbType databaseType

 -dbVersion version

 -dbHome databaseInstallPath

 -dbJava JDBCDriverPath

 -dbName databaseName

 -dbUser databaseUser

 -dbPwd databasePassword

 -dbAdmin databaseAdministratorUserID

 -driverType JDBCDriverType

 -dbTablespaceDir databaseTablespacePath

 -dbServerName databaseServerName

 -dbServerPort databaseServerPort

 -dbStorageGroup DB2zOSStorageGroup

 -dbSubSystem DB2zOSSubSystem

 -dbSQLID DB2zOSSchemaQualifier

 -dbInstance InformixInstance

 -mqType JMSProviderType

 -createQM { yes | no }

 -qmNameGet getQueueManagerName

 -mqClusterName appServerClusterName

 -qmNamePut putQueueManagerName

 -mqHome MQInstallationDirectory

 -mqUser JMSProviderUserID

 -mqPwd JMSProviderPassword

 -mqSchemaName mqSchemaName

 -mqCreateTables { true | false }

 -mqDataSource datasourceName

 -shell shell

 -createEventCollector { yes | no }

 -createObserver { yes | no }

Note: Some of the above parameters are optional, depending on the values

provided for other parameters. The dependencies between parameters and

the conditions that determine whether a parameter is optional or required is

described for each parameter in the descriptions below. Any required

parameters that are not specified on the command line are prompted for

interactively.

Parameters

You can use the following parameters when invoking the script using wsadmin:

conntype NONE

This specifies that no administration connection is available. Only include this

option if the application server (for stand-alone) or deployment manager (for

ND) is not running.

user userName

If global security is enabled, you must provide a user ID for authentication.

password userPassword

If global security is enabled, you must provide the password for the user ID

userName.

profileName profileName

Where profileName is the name of a user-defined profile. On z/OS the profile

name is default.

node nodeName

Where nodeName is the name of the node where Business Process

Choreographer is to be configured. If you have only one node and exactly one

server, this parameter is optional.

Chapter 2. Configuring Business Process Choreographer 15

server serverName

Where serverName is the name of the server where Business Process

Choreographer is to be configured. If you have only one node and exactly one

server, this parameter is optional.

adminBFMUsers userList

Where userList is the list of names of users, from the user registry, to which to

map the BPESystemAdministrator Java 2 Enterprise Edition (J2EE) role. The

separator character is the vertical line (|). This property is needed to install the

business process container. This parameter has no default value. Either one or

both of the adminBFMUsers or adminBFMGroups options must be set.

adminBFMGroups groupList

Where groupList is the list of names of groups, from the user registry, to which

to map the BPESystemAdministrator J2EE role. The separator character is the

vertical line (|). This property is needed to install the business process

container. This parameter has no default value. Either one or both of the

adminBFMUsers or adminBFMGroups options must be set.

monitorBFMUsers userList

Where userList is the list of names of users, from the user registry, to which to

map the BPESystemMonitor J2EE role. The separator character is the vertical

line (|). This property is needed to install the business process container. This

parameter has no default value. Either or both monitorBFMUsers or

monitorBFMGroups must be set.

monitorBFMGroups groupList

Where groupList is the list of names of groups, from the user registry, to which

to map the BPESystemMonitor J2EE role. The separator character isthe vertical

line (|). This property is needed to install the business process container. This

parameter has no default value. Either or both monitorBFMUsers or

monitorBFMGroups must be set.

jmsBFMRunAsUser userID

Where userID is the run-as user ID from the user registry for the business

process container JMS API. This property is needed to install the business

process container. This parameter has no default value. It must be set.

jmsBFMRunAsPwd password

Where password is the password for the business process container JMS API.

This property is needed to install the business process container. This

parameter has no default value. It must be set.

adminHTMUsers userList

Where userList is the list of names of users, from the user registry, to which to

map the TaskSystemAdministrator Java 2 Enterprise Edition (J2EE) role. The

separator character is the vertical line (|). This property is needed to install the

task container. This parameter has no default value. Either one or both of the

adminHTMUsers or adminHTMGroups options must be set.

adminHTMGroups groupList

Where groupList is the list of names of groups, from the user registry, to which

to map the TaskSystemAdministrator J2EE role. The separator character is the

vertical line (|). This property is needed to install the task container. This

parameter has no default value. Either one or both of the adminHTMUsers or

adminHTMGroups options must be set.

monitorHTMUsers userList

Where userList is the list of names of users, from the user registry, to which to

map the TaskSystemMonitor J2EE role. The separator character is the vertical

16 IBM WebSphere Process Server for z/OS: Business Process Choreographer

line (|). This property is needed to install the task container. This parameter

has no default value. Either or both monitorHTMUsers or monitorHTMGroups

must be set.

monitorHTMGroups groupList

Where groupList is the list of names of groups, from the user registry, to which

to map the TaskSystemMonitor J2EE role. The separator character is the

vertical line (|). This property is needed to install the task container. This

parameter has no default value. Either or both monitorHTMUsers or

monitorHTMGroups must be set.

jmsHTMRunAsUser userID

Where userID is the run-as user ID from the user registry for the human task

container JMS API. This property is needed to install the human task container.

This parameter has no default value. It must be set.

jmsHTMRunAsPwd password

Where password is the password for the human task container JMS API. This

property is needed to install the human task container. This parameter has no

default value. It must be set.

contextRootBFM contextRootBFM

Where contextRootBFM is the context root for the Web Service Endpoint URL.

For a Business Flow Manager (BFM), on a server, the default context root is

/BFMIF_${nodeName}_${serverName}. On a cluster, the default is

/BFMIF_${clusterName}. It must be set.

contextRootHTM contextRootHTM

Where contextRootHTM is the context root for the Web Service Endpoint URL.

For a Human Task Manager (HTM), on a server, the default context root is

/HTMIF_${nodeName}_${serverName}. On a cluster, the default is

/HTMIF_${clusterName}. It must be set.

mailServerName mailServerName

Where mailServerName is the host name of the mail server to be used by the

Human Task Manager to send notification mails. It is needed when configuring

the mail session. If this parameter is not set, the mail session configuration will

be skipped. The default value is the fully qualified host name of the local host.

mailUser mailUserID

Where mailUserID is the user ID to access the mail server. It is needed to create

the mail session for the Human Task Manager to send notification mails. The

default value is empty, which is only appropriate if no authentication is

required.

mailPwd mailPassword

Where mailPassword is the password to access the mail server. It is needed to

create the mail session for the Human Task Manager to send notification mails.

hostName explorerVirtualHostname

Where explorerVirtualHostname is the virtual host where the Business Process

Choreographer Explorer will run. The default value is default_host.

explorerHost explorerURL

Where explorerURL is the URL of the Business Process Choreographer Explorer.

If this parameter is not specified for a non-cluster environments, a default

value is computed, for example, http://localhost:9080. The value of this

parameter is used for the EscalationMail.ClientDetailURL custom property of

the Human Task Manager.

Chapter 2. Configuring Business Process Choreographer 17

precompileJSPs { yes | no }

Determines whether Java Server Pages (JSPs) will be precompiled, or not.

remoteNodeName nodeName

Use this parameter and remoteServerName if you do not want to connect to

the local Business Process Choreographer Explorer. Do not specify this

parameter if you want to connect to the Business Process Choreographer server

identified by the node and server parameters or the cluster parameter.

remoteServerName serverName

Use this parameter and remoteNodeName if you do not want to connect to the

local Business Process Choreographer Explorer. Do not specify this parameter if

you want to connect to the Business Process Choreographer server identified

by the node and server parameters or the cluster parameter.

remoteClusterName clusterName

Use this parameter, if you do not want to connect to the local Business Process

Choreographer Explorer and you do not specify remoteNodeName and

remoteServerName. Do not specify this parameter if you want to connect to

the Business Process Choreographer server identified by the node and server

parameters or the cluster parameter.

contextRootExplorer contextRootExplorer

Where contextRootExplorer is the context root for the Business Process

Choreographer Explorer. The default value is /bpc, which results in the default

URL of http://host:port/contextRootExplorer. The context root must be

unique within the WebSphere cell.

createDB { yes | no }

Possible values are yes or no. If set to yes, the script will create the database.

For z/OS databases, this script cannot create the database, it can only create

the table spaces and tables. For other database types, the default value is yes.

 For information on how to create the database and storage groups for DB2 for

z/OS, see Creating databases and storage groups in the section titled Planning

your configuration.

dbType databaseType

Where databaseType is the database type. This is needed for installing the

business process container, for creating the database or database tables, and for

creating the data source. There is no default value. Possible values are:

v Cloudscape

v zOS-DB2

dbVersion DB2zOSversion

Where DB2zOSversion is either the value 7 or 8. This parameter is only

required when the database type is DB2 for z/OS. It has no default value.

dbHome databaseInstallPath

Where databaseInstallPath is the installation directory of the database system.

This value will vary depending on version of DB2 being used and where DB2

is installed.

dbJava JDBCDriverPath

Where JDBCDriverPath is the directory where the JDBC driver is located. This

parameter is only required for the following combinations of database and

driver types:

v DB2 or DB2 for z/OS, with a type 4 driver. The default value is

${dbHome}/java.

18 IBM WebSphere Process Server for z/OS: Business Process Choreographer

dbName databaseName

Where databaseName is the name of the Business Process Choreographer

database. It is used to create the database or the database tables, and for

creating the data source. The default value is BPEDB..

dbUser databaseUser

Where databaseUser is the user ID to access the database. It is used to create the

database tables and the data source. The default value depends on the

database and platform. For DB2 for z/OS the default value is db2inst1.

dbPwd databasePassword

Where databasePassword is the password for the user ID databaseUser.

dbAdmin databaseAdministratorUserID

Where databaseAdministratorUserID is the user ID of the database administrator.

It is only required when creating the database and database tables for the

following database types:

v For DB2 for z/OS, the default is db2inst1.

driverType JDBCDriverType

Where JDBCDriverType is the type of JDBC driver. It is used to create the data

source.

v For DB2, possible values are Universal or CLI. It is also used for creating the

database tables.

dbTablespaceDir databaseTablespacePath

Where databaseTablespacePath is the directory where the database table spaces

are created. It is used to create the database and database tables. This

parameter is only required for the following database types:

v For DB2, the default value is empty, which means that no table spaces are

created.

dbServerName databaseServerName

Where databaseServerName is the host name server that hosts the database for

Business Process Choreographer. database. It is used to create the data source.

For Sybase it is also used to create the database.

v For DB2, the default value is empty.

v For all other database types, the default value is the fully qualified host

name of the local host.

dbServerPort databaseServerPort

Where databaseServerPort is the TCP/IP port for the database server for

Business Process Choreographer. This parameter is required if dbServerName

is specified. For DB2, the default value is 50000.

dbStorageGroup DB2zOSStorageGroup

Where DB2zOSStorageGroup is the storage group used to create the Business

Process Choreographer database table . This parameter is only required for

DB2 on z/OS. There is no default value, and must not be empty. See Creating

the database and storage groups for more information/

dbSubSystem DB2zOSSubSystem

Where DB2zOSSubSystem is the DB2 sub system used to create the Business

Process Choreographer database table and the data source. This parameter is

only required for DB2 on z/OS. The default value is BPEDB.

dbSQLID DB2zOSSchemaQualifier

Where DB2zOSSchemaQualifier is the schema qualifier used to create the

Chapter 2. Configuring Business Process Choreographer 19

database tables. This parameter is only required for DB2 on z/OS. There is no

default value. The value can be empty. Only specify a value when using the

Universal JDBC driver type.

mqType JMSProviderType

Where JMSProviderType is the type of Java Message Service (JMS) provider to

use for Business Process Choreographer. It is used to create the queue manager

and the queues, the listener ports or ActivationSpecs, and the queue connection

factories.

 Where JMSProviderType is one of the following values:

WPM For default messaging (WebSphere Platform Messaging). This option is

always available.

MQSeries

For WebSphere MQ. This option requires that the product WebSphere

MQ is installed.

 The bpeconfig.sh utility will run createQueues.sh when you specify

MQSeries as your mqType.

 As a result of running createQueues.sh the following file is created:

/tmp/tmp_crt_ques.mqs. This file contains the WebSphere MQ

definitions that need to be provided to the WebSphere MQ

administrator. He or she can add the contents of this file to their

current jobs for configuring WebSphere MQ on z/OS.

createQM { yes | no})

Controls whether the script creates a local WebSphere MQ queue manager.

This option only has an effect if the parameter mqType has the value MQSeries.

The default value for this parameter is yes. Use the value no if you do not

want the script to create the WebSphere MQ queue manager, for example, if

you want to create the queue manager on a different server to the one where

you are running the script.

qmNameGet getQueueManagerName

Where getQueueManagerName is the name of the queue manager for GET

requests. It is used to create the queue manager and the queues, and to create

the listener ports and the queue connection factories. It must not contain the -

character. The default value for getQueueManagerName is

BPC_nodeName_serverName. This option only has an effect if the parameter

mqType has the value MQSeries.

mqClusterName appServerClusterName

Where appServerClusterName is the name of the WebSphere Application Server

cluster where the default JMS provider’s message engines are to be created.

This has nothing to do with a WebSphere MQ cluster. This option is only used

when configuring Business Process Choreographer in a cluster and the mqType

option is set to WPM.

qmNamePut putQueueManagerName

Where putQueueManagerName is the queue manager name for PUT requests. It

is used only when the mqClusterName parameter has been set. It is used to

create the queue manager and the queues, and to create the listener ports and

the queue connection factories. It must not contain the - character, and it must

not be the same as the queue manager name specified for the qmNameGet

parameter. The default value for putQueueManagerName is

BPCC_nodeName_serverName.

20 IBM WebSphere Process Server for z/OS: Business Process Choreographer

mqHome MQInstallationDirectory

Where MQInstallationDirectory is the installation directory of WebSphere MQ.

This is used to create the queue manager and the queues (Windows systems

only) and for creating the listener ports and the queue connection factories. If

the WebSphere variable MQ_INSTALL_ROOT is set, its value is used, and is

not modified. This option only has an effect if the parameter mqType has the

value MQSeries.

 If MQ_INSTALL_ROOT is not set, the default value used for

MQInstallationDirectory depends on the platform:

AIX: /usr/mqm

Solaris and HP-UX:

/opt/mqm

mqUser JMSProviderUserID

Where JMSProviderUserID is the user ID to access the JMS provider.

v If mqType has the value WPM, this parameter is used to create the

ActivationSpecs and the connection factories; the default value is the

currently logged on user.

v If mqType has the value MQSeries, this parameter is used on non-Windows

platforms to create the queue manager and the queues. The default value for

JMSProviderUserID is :

mqm

mqPwd JMSProviderPassword

Where JMSProviderPassword is the password for the user ID provided for

mqUser. This parameter has no default value.

mqSchemaName mqSchemaName

Where mqSchemaName is the name of the database schema for the default JMS

provider’s messaging engine. The default value is BPEME. This option is only

used when configuring Business Process Choreographer in a cluster and the

mqType option is set to WPM.

mqCreateTables { true | false})

This Boolean parameter controls whether the default JMS provider

automatically creates its tables in the message engine database upon the first

connection. The default value is true. This option is only used when

configuring Business Process Choreographer in a cluster and the mqType

option is set to WPM.

mqDataSource datasourceName

Where datasourceName is the JNDI name of the data source to be used by the

default JMS provider’s message engine. This must be a cluster-level data

source in the WebSphere cluster identified by mqClusterName. The underlying

database for the default JMS provider must be created manually. This option is

only used when configuring Business Process Choreographer in a cluster and

the mqType option is set to WPM.

shell shell

This parameter determines the shell that is used to run external commands.

The default value is /bin/sh.

createEventCollector { yes | no}

When run in batch mode, the default is yes, which causes the Business Process

Choreographer event collector application to be configured, which is required

by Business Process Choreographer Observer. If you do not want it installed,

set the value of this parameter to no.

Chapter 2. Configuring Business Process Choreographer 21

createObserver { yes | no}

When run in batch mode, the default is yes, which causes the Business Process

Choreographer Observer application to be configured. If you do not want it

installed, set the value of this parameter to no.

Running the configuration script interactively

This example, illustrates running the bpeconfig.jacl script to install and configure a

business process container that uses an existing DB2 database, a human task

container, and a Business Process Choreographer Explorer.

Restriction: When run interactively, this script cannot configure Business Process

Choreographer Observer, nor the necessary event collector application.

If you want to use Business Process Choreographer Observer, you

must perform “Configuring the Business Process Choreographer

Observer infrastructure” on page 84.

1. On the server, or for ND, on the deployment manager, start the script by

entering the command:

install_root/bin/wsadmin.sh

 -f install_root/ProcessChoreographer/sample/bpeconfig.jacl

2. Interactively enter responses to the questions that are displayed:

a. In an ND environment, you will be offered a cluster to configure in. If it is

not the correct cluster, enter No to be offered the next cluster. If it is the

correct cluster, enter Yes.

b. For the question Install the business process container?, enter Yes.

c. For the question User(s) to add to role BPESystemAdministrator, enter

the user IDs for the users who will perform the role of business process

administrator.

d. For the question Group(s) to add to role BPESystemAdministrator, enter

the groups from the domain user registry that are mapped onto the role of

business process administrator.

e. For the question User(s) to add to role BPESystemMonitor, enter the user

IDs for the users who will perform the role of business process monitor.

f. For the question Group(s) to add to role BPESystemMonitor, enter the

groups from the domain user registry that are mapped onto the role of

business process monitor.

g. If you get the question Use WebSphere default messaging or WebSphere MQ,

enter one of the two displayed options.

h. For the question Run-as UserId for role JMSAPIUser, enter the run-as user

ID that will be used for the JMSAPIUser role.

i. Enter the password for the run-as user ID.

j. For the question Use a DB2, an Informix, an Oracle, or an SQL Server

database [DB2/Informix/Oracle/MSSQL]?, for this example, enter DB2.

Selecting a different database results in other database-specific questions.

k. For the question Use WebSphere default messaging or WebSphere MQ

[WPM/MQSeries]?, select the JMS provider that you want to use.

l. If you selected WebSphere Platform Messaging (WPM), also enter the

following:

1) For the question Virtual Host for the SCA Web Service

[default_host]: , press Enter to accept the default value default_host.

22 IBM WebSphere Process Server for z/OS: Business Process Choreographer

2) For the question Context root for the SCA Web Service

[/BFMIF_PNODE_server1]:, press Enter to accept the default value

/BFMIF_PNODE_server1.
m. For the question Create the DataSource for the Process Choreographer

database?, enter Yes.

n. Enter the database name.

o. For the question Universal or CLI?, enter the type of the JDBC driver.

p. For the question DB2 User ID, enter the user ID used to create the database

tables and schema.

q. For the question Database server name (may be empty, set to use the

type 4 driver), enter the name of the server that hosts the database.

r. For the question Database server port, enter the database server port, for

example, 50000.

s. For the question Create the Process Choreographer database?, if your user

ID has sufficient authority to create the database you can enter Yes,

otherwise, if the database already exists, or if your user ID does not have

sufficient authority to create the database, enter No.

t. For the question DB2 tablespace directory (may be empty) enter the

directory for the table space, or leave it empty.

u. For the question Create the ActivationSpecs for the business flow

manager?, enter Yes or No.

v. If you get the question User ID for access to default messaging, enter the

user ID to use to access the default JMS provider.

w. If you get the question Name of the message engine cluster, enter the

name of the message engine cluster.

x. If you get the question Name of the message engine database schema, enter

the name of the message engine database schema.

y. If you get the question Automatically create the message engine database

tables [true/false]?, enter true to automatically create the message

engine database tables, otherwise enter false.

z. If you get the question Message engine datasource JNDI name, enter the

JNDI name of the message engine data source.

aa. For the question Install the task container?, enter Yes.

ab. For the question User(s) to add to role TaskSystemAdministrator, enter

the user IDs for the users who will perform the role of task administrator.

ac. For the question Group(s) to add to role TaskSystemAdministrator, enter

the groups from the domain user registry that are mapped onto the role of

task administrator.

ad. For the question User(s) to add to role TaskSystemMonitor, enter the

user IDs for the users who will perform the role of task monitor.

ae. For the question Run-as UserID for role EscalationUser, enter the run-as

user ID for the role of escalation user, for example db2admin.

af. For the question Context root for the SCA Web Service

[/HTMIF_PNODE_server1]: , enter the context root for the Service

Component Architecture (SCA) Web server, or press Enter to accept the

default value.

ag. For the question Create the mail notification session for the human

task manager?, enter No if you do not want to create the mail notification

session for the Human Task Manager. Otherwise, enter Yes, and specify

the mail transport host and user ID.

Chapter 2. Configuring Business Process Choreographer 23

ah. For the question Create the ActivationSpecs for the human task

manager?, enter Yes to create J2EE ActivationSpecs for the Human Task

Manager Message Driven Bean (MDB), otherwise enter No.

ai. If you get the question Configure in cluster ’MECluster’ [Yes/no]?,

enter Yes to configure in the specified cluster, otherwise, enter No.

aj. If you get the question Add JDBC provider permissions to server.policy

[Yes/no]?, enter Yes to automatically add the permissions for the JDBC

provider to the server.policy file, otherwise, enter No.

ak. For the question Install the Business Process Choreographer Explorer?,

enter Yes to install Business Process Choreographer Explorer, then for the

Virtual host for the Business Process Choreographer Explorer, enter

the name of the virtual host for Business Process Choreographer Explorer,

for example, default_host, then for the question Precompile JSPs?, enter

Yes if you want Java Server Pages (JSPs) to be precompiled, otherwise

enter No. For a remote Business Process Choreographer Explorer, for the

question Node of Process Choreographer to connect to [PNODE]: enter

the name of the Business Process Choreographer node to connect to, and

for the question Server of Process Choreographer to connect to

[server1]: enter the name of the Business Process Choreographer server

to connect to or press Enter to accept the default.

al. If you get the question Context root for the Business Process

Choreographer Explorer [/bpc]: , enter the context root for Business

Process Choreographer Explorer or press Enter to use the default value

/bpc.

am. For the question Create aliases for your_server in host your_host?,

enter Yes to create aliases for your server in the your virtual host,

otherwise enter No.

an. Various information is displayed, for example providing the URL of the

Business Process Choreographer Explorer and reminders where to find the

script files that you can use to configure Business Process Choreographer

Observer.

ao. For the question Enable global security using the Local OS user

registry?, enter Yes to enable global security using the local operating

system user registry, otherwise, enter No.

ap. For the question Server user ID, enter the server user ID.

aq. For the question Enforce Java 2 security?, enter Yes to enforce Java 2

security, otherwise, enter No.

ar. For the question Set ’com.ibm.SOAP.loginUserid’ in soap.client.props?,

enter Yes to set the login user ID in the SOAP client properties, otherwise,

enter No.

as. For the question Delete the temporary directory?, enter Yes to delete the

temporary directory specified, otherwise, enter No.
3. In case of problems, check the log files.

Log files

If you have problems creating the configuration using the bpeconfig.jacl script file,

check the following log files:

v bpeconfig.log

v wsadmin.traceout

Both files can be found in the logs directory for your profile:

24 IBM WebSphere Process Server for z/OS: Business Process Choreographer

v In the directory install_root/profiles/profileName/logs/.

Configuring the business process container using the installation

wizard

This describes how to create the necessary resources and then run the business

process container installation wizard.

You must configure the necessary resources and install the business process

container application before you can run applications that contain business

processes or human tasks. The recommended method for configuring the necessary

resources is by running bpeconfig.jacl.

Note: The installation wizard configures WebSphere resources only. If you choose

to configure the business process container by using the installation wizard,

you will still need to run the corresponding manual step(s) to create a

database (Cloudscape or DB2 for z/OS) and to create the WebSphere MQ

queues (if you are using WebSphere MQ as your Java Message Service (JMS)

provider).

 1. If you are preparing a clustered Business Process Choreographer setup:

a. Create the cluster: Perform ″Creating a clustered environment″ in the PDF

for Administering.

b. If you are using the default JMS messaging provider for your cluster:

1) Make sure that the cluster supports service applications as described in

″Preparing a server or cluster to support Service Component

Architecture applications″ in the PDF for Administering.

2) Create the database for the message engine’s data store. You can either

use the same database that is used for the Service Component

Architecture (SCA) message engines or a separate database. It is

recommended to use one messaging database for all buses that are

created by WebSphere Process Server, that is, for the SCA system bus,

the SCA application bus, the Common Event Infrastructure bus, and

the Business Process Choreographer bus. The database should be

accessible to all members of the cluster that hosts the message engine

to ensure failover availability of the message engine.

v If the JMS user is authorized to create tables, the default message

engine creates the necessary tables in the database the first time it is

accessed access.

v If the JMS user is not authorized to create tables, create the tables

before the default messaging provider tries to access the database.

You can use the sibDDLGenerator utility that is in the bin

subdirectory of your install_root directory to generate a DDL file that

can be used to create the tables.
 2. Create the database for Business Process Choreographer: Perform “Creating

the database for the business process container” on page 30.

 3. Make sure that the server is started and that you are logged on to the

administrative console with a user ID with sufficient administration rights.

 4. In the administrative console, select the server or cluster where you want to

install the business process container. Click one of the following:

v Servers → Application Servers → serverName

v Servers → Clusters → clusterName

Chapter 2. Configuring Business Process Choreographer 25

Where serverName or clusterName is the name of the application server or

cluster where you want to install the business process container. In a cluster,

you can select any application server, and the business process container is

installed simultaneously on all application servers in the cluster.

 5. Go to the Business Process Container settings. On the Configuration tab,

under Container Settings, expand Business process container settings, and

click Business process container.

 6. Verify that the business process container is not installed. There should be a

message indicating that the business process container is not currently

installed. If the business process container is already installed, perform

Chapter 3, “Removing the Business Process Choreographer configuration,” on

page 97 before starting the installation wizard.

 7. Start the installation wizard. In the Additional Properties section, click the

link Business process container installation wizard.

 8. Select the database configuration (wizard step 1):

a. In the JDBC Providers drop-down list, select the entry with the database

system, system version and Java Database Connectivity (JDBC) driver that

you are using. Where possible, the installation wizard offers appropriate

default values in the parameter fields. However, with some combinations

of browser and platform, no defaults are provided. In this case, you can

view the recommended values in “Business process container installation

wizard settings” on page 34.

b. For the Implementation class name use the default class name that is

provided for the JDBC driver implementation.

c. For Classpath enter the location of the Java archive (JAR) or the

compressed file that contains the JDBC driver. To use the path variable that

is displayed in the text field, it must be defined in Environment → Manage

WebSphere Variables.

d. The Data source user name must be a user ID that has the authority to

connect to the database and to modify the data. If the user ID has the

authority to create tables and indexes in the database, then the database

schema will be updated automatically, when necessary, after applying a

service or fix pack. This is not required for a Cloudscape database.

e. Enter the Data source password for the data source user name. This is not

required for a Cloudscape database.

f. The Custom properties field contains default values for the database that

you selected.

v If you are using a Cloudscape database that is not in the default

directory, change the value for the custom property databaseName to

specify the fully qualified location of the database.

v You might need to change or add some other properties. For more

information, see the Business process container installation wizard

settings page and the product documentation for your database system.
g. Click Next to go to the next step in the installation wizard.

 9. Select the JMS provider and security (wizard step 2):

a. In the drop-down list for JMS provider, select the messaging service for

the business process container to use.

v For default messaging, select Default messaging provider.

v For WebSphere MQ, select WebSphere MQ.
b. Use the default value for Queue Manager (BPC_nodeName_serverName). If

you are using the default messaging provider, this field is ignored.

26 IBM WebSphere Process Server for z/OS: Business Process Choreographer

c. If you are using the WebSphere MQ JMS provider and the WebSphere

environment variable ${MQ_INSTALL_ROOT} is not defined, make sure that

the Classpath points to the WebSphere MQ Java lib directory. By default,

MQ_INSTALL_ROOT is predefined with the value ${WAS_INSTALL_ROOT}/lib/
WMQ.

d. For the JMS user ID, enter a user ID that has administration rights for the

messaging service. Use root

e. For the JMS password, enter the password for the JMS user ID.

f. For the Webservices Endpoint, enter the Webservice endpoint for the

Webservice API.

g. For the JMS API User ID, enter a user ID from the user registry. This user

ID will be used to process asynchronous API calls.

h. For the JMS API Password, enter the password for the JMS API User ID.

i. For the Administrator security role mapping, enter the name of the group,

defined in the user registry, that will map onto the role of Business Process

Administrator.

j. For the System monitor security role mapping, enter the name of the

group in the user registry to map onto the role of Business Process System

Monitor.

k. Click Next to go to the next step in the installation wizard.
10. Select the JMS Resources and Business Process Choreographer Explorer

(wizard step 3): Either select Create new JMS resources using default values,

or perform the following:

a. Select Select existing JMS resources.

b. Use the Connection Factory drop-down list to select BPECF.

c. Use the Internal Queue drop-down list to select BPEIntQueue.

d. Use the External Request Processing Queue drop-down list to select

BPEApiQueue.

e. Use the Hold Queue drop-down list to select BPEHldQueue.

f. Use the Retention Queue drop-down list to select BPERetQueue.
11. Optional: To install Business Process Choreographer Explorer, select the

check box; otherwise, clear the check box. You can optionally specify the

context root. If you want to have more than one Business Process

Choreographer Explorer installed on the same server, at most one of them can

use the default context root /bpc.

12. Optional: To enable the audit log, select Enable audit logging for all

processes running in this container.

13. Optional: To use the Common Event Infrastructure, select Enable Common

Event Infrastructure logging for all processes running in this container.

14. Optional: To install Business Process Choreographer Observer select the

check box; otherwise, clear the check box. If you cannot select the check box,

make sure that make sure that the check box for Enable Common Event

Infrastructure logging for all processes running in this container is selected.

For JMS User ID, enter a user ID from the user registry that can be used to

connect to the CEI bus. For JMS password, enter the associated password.

15. Click Next to view the summary (wizard step 4).

16. Check that the information on the summary page is correct. The summary

includes reminders of which external resources are necessary. If you have not

already created them, you can continue configuring the business process

Chapter 2. Configuring Business Process Choreographer 27

container, but you must create the resources before you activate the business

process container. Printing the summary page helps you to create the correct

resources.

a. To make corrections, click Previous.

b. To install the business process container and define its resources, click

Finish. The progress is shown on the Installing page.
17. If the installation did not succeed, check for any error messages that can help

you correct the problem, then try again.

18. If the installation succeeded, click Save Master Configuration, then click

Save.

19. If you configured Business Process Choreographer in a cluster and you are

using the WebSphere MQ JMS provider: Perform “Customizing the

WebSphere MQ JMS resources in a cluster” on page 44.

20. Restart the application server.

21. Verify that the business process container has started successfully: In the

administrative console, select Applications → Enterprise Applications verify

that the status of the application named BPEContainer_scope is started. If you

installed the business process container on an application server, scope is

nodeName_serverName. If you installed the business process container on a

cluster scope is the cluster name.

If you also installed the Business Process Choreographer Explorer you should

also see an application running that is named BPCExplorer_scope if it uses the

default context root,/bpc or BPCExplorer_scope_contextroot if it does not use

the default context root.

If you installed the Business Process Choreographer Observer, you should also

see two applications running that are name BPCObserver_scope and

BPCECollector_scope

The business process container is configured.

Continue configuring at step Configuring the human task container, using the

installation wizard .

Creating the queue manager and queues for the business

process container

This topic describes how to create the WebSphere MQ queue manager and queues

on z/OS.

WebSphere MQ must already be installed.

Scripting is not available for creating queue managers on z/OS. Consult your MQ

administrator for information on creating queue manager (QMGR) and listeners on

z/OS.

If you are using WebSphere MQ as an external Java Message Service (JMS)

provider, you must create the queue manager and queues.

1. Create the queue definitions. Type the following:

cd install_root/ProcessChoreographer createQueues.sh z/OS

This command creates the file /tmp/tmp_crt_ques.mqs.

2. Tailor /tmp/tmp_crt_ques.mqs

Edit the contents of /tmp/tmp_crt_ques.mqs to meet your site-specific standards

as appropriate.

28 IBM WebSphere Process Server for z/OS: Business Process Choreographer

The file /tmp/tmp_crt_ques.mqs contains your site-specific standards as it pertains

to definitions for WebSphere MQ queues and queue manager.

The MQ administrator can use tmp_crt_ques.mqs to configure the WebSphere MQ

resources using the WebSphere MQ z/OS Commands in JCL scripts.

Continue configuring at step Create the database for Business Process

Choreographer.

Creating clustered queue managers and queues for the business

process container

If you are creating a WebSphere cluster setup of Business Process Choreographer

using a WebSphere MQ cluster, you must create the queue managers, queues,

cluster, repositories, channels, and listeners.

Note: Running createQueues.sh produces sample WebSphere MQ definitions only.

Consult with your WebSphere MQ administrator on using the sample

definitions.

1. Perform the following actions on each node:

a. Make sure that your user ID has the authority to create WebSphere MQ

queues.

b. Create the get and put queue managers, make them members of the

WebSphere MQ cluster.

cd install_root/ProcessChoreographer/config

createQueues.sh getQueueManager clusterName putQueueManagerName

See Using the bpeconfig.jacl script file to configure Business Process

Choreographer for information on parameters required to create clustered

queue managers and queues for the business process container.

If the queue managers already exist, they are used. If the queue managers

do not exist, they are created and used.

c. Start the WebSphere MQ command processor

d. For complex setups, it is recommended to enable remote administration of

the queue manager by entering the following MQ command:

DEFINE CHANNEL(’SYSTEM.ADMIN.SVRCONN’) TYPE(CHLTYPE)

e. If this queue manager is to be a repository for the WebSphere MQ cluster

enter the MQ command:

ALTER QMGR REPOS(’clusterName’) REPOSNL(’ ’)

f. Define a sender and a receiver channel for the queue manager to each

repository that is not hosted on this server, by entering the following MQ

commands. For each cluster receiver channel:

DEFINE CHANNEL(’TO.repositoryQueueManager.TCP’) +

 CHLTYPE(CLUSRCVR) +

 CLUSTER(’clusterName’) +

 CLUSNL(’ ’) +

 CONNAME(’repositoryIP-Address(port)’) +

 DESCR(’Cluster receiver channel at repositoryQueueManager TCPIP’) +

 MAXMSGL(4194304) +

 TRPTYPE(TCP) +

 MCAUSER(’principal’) +

 REPLACE

For each cluster sender channel:

Chapter 2. Configuring Business Process Choreographer 29

DEFINE CHANNEL(’TO.repositoryQueueManager.TCP’) +

 CHLTYPE(CLUSSDR) +

 CONNAME(’repositoryIP-Address(port)’) +

 CLUSTER(’clusterName’) +

 CLUSNL(’ ’) +

 DESCR(’Cluster sender channel to repositoryQueueManager TCPIP’) +

 MAXMSGL(4194304) +

 TRPTYPE(TCP) +

 MCAUSER(’targetPrincipal’) +

 REPLACE +

 NPMSPEED (NORMAL)

where:

repositoryQueueManager

The name of the queue manager hosting a repository.

clusterName

The name of the WebSphere MQ cluster of which all the queue

managers are a member.

repositoryIP-Address

The IP address of the node where the repository queue manager

resides.

port The IP port that the repository queue manager is using.

principal, targetPrincipal

The MCAUSER to use for the receive and send channels. For more

information about this value, refer to the WebSphere MQ

documentation.
g. For each queue manager, start a listener by entering the MQ command.

2. To verify the status of the channels on a server, enter the MQ command:

display chstatus(*)

The queue managers, queues, cluster, repositories, channels, and listeners exist.

Creating the database for the business process container

The business process container requires a database. This topic describes how to

create the database for Business Process Choreographer.

In a clustered Business Process Choreographer setup, one database serves all the

business process containers in the WebSphere cluster. In a non-clustered setup, the

database is dedicated to the business process container on one application server.

1. On the server that hosts the database, create the database according to the

description for your database system.

v “Creating a Cloudscape database for Business Process Choreographer” on

page 31.

v “Creating a DB2 for z/OS database for Business Process Choreographer” on

page 32.
2. On each server that runs Business Process Choreographer without a local

database, you must make the remote database accessible:

a. Install a suitable database client or Java Database Connectivity (JDBC)

driver on the server that hosts the application server.

b. If you are not using a type-4 JDBC driver, make the new database known to

the database client as follows:

For Cloudscape

No action is required, because Business Process Choreographer

supports only the embedded version of Cloudscape, which does not

30 IBM WebSphere Process Server for z/OS: Business Process Choreographer

support remote access. The Cloudscape Network Server is not

supported, because it has no XA support.

For DB2 Universal Database™

The database must be cataloged and accessible through an alias

name.
c. Test the connection to the database.

1) Click Resources → JDBC Providers

2) If necessary, select a different scope and click Apply. For clustered

Business Process Choreographer configurations, the data source can be

defined at the cluster level or server level. For non-clustered

configurations, the data source is defined at the server level.

3) Click provider_name → Data sources

4) Locate the appropriate data source, BPEDataSourcedatabase. For

example, BPEDataSourceCloudscape.

5) Select the check box for the data source, and click Test connection.

6) You should see a message indicating that the test connection was

successful.

The Business Process Choreographer database exists and is accessible from the

servers that host the application server and the deployment manager.

Continue configuring at step 3 on page 25.

Creating a Cloudscape database for Business Process

Choreographer

Use this task to create a Cloudscape database for Business Process Choreographer.

The Cloudscape database system is implemented in the Java language. It comes

with the WebSphere Process Server as several Java Archive (JAR) files.

The Cloudscape license that comes with WebSphere Process Server is only for

development and test, not for production purposes. Cloudscape cannot be used as

database system for Business Process Choreographer in a Network Deployment

environment. The Cloudscape version that comes with this product includes the

Cloudscape Network Server that supports client/server JDBC access over the

Distributed Relational Database Architecture™ (DRDA®) protocol. Because the

version of Cloudscape Network Server that is provided with this version of

WebSphere Process Server has no XA support, Business Process Choreographer can

only use the Embedded Cloudscape version that cannot be accessed remotely.

To create a Cloudscape database named BPEDB, perform the following actions:

1. Prepare to run the database creation script file by performing one of the

following:

v To prepare to create the database in the default location, manually create a

databases subdirectory in the appropriate profile directory. Create

install_root/profiles/Profile_name/databases. Change to the new

directory.

v To prepare to create a database location other than the default location,

change to the directory where you want the new database created. If you run

the business process container installation wizard, you must remember to

specify the fully qualified database location as the value of the custom

property databaseName.

Chapter 2. Configuring Business Process Choreographer 31

2. Copy the database creation script to the current directory. Copy the file

install_root/ProcessChoreographer/Cloudscape/createDatabase.sql

3. Check whether you have Java configured on your server. Enter the command:

java -version

If you get an error message, then in step 5, when you run the database creation

script, you must prefix the Java command with the full path to the Java

executable, add the path install_root/java/bin/

4. Read the instructions in the header of the database creation script,

createDatabase.sql, in an editor. The sample files are delivered in ASCII

format. Depending on the capabilities of the tool you use to view, edit and run

this file, you may need to convert the file to a readable format, EBCDIC for

example. For example, you can edit the directly in ASCII using viascii (viascii

createDatabase.sql. and then Use iconv to convert the file to EBCDIC so you

can use vi:

iconv –t IBM-1047 –f ISO8859-1 createDatabase.sql >

createDatabase_EBCDIC.sql

5. Run the database creation script file. Type the following:

java -Djava.ext.dirs=install_root/cloudscape/lib

 -Dij.protocol=jdbc:db2j: com.ibm.db2j.tools.ij

 install_root/ProcessChoreographer/Cloudscape/createDatabase.sql

6. If you also want Business Process Choreographer Observer to use this database,

perform the following:

a. Copy the following SQL scripts to your database server:

clearSchema_Observer.sql

createDatabase_Observer.sql

createSchema_Observer.sql

dropSchema_Observer.sql

v The SQL files are located in install_root/dbscripts/ProcessChoreographer/
Cloudscape/.

b. In a text editor, read the instructions in the header of the script file

createSchema_Observer.sql. Avoid using the Notepad editor, because it

does not display the file in a readable format.

c. Create the schema. From the directory where you created the database, run

the script file createSchema_Observer.sql as described in the header of the

script. The sample files are delivered in ASCII format. Depending on the

capabilities of the tool you use to view, edit and run this file, you may need

to convert the file to a readable format, EBCDIC for example. For example,

you can edit the directly in ASCII using viascii (viascii

createSchema_Observer.sql. and then Use iconv to convert the file to

EBCDIC.

d. In case of errors, you can run the script file dropSchema_Observer.sql to

drop the schema.

The database for Business Process Choreographer exists.

Continue configuring at step 2.

Creating a DB2 for z/OS database for Business Process

Choreographer

Use this task to create a DB2 for z/OS database for Business Process

Choreographer.

See DB2 Universal JDBC Driver Support for information on support for DB2

Universal JDBC Driver in WebSphere Process Server for z/OS.

32 IBM WebSphere Process Server for z/OS: Business Process Choreographer

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/cdat_jdbcdrvsuptzos.html

When using DB2 for z/OS, the following updates may be required:

v DB2 configuration parameters (zParms) need to be increased to support Business

Process Choreographer LOBs.

– _LOBVALA

– _LOBVALS
v Required DB2 Conversion services:

– CONVERSION 367,1208,ER;

– CONVERSION 1208,367,ER;

This topic describes how to create a DB2 for z/OS database and how to verify that

it is reachable from the server that hosts the application server.

1. You must have already installed WebSphere Process Server on a z/OS server.

2. On the z/OS server that hosts the database:

a. Log on the native z/OS environment.

b. If multiple DB2 systems are installed, decide which subsystem you want to

use.

c. Make a note of the IP port to which the DB2 subsystem is listening.

d. Using the DB2 administration menu, create a new database, for example,

named BPEDB. Note the name of the database.

e. Create a storage group and note the name.

f. Decide which user ID is used to connect to the database from the remote

server running WebSphere Process Server. Normally, for security reasons,

this user ID is not the one that you used to create the database.

g. Grant the user ID the rights to access the database and storage group. The

user ID must also have permission to create new tables for the database.

h. Decide if you want to create the tables and views in the schema of the

connected user ID or if you want to customize the schema qualifier

(_SQLID). If a single user ID accesses multiple databases with tables of the

same name, you must use different schema qualifiers to avoid name

collisions.
3. On the server that hosts the WebSphere Process Server:

a. Take note of the following information:

An important difference exists between DB2 for z/OS and DB2 for Linux,

UNIX, and Windows. DB2 for Linux, UNIX, and Windows does not have

the concept of a subsystem, but DB2 for z/OS does. To avoid confusion

between database name and subsystem name, it is important to understand

that because DB2 for z/OS runs in a subsystem, the catalog node and

catalog database commands must identify the appropriate subsystem. On

DB2 for Linux, UNIX, and Windows, the subsystem name is not a known

concept, so the database name that the catalog command makes a link to is

really the name of the DB2 for z/OS subsystem.

b. On the server that hosts your application server, change to the directory

where the Business Process Choreographer configuration scripts for your

database system are located:

v On Windows systems, depending on your DB2 version, enter one of the

following commands:

cd install_root\dbscripts\ProcessChoreographer\DB2zOSV7

cd install_root\dbscripts\ProcessChoreographer\DB2zOSV8

v On UNIX and Linux® systems, depending on your DB2 version, enter one

of the following commands:

Chapter 2. Configuring Business Process Choreographer 33

cd install_root/dbscripts/ProcessChoreographer/DB2zOSV7

cd install_root/dbscripts/ProcessChoreographer/DB2zOSV8

c. Edit the createTablespace.sql script. Replace @STOGRP@ with the storage

group name and replace @DBNAME@ with the database name (not the

subsystem name).

d. Run your customized version of the createTablespace.sql script, as

described in the header of the script. If you want to drop the table space,

use the dropTablespace.sql script.

e. Edit the createSchema.sql script.

1) Replace @STOGRP@ with the storage group name.

2) Replace @DBNAME@ with the database name (not the subsystem name).

3) Replace @_SQLID@ with the schema qualifier or remove @_SQLID@

(including the following dot) from the script. A custom schema qualifier

can only be used with the DB2 Universal JDBC driver and requires that

the configuration customSQLID property is set to the appropriate value.
f. Run your customized version of the createSchema.sql script, as described in

the header of the script. If this script does not work, or if you want to

remove the tables and views, use the dropSchema.sql script to drop the

schema, but replace @_SQLID@ before running the script.

The database for Business Process Choreographer exists.

Note: The SQL definitions are provided, you must add them to your DB2

environment manually.

Business process container installation wizard settings

Use the installation wizard to install and configure the business process container.

Access the business process container installation wizard by clicking Servers →

Application servers → server_name → Business Process Container Settings →

Business process container → Business process container installation wizard. This

page describes the installation wizard fields, in the order that they display in the

wizard.

Step 1 database configuration:

v JDBC provider

v Implementation class name

v Class path (for JDBC provider)

v Data source user name

v Data source password

v Custom Properties

Step 2 JMS provider and security:

v JMS provider

v Queue manager

v Class path (for the JMS provider)

v JMS user ID (for the JMS provider)

v JMS password (for the JMS provider)

v Context root for the Web Service endpoint

v JMS API user ID

34 IBM WebSphere Process Server for z/OS: Business Process Choreographer

v JMS API password

v Administrator security role mapping

v System monitor security role mapping

Step 3 Business Process Choreographer Explorer and logging:

v Install Business Process Choreographer Explorer

v Context root

v Enable CEI logging

v Enable audit logging

v Install Business Process Choreographer Observer

v JMS user ID (for the observer)

v JMS password (for the observer)

 Attention: After the container is configured, you can only change the logging

options, retry limit, and retention queue message limit. If you want to change any

of the other values, you must remove the existing Business Process Choreographer

configuration and then create a new one.

JDBC provider

You must create a new data source that is only used by Business Process

Choreographer. When you select your JDBC provider, appropriate defaults are

inserted in the Implementation class name field.

 Type Value

Mandatory Yes

Data type Drop-down list

Choices for z/OS Create a new XA data source for z/OS:

v Cloudscape 5.1 (Cloudscape JDBC

Provider (XA))

v DB2 Universal JDBC Driver on z/OS (type

2)

Note: If this driver is not selectable from

the drop down list, configure this data

source as described in “Creating a DB2 for

z/OS database for Business Process

Choreographer” on page 32.

Implementation class name

The Java class name of the Java Database Connectivity (JDBC) driver

implementation. Appropriate defaults are inserted in this field after you select your

JDBC provider, there is no need to change this value.

 Type Value

Mandatory Yes

Data type String

Default for Cloudscape 5.1 (Cloudscape

JDBC Provider (XA))

com.ibm.db2j.jdbc.DB2jXADataSource

Default for DB2 Universal JDBC Driver on

z/OS (type 2)

 com.ibm.db2.jcc.DB2ConnectionPoolDataSource

For more information about properties and settings for the database, refer to

Vendor-specific data sources minimum required settings.

Chapter 2. Configuring Business Process Choreographer 35

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/rdat_minreq.html

Class path (for JDBC provider)

The path to the Java archive (JAR) file or zip file that contains the Java Database

Connectivity (JDBC) driver. The JDBC driver provides the data source

implementation class. If the database is remote, this path indicates where the JDBC

driver is installed on the client computer.

 Type Value

Mandatory For Cloudscape

No, the JDBC driver is already on

the WebSphere classpath.

For DB2 Universal JDBC Driver on z/OS

Yes

Data type String

Default for Cloudscape 5.1 ${CLOUDSCAPE_JDBC_DRIVER_PATH}/db2j.jar

The value for

${CLOUDSCAPE_JDBC_DRIVER_PATH} is

predefined and does not need to be set.

Default for DB2 Universal JDBC Driver on

z/OS 7 (type 2)

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar

${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cisuz.jar

The value for

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/
db2jcc.jardepends on the installation root

directory of the corresponding DB2 Client or

DB2 Connect, and must be set in

Environment> Manage WebSphere

Variables. Typical values are:

On z/OS:

 /home/db2inst1/sqllib/java

Data source user name

A user ID that has the authority to connect to the database and to modify the data.

If the user ID has the authority to create tables and indexes in the database, then

the database schema will be updated automatically, when necessary, after applying

a service or fix pack.

 Type Value

Mandatory For Cloudscape

No

For DB2 Universal JDBC Driver on z/OS

Yes

Data type String

Default The user ID that is currently logged on to the

administrative console.

Data source password

The password for the data source user ID.

 Type Value

Mandatory For Cloudscape

No

For DB2 Universal JDBC Driver on z/OS

Yes

Data type String

36 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Type Value

Default None

Custom Properties

Extra parameters that are required by the database system.

 CAUTION:

It is not recommended that you change any of the optional properties before you

have configured and verified that your business process container is working.

Making such changes belongs to advanced tuning and troubleshooting, and can

cause your system to stop working.

 Type Value

Mandatory Yes

Data type String

Data format Multiple lines of Property=Value

Minimum required properties Refer to Vendor-specific data sources

minimum required settings.

Properties that are not listed in this table Properties that are optional or that are

ignored are not listed in this table. For

information about such properties, refer to

the documentation for your JDBC provider.

Required properties All of the required properties for each JDBC

provider are described below.

Required properties for Cloudscape databaseName = ${USER_INSTALL_ROOT}/

databases/BPEDB

Required string. Defines which

database to access. The value must

be a fully qualified path.
Remember: After running the wizard, make

sure that you create the database in the

location specified for databaseName.

Chapter 2. Configuring Business Process Choreographer 37

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/rdat_minreq.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/rdat_minreq.html

Type Value

Properties for DB2 z/OS 7 (DB2 Universal

JDBC Driver Provider)

databaseName=BPEDB

Required string. For DB2 UDB it

defines which database to access.

For DB2 z/OS it defines which

subsystem contains the DB2 z/OS

database.

driverType=2

Required integer. The JDBC

connectivity-type of a data source.

The only permitted value is 2.

serverName=″″

Optional string. The TCP/IP address

or host name for the DRDA server.

portNumber=50000

Optional integer. The TCP/IP port

number where the DRDA server

resides.

enableSQLJ=false

Optional boolean. This value is used

to indicate whether SQLJ operations

may be performed with this data

source. If enabled, this data source

can be used for both JDBC and SQLJ

calls. Otherwise, only JDBC usage is

permitted.

description=DataSource for Business

Process Choreographer

Optional string. Description of the

data source. Not used by the data

source object. Used for information

purposes only.

fullyMaterializeLobData=true

Optional boolean. This setting

controls whether or not LOB

locators are used to fetch LOB data.

If enabled, LOB data is not

streamed, but is fully materialized

with locators when the user requests

a stream on the LOB column. The

default value is true.

resultSetHoldability=2

Optional integer. Determine whether

ResultSets are closed or kept open

when committing a transaction. The

possible values are: 1

(HOLD_CURSORS_OVER_COMMIT),

2

(CLOSE_CURSORS_AT_COMMIT).

currentPackageSet=″″

Optional string. This property is

used in conjunction with the

DB2Binder - collection option which

is given when the JDBC/CLI

packageset is bound during

installation by the DBA.

readOnly=false

Optional boolean. This property

creates a read only connection.

deferPrepares=false

Optional boolean. This property

provides a performance directive

that affects the internal semantics of

the input data type conversion

capability of the driver. If it is set to

″true″ the Universal driver defers

38 IBM WebSphere Process Server for z/OS: Business Process Choreographer

JMS provider

Specifies which messaging service the business process container uses.

 Type Value

Mandatory Yes

Data type Drop-down list

Choices Default messaging provider

WebSphere MQ

Queue manager

The name of the queue manager that is used by the business process container.

 Type Value

Mandatory If you selected WebSphere MQ JMS Provider;

otherwise, this field is disabled.

Data type String

Value Your queue manager name, for example,

BPC_nodeName_serverName.

Class path (JMS provider)

The path to the MQ Java lib directory.

 Type Value

Mandatory If the WebSphere environment variable

${MQ_INSTALL_ROOT} is not defined to point to

the WebSphere MQ installation root

directory.

Enabled If you selected WebSphere MQ JMS Provider;

otherwise, this field is disabled.

Data type String

Default The default value for the class path depends

on the local MQ installation:

For z/OS

/opt/mqm/java/lib

JMS user ID

Used to authenticate the connection to the Java Message Service (JMS) provider.

This user ID must have administration rights for the messaging service.

 Type Value

Mandatory Yes

Data type String

Restrictions If you are using WebSphere default

messaging, the JMS user ID must be less

than or equal to 12 characters.

Default The user ID that you used to log into the

administrative console.

For z/OS Use root. The user ID must be a member of

the group mqm.

JMS password

The password for the Java Message Service (JMS) user ID.

Chapter 2. Configuring Business Process Choreographer 39

Type Value

Mandatory If you selected WebSphere JMS Provider;

otherwise, this field is disabled.

Data type String

Default None

WebService Endpoint context root

The root context used for the Web service.

 Type Value

Mandatory Yes

Data type String

Default when configured on a server /BFMIF_${nodeName}_${serverName}

Default when configure on a cluster /BFMIF_${clusterName}

JMS API user ID

The user ID that the business process container message-driven bean (MDB) uses

when processing asynchronous API calls.

 Type Value

Mandatory Yes

Data type String

Description If WebSphere security is enabled, even if you

do not use the JMS API API, you must

specify a valid user ID. This ID does not

need any special authorizations.

If WebSphere security is enabled and you

plan to use the JMS API, this user ID must

either be one that is given the appropriate

authorities when the process is modeled, or

more commonly, it must be a member of a

group that was granted the necessary

authorities during modeling. The possible

staff authorities associated with processes

are: Administrator, Reader, and Starter. For

activities, a user ID can only perform the

sendEvent action if it is a potential owner of

the associated receiveEvent.

If you want to support all the actions on

processes through the JMS API, you can

specify a user ID that is a member of the

J2EE BPESystemAdministrator role. However,

in a production system, the more

fine-grained security approach is

recommended.

Setting up Roles using RACF security:

These RACF permissions apply when the

following security field is specified:

v com.ibm.security.SAF.delegation= true

RDEFINE EJBROLE JMSAPIUser UACC(NONE)

APPLDATA(’ userid’)

40 IBM WebSphere Process Server for z/OS: Business Process Choreographer

JMS API password

The password for the JMS API User ID.

 Type Value

Mandatory If WebSphere security is enabled (even if you

do not use the JMS API)

Data type String

Administrator security role mapping

The group from the domain user registry that is mapped onto the role of business

process administrator.

 Type Value

Mandatory Yes

Data type String

Default None

Restrictions The group specified must already exist in the

domain user registry. The user registry can

be the local operating system, Lightweight

Directory Access Protocol (LDAP), or custom

registry.

Setting up Roles using RACF security:

These RACF permissions apply when the

following security field is specified:

v com.ibm.security.SAF.authorization=

true

RDEFINE EJBROLE BPESystemAdministrator UACC(NONE)

PERMIT BPESystemAdministrator CLASS(EJBROLE)

ID(userid) ACCESS(READ)

System monitor security role mapping

The group from the domain user registry that is mapped onto the role of business

process monitor.

 Type Value

Mandatory Yes

Data type String

Default None

Restrictions The group specified must already exist in the

domain user registry. The user registry can

be the local operating system, Lightweight

Directory Access Protocol (LDAP), or custom

registry.

Setting up Roles using RACF security:

These RACF permissions apply when the

following security fields are specified:

v com.ibm.security.SAF.authorization=

true

RDEFINE EJBROLE BPESystemMonitor UACC(NONE)

PERMIT BPESystemMonitor CLASS(EJBROLE)

ID(userid) ACCESS(READ)

Chapter 2. Configuring Business Process Choreographer 41

Business Process Choreographer Explorer

If this check box is selected, the Business Process Choreographer Explorer is also

installed.

 Type Value

Data type Check box

Default selected

Context root

This context root becomes part of the URL for the Business Process Choreographer

Explorer.

 Type Value

Data type String

Default /bpc

Restrictions If you configure multiple instances of the

Business Process Choreographer Explorer,

each instance must have a root context that is

unique in the WebSphere cell.

Enable audit logging

Audit logging can be enabled or disabled.

 Type Value

Data type Check box

Default Not selected

Enable Common Event Infrastructure logging

Common Event Infrastructure (CEI) logging can be enabled or disabled.

 Type Value

Data type Check box

Default Not selected

Business Process Choreographer Observer

If this check box is selected, the Business Process Choreographer Observer and

event collector are also installed.

 Type Value

Data type Check box

Mandatory No

Default Not selected (the Business Process

Choreographer Observer will not be

installed)

Dependencies CEI logging must be enabled before you can

select this option.

JMS user ID (for the observer)

The user ID the Business Process Choreographer Observer uses to authenticate

against the CEI bus.

42 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Type Value

Mandatory If you install the Business Process

Choreographer Observer

Data type String

JMS password (for the observer)

The password for the JMS API User ID.

 Type Value

Mandatory If you install the Business Process

Choreographer Observer

Data type String

Business process container settings

Use this panel to manage business process containers.

A business process container provides services to run business processes within an

application server. To view this administrative console page, click Servers →

Application Servers → server_name → Container Settings → Business Process

Container.

Note: Changes made on this panel do not affect the server until after it is

restarted.

Enable Common Event Infrastructure logging

Common Event Infrastructure (CEI) logging can be enabled or disabled.

 Type Value

Data type Check box

Default Not selected

Enable audit logging

Audit logging can be enabled or disabled.

 Type Value

Data type Check box

Default Not selected

Retry Limit

Specifies the maximum number of retries for processing a message. When the limit

is reached, the message is sent to the Listener Port for Unprocessed Messages.

 Type Value

Data type Integer

Default 5

Range 2 to 10 (recommended)

Retention Queue Message Limit

The maximum number of messages that can be stored in the retention queue.

When the limit is reached, the messages are sent to the queue for internal messages

again and the process container switches into quiesce mode.

Chapter 2. Configuring Business Process Choreographer 43

Type Value

Data type Integer

Default 20

Retention Queue

The JNDI name of the queue that contains messages that cannot be processed

currently, and that require a retry later.

 Type Value

Data type Read-only string

Default jms/BPERetQueue

Hold Queue

The JNDI name of the queue that holds any messages that failed processing more

times than the retry limit.

 Type Value

Data type Read-only string

Default jms/BPEHldQueue

Customizing the WebSphere MQ JMS resources in a cluster

Use this task to customize the connection factory resources for business process

containers that are in a cluster and use the WebSphere MQ JMS provider.

Do not perform this task if you are using default messaging. If you are using the

WebSphere MQ JMS provider, perform the following steps for each application

server in the cluster:

1. Open the connection factory page: Click Resources → JMS Providers →

WebSphere MQ → Scope: Server → Apply → WebSphere MQ connection

factories.

2. Select the business process container connection factory BPECF and set the

property values for the type of queue manager configuration that you are

using:

v For a central queue manager:

 Property Description

Host The host name of the server that is hosting the central queue

manager.

Port The port number that the central queue manager is using.

Transport Type Client

Client ID The message channel agent (MCA) user ID to use. This is

normally the owner or creator of the queue manager, typically

this is the root user..

CCSID Use the value 819 .

v For a cluster of queue managers:

 Property Description

Transport Type Bindings or Client

Queue Manager The name of the server get queue manager.

44 IBM WebSphere Process Server for z/OS: Business Process Choreographer

When using WebSphere MQ, the local bindings transport type is slightly

faster than using the client transport type, but has the effect that you must

stop the entire application server to stop the local WebSphere MQ queue

manager. If you specify Client, you must also provide the host name and

port number for the get queue manager.
3. Select the business process container connection factory BPECFC and set the

property values for the type of queue manager configuration you are using:

v For a central queue manager:

 Property Description

Host The host name of the server that is hosting the central queue

manager.

Port The port number that the central queue manager is using.

Transport Type Client

Client ID The message channel agent (MCA) user ID to use. This is

normally the owner or creator of the queue manager, typically

this is the root user.

CCSID Use the value 819

v For a cluster of queue managers:

 Property Description

Host The host name of the application server node.

Port The port number used by the put queue manager of this

application server’s .

Transport Type Client

Client ID The message channel agent (MCA) user ID to use. This is

normally the owner or creator of the queue manager, typically

this is the root user.

CCSID 819

4. Select the human task manager connection factory HTMCF and set the

property values for the type of queue manager configuration that you are

using:

v For a central queue manager:

 Property Description

Host The host name of the server that is hosting the central queue

manager.

Port The port number that the central queue manager is using.

Transport Type Client

Client ID The message channel agent (MCA) user ID to use. This is

normally the owner or creator of the queue manager, typically

this is the root user..

CCSID Use the value 819 .

v For a cluster of queue managers:

 Property Description

Transport Type Bindings or Client

Queue Manager The name of the server get queue manager.

Chapter 2. Configuring Business Process Choreographer 45

When using WebSphere MQ, the local bindings transport type is slightly

faster than using the client transport type, but has the effect that you must

stop the entire application server to stop the local WebSphere MQ queue

manager. If you specify Client, you must also provide the host name and

port number for the get queue manager.

The connection factories for the business process containers have been installed in

the cluster and are configured.

Continue configuring at step 20 on page 28.

Configuring the human task container, using the installation wizard

Use this task to configure the human task container.

Before configuring the human task container, see information on configuring the

business process container manually in Chapter 2, “Configuring Business Process

Choreographer,” on page 11.

If you have run the bpeconfig.jacl script, the human task container is already

configured. The following steps describe how to configure the human task

container using the installation wizard.

 1. In the administrative console, select the server or cluster where you want to

install the business process container. Click one of the following:

v Servers → Application Servers → serverName

v Servers → Clusters → clusterName

Where serverName or clusterName is the name of the application server or

cluster where you want to install the human task container.

 2. In the Container Settings section, click Human task container settings →

Human task container → Human task container installation wizard (in the

Additional Properties section). Where possible, the installation wizard offers

appropriate default values in the parameter fields, you can view the

recommended values on the “Human task container installation wizard

settings” on page 48.

 3. Verify that the human task container is not configured. There should be a

message indicating that the Human Task Manager is not currently installed. If

the human task container is already configured, remove the configuration

before you start the installation wizard. For details about how to remove the

configuration, see Removing the Business Process Choreographer

configuration.

 4. Select the JMS provider and security settings (step 1):

a. In the drop-down list for JMS provider, select the messaging service that

is used by the business process container.

v For default messaging, select Default messaging provider.

v For WebSphere MQ, select WebSphere MQ.
b. Use the default value for Queue Manager (BPC_nodeName_serverName). If

you are using the default messaging provider, this field is ignored.

c. If you are using external messaging (WebSphere MQ JMS provider) and

you have not defined the WebSphere environment variable

${MQ_INSTALL_ROOT}, make sure that Classpath points to the WebSphere

MQ Java lib directory.

46 IBM WebSphere Process Server for z/OS: Business Process Choreographer

d. For the JMS user ID, enter a user ID that has administration rights for the

messaging service. This user ID will be used to connect to the JMS queue

manager. Use root

e. For the JMS password, enter the password for the JMS user ID.

f. For the Webservices Endpoint, enter the Webservice endpoint for the

Webservice API.

g. For Escalation user ID, enter the user ID that will be used by the human

task container to perform scheduled actions, for example triggering

escalations to verify the expected task state, timed task deletion, and task

expiration. Use root

h. For Escalation password, enter the password for the escalation user ID.

i. For the Administrator security role mapping, enter the name of the group,

defined in the user registry, that will map onto the role of Business Process

Administrator. On Windows systems, for example, you can specify the

group Administrators.

j. For the System monitor security role mapping, enter the name of the

group in the user registry to map onto the role of Business Process System

Monitor. On Windows systems, for example, you can specify the group

Administrators.

k. Click Next to go to step 2 in the installation wizard.
 5. Optional: Select Mail session to create the default mail session resource with

cell scope.

v If you are configuring the human task container on a server, the default

mail session is named mail/HTMNotification_nodeName_serverName.

v If you are configuring the human task container on a cluster, the default

mail session is named mail/HTMNotification_clusterName.

Attention: If this is not set, no escalation mails are sent.

 6. Optional: To use the Common Event Infrastructure, select Enable Common

Event Infrastructure logging .

 7. Optional: To enable the audit log, select Enable audit logging for all human

tasks .

 8. Click Next to view the Summary (step 3).

 9. Check that the information on the summary page is correct. The summary

includes reminders of which external resources are necessary. If you have not

already created them, you can continue configuring the human task container,

but you must create the resources before you activate the human task

container. Printing the summary page helps you to create the correct

resources.

a. To make corrections, click Previous.

b. To install the human task container and define its resources, click Finish.

The progress is shown on the Installing page.

c. Verify that no error messages are displayed.
10. If you selected the Mail session option in step 5, you must set the mail

transport host:

a. Click Resources → Mail Providers.

b. Select the cell scope: Built-in Mail Provider.

c. Under Mail sessions, click HTMMailSession_scope, where scope consists

of the cluster name or the node and server names, then set the Mail

transport host.

Chapter 2. Configuring Business Process Choreographer 47

d. If the mail transport host is secured, also set Mail transport user ID and

Mail transport password.

e. Click OK.
11. Click Save Master Configuration, then click Save.

12. Restart the application server.

13. If the container did not install successfully, check for any error messages that

can help you correct the problem, then repeat this task.

Check the administrative console or the SystemOut.log file for the application

server. On a cluster, check the log for all application servers in the cluster.

The human task container is configured.

Continue configuring at step 3 on page 12.

Human task container installation wizard settings

Use the installation wizard to install and configure the human task container.

Access the human task container installation wizard by clicking Servers →

Application servers → server_name. Then in the Container Settings section, click

Human task container settings → Human task container → Human task container

installation wizard. This page describes the installation wizard fields, in the order

in which they are displayed in the wizard.

Step 1 JMS provider and security:

v JMS provider

v Queue manager

v Class path

v JMS user ID (for the JMS provider)

v JMS password (for the JMS provider)

v Webservice Endpoint context root

v Escalation user ID

v Escalation password

v Administrator security role mapping

v System monitor security role mapping

Step 2 Mail session and logging:

v Mail session

v Enable CEI logging

v Enable audit log

 Attention: After applying these fields, you can only enable and disable the

logging options.

JMS provider

Specifies which messaging service the human task container uses.

 Type Value

Mandatory Yes

Data type Drop-down list

Choices

 WebSphere MQ

 Default messaging provider

48 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Type Value

Default Default messaging provider

Queue manager

The name of the queue manager that is used by the human task container.

 Type Value

Mandatory If you selected WebSphere MQ JMS Provider;

otherwise, this field is disabled.

Data type String

Value Your queue manager name, for example,

BPC_nodeName_serverName.

Class path

The path to the MQ Java lib directory.

 Type Value

Mandatory If the WebSphere environment variable

MQ_INSTALL_ROOT is not defined to point to

the WebSphere MQ installation root

directory.

Enabled If you selected WebSphere MQ JMS Provider;

otherwise, this field is disabled.

Data type String

Default The default value for the class path depends

on the local MQ installation:

For z/OS

/opt/mqm/java/lib

JMS user ID

Used to authenticate the connection to the Java Message Service (JMS) provider.

This user ID must have administration rights for the messaging service. It will be

used to connect to the JMS queue manager.

 Type Value

Mandatory Yes

Data type String

Restrictions If you are using WebSphere default

messaging, the JMS user ID must be less

than or equal to 12 characters.

Default The user ID that you used to log into the

administrative console.

For z/OS Use root. The user ID must be a member of

the group mqm.

JMS password

The password for the Java Message Service (JMS) user ID.

 Type Value

Mandatory If you selected WebSphere JMS Provider;

otherwise, this field is disabled.

Data type String

Default None

Chapter 2. Configuring Business Process Choreographer 49

Webservice Endpoint context root

The root context used for the Web service.

 Type Value

Mandatory Yes

Data type String

Default when configured on a server /HTMIF_nodeName}_serverName

Default when configured on a cluster /HTMIF_clusterName

The context root entered here is embedded in the URL for the Web service

endpoint: http://host:port/contextRoot/sca/com/ibm/task/api/sca/HTMWS.

Escalation user ID

A user ID used by the human task container to perform scheduled actions.

 Type Value

Mandatory Yes, even if no escalation mails will be sent.

Data type String

Description This is the run-as user ID for the Human

Task Manager message driven bean (MDB) to

perform scheduled escalation, deletion and

expiration actions.

Escalation password

The password for the escalation user ID.

 Type Value

Mandatory Yes

Data type String

Administrator security role mapping

The group from the user registry that is mapped onto the role of task

administrator.

 Type Value

Mandatory Yes

Data type String

Default None

Restrictions The user registry can be the local operating

system, Lightweight Directory Access

Protocol (LDAP), or custom registry. The

group that is specified must already exist in

the user registry being used.

System monitor security role mapping

The group from the user registry that is mapped onto the role of task monitor.

 Type Value

Mandatory Yes

Data type String

Default None

50 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Type Value

Restrictions The user registry can be the local operating

system, Lightweight Directory Access

Protocol (LDAP), or custom registry. The

group that is specified must already exist in

the user registry being used.

Mail session

If you select the mail session check box, a mail session will be created with cell

scope. This is necessary for sending escalation mails.

 Type Value

Data type Check box

Default Not selected

v On a server, the default mail session name is mail/
HTMNotification_node_name_server_name.

v On a cluster, the default mail session name is mail/
HTMNotification_cluster_name.

Enable Common Event Infrastructure logging

Common Event Infrastructure (CEI) logging can be enabled or disabled.

 Type Value

Data type Check box

Default Not selected

Enable audit logging

Audit logging can be enabled or disabled.

 Type Value

Data type Check box

Default Not selected

Human task container settings

Use this panel to manage human task containers.

A human task container provides services to run human task within an application

server. To view this administrative console page, click Servers → Application

Servers → server_name → Human task container settings → Human task container.

Note: Changes made on this panel do not affect the server until after it is

restarted.

E-mail session JNDI name

The Java Naming and Directory Interface (JNDI) name of the mail session resource

that will be used by the human task container to send escalation mails.

 Type Value

Data type Read-only string

Default when configured on a server mail/HTMNotification_nodeName_serverName

Default when configured on a cluster mail/HTMNotification_clusterName

Chapter 2. Configuring Business Process Choreographer 51

Enable Common Event Infrastructure logging

Common Event Infrastructure (CEI) logging can be enabled or disabled.

 Type Value

Data type Check box

Default Not selected

Enable audit logging

Audit logging can be enabled or disabled.

 Type Value

Data type Check box

Default Not selected

Sender e-mail address

The address that will be shown as the sender for escalation e-mails.

 Type Value

Data type String

Default taskmanager.emailservice

@htm.companydomain

Escalation URL prefix

This prefix is used to provide a link in escalation e-mails for more details about the

escalation.

 Type Value

Data type String

Default None

Task URL prefix

The prefix for the URL that is included in e-mails for more details about a task.

 Type Value

Data type String

Default None

Administrator URL prefix

The prefix for the URL that is included in the escalation e-mail received by

recipients who perform the task administrator role.

 Type Value

Data type String

Default None

Process Explorer URL prefix

The prefix for the URL for the Business Process Choreographer Explorer.

 Type Value

Data type String

Default None

52 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Staff query refresh schedule

The schedule for refreshing staff queries.

 Type Value

Data type String

Format This field uses the crontab format <Minute>

<Hour> <Day_of_the_Month>

<Month_of_the_Year> <Day_of_the_Week>

<Command> according to

com.ibm.websphere.scheduler.UserCalendar

Example To refresh the staff queries once per hour on

Thursdays, use the schedule 0 * * * 4 ?

Default 0 0 1 * * ? (midnight on the first of each

month)

Timeout for staff query result

The duration in seconds that the results of a staff query are considered to be valid.

After this duration, the staff query results will expire.

 Type Value

Data type Integer

Default 3600

Units Seconds

Enable group work items

Select this check box to enable group work items. Any applications that were

written for a version before Version 6.0.2 that use one or both of the interfaces

com.ibm.bpe.api.StaffResultSet or com.ibm.task.api.StaffResultSet should be

modified in order to cope with group work items before group work items are

enabled.

 Type Value

Data type Check box

Default Not selected (group work items are not

enabled to ensure compatibility with

applications written before Version 6.0.2)

Human task container custom properties

Use this panel to manage custom properties for the human task container.

Use custom properties to set additional configuration parameters for the human

task container, for example, for sending e-mails when escalation events occur. To

view this administrative console page, click Servers → Application Servers →

server_name → Human task container settings → Human Task Container → Custom

Properties.

EscalationEmail.ClientDetailURL:

The URL for the escalation details view in Business Process Choreographer

Explorer or in a custom Web client application. You can use the

htm:task.ClientDetailURL variable to query the value of this property. This property

is only for compatibility with version 6.0.1 tasks. If your tasks were created using

Version 6.0.2 or later, this property has no effect.

Chapter 2. Configuring Business Process Choreographer 53

Type Value

Data type String

Default http://clientapphost[:port]/bpc/
DetailsView.jsp?id=

EscalationEmail.Subject:

The e-mails that are sent when an escalation occurs have the subject that you

specify here. You can use task or process variables in the subject string. This

property is only for compatibility with version 6.0.1 tasks. If your tasks were

created using Version 6.0.2 or later, this property has no effect.

 Type Value

Data type String

Default The task ’%htm:task.displayName%’ has

been escalated

EscalationEmail.Template:

The URL for the template file that is used for the body of escalation e-mails. The

file can be an HTML file or a text file and it can contain task and process variables

that are resolved when the e-mail is created. This property is only for compatibility

with version 6.0.1 tasks. If your tasks were created using Version 6.0.2 or later, this

property has no effect.

 Type Value

Data type String

Default file:${WAS_INSTALL_ROOT}/
ProcessChoreographer/sample/

emailNotification.html

Configuring the LDAP staff plug-in provider

Use this task to configure the LDAP staff plug-in provider that Business Process

Choreographer uses to determine who can start a process or claim an activity or a

task.

Each type of supported user directory service requires a corresponding staff

plug-in. The following staff plug-ins are supported:

 Table 1. Supported staff plug-in providers

User directory service Plug-in provider

Lightweight Directory Access Protocol

(LDAP)

LDAP Staff Plug-in Provider

Local operating system user registry System Staff Plug-in Provider

WebSphere Application Server user registry User Registry Staff Plug-in Provider

All of these plug-ins are already installed. You can use the user registry and system

plug-ins without any configuration.

54 IBM WebSphere Process Server for z/OS: Business Process Choreographer

The LDAP staff plug-in is configured for an LDAP server with anonymous access;

the LDAP server is local to the installed application server. You can change the

configuration of the LDAP plug-in.

1. In the administrative console, click Resources → Staff Plugin Provider.

2. If the scope is not set to Node, select Node and click Apply.

3. To create a new LDAP configuration:

a. Click the name of the LDAP staff plug-in provider.

b. Select Staff Plugin Configuration.

c. Click New → Browse, and select the sample Extensible Stylesheet Language

(XSL) transformation file to use. The standard XSL transformation for LDAP

is located ininstall_root/ProcessChoreographer/Staff/
LDAPTransformation.xsl Do not modify this transformation file. If you need

to customize the transformations to match the LDAP schema of your

organization, modify a copy that has a different file name.

d. Click Next.

e. Enter an administrative name for the staff plug-in provider.

f. Enter a description.

g. Enter the Java Naming and Directory Interface (JNDI) name for business

processes to use in referencing this plug-in, for example,

bpe/staff/ldapserver1

h. Click Apply.

i. Click Custom Properties.

j. For each of the required properties and for any optional properties that you

want to set, click the name of the property, enter a value, and click OK.

k. To apply the changes, click Save. This table describes each property for the

LDAP plug-in.

LDAP plug-in property

Required or

optional Comments

AuthenticationAlias Optional The authentication alias used to connect to LDAP, for

example, mycomputer/My LDAP Alias. You must define

this alias in the administrative console by clicking

Security → Global security → JAAS Configuration → J2C

Authentication Data. If this alias is not set, anonymous

logon to the LDAP server is used.

AuthenticationType Optional If the AuthenticationType property is not set, the default

logon is anonymous authentication. In all other cases,

the default is simple authentication.

BaseDN Required The base distinguished name (DN) for all LDAP search

operations, for example, ″o=mycompany, c=us″

CasesentivenessForObjectclasses Optional Determines whether the names of LDAP object classes

are case-sensitive.

ContextFactory Required Sets the Java Naming and Directory Interface (JNDI)

context factory, for example,

com.sun.jndi.ldap.LdapCtxFactory

ProviderURL Required This Web address must point to the LDAP JNDI

directory server and port. The format must be in normal

JNDI syntax, for example, ldap://localhost:389

Chapter 2. Configuring Business Process Choreographer 55

LDAP plug-in property

Required or

optional Comments

SearchScope Required The default search scope for all search operations.

Determines how deep to search beneath the baseDN

property. Specify one of the following values:

objectScope, onelevelScope, or subtreeScope

additionalParameterName1-5 and

additionalParameterValue1-5

Optional Use these name-value pairs to set up to five arbitrary

JNDI properties for the connection to the LDAP server.

4. To activate the plug-in, stop and start the server.

5. If you have problems with any of these steps, refer to the Troubleshooting

WebSphere Process Server PDF.

Processes can now use the staff support services to resolve staff queries, and to

determine which activities can be performed by certain people.

Continue configuring at step .

Staff service settings

Use this page to enable or disable the staff service, which manages staff plug-in

resources used by the server.

To view this administrative console page, click Servers → Application Servers →

server_name. Then in the section Business Integration, click Staff Service.

Enable service at server startup

Specifies whether the server attempts to start the staff service.

 Type Value

Default Selected

Range Selected

When the application server starts, it

attempts to start the staff service

automatically.

Cleared

The server does not try to start the

staff service. If staff plug-in

resources are used on this server,

the system administrator must start

the staff service manually or select

this startup property and then start

the server again.

Staff plug-in provider collection

A staff plug-in is responsible for retrieving user information. Use this panel to

manage staff plug-in providers.

To view this administrative console panel, click Resources → Staff plug-in

provider. Existing plug-in providers are displayed.

Normally, staff plug-in providers are only defined with Node scope. The scope of

the staff plug-in providers that are displayed in the table is indicated by an arrow

56 IBM WebSphere Process Server for z/OS: Business Process Choreographer

to a selected radio button for Cell, Node, or Server scope. To view staff plug-in

providers with a different scope, select the radio button for the desired scope and

click Apply.

To view or change the properties for an existing provider, click on the name of the

provider. To configure a new provider, click New.

Name

The name by which the staff plug-in provider is known for administrative

purposes.

 Type Value

Data type String

Description

A description of the staff plug-in provider.

 Type Value

Data type String

Staff plug-in provider settings

Use this panel to modify the settings for a staff plug-in provider.

Staff plug-ins are used to get information from a directory of users. Each staff

plug-in provider is registered with the runtime environment by specifying a name

and a Java archive (JAR) file containing the plug-in. A configuration file in the JAR

file defines the class name, which represents the plug-in as well as the properties

for the plug-in.

To view this administrative console page, first click Resources → Staff plug-in

provider. You will see a table that lists all staff plug-in providers that have the

scope indicated.

Normally, staff plug-in providers are only defined with Node scope. The scope of

the staff plug-in providers that are displayed in the table is indicated by an arrow

to a selected radio button for Cell, Node, or Server scope. To view staff plug-in

providers with a different scope, select the radio button for the desired scope and

click Apply.

To view or modify the configuration for a staff plug-in and any custom properties

that it has, click on the name of the plug-in, staffpluginprovider_name.

Scope

The scope for this staff plug-in provider.

 Type Value

Data type Read-only string

Valid values The name of the cell, node, or server. For

example:

cells:viennaNode02Cell:nodes:viennaNode02

Description The scope determines the level at which the

resource definition is visible. Use Node scope

for staff plug-in configurations because there

are settings that are specific to a node.

Chapter 2. Configuring Business Process Choreographer 57

Name

The name by which the staff plug-in provider is known for administrative

purposes.

 Type Value

Data type String

Description

A description of the staff plug-in provider.

 Type Value

Data type String

JAR File

The file name, including the absolute path, of the JAR file containing the plug-in.

 Type Value

Data type Read-only string

Staff plug-in configuration collection

Use this page to manage staff plug-in configurations.

A staff plug-in configuration is defined for a staff plug-in provider. The staff

plug-in configuration can define any custom properties specified by the staff

plug-in provider. Each staff plug-in provider can have multiple staff plug-in

configurations. Click New to create a new configuration, or click on the name of an

existing configuration to view or change its properties.

To view this administrative console page, click Resources → Staff plug-in provider

→ staffpluginprovider_name → Staff Plug-in Configuration.

Name

The name of the staff plug-in configuration used for administrative purposes. Click

on the name to view or change its configuration settings.

 Type Value

Data type String

Description

A description of the staff plug-in configuration.

 Type Value

Data type String

JNDI Name

The Java Naming and Directory Interface (JNDI) name used to look up the staff

plug-in configuration in the namespace.

 Type Value

Data type String

58 IBM WebSphere Process Server for z/OS: Business Process Choreographer

XSL Transform File

The file name, including the absolute path, of the Extensible Style Language (XSL)

transformation file.

 Type Value

Data type String

Staff plug-in configuration settings

Use this page to view or modify the settings for a staff plug-in configuration.

To view this administrative console page, click Resources → Staff plug-in provider

→ staffpluginprovider_name → Staff Plug-in Configuration →

staffpluginconfiguration_name.

Scope

The scope for this staff plug-in provider. The scope determines the level at which

the resource definition is visible.

 Type Value

Data type Read-only string

Valid values The name of the cell, node, or server. For

example:

cells:viennaNode02Cell:nodes:viennaNode02

Name

The name of the staff plug-in configuration used for administrative purposes.

 Type Value

Data type String

Description

A description of the staff plug-in configuration.

 Type Value

Data type String

JNDI Name

The Java Naming and Directory Interface (JNDI) name used to look up the staff

plug-in configuration in the namespace.

 Type Value

Data type String

XSL Transform File

The file name, including the absolute path, of the Extensible Style Language (XSL)

transformation file. Default XSL transform files are provided for the sample

plug-ins. If you have customized the transform file, specify the path to your file.

The path name can include WebSphere environment variables.

 Type Value

Data type String

Chapter 2. Configuring Business Process Choreographer 59

About the staff service

With Business Process Choreographer you can separate the logic of your business

processes and human tasks from the staff resolution. Staff queries are resolved

using a plug-in that is specific to the directory service. The basic aspects of using

the staff service are described below:

v “Staff query and staff service concept”

v “Implementing a staff query” on page 61

v “Staff query verb set” on page 61

v “Repository-specific staff queries” on page 63

v “Staff verb XSL transformation files” on page 64

v “Using task and process context variables in staff verbs” on page 65

v “E-mail verb set” on page 66

For detailed information on the staff resolution plug-ins, refer to the Process

Choreographer: Staff Resolution Architecture, the Process Choreographer: Programming

Model for Staff Resolution, and the Process Choreographer: Staff Resolution Parameter

Reference White papers in WebSphere Business Process Choreographer

Staff query and staff service concept

Use WebSphere Integration Developer to define staff queries for the staff support

service. Staff queries are based on staff query templates, staff verbs, and are

associated with the roles foreseen for human tasks and business processes, such as

ProcessStarter and PotentialOwners.

A staff verb is identified by a unique name and includes a set of query parameters.

The parameterized staff verb is transformed at application deployment time to

determine a repository-specific staff query. This is used during execution of a

business process or human task to retrieve the identities of users from a user

repository.

Every business process or human task is associated with a specific staff plug-in

configuration by its JNDI name. The configuration is extracted at deployment time

from the process or task definition, and is used to map every staff verb found to a

repository specific staff query. The mapping is governed by an XSL transformation

file which takes a staff verb as input and produces the corresponding

repository-specific query as output.

By default, three staff plug-in providers are included, representing different user

repository options:

v The LDAP staff plug-in provider is used to generate staff queries which can be

executed against an LDAP server.

v The user registry staff plug-in provider is used to generate staff queries which

can be executed against the WebSphere Application Server user registry.

v The system staff plug-in provider is not associated with a user repository.

Instead, it returns user identities that are derived directly from the staff verb

parameters. This plug-in provider is intended for testing and prototyping

purposes.

Each of the above staff plug-in providers is associated with at least one

configuration. In particular, a configuration specifies an XSL transformation file

that performs the mapping between staff verbs and staff queries that are specific to

the repository. The following transformation files are provided by default:

60 IBM WebSphere Process Server for z/OS: Business Process Choreographer

http://www.ibm.com/developerworks//websphere/zones/was/wpc.html

v The LDAPTransformation.xsl file maps of staff verbs to LDAP-specific staff

queries which can be executed via an JNDI interface.

v The UserRegistryTransformation.xsl file maps staff verbs to staff queries that are

specific to the WebSphere user registry.

v The SystemTransformation.xsl file maps staff verbs to the actual user IDs

specified in the verbs. It does not require a real user repository.

v The EverybodyTransformation.xsl file maps all staff verbs to the default result

″everybody″. It does not require a real user repository.

Implementing a staff query

The following example summarizes the steps involved in implementing a staff

query:

1. Using WebSphere Integration Developer, a modeler associates a newly created

task with the staff plug-in configuration bpe/staff/sampleldapconfiguration.

2. Using WebSphere Integration Developer, the modeler associates the roles for

the task with corresponding staff verbs, for example, PotentialOwners is

associated with the staff verb ″Group Members″ including the parameters :

v ″GroupName″ set to the value ″cn=group1,dc=mycomp,dc=com″

v ″IncludeSubgroups″ set to the value ″true″

3. In the context of the task, WebSphere Integration Developer stores the verb

definition as an XML snippet:

<verb>

 <name>Group Members</name>

 <parameter id="GroupName">cn=group1,dc=mycomp,dc=com</parameter>

 <parameter id="IncludeSubgroups">true</parameter>

</verb>

4. When the task is deployed in WebSphere Application Server, the staff support

service establishes that the LDAP staff plug-in provider bpe/staff/
sampleldapconfiguration is to be used. The associated LDAPTransformation.xsl

file is used to transform the staff verb into an LDAP-specific query, which is

stored internally.

Staff query verb set

The staff support service accepts queries in an abstract form that is independent of

the user repository infrastructure. Both the process editor and the task editor have

a set of predefined staff verbs that can be used when you model processes and

tasks. These verbs are contained in the VerbSet.xml file. This file is installed with

WebSphere Integration Developer.

The individual staff resolution plug-ins and the XSLT mapping files do not support

all of the verbs. The Manager of Employee verb, for example, is not available if you

use the user registry or the system plug-in. You can modify the set of staff query

verbs. Make your changes to a copy of the file. Ensure that the copied file has a

different file name.

The following predefined set of verbs is available. For information on the

parameters that can be used with each of the verbs, see Predefined staff verbs and

their parameters.

Department Members

Use this verb to define a query to retrieve the members of a department.

The retrieved users belong to any of the specified departments

(DepartmentName, AlternativeDepartmentName1, or

Chapter 2. Configuring Business Process Choreographer 61

AlternativeDepartmentName2). This verb is supported by the LDAP

plug-in. You might need to customize the default mapping XSLT file to

match the LDAP schema of your organization.

Group Use this verb to retrieve the name of the group that matches the

groupName parameter. This is used with group work items. This verb is

supported by all plug-ins.

Everybody

Use this verb to assign a work item to every user authenticated by the

WebSphere Process Server. This verb is supported by the system, user

registry, and LDAP plug-ins.

Group Members

Use this verb to define a query to retrieve the members of up to three

groups. The retrieved users belong to any of the specified groups

(GroupName, AlternativeGroupName1, or AlternativeGroupName2). This

verb is supported by the user registry and LDAP plug-ins. You might need

to customize the default mapping XSLT file to match the LDAP schema of

your organization.

Group Members without Named Users

Use this verb to define a query to retrieve the members of a group except

for explicitly named users of that group. One or more members can be

specified for exclusion as a comma separated list. This verb is supported

by the user registry and LDAP plug-ins. You might need to customize the

default mapping XSLT file to match the LDAP schema of your

organization.

Group Members without Filtered Users

Use this verb to define a query to retrieve the members of a group except

for a set of users defined by an LDAP search filter. This verb is supported

by the LDAP plug-in. You might need to customize the default mapping

XSLT file to match the LDAP schema of your organization.

Group Search

Use this verb to search for a group based on an attribute match and to

retrieve the members of the group. This verb is supported by the user

registry and LDAP plug-ins. You might need to customize the default

mapping XSLT file to match the LDAP schema of your organization.

Manager of Employee

Use this verb to retrieve the manager of a person using the person’s name.

This verb is supported by the LDAP plug-in. You might need to customize

the default mapping XSLT file to match the LDAP schema of your

organization.

Manager of Employee by user ID

Use this verb to retrieve the manager of a person using the person’s user

ID. This verb is useful in combination with context queries. This verb is

supported by the LDAP plug-in. You might need to customize the default

mapping XSLT file to match the LDAP schema of your organization.

Native Query

Use this verb to define a native query based on directory-specific

parameters. This verb is supported by the user registry and LDAP

plug-ins. You might need to customize the default mapping XSLT file to

match the LDAP schema of your organization.

Nobody

Use this verb to deny normal users access to the work item; For inline

tasks, only the business process administrator and business process system

administrator have access. For standalone tasks, only the human task

administrator and human task system administrator have access.

Depending on the API used, the authorized J2EE administrator will be

different. For the business process API this will be the

62 IBM WebSphere Process Server for z/OS: Business Process Choreographer

BPESystemAdministrator user, for the human task API this will be the

TaskSystemAdministrator user. This verb is supported by the system, user

registry, and LDAP plug-ins.

Person Search

Use this verb to search for a person based on an attribute match. This verb

is supported by the user registry and LDAP plug-ins. You might need to

customize the default mapping XSLT file to match the LDAP schema of

your organization.

Role Members

Use this verb to retrieve the users associated with a staff repository role.

The retrieved users belong to any of the specified roles (RoleName,

AlternativeRoleName1, or AlternativeRoleName2). This verb is supported

by the LDAP plug-in. You might need to customize the default mapping

XSLT file to match the LDAP schema of your organization.

Users Use this verb to define a staff query for a user who is known by name. It

is not recommended that you hard code user names in process templates.

This verb is useful for testing purposes. This verb is supported by the

system, user registry, and LDAP plug-ins. You might need to customize the

default mapping XSLT file to match the LDAP schema of your

organization.

Users by user ID

Use this verb to define a staff query for a user whose user ID is known.

Even though it is not recommended that you hard code user IDs in process

and task templates, this verb is useful in combination with context queries,

for example:

User [username=’%wf:process.starter%’]

This verb is useful for testing purposes. This verb is supported by the

system, user registry, and LDAP plug-ins.

Users by user ID without Named Users

Use this verb to define a staff query for users whose user ID is known and

exclude explicitly named user IDs. Even though it is not recommended

that you hard code user IDs in process and task templates, this verb is

useful in combination with context queries, for example:

User [userID=’%htm:task.potentialStarters%’, NamedUsers=’%wf:activity(...).owner%’]

Repository-specific staff queries

The XSL transformation file that is associated with a staff plug-in configuration is

used to generate staff queries that are specific to a particular repository. Each query

can be executed by the respective staff plug-in to obtain a list of user IDs. The

predefined queries which are available to a staff plug-in correspond to the calls

which can be executed by the plug-in and are therefore fixed.

Based on predefined queries, more complex queries can be formed using the

following mechanisms:

v A union of query results implies that the user IDs returned by the individual

queries will be added to the current result list of user identities. For example:

The LDAP staff plug-in allows, among others, for predefined queries of the

following types:

The list of user IDs for the group members of a specified group:

<sldap:usersOfGroup groupDN="cn=group1,dc=mycomp" recursive="yes">

...

</sldap:usersOfGroup>

The user ID of a specified user:

Chapter 2. Configuring Business Process Choreographer 63

<sldap:user dn="uid=user1,dc=mycomp" .../>

A complex query can be constructed for the list of user IDs for the members of

the specified group, plus the identity of the specified user:

<sldap:staffQueries>

 <sldap:usersOfGroup groupDN="cn=group1,dc=mycomp" recursive="yes">

 ...

 </sldap:usersOfGroup>

 <sldap:user dn="uid=user1,dc=mycomp" .../>

</sldap:staffQueries>

v A difference of query results implies that user IDs returned by a <remove>

query will be removed from the current result list. For example, removing

″user1″ from the list of IDs retrieved for the specified group members:

<sldap:staffQueries>

 <sldap:usersOfGroup groupDN="cn=group1,dc=mycomp" recursive="yes">

 ...

 </sldap:usersOfGroup>

 <sldap:remove value="user1"/>

</sldap:staffQueries>

v Referencing query results implies that the results obtained from one query are

used to influence the behavior of in a subsequent query. For example, in the

following snippet, two queries are performed. First, the value of the ″manager″

attribute in the LDAP entry for the user ″uid=user1,...″ is retrieved and saved in

an intermediate variable ″supervisor″, which is then used to look up the

manager’s LDAP entry and retrieve the associated user identity.

<sldap:staffQueries>

 <sldap:intermediateResult name="supervisor">

 <sldap:user dn="uid=user1,dc=mycomp" attribute="manager" ... />

 </sldap:intermediateResult>

 <sldap:user dn="%supervisor% .../>

 </sldap:staffQueries>

Staff queries constructed according to above three combination rules can be

executed by the staff plug-ins. For a detailed description of all predefined staff

queries for each of the supported staff plug-ins and more examples of combining

them consult the Process Choreographer: Staff Resolution Parameter Reference White

papers in WebSphere Business Process Choreographer.

Staff verb XSL transformation files

The XSL transformation file specified for a staff plug-in configuration defines the

mapping between staff verbs and repository-specific staff queries. Every staff

plug-in configuration is expected to have its own XSL transformation file.

The default transformation files are:

v LDAPTransformation.xsl for the LDAP staff provider plug-in

v UserRegistryTransformation.xsl for the user registry staff provider plug-in

v SystemTransformation.xsl and EverybodyTransformation.xsl for the system staff

provider plug-in

These transformation files map the predefined set of staff verbs to corresponding

simple and composite repository-specific queries. These files are located in the

install_root/ProcessChoreographer/Staff directory.

The transformation files assume certain semantics for staff verbs and their

execution using generated repository-specific staff queries. If other semantics are

required, the mapping in the transformation file must be changed accordingly.

For example, the LDAP staff plug-in comes with a predefined staff verb:

64 IBM WebSphere Process Server for z/OS: Business Process Choreographer

http://www.ibm.com/developerworks//websphere/zones/was/wpc.html

<staff:verb>

 <staff:name>Manager of Employee</staff:name>

 <staff:parameter id="EmployeeName">

 uid=anEmployeeName,cn=users,dc=ibm,dc=com

 </staff:parameter>

</staff:verb>

This is mapped by the LDAPTransformation.xsl file to an LDAP query:

<sldap:staffQueries>

 <sldap:intermediateResult name="supervisor">

 <sldap:user dn="anEmployeeName" attribute="manager"

 objectclass="inetOrgPerson"/>

 </sldap:intermediateResult>

 <sldap:user dn="%supervisor%" attribute="uid" objectclass="inetOrgPerson"/>

</sldap:staffQueries>

Which explicitly assumes that the LDAP DN of the supervisor is stored in the

employee’s attribute ″manager″. If that the verb is to have different semantics, for

example, if the supervisor should come from the LDAP attribute ″teacher″. Then

the LDAP specific query must be changed accordingly:

<sldap:staffQueries>

 <sldap:intermediateResult name="supervisor">

 <sldap:user dn="anEmployeeName" attribute="teacher"

 objectclass="inetOrgPerson"/>

 </sldap:intermediateResult>

 <sldap:user dn="%supervisor%" attribute="uid" objectclass="inetOrgPerson"/>

</sldap:staffQueries>

The means to achieve this is to adapt the LDAPTransformation.xsl file accordingly:

 <xsl:template name="ManagerOfEmployee">

 <sldap:staffQueries>...

 <sldap:intermediateResult>

 <xsl:attribute name="name">supervisor</xsl:attribute>

 <sldap:user>

 <xsl:attribute name="dn">

 <xsl:value-of select="staff:parameter[@id=’EmployeeName’]"/>

 </xsl:attribute>

 <xsl:attribute name="attribute">teacher</xsl:attribute>

 ...

 </sldap:user>

 </sldap:intermediateResult>

 <sldap:user>

 <xsl:attribute name="dn">%supervisor%</xsl:attribute>

 ...

 </sldap:user>

 </sldap:staffQueries>

</xsl:template>

You can get an deeper understanding of the mapping behavior by viewing the

default transformation files. The semantics of the default transformations are

described in “Staff query verb set” on page 61.

Using task and process context variables in staff verbs

In certain staff verbs, you can use business process and human task context

variables as parameter values. This enables the staff support service to resolve staff

verbs at run time, based on information supplied by the contexts. For example, the

staff verb:

<verb>

<name>Users by user ID</staff:name>

 <parameter id="UserID">%htm:input.\name%</staff:parameter>

</verb>

Chapter 2. Configuring Business Process Choreographer 65

specifies as a parameter, the task context variable htm:input.\name, which denotes

the ″name″ part of the input message received by the task when it is initiated. The

staff support service dynamically replaces the context variable with the actual task

context value.

For a description of the verbs and the parameters in which you can use context

variables, see “Predefined staff verbs.”

E-mail verb set

The e-mail verb set in WebSphere Integration Developer is for e-mail notifications

for task escalations. These e-mail verbs are transformed during modeling and

deployment into a set of queries that can be run on a staff repository. E-mail verbs

are defined for the most common staff verbs supported by the LDAP plug-in. The

following e-mail verbs are available:

v Email Address for Department Members

v Email Address for Group Members

v Email Address for Group Members without Names Users

v Email Address for Group Members without Filtered Users

v Email Address for Group Search

v Email Address for Role Members

v Email Address for Users

v Email Address for Users by User ID

For the other LDAP staff verbs, the user identifiers retrieved by the staff verbs are

used as input to the Email Address for Users by User ID verb.

Before the e-mail verbs can be run as queries on a specific staff repository, they

must be translated into executable queries using the LDAP XSL transformation.

The result of a transformation (mapping) can be run by the LDAP staff resolution

plug-in. At run time, the query returns a set of e-mail addresses, for example,

user1@mycomp.com, user2@mycomp.com, and so on.

Predefined staff verbs

Predefined staff verbs are provided for creating queries against a staff repository.

You can use staff verbs in WebSphere Integration Developer to model staff

assignments in a business process or human task. You can only use the staff verbs

that are available for your staff repository type. The staff verbs are transformed

during modeling and deployment into a set of queries that can be run on a staff

repository.

Predefined staff verbs for LDAP:

Describes the predefined staff verbs and parameters for use with the LDAP staff

plug-in for Business Process Choreographer.

 You can use staff verbs in WebSphere Integration Developer to model staff

assignments in a business process or human task. These staff verbs are transformed

during modeling and deployment into a set of queries that can be run on an LDAP

staff repository. The parameters for the following predefined staff verbs are listed

here:

v Department Members

v Group

66 IBM WebSphere Process Server for z/OS: Business Process Choreographer

v Everybody

v Group Members

v Group Members without Named Users

v Group Members without Filtered Users

v Group Search

v Manager of Employee

v Manager of Employee by user ID

v Native Query

v Nobody

v Person Search

v Role Members

v Users

v Users by user ID

v Users by user ID without Named Users

Department Members

Use this verb to define a query to retrieve the members of a department.

 Parameter Use Type Description

DepartmentName Mandatory string Department name of the users to retrieve.

IncludeNestedDepartments Mandatory boolean Specifies whether nested departments are

considered in the query.

Domain Optional string The domain to which the department

belongs. Use this parameter to limit the

query to a subset of the directory.

AlternativeDepartmentName1 Optional string An additional department to which the

users can belong.

AlternativeDepartmentName2 Optional string An additional department to which the

users can belong.

Group

Use this verb to define a query to authorize the members of the group.

 Parameter Use Type Description

GroupId Mandatory string The name of the group of users to

authorize.

Everybody

Use this verb to assign a work item to every user authenticated by WebSphere

Process Server. This verb has no parameters.

Group Members

Use this verb to define a query to retrieve the members of a group.

 Parameter Use Type Description

GroupName Mandatory string Group name of the users to retrieve.

IncludeSubgroups Mandatory boolean Specifies whether nested subgroups are

considered in the query.

Chapter 2. Configuring Business Process Choreographer 67

Parameter Use Type Description

Domain Optional string The domain to which the group belongs.

Use this parameter to limit the query to a

subset of the directory.

AlternativeGroupName1 Optional string An additional group to which the users can

belong.

AlternativeGroupName2 Optional string An additional group to which the users can

belong.

Group Members without Named Users

Use this verb to define a query to retrieve all of the members of a group except for

the explicitly named users.

 Parameter Use Type Description

GroupName Mandatory string Group name of the users to retrieve. Supports

custom properties that are evaluated at run

time.

IncludeSubgroups Mandatory boolean Specifies whether nested subgroups are

considered in the query.

NamedUsers Mandatory string The user IDs of the users to exclude from the

retrieved group members list. Supports

context variables and custom properties, such

as %htm:task.originator%

Group Members without Filtered Users

Use this verb to define a query to retrieve the all of the members of a group except

for a set of users that is defined by an LDAP search filter.

 Parameter Use Type Description

GroupName Mandatory string Group name of the users to retrieve.

IncludeSubgroups Mandatory boolean Specifies whether nested subgroups are

considered in the query.

FilterAttribute Mandatory string Name of the attribute to use in the LDAP

filter.

FilterValue Mandatory string Filter value to use in the LDAP filter.

Group Search

Use this verb to search for a group based on an attribute match and to retrieve the

members of the group. You must set one attribute. If you set more than one

attribute, only the first attribute is evaluated.

 Parameter Use Type Description

GroupID Optional string The group ID of the users to retrieve.

Type Optional string The group type of the users to retrieve.

IndustryType Optional string The industry type of the group to which the

users belong.

68 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Parameter Use Type Description

BusinessType Optional string The business type of the group to which the

users belong.

GeographicLocation Optional string An indication of where the users are located.

Affiliates Optional string The affiliates of the users.

DisplayName Optional string The display name of the group.

Secretary Optional string The secretary of the users.

Assistant Optional string The assistant of the users.

Manager Optional string The manager of the users.

BusinessCategory Optional string The business category of the group to which

the users belong.

ParentCompany Optional string The parent company of the users.

Manager of Employee

Use this verb to retrieve the manager of a person using the person’s name.

 Parameter Use Type Description

EmployeeName Mandatory string The name of the employee whose manager

is retrieved.

Domain Optional string The domain to which the employee belongs.

Use this parameter to limit the query to a

subset of the directory.

Manager of Employee by user ID

Use this verb to retrieve the manager of a person using the person’s user ID.

 Parameter Use Type Description

EmployeeUserID Mandatory string The user ID of the employee whose manager is

retrieved. Supports context variables and

custom properties, such as

%wf:process.starter%

Domain Optional string The domain to which the employee belongs.

Use this parameter to limit the query to a subset

of the directory.

Native Query

Use this verb to define a native query based on directory-specific parameters.

 Parameter Use Type Description

QueryTemplate Mandatory string The query template to use for the query. The

default mapping files for the user registry and

LDAP plug-ins support the templates search, user,

and usersOfGroup.

Chapter 2. Configuring Business Process Choreographer 69

Parameter Use Type Description

Query Mandatory string Specifies the query. You can use context variables

and custom properties, such as

%wf:process.starter%. The type of query depends

on the query template.

v search template: search filter

v user template: user dn

v usersOfGroup: group dn

AdditionalParameter1 Optional string Specifies the query. You can use context variables,

such as %wf:process.starter%. The type of

parameter depends on the query template.

v search template. Used to specify whether

recursive search is done. Supported values: yes

and no

v user template. Not supported

v usersOfGroup. Used to specify whether

recursive search is done. Supported values: yes

and no

AdditionalParameter2 Optional string Use this verb to specify an additional parameter.

AdditionalParameter3 Optional string Use this verb to specify an additional parameter.

If you use the default mapping XSLT files, this

parameter is not supported.

AdditionalParameter4 Optional string Use this verb to specify an additional parameter.

If you use the default mapping XSLT files, this

parameter is not supported.

AdditionalParameter5 Optional string Use this verb to specify an additional parameter.

If you use the default mapping XSLT files, this

parameter is not supported.

Nobody

For inline tasks, only the business process administrators have access. For

standalone tasks, only the human task administrators have access. In addition,

when using the Business Flow Manager API the BPESystemAdministrator role

members have access, for the Human Task Manager API the

TaskSystemAdministrator role members have access. This verb has no parameters.

Person Search

Use this verb to search for people based on an attribute match. You must set one

attribute. If you set more than one attribute, only the first attribute is evaluated.

 Parameter Use Type Description

UserID Optional string The user ID of the users to retrieve.

Profile Optional string The profile of the users to retrieve.

LastName Optional string The last name of the users to retrieve.

FirstName Optional string The first name of the users to retrieve.

MiddleName Optional string The middle name of the users to retrieve.

Email Optional string The e-mail address of the users.

Company Optional string The company to which the users belong.

70 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Parameter Use Type Description

DisplayName Optional string The display name of the users.

Secretary Optional string The secretary of the users.

Assistant Optional string The assistant of the users.

Manager Optional string The manager of the users.

Department Optional string The department to which the users belong.

Phone Optional string The telephone number of the users.

Fax Optional string The fax number of the users.

Gender Optional string Whether the user is male or female.

Timezone Optional string The time zone in which the users are located.

PreferredLanguage Optional string The preferred language of the user.

Role Members

Use this verb to retrieve the users associated with a business process role.

 Parameter Use Type Description

RoleName Mandatory string Role name of the users to retrieve.

IncludeNestedRoles Mandatory boolean Specifies whether nested roles are considered in

the query.

Domain Optional string The domain to which the role belongs. Use this

parameter to limit the query to a subset of the

directory.

AlternativeRoleName1 Optional string An additional role name for the user.

AlternativeRoleName2 Optional string An additional role name for the user.

Users

Use this verb to define a staff query for a user who is known by name.

 Parameter Use Type Description

Name Mandatory string The name of the user to retrieve.

AlternativeName1 Optional string An additional user name. Use this parameter to

retrieve more than one user.

AlternativeName2 Optional string An additional user name. Use this parameter to

retrieve more than one user.

Users by user ID

Use this verb to define a staff query for a user whose user ID is known. Use short

names to specify values, for example, wpsadmin. This verb does not imply access

to a staff repository.

 Parameter Use Type Description

UserID Mandatory string The user ID of the user to retrieve. Supports

context variables and custom properties, such as

%htm:task.potentialStarters%

Chapter 2. Configuring Business Process Choreographer 71

Parameter Use Type Description

AlternativeID1 Optional string An additional user ID. Use this parameter to

retrieve more than one user.

AlternativeID2 Optional string An additional user ID. Use this parameter to

retrieve more than one user.

Users by user ID without Named Users

Use this verb to define a staff query for users whose user ID is known, while

excluding explicitly named user IDs. Use short names to specify values, for

example, wpsadmin. This verb does not imply access to a staff repository.

 Parameter Use Type Description

UserID Mandatory string The user ID of the user to retrieve. Supports

context variables and custom properties, such as

%htm:task.potentialStarters%

AlternativeID1 Optional string An additional user ID. Use this parameter to

retrieve more than one user.

AlternativeID2 Optional string An additional user ID. Use this parameter to

retrieve more than one user.

NamedUsers Mandatory string The user IDs of the users to exclude from the

user ID list. Supports context variables and

custom properties, such as

%wf:activity(...).owner%

Predefined staff verbs for the system user repository:

Describes the predefined staff verbs and parameters for use with the system user

repository staff plug-in for Business Process Choreographer.

 You can use staff verbs in WebSphere Integration Developer to model staff

assignments in a business process or human task. These staff verbs are transformed

during modeling and deployment into a set of queries that can be run on a staff

repository. The parameters for the following predefined staff verbs are listed here:

v Group

v Everybody

v Nobody

v Users

v Users by user ID

v Users by user ID without Named Users

Group

Use this verb to define a query to authorize the members of the group.

 Parameter Use Type Description

GroupId Mandatory string The name of the group of users to

authorize.

72 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Everybody

Use this verb to assign a work item to every user authenticated by WebSphere

Process Server. This verb has no parameters.

Nobody

For inline tasks, only the business process administrators have access. For

standalone tasks, only the human task administrators have access. In addition,

when using the Business Flow Manager API the BPESystemAdministrator role

members have access, for the Human Task Manager API the

TaskSystemAdministrator role members have access. This verb has no parameters.

Users

Use this verb to define a staff query for a user who is known by name.

 Parameter Use Type Description

Name Mandatory string The name of the user to retrieve.

AlternativeName1 Optional string An additional user name. Use this

parameter to retrieve more than one user.

AlternativeName2 Optional string An additional user name. Use this

parameter to retrieve more than one user.

Users by user ID

Use this verb to define a staff query for a user whose user ID is known. Use short

names to specify values, for example, wpsadmin. This verb does not imply access

to a staff repository.

 Parameter Use Type Description

UserID Mandatory string The user ID of the user to retrieve.

Supports context variables and custom

properties, such as

%htm:task.potentialStarters%

AlternativeID1 Optional string An additional user ID. Use this

parameter to retrieve more than one user.

AlternativeID2 Optional string An additional user ID. Use this

parameter to retrieve more than one user.

Users by user ID without Named Users

Use this verb to define a staff query for users whose user ID is known, while

excluding explicitly named user IDs. Use short names to specify values, for

example, wpsadmin. This verb does not imply access to a staff repository.

 Parameter Use Type Description

UserID Mandatory string The user ID of the user to retrieve. Supports

context variables and custom properties, such as

%htm:task.potentialStarters%

AlternativeID1 Optional string An additional user ID. Use this parameter to

retrieve more than one user.

Chapter 2. Configuring Business Process Choreographer 73

Parameter Use Type Description

AlternativeID2 Optional string An additional user ID. Use this parameter to

retrieve more than one user.

NamedUsers Mandatory string The user IDs of the users to exclude from the

user ID list. Supports context variables and

custom properties, such as

%wf:activity(...).owner%

Predefined staff verbs for the user registry:

Describes the predefined staff verbs and parameters for use with the user registry

staff plug-in for Business Process Choreographer.

 You can use staff verbs in WebSphere Integration Developer to model staff

assignments in a business process or human task. These staff verbs are transformed

during modeling and deployment into a set of queries that can be run on a staff

repository. The parameters for the following predefined staff verbs are listed here:

v Group

v Everybody

v Group Members

v Group Members without Named Users

v Group Search

v Native Query

v Nobody

v Person Search

v Users

v Users by user ID

v Users by user ID without Named Users

Group

Use this verb to define a query to retrieve name of a group for use with group

work items.

 Parameter Use Type Description

GroupName Mandatory string The name of the group to retrieve.

Everybody

Use this verb to assign a work item to every user authenticated by WebSphere

Process Server. This verb has no parameters.

Group Members

Use this verb to define a query to retrieve the members of a group.

 Parameter Use Type Description

GroupName Mandatory string Group name of the users to retrieve.

AlternativeGroupName1 Optional string An additional group to which the users can

belong.

AlternativeGroupName2 Optional string An additional group to which the users can

belong.

74 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Group Members without Named Users

Use this verb to define a query to retrieve all of the members of a group except for

the explicitly named users.

 Parameter Use Type Description

GroupName Mandatory string Group name of the users to retrieve.

Supports custom properties that are

evaluated at run time.

NamedUsers Mandatory string The user IDs of the users to exclude from

the retrieved group members list. Supports

context variables and custom properties,

such as %htm:task.originator%

Group Search

Use this verb to search for a group based on an attribute match and to retrieve the

members of the group. You must set one attribute. If you set more than one

attribute, only the first attribute is evaluated.

 Parameter Use Type Description

GroupID Optional string The group ID of the users to retrieve.

Native Query

Use this verb to define a native query based on directory-specific parameters.

 Parameter Use Type Description

QueryTemplate Mandatory string The query template to use for the query.

The default mapping files support the

templates search, user, and usersOfGroup.

Query Mandatory string Specifies the query. You can use context

variables and custom properties, such as

%wf:process.starter%. The type of query

depends on the query template.

v search template: search pattern

v user template: user name

v usersOfGroup: group name

AdditionalParameter1 Optional string Specifies the query. You can use context

variables, such as %wf:process.starter%.

Supported values are group and user.

AdditionalParameter2 Optional string Use this verb to specify an additional

parameter.

AdditionalParameter3 Optional string Use this verb to specify an additional

parameter.

If you use the default mapping XSLT files,

this parameter is not supported.

AdditionalParameter4 Optional string Use this verb to specify an additional

parameter.

If you use the default mapping XSLT files,

this parameter is not supported.

Chapter 2. Configuring Business Process Choreographer 75

Parameter Use Type Description

AdditionalParameter5 Optional string Use this verb to specify an additional

parameter.

If you use the default mapping XSLT files,

this parameter is not supported.

Nobody

For inline tasks, only the business process administrators have access. For

standalone tasks, only the human task administrators have access. In addition,

when using the Business Flow Manager API the BPESystemAdministrator role

members have access, for the Human Task Manager API the

TaskSystemAdministrator role members have access. This verb has no parameters.

Person Search

Use this verb to search for people based on an attribute match. You must set one

attribute. If you set more than one attribute, only the first attribute is evaluated.

 Parameter Use Type Description

UserID Optional string The user ID of the users to retrieve.

Users

Use this verb to define a staff query for a user who is known by name.

 Parameter Use Type Description

Name Mandatory string The name of the user to retrieve.

AlternativeName1 Optional string An additional user name. Use this

parameter to retrieve more than one user.

AlternativeName2 Optional string An additional user name. Use this

parameter to retrieve more than one user.

Users by user ID

Use this verb to define a staff query for a user whose user ID is known. Use short

names to specify values, for example, wpsadmin. This verb does not imply access to

a staff repository.

 Parameter Use Type Description

UserID Mandatory string The user ID of the user to retrieve.

Supports context variables and custom

properties, such as

%htm:task.potentialStarters%

AlternativeID1 Optional string An additional user ID. Use this parameter

to retrieve more than one user.

AlternativeID2 Optional string An additional user ID. Use this parameter

to retrieve more than one user.

76 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Users by user ID without Named Users

Use this verb to define a staff query for users whose user ID is known, while

excluding explicitly named user IDs. Use short names to specify values, for

example, wpsadmin. This verb does not imply access to a staff repository.

 Parameter Use Type Description

UserID Mandatory string The user ID of the user to retrieve. Supports

context variables and custom properties, such as

%htm:task.potentialStarters%

AlternativeID1 Optional string An additional user ID. Use this parameter to

retrieve more than one user.

AlternativeID2 Optional string An additional user ID. Use this parameter to

retrieve more than one user.

NamedUsers Mandatory string The user IDs of the users to exclude from the

user ID list. Supports context variables and

custom properties, such as

%wf:activity(...).owner%

Implementing new custom verbs

This describes how to add new staff verbs the staff support service infrastructure

so that they can be used in WebSphere Integration Developer when modeling

business processes and human tasks.

You must add the new staff verb specification to the VerbSet.xml file which is part

of your WebSphere Integration Developer installation. For example, for a new verb

Mentor of Employee:

 <vs:DefineVerb name=’Mentor of Employee’>

 <vs:Description>Assigns the mentor of an employee.

Supported by sample XSLT files for:

 - LDAP

 </vs:Description>

 <vs:Mandatory>

 <vs:Parameter>

 <vs:Name>EmployeeName</vs:Name>

 <vs:Type>xsd:string</vs:Type>

 </vs:Parameter>

 </vs:Mandatory>

 <vs:Optional>

 <vs:Parameter>

 <vs:Name>Domain</vs:Name>

 <vs:Type>xsd:string</vs:Type>

 </vs:Parameter>

 </vs:Optional>

 </vs:DefineVerb>

You must add the new verb to the dispatcher section of the LDAP transformation

file. For example:

 <xsl:choose>

 ...

 <xsl:when test="$verb=’Mentor of Employee’">

 <xsl:call-template name="MentorOfEmployee"/>

 ...

 </xsl:choose>

You must also add to the LDAP transformation file a template that implements the

mapping. For example::

Chapter 2. Configuring Business Process Choreographer 77

<!-- Begin template MentorOfEmployee -->

 <xsl:template name="MentorOfEmployee">

 <sldap:staffQueries>

 <xsl:attribute name="threshold">

 <xsl:value-of select="$Threshold"/>

 </xsl:attribute>

 <sldap:intermediateResult>

 <xsl:attribute name="name">mentorvariable</xsl:attribute>

 <sldap:user>

 <xsl:attribute name="dn">

 <xsl:value-of select="staff:parameter[@id=’EmployeeName’]"/>

 </xsl:attribute>

 <xsl:attribute name="attribute">mentor</xsl:attribute>

 <xsl:attribute name="objectclass">inetOrgPerson</xsl:attribute>

 </sldap:user>

 </sldap:intermediateResult>

 <sldap:user>

 <xsl:attribute name="dn">%mentorvariable%</xsl:attribute>

 <xsl:attribute name="attribute">uid</xsl:attribute>

 <xsl:attribute name="objectclass">inetOrgPerson</xsl:attribute>

 </sldap:user>

 </sldap:staffQueries>

 </xsl:template>

<!-- End template MentorOfEmployee -->

Verify that the mapping generates a valid LDAP specific query.

Adapting the LDAP transformation file

Describes how to adapt the LDAP transformation XSL file to suit your LDAP

schema.

The default LDAPTransformation.xsl file maps predefined staff verbs to LDAP

queries, which make use of elements of the default LDAP schema assumed by

WebSphere. This schema assumes the following:

v The LDAP object class for group entries is groupOfName.

v The group entry attribute containing the member DNs for the group is member.

v The LDAP object class for person entries is inetOrgPerson.

v The attribute containing the login ID in a person entry is uid.

v The person entry attribute containing the e-mail address of a person is mail.

v The person entry attribute containing the distinguished name of the manager of

a person is manager.

If your LDAP schema features different object class and attribute names, you must

change these settings in the LDAP transformation files that you use. For the

default LDAPTransformation.xsl file, changing the setting can be done in the

variable declaration part of the file:

 <xsl:variable name="DefaultGroupClass">groupOfNames</xsl:variable>

 <xsl:variable name="DefaultGroupClassMemberAttribute">member</xsl:variable>

 <xsl:variable name="DefaultPersonClass">inetOrgPerson</xsl:variable>

 <xsl:variable name="DefaultUserIDAttribute">uid</xsl:variable>

 <xsl:variable name="DefaultMailAttribute">mail</xsl:variable>

 <xsl:variable name="DefaultManagerAttribute">manager</xsl:variable>

You can apply changes within the XSL templates that transform the individual staff

verbs, as illustrated in the following examples.

78 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Example: DepartmentMembers

Changing the object class for person entries to ePerson and the login ID attribute

to cn:

<sldap:StaffQueries>

 <xsl:attribute name="threshold">

 <xsl:value-of select="$Threshold">

 </xsl:attribute>

 <sldap:search>

...

 <sldap:attribute>

 <xsl:attribute name="name">cn</xsl:attribute>

 <xsl:attribute name="objectclass">ePerson</xsl:attribute>

 <xsl:attribute name="usage">simple</xsl:attribute>

 </sldap:attribute>

 </sldap:search>

</sldap:StaffQueries>

Example: GroupMembers

Changing the object class for group entries to groupOfUniqueNames, the group

entry attribute containing the member DN list to uniqueMember, and the person

entry attribute containing the login in to cn:

<sldap:usersOfGroup>

...

 <sldap:attribute>

 <xsl:attribute name="name">uniqueMember</xsl:attribute>

 <xsl:attribute name="objectclass">groupOfUniqueNames</xsl:attribute>

 <xsl:attribute name="usage">recursive</xsl:attribute>

 </sldap:attribute>

 ...

 <sldap:attribute>

 <xsl:attribute name="name">cn</xsl:attribute>

 <xsl:attribute name="objectclass">inetOrgPerson</xsl:attribute>

 <xsl:attribute name="usage">simple</xsl:attribute>

 </sldap:attribute>

</sldap:usersOfGroup>

Example: GroupMembersWithoutFilteredUsers

Changing the LDAP filter operator to >=.

<sldap:StaffQueries>

 <sldap:usersOfGroup>

 ...

 </sldap:usersOfGroup>

 <sldap:intermediateResult>

 <xsl:attribute name="name">filteredusers</xsl:attribute>

 <sldap:search>

 <xsl:attribute name="filter">

 <xsl:value-of select="staff:parameter[@id=’FilterAttribute’]"/>

 >=

 <xsl:value-of select="staff:parameter[@id=’FilterValue’]"/>

 </xsl:attribute>

 ...

 <sldap:search>

 ...

Chapter 2. Configuring Business Process Choreographer 79

</sldap:intermediateResult>

 ...

</sldap:StaffQueries>

Example: GroupSearch

Changing the search attribute to MyType, the object class to mypersonclass, and

the attribute containing the login ID to myuid.

<sldap:StaffQueries>

 ...

 <sldap:search>

 <xsl:attribute name="filter">

 (&

 ...

 <xsl:if test="staff:parameter[@id=’MyType’]!="">

 (<xsl:value-of select="$GS_Type"/>=

 <xsl:value-of select=staff:parameter[@id=’Type’]"/>)

 </xsl:if>

)

 ...

 </xsl:attribute>

 <sldap:attribute>

 <xsl:attribute name="name">myuid</xsl:attribute>

 <xsl:attribute name="objectclass">mypersonclass</xsl:attribute>

 <xsl:attribute name="usage">simple</xsl:attribute>

 </sldap:attribute>

 ...

 <sldap:search>

</sldap:StaffQueries>

Example: Manager of Employee

Changing the attribute containing the manager DN to managerentry and the

source of the manager login ID attribute to name.

<sldap:StaffQueries>

 <sldap:intermediateResult>

 ...

 <sldap:user>

 ...

 <xsl:attribute name="name">managerentry</xsl:attribute>

 ...

 </sldap:user>

 </sldap:intermediateResult>

 <sldap:user>

 ...

 <xsl:attribute name="name">name</xsl:attribute>

 ...

 </sldap:user>

</sldap:StaffQueries>

Example: PersonSearch

Changing the search attribute to MyAttribute, the object class to mypersonclass,

and the source of the return attribute to myuid.

<sldap:StaffQueries>

 ...

 <sldap:search>

 <xsl:attribute name="filter">

 (&

80 IBM WebSphere Process Server for z/OS: Business Process Choreographer

...

 <xsl:if test="staff:parameter[@id=’MyAttribute’]!="">

 (<xsl:value-of select="$PS_UserID"/>=

 <xsl:value-of select=staff:parameter[@id=’UserID’]"/>)

)

 </xsl:if>

 ...

 </xsl:attribute>

 <sldap:attribute>

 <xsl:attribute name="name">myuid</xsl:attribute>

 <xsl:attribute name="objectclass">mypersonclass</xsl:attribute>

 <xsl:attribute name="usage">simple</xsl:attribute>

 </sldap:attribute>

 ...

 </sldap:search>

</sldap:StaffQueries>

Example: Users

Changing the source of the return attribute to myuid and the object class to

mypersonclass.

<sldap:user>

 ...

 <xsl:attribute name="attribute">myuid</xsl:attribute>

 <xsl:attribute name="objectclass">mypersonclass</xsl:attribute>

</sldap:user>

Overview: Configuring Business Process Choreographer Explorer

Business Process Choreographer Explorer provides a user interface for

administering processes and handling tasks. It is a Java 2 Enterprise Edition (J2EE)

Web application, based on the JavaServer Faces (JSF) technology and the Business

Process Choreographer Explorer components.

v “About Business Process Choreographer Explorer”

v “Configuring Business Process Choreographer Explorer” on page 82

About Business Process Choreographer Explorer

Business Process Choreographer Explorer is a Web application that implements a

generic Web user interface for interacting with business processes and human

tasks.

You can install Business Process Choreographer Explorer on the application server,

or on the cluster, where you installed both a business process container and a

human task container. If you want to work with business process applications or

human task applications on several application servers or clusters, it is sufficient to

configure Business Process Choreographer Explorer on one server or cluster; you

do not need to configure it on all application servers or clusters that have Business

Process Choreographer configured on them.

Chapter 2. Configuring Business Process Choreographer 81

A single Business Process Choreographer Explorer can not connect to multiple

Business Process Choreographer configurations. You can configure multiple

instances of the Business Process Choreographer Explorer on the same server.

When you start Business Process Choreographer Explorer, the objects that you see

in the user interface and the actions that you can take depend on the user group

that you belong to and the authorization granted to that group. For example, if

you are an administrator, you are responsible for the smooth operation of deployed

business processes and tasks. You can view information about process and task

templates, process instances, task instances, and their associated objects. You can

also act on these objects; for example, you can start new process instances, create

and start tasks, repair and restart failed activities, manage work items, and delete

completed process instances and task instances. However, if you are a user, you

can view and act on only those tasks that have been assigned to you.

Configuring Business Process Choreographer Explorer

Use this task to configure Business Process Choreographer Explorer using a script.

You have configured the business process container and human task container.

One of the following applies:

v You have not yet installed Business Process Choreographer Explorer.

v You want to add it to an existing Business Process Choreographer configuration.

v You want to add another instance of Business Process Choreographer Explorer to

a server where other instances are already running.
1. Change to the Business Process Choreographer directory and invoke the

clientconfig.jacl script.

cd install_root/ProcessChoreographer/config

../../bin/wsadmin.sh -f clientconfig.jacl

 ([-user userName][-password password] | [-conntype NONE])

 [-profileName profileName]

 [-hostName explorerVirtualHostname]

 [-explorerHost explorerURL]

 [-precompileJSPs { yes | no }]

 [-remoteNodeName nodeName]

 [-remoteServerName serverName]

 [-remoteClusterName clusterName]

 [-contextRootExplorer explorerContextRoot]

On z/OS, run:

82 IBM WebSphere Process Server for z/OS: Business Process Choreographer

cd install_root/ProcessChoreographer/config

../../bin/wsadmin.sh -f clientconfig.jacl

 ([-user userName][-password password] | [-conntype NONE])

 [-profileName profileName]

 [-hostName explorerVirtualHostname]

 [-explorerHost explorerURL]

 [-precompileJSPs { yes | no }]

 [-remoteNodeName nodeName]

 [-remoteServerName serverName]

 [-remoteClusterName clusterName]

 [-contextRootExplorer explorerContextRoot]

In a standalone server environment:

v Include the -conntype NONE option only if the application server is not

running.

v If the server is running and global security is enabled, include the -user and

-password options.

v If you are not configuring the default profile, add the -profileName option.

In a Network Deployment environment:

v Run the script on the deployment manager node.

v Include the -conntype NONE option only if the deployment manager is not

running.

v If global security is enabled, include the -user and -password options.

v If you are not configuring the default profile, add the -profileName option.

You can also provide the following parameters:

node nodeName

Where nodeName is the name of the node where Business Process

Choreographer is to be configured. If you have only one node and exactly

one server, this parameter is optional.

server serverName

Where serverName is the name of the server where Business Process

Choreographer is to be configured. If you have only one node and exactly

one server, this parameter is optional.

cluster clusterName

Where clusterName is the name of the cluster where Business Process

Choreographer is to be configured. Do not specify this option in a

standalone server environment, nor if you specify the node and server. This

option cannot be used non-interactively.

hostName explorerVirtualHostname

Where explorerVirtualHostname is the virtual host where the Business

Process Choreographer Explorer will run. The default value is

default_host.

explorerHost explorerURL

Where explorerURL is the URL of the Business Process Choreographer

Explorer. If this parameter is not specified for a non-cluster environments, a

default value is computed, for example, http://localhost:9080. The value of

this parameter is used for the EscalationMail.ClientDetailURL custom

property of the Human Task Manager.

precompileJSPs { yes | no }

Determines whether Java Server Pages (JSPs) will be precompiled, or not.

remoteNodeName nodeName

Use this parameter and remoteServerName if you do not want to connect

Chapter 2. Configuring Business Process Choreographer 83

to the local Business Process Choreographer Explorer. Do not specify this

parameter if you want to connect to the Business Process Choreographer

server identified by the node and server parameters or the cluster

parameter.

remoteServerName serverName

Use this parameter and remoteNodeName if you do not want to connect to

the local Business Process Choreographer Explorer. Do not specify this

parameter if you want to connect to the Business Process Choreographer

server identified by the node and server parameters or the cluster

parameter.

remoteClusterName clusterName

Use this parameter, if you do not want to connect to the local Business

Process Choreographer Explorer and you do not specify remoteNodeName

and remoteServerName. Do not specify this parameter if you want to

connect to the Business Process Choreographer server identified by the

node and server parameters or the cluster parameter.

contextRootExplorer contextRootExplorer

Where contextRootExplorer is the context root for the Business Process

Choreographer Explorer. The default value is /bpc, which results in the

default URL of http://host:port/contextRootExplorer. The context root

must be unique within the WebSphere cell.
2. The clientconfig.jacl script prompts you for any required information that

was not provided as parameters.

3. Optional: If you have problems with the configuration, check the log file

written by the clientconfig.jacl script. This log is located in the

profiles/profileName/logs/clientconfig.log file. This directory also contains

a wsadmin.traceout file that might contain more information about the

problem.

Business Process Choreographer Explorer is configured and ready to use.

Start Business Process Choreographer Explorer.

Configuring the Business Process Choreographer Observer

infrastructure

Describes how to configure the Business Process Choreographer Observer and

event collector, which allow you to observe the states of running business

processes and human tasks.

You have configured Business Process Choreographer using the administrative

console or the bpeconfig script, and have not configured the Business Process

Choreographer Observer. The WAS_HOME environment variable must be set to

the installation directory of your application server. You must be logged on using a

user ID that has administrative rights, for example, root.

This topic does not describe how to configure the Business Process Choreographer

Observer in an ND environment nor advanced configurations. For more

information about configuring and using the Business Process Choreographer

Observer, refer to support document 7008553.

1. Configure the event collector application and database. Perform “Configuring

the Business Process Choreographer event collector” on page 86.

84 IBM WebSphere Process Server for z/OS: Business Process Choreographer

http://www.ibm.com/support/docview.wss?rs=2307&uid=swg27008553

2. Configure the observer application. Perform “Configuring Business Process

Choreographer Observer” on page 89.

The Business Process Choreographer Observer is installed and configured.

Verify that Business Process Choreographer works.

About Business Process Choreographer Observer

You can use Business Process Choreographer Observer to create reports on

processes and tasks that have been completed. You can also use it to view the

status of running processes and tasks.

For detailed information about configuring and using Business Process

Choreographer Observer, including in an ND environment, refer to support

document 7008553.

You can configure Business Process Choreographer Observer in several ways:

v If you have an existing Business Process Choreographer configuration you can

use the configuration scripts, as described in “Configuring the Business Process

Choreographer Observer infrastructure” on page 84.

v If you use the Profile Creation wizard, and select the option to create a sample

Business Process Choreographer configuration, Business Process Choreographer

Observer and event collector are configured, Common Event Infrastructure (CEI)

logging if enabled for the Business Process Choreographer state observer, and

the necessary database schema is created within the Business Process

Choreographer Cloudscape database, names BPEDB.

v If you use the administrative console to run the Business Process Choreographer

install wizard, there is an option to configure Business Process Choreographer

Observer.

Business Process Choreographer Observer is based on two J2EE enterprise

applications:

v Business Process Choreographer event collector

v Business Process Choreographer Observer

They use the same database. The event collector reads event information from the

CEI bus and stores it in the Business Process Choreographer Observer database.

Periodically the raw event data is transformed into a format suitable for queries

from the Business Process Choreographer Observer. If Business Process

Choreographer uses Cloudscape, DB2, or Oracle, Business Process Choreographer

Observer can use the same database instance, otherwise you must create a new

database.

The Business Process Choreographer Observer database is a set of databases tables

that store the event data. The tables can be created in an existing database or in a

new database dedicated to the Business Process Choreographer Observer. Before

you install Business Process Choreographer Observer, the database must be

available and a XA data source must be configured in your application server to

point to the database. You must create the data source manually. To create the

tables for the observer you can either use the observer configuration scripts or you

can create the schema manually using the scripts located install_root\dbscripts\
ProcessChoreographer\database_type

If your database system is DB2 or Oracle you have to run the

createTablespace_Observer.sql script before using the configuration tools.

Chapter 2. Configuring Business Process Choreographer 85

http://www.ibm.com/support/docview.wss?rs=2307&uid=swg27008553

Configuring the Business Process Choreographer event

collector

This describes how to use a script to configure the event collector and database

tables that are necessary for the Business Process Choreographer Observer.

v A database is available.

v The CLASSPATH environment variable contains the JDBC driver for your

database.

v You have to create an XA data source manually using the application server’s

administrative console. The data source must point to the database.

Note: For z/OS, when using a type 2 non-XA Provider, do not create an XA

data source. The XA data source is for Type 4 XA Provider only.
 1. Change to the Business Process Choreographer subdirectory where the

configuration scripts are located.

Type the following command:

cd install_root/ProcessChoreographer/config

 2. Start the script to set up the event collector.

Type the following command:

setupEventCollector.sh [-conntype SOAP | RMI | JMS | NONE]

 ([-node nodeName] -server serverName) | (-cluster clusterName)

 [-remove [-silent]]

Where:

conntype SOAP | RMI | JMS | NONE

The connection mode that wsadmin tool uses.

node nodeName

The name of the node. This parameter is optional. The default value is

the local node.

server serverName

The name of the server. If you do not specify the option -conntype

none, this parameter is optional.

cluster clusterName

clusterName If you do not specify the option -conntype none, this

parameter is optional.

remove

Specify this option to remove the event collector. If you do not specify

this option, the default is that the event collector will be configured.

silent This option can only be used with the remove option. It causes the

script to not output any prompts. This parameter is optional.

Note:

In a stand-alone server environment:

v Include the -conntype NONE option only if the application server is

not running.

v If the server is running and global security is enabled, include the

-username and -password options.

v If you are not configuring the default profile, add the -profileName

option.

You see the Commands Menu:

86 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Commands Menu

 1) Prepare a database for the Event Collector

 2) Install the Event Collector application

 3) Remove the Event Collector application and related objects

 4) Change configuration settings of an installed Event Collector

 0) Exit Commands Menu

Note: If you started the script in local mode, that is, with the -conntype none

parameter and without specifying a server or cluster, only menu items

0 and 1 are displayed.

 3. Select option 1 to prepare a database for the event collector.

a. When you see the commands menu:

Select the type of your DBMS :

 ’d’ ... DB2

 ’c’ ... Cloudscape

 ’7’ ... DB2 V7 on z/OS

 ’8’ ... DB2 V8 on z/OS

 ’o’ ... Oracle

 ’x’ ... Exit

Your selection : [c]

You see the Commands Menu:

 4. Select your database type.

v For DB2, enter d.

v For Cloudscape, enter c.

v For DB2 V7 on z/OS, enter 7.

v For DB2 V8 on z/OS, enter 8.

v For Oracle, enter o.
 5. Enter the database settings.

v For DB2, enter the following:

a. Either the database name, or an alias, for example BPEDB.

b. The user ID and password to connect to the database, for example,

db2admin.

c. The password for user ID.

d. The database schema to be used for the database objects. If you specify

a schema that does not exist, it is created. If you enter a space character

or leave the field empty, the schema of the user ID specified in a. is

used.
v For Cloudscape, enter the following:

a. The fully qualified path to the database, for example,

d:\w\p\profiles\Srv01\databases\BPEDB.

b. The database schema to be used for the database objects. If you specify

a schema that does not exist, it is created. If you enter a space character

or leave the field empty, the default schema is used (normally APP) .

c. If you are prompted to stop the server, do so, then press c to continue.
v For Oracle, enter the following:

a. The database name, for example, BPEDB.

b. The host name where the database resides, for example, localhost.

c. The port number where the Oracle listener is listening, for example,

1521.

d. The user ID to connect to the database, for example, system.

Chapter 2. Configuring Business Process Choreographer 87

e. The password for the user ID.

After checking the connection, the database is prepared.

 6. Check for any errors. If any errors occur, check the log file

setupEventCollector.log that is located in the logs subdirectory of the profile

directory. For example, on Windows, if your profile is named myServer and

your profiles are stored in install_root\profiles, the log file is located in

install_root\profiles\myServer\logs.

 7. Install the event collector application. When you see the Commands Menu:

Commands Menu

 1) Prepare a database for the Event Collector

 2) Install the Event Collector application

 3) Remove the Event Collector application and related objects

 4) Change configuration settings of an installed Event Collector

 0) Exit Commands Menu

Select option 2 to install the Business Process Choreographer event collector

application. You see the JNDI name prompt:

Specify the JNDI name of the database where the WebSphere BPC Event

Collector should store the collected events.

Enter ’?’ to get a list.

Your selection : [jdbc/BPEDB]

 8. Enter the JNDI name that is used to connect to the database. You can also

enter ? to get a list of all registered data sources.

 9. Enter the name of the schema for the database tables in which the collected

events will be stored. To use the schema specified in the data source

definition, enter a space character or leave the field empty.

10. Enter the JMS user ID to authenticate with the Common Event Infrastructure

(CEI) bus. If the CEI bus has security disabled, you can leave this empty. If

you specify a user ID, also enter a password at the next prompt. All required

objects are created and the enterprise application is installed. Success is

indicated by the message:

WebSphere Business Process Choreographer Event Collector

installed successfully!

11. If there were no error messages, enter y to save the configuration. Otherwise,

enter n to discard the changes and keep your original configuration. If there

were errors, check the log file named setupEventCollector.log, which is

located in the logs directory of the profile, for example, on Windows, if your

profile is named myServer and your profiles are stored in

install_root\profiles, the log file is located in install_root\profiles\
myServer\logs.

12. If CEI logging is not enabled on the server, you see the following:

Checking if CEI event logging is enabled ...

Warning: The Business process container of server_name has CEI event

logging disabled.

To allow the Event Collector to work correctly, CEI event logging is required.

Do you want to enable the CEI event logging on server_name? (y/n)

To enable CEI logging, enter y, otherwise enter n.

13. If you are prompted to start the application, enter y to start the application or

n to not start it.

14. To activate all settings, restart the server.

88 IBM WebSphere Process Server for z/OS: Business Process Choreographer

The Business Process Choreographer event collector is installed and configured.

Continue configuring at step 2 on page 85. If you want to, you can use option 4 in

the command menu to change configuration parameters for the event collector, this

is described in support document 7008553.

Configuring Business Process Choreographer Observer

This describes how to use a script to configure Business Process Choreographer

Observer, which allows you to observe the states of running business processes

and human tasks.

v You have configured Business Process Choreographer using the administrative

console or the bpeconfig script.

v You have configured the Business Process Choreographer event collector but

have not yet configured Business Process Choreographer Observer.

v You have enabled the Common Event Infrastructure (CEI) logging for the

container where the business applications run that you want to observe.

v The server must be running.
1. Change to the Business Process Choreographer subdirectory where the

configuration scripts are located.

Type the following command:

cd install_root/ProcessChoreographer/config

2. Start the script to set up the event consumer.

Type the following command:

setupObserver.sh [-conntype SOAP | RMI | JMS | NONE]

 ([-node nodeName] -server serverName) | (-cluster clusterName)

 [-remove [-silent]]

Where:

conntype SOAP | RMI | JMS | NONE

The connection mode that wsadmin tool uses.

node nodeName

The name of the node. This parameter is optional. The default value is

the local node.

server serverName

The name of the server. If you do not specify the option -conntype

none, this parameter is optional.

cluster clusterName

clusterName If you do not specify the option -conntype none, this

parameter is optional.

remove

Specify this option to remove the Business Process Choreographer

event collector. If you do not specify this option, the default is that the

Business Process Choreographer event collector will be configured.

silent This option can only be used with the remove option. It causes the

script to not output any prompts. This parameter is optional.

Note:

In a stand-alone server environment:

v Include the -conntype NONE option only if the application server is not

running.

Chapter 2. Configuring Business Process Choreographer 89

http://www.ibm.com/support/docview.wss?rs=2307&uid=swg27008553

v If the server is running and global security is enabled, include the

-username and -password options.

v If you are not configuring the default profile, add the -profileName

option.

You see the Commands Menu:

Commands Menu

Working on node ’nodeName’, server ’serverName’.

1) Install the Observer application

2) Remove the Observer application and related objects

3) Change configuration settings of an installed Observer

0) Exit Menu

3. Select option 1 to install Business Process Choreographer Observer. You see the

JNDI name prompt:

Specify the JNDI name of the database containing the event tables.

Enter ’?’ to get a list.

Your selection : [jdbc/BPEDB]

4. Enter the JNDI name for the data source that is used by the Business Process

Choreographer event collector. You can also enter ? to get a list of all registered

data sources.

5. Enter the name of the schema for the database tables in which the collected

events are stored. If you leave this field empty or enter a space character, the

default schema is used, which is the schema of the user ID that is specified in

the properties of the data source that you specified in step 4. All required

objects are created and the enterprise application is installed. Success is

indicated by the message:

WebSphere BPC Observer installed successfully!

6. If there were no error messages, enter y to save the configuration. Otherwise,

enter n to discard the changes and keep your original configuration. If there

were errors, check the log file named setupObserver.log, which is located in

the logs directory of the profile, for example, in WebSphere/V6R0M0/AppServer/
profiles/default/logs.

7. If you are prompted, enter y to start the application or n to not start it.

8. To activate all settings, restart the server.

Business Process Choreographer Observer is installed and configured. It can be

reached using the URL http://host:port/bpcobserver/. Where host is the name of

the host where your application server is running, and port is the port number for

your application server (the default is 9080).

Continue configuring at step 8 on page 13. If you want to, you can use option 3 in

the command menu to change configuration parameters for the Business Process

Choreographer Observer, this is described in support document 7008553.

Activating Business Process Choreographer

After configuring the business process container and human task container, you

must restart the servers where they were installed.

To activate Business Process Choreographer:

1. If you installed the business process container and human task container on a

cluster of application servers, restart the cluster.

90 IBM WebSphere Process Server for z/OS: Business Process Choreographer

http://www.ibm.com/support/docview.wss?rs=2307&uid=swg27008553

2. If you installed the business process container and human task container on

one application server, restart the application server.

3. To verify that the business process container and human task container

applications started successfully, make sure that no error messages exist in the

SystemOut.log file for the application server. On a cluster, check the log for all

application servers in the cluster.

Business Process Choreographer is running.

You are ready to verify that Business Process Choreographer is working.

Verifying that Business Process Choreographer works

Run the Business Process Choreographer installation verification application.

The application server, database system, and messaging service must be running.

1. Using either the administrative console or the wsadmin command, install the

application in install_root/installableApps/bpcivt.ear. Errors will occur at

this stage if the Business Process Choreographer database cannot be accessed.

These problems can be caused if the database system is not running, if any

database clients are not correctly configured, or if errors were made defining

the data source, for example, entering an invalid user ID or password. After the

enterprise application is installed, it is in the state stopped, and any process

and task templates that it contains are in the state started. No process or task

instances can be created until the application is started.

2. Select the application BPCIVTApp and click Start to start the application. At

this point, the input queues are read for the first time. Errors will occur at this

stage if the queue manager is not running, or if any mistakes were made

defining the JMS provider or JMS resources.

3. Verify that the application works. Using a Web browser, open the following

page:

http://app_server_host:port_no/bpcivt

Where app_server_host is the network name for the host of the application

server and port_no is the port number used by the virtual host to which you

mapped the IVT Web module when installing the file bpcivt.ear. The port

number depends on your system configuration. You should see a message

indicating success.

4. Optional: Stop and remove the BPCIVTApp application.

Business Process Choreographer works.

Understanding the startup behavior of the business process

container

This topic explains why the business process container is unavailable until all

enterprise applications are started.

When the business process container is started or restarted, no messages in the

internal queue are processed until all enterprise applications are started. It is not

possible to change this behavior. The time that business process container is

unavailable during a restart depends on how long it takes until all enterprise

applications are started. This behavior is necessary to prevent the business process

engine from navigating processes with associated enterprise applications that are

not running.

Chapter 2. Configuring Business Process Choreographer 91

Starting to process messages in the internal queue before all applications are

started would result in ClassNotFound exceptions.

Configuring Business Process Choreographer to use an LDAP user

registry

This describes how to change an existing Business Process Choreographer

configuration to use a Lightweight Directory Access Protocol (LDAP) user registry.

 1. Configure the LDAP user registry.

a. Click Security → Global security make sure that the Enable global

security is not enabled.

b. Under User registries, select LDAP.

c. Set the user name and password used to run WebSphere Process Server for

security purposes. In the Server user ID field type the user name, and in

the Server user password field, enter the corresponding password. This ID

is not the LDAP administrator user ID. This user ID must exist in the

LDAP registry.

d. From the Type list choose the specific LDAP that you want to use as your

user registry.

e. In the Host field, enter the host name of the LDAP server.

f. In the Port field, enter the port number on which the LDAP server is

listening.

g. Enter the Base Distinguished Name.

This value specifies the base distinguished name of the directory service,

indicating the starting point for LDAP searches of the directory service.

For authorization purposes, this field is case sensitive. This specification

implies that if a token is received (for example, from another cell or

Domino server) the base distinguished name (DN) in the server must

match the base DN from the other cell or Domino server exactly. If case

sensitivity is not a consideration for authorization, enable the Ignore case

field. This field is required for all LDAP directories except for the Domino

Directory, where this field is optional.

h. Enter the Bind Distinguished Name. Enter the user ID that the application

server will use to bind to the LDAP server. For example, you can use the

same user ID that you entered for the Server user ID.

i. Enter the Bind Password. Enter the password for the user ID you specified

for the Bind Distinguished Name.

j. Leave the remaining parameters with the default values and confirm your

changes. Click OK.
 2. Configure the Lightweight Third Party Authentication (LTPA) mechanism.

Under Authentication, open Authentication mechanisms and select LTPA. In

the fields Password and Confirm password, enter a password of your choice,

then click OK.

 3. Enable global security, Java 2 security, LTPA and LDAP.

a. Select Enable global security.

b. Select Enforce Java 2 security.

c. For Active authentication mechanism, select Lightweight Third Party

Authentication (LTPA).

d. For Active user registry, select Lightweight Directory Access Protocol

(LDAP) user registry.

92 IBM WebSphere Process Server for z/OS: Business Process Choreographer

e. Click OK and save your changes.
 4. Restart WebSphere Process Server.

 5. Log on to the administrative console using the user ID that you specified for

the Server user ID in step 1c on page 92.

 6. Add new user mapping for the JMSAPIUser role for the business process

container application.

a. In the administrative console, locate the business process container

application. Click Applications → Enterprise Applications →

BPEContainer_<your_node>_<your_server>.

b. Under Additional Properties, click Map RunAs roles to users.

c. For username, enter a valid user ID that is defined in the LDAP user

registry.

d. For password, enter the password for the user ID.

e. Select the check box in front of the table row for JMSAPIUser.

f. Click Apply. This associates the user ID with the role. The user ID is added

to the table.

g. Click OK and save your changes.
 7. Add security role mappings for system administrator and system monitor for

the business process container application.

a. In the administrative console, locate the business process container

application. Click Applications → Enterprise Applications →

BPEContainer_<your_node>_<your_server>.

b. Under Additional Properties, click Map security roles to users/group.

c. Select the check boxes in front of the table rows for

BPESystemAdministrator and BPESystemMonitor.

d. Click Lookup Users

e. For Search String, enter the character *, and click Search.

f. In the Available list, select the entry for a user or group that will , then

click >> .

g. Click OK.

h. Select the check box in front of BPESystemAdministrator, if any other

check boxes are selected, clear them.

i. Click Lookup Groups.

j. Remove the group, by selecting the group that is displayed in the Selected

field, click <<, click OK.

k. Click OK and save your changes.
 8. Add a new user name mapping for the EscalationUser role for the human task

container application.

a. In the administrative console, locate the human task container application.

Click Applications → Enterprise Applications →

TaskContainer_<your_node>_<your_server>.

b. Under Additional Properties, click Map RunAs roles to users.

c. For username, enter a valid user ID that is defined in the LDAP user

registry.

d. For password, enter the password for the user ID.

e. Select the check box in front of the table row for EscalationUser.

f. Click Apply. This associates the user ID with the role. The user ID is added

to the table.

Chapter 2. Configuring Business Process Choreographer 93

g. Click OK and save your changes.
 9. Add security role mappings for system administrator and system monitor for

the human task container application.

a. In the administrative console, locate the business process container

application. Click Applications → Enterprise Applications →

TaskContainer_<your_node>_<your_server>.

b. Under Additional Properties, click Map security roles to users/group.

c. Select the check boxes in front of the table rows for

TaskSystemAdministrator and TaskSystemMonitor.

d. Click Lookup Users

e. For Search String, enter the character *, and click Search.

f. In the Available list, select the entry for the user ID that you specified in

step 1c on page 92, then click >> .

g. Click OK.

h. Select the check box in front of TaskSystemAdministrator, if any other

check boxes are selected, clear them.

i. Click Lookup Groups.

j. Remove the group, by selecting the group that is displayed in the Selected

field, click <<, click OK.

k. Click OK and save your changes.
10. Change the sample LDAP staff plug-in configuration.

a. In the administrative console, click Resources → Staff plug-in provider →

LDAP Staff Plugin Provider.

b. Under Additional Properties, click Staff Plugin Configuration.

c. Click LDAP Staff Plugin Configuration sample

d. Under Additional Properties, click Custom properties.

e. Set the value of the BaseDN property to the same value that you entered

for Base Distinguished Name (DN) in step 1g on page 92.

f. Set the value of the ProviderURL to the URL for the LDAP server. For

example, ldap://host:port, where host and port are the values that you

entered in steps 1e on page 92 and 1f on page 92.

g. Click OK and save your changes.
11. Change the authentication data entries for the J2EE Connector Architecture

(J2C).

a. In the administrative console, click Security → Global Security.

b. Under JAAS Configuration, click J2C Authentication data .

c. Change each user alias, and set the user ID and password to values for a

valid user ID that is defined in the LDAP user registry. Do not change any

database aliases.

d. Save your changes.
12. Restart the servers.

v For ND: Stop the cluster, all node agents, and the deployment manager and

restart them.

v For a single server: Restart the server.

Note: Use the server user ID that you specified in step 1c on page 92 to stop

the servers, node agents and deployment manager.

13. Verify that the Business Process Choreographer applications are running.

94 IBM WebSphere Process Server for z/OS: Business Process Choreographer

a. In the administrative console, click Applications → Enterprise

Applications.

b. Verify that the applications BPEContainer_node_server, and

TaskContainer_node_server are running.

Now all staff queries will be made against the selected LDAP server.

Federating a stand-alone node that has Business Process

Choreographer configured

This describes how to federate a server in a stand-alone profile that runs

applications that contain business processes or human tasks or both to a new

deployment manager cell.

The deployment manager is running, and you know its host name and port

number. Business Process Choreographer is configured on the server in a

stand-alone profile. The Business Process Choreographer database in the

stand-alone profile must be remotely accessible from the deployment manager cell.

For this reason, your server cannot be based on the sample Business Process

Choreographer configuration that uses embedded Cloudscape.

You have one or more applications, which contain business processes or human

tasks, running on a stand-alone server, and you want to federate this server into a

network deployment environment. One of the following applies:

v You want to move an application from a test environment to a production

environment.

v You want to use ND to administer your server and application.
1. If the node includes a large number of applications, increase the timeout for the

administrative connector.

2. From the command line, run the addNode command with the -includeapps

and -includebuses options. For details about this command and possible errors

that can occur, refer to the WebSphere Application Server for z/OS information

center, addNode command. For example, if the deployment manager has a host

name of dmgr_host and uses port dmgr_port, enter the command:

addNode dmgr_host dmgr_port -includeapps -includebuses

For example, if the deployment manager has a host name of any.hostname.com

and uses port 9043, your profile name is ProcSvr07, your user ID is admin, and

your password is secret, enter the command:

addNode any.hostname.com 9043 -profileName ProcSvr07 -username admin

 -password secret -includeapps -includebuses

If any of the prerequisites are not met, an error message is displayed.

Otherwise, the server is stopped and the server is federated into a new

deployment manager cell.

3. Set the JDBC provider’s WebSphere variables on the deployment manager

node. The variable for the path for the JDBC driver that you are using must be

set. That is one of the following:

v DB2UNIVERSAL_JDBC_DRIVER_PATH (for DB2)

v UNIVERSAL_JDBC_DRIVER_PATH (for DB2)

v CONNECTJDBC_JDBC_DRIVER_PATH (for SQL Server)

v ORACLE_JDBC_DRIVER_PATH (for Oracle)
4. Start the server to activate the changes.

Chapter 2. Configuring Business Process Choreographer 95

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/rxml_addnode.html

5. If you cannot access the business applications that are running on the server,

use the administrative console on the deployment manager to make sure that

the virtual host and alias definitions for the application server match the new

cell.

Your applications are now running on the same server, but the server is now in a

cell that can be administered using the deployment manager.

If required, you can promote the server to a cluster.

 Related tasks

 “Promoting a server that has Business Process Choreographer configured to a

cluster”
This describes how to promote a server that runs applications that contain

business processes or human tasks or both to a cluster.

Promoting a server that has Business Process Choreographer

configured to a cluster

This describes how to promote a server that runs applications that contain business

processes or human tasks or both to a cluster.

You have one or more applications, which contain business processes or human

tasks, running on a standalone server in an ND cell, and you want to create a

cluster from this server. For example, to increase the workload capacity, availability,

or to consolidate multiple applications that have their own profiles.

1. Create the cluster. Perform Creating a cluster, using the existing server that has

Business Process Choreographer configured on it.

Restriction:

v If you have an existing server that has Business Process

Choreographer configured on it, it must be the first server in the

cluster.

v If you want to create the cluster using one of the templates

provided, use the defaultProcessServertemplate.
2. Activate the changes. If the server is not running start it. If the server is

running, stop and start it.

Your applications are now running on the same server, but the server is now a

member of the cluster, and the resources have cluster scope.

You can add more members to the cluster to share the workload and increase

availability.

96 IBM WebSphere Process Server for z/OS: Business Process Choreographer

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/trun_wlm_cluster.html

Chapter 3. Removing the Business Process Choreographer

configuration

Use this task to remove the business process container, human task container,

Business Process Choreographer Explorer, and the associated resources.

1. Ensure that all the stand-alone servers, the database, and the application server

(or at least one application server per cluster) are running.

2. For each enterprise application that contains human tasks or business

processes, stop and uninstall all human task and business process templates,

then uninstall the application.

3. Perform one of the following actions:

v To uninstall the business process container, human task container, Business

Process Choreographer Explorer, and the associated resources, perform

“Using a script to remove the Business Process Choreographer

configuration.”

v If you want to reuse parts of the existing configuration, perform “Using the

administrative console to remove the Business Process Choreographer

configuration” on page 99.

The Business Process Choreographer configuration has been removed.

Using a script to remove the Business Process Choreographer

configuration

Use this task to remove the business process container, task container, Business

Process Choreographer Explorer and Business Process Choreographer Observer

configuration, and the associated resources.

Before you can remove the Business Process Choreographer configuration, you

must stop all process and task templates, delete all process and task instances, then

stop and remove the configuration for all enterprise applications that contain

business processes or human tasks.

1. Change to the Business Process Choreographer sample directory: Type the

following:

cd install_root/ProcessChoreographer/config

2. Run the script bpeunconfig.jacl. In the following cases, also specify the

appropriate options:

v For stand-alone servers, stop the application server and use the -conntype

NONE option. This step ensures that any Cloudscape databases are not locked

and can be removed automatically.

v In a Network Deployment (ND) environment, run the script, as follows:

– If the deployment manager is not running, run the script on the

deployment manager, using the -conntype NONE option.

– If the deployment manager is running, stop the application server from

which the configuration is to be removed, then run the script, omitting the

-conntype NONE option.

When the script is running on the application server node from which the

Business Process Choreographer configuration is to be removed, the script

can automatically delete any Cloudscape databases.

© Copyright IBM Corp. 2007 97

v If WebSphere security is enabled, specify also the user ID and password:

 -userid userID -password password

v If you are not configuring the default profile, specify also the profile name:

 -profileName profileName

When removing the configuration for a single server with WebSphere security

enabled, enter the command:

install_root/bin/wsadmin.sh -f bpeunconfig.jacl -server Server -node Node

 -userid userID -password password

When removing the configuration for a single server with WebSphere security

disabled, enter the command:

install_root/bin/wsadmin.sh -f bpeunconfig.jacl -server Server -node Node

When removing the configuration for a cluster with WebSphere security

enabled, enter the command:

install_root/bin/wsadmin.sh -f bpeunconfig.jacl -cluster Cluster

 -userid userID -password password

When removing the configuration for a cluster with WebSphere security

disabled, enter the command:

install_root/bin/wsadmin.sh -f bpeunconfig.jacl -cluster Cluster

Where:

Server The name of the application server. If only one server exists, this

parameter is optional.

Node The name of the node. This is optional. If the node is omitted, the local

node is used.

Cluster

The name of the cluster.

If you omit a parameter, you are prompted for it.

3. Optional: Delete the database used by Business Process Choreographer.

For both the Business Process Choreographer database and the messaging

database the following apply:

v The bpeunconfig.jacl script lists the databases that were used by the

configuration that has been removed. You can then more easily identify the

databases that are to be removed.

v When a Cloudscape database is used for the Business Process Choreographer

database, the bpeunconfig.jacl script optionally removes the database,

unless it is locked by a running application server. If the database is locked,

stop the server, and use the -conntype NONE option.
4. Optional: Check the log file install_root/profiles/profileName/logs/

bpeunconfig.log.

5. Required: Delete the database used by WebSphere default messaging. This

database cannot be reused in a new configuration.

For both the Business Process Choreographer database and the messaging

database the following apply:

v The bpeunconfig.jacl script displays a list of the databases that were used

by the configuration that has been removed. The list of databases is also

written to the install_root/profiles/profileName/logs/bpeunconfig.log

log file. Use this information to identify the databases that are to be

removed.

98 IBM WebSphere Process Server for z/OS: Business Process Choreographer

v When Cloudscape is the messaging database, the bpeunconfig.jacl script

optionally removes the database, unless it is locked by a running application

server. If the database is locked, stop the server, and use the -conntype NONE

option.
6. Optional: For WebSphere MQ only, delete the queue manager used by Business

Process Choreographer.

7. Optional: Manually undo remaining settings that bpeunconfig.jacl does not

undo. The following settings are not undone by the bpeunconfig.jacl script

because it cannot determine whether the settings are still needed by other

components:

v enabling the WorkAreaService

v enabling the ApplicationProfileService

v enabling the ObjectPoolService

v enabling the StartupBeansService

v enabling the CompensationService

v enabling the WorkareaPartitionService

v enabling the WebSphere Security and Java 2 security

v setting WebSphere variables

v installing or adding target mappings for the SchedulerCalendars application
8. If you configured Business Process Choreographer Observer, remove it and the

event collector by running both setup scripts, but selecting the remove option,

as described in the following:

a. “Configuring the Business Process Choreographer event collector” on page

86

b. “Configuring Business Process Choreographer Observer” on page 89

The Business Process Choreographer applications and associated resources (such as

scheduler, data sources, listener ports, connection factories, queue destinations,

activation specs, work area partition, mail session, and authentication aliases) have

been removed.

Using the administrative console to remove the Business Process

Choreographer configuration

Use this task to remove part or all of the business process container, task container,

and Business Process Choreographer Explorer configuration, and the associated

resources.

Before you can remove the Business Process Choreographer configuration, you

must stop all process and task templates, delete all tasks and process instances,

then stop and uninstall all enterprise applications that contain business processes

or human tasks.

1. Uninstall the Business Process Choreographer enterprise applications.

a. Display the enterprise applications.

In the administrative console, select Applications → Enterprise

Applications.

b. Identify the scope of the Business Process Choreographer installation.

Look for applications with the following names:

v BPEContainer_scope is the business process container application.

v TaskContainer_scope is the human task container application.

Chapter 3. Removing the Business Process Choreographer configuration 99

v BPCExplorer_scope is the Business Process Choreographer Explorer

application.

v BPCObserver_scope is the Business Process Choreographer Observer

application.

v BPCECollector_scope is the event collector application that is required by

the Business Process Choreographer Observer.

Where the value of scope depends on your configuration:

v If Business Process Choreographer was configured on an application

server, scope has the value nodeName_serverName.

v If Business Process Choreographer was configured on a cluster, scope has

the value clusterName.
c. Optional: If you installed the business process container, uninstall it. Select

BPEContainer_Scope, then click Uninstall → OK → Save → Save.

d. Optional: If you installed the human task container, uninstall it.

1) Select TaskContainer_Scope, then click Stop.

2) Select the application again, then click Uninstall → OK → Save → Save.
e. Optional: If you installed Business Process Choreographer Explorer,

uninstall it.

1) Select BPCExplorer_Scope, then click Stop.

2) Select the application again, then click Uninstall → OK → Save → Save.
f. Optional: If you installed Business Process Choreographer Observer,

uninstall it and the Business Process Choreographer Common Event

Infrastructure consumer.

1) Select bpcobserver_Scope and bpcobservereventconsumer_Scope, then

click Stop.

2) Select the applications again, then click Uninstall → OK → Save → Save.
2. Remove all or any of the following resources that you do not want to reuse:

a. Optional: Find the Business Process Choreographer data source (the default

name is BPEDataSourcedbType) and note its associated authentication data

alias (if any) and Java Naming and Directory Interface (JNDI) name before

removing it (for a single server, the default name is jdbc/BPEDB).

To find the data sources:

1) Click Resources → JDBC Providers.

2) If Business Process Choreographer was installed on an application

server, select Server.

3) If Business Process Choreographer was installed on a cluster, select the

cluster.

4) Click Apply.

5) Select the appropriate JDBC provider, then click Data sources.

6) If you are using an Oracle database management system, remove also a

second data source: BPEDataSourceOracleNonXA.
b. Optional: For a database other than a Cloudscape database, remove the

JDBC provider of the data source identified in step 2, unless it contains

further data sources that you still need.

c. Optional: Remove the appropriate connection factories and queues.

v For default messaging, before you remove the connection factories, note

their associated authentication data aliases. Then remove the JMS

connection factories and JMS queues.

1) Click Resources → JMS Providers → Default messaging.

100 IBM WebSphere Process Server for z/OS: Business Process Choreographer

2) On the Default messaging provider pane perform one of the

following:

– If you configured Business Process Choreographer on a cluster,

select Cluster then click Apply.

– If you configured Business Process Choreographer on a server,

select Server then click Apply.
v For WebSphere MQ, remove the JMS queue connection factories and JMS

queue destinations.

1) Click Resources → JMS Providers → WebSphere MQ.

2) On the WebSphere MQ messaging provider pane, select Server. Then

click Apply.

If you configured Business Process Choreographer on a cluster, you must

repeat this for each server that is a member of the cluster.
For the business process container the JNDI names are normally as follows:

 jms/BPECF

 jms/BPECFC

 jms/BPEIntQueue

 jms/BPERetQueue

 jms/BPEHldQueue

For the human task container the JNDI names are normally as follows:

 jms/HTMCF

 jms/HTMIntQueue

 jms/HTMHldQueue

d. Optional: If you are using WebSphere default messaging as the JMS

provider, remove the activation specifications.

1) Click Resources → JMS Providers → Default messaging → JMS activation

specification.

2) Remove the following activation specifications:

 BPEInternalActivationSpec

 HTMInternalActivationSpec

e. Optional: If you are using WebSphere MQ as the JMS provider, remove the

listener ports.

1) Click Servers → Application servers → serverName.

2) Under Communications, click Messaging → Message Listener Service →

Listener Ports.

3) On the Application servers pane, remove the following listener ports:

 BPEInternalListenerPort

 BPEApiListenerPort

 BPEHoldListenerPort

 HTMInternalListenerPort

f. Optional: Delete the authentication data aliases.

v If the data source identified in step 2 on page 100 had an authentication

data alias, remove that alias.

Usually, the alias for the database is named cellName/
BPEAuthDataAliasdbType_Scope, where:

cellName

The name of the cell

dbType

The database type

Scope

One of the values given in step 1b on page 99

Chapter 3. Removing the Business Process Choreographer configuration 101

v If any of the connection factories identified in step 2c on page 100 have an

authentication data alias, remove the alias.

Usually, the alias for the database is named cellName/
BPEAuthDataAliasJMS_Scope, where:

cellName

The name of the cell

Scope

One of the values given in step 1b on page 99
The authentication data alias is in Security → Global security → JAAS

Configuration → J2C Authentication data.

g. Optional: Remove the scheduler configuration for the data source JNDI

name.

1) Click Resources → Schedulers.

2) Select the scope of the Business Process Choreographer configuration;

either Server or cluster. Then click Apply.

3) On the Schedulers pane, note the work manager name, then select and

delete the scheduler BPEScheduler.
h. Optional: Remove the work manager.

1) Click Resources → Asynchronous beans → Work managers.

2) Select the scope of the Business Process Choreographer configuration;

either Server or cluster. Then click Apply.

3) On the Work managers pane, select and delete the work manager whose

name you noted in step 2g.
i. Optional: Remove the work area partition.

1) Click Servers → Application servers → serverName.

2) Under Business Process Services, click Work area partition service.

3) On the Application servers pane, select and delete the work area

partition BPECompensation.
j. Optional: Remove the mail session.

1) Click Resources → Mail Providers.

2) On the Mail Providers pane, select Cell. Then click Apply.

3) Click Built-in Mail Provider.

4) Under Additional Properties, select Mail sessions.

5) Select and delete HTMMailSession_Scope, where Scope is the scope

identified in step 1b on page 99
k. In a cluster, repeat the removal of any server level resources for each cluster

member.

l. Save your configuration changes.

m. Restart the application server.
3. Optional: If you use WebSphere default messaging for Business Process

Choreographer, you can delete the bus member, bus, and data source:

a. Click Service integration → Buses → BPC.cellName.Bus → Messaging

engines.

b. Select the messaging engine:

v nodeName.serverName-BPC.cellName.Bus if you configured Business

Process Choreographer on a server.

v clusterName-BPC.cellName.Bus if you configured Business Process

Choreographer in a cluster.

102 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Note: If you configured Business Process Choreographer to use a remote

messaging engine, clusterName might not match the name of the

cluster where you configured Business Process Choreographer.
c. In Additional Properties, select Data store, and note the JNDI name for the

data source.

d. Go to Service integration → Buses → BPC.cellName.Bus → Bus members and

remove the bus member identified by one of the following:

v Node=nodeName, Server=serverName if you configured Business Process

Choreographer on a server.

v Cluster=clusterName if you configured Business Process Choreographer

on a cluster.
e. Optional: If you removed the last member of the bus BPC.cellName.Bus, you

can also remove the bus.

f. Optional: Remove the data source. Click Resources → JDBC Providers →

Server → Apply → Cloudscape JDBC Provider → Data Sources, then delete

the data source that you noted in step 3c.
4. Optional: If you configured Business Process Choreographer on a cluster, delete

the BPC_REMOTE_DESTINATION_LOCATION variable: Click Environment →

WebSphere Variables → Cluster → Apply. Select the variable named

BPC_REMOTE_DESTINATION_LOCATION, then click Delete.

5. Click Save to save all your deletions in the master configuration.

6. Optional: Delete the Business Process Choreographer database.

7. Optional: If you are using WebSphere MQ, delete the queue manager used by

Business Process Choreographer.

8. If you use WebSphere default messaging for Business Process Choreographer,

delete the datastore for the message engine. If you use the default data store,

you can delete the data store by deleting the following directory:

v On Windows systems, delete

install_root\profiles\profileName\databases\com.ibm.ws.sib\

 nodeName.serverName-BPC.cellName.Bus

v On UNIX and Linux systems, delete

install_root/profiles/profileName/databases/com.ibm.ws.sib/

 nodeName.serverName-BPC.cellName.Bus

9. Optional: If you configured the Business Process Choreographer Observer

perform the following:

a. “Using the administrative console to remove the Business Process

Choreographer event collector” for each event collector.

b. “Using the administrative console to remove Business Process

Choreographer Observer” on page 105.

The Business Process Choreographer configuration has been removed.

Using the administrative console to remove the Business

Process Choreographer event collector

Use this task to remove the Business Process Choreographer event collector

configuration, and the associated resources that are required by the Business

Process Choreographer Observer.

 1. Display the enterprise applications.

In the administrative console, select Applications → Enterprise Applications.

Chapter 3. Removing the Business Process Choreographer configuration 103

2. Uninstall the Business Process Choreographer event collector application.

Select the check box in front of BPCECollector_node_name_server_name, click

Uninstall → OK → Save.

 3. Delete the BPCTransformerQueueDestination destination:

a. Click Service integration → Buses → CommonEventInfrastructure_Bus .

b. Under Destination Resources, click Destinations.

c. Select the check box for

BPCTransformerQueueDestination_node_name_server_name.

d. Click Delete.
 4. Delete the BPCCEIConsumerQueueConnectionFactory JMS queue connection

factory:

a. Click Resources → JMS Providers → Default messaging (server scope) →

JMS queue connection factory.

b. Select the check box for BPCCEIConsumerQueueConnectionFactory.

c. Click Delete.
 5. Delete the JMS queues:

a. Click Resources → JMS Providers → Default messaging → JMS queue.

b. Select the check boxes for BPCCEIConsumerQueue_serverName and

BPCTransformerQueue_nodeName_serverName.

c. Click Delete.
 6. Delete the JMS activation specifications:

a. Click Resources → JMS Providers → Default messaging → JMS activation

specification.

b. Select the check boxes for BPCCEIConsumerActivationSpec and

BPCTransformerActivationSpec.

c. Click Delete.
 7. Delete the event profile group for server scope BFMEvents:

a. Click Resources → Common Event Infrastructure Provider → Event Group

Profile List.

b. Select the Event groups list link.

c. Select Event Group Profiles.

d. Select the check box for BFMEvents.

e. Click Delete.
 8. Delete the authentication data alias

BPCEventCollectorJMSAuthenticationAlias_nodeName_serverName. Find your

authentication data alias in Security → Global security → JAAS Configuration

→ J2C Authentication data and delete it.

 9. Click Save to save your changes in the master configuration.

10. Drop the database, schema, and table space used by Business Process

Choreographer Observer by running the following scripts that on Windows

platforms are found in the directory install_root\dbscripts\
ProcessChoreographer\database_type, and on Linux and UNIX platforms in the

directory install_root\dbscripts\ProcessChoreographer\database_type:

v dropSchema_Observer.sql

v dropTablespace_Observer.sql

v dropDataBase_Observer.sql

The Business Process Choreographer event collector configuration has been

removed.

104 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Using the administrative console to remove Business Process

Choreographer Observer

Use this task to remove Business Process Choreographer Observer configuration,

and the associated resources.

1. Display the enterprise applications.

In the administrative console, select Applications → Enterprise Applications.

2. Identify the scope of the Business Process Choreographer Observer installation.

Look for application named BPCObserver_scope.

v If Business Process Choreographer Observer was installed on an application

server, scope has the value of nodeName_serverName.

v If Business Process Choreographer Observer was installed on a cluster, scope

has the value of clusterName.
3. Uninstall the Business Process Choreographer Observer application.

a. Select BPCObserver_scope, then click Stop.

b. Select the application again, then click Uninstall → OK → Save → Save.
4. Click Save to save your changes in the master configuration.

The Business Process Choreographer Observer configuration has been removed.

Chapter 3. Removing the Business Process Choreographer configuration 105

106 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Chapter 4. Administering

Using Business Process Choreographer Explorer

If you are a business process or a human task administrator, you can use Business

Process Choreographer Explorer to administer business process and human task

objects, such as process instances, failed activities, and work assignments. If you

are a business user, you can use Business Process Choreographer Explorer to work

with your assigned tasks.

Business Process Choreographer Explorer user interface

Business Process Choreographer Explorer is a stand-alone Web application that

provides a set of administration functions for managing business processes and

human tasks. The interface consists of a taskbar, a navigation pane, and the

workspace.

The following figure shows the layout of the Business Process Choreographer

Explorer user interface.

The user interface has the following main areas.

Taskbar

For all users, the taskbar offers options for logging out of Business Process

Choreographer Explorer, and accessing online help. If you have system

administrator rights, the taskbar also includes the following options:

© Copyright IBM Corp. 2007 107

Customize

Select this option to add views to and remove views from the navigation

pane for this instance of Business Process Choreographer Explorer. You can

also define the view that your users see when they log in.

Define views

Select this option to define customized views for your user group.

Navigation pane

The navigation pane on the left side of the user interface contains links to views

that you use to administer objects, for example, process instances that you started,

or human tasks that you are authorized to administer. The default user interface

contains links to predefined views for business processes and tasks.

The system administrator can customize the content of the default navigation pane

by adding and removing predefined views from the navigation pane and defining

custom views to add to the navigation pane. All users can define personalized

views from the navigation pane.

Workspace

The workspace on the right side of the user interface contains pages that you use

to view and administer business-process and human-task related objects. You

access these pages by clicking the links in the navigation pane, by clicking an

action in the action bar, or by clicking links within the workspace pages.

Business Process Choreographer Explorer navigation pane

Use the navigation pane to access views that you use to administer business

process and human task objects, such as process instances and work assignments.

The default user interface contains links to predefined views for business processes

and tasks. You can also define your own views and add these to the navigation

pane.

Available actions

The following actions are available in the navigation pane:

v Navigate to a view.

Click the view name to navigate to that view.

v Collapse and expand a group.

Click the plus sign (+) beside an item in the navigation pane to expand it, or

click the minus sign (-) to collapse the item. You can also click the item itself to

toggle between its expanded and collapsed state.

v Search.

Click the Search icon (

), to search for objects, or to define a personalized

view.

Additional actions are available from the pop-up menu depending on the view

type. An icon indicates whether a pop-up menu is available.

v To delete the view, click the Delete icon (

).

v To modify the view, click the Edit icon (

).

108 IBM WebSphere Process Server for z/OS: Business Process Choreographer

v To create a copy of the view and modify the copy, click the Copy icon (

).

v To move the view up or down in the list, click the Up icon (

) or the Down

icon (

).

Predefined views in the default navigation pane

The default navigation pane contains the following groups of views. The views

that are shown in the navigation pane in your Business Process Choreographer

Explorer might differ depending on whether your system administrator has added

views to, or removed views from the navigation pane.

Process templates

The process templates group contains the following view:

My Process Templates

 This view shows a list of process templates. From this view you

can display information about the process template and its

structure, display a list of process instances that are associated with

a template, and start process instances.

Process instances

The process instances group contains the following views:

Started By Me

This view shows the process instances that you started. From this

view, you can monitor the progress of the process instance, and list

the activities, processes, or tasks that are related to it.

Administered By Me

This view shows the process instances that you are authorized to

administer. From this view, you can act on the process instance, for

example, to suspend and resume a process, or monitor the progress

of the activities in a process instance.

Critical Processes

This view shows process instances in the running state that contain

activities in the stopped state. From this view, you can act on the

process instances, or list the activities and then act on them.

Terminated Processes

This view shows process instances that are in the terminated state.

From this view, you can act on these process instances.

Failed Compensations

This view shows the compensation actions that have failed for

microflows.

Activity instances

The activity instances group does not contain any views in the default

navigation pane.

Task templates

The task templates group contains the following view:

My Task Templates

This view shows a list of task templates. From this view you can

create and start a task instance, and display a list of task instances

that are associated with a template.

Chapter 4. Administering 109

Task instances

The task instances group contains the following views:

My Tasks

This view shows a list of the task instances that you are authorized

to work with. From this view, you can work on a task instance,

release a task instance that you claimed, or transfer a task instance

to another user.

All Tasks

This view shows all of the tasks for which you are the owner,

potential owner, or editor. From this view, you can work on a task

instance, release a task instance that you claimed, or transfer a task

instance to another user.

Initiated By Me

This view shows the task instances that you initiated. From this

view, you can work on a task instance, release a task instance that

you claimed, or transfer a task instance to another user.

Administered By Me

This view shows the task instances that you are authorized to

administer. From this view, you can act on the task instance, for

example, to suspend and resume a process, to create work items

for the task instance, or to display a list of the current work items

for the task instance.

My Escalations

This view shows all of the escalations for the logged on user.

View types

The navigation pane can contain the following types of views. Depending on the

view, additional actions are available from the pop-up menu.

v Predefined views in the default navigation pane.

These groups of views are available only if the navigation pane has not been

changed by the system administrator in the Customize Navigation Tree and

Login View page. A pop-up menu is not available for these views.

v Customized views and predefined views that were added to the navigation pane

by the system administrator. Pop-up menus are available for the system

administrator but not for business users.

– The predefined views are indicated by the Predefined view icon:

. A

system administrator can use the pop-up menu to change the position of

these views in the navigation pane.

– The customized views are indicated by the Custom view icon:

. A system

administrator can delete, edit, copy, and move these views.
v Personalized views.

These views are indicated by the Custom view icon:

. These views can be

deleted, edited, copied, and moved by the user that created the view.

Starting Business Process Choreographer Explorer

Business Process Choreographer Explorer is a Web application that is installed as

part of the configuration of the business process container. Before you can start

using Business Process Choreographer Explorer from a Web browser, you must

110 IBM WebSphere Process Server for z/OS: Business Process Choreographer

have installed the business process container, human task container, and the

Business Process Choreographer Explorer application, and the application must be

running.

To start Business Process Choreographer Explorer, complete the following steps.

1. Direct your Web browser to the Business Process Choreographer Explorer URL.

The URL takes the following form. The value of the URL depends on how the

virtual host and context root were configured for your installation.

http://app_server_host:port_no/context_root

Where:

app_server_host

The network name for the host of the application server that provides the

business process application with which you want to work.

port_no

The port number used by Business Process Choreographer Explorer. The

port number depends on your system configuration. The default port

number is 9080

context_root

The root directory for the Business Process Choreographer Explorer

application on the application server. The default is bpc.
2. If security is enabled, you must enter a user ID and password, then click Login.

The initial page of the Business Process Choreographer Explorer is displayed. By

default, this is the page that shows the My Tasks view.

Customizing Business Process Choreographer Explorer

Business Process Choreographer Explorer provides a user interface for

administrators to manage business processes and human tasks, and for business

users to work with their assigned tasks. Because this is a generic interface, you

might want to customize this interface to address the business needs of your user

groups.

You can customize the user interface in various ways.

Customizing the Business Process Explorer interface for

different user groups

The navigation pane in the default Business Process Choreographer Explorer user

interface contains a set of links to predefined views. The My Tasks view is the

default view that is shown after you log in. If you have one of the Business

Process Choreographer system administrator roles, you can customize the links

that are shown in the navigation pane, the view that your users see after they log

in, and the information that is shown in the views.

For example, the default user interface for Business Process Choreographer

Explorer does not include views for working with business state machines. You can

add predefined views to work with process templates and process instances for

business state machines.

Or, you might want to offer users that deal with customer orders a different

interface to the one that you offer the users dealing with customer service

enquiries. You can customize an instance of Business Process Choreographer

Explorer so that it meets the workflow patterns of a particular group of users.

Chapter 4. Administering 111

In Business Process Choreographer Explorer, complete the following steps to

customize the default user interface.

1. Customize the navigation pane and the default login view for this instance.

a. Click Customize in the taskbar.

b. In the Customize Navigation Tree and Login View page, select the views to

include in and deselect the views to remove from the navigation pane.

c. Select the view that your users see when they log into Business Process

Choreographer Explorer.

The list contains the views that you selected in the previous step and any

customized views that you created from the Define Views page.

d. To save your changes, click Save.

To return the views for this instance to the default views, click Restore

defaults. This action resets the navigation pane to the list of predefined

views. Customized views in the navigation pane are not affected by this

action.
2. Optional: Customize the views.

You can specify the information that is shown in the views for this Business

Process Choreographer Explorer instance.

a. Click Define Views in the taskbar.

b. In the Search and Define Views page, select the type of view that you want

to customize, for example, process templates.

c. In the Search and Define Views page for the view, select the properties to

include in the view.

If this is a task instance view or a process instance view for administrative

purposes, select Administrative View to show all of the items for which the

logged-on user has a work item and to add administrative actions to the

action bar in the view. If the logged-on user is a system administrator, all of

the items that match the search criteria are shown regardless of whether the

system administrator has work items for these items.

If you do not select Administrative View, the new view shows all of the

items that the logged-on user is authorized to see.

d. Enter a display name for the view in the List Name field and click Save.

The new view appears in your navigation pane. Members of your user group see

the new view when they next log into Business Process Choreographer Explorer.

Customizing views for process templates for business state machines:

Although a predefined view is provided for the process templates for business

state machines, you might want to define your own views for this type of

template.

 To create customized views, you must have BPCSystemAdministrator

authorization.

1. Click Define Views in the taskbar.

2. In the Search and Define Views page, select Search and Define Views for

Process Templates.

3. Click the List Properties tab.

a. In the List Columns for Custom Properties, add a custom property with the

following settings:

v In the Property Name field, type generatedBy

112 IBM WebSphere Process Server for z/OS: Business Process Choreographer

v In the Property Value field, type BusinessStateMachine

v In the Display Name field, type a display name for the column
b. Add other custom properties, or add columns to or remove columns from

the list of selected columns.
4. Type a display name for the query in the List Name field, and click Save.

5. Add the view to the navigation pane.

a. Click Customize in the taskbar.

b. In the Customize Navigation Tree and Login View page, select the new

business state machine view.

c. To save your changes, click Save.

A link to the business state machines view is added to the Process Templates

group in the navigation pane. Your users see this view the next time they log into

Business Process Choreographer Explorer.

Customizing views for process instances for business state machines:

Although a predefined view is provided for the process instances for business state

machines, you might want to define your own views for this type of process

instance.

 To create customized views, you must have BPCSystemAdministrator

authorization.

1. Click Define Views in the taskbar.

2. In the Search and Define Views page, select Search and Define Views for

Process Instances.

3. Click the Custom Properties tab.

a. Add a custom property with the following settings.

Type generatedBy in the Property Name field, and BusinessStateMachine in

the Property Value field.

b. Add other custom properties as needed.
4. Click the List Properties tab.

a. In the List Columns for Query Properties, add the following query

properties.

v To add business state information to the view, type name in the Property

Name field, DisplayState in the Variable Name field, and tns in the

Namespace field, where tns is the target namespace of the business state

machine suffixed by -process. Also specify a display name for the column

in the Display Name field.

v To add correlation information to the view, provide the appropriate

information in the Property Name field, the Variable Name field, and the

Namespace field. These values are derived from the definition of the

business state machine. Also provide a display name for the column in

the Display Name field.

Property Name

The name of the correlation property that you defined for the

business state machine.

Variable Name

If the correlation set is initiated by incoming parameters, the

variable name has the following format:

operation_name_Input_operation_parameter_name

Chapter 4. Administering 113

where operation_name is the name of the operation for the

transition out of the initial state.

 If the correlation set is initiated by outgoing parameters, the

variable name has the following format:

operation_name_Output_operation_parameter_name

Namespace

The namespace of the query property, where tns is the target

namespace of the business state machine suffixed by -process.
b. Add other custom properties or query properties, or add columns to or

remove columns from the list of selected columns.
5. Type a name for the query in the List Name field, and click Save.

6. Add the view to the navigation pane.

a. Click Customize in the taskbar.

b. In the Customize Navigation Tree and Login View page, select the new

business state machine view.

c. To save your changes, click Save.

A link to the business state machines view is added to the Process Instances group

in the navigation pane. Your users see this view the next time they log into

Business Process Choreographer Explorer.

Personalizing the Business Process Choreographer Explorer

interface

The navigation pane in the default Business Process Choreographer Explorer user

interface contains a set of links to predefined views and views that are defined by

your system administrator. You can add your own views to your navigation pane,

for example, to monitor the progress of a specific task or process.

In Business Process Choreographer Explorer, complete the following steps to

personalize your user interface.

1. In the section of the navigation tree where you want to define the new view,

click the Search icon (

).

2. In the Search and Define Views for the new view, select the properties to

include in the view.

If this is a task instance view or a process instance view for administrative

purposes, select Administrative View to show all of the items for which you

have administrative rights and to add administrative actions to the action bar

in the view.

If you do not select Administrative View, the new view shows all of the items

that you are authorized to see.

3. Enter a display name for the view in the List Name field and click Save.

The new view appears in your navigation pane.

Changing the appearance of the default Web application

Business Process Choreographer Explorer provides a ready-to-use Web user

interface based on JavaServer Pages (JSP) files and JavaServer Faces (JSF) files. You

can adapt the user interface to fit a certain look and feel without writing any new

code.

114 IBM WebSphere Process Server for z/OS: Business Process Choreographer

A cascading style sheet (CSS) controls how the Web interface is rendered. You can

change the CSS, for example, so that the default interface conforms to guidelines

for corporate identity.

1. Optional: Modify the header. The Menubar.jsp file is always displayed in the

user interface. The default Menubar.jsp file contains logos, images, and a link to

the information center.

2. Optional: Modify the style sheet. The default style sheet, style.css, contains

styles for the elements in the header, the navigation pane, and the content

pane.

Styles used in the Business Process Choreographer Explorer interface:

The style.css file contains styles that you can change to adapt the look and feel of

the default user interface.

 The style.css file contains styles for the following elements of the default user

interface:

v “Body of a page”

v “Login page”

v “Menu bar” on page 116

v “Navigator” on page 116

v “Content panels” on page 116

v “Command bar” on page 117

v “Lists” on page 117

v “Details panel” on page 117

v “Message data” on page 117

v “Tabbed panes” on page 118

v “Search pages” on page 118

v “Error details” on page 118

v “Sorting” on page 118

This file is in the following directory:

<profile_directory>\installedApps\<node_name>\<explorer_instance>\bpcexplorer.war\theme

Body of a page

 Style name Description

.pageBody The main content area in a table layout with two columns:

navigator and content.

.pageBody td The individual cell in the overall page body layout.

.pageBodyNavigator The column that contains the navigator.

.pageBodyContent The column that contains the content.

Login page

 Style name Description

.loginPanel The panel containing the login form.

.loginTitle The title on the form.

.loginText The instructional text.

Chapter 4. Administering 115

Style name Description

.loginForm The form that contains the input controls.

.loginValues The table that determines the layout of the controls.

.loginField The labels used for the logon fields, for example, Name or

Password.

.loginValue The text input field.

Menu bar

 Style name Description

.menubar The JSF subview.

.menuContainer The container panel including the menu items, for example,

labels, and links.

.menuItem An item on the menu bar.

.menuitem a A menu item that is a link.

.menuitem a:visited A menu item that is a link that the user has visited.

.menuitem a:hover Hovering over a menu item that is a link.

Navigator

 Style name Description

.navigator JSF subview for navigator which contains the links to the

lists.

.navigatorTitle The title for each navigator box.

.navigatorFrame The division for each navigator box, for example, to draw a

border.

.taskNavigatorTitle A class of titles for navigation boxes. They are used to

distinguish between links to lists of business process objects

and human task objects.

.navigatorItem An item in the navigator box.

.navigatorItemList An item that represents a list.

.expanded / .expanded div /

.expanded a .expanded

a:visited

Used when the navigator boxes are expanded.

.collapsed Used when the navigator boxes are collapsed.

Content panels

 Style name Description

.panelContainer The division panel that contains the list, details or

messages. This element is embedded in the

pageBodyContent column.

.panelTitle The title for the displayed content, for example, My Tasks.

.panelHelp The division container that contains the help text and the

icon.

.panelGroup The division container that contains the command bar and

list, details or message.

116 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Command bar

 Style name Description

.commandbarHeader The title above the command bar.

.commandbar The division container around the command-bar area.

Lists

 Style name Description

.listHeader The style used in the header row of the list.

.list The table that contains the rows.

.list tbody td, .list th Styles for the header row.

.list thead input, .list tbody

input

Check boxes for lists.

.list tfoot td Last row entry is the footer information.

.list tfoot div The division container around the footer elements.

.list tfoot input The input controls in the footer.

.list a / .list a:visited For links rendered in the list.

Details panel

 Style name Description

.details The division container around a details panel.

div.details Details styles that are embedded in the division container.

table.details Details styles that are embedded in the table container.

td.detailsProperty The label for a property name.

td.detailsValue The text for a property value.

Message data

 Style name Description

.messageData The division container around a message.

.messageData table The table container in which the message is placed.

.messageDataButton Button style for Add and Remove buttons in the message

form.

.messageData td /

.messageData th

Body and header cells.

.messageDataOutput For rendering read-only text.

.messageDataValidInput For message values that are valid.

.messageDataInvalidInput For message values that are not valid.

Chapter 4. Administering 117

Tabbed panes

 Style name Description

.tabbedPane The division container around all of the tabbed panes.

.tabHeader The tab header of a tabbed pane.

.tabHeader ul Each header is organized in an unordered list.

.tabHeader li Each header label is a list item.

.tabHeader a / .tabHeader

a:hover / .tabHeader a.tab

The header label as a link.

.tabHeader a.selectedTab The selected tab header.

.tabPane The division container that encloses a tabbed pane.

.tabPane table A pane is always embedded in a panel grid. This action

results in a table container around the pane.

.tabPane .list th, .tabPane .list

tfoot div

Settings for lists on a tabbed pane.

Search pages

 Style name Description

.searchPanel The tabbed pane for a search panel. See also tabbed panes.

.searchPanelFilter The table container for a search form.

.searchLabel The label for a search form control.

.searchListBox The list box control for select options.

Error details

 Style name Description

.errorPage The tabbed pane for an error page.

.errorLink / .errorLink a /

.errorLink a:visited

Styles uses to render the button links on a page.

.errorDetails Tabbed pane with error details.

.errorDetailsStack Tabbed pane with an exception stack.

.errorDetailsStack table /

.errorDetailsStack td

The exception stack that is shown as rows in a table.

.errorDetailsMessage Text style for error message.

Sorting

 Style name Description

.ascending Style for the list header class when the list is sorted by this

column in ascending order.

.descending Style for the list header class when the list is sorted by this

column in descending order.

.unsorted Style for the list header class when the list is not sorted by

this column.

118 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Customizing input and output forms

The Business Process Choreographer Explorer interface provides default input and

output forms for displaying and entering business data. You can use JSP

documents to customize these default input and output forms.

To include user-defined JavaServer Pages (JSP) documents in the Web client, you

must specify them when you model a human task in WebSphere Integration

Developer. For example, you can provide JSP documents for a specific task and its

input and output messages, and for a specific user role or all user roles. At

runtime, the user-defined JSP documents are included in the user interface to

display output data and collect input data.

The customized forms are not self-contained Web pages; they are HTML fragments

that Business Process Choreographer Explorer imbeds in an HTML form, for

example, fragments for labels and input fields.

When a button is clicked on the page that contains the customized forms, the input

is submitted and validated in Business Process Choreographer Explorer. The

validation is based on the type of the properties provided and the locale used in

the browser. If the input cannot be validated, the same page is shown again and

information about the validation errors is provided in the messageValidationErrors

request attribute.

To add customized forms to Business Process Choreographer Explorer, complete

the following steps using WebSphere Integration Developer.

1. Create the customized forms.

The user-defined JSP documents for the input and output forms used in the

Web interface access message data. Use Java snippets or the JSP execution

language to access the business data from the request context.

2. Assign the JSP documents to a task.

Open the human task in the human task editor. In the client settings, specify

the location of the user-defined JSP documents and the role to which the

customized form applies, for example, administrator. The client settings for

Business Process Choreographer Explorer are stored in the task template. At

runtime these settings are retrieved with the task template.

3. Package the user-defined JSP documents in a Web archive (WAR file).

You can either include the WAR file in the enterprise archive with the module

that contains the tasks or deploy the WAR file separately.

The customized forms are rendered in Business Process Choreographer Explorer at

runtime.

User-defined JSP fragments:

The user-defined JSP fragments are imbedded in an HTML form tag. At runtime,

Business Process Choreographer Explorer includes these fragments in the rendered

page.

 The user-defined JSP fragment for the input message is imbedded before the JSP

fragment for the output message.

<html....>

 ...

 <form...>

Chapter 4. Administering 119

Input JSP (display task input message)

 Output JSP (display task output message)

 </form>

 ...

</html>

Because the user-defined JSP fragments are embedded in an HTML form tag, you

can add input elements. The name of the input element must match the XML Path

Language (XPath) expression of the data element. It is important to prefix the

name of the input element with the provided prefix value:

<input id="address"

 type="text"

 name="${prefix}/selectPromotionalGiftResponse/address"

 value="${messageMap[’/selectPromotionalGiftResponse/address"]}

 size="60"

 align="left" />

The prefix value is provided as a request attribute. The attribute ensures that the

input name is unique in the enclosing form. The prefix is generated by Business

Process Choreographer Explorer and it should not be changed:

String prefix = (String)request.getAttribute("prefix");

The prefix element is set only if the message can be edited in the given context.

Output data can be displayed in different ways depending on the state of the

human task. For example, if the task is in the claimed state, the output data can be

modified. However, if the task is in the finished state, the data can be displayed

only. In your JSP fragment, you can test whether the prefix element exists and

render the message accordingly. The following JSTL statement shows how you

might test whether the prefix element is set.

...

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%

...

<c:choose>

 <c:when test="${not empty prefix}">

 <!--Read/write mode-->

 </c:when>

 <c:otherwise>

 <!--Read-only mode-->

 </c:otherwise>

</c:choose>

Administering Business Process Choreographer

You can administer Business Process Choreographer using the administrative

console or using scripts.

Using the administrative console to administer Business

Process Choreographer

Describes the administrative actions that can be performed using the

administrative console.

Administering the compensation service for a server

Use the administrative console to start the compensation service automatically,

when the application starts, and to specify the location and maximum size of the

recovery log.

120 IBM WebSphere Process Server for z/OS: Business Process Choreographer

The compensation service must be started on an application server, when business

processes are run on that server. The compensation service is used to manage

updates that might be made in a number of transactions before the process

completes.

You can use the administrative console to view and change properties of the

compensation service for application servers.

1. Display the administrative console.

2. In the navigation pane, click Servers → Application servers → server_name.

3. On the Configuration tab, under Container Settings, click Container services →

Compensation service. This action displays a panel with the compensation

service properties.

Enable service at server startup

Specifies that, whenever the application server starts, it automatically

tries to start the compensation service.

 Make sure that this check box is selected. The compensation service

must be enabled when you use business processes. If you run your

business processes on a cluster, you must enable the compensation

service for each server in the cluster.

Recovery log directory

Specifies the name of a directory for this server where the

compensation service stores log files for recovery. When compensation

is used, the WebSphere product stores information that is required for

compensation.

Recovery log file size

Specifies the maximum size, in megabytes, for compensation log files

on this application server.
4. Optional: If necessary, change the compensation service properties.

5. Click OK.

6. To save your configuration, click Save in the Messages box of the

administrative console window. Then click Save on the Application Servers

Save pane.

Querying and replaying failed messages, using the

administrative console

This describes how to check for and replay any messages for business processes or

human tasks that could not be processed.

When a problem occurs while processing a message, it is moved to the retention

queue or hold queue. This task describes how to determine whether any failed

messages exist, and to send those messages to the internal queue again.

1. To check how many messages are on the hold and retention queues:

a. Click Servers → Application servers → server_name.

b. On the Configuration tab, in the Container Settings section, click one of the

following sequences:

v For business processes: Business process container settings → Runtime

Configuration

v For human tasks: Human task container settings → Runtime

Configuration

The number of messages on the hold queue and retention queue are

displayed under General Properties.

Chapter 4. Administering 121

2. If either the hold queue or the retention queue contains messages, you can

move the messages to the internal work queue.

Click one of the following options:

v For business processes: Replay Hold Queue or Replay Retention Queue

v For human tasks: Replay Hold Queue

Note: When security is enabled, the replay buttons are only visible to users

who have operator authority.

Business Process Choreographer tries to service all replayed messages again.

Refreshing the failed message counts:

Use the administrative console to refresh the count of failed messages for business

processes or human tasks.

 The displayed number of messages on the hold queue and on the retention queue,

and the number of message exceptions, remain static until refreshed. This task

describes how to update and display the number of messages on those queues and

the number of message exceptions.

1. Select the appropriate application server.

Click Servers → Application servers → server_name.

2. Refresh the message counts.

On the Configuration tab, in the Container Settings section, click one of the

following sequences:

v For business processes: Business process container settings → Runtime

Configuration → Refresh Message Count

v For human tasks: Human task container settings → Runtime Configuration →

Refresh Message Count

The following updated values are displayed under General Properties:

v For business processes: The number of messages on the hold queue and on the

retention queue

v For human tasks: The number of messages on the hold queue

v If any exceptions occurred while accessing the queues, the message text is

displayed in the Message Exceptions field.

On this page, you can also replay the messages on these queues.

Failed message handling and quiesce mode:

Business Process Choreographer provides a facility for handling temporary

infrastructure failures.

 This section describes how the business process container handles failed messages.

This contrasts with the simpler mechanism used by the human task container,

described in “Failed message handling for human tasks” on page 125.

Long-running processes consist of a sequence of transactions. The transactions are

separated by Java Message Service (JMS) messages, which the server sends to a

message-driven bean. This bean passes the incoming messages to the process

server, for processing. Each transaction consists of the following actions:

v Receive a message.

122 IBM WebSphere Process Server for z/OS: Business Process Choreographer

v Navigate, on behalf of the message.

v Send messages that trigger follow-on transactions.

The server might fail to process a message received by the message-driven bean

for either of the following reasons:

v A specified number of consecutive messages cannot be processed. The

infrastructure is therefore assumed to be unavailable.

v Only some messages can be processed. Any single message that cannot be

processed is assumed to be damaged.

The responses to these causes are as follows:

 Cause Response

Unavailable

infrastructure

The message-driven bean tries, for a specified time, to recover from

that situation. It tries to keep all messages available until the server

is again operational. This problem might be caused by a database

failure, for example.

Damaged message After a specified number of retries, the message is put into the hold

queue, where it can be manipulated or reviewed. From the hold

queue, it can also be moved back to the input queue, to retry the

transaction.

The implementation for messages for business processes is as follows:

v If a message fails to be processed, the server puts it into a retention queue,

where it is kept available, in case this is an infrastructure problem that is fixed

within a specified time.

v When a message is in the retention queue, the options are as follows:

– When a subsequent message can be processed successfully, all messages from

the retention queue are moved back to the input queue of the message-driven

bean. For each message, a count is maintained of how often the message has

been sent to the retention queue. If this count exceeds the retry limit for a

given message, the message is put in the hold queue.

– If the next message fails to be processed, it is also put in the retention queue.

This process continues until the threshold of maximum messages in the

retention queue is reached. When this threshold is reached, the

message-driven bean moves all messages from the retention queue to the

input queue and switches into quiesce mode.

When the message-driven bean operates in quiesce mode, it periodically tries to

process a message. Messages that fail to be processed are put back in the hold

queue, without incrementing either the delivery count or the retention queue

traversal count. As soon as a message can be processed successfully, the

message-driven bean switches back into normal processing mode.

This facility consists of two numerical limits, two queues, quiesce mode, and the

message retry behavior.

Retry limit

The retry limit defines the maximum number of times that a message can be

transferred through the retention queue before being put on the hold queue.

Chapter 4. Administering 123

To be put on the retention queue, the processing of a message must fail three

times.

For example, if the retry limit is 5, a message must go through the retention queue

five times (it must fail for 3 * 5 = 15 times), before the last retry loop is started. If

the last retry loop fails two more times, the message is put on the hold queue. This

means that a message must fail (3 * RetryLimit) + 2 times before it is put on the

hold queue.

In a performance-critical application running in a reliable infrastructure, the retry

limit should be small: one or two, for example.

To locate this parameter in the administrative console, click Servers → Application

Servers → server_name. Then, under the heading Business Process Container

Settings, click Business Process Container.

Retention queue message limit

The retention queue message limit defines the maximum number of messages that

can be on the retention queue. If the retention queue overflows, the system goes

into quiesce mode. To make the system enter quiesce mode as soon as one message

fails, set the value to zero. To make the business process container more tolerant of

infrastructure failures, increase the value.

To locate this parameter in the administrative console, click Servers → Application

Servers → server_name. Then, under the heading Business Process Container

Settings, click Business Process Container.

Retention queue

The retention queue holds failed messages that are replayed by moving them back

to the business process container’s internal work queue. A message is put on the

retention queue if it fails three times. If the message fails (3 * RetryLimit) + 2 times,

it is put on the hold queue. (For details of the retry limit, see “Retry limit” on page

123.) If the retention queue is full to the limit defined by the retention queue

message limit and another message fails, the queue overflows, and the system goes

into quiesce mode. The administrator can move the messages in this queue back to

the internal queue performing the task Querying and replaying failed messages.

Hold queue

The hold queue contains messages that have failed (3 * RetryLimit) + 2 times. (For

details of the retry limit, see “Retry limit” on page 123.) The administrator can

move the messages in this queue back to the internal queue performing the task

Querying and replaying failed messages.

Replay Messages

The administrator can move the messages from the hold or retention queues back

to the internal queue. This can be done using the administrative console or using

administrative commands.

Quiesce Mode

Quiesce mode is entered when the retention queue overflows. When this happens,

it is assumed that there is a serious, though possibly temporary, infrastructure

124 IBM WebSphere Process Server for z/OS: Business Process Choreographer

failure. The purpose of quiesce mode is to prevent the system from using a lot of

resources, while an infrastructure failure means that most messages will probably

fail anyway. In quiesce mode, the system sleeps for two seconds before attempting

to process the next message. As soon as a message is successfully processed, the

system resumes normal message processing.

Failed message handling for human tasks

The human task container does not have a retention queue, nor retry limits. It only

has a hold queue, on which failed messages are placed, and from which, they can

be replayed.

Refreshing staff query results, using the administrative console

The results of a staff query are static. Use the administrative console to refresh staff

queries.

Business Process Choreographer caches the results of staff assignments evaluated

against a staff directory, such as an Lightweight Directory Access Protocol (LDAP)

server, in the runtime database. If the staff directory changes, you can force the

staff assignments to be evaluated again.

To refresh the staff queries:

1. Click Servers → Application servers → server_name.

2. On the Configuration tab, in the Container Settings section, click Human task

container settings → Runtime Configuration → Refresh Staff Queries. All staff

queries are refreshed.

Note: When security is enabled, the refresh button is only visible to users who

have operator authority.
Refreshing the staff query results in this way can cause a high load on the

application and database. Consider using the alternative methods listed below.

 Related tasks

 “Refreshing staff query results, using administrative commands” on page 135
The results of a staff query are static. Use the administrative commands to

refresh staff queries.

 “Refreshing staff query results, using the refresh daemon” on page 137
Use this method if you want to set up a regular and automatic refresh of all

expired staff query results.

Enabling Common Base Events and the audit trail

Use this task to enable Business Process Choreographer events to be emitted to the

Common Event Infrastructure as Common Base Events, or stored in the audit trail,

or both.

You can change the state observers settings for the business process container or

the human task container, permanently on the Configuration tab, or temporarily on

the Runtime tab. Any choices you make on these Configuration or Runtime tabs

affect all applications executing in the appropriate container. For changes to affect

both the business process container and the human task container, you must

change the settings separately for them both.

Changing the configured logging infrastructure:

Use this task to change the state observer logging for the audit log or common

event infrastructure logging for the configuration.

Chapter 4. Administering 125

Choices made on the Configuration tab are activated the next time the server is

started. The chosen settings remain in effect whenever the server is started.

Make changes to the configuration, as follows:

1. Display the Business process container or Human task container pane.

Click Servers → Application servers → server_name. Then, under Container

Settings, click one of the following sequences:

v For business processes: Business process container settings → Business

process container

v For human tasks: Human task container settings → Human task container

2. In the General Properties section, select the logging to be implemented. The

state observers are independent of each other: you can enable or disable either

or both of them.

Enable Common Event Infrastructure logging

Select this check box to enable event emission that is based on the

Common Event Infrastructure.

Enable audit logging

Select this check box to store the audit log events in the audit trail

tables of the relational database.
3. Accept the change.

a. Click Apply.

b. In the Messages box, click Save.

c. On the Application servers pane, click Save.

The state observers are set, as you required. The changes take place after server

restart.

Restart the container, to effect the changes.

Configuring the logging infrastructure for the session:

Use this task to change the state observer logging for the audit log or common

event infrastructure logging for the session.

 Choices made on the Runtime tab are effective immediately. The chosen settings

remain in effect until the next time the server is started.

Make changes to the session infrastructure, as follows:

1. Display the Replay messages pane.

Click Servers → Application servers → server_name. Then, under Container

Settings, click one of the following sequences:

v For business processes: Business process container settings → Runtime

Configuration

v For human tasks: Human task container settings → Runtime Configuration

2. In the State observer logging section, select the logging to be implemented.

The state observers are independent of each other: you can enable or disable

either or both of them.

Enable Common Event Infrastructure logging

Select this check box to enable event emission that is based on the

Common Event Infrastructure.

126 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Enable audit logging

Select this check box to store the audit log events in the audit trail

tables of the relational database.

Save runtime changes to configuration as well

Select this check box to update the configuration with the changes you

made for this session.
3. Accept the change.

Click OK.

The state observers are set, as you required.

Event emission and storage:

Events for state changes can be generated for executing business processes, human

tasks, or both.

 Two infrastructures emit or store the events, such that those events can be

retrieved by applications. Applications might use events to monitor business

processes and to analyze the history of business processes, or human tasks, or

both.

Task events, for example, can be emitted without having a business process

involved. These events can be consumed by the audit trail and the Common Event

Infrastructure (CEI). This applies to standalone tasks, purely human tasks, and

tasks invoked by application components other than business processes.

Because the generation of events impacts system performance, you can select the

infrastructure to be used to store and emit events:

Common Event Infrastructure

Events can be both stored and published to subscribing applications. To

use this event infrastructure, make sure that the Common Event

Infrastructure is installed and configured.

 Use event emission that is based on the Common Event Infrastructure to

retrieve events in the format of Common Base Events, through the

application programming interface (API) of the Common Event

Infrastructure. You can connect consuming applications either by

subscription or by using the query-oriented interface of the Common Event

Infrastructure.

 Event emission that is based on the Common Event Infrastructure has

considerably greater impact on system performance than have audit log

events. However, it provides greater flexibility for consuming applications.

Audit trail

Events are stored as records of a table in a relational database.

 This is a fast event-storing infrastructure that has little impact on

performance. Consuming applications need Structured Query Language

(SQL) queries to retrieve the events from the database.

 You can select either, both, or neither of the infrastructures. Selecting an

infrastructure does not imply that events are necessarily stored or emitted. The

selection enables the infrastructure, while you can control the actual generation of

events later, by additional mechanisms. However, the enablement of an

infrastructure results in a basic overhead that affects system performance.

Chapter 4. Administering 127

Using scripts to administer Business Process Choreographer

Describes the administrative actions that can be performed using scripts.

Deleting audit log entries, using administrative commands

Use the administrative commands to delete some or all audit log entries.

Before you begin this procedure, the following conditions must be met:

v The application server through which audit log entries are to be deleted must be

running. That is, the -conntype none option of wsadmin cannot be used, because

a server connection is required.

v When security is enabled, the user ID that you use must have operator authority.

You can use the deleteAuditLog.py script to delete audit log entries from the

database.

1. Change to the Business Process Choreographer subdirectory where the

administration scripts are located.

Enter the following command:

cd install_root/ProcessChoreographer/admin

2. Delete the entries in the audit log table.

Enter one or more of the following commands. The differences between the

commands are emphasized:

install_root/bin/wsadmin –lang jython -f deleteAuditLog.py

 -server serverName

 [-profile profileName]

 [options]

install_root/bin/wsadmin –lang jython -f deleteAuditLog.py

 -node nodeName

 -server serverName

 [-profile profileName]

 [options]

install_root/bin/wsadmin –lang jython -f deleteAuditLog.py

 -cluster clusterName

 [-profile profileName]

 [options]

Where:

-cluster clusterName

The name of the cluster. Required if the business process container is

configured for a WebSphere cluster.

-node nodeName

Optional when specifying the server name. This name identifies the node.

The default is the local node.

-server serverName

The name of the server. Required if the cluster name is not specified.

-profileName profileName

The name of a user-defined profile. Specify this option if you are not

working with the default profile.
The available options are:

-all

Deletes all the audit log entries in the database. The deletion is done in

multiple transactions. Each transaction deletes the number of entries

specified in the slice parameter, or the default number.

128 IBM WebSphere Process Server for z/OS: Business Process Choreographer

-time timestamp

Deletes all the audit log entries that are older than the time you specify for

timestamp. The time used is coordinated universal time (UTC). Its format

must be: YYYY-MM-DD[’T’HH:MM:SS]. If you specify only the year, month, and

day, the hour, minutes, and seconds are set to 00:00:00.

 The -time and -processtime options are mutually exclusive.

-processtime timestamp

Deletes all the audit log entries that belong to a process that finished before

the time you specify for timestamp. Use the same time format as for the

-time parameter.

 The -time and -processtime options are mutually exclusive.

-slice size

Used with the -all parameter,size specifies the number of entries included in

each transaction. The optimum value depends on the available log size for

your database system. Higher values require fewer transactions but you

might exceed the database log space. Lower values might cause the script

to take longer to complete the deletion. The default size for the slice

parameter is 250.

Note: The jacl version of the cleanup unused staff query script,

deleteAuditLog.jacl, is deprecated. It is available in the util

subdirectory of the ProcessChoreographer directory and it takes the same

parameters as described here, but the –lang jython option must be

omitted.

Deleting process templates and task templates that are no longer

valid

Use the administrative commands to delete, from the database, process templates

and task templates that are no longer valid.

Before you begin this procedure, the application server on which templates are to

be deleted must be running. That is, the -conntype none option of wsadmin cannot

be used, because a server connection is required. No special authority is required

to run this command, even if security is enabled.

Use the methods described here to remove, from the database, templates and all

objects that belong to them if no corresponding valid application in the WebSphere

configuration repository contains them. This situation can occur if an application

installation was canceled or not stored to the Configuration Repository by the user.

These templates usually have no impact. They are not shown in Business Process

Choreographer Explorer.

There are rare situations in which these templates cannot be filtered. They must

then be removed from the database with the following scripts.

You cannot use the scripts to remove templates of valid applications from the

database. This condition is checked and a ConfigurationError exception is thrown

if the corresponding application is valid.

1. Change to the Business Process Choreographer subdirectory where the

administration scripts are located.

Enter the following command:

cd install_root/ProcessChoreographer/admin

Chapter 4. Administering 129

2. Delete, from the database, business process templates or human task templates

that are no longer valid.

To delete, a business process template that is no longer valid, enter one of the

following commands. The differences between the commands are emphasized:

install_root/bin/wsadmin.sh –lang jython -f deleteInvalidProcessTemplate.py

 -server serverName

 -template templateName

 -validFrom validFromString

 [-profileName profileName]

install_root/bin/wsadmin.sh –lang jython -f deleteInvalidProcessTemplate.py

 -server serverName

 -node nodeName

 -template templateName

 -validFrom validFromString

 [-profileName profileName]

install_root/bin/wsadmin.sh –lang jython -f deleteInvalidProcessTemplate.py

 -cluster clusterName

 -template templateName

 -validFrom validFromString

 [-profileName profileName]

To delete, a human task template that is no longer valid, enter one of the

following commands. The differences between the commands are emphasized:

install_root/bin/wsadmin.sh –lang jython -f deleteInvalidTaskTemplate.py

 -server serverName

 -template templateName

 -validFrom validFromString

 -nameSpace nameSpace

 [-profileName profileName]

install_root/bin/wsadmin.sh –lang jython -f deleteInvalidTaskTemplate.py

 -server serverName

 -node nodeName

 -template templateName

 -validFrom validFromString

 -nameSpace nameSpace

 [-profileName profileName]

install_root/bin/wsadmin.sh –lang jython -f deleteInvalidTaskTemplate.py

 -cluster clusterName

 -template templateName

 -validFrom validFromString

 -nameSpace nameSpace

 [-profileName profileName]

Where:

cluster clusterName

The name of the cluster. Required if the business process container is

configured for a WebSphere cluster. You can specify the cluster name or the

server name and node name.

node nodeName

Optional when specifying the server name. This name identifies the node.

The default is the local node. You can specify the server name and node

name or the cluster name.

server serverName

The name of the server. Required if the cluster name is not specified. You

can specify the server name and node name or the cluster name.

template templateName

The name of the process template or task template to be deleted.

130 IBM WebSphere Process Server for z/OS: Business Process Choreographer

validFrom validFromString

The date from which the template is valid (in UTC) as displayed in the

administrative console. The string should have the following format:

’yyyy-MM-ddThh:mm:ss’ (year, month, day, T, hours, minutes, seconds).

For example, 2005-01-31T13:40:50

nameSpace nameSpace

The target namespace of the task template.

profileName profileName

The name of a user-defined profile. Specify this option if you are not

working with the default profile.

Note: The jacl version of the cleanup unused staff query script,

deleteInvalidTaskTemplate.jacl, is deprecated. It is available in the util

subdirectory of the ProcessChoreographer directory and it takes the same

parameters as described here, but the –lang jython option must be omitted.

Deleting completed process instances

Use an administrative command to selectively delete from the Business Process

Choreographer database any top-level process instances that have reached an end

state of finished, terminated, or failed.

Before you begin this procedure, the application server on which process instances

are to be deleted must be running. That is, the -conntype none option of wsadmin

cannot be used, because a server connection is required. No special authority is

required to run this command, even if security is enabled.

A top-level process instance is considered completed if it is in one of the following

end states: finished, terminated or failed. You specify criteria to selectively delete

top-level process instances and all their associated data (such as activity instances,

child process instances, and inline task instances) from the database.

1. Change to the Business Process Choreographer subdirectory where the

administration scripts are located.

Type the following command:

cd install_root/ProcessChoreographer/admin

2. Delete process instances from the database.

Enter the following command:

install_root/bin/wsadmin –lang jython –f deleteCompletedProcessInstances.py

 [([-node nodeName] -server serverName) | (-cluster clusterName)]

 (-all | -finished | -terminated | -failed)

 [-templateName templateName [-validFrom timestamp]]

 [-startedBy userID]

 [-completedBefore timestamp]

 [-profileName profileName]

Where:

-node nodeName

Optional when specifying the server name. This name identifies the node.

The default is the local node. You can specify the server name and node

name or the cluster name.

-server serverName

The name of the server. Required if the cluster name is not specified. You

can specify the server name and node name or the cluster name.

Chapter 4. Administering 131

-cluster clusterName

The name of the cluster. Required if the business process container is

configured for a WebSphere cluster. You can specify the cluster name or the

server name and node name.

-all|-finished|-terminated|-failed

Specifies which process instances are to be deleted according to their state.

You can specify a combination of finished, terminated, failed, or all.

-templateName templateName

Optionally, specifies the name of the process template or human task

template to be deleted. If this option is specified, you can also use the

validFrom

-validFrom timestamp

The date from which the template is valid (in UTC) as displayed in the

administrative console. This option can only be used with the

templateName option. The timestamp string has the following format:

’yyyy-MM-ddThh:mm:ss’ (year, month, day, T, hours, minutes, seconds).

For example, 2006-11-20T12:00:00

startedBy userID

Optionally, only deletes completed process instances that were started by

the given User ID.

-completedBefore timestamp

Optionally, deletes completed process instances that completed before the

given time. The timestamp string has the following format:

’yyyy-MM-ddThh:mm:ss’ (year, month, day, T, hours, minutes, seconds).

For example, 2006-07-20T12:00:00

profileName profileName

The name of a user-defined profile. Specify this option if you are not

working with the default profile.

For example, to delete all of the process instances running on node myNode in

server myServer that are in the state finished, and were started by the user

Antje, run the following command:

wsadmin –lang jython –f deleteCompletedProcessInstances.py

 -node myNode -server myServer

 -finished

 -startedBy Antje

The completed process instances have been deleted from the database.

Deleting data from the observer database

Use an administrative command to selectively delete from the Business Process

Choreographer Observer database all of the data for process instances that match

specified conditions.

You can delete the observer information for process instances in three ways:

v Delete observer data for process instances that reached the end state deleted

before a specified time.

v Delete observer data for process instances of a specific process template version.

v Delete observer data for a process instance regardless of its state if the last event

was received before a specified time.
1. Change to the Business Process Choreographer subdirectory where the

administration scripts are located.

132 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Type the following command:

cd install_root/ProcessChoreographer/admin

2. Delete observer data for process instances from the database.

Enter the following command:

install_root/bin/wsadmin -lang jython

 -f observerDeleteCompletedProcessInstances.py

 [([-node nodeName] -server serverName) | (-cluster clusterName)]

 -dataSource dataSourceJNDIName

 (-templateName templateName -validFrom timestamp)

 | -completedBefore timestamp

 | -force -state state -reachedBefore timestamp

 [-profileName profileName]

Where:

-node nodeName

This name identifies the node. The default is the local node. This parameter

is optional.

-server serverName

The name of the server. This is parameter optional. The default is the

default server.

-cluster clusterName

The name of the cluster. This parameter is optional.

-datasource datasourceJNDIName

Identifies the database that the command will act on. This parameter is

required because a server or cluster can have multiple observer databases.

-templateName templateName-validFrom timestamp

Optionally, specifies the name of the process template for which observer

data will be deleted. If this option is specified, you must also specify the

-validFrom option.

 The timestamp string specifies the date from which the template is valid (in

UTC) as displayed in the administrative console. It has the following

format: ’yyyy-MM-ddThh:mm:ss’ (year, month, day, T, hours, minutes,

seconds). For example, 2006-11-20T12:00:00

-completedBefore timestamp

Optionally, deletes observer data for process instances that completed

before the given time. The timestamp string has the following format:

’yyyy-MM-ddThh:mm:ss’ (year, month, day, T, hours, minutes, seconds).

For example, 2006-07-20T12:00:00

-force -state state -reachedBefore timestamp

Optionally, forces the deletion of observer data for process instances that

reached the given state before the given time. The timestamp string has the

following format: ’yyyy-MM-ddThh:mm:ss’ (year, month, day, T, hours,

minutes, seconds). For example, 2006-07-20T12:00:00

profileName profileName

The name of a user-defined profile. Specify this option if you are not

working with the default profile.

For example, to delete all process instances running on node myNode in server

myServer that reached the state finished before midday on May 16, 2008, run

the following command:

wsadmin –lang jython –f observerDeleteCompletedProcessInstances.py

 -node myNode -server myServer

 -force -state finished -reachedBefore 2008-05-16T12:00:00

Chapter 4. Administering 133

If successful, the tool reports the number of instances for which observer data

was deleted and the number of table entries that were deleted from the

database. Otherwise, error information is reported and no changes are made to

the database.

The observer data for the specified process instances has been deleted from the

observer database.

Querying and replaying failed messages, using administrative

commands

Use the administrative commands to determine whether there are any failed

messages for business processes or human tasks, and, if there are, to retry

processing them.

Before you begin this procedure, the following conditions must be met:

v The application server on which the messages are to be queried or replayed

must be running. That is, the -conntype none option of the wsadmin script

cannot be used, because a server connection is required.

v When security is enabled, you must have operator authority.

When a problem occurs while processing an internal message, this message ends

up on the retention queue or hold queue. To determine whether any failed

messages exist, and to send those messages to the internal queue again:

1. Change to the Business Process Choreographer subdirectory where the

administration scripts are located.

Enter the following command:

cd install_root/ProcessChoreographer/admin

2. Query the number of failed messages on both the retention and hold queues.

Enter one of the following commands. The differences between the commands

are emphasized:

install_root/bin/wsadmin –lang jython -f queryNumberOfFailedMessages.py

 -cluster clusterName

 [-bfm | -htm]

 [-profile profileName]

install_root/bin/wsadmin –lang jython -f queryNumberOfFailedMessages.py

 -node nodeName

 -server serverName

 [-bfm | -htm]

 [-profile profileName]

Where:

cluster clusterName

The name of the cluster. Required if the business process container is

configured for a WebSphere cluster.

node nodeName

Optional when specifying the server name. This name identifies the node.

The default is the local node.

server serverName

The name of the server. Required if the cluster name is not specified.

bfm|htm

These keywords are optional. The default, if neither option is specified is to

display all failed messages for both business processes and human tasks. If

you only want to display the number of messages in the business process

134 IBM WebSphere Process Server for z/OS: Business Process Choreographer

container hold and retention queues, specify the -bfm option. If you only

want to display the number of messages in the human task container hold

queue, specify the -htm option.

profile profileName

The name of a user-defined profile. Specify this option if you are not

working with the default profile.
3. Replay all failed messages on the hold queue, retention queue, or both queues.

Enter one of the following commands:

install_root/bin/wsadmin –lang jython -f replayFailedMessages.py -cluster clusterName -queue replayQueue profile profileName

install_root/bin/wsadmin –lang jython -f replayFailedMessages.py -node nodeName -server serverName -queue replayQueue profile profileName

install_root/bin/wsadmin –lang jython -f replayFailedMessages.py -server serverName -queue replayQueue profile profileName

Where:

queue replayQueue

Must have one of the following values:

 holdQueue

 retentionQueue

 both

cluster clusterName

The name of the cluster. Required if the business process container is

configured for a WebSphere cluster.

node nodeName

Optional when specifying the server name. This name identifies the node.

The default is the local node.

server serverName

The name of the server. Required if the cluster name is not specified.

bfm|htm

These keywords are optional and mutually exclusive. The default, if neither

option is specified is to replay failed messages for both business processes

and human tasks. If you only want to replay the messages for business

processes, specify the -bfmoption. If you only want to replay messages for

human tasks, specify the -htm.

profile profileName

The name of a user-defined profile. Specify this option if you are not

working with the default profile.

Note: The jacl version of the cleanup unused staff query script,

replayFailedMessages.jacl, is deprecated. It is available in the util

subdirectory of the ProcessChoreographer directory and it takes the same

parameters as described here, but the –lang jython option must be omitted.

Refreshing staff query results, using administrative commands

The results of a staff query are static. Use the administrative commands to refresh

staff queries.

Before you begin this procedure, the following conditions must be met:

v The application server on which the messages are to be queried or replayed

must be running. That is, the -conntype none option of wsadmin cannot be

used, because a server connection is required.

v When security is enabled, you must have operator authority.

Chapter 4. Administering 135

Business Process Choreographer caches the results of staff assignments evaluated

against a staff directory, such as an Lightweight Directory Access Protocol (LDAP)

server, in the runtime database. If the staff directory changes, you can force the

staff assignments to be evaluated again.

1. Change to the Business Process Choreographer subdirectory where the

administration scripts are located.

Enter the following command:

cd install_root/ProcessChoreographer/admin

2. Force the staff assignment to be evaluated again.

Enter one of the following commands. The differences between the commands

are emphasized:

install_root/bin/wsadmin –lang jython -f refreshStaffQuery.py

 -server serverName

 [-processTemplate templateName |

 (-taskTemplate templateName [-nameSpace nameSpace]) |

 -userList username{,username}...]

 [-profile profileName]

install_root/bin/wsadmin –lang jython -f refreshStaffQuery.py

 -node nodeName

 -server serverName

 [-processTemplate templateName |

 (-taskTemplate templateName [-nameSpace nameSpace]) |

 -userList username{,username}...]

 [-profile profileName]

install_root/bin/wsadmin –lang jython -f refreshStaffQuery.py

 -cluster clusterName

 [-processTemplate templateName |

 (-taskTemplate templateName [-nameSpace nameSpace]) |

 -userList username{,username}...]

 [-profile profileName]

Where:

cluster clusterName

The name of the cluster. Required if the business process container is

configured for a WebSphere cluster.

node nodeName

Optional when specifying the server name. This name identifies the node.

The default is the local node.

server serverName

The name of the server. Required if the cluster name is not specified.

processTemplate templateName

The name of the process template. Staff assignments that belong to this

process template are refreshed.

taskTemplate templateName

The name of the task template. Staff assignments that belong to this task

template are refreshed.

nameSpace nameSpace

The namespace of the task template.

userList userName

A comma-separated list of user names. Staff assignments that contain the

specified names are refreshed.

136 IBM WebSphere Process Server for z/OS: Business Process Choreographer

profileName profileName

The name of a user-defined profile. Specify this option if you are not

working with the default profile.

Note: If you do not specify any templateName nor userList, all staff queries

that are stored in the database are refreshed. You might want to avoid

this for performance reasons.

Note: The jacl version of the refresh staff query script, refreshStaffQuery.jacl, is

deprecated. It is available in the util subdirectory of the

ProcessChoreographer directory and it takes the same parameters as

described here, but the –lang jython option must be omitted.

Refreshing staff query results, using the refresh daemon

Use this method if you want to set up a regular and automatic refresh of all

expired staff query results.

Staff queries are resolved by the specified staff plug-in provider repository. The

result is stored in the Business Process Choreographer database. To optimize the

authorization performance, the retrieved query results are cached. The cache

content is checked for currency when the staff query refresh daemon is invoked.

In order to keep staff query results up to date, a daemon is provided that refreshes

expired staff query results on a regular schedule. The daemon refreshes all cached

staff query results that have expired.

1. To go to the custom properties page for the human task container:

Click Servers → Application servers → Server_Name then on the Configuration

tab in the Container Settings section, click Human task container settings →

Runtime Configuration.

2. In the field Staff query refresh schedule enter the schedule using the syntax as

supported by the WebSphere CRON calendar. This value determines when the

daemon will refresh any expired staff query results. The default value is ″0 0 1

* * ?″, which causes a refresh every day at 1 am.

3. In the field Timeout for staff query result enter a new value in seconds. This

value determines how long a staff query result is considered to be valid. After

this time period, the staff query result is considered to be no longer valid, and

the staff query will be refreshed the next time that the daemon runs. The

default is one hour.

4. Click OK.

5. Save the changes and restart the human task container application to make the

changes effective.

The new expiration time value applies only to new staff queries, it does not

apply to existing staff queries.

Removing unused staff query results, using administrative

commands

Use the administrative commands to remove unused staff query results from the

database.

Before you begin this procedure, the following conditions must be met:

v The application server, through which unused staff queries are to be deleted,

must be running. That is, the -conntype none option of wsadmin cannot be used,

because a server connection is required.

v When security is enabled, you must have operator authority.

Chapter 4. Administering 137

Business Process Choreographer maintains lists of user names in the runtime

database for staff expressions that have been evaluated. Although the process

instances and human tasks that used the staff expressions have finished, the lists of

user names are maintained in the database until the corresponding business

process application is uninstalled.

If the size of the database is affecting performance, you can remove the unused

staff lists that are cached in the database tables.

1. Change to the Business Process Choreographer subdirectory where the

administration scripts are located.

Enter the following command:

cd install_root/ProcessChoreographer/admin

2. Remove the unused staff lists.

Enter one of the following commands. The differences between the commands

are emphasized:

install_root/bin/wsadmin –lang jython -f cleanupUnusedStaffQueryInstances.py

 -server serverName

 [-profile profileName]

install_root/bin/wsadmin –lang jython -f cleanupUnusedStaffQueryInstances.py

 -node nodeName

 -server serverName

 [-profile profileName]

install_root/bin/wsadmin –lang jython -f cleanupUnusedStaffQueryInstances.py

 -cluster clusterName

 [-profile profileName]

Where:

cluster clusterName

The name of the cluster. Required if the business process container is

configured for a WebSphere cluster.

node nodeName

Optional when specifying the server name. This name identifies the node.

The default is the local node.

server serverName

The name of the server. Required if the cluster name is not specified.

profileName profileName

The name of a user-defined profile. Specify this option if you are not

working with the default profile.

The number of entries deleted from the database is displayed.

Note: The jacl version of the cleanup unused staff query script,

cleanupUnusedStaffQueryInstances.jacl, is deprecated. It is available in the

util subdirectory of the ProcessChoreographer directory and it takes the

same parameters as described here, but the –lang jython option must be

omitted.

138 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Administering business processes and human tasks

Business processes and human tasks are deployed and installed as part of an

enterprise application. You can use the administrative console or the administrative

commands to administer process templates and task templates, and Business

Process Choreographer Explorer to work with process instances and task instances.

Use Business Process Choreographer Observer to report on business processes and

human tasks.

About business processes

A business process is a set of business-related activities that are invoked in a

specific sequence to achieve a business goal.

A process that is defined in the Web Services Business Process Execution Language

(WS-BPEL) comprises:

v The activities that are the individual business steps within the process. An

activity can be one of several different types. Also, an activity can be categorized

as either a basic activity or a structured activity.

– Basic activities are activities that have no structure and do not contain other

activities.

– Structured activities are activities that contain other activities.
v The partner links, also known as interface partners or reference partners, that

specify external entities and partners that interact with the process or vice versa

using WSDL interfaces.

v The variables that store messages that are passed between activities. They

represent the state of a business process instance.

v Correlation sets that are used to correlate multiple service requests or response

messages with the same business process instance. Correlation sets are based on

application data that is contained in messages that are exchanged with the

process.

v Fault handlers that deal with exceptional situations that can occur when a

business process runs.

v Event handlers that receive and process unsolicited messages in parallel to the

normal execution process.

v Compensation handlers that specify the compensation logic for a single activity

or a group of activities.

For more information on these constructs, refer to the BPEL specification.

Business Process Choreographer also supports the IBM® extensions to the BPEL

language, such as:

v Human task activities for human interaction. These inline participating tasks can

be almost any step in the business process that involves a person, for example,

completing a form, approving a document or drawing, writing a letter, and so

on.

v Script activities for running inline Java code. The Java code can access all of the

BPEL variables, correlation properties, and partner links, as well as process and

activity contexts.

v Information service activities to directly access WebSphere Information Server

and relational databases.

v Valid-from timestamps for process model versioning.

v Common Event Infrastructure (CEI) logging.

Chapter 4. Administering 139

http://www.ibm.com/developerworks/webservices/library/ws-bpel/

v Explicit checkpointing to support multiple activities in one transaction.

v Timeouts for activities.

Business process types

Business processes can be either long-running or microflows.

Long-running processes

A long-running business process is interruptible, and each step of the process can

run in its own physical transaction. Long-running business processes can wait for

external stimuli. Examples of external stimuli are events that are sent by another

business process in a business-to-business interaction, responses to asynchronous

invocations, or the completion of a human task.

A long-running process has the following characteristics:

v Runs as several transactions

v Consists of synchronous and asynchronous services

v Stores each intermediate process state, which makes the process

forward-recoverable

Microflows

A microflow runs in one physical thread from start to finish without interruption.

Microflows are sometimes referred to as non-interruptible business processes.

Microflows can have different transactional capabilities. A microflow can run

within a global transaction or as part of an activity session.

A microflow has the following characteristics:

v Runs in one transaction

v Normally runs for a short time

v Does not store run-time values in the database

v Consists of only synchronous services and non-interruptible subprocesses, which

means that a microflow cannot contain:

– Human tasks

– Wait activities

– Multiple initiating receive activities

– Non-initiating receive activities

A microflow should not invoke the following services or activities:

– Long-running services

– Activities bound to asynchronous protocols

Additional BPEL activities

Business Process Choreographer includes support for additional activities that are

extensions to the Web Services Business Process Execution Language (BPEL)

invoke activity.

These additional activities include the Java snippet activity and the information

service activity.

Java snippet activity

A Java snippet activity (script extensions of the BPEL invoke activity) allows you to

specify Java code as part of the process implementation. This Java code has access

to the enclosing BPEL environment, for example, it can work with BPEL variables,

partner links, correlation sets, and custom properties. These objects are either data

objects or Java objects that represent simple types. You can use BPEL variables in

140 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Java snippets in the same way as local Java variables in the enclosing Java method.

Information service activity

An information service activity provides direct interaction with IBM Information

Server and relational databases. The following kinds of information service activity

are available:

Information server

With this activity kind, information services that were created in

Information Server can be invoked from a business process.

SQL snippet

The SQL snippet allows you to process SQL statements, including Data

Definition Language (DDL) statements, from a business process. For

example, an SQL select statement can issue queries and assign query

results to process variables by reference (set reference). These set references

can be used by other activities in the process without moving all of the

related data into the process space.

Retrieve set

The retrieve set allows data that is defined by a set reference to be loaded

into a process variable. The data is returned as a business object.

Atomic SQL sequence

The atomic SQL sequence allows you to define multiple SQL snippets and

retrieve set statements in an information server activity. The statements are

processed in one transaction in the order in which you defined them.

Life cycle management and versioning behavior of subprocesses

A process that is started by another process is known as a subprocess. The way in

which the life cycle of subprocesses can be managed and the versioning behavior

of subprocesses depend on how these processes are modeled.

For modularity and reuse, it often makes sense to apply the programming concept

of encapsulation to business process modeling, that is to implement one or more

steps of the business logic as a separate process and to invoke this process from

the main process. A subprocess can also start another process. This can lead to an

arbitrarily deep hierarchy of process instances. When these processes are deployed,

all of the process templates in the process-to-process relationship must be deployed

to the same Business Process Choreographer database.

Life cycle management

A subprocess can have a peer-to-peer relationship or a parent-child relationship

with the calling process. This relationship determines the behavior of a subprocess

when an action that manages the process life cycle is invoked for the calling

process. The life cycle actions comprise suspend, resume, terminate, delete, and

compensation. Actions that manage the process life cycle can be taken only on

top-level process instances.

The calling process-subprocess relationship is determined by the autonomy

attribute of the subprocess. This attribute can have one of the following values:

Peer A peer process is considered to be a top-level process. A top-level process is

a process instance that either is not invoked by another process instance or

is invoked by another process instance, but it has peer autonomy. If the

subprocess is part of a peer-to-peer relationship, life cycle actions on the

calling process instance are not applied to the subprocess instance.

Chapter 4. Administering 141

However, for long-running processes with a creating operation that

implements a one-way interface, the value of the autonomy attribute is

automatically set to peer during runtime. If the autonomy attribute is set to

child, this value is ignored at runtime.

Child If the subprocess is part of a parent-child relationship, life cycle actions on

the parent process instance are applied to the subprocess instance. For

example, if the parent process instance is suspended, all of the subprocess

instances with child autonomy are suspended, too.

 A microflow always runs as a child process. However, if there is another

component between the two processes, it might prevent a parent-child

relationship from being established, for example, an interface map

component that is wired between the two process components.

Versioning behavior

The version of a process that is used is determined by whether the process is used

in an early-binding scenario or a late-binding scenario.

Early binding

In an early-binding scenario, the decision on which version of the

subprocess is invoked is made during deployment. The calling process

invokes a dedicated, statically-bound subprocess according to the Service

Component Architecture (SCA) wiring. The versioning of the process is

ignored.

 An example of early-binding is an SCA wire. For example, if you wire a

stand-alone reference to a process component, every invocation of the

process using this reference is targeted to the specific version that is

represented by the process component.

Late binding

In a late-binding scenario, the decision on which subprocess template is

invoked happens when the calling process instance needs to invoke the

subprocess. In this case, the version of the subprocess that is currently

valid is used. A newer version of a process supersedes all of the previous

versions of the process. Existing process instances continue to run with the

process template with which they were associated when they started. This

leads to the following categories of process templates:

v Process templates that are no longer current might still be valid for

existing long-running process instances

v Current process templates are used for new process instances

v Process templates that become valid in the future according to their

valid-from date and time.

To apply late-binding when a subprocess is invoked, the parent process

must specify the name of the subprocess template from which the valid

subprocess is to be chosen at the reference partner. The valid-from attribute

of the process is used to determine the subprocess template that is

currently valid. Any SCA wiring is ignored.

 An example of late-binding is when a new process is invoked in Business

Process Choreographer Explorer. The instance that is created is always

based on the most recent version of the process template with a valid-from

date that is not in the future.

When a new version of a process model is created and the existing process model

is used in late-binding scenarios, you must avoid making changes that will lead to

142 IBM WebSphere Process Server for z/OS: Business Process Choreographer

compatibility problems when the new version of the process becomes valid and,

for example, a parent process invokes an instance of the new version of the

subprocess. The following are incompatible changes that you must avoid:

v Modifying the correlation sets

v Changing any interface that is used by the parent process to communicate with

the subprocess

Data exchange between business processes and services

A business process can consume service component architecture (SCA) services or

it can be consumed by other SCA services. The way in which Web Services

Description Language (WSDL) message data is exchanged between the SCA service

and the process depends on how the process was modeled.

A business process consumes a service

The consumption of a service in a business process is implemented using a

Business Process Execution Language (BPEL) invoke activity in the process model.

The data that is passed to the SCA service is retrieved from one or more BPEL

variables. Usually, the data is passed by value, which means that the invoked

service works with a copy of the data.

Under certain circumstances, data can be passed by reference. Passing data by

reference can help to improve the performance of business processes.

If all of the following conditions are met, the data is passed by reference to the

business process:

v The invocation of the service is synchronous.

v The BPEL process and the invoked service are in the same module.

v The data is exchanged in one of the following ways:

– One or more BPEL variables are declared using XML schema types or

elements. The WSDL message parts are mapped individually between the

service invocation and the variables.

<variable name="inputPart1Var" type="ws:inputPart1Type">

<variable name="inputPart2Var" type="ws:inputPart2Type">

The Web service activity uses the parameter extension to refer to the BPEL

variables. In the SCA interaction, the WSDL is treated as a wrapper for the

data that is passed by reference.

<invoke >

 <wpc:input>

 <wpc:parameter name="ws:inputPart1" variable="inputPart1Var"/>

 <wpc:parameter name="ws:inputPart2" variable="inputPart2Var"/>

 ...

 </wpc:input>

</invoke >

– One or more BPEL variables are declared using XML schema types or

elements. The Web service interaction complies with the document-literal

wrapped style; parameter elements are mapped between the wrapper

document and the variables.

<variable name="inputParm1Var" type="ws:inputParm1ElemType">

<variable name="inputParm2Var" type="ws:inputParm2ElemType">

The Web service activity uses the parameter extension to refer to the BPEL

variables. This is the default behavior for processes that are created in

WebSphere Integration Developer. In the SCA interaction, the wrapper holds

the parameters that are passed by reference.

Chapter 4. Administering 143

<invoke >

 <wpc:input>

 <wpc:parameter name="ws:inputParm1" variable="inputParm1Var"/>

 <wpc:parameter name="ws:inputParm2" variable="inputParm2Var"/>

 ...

 </wpc:input>

</invoke >

If the invoked service modifies the data, these changes are applied to the

corresponding BPEL variables. However, as a best practice the invoked service

should not update the data because any changes that are made to the data are not

persistent. For long-running processes the changes are discarded when the current

transaction commits, and for microflows the changes are discarded when the

process ends. In addition, an event is not generated when the variable is updated

by the invoked service.

A business process is consumed by a service

A business process that is consumed by other services contains receive activities,

pick activities, or event handlers in the process model. The data that is passed to

the process is written to one, or more BPEL variables. Usually, the data is passed

by value, which means that the process works with a copy of the data.

However, if all of the following conditions are met, the data is passed by reference:

v The invocation of the business process is synchronous.

v The service and the invoked business process are in the same module.

v The data is exchanged in one of the following ways:

– One or more BPEL variables are declared using XML schema types or

elements. The WSDL message parts are mapped individually between the

service invocation and the variables.

<variable name="outputPart1Var" type="ws:outputPart1Type">

<variable name="outputPart2Var" type="ws:outputPart2Type">

The activity uses the parameter extension to refer to the BPEL variables. In

the SCA interaction, the WSDL is treated as a wrapper for the data that is

passed by reference. For a receive activity, the corresponding BPEL snippet

might look like the following example:

<receive >

 <wpc:output>

 <wpc:parameter name="ws:outputPart1" variable="outputPart1Var"/>

 <wpc:parameter name="ws:outputPart2" variable="outputPart2Var"/>

 ...

 </wpc:output>

</receive >

– One or more BPEL variables are declared using XML schema types or

elements. The Web service interaction complies with the document-literal

wrapped style; parameter elements are mapped between the wrapper

document and the variables.

<variable name="outputParm1Var" type="ws:outputParm1ElemType">

<variable name="outputParm2Var" type="ws:outputParm2ElemType">

The activity uses the parameter extension to refer to the BPEL variables. This

is the default behavior for processes that are created in WebSphere Integration

Developer. In the SCA interaction, the wrapper holds the parameters that are

passed by reference. For a receive activity, the corresponding BPEL snippet

might look like the following example:

144 IBM WebSphere Process Server for z/OS: Business Process Choreographer

<receive >

 <wpc:output>

 <wpc:parameter name="ws:outputParm1" variable="outputParm1Var"/>

 <wpc:parameter name="ws:outputParm2" variable="outputParm2Var"/>

 ...

 </wpc:output>

</receive >

If the invoked process modifies the BPEL variables, the input data from the calling

service is also modified.

About human tasks

A human task is a component that involves a person interacting with a service or

another person.

The interaction can be initiated either by a person or by an automated service. A

service that is initiated by a person can be either an automated implementation or

a service that is provided by another person. A human task that is invoked by an

automated service can be replaced easily by an automated implementation, and

vice versa.

Tasks can be used to implement staff activities in business processes that require

human interactions, such as manual exception handling and approvals. All other

exception handling is modeled natively in Web Services Business Process Execution

Language (WS-BPEL, abbreviated to BPEL), by using faults and fault handlers, or

compensation.

Who can interact with a task can be determined using one of the supported staff

directories. Work items are created for users who have a reason to view or interact

with the task.

Business Process Choreographer supports the following types of staff directories:

v Lightweight Directory Access Protocol (LDAP)

v WebSphere user registry

Kinds of human tasks

The kinds of human tasks are as follows:

Participating tasks

Support Web-service-to-person interactions, which enable a person to

implement a service. For example, a participating task can be a human task

activity in a business process.

Administrative tasks

Administrative tasks are similar to participating tasks, except that they are

used by administrators to solve technical problems that occur in processes.

Currently, you can use administration tasks for business processes only.

Participating Task

Task Web
Server
Interface

Task
Participant
Interface

invoke

notify

query

claim

complete

Chapter 4. Administering 145

Originating tasks

Support person-to-computer interactions, which enables people to create

and start services through a graphical user interface. For example, a user

can start a business process, or send it an event by means of an originating

task.

Purely human tasks

Support person-to-person interactions, which enable a person to share

work with other people in a structured and controlled way. Purely human

tasks do not interact with business processes or other Web services.

Relationship of human tasks to business processes

A human task can be related to a business process in one of the following ways:

Inline tasks

An inline task is defined as a part of the business process. It is not visible

as an Service Component Architecture (SCA) component, and it can share

context data with the process.

Stand-alone tasks

A stand-alone task is an SCA component that implements human

interaction as a service (participating task), leverages the person-to-service

interaction with a graphical user interface (originating task), or supports

the structured collaboration between people (purely human task). Task

components can be combined with other services, including business

processes.

The following table shows the differences between these two implementation

types.

 Inline tasks Stand-alone tasks

Part of the business process. Independent of the business process. This

implementation can also be used in

scenarios that do not include business

processes.

The life cycle of the task is usually

controlled by the process.

The life cycle is independent of the process.

Originating Task

Task
Originator
Interface

Web
Service
Interface

create

start invoke

returnnotify

Purely Human Task

Task
Origintor
Interface

Task
Participant
Interface

create

notify

query

claim

complete

start

146 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Inline tasks Stand-alone tasks

A participating task is a human task activity

in a process.

A participating task is an invoke activity in

the process.

Inline tasks can access process context data,

for example, variables, staff assignments, or

custom properties.

Stand-alone tasks cannot access process

context data.

Task descriptions, display names, and

documentation for participating and

originating tasks support only one language.

Task descriptions, display names, and

documentation for participating and

originating tasks support multiple

languages.

Inline tasks are not visible as SCA

components, and therefore they are not

reusable (cannot be wired).

Stand-alone tasks are reusable. Participating

and originating tasks are visible as SCA

components (can be wired).

Supported kinds of tasks: participating tasks,

originating tasks, and administrative tasks.

Supported kinds of tasks: participating tasks,

originating tasks, and purely human tasks.

Subtasks

A subtask is an additional unit of work that is split out from a parent task. The

subtask model can be selected from a template or it can be defined at runtime.

Input data is provided by the person that creates or starts the subtask. The parent

task waits until all of its subtasks are finished. The owner or editor of the parent

task consolidates the subtask output data, and then completes the parent task.

If the subtask fails to complete within a specified period of time, the parent task

can be escalated. The escalation indicates that the parent task is still waiting for

subtasks to complete.

Subtasks can be purely human tasks or originating tasks.

Follow-on tasks

A follow-on task is a task that is created to complete an existing task. The

follow-on task model can be selected from a template or it can be defined at

runtime. Input data is provided by the person that creates or starts the follow-on

task. The output and fault message types of the follow-on task must be the same

as those of the previous task. The previous task is put into the forwarded state and

it does not report completion to the service or person that invoked it.

When the follow-on task finishes, it reports its output or fault data to the service or

person that invoked the original task. Escalations of the previous task continue to

run and escalate. The follow-on task has its own escalations.

Follow-on tasks can be only purely human tasks.

Escalations

An escalation is a course of action that is executed when a task is not completed

satisfactorily within a specific period of time. For example, if tasks are not claimed

or are not completed within a defined time limit. You can specify one, or more,

escalations for a task. These escalations can be started either in parallel or as a

chain of escalations.

Chapter 4. Administering 147

Escalations are initialized when the associated task reaches a certain state in its life

cycle. After a defined duration, the task state is verified, and if it does not meet the

modeled expectation, the escalation action is invoked. The following escalation

actions are supported:

v Create work items for a set of users

v Send e-mails to the designated recipients

v Send notification events to registered consumers

Administering process templates and process instances

Use the administrative console or the administrative commands to administer

process templates. Use Business Process Choreographer Explorer to work with

process instances.

Process templates define business processes within an enterprise application. When

an enterprise application that contains process templates is installed, deployed, and

started, the process templates are put into the started state. You can use the

administrative console or the administrative commands to stop and start process

templates. The process templates that are started are shown in Business Process

Choreographer Explorer.

A process instance can be a long-running process or a microflow. Use Business

Process Choreographer Explorer to display information about process templates

and process instances, or act on process instances. These actions can be, for

example, starting process instances; and for long-running processes other process

life cycle actions, such as suspending, resuming, or terminating process instances;

or repairing activities.

Business process administration—frequently asked questions

Answers to a set of frequently asked questions about administering business

processes.

v “What happens if a process template is in the started state, but the application it

belongs to is in the stopped state?”

v “How do I stop new process instances being created?”

v “What happens to running instances when a newer process template becomes

valid?” on page 149

v “What happens to a running instance if the template it was created from is

stopped?” on page 149

v “How can I tell if any process instances are still running?” on page 149

v “Why can’t I stop a business process application if it has any process instances?”

on page 149

What happens if a process template is in the started state, but the

application it belongs to is in the stopped state?

If a currently valid process template is in the started state, but the application is in

the stopped state, no new process instances are created from the template. Existing

process instances cannot be navigated while the application is in the stopped state.

How do I stop new process instances being created?

Using the administrative console, select a process template, and click Stop. This

action puts the process template into the stopped state, and no more instances are

created from the template. After the template stops, any attempts to create a

148 IBM WebSphere Process Server for z/OS: Business Process Choreographer

process instance from the template result in an

EngineProcessModelStoppedException error.

What happens to running instances when a newer process template

becomes valid?

If a process template is no longer valid, this fact has no effect on running instances

that were instantiated from the template. Existing process instances continue to run

to completion. Old and new instances run in parallel until all of the old instances

have finished, or until they have been terminated.

What happens to a running instance if the template it was created from

is stopped?

Changing the state of a process template to ’stopped’ only stops new instances

being created. Existing process instances continue running until completion in an

orderly way.

How can I tell if any process instances are still running?

Log on to the Business Process Choreographer Explorer as a process administrator,

and go to the Process Instances Administered By Me page. This page displays any

running process instances. If necessary, you can terminate and delete these process

instances.

Why can’t I stop a business process application if it has any process

instances?

For a process instance to run, its corresponding application must also be running.

If the application is stopped, the navigation of the process instance cannot

continue. For this reason, you can only stop a business process application if it has

no process instances.

Authorization roles for business processes

Actions that you can take on business processes depend on your authorization

role. This role can be a J2EE role or an instance-based role.

A role is a set of employees who share the same level of authority. Java 2 Platform,

Enterprise Edition (J2EE) roles are set up when the business process container is

configured. Instance-based roles are assigned to processes and activities when the

process is modeled. Role-based authorization requires that global security is

enabled in WebSphere Application Server.

J2EE roles

The following J2EE roles are supported:

v J2EE BPESystemAdministrator. Users assigned to this role have all privileges.

This role is also referred to as the system administrator for business processes.

v J2EE BPESystemMonitor. Users assigned to this role can view the properties of

all business process objects. This role is also referred to as the system monitor

for business processes.

You can use the administrative console to change the assignment of users and

groups to these roles.

Chapter 4. Administering 149

Setting up Roles using RACF security: These RACF® permissions apply when the

following security fields are specified:

v com.ibm.security.SAF.authorization= true

RDEFINE EJBROLE BPESystemAdministrator UACC(NONE)

PERMIT BPESystemAdministrator CLASS(EJBROLE) ID(userid) ACCESS(READ)

RDEFINE EJBROLE BPESystemMonitor UACC(NONE)

PERMIT BPESystemMonitor CLASS(EJBROLE) ID(userid) ACCESS(READ)

v com.ibm.security.SAF.delegation= true

RDEFINE EJBROLE JMSAPIUser UACC(NONE) APPLDATA(’ userid’)

You can use Security Authorization Facility (SAF)-based authorization (for

example, using the RACF EJBROLE profile) to control access by a client to Java 2

Platform, Enterprise Edition (J2EE) roles in EJB and Enterprise applications,

including the business process container. For more information on using SAF, see

System Authorization Facility for role-based authorization in the WebSphere

Application Server for z/OS information center.

Instance-based roles

A process instance or an activity is not assigned directly to a staff member in the

process model, instead it is assigned to one of the available roles. Any staff

member that is assigned to an instance-based role can perform the actions for that

role. The association of users to instance-based roles is determined at runtime

using staff resolution.

The following instance-based roles are supported:

v For processes: reader, starter, administrator

v For activities: reader, editor, potential starter, potential owner, owner,

administrator

These roles are authorized to perform the following actions:

 Role Authorized actions

Activity reader View the properties of the associated activity instance, and its

input and output messages.

Activity editor Actions that are authorized for the activity reader, and write

access to messages and other data associated with the activity.

Potential activity starter Actions that are authorized for the activity reader. Members of

this role can send messages to receive or pick activities.

Potential activity owner Actions that are authorized for the activity reader. Members of

this role can claim the activity.

Activity owner Work on and complete an activity. Members of this role can

transfer owned work items to an administrator or a potential

owner.

Activity administrator Repair activities that are stopped due to unexpected errors, and

force terminate long-running activities.

Process starter View the properties of the associated process instance, and its

input and output messages.

Process reader View the properties of the associated process instance and its

input and output messages. Process readers can also view the

properties, and input and output messages for any activities

that are contained in the process instance, but they cannot see

any information about its subprocesses.

150 IBM WebSphere Process Server for z/OS: Business Process Choreographer

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/csec_ejbroleandg.html

Role Authorized actions

Process administrator Members of this role can administer process instances and

intervene in a process that has started; create, delete, and

transfer work items. Members of this role also have activity

administrator authorization.

Do not delete the user ID of the process starter from your user registry if the

process instance still exists. If you do, the navigation of this process cannot

continue. You receive the following exception in the system log file:

no unique ID for: <user ID>

Stopping and starting process templates with the administrative

console

You can use the administrative console to start and stop each installed process

template individually.

If global security is enabled, verify that your user ID has operator authorization.

The server on which the application is installed must be running.

You must stop a process template, for example, before you can uninstall the

business process application to which it belongs. The following steps describe how

to use the administrative console to stop and start process templates.

1. Select the application that you want to manage.

In the navigation pane of the administrative console, click Applications →

Enterprise Applications, and then the application that you want to manage.

2. In the Configuration page for the enterprise application under Related Items,

click EJB Modules, and then an Enterprise JavaBeans module.

3. In the Configuration page for the EJB module under Additional Properties,

click Business processes, and then a process template.

4. Stop the process template.

Existing instances of the process templates continue to run until they end

normally. However, you cannot create process instances from a stopped

template.

5. Start the process template that is in the stopped state.

Stopping and starting process templates with administrative

commands

Administrative commands provide an alternative to the administrative console for

stopping and starting process templates.

If global security is enabled, verify that your user ID has operator authorization.

You must stop a business template, for example, before you can uninstall the

business process application to which it belongs. The following steps describe how

to use the administrative commands to stop and start process templates.

1. Change to the Business Process Choreographer samples directory. Type the

following:

cd install_root/ProcessChoreographer/sample

2. Stop the process template.

install_root/bin/wsadmin -f bpcTemplates.jacl

 -stop application_name

Chapter 4. Administering 151

Where application_name is the name of the application to which the template

belongs.

Existing instances of the process templates continue to run until they end

normally. When the application stops, you cannot create process instances from

the stopped templates.

3. Start the process template.

install_root/bin/wsadmin -f bpcTemplates.jacl

 -start application_name

The process template starts. You can use Business Process Choreographer

Explorer to start process instances from the process template.

Managing the process life cycle

After a process starts, it goes through various states until it ends. As a process

administrator, you can take various actions on a process throughout its life cycle.

Starting a new process instance:

You can start a new process instance from any of the process templates that you

are authorized to use.

 All of the installed process templates are shown in the list of process templates in

Business Process Choreographer Explorer. To start a new process instance,

complete the following steps.

1. Display the process templates that you are authorized to use.

Click My Process Templates under Process Templates in the navigation pane.

2. Select the check box next to the process template and click Start Instance.

This action displays the Process Input Message page.

If the process has more than one operation, this action displays a page that

contains all of the available operations. Select the operation that is to start the

process instance.

3. Provide the input data to start the process instance.

If the process is a long-running process, you can type in a process instance

name. If you do not specify a name, a system-generated name is assigned to

the new process instance.

Complete the input for the process input message.

4. To start the process, click Submit.

The process instance is started. If the business process contains an activity that

requires human interaction, tasks are generated for all of the potential owners. If

you are one of these potential owners, this task appears in the list on the My Tasks

page.

If the process is a long-running process, a process output message is displayed

immediately after the process finishes. Not all processes have output messages, for

example, if the process implements a one-way operation, an output message is not

displayed.

Monitoring the progress of a process instance:

You can monitor the progress of a process instance to determine whether you need

to take action so that the process can run to completion.

152 IBM WebSphere Process Server for z/OS: Business Process Choreographer

In Business Process Choreographer Explorer, complete the following steps to

monitor the progress of a process instance.

1. Display a list of process instances.

For example, click Administered By Me under Process Instances in the

navigation pane.

2. Select the check box next to the process instance and click View Process State.

This action displays the Process State page. This page shows the activities, the

links including the transition and join conditions for the links, the fault

handlers, the compensation handlers, and the event handlers that are defined

for the process. Activities that are shown in bold are defined as business

relevant in the process model. State information is shown for these activities.

3. To act on an activity, click the activity.

This action displays the Activity page where you can perform these actions.

Suspending and resuming process instances:

You can suspend a long-running, top-level process instance. You might want to do

this, for example, so that you can configure access to a back-end system that is

used later in the process, or to fix a problem that is causing the process instance to

fail. When the prerequisites for the process are met, you can resume running the

process instance.

 To suspend and resume process instances, you must have process administrator

authorization.

To suspend a process instance, the process instance must be in either the running

or failing state. To resume a process, the process instance must be in the suspended

state.

To suspend or resume a process instance, complete the following steps in Business

Process Choreographer Explorer.

1. Display a list of process instances.

For example, click Administered By Me under Process Instances in the

navigation pane.

2. Suspend the process.

Select the check box next to the process instance and click Suspend.

This action suspends the specified top-level process instance. The process

instance is put into the suspended state. Subprocesses with the autonomy

attribute set to child are also suspended if they are in the running, failing,

terminating, or compensating state. However, you can still complete any active

activities and tasks that belong to the process instance.

3. Resume the process instance.

Select a process instance that is in the suspended state and click Resume. The

process instance and its subprocess are put into the states they had before they

were suspended, for example, running. The process instance and its

subprocesses resume.

Terminating process instances:

You might want to terminate a process instance, for example, if the work or

documents it represents are no longer needed, if no one is available to complete

the process instance, if you have encountered problems with the process template

and it needs to be redesigned, and so on.

Chapter 4. Administering 153

To terminate a process instance, you must have process administrator

authorization.

In Business Process Choreographer Explorer, complete the following steps to

terminate a process instance. If compensation is defined for the business process

model, you can choose to terminate the process instance with compensation.

1. Display the process instances that you can administer.

Click Administered By Me under Process Instances in the navigation pane.

2. Select the check box next to the process instance that you want to stop.

v To terminate the process instance with compensation, click Compensate.

This action terminates the process instance and starts compensation

processing.

v To terminate the process instance without compensation, click Terminate.

This action stops the process instance immediately without waiting for any

outstanding activities or tasks. Process instances that are terminated are not

compensated.

Deleting process instances:

Process templates can be modeled so that process instances are not automatically

deleted when they complete. You can explicitly delete these process instances after

they complete.

 To delete a process instance, you must have process administrator authorization.

The process instance must be in the finished or terminated state.

Completed processes instances are automatically deleted from the Business Process

Choreographer database if the corresponding property is set for the process

template in the process model.

You might want to keep process instances in your database, for example, to query

data from process instances that are not written to the audit log, or if you want to

defer the deletion of processes to off-peak times. However, old process instance

data that is no longer needed can impact disk space and performance. Therefore,

you should regularly delete process instance data that you no longer need or want

to maintain. Make sure that you run this maintenance task at off-peak times.

You can delete completed process instances using either Business Process

Choreographer Explorer, for example, to delete individual process instances, or the

deleteCompletedProcessInstances administrative script to delete several process

instances at once.

In Business Process Choreographer Explorer, complete the following steps to delete

a process instance.

1. Display the process instances that you administer.

Click Administered By Me under Process Instances in the navigation pane.

2. Select the process instance that you want to delete and click Delete.

This action deletes the selected process instance from the database.

Repairing processes and activities

If the process runs into problems, you can analyze the process and then repair the

activities.

154 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Business Process Choreographer Explorer provides various views for the process

administrator to monitor the processes that are currently running.

v To view process instances with activities in the stopped state, click Critical

Processes under Process Instances in the navigation pane.

v To monitor the progress of a specific process instance, click View Process State

in any view that displays a list of process instances.

You can now take action to repair the pending activities.

Restarting activities:

If you have repaired an activity, you can restart it using new input data.

 The activity must be in the stopped state and the associated process instance must

be in the running state.

To restart an activity, complete the following steps in Business Process

Choreographer Explorer.

1. Navigate to the Activity page for the activity and click Restart.

2. Specify the input data that is needed to start the activity again.

If the process is to continue if an error occurs when the activity starts again,

select Continue on Error.

3. Click Restart.

Forcing the completion of activities:

If you are aware that an activity is not going to complete in a timely manner, for

example, because the invoked service is no longer available, you can force the

completion of the activity so that the process flow can continue.

 Generally, the activity must be in the stopped state. However, if the activity is a

staff activity, it can also be in either the ready or the claimed state. The associated

process instance must be in the running state.

To force the completion of an activity, complete the following steps in Business

Process Choreographer Explorer.

1. Navigate to the Activity page for the activity and click Force Complete.

2. Specify the data that is needed to complete the activity.

3. Click Force Complete again.

Administering compensation for microflows:

When a microflow runs, it can encounter problems. For these situations,

compensation might have been defined for the process in the process model.

Compensation allows you to undo previous completed steps, for example, to reset

data and states so that you can recover from these problems.

 For microflows to be compensated, the compensation service must be started in the

administrative console.

If a compensation action for a microflow fails, the process administrator must

intervene to resolve the problem.

Chapter 4. Administering 155

In Business Process Choreographer Explorer, complete the following steps to

administer failed compensation actions.

1. Display a list of the compensation actions that failed.

Click Failed Compensations under Process Instances in the navigation pane.

The Failed Compensations page is displayed. This page contains information

about why the named compensation action failed. This information can help

you to decide what actions to take to correct the failed compensation.

2. Select the check box next to the activity and then click one of the available

actions.

The following administrative actions are available:

Skip Skips the current compensating action and continues with

compensating the microflow. This action might result in a

non-compensated activity.

Retry If you have taken action to correct the failed compensation action, click

Retry to try the compensation action again.

Stop Stops the compensation processing.

Compensation in business processes:

Compensation is the means by which operations in a process that have

successfully completed can be undone.

 Compensation processing starts because an error occurs in a running process

instance for which compensation is defined in the process model. Compensation

reverses the effects of operations that were committed up to when the error

occurred to get back to a consistent state.

You can define compensation for long-running processes and for microflows in

your process model.

Compensation for long-running processes

Compensation for long-running processes is also known as business-level

compensation. This type of compensation is defined on the scope level. This means

that either part of the process, or the entire process can be compensated.

Compensation is triggered by fault handlers or the compensation handler of a

scope or a process; compensation is another navigation path of the process.

A long-running process automatically compensates child processes that have

successfully completed when the enclosing parent scope is compensated. Within a

process, only invoke and scope activities that complete successfully are

compensated.

Compensation for microflows

Compensation for microflows is also known as technical compensation. This type of

compensation is triggered when the work unit (the transaction or the activity

session) that contains the microflow is rolled back. Therefore, undo actions are

typically specified for activities that cannot be reversed by rolling back the unit of

work. When a process instance runs, undo actions for compensable activities are

registered with the enclosing unit of work. Depending on the outcome of this unit

of work (rollback or commit), compensation starts.

156 IBM WebSphere Process Server for z/OS: Business Process Choreographer

If the microflow is a child of a compensable, long-running process, the undo

actions of the microflow are made available to the parent process when the

microflow completes. It can, therefore, potentially participate in the compensation

of the parent process. For these types of microflows, it is a good practice to specify

undo actions for all of the activities in the process when you define your process

model.

If an error occurs during compensation processing, the compensation action

requires manual resolution to overcome the error. You can use Business Process

Choreographer Explorer to repair these compensation actions.

Administering task templates and task instances

Use the administrative console or the administrative commands to administer task

templates. Use Business Process Choreographer Explorer to work with task

instances.

Authorization roles for human tasks

Actions that you can take on human tasks depend on your authorization role. This

role can be a J2EE role or an instance-based role.

A role is a set of employees who share the same level of authority. Java 2 Platform,

Enterprise Edition (J2EE) roles are set up when the human task container is

configured. Instance-based roles are assigned to human tasks and escalations when

the task is modeled. Role-based authorization requires that global security is

enabled in WebSphere Application Server.

J2EE roles

The following J2EE roles are supported:

v J2EE TaskSystemAdministrator. Users assigned to this role have all privileges.

This role is also referred to as the system administrator for human tasks.

v J2EE TaskSystemMonitor. Users assigned to this role can view the properties of

all of the task objects. This role is also referred to as the system monitor for

human tasks.

You can use the administrative console to change the assignment of users and

groups to these roles.

Setting up Roles using RACF security: These RACF permissions apply when the

following security fields are specified:

v com.ibm.security.SAF.authorization= true

RDEFINE EJBROLE TaskSystemAdministrator UACC(NONE)

PERMIT TaskSystemAdministrator CLASS(EJBROLE) ID(userid) ACCESS(READ)

RDEFINE EJBROLE TaskSystemMonitor UACC(NONE)

PERMIT TaskSystemMonitor CLASS(EJBROLE) ID(userid) ACCESS(READ)

v com.ibm.security.SAF.delegation= true

RDEFINE EJBROLE JMSAPIUser UACC(NONE) APPLDATA(’ userid’)

You can use Security Authorization Facility (SAF)-based authorization (for

example, using the RACF EJBROLE profile) to control access by a client to Java 2

Platform, Enterprise Edition (J2EE) roles in EJB and Web applications, including

the WebSphere Application Server administrative console application. For more

information, see System Authorization Facility for role-based authorization in the

WebSphere Application Server for z/OS information center.

Chapter 4. Administering 157

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/csec_ejbroleandg.html

Instance-based roles

A task instance or an escalation instance is not assigned directly to a staff member

in the task model, instead it is assigned to one of the available roles. Any staff

member that is assigned to an instance-based role can perform the actions for that

role. The association of users to instance-based roles is determined at runtime

using staff resolution.

The following instance-based roles are supported:

v For tasks: potential instance creator, originator, potential starter, starter, potential

owner, owner, reader, editor, administrator

v For escalations: escalation receiver

These roles are authorized to perform the following actions:

 Role Authorized actions

Potential instance creator Members of this role can create an instance of the task. If no

potential instance creator is defined for the task template or the

application components, then all users are considered to be a

member of this role.

Originator Members of this role have administrative rights until the task

starts. When the task starts, the originator has the authority of a

reader and can perform some administrative actions, such as

suspending and resuming tasks, and transferring work items.

Potential starter Members of this role can start an existing task instance. If a

potential starter is not specified, the originator becomes the

potential starter. For inline tasks without a potential starter, the

default is everybody.

Starter Members of this role have the authority of a reader and can

perform some administrative actions, such as transferring work

items.

Potential owner Members of this role can claim a task. If no potential owner is

defined for the task template or the application components,

then all users are considered to be a member of this role. If staff

resolution fails for this role, then the administrators are assigned

as the potential owners.

Owner Work on and complete a task.

Reader View the properties of all of the task objects, but cannot work

on them.

Editor Members of this role can work with the content of a task, but

cannot claim or complete it

Administrator Members of this role can administer tasks, task templates, and

escalations.

Escalation receiver Members of this role have the authority of a reader for the

escalation and the escalated task.

Stopping and starting task templates with the administrative

console

Use the administrative console to start and stop task templates.

If global security is enabled, verify that user ID has operator authorization.

Task templates define Service Component Architecture (SCA) services that are

represented as stand-alone tasks within an enterprise application. When an

158 IBM WebSphere Process Server for z/OS: Business Process Choreographer

enterprise application that contains task templates is installed, deployed, and

started, the task templates are put into the start state.

1. Select the application that you want to manage.

In the navigation pane of the administrative console, click Applications →

Enterprise Applications, and then the application that you want to manage.

2. In the Configuration page for the enterprise application under Related Items,

click EJB Modules, and then an Enterprise JavaBeans module.

3. In the Configuration page for the EJB module under Additional Properties,

click Human tasks, and then a process template.

4. To stop the task template, click Stop.

5. To start the task template, click Start.

Stopping and starting task templates with the administrative

commands

Administrative commands provide an alternative to the administrative console for

stopping and starting task templates.

If global security is enabled, verify that you are logged with a user ID that has

operator authorization.

Task templates define Service Component Architecture (SCA) services that are

represented as stand-alone tasks within an enterprise application. When an

enterprise application that contains task templates is installed, deployed, and

started, the task templates are put into the start state.

1. Change to the Business Process Choreographer samples directory. Type the

following:

cd install_root/ProcessChoreographer/sample

2. Stop the task template.

install_root/bin/wsadmin -f bpcTemplates.jacl

 -stop application_name

Where application_name is the name of the application to which the template

belongs. Existing instances of the task template continue to run until they end

normally.

3. Start the task template.

install_root/bin/wsadmin -f bpcTemplates.jacl

 -start application_name

The task template starts. You can use Business Process Choreographer Explorer

to work with task instances associated with the task template.

Creating and starting a task instance

You can create and start a task instance from any of the task templates that you are

authorized to use.

All of the installed task templates are shown in the list of task templates in

Business Process Choreographer Explorer. To create and start a task instance from a

task template, complete the following steps.

1. Display the task templates that you are authorized to use.

Click My Task Templates under Task Templates in the navigation pane.

2. Select the check box next to the task template and click Start Instance.

This action displays the Task Input Message page.

3. Provide the input data to start the task instance.

Chapter 4. Administering 159

4. To start the task instance, click Submit.

The task instance is ready to be worked on.

Working on your tasks

To work on a task, you must claim the task and then perform the actions that are

needed to complete it.

You can claim a task that is in the ready state if you are a potential owner or the

administrator of that task. If you claim a task, you become the owner of that task

and are responsible for completing it.

Tasks for which you have the role of reader or editor also appear on your list of

tasks.

To claim and complete a task with Business Process Choreographer Explorer,

complete the following steps.

1. Display the tasks that have been assigned to you.

Click Task Instances → My Tasks.

This action displays the My Tasks page, which lists the tasks that have been

assigned to you.

2. Claim the task on which you want to work.

Select the check box next to the task and click Work on.

This action displays the Task Message page.

3. Provide the information to complete the task.

If you need to interrupt your work, for example, because you need more

information from a co-worker to complete the task, click Save to save the

changes you made.

4. Click Complete to complete the task with the information that you provide.

The task that you completed is in the finished state. If you leave the task without

completing it, the task remains in the claimed state.

Managing work assignments

After a task has started, you might need to manage work assignments for the task,

for example, to better distribute the work load over the members of a work group.

A work item is the assignment of a business entity, such as a task or a process

instance, to a person or a group of people for a particular reason. The assignment

reason allows a person to play various roles in the business process scenario, for

example, potential owner, editor, or administrator.

A task instance can have several work items associated with it because different

people can have different roles. For example, John, Sarah, and Mike are all

potential owners of a task instance and Anne is the administrator; work items are

generated for all four people. John, Sarah, and Mike see only their own work items

as tasks on their list of tasks. Because Anne is the administrator, she gets her own

work item for the task and she can manage the work items generated for John,

Sarah, and Mike.

Sometimes, you might need to change a task assignment after a task has been

started, for example, to transfer a work item from the original owner to someone

else. You might also need to create additional work items or delete work items that

are not needed anymore.

160 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Transferring tasks that you own:

If you are the owner of a task, you might need to transfer the task to another user,

for example, if someone else needs to provide information to complete the task.

 In Business Process Choreographer Explorer, complete the following steps to

transfer a task that you own.

1. Display the tasks that you own.

Click My Tasks under Task Instances in the navigation pane.

2. Select the check box next to the task that you want to transfer and click

Transfer.

3. Transfer the task.

In the New Owner field, specify the user ID of the new task owner, and click

Transfer. You can transfer the task only to another potential owner of the task

or the task administrator.

The transferred task appears on the list of tasks belonging to the new task owner.

Transferring work items for which you are the starter, originator, or

administrator of the task:

You might need to change a work assignment after work begins on the task. For

example, you might want to transfer a work item to another user if the task owner

is on vacation and the task must be completed before this person returns. The way

in which you can transfer a work item depends on the role that you have and the

state of the task.

 To transfer a work item you must have one of the following roles and the task

must be in one of the following states.

Role Task state

Work items can be transferred to the

following user roles:

Owner Claimed Potential owner, administrator.

Starter Terminated, expired,

finished, failed, or

running

Potential starter, administrator.

Originator Any task state Potential instance creator, administrator. If

the task is in the active state, it can be

transferred to any user role.

Administrator Ready, claimed,

terminated, expired,

finished, failed, or

running

Any user role.

In Business Process Choreographer Explorer, complete the following steps to

transfer a work item.

1. Display the task instances that you can administer.

Click Administered By Me under Task Instances in the navigation pane.

2. Display the work items for a task instance.

In the Task Instances Administered By Me page, select the check box next to

the task instance and click Work Items.

3. Transfer the work item.

Chapter 4. Administering 161

a. In the New Owner field, specify the user ID of the new work-item owner.

b. Select one or more work items and click Transfer.

The transferred work item with the new work-item owner appears in the list of

work items.

Creating work items:

You might want to create work items for new potential owners, for example, when

none of the current potential owners can accept any additional work. You might

also want to create work items if the query against the staff repository does not

return any potential owners. This might happen, for example, in a long-running

process if the organization has changed since the process started.

 To create a work item for a task instance, you must have the appropriate role for

the task. If you are the task administrator, you can create work items for the task

instance if it is in one of the following states: ready, claimed, running, finished, or

failed. If the task instance is derived from a task template, you can also create

work items if the task is in the terminated or expired state.

In Business Process Choreographer Explorer, complete the following steps to create

a work item.

1. Display the task instances that you administer.

Click Administered By Me under Task Instances in the navigation pane.

2. Select the check box next to the task instance for which you want to create a

work item and click Create Work Items. The Create Work Items page is

displayed.

3. Create the work items.

a. In the New Owner field, specify the user ID of the new work-item owner.

b. Select one or more roles from the Reason list.

These roles determine the actions that the assigned person can perform on

the new work item.

c. Click Create.

A work item is created for each role that you specify for the new work-item owner.

The new task appears on the list of tasks assigned to this person.

Deleting work items:

You might want to delete work items, for example, if you created work items in

error or if work items are generated for someone who no longer works for the

company.

 To delete a work item for a task instance, you must have the appropriate role for

the task. If you are the task administrator, you can delete the task instance if it is

in one of the following states: ready, claimed, running, finished, or failed. If the

task instance was derived from a task template, you can also delete the task in the

terminated or expired state.

In Business Process Choreographer Explorer, complete the following steps to delete

a work item.

1. Display the task instances that you administer.

Click Administered By Me under Task Instances in the navigation pane.

162 IBM WebSphere Process Server for z/OS: Business Process Choreographer

2. Display the work items for a task instance.

In the Task Instances Administered By Me page, select a task instance and click

Work Items.

3. Delete the work items.

Select one or more work items and click Delete.

The work items are deleted.

Viewing task escalations

An escalation notifies the escalation receiver that a user might have problems

completing their assigned task on time.

When a task becomes overdue, it might result in an escalation. An escalation can

result in the following actions:

v A new work item is created, for example, for a manager to take action to

support the resolution of the problem.

v If you specified e-mail settings when you configured the human task container,

an e-mail is sent to a designated person to inform them about the escalated task.

v An event notification handler is called.

To view escalations, click My Escalations under Task Instances.

v To view information about an escalation, click the escalation ID.

v To view information about an escalated task, click the task name.

Sending e-mails for escalations:

When a task becomes overdue, it might result in an escalation. You can set up your

system to send e-mails to designated people to inform them about the escalation.

 Ensure that your Lightweight Directory Access Protocol (LDAP) configuration

contains the e-mail addresses of the people that need to be notified about an

escalation.

1. In WebSphere Integration Developer, perform the following actions for the task

in the human task editor.

a. Under the task settings in the Details tab of the properties area, edit the

value of the JNDI name of staff plugin configuration field.

Set the Java Naming and Directory Interface (JNDI) name to

bpe/staff/sampleldapconfiguration, or the LDAP provider configuration

JNDI name of your choice.

b. Under the escalation settings in the Details tab of the properties area, set

the value of the Notification type field to E-mail.

c. Specify text for the body of the e-mail that is sent for the escalation.

If you do not specify any text, the default message text is used.
2. In WebSphere Process Server, perform the following actions.

a. Ensure that the simple mail transfer protocol (smtp) host is set.

In the administrative console, go to Mail Providers → Built-in Mail

Provider → Mail Sessions → HTMMailSession_server to check this setting.

The smtp host is defined on a cell level.

b. Ensure that the sender e-mail address that you specify when you configure

the human task container is a valid e-mail address.

Chapter 4. Administering 163

If a problem occurs with escalation e-mails, check the SystemOut.log file for error

messages.

Reporting on business processes and activities

During the processing of business processes and activities, an event is generated

when the process, activity, or task changes state. These events are stored and made

available for creating reports using Business Process Choreographer Observer, for

example, to analyze process bottlenecks, or to evaluate the reliability of a service

that is called from an activity.

You can work with predefined reports or create user-defined reports for processes

and activities.

Predefined reports

Predefined lists and charts provide a drill-down approach to get you to

event and state information. For example, you can specify dates and other

filter criteria to view the data for an activity instance in a bar chart.

User-defined reports for processes and activities

User-defined process and activity reports are more flexible than the

predefined lists and charts. In addition, you can store and retrieve your

report definitions. For process reports, you can get information about the

activities that belong to the process instances. For activity reports, you can

also get information about the process instances involved.

164 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Chapter 5. Developing

Developing client applications for business processes and tasks

You can use a modeling tool to build and deploy business processes and tasks.

These processes and tasks are interacted with at runtime, for example, a process is

started, or tasks are claimed and completed. You can use Business Process

Choreographer Explorer to interact with processes and tasks, or the Business

Process Choreographer APIs to develop customized clients for these interactions.

These clients can be Enterprise JavaBeans™ (EJB) clients, Web service clients, or

Web clients that exploit the Business Process Choreographer Explorer JavaServer

Faces (JSF) components. Business Process Choreographer provides Enterprise

JavaBeans (EJB) APIs and interfaces for Web services for you to develop these

clients. The EJB API can be accessed by any Java application, including another EJB

application. The interfaces for Web services can be accessed from either Java

environments or Microsoft® .Net environments.

Developing EJB client applications for business processes

and human tasks

The EJB APIs provide a set of generic methods for developing EJB client

applications for working with the business processes and human tasks that are

installed on a WebSphere Process Server.

With these Enterprise JavaBeans (EJB) APIs, you can create client applications to do

the following:

v Manage the life cycle of processes and tasks from starting them through to

deleting them when they complete

v Repair activities and processes

v Manage and distribute the workload over members of a work group

The EJB APIs are provided as two stateless session enterprise beans:

v BusinessFlowManagerService interface provides the methods for business

process applications

v HumanTaskManagerService interface provides the methods for task-based

applications

For more information on the EJB APIs, see the Javadoc in the com.ibm.bpe.api

package and the com.ibm.task.api package.

The following steps provide an overview of the actions you need to take to

develop an EJB client application.

1. Decide on the functionality that the application is to provide.

2. Decide which of the session beans that you are going to use.

Depending on the scenarios that you want to implement with your application,

you can use one, or both, of the session beans.

3. Determine the authorization authorities needed by users of the application.

The users of your application must be assigned the appropriate authorization

roles to call the methods that you include in your application, and to view the

objects and the attributes of these objects that these methods return. When an

© Copyright IBM Corp. 2007 165

instance of the appropriate session bean is created, WebSphere Application

Server associates a context with the instance. The context contains information

about the caller’s principal ID, group membership list, and roles. This

information is used to check the caller’s authorization for each call.

The Javadoc contains authorization information for each of the methods.

4. Decide how to render the application.

The EJB APIs can be called locally or remotely.

5. Develop the application.

a. Access the EJB API.

b. Use the EJB API to interact with processes or tasks.

v Query the data.

v Work with the data.

Accessing the EJB APIs

The Enterprise JavaBeans (EJB) APIs are provided as two stateless session

enterprise beans. Business process applications and task applications access the

appropriate session enterprise bean through the home interface of the bean.

The BusinessFlowManagerService interface provides the methods for business

process applications, and the HumanTaskManagerService interface provides the

methods for task-based applications. The application can be any Java application,

including another Enterprise JavaBeans (EJB) application.

Accessing the remote session bean:

An EJB client application accesses the appropriate remote session bean through the

home interface of the bean.

 The session bean can be either the BusinessFlowManager session bean for process

applications or the HumanTaskManager session bean for task applications.

1. Add a reference to the remote session bean to the application deployment

descriptor. Add the reference to one of the following files:

v The application-client.xml file, for a Java 2 Platform, Enterprise Edition

(J2EE) client application

v The web.xml file, for a Web application

v The ejb-jar.xml file, for an Enterprise JavaBeans (EJB) application

The reference to the remote home interface for process applications is shown in

the following example:

<ejb-ref>

 <ejb-ref-name>ejb/BusinessFlowManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.bpe.api.BusinessFlowManagerHome</home>

 <remote>com.ibm.bpe.api.BusinessFlowManager</remote>

</ejb-ref>

The reference to the remote home interface for task applications is shown in the

following example:

<ejb-ref>

 <ejb-ref-name>ejb/HumanTaskManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.task.api.HumanTaskManagerHome</home>

 <remote>com.ibm.task.api.HumanTaskManager</remote>

</ejb-ref>

If you use WebSphere Integration Developer to add the EJB reference to the

deployment descriptor, the binding for the EJB reference is automatically

166 IBM WebSphere Process Server for z/OS: Business Process Choreographer

created when the application is deployed. For more information on adding EJB

references, refer to the WebSphere Integration Developer documentation.

2. Package the generated stubs with your application.

If your application runs on a different Java Virtual Machine (JVM) from the one

where the BPEContainer application or the TaskContainer application runs,

complete the following actions:

a. For process applications, package the <install_root>/
ProcessChoreographer/client/bpe137650.jar file with the enterprise

archive (EAR) file of your application.

b. For task applications, package the <install_root>/ProcessChoreographer/
client/task137650.jar file with the EAR file of your application.

c. If you use complex data types in your business process or human task and

your client does not run in an EJB application or a Web application, package

the corresponding XSD or WSDL files with the EAR file of your application.

d. Set the Classpath parameter in the manifest file of the application module

to include the JAR file.

The application module can be a J2EE application, a Web application, or an

EJB application.
3. Retrieve a reference to the home interface of the remote session bean from Java

Naming and Directory Interface (JNDI).

The following example shows this step for a process application:

// Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

 // Lookup the remote home interface of the BusinessFlowManager bean

 Object result =

 initialContext.lookup("java:comp/env/ejb/BusinessFlowManagerHome");

// Convert the lookup result to the proper type

 BusinessFlowManagerHome processHome =

 (BusinessFlowManagerHome)javax.rmi.PortableRemoteObject.narrow

 (result,BusinessFlowManagerHome.class);

The home interface of the session bean contains a create method for EJB objects.

The method returns the remote interface of the session bean.

4. Access the remote interface of the session bean.

The following example shows this step for a process application:

BusinessFlowManager process = processHome.create();

Access to the session bean does not guarantee that the caller can perform all of

the actions provided by the bean; the caller must also be authorized for these

actions. When an instance of the session bean is created, a context is associated

with the instance of the session bean. The context contains the caller’s principal

ID, group membership list, and indicates whether the caller has one of the

Business Process Choreographer J2EE roles. The context is used to check the

caller’s authorization for each call, even when global security is not set. If

global security is not set, the caller’s principal ID has the value

UNAUTHENTICATED.

5. Call the business functions exposed by the service interface.

The following example shows this step for a process application:

process.initiate("MyProcessModel",input);

Calls from applications are run as transactions. A transaction is established and

ended in one of the following ways:

Chapter 5. Developing 167

v Automatically by WebSphere Application Server (the deployment descriptor

specifies TX_REQUIRED).

v Explicitly by the application. You can bundle application calls into one

transaction:

// Obtain user transaction interface

UserTransaction transaction=

 (UserTransaction)initialContext.lookup("jta/usertransaction");

// Begin a transaction

transaction.begin();

// Applications calls ...

// On successful return, commit the transaction

transaction.commit();

Tip: To prevent database deadlocks, avoid running statements similar to the

following in parallel transactions:

// Obtain user transaction interface

UserTransaction transaction=

 (UserTransaction)initialContext.lookup("jta/usertransaction");

transaction.begin();

//read lock on the activity instance

process.getActivityInstance(aiid);

//write lock on the activity instance

process.claim(aiid);

transaction.commit();

Example

Here is an example of how steps 3 through 5 might look for a task application.

//Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

//Lookup the remote home interface of the HumanTaskManager bean

Object result =

 initialContext.lookup("java:comp/env/ejb/HumanTaskManagerHome");

//Convert the lookup result to the proper type

HumanTaskManagerHome taskHome =

 (HumanTaskManagerHome)javax.rmi.PortableRemoteObject.narrow

 (result,HumanTaskManagerHome.class);

...

//Access the remote interface of the session bean.

HumanTaskManager task = taskHome.create();

...

//Call the business functions exposed by the service interface

task.callTask(tkiid,input);

Accessing the local session bean:

An EJB client application accesses the appropriate local session bean through the

home interface of the bean.

 The session bean can be either the LocalBusinessFlowManager session bean for

process applications or the LocalHumanTaskManager session bean for human task

applications.

168 IBM WebSphere Process Server for z/OS: Business Process Choreographer

1. Add a reference to the local session bean to the application deployment

descriptor. Add the reference to one of the following files:

v The application-client.xml file, for a Java 2 Platform, Enterprise Edition

(J2EE) client application

v The web.xml file, for a Web application

v The ejb-jar.xml file, for an Enterprise JavaBeans (EJB) application

The reference to the local home interface for process applications is shown in

the following example:

<ejb-local-ref>

 <ejb-ref-name>ejb/LocalBusinessFlowManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home>com.ibm.bpe.api.LocalBusinessFlowManagerHome</local-home>

 <local>com.ibm.bpe.api.LocalBusinessFlowManager</local>

</ejb-local-ref>

The reference to the local home interface for task applications is shown in the

following example:

<ejb-local-ref>

 <ejb-ref-name>ejb/LocalHumanTaskManagerHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home>com.ibm.task.api.LocalHumanTaskManagerHome</local-home>

 <local>com.ibm.task.api.LocalHumanTaskManager</local>

</ejb-local-ref>

If you use WebSphere Integration Developer to add the EJB reference to the

deployment descriptor, the binding for the EJB reference is automatically

created when the application is deployed. For more information on adding EJB

references, refer to the WebSphere Integration Developer documentation.

2. Retrieve a reference to the local home interface of the local session bean from

Java Naming and Directory Interface (JNDI).

The following example shows this step for a process application:

// Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

 // Lookup the local home interface of the LocalBusinessFlowManager bean

 LocalBusinessFlowManagerHome processHome =

 (LocalBusinessFlowManagerHome)initialContext.lookup

 ("java:comp/env/ejb/LocalBusinessFlowManagerHome");

The home interface of the local session bean contains a create method for EJB

objects. The method returns the local interface of the session bean.

3. Access the local interface of the local session bean.

The following example shows this step for a process application:

LocalBusinessFlowManager process = processHome.create();

Access to the session bean does not guarantee that the caller can perform all of

the actions provided by the bean; the caller must also be authorized for these

actions. When an instance of the session bean is created, a context is associated

with the instance of the session bean. The context contains the caller’s principal

ID, group membership list, and indicates whether the caller has one of the

Business Process Choreographer J2EE roles. The context is used to check the

caller’s authorization for each call, even when global security is not set. If

global security is not set, the caller’s principal ID has the value

UNAUTHENTICATED.

4. Call the business functions exposed by the service interface.

The following example shows this step for a process application:

process.initiate("MyProcessModel",input);

Chapter 5. Developing 169

Calls from applications are run as transactions. A transaction is established and

ended in one of the following ways:

v Automatically by WebSphere Application Server (the deployment descriptor

specifies TX_REQUIRED).

v Explicitly by the application. You can bundle application calls into one

transaction:

// Obtain user transaction interface

UserTransaction transaction=

 (UserTransaction)initialContext.lookup("jta/usertransaction");

// Begin a transaction

transaction.begin();

// Applications calls ...

// On successful return, commit the transaction

transaction.commit();

Tip: To prevent database deadlocks, avoid running statements similar to the

following in parallel transactions:

// Obtain user transaction interface

UserTransaction transaction=

 (UserTransaction)initialContext.lookup("jta/usertransaction");

transaction.begin();

//read lock on the activity instance

process.getActivityInstance(aiid);

//write lock on the activity instance

process.claim(aiid);

transaction.commit();

Example

Here is an example of how steps 2 through 4 might look for a task application.

//Obtain the default initial JNDI context

InitialContext initialContext = new InitialContext();

//Lookup the local home interface of the LocalHumanTaskManager bean

LocalHumanTaskManagerHome taskHome =

 (LocalHumanTaskManagerHome)initialContext.lookup

 ("java:comp/env/ejb/LocalHumanTaskManagerHome");

...

//Access the local interface of the local session bean

LocalHumanTaskManager task = taskHome.create();

...

//Call the business functions exposed by the service interface

task.callTask(tkiid,input);

Querying business-process and task-related objects

The client applications work with business-process and task-related objects. You

can query business-process and task-related objects in the database to retrieve

specific properties of these objects.

During the configuration of Business Process Choreographer, a relational database

is associated with both the business process container and the task container. The

170 IBM WebSphere Process Server for z/OS: Business Process Choreographer

database stores all of the template (model) and instance (runtime) data for

managing business processes and tasks. You use SQL-like syntax to query this

data.

You can perform a one-off query to retrieve a specific property of an object. You

can also save queries that you use often and include these stored queries in your

application.

Queries on business-process and task-related objects:

Use the query method or the queryAll method of the service API to retrieve stored

information about business processes and tasks.

 The query method returns objects according to the caller’s authorization. The query

result set contains the properties of only those objects for which the caller has an

associated work item. The queryAll method returns the selected data for all of the

objects in the database.

Predefined database views are provided for you to query the object properties.

The query is made up of the following elements:

v Select clause

v Where clause

v Order-by clause

v Skip-tuples parameter

v Threshold parameter

v Time-zone parameter

The syntax of the query depends on the object type. The following table shows the

syntax for each of the different object types.

 Table 2.

Object Syntax

Process template ProcessTemplateData[] queryProcessTemplates

 (java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

Task template TaskTemplate[] queryTaskTemplates

 (java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

Business-process and

task-related data

QueryResultSet query (java.lang.String selectClause,

 java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer skipTuples

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

For example, a list of work items IDs that are accessible to the caller of the

function is retrieved by:

QueryResultSet result = process.query("DISTINCT WORK_ITEM.WIID",

 null, null, null, null, null);

Chapter 5. Developing 171

The query interface also contains a queryAll method. You can use this method to

retrieve the data for all of the objects that are stored in the database, for example,

for monitoring purposes. The caller of the queryAll method must have one of the

following Java 2 Platform, Enterprise Edition (J2EE) roles:

BPESystemAdministrator, BPESystemMonitor, TaskSystemAdministrator, or

TaskSystemMonitor. Authorization checking using the corresponding work item of

the object is not applied.

You can include both custom properties and variable properties in queries. If you

include several custom properties or variable properties in your query, this results

in self-joins on the corresponding database table. Depending on your database

system, these query() calls might have performance implications.

You can also store queries in the Business Process Choreographer database using

the createStoredQuery method. You provide the query criteria when you define the

stored query. The criteria are applied dynamically when the stored query runs, that

is, the data is assembled at runtime. If the stored query contains parameters, these

are also resolved when the query runs.

For more information on the Business Process Choreographer APIs, see the Javadoc

in the com.ibm.bpe.api package for process-related methods and in the

com.ibm.task.api package for task-related methods.

Select clause:

The select clause in the query function identifies the object properties that are to be

returned by a query.

 The select clause describes the query result. It specifies a list of names that identify

the object properties (columns of the result) to return. Its syntax is the same as an

SQL select clause; use commas to separate parts of the clause. Each part of the

clause must specify a property from one of the predefined views. The columns

returned in the QueryResultSet object appear in the same order as the properties

specified in the select clause.

The select clause does not support SQL aggregation functions, such as AVG(),

SUM(), MIN(), or MAX().

To select the properties of multiple name-value pairs, such as custom properties

and properties of variables that can be queried, add a one-digit counter to the view

name. This counter can take the values 1 through 9.

Examples of select clauses

v ″WORK_ITEM.OBJECT_TYPE, WORK_ITEM.REASON″

Gets the object types of the associated objects and the assignment reasons for the

work items.

v ″DISTINCT WORK_ITEM.OBJECT_ID″

Gets all of the IDs of objects, without duplicates, for which the caller has a work

item.

v ″ACTIVITY.TEMPLATE_NAME, WORK_ITEM.REASON″

Gets the names of the activities the caller has work items for and their

assignment reasons.

v ″ACTIVITY.STATE, PROCESS_INSTANCE.STARTER″

172 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Gets the states of the activities and the starters of their associated process

instances.

v ″DISTINCT TASK.TKIID, TASK.NAME″

Gets all of the IDs and names of tasks, without duplicates, for which the caller

has a work item.

v ″TASK_CPROP1.STRING_VALUE, TASK_CPROP2.STRING_VALUE″

Gets the values of the custom properties that are specified further in the where

clause.

v ″QUERY_PROPERTY1.STRING_VALUE, QUERY_PROPERTY2.INT_VALUE

Gets the values of the properties of variables that can be queried. These parts are

specified further in the where clause.

v ″COUNT(DISTINCT TASK.TKIID)″

Counts the number of work items for unique tasks that satisfy the where clause.

Where clause:

The where clause in the query function describes the filter criteria to apply to the

query domain.

 The syntax of a where clause is the same as an SQL where clause. You do not need

to explicitly add an SQL from clause or join predicates to the where clause, these

constructs are added automatically when the query runs. If you do not want to

apply filter criteria, you must specify null for the where clause.

The where-clause syntax supports:

v Keywords: AND, OR, NOT

v Comparison operators: =, <=, <, <>, >,>=, LIKE

v Set operation: IN

The LIKE operation supports the wildcard characters that are defined for the

queried database.

The following rules also apply:

v Specify object ID constants as ID(’string-rep-of-oid’).

v Specify binary constants as BIN(’UTF-8 string’).

v Use symbolic constants instead of integer enumerations. For example, instead of

specifying an activity state expression ACTIVITY.STATE=2, specify

ACTIVITY.STATE=ACTIVITY.STATE.STATE_READY.

v If the value of the property in the comparison statement contains single

quotation marks (’), double the quotation marks, for example,

″TASK_CPROP.STRING_VALUE=’d’’automatisation’″.

v Refer to properties of multiple name-value pairs, such as custom properties, by

adding a one-digit suffix to the view name. For example:

"TASK_CPROP1.NAME=’prop1’ AND "TASK_CPROP2.NAME=’prop2’"

v Specify time-stamp constants as TS(’yyyy-mm-ddThh:mm:ss’). To refer to the

current date, specify CURRENT_DATE as the timestamp.

You must specify at least a date or a time value in the timestamp:

– If you specify a date only, the time value is set to zero.

– If you specify a time only, the date is set to the current date.

– If you specify a date, the year must consist of four digits; the month and day

values are optional. Missing month and day values are set to 01. For example,

TS(’2003’) is the same as TS(’2003-01-01T00:00:00’).

Chapter 5. Developing 173

– If you specify a time, these values are expressed in the 24-hour system. For

example, if the current date is 1 January 2003, TS(’T16:04’) or TS(’16:04’) is

the same as TS(’2003-01-01T16:04:00’).

Examples of where clauses

v Comparing an object ID with an existing ID

"WORK_ITEM.WIID = ID(’_WI:800c00ed.df8d7e7c.feffff80.38’)"

This type of where clause is usually created dynamically with an existing object

ID from a previous call. If this object ID is stored in a wiid1 variable, the clause

can be constructed as:

"WORK_ITEM.WIID = ID(’" + wiid1.toString() + "’)"

v Using time stamps

"ACTIVITY.STARTED >= TS(’2002-06-1T16.00.00’)"

v Using symbolic constants

"WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_OWNER"

v Using Boolean values true and false

"ACTIVITY.BUSINESS_RELEVANCE = TRUE"

v Using custom properties

"TASK_CPROP1.NAME = ’prop1’ AND " TASK_CPROP1.STRING_VALUE = ’v1’ AND

 TASK_CPROP2.NAME = ’prop2’ AND " TASK_CPROP2.STRING_VALUE = ’v2’"

Order-by clause:

The order-by clause in the query function specifies the sort criteria for the query

result set.

 The order-by clause syntax is the same as an SQL order-by clause; use commas to

separate each part of the clause. Each part of the clause must specify a property

from one of the predefined views.

Sort criteria are applied to the server, that is, the locale of the server is used for

sorting. If you identify more than one property, the query result set is ordered by

the values of the first property, then by the values of the second property, and so

on.

If you do not want to sort the query result set, you must specify null for the

order-by clause.

Examples of order-by clauses

v ″PROCESS_TEMPLATE.NAME″

Sorts the query result alphabetically by the process-template name.

v ″PROCESS_INSTANCE.CREATED, PROCESS_INSTANCE.NAME DESC″

Sorts the query result by the creation date and, for a specific date, sorts the

results alphabetically by the process-instance name in reverse order.

v ″ACTIVITY.OWNER, ACTIVITY_TEMPLATE.NAME, ACTIVITY.STATE″

Sorts the query result by the activity owner, then the activity-template name,

and then the state of the activity.

Skip-tuples parameter:

174 IBM WebSphere Process Server for z/OS: Business Process Choreographer

The skip-tuples parameter specifies the number of query-result-set tuples from the

beginning of the query result set that are to be ignored and not to be returned to

the caller.

 Use this parameter with the threshold parameter to implement paging in a client

application, for example, to retrieve the first 20 items, then the next 20 items, and

so on.

If this parameter is set to null and the threshold parameter is not set, all of the

qualifying tuples are returned.

Example of a skip-tuples parameter

v new Integer(5)

Specifies that the first five qualifying tuples are not to be returned.

Threshold parameter:

The threshold parameter in the query function restricts the number of objects

returned from the server to the client in the query result set.

 Because query result sets in production scenarios can contain thousands or even

millions of items, it is a best practice to always specify a threshold. The threshold

parameter can be useful, for example, in a graphical user interface where only a

small number of items should be displayed at one time. If you set the threshold

parameter accordingly, the database query is faster and less data needs to transfer

from the server to the client.

If this parameter is set to null and the skip-tuples parameter is not set, all of the

qualifying objects are returned.

Example of a threshold parameter

v new Integer(50)

Specifies that 50 qualifying tuples are to be returned.

Timezone parameter:

The time-zone parameter in the query function defines the time zone for

time-stamp constants in the query.

 Time zones can differ between the client that starts the query and the server that

processes the query. Use the time-zone parameter to specify the time zone of the

time-stamp constants used in the where clause, for example, to specify local times.

The dates returned in the query result set have the same time zone that is specified

in the query.

If the parameter is set to null, the timestamp constants are assumed to be

Coordinated Universal Time (UTC) times.

Examples of time-zone parameters

v process.query("ACTIVITY.AIID",

 "ACTIVITY.STARTED > TS(’2005-01-01T17:40’)",

 null,

 null,

 java.util.TimeZone.getDefault());

Returns object IDs for activities that started later than 17:40 local time on 1

January 2005.

Chapter 5. Developing 175

v process.query("ACTIVITY.AIID",

 "ACTIVITY.STARTED > TS(’2005-01-01T17:40’)",

 null, null, null);

Return object IDs for activities that started later than 17:40 UTC on 1 January

2005. This specification is, for example, 6 hours earlier in Eastern Standard Time.

Parameters in stored queries:

A stored query is a query that is stored in the database and identified by a name.

The qualifying tuples are assembled dynamically when the query is run. To make

stored queries reusable, you can use parameters in the query definition that are

resolved at runtime.

 For example, you have defined custom properties to store customer names. You

can define queries to return the tasks that are associated with a particular

customer, ACME Co. To query this information, the where clause in your query

might look similar to the following example:

String whereClause =

 "TASK.STATE = TASK.STATE.STATE_READY

 AND WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER

 AND TASK_CPROP.NAME = ’company’ AND TASK_CPROP.STRING_VALUE = ’ACME Co.’";

To make this query reusable so that you can also search for the customer, BCME

Ltd, you can use parameters for the values of the custom property. If you add

parameters to the task query, it might look similar to the following example:

String whereClause =

 "TASK.STATE = TASK.STATE.STATE_READY

 AND WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_POTENTIAL_OWNER

 AND TASK_CPROP.NAME = ’company’ AND TASK_CPROP.STRING_VALUE = ’@param1’";

The @param1 parameter is resolved at runtime from the list of parameters that is

passed to the query method. The following rules apply to the use of parameters in

queries:

v Parameters can only be used in the where clause.

v Parameters are strings.

v Parameters are replaced at runtime using string replacement. If you need special

characters you must specify these in the where clause or passed-in at runtime as

part of the parameter.

v Parameter names consist of the string @param concatenated with an integer

number. The lowest number is 1, which points to the first item in the list of

parameters that is passed to the query API at runtime.

v A parameter can be used multiple times within a where clause; all occurrences

of the parameter are replaced by the same value.

Query results:

A query result set contains the results of a query.

 The elements of the result set are objects that the caller is authorized to see. You

can read elements in a relative fashion using the next method or in an absolute

fashion using the first and last methods. Because the implicit cursor of a query

result set is initially positioned before the first element, you must call either the

first or next methods before reading an element. You can use the size method to

determine the number of elements in the set.

176 IBM WebSphere Process Server for z/OS: Business Process Choreographer

An element of the query result set comprises the selected attributes of work items

and their associated referenced objects, such as activity instances and process

instances. The first attribute (column) of a QueryResultSet element specifies the

value of the first attribute specified in the select clause of the query request. The

second attribute (column) of a QueryResultSet element specifies the value of the

second attribute specified in the select clause of the query request, and so on.

You can retrieve the values of the attributes by calling a method that is compatible

with the attribute type and by specifying the appropriate column index. The

numbering of the column indexes starts with 1.

 Attribute type Method

String getString

OID getOID

Timestamp getTimestamp

getString

Integer getInteger

getShort

getLong

getString

getBoolean

Boolean getBoolean

getShort

getInteger

getLong

getString

byte[] getBinary

Example:

The following query is run:

QueryResultSet resultSet = process.query("ACTIVITY.STARTED,

 ACTIVITY.TEMPLATE_NAME AS NAME,

 WORK_ITEM.WIID, WORK_ITEM.REASON",

 null, null, null, null);

The returned query result set has four columns:

v Column 1 is a time stamp

v Column 2 is a string

v Column 3 is an object ID

v Column 4 is an integer

You can use the following methods to retrieve the attribute values:

while (resultSet.next())

{

 java.util.Calendar activityStarted = resultSet.getTimestamp(1);

 String templateName = resultSet.getString(2);

 WIID wiid = (WIID) resultSet.getOID(3);

 Integer reason = resultSet.getInteger(4);

}

You can use the display names of the result set, for example, as headings for a

printed table. These names are the column names of the view or the name defined

by the AS clause in the query. You can use the following method to retrieve the

display names in the example:

Chapter 5. Developing 177

resultSet.getColumnDisplayName(1) returns "STARTED"

resultSet.getColumnDisplayName(2) returns "NAME"

resultSet.getColumnDisplayName(3) returns "WIID"

resultSet.getColumnDisplayName(4) returns "REASON"

Predefined views for queries on business-process and human-task objects:

Predefined database views are provided for business-process and human-task

objects. Use these views when you query reference data for these objects.

 When you use the predefined views, you do not need to explicitly add join

predicates for view columns, these constructs are added automatically for you. You

can use the generic query function of the service API

(BusinessFlowManagerService or HumanTaskManagerService) to query this data.

You can also use the corresponding method of the HumanTaskManagerDelegate

API or your predefined queries provided by your implementations of the

ExecutableQuery interface.

ACTIVITY view:

Use this predefined database view for queries on activities.

 Table 3. Columns in the ACTIVITY view

Column name Type Comments

PIID ID The process instance ID.

AIID ID The activity instance ID.

PTID ID The process template ID.

ATID ID The activity template ID.

KIND Integer The kind of activity. Possible values are:

 KIND_INVOKE (21)

KIND_RECEIVE (23)

KIND_REPLY (24)

KIND_THROW (25)

KIND_RETHROW (46)

KIND_TERMINATE (26)

KIND_WAIT (27)

KIND_COMPENSATE (29)

KIND_SEQUENCE (30)

KIND_EMPTY (3)

KIND_SWITCH (32)

KIND_WHILE (34)

KIND_PICK (36)

KIND_FLOW (38)

KIND_SCOPE (40)

KIND_SCRIPT (42)

KIND_STAFF (43)

KIND_ASSIGN (44)

KIND_CUSTOM (45)

KIND_FOR_EACH_PARALLEL (49)

KIND_FOR_EACH_SERIAL (47)

COMPLETED Timestamp The time the activity is completed.

ACTIVATED Timestamp The time the activity is activated.

FIRST_ACTIVATED Timestamp The time at which the activity was

activated for the first time.

178 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Table 3. Columns in the ACTIVITY view (continued)

Column name Type Comments

STARTED Timestamp The time the activity is started.

STATE Integer The state of the activity. Possible values

are:

 STATE_INACTIVE (1)

STATE_READY (2)

STATE_RUNNING (3)

STATE_PROCESSING_UNDO (14)

STATE_SKIPPED (4)

STATE_FINISHED (5)

STATE_FAILED (6)

STATE_TERMINATED (7)

STATE_CLAIMED (8)

STATE_TERMINATING (9)

STATE_FAILING (10)

STATE_WAITING (11)

STATE_EXPIRED (12)

STATE_STOPPED (13)

OWNER String Principal ID of the owner.

DESCRIPTION String If the activity template description

contains placeholders, this column

contains the description of the activity

instance with the placeholders resolved.

TEMPLATE_NAME String Name of the associated activity

template.

TEMPLATE_DESCR String Description of the associated activity

template.

BUSINESS_RELEVANCE Boolean Specifies whether the activity is

business relevant. Possible values are:

TRUE The activity is business

relevant. You can view the

activity status in Business

Process Choreographer

Explorer.

FALSE The activity is not business

relevant.

EXPIRES Timestamp The date and time when the activity is

due to expire. If the activity has

expired, the date and time when this

event occurred.

ACTIVITY_ATTRIBUTE view:

Use this predefined database view for queries on custom properties for activities.

 Table 4. Columns in the ACTIVITY_ATTRIBUTE view

Column name Type Comments

AIID ID The ID of the activity instance that

has a custom property.

NAME String The name of the custom property.

Chapter 5. Developing 179

Table 4. Columns in the ACTIVITY_ATTRIBUTE view (continued)

Column name Type Comments

VALUE String The value of the custom property.

ACTIVITY_SERVICE view:

Use this predefined database view for queries on activity services.

 Table 5. Columns in the ACTIVITY_SERVICE view

Column name Type Comments

EIID ID The ID of the event instance.

AIID ID The ID of the activity waiting for

the event.

PIID ID The ID of the process instance that

contains the event.

VTID ID The ID of the service template that

describes the event.

PORT_TYPE String The name of the port type.

NAME_SPACE_URI String The URI of the namespace.

OPERATION String The operation name of the service.

APPLICATION_COMP view:

Use this predefined database view to query the application component ID and

default settings for tasks.

 Table 6. Columns in the APPLICATION_COMP view

Column name Type Comments

ACOID String The ID of the application component.

BUSINESS_ RELEVANCE Boolean The default task business-relevance policy of the

component. This value can be overwritten by a

definition in the task template or the task. The

attribute affects logging to the audit trail.

Possible values are:

TRUE The task is business relevant and it is

audited.

FALSE The task is not business relevant and it

is not audited.

NAME String Name of the application component.

SUPPORT_ AUTOCLAIM Boolean The default automatic-claim policy of the

component. If this attribute is set to TRUE, the

task can be automatically claimed if a single user

is the potential owner. This value can be

overwritten by a definition in the task template

or task.

180 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Table 6. Columns in the APPLICATION_COMP view (continued)

Column name Type Comments

SUPPORT_CLAIM_ SUSP Boolean The default setting of the component that

determines whether suspended tasks can be

claimed. If this attribute is set to TRUE,

suspended tasks can be claimed. This value can

be overwritten by a definition in the task

template or the task.

SUPPORT_ DELEGATION Boolean The default task delegation policy of the

component. If this attribute is set to TRUE, the

work item assignments for the task can be

modified. This means that work items can be

created, deleted, or transferred.

SUPPORT_ FOLLOW_ON Boolean The default follow-on task policy of the

component. If this attribute is set to TRUE,

follow-on tasks can be created for tasks. This

value can be overwritten by a definition in the

task template or the task.

SUPPORT_ SUB_TASK Boolean The default subtask policy of the component. If

this attribute is set to TRUE, subtasks can be

created for tasks. This value can be overwritten

by a definition in the task template or the task.

ESCALATION view:

Use this predefined database view to query data for escalations.

 Table 7. Columns in the ESCALATION view

Column name Type Comments

ESIID String The ID of the escalation instance.

ACTION Integer The action triggered by the escalation. Possible

values are:

ACTION_CREATE_WORK_ITEM (1)

Creates a work item for each escalation

receiver.

ACTION_SEND_EMAIL (2)

Sends an e-mail to each escalation receiver.

ACTION_CREATE_EVENT (3)

Creates and publishes an event.

Chapter 5. Developing 181

Table 7. Columns in the ESCALATION view (continued)

Column name Type Comments

ACTIVATION_STATE Integer An escalation instance is created if the

corresponding task reaches one of the following

states:

ACTIVATION_STATE_READY (2)

Specifies that the human or participating

task is ready to be claimed.

ACTIVATION_STATE_RUNNING (3)

Specifies that the originating task is started

and running.

ACTIVATION_STATE_CLAIMED (8)

Specifies that the task is claimed.

ACTIVATION_STATE_WAITING_

FOR_SUBTASK (20)

Specifies that the task is waiting for the

completion of subtasks.

ACTIVATION_TIME Timestamp The time when the escalation is activated.

AT_LEAST_

EXP_STATE

Integer The state of the task that is expected by the

escalation. If a timeout occurs, the task state is

compared with the value of this attribute. Possible

values are:

AT_LEAST_EXPECTED_STATE_CLAIMED (8)

Specifies that the task is claimed.

AT_LEAST_EXPECTED_STATE_ENDED (20)

Specifies that the task is in a final state

(FINISHED, FAILED, TERMINATED or

EXPIRED).

AT_LEAST_EXPECTED_STATE_

SUBTASKS_COMPLETED (21)

Specifies that all of the subtasks of the task

are complete.

ESTID String The ID of the corresponding escalation template.

FIRST_ESIID String The ID of the first escalation in the chain.

INCREASE_PRIORITY Integer Indicates how the task priority will be increased.

Possible values are:

INCREASE_PRIORITY_NO (1)

The task priority is not increased.

INCREASE_PRIORITY_ONCE (2)

The task priority is increased once by one.

INCREASE_PRIORITY_REPEATED (3)

The task priority is increased by one each

time the escalation repeats.

NAME String The name of the escalation.

STATE Integer The state of the escalation. Possible values are:

 STATE_INACTIVE (1)

STATE_WAITING (2)

STATE_ESCALATED (3)

STATE_SUPERFLUOUS (4)

182 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Table 7. Columns in the ESCALATION view (continued)

Column name Type Comments

TKIID String The task instance ID to which the escalation

belongs.

ESCALATION_CPROP view:

Use this predefined database view to query custom properties for escalations.

 Table 8. Columns in the ESCALATION_CPROP view

Column name Type Comments

ESIID String The escalation ID.

NAME String The name of the property.

DATA_TYPE String The type of the class for non-string custom

properties.

STRING_VALUE String The value for custom properties of type String.

ESCALATION_DESC view:

Use this predefined database view to query multilingual descriptive data for

escalations.

 Table 9. Columns in the ESCALATION_DESC view

Column name Type Comments

ESIID String The escalation ID.

LOCALE String The name of the locale associated with the

description or display name.

DESCRIPTION String A description of the task template.

DISPLAY_NAME String The descriptive name of the escalation.

PROCESS_ATTRIBUTE view:

Use this predefined database view for queries on custom properties for processes.

 Table 10. Columns in the PROCESS_ATTRIBUTE view

Column name Type Comments

PIID ID The ID of the process instance that

has a custom property.

NAME String The name of the custom property.

VALUE String The value of the custom property.

PROCESS_INSTANCE view:

Use this predefined database view for queries on process instances.

 Table 11. Columns in the PROCESS_INSTANCE view

Column name Type Comments

PTID ID The process template ID.

Chapter 5. Developing 183

Table 11. Columns in the PROCESS_INSTANCE view (continued)

Column name Type Comments

PIID ID The process instance ID.

NAME String The name of the process instance.

STATE Integer The state of the process instance. Possible values

are:

 STATE_READY (1)

STATE_RUNNING (2)

STATE_FINISHED (3)

STATE_COMPENSATING (4)

STATE_INDOUBT (10)

STATE_FAILED (5)

STATE_TERMINATED (6)

STATE_COMPENSATED (7)

STATE_COMPENSATION_FAILED (12)

STATE_TERMINATING (8)

STATE_FAILING (9)

STATE_SUSPENDED (11)

CREATED Timestamp The time the process instance is created.

STARTED Timestamp The time the process instance started.

COMPLETED Timestamp The time the process instance completed.

PARENT_NAME String The name of the parent process instance.

TOP_LEVEL_NAME String The name of the top-level process instance. If there

is no top-level process instance, this is the name of

the current process instance.

STARTER String The principal ID of the starter of the process

instance.

DESCRIPTION String If the description of the process template contains

placeholders, this column contains the description

of the process instance with the placeholders

resolved.

TEMPLATE_NAME String The name of the associated process template.

TEMPLATE_DESCR String Description of the associated process template.

PROCESS_TEMPLATE view:

Use this predefined database view for queries on process templates.

 Table 12. Columns in the PROCESS_TEMPLATE view

Column name Type Comments

PTID ID The process template ID.

NAME String The name of the process template.

VALID_FROM Timestamp The time from when the process template can be

instantiated.

TARGET_NAMESPACE String The target namespace of the process template.

APPLICATION_NAME String The name of the enterprise application to which

the process template belongs.

VERSION String User-defined version.

184 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Table 12. Columns in the PROCESS_TEMPLATE view (continued)

Column name Type Comments

CREATED Timestamp The time the process template is created in the

database.

STATE Integer Specifies whether the process template is available

to create process instances. Possible values are:

 STATE_STARTED (1)

STATE_STOPPED (2)

EXECUTION_MODE Integer Specifies how process instances that are derived

from this process template can be run. Possible

values are:

 EXECUTION_MODE_MICROFLOW (1)

EXECUTION_MODE_LONG_RUNNING (2)

DESCRIPTION String Description of the process template.

COMP_SPHERE Integer Specifies the compensation behavior of instances of

microflows in the process template; either an

existing compensation sphere is joined or a

compensation sphere is created.

Possible values are:

 COMP_SPHERE_REQUIRED (2)

COMP_SPHERE_REQUIRES_NEW (3)

COMP_SPHERE_SUPPORTS (4)

COMP_SPHERE_NOT_SUPPORTED (1)

QUERY_PROPERTY view:

Use this predefined database view for queries on process-level variables.

 Table 13. Columns in the QUERY_PROPERTY view

Column name Type Comments

PIID ID The process instance ID.

VARIABLE_NAME String The name of the process-level

variable.

NAME String The name of the query property.

NAMESPACE String The namespace of the query

property.

GENERIC_VALUE String A string representation for

property types that do not map to

one of the defined types:

STRING_VALUE,

NUMBER_VALUE,

DECIMAL_VALUE, or

TIMESTAMP_VALUE.

STRING_VALUE String If a property type is mapped to a

string type, this is the value of the

string.

NUMBER_VALUE Integer If a property type is mapped to an

integer type, this is the value of

the integer.

Chapter 5. Developing 185

Table 13. Columns in the QUERY_PROPERTY view (continued)

Column name Type Comments

DECIMAL_VALUE Decimal If a property type is mapped to a

floating point type, this is the

value of the decimal.

TIMESTAMP_VALUE Timestamp If a property type is mapped to a

timestamp type, this is the value of

the timestamp.

TASK view:

Use this predefined database view for queries on task objects.

 Table 14. Columns in the TASK view

Column name Type Comments

TKIID ID The ID of the task instance.

ACTIVATED Timestamp The time when the task was activated.

APPLIC_

DEFAULTS_ID

ID The ID of the application component that specifies

the defaults for the task.

APPLIC_NAME String The name of the enterprise application to which the

task belongs.

BUSINESS_

RELEVANCE

Boolean Specifies whether the task is business relevant. The

attribute affects logging to the audit trail. Possible

values are:

TRUE The task is business relevant and it is

audited.

FALSE The task is not business relevant and it is

not audited.

COMPLETED Timestamp The time when the task completed.

CONTAINMENT_

CTX_ID

ID The containment context for this task. This attribute

determines the life cycle of the task. When the

containment context of a task is deleted, the task is

also deleted.

CTX_

AUTHORIZATION

Integer Allows the task owner to access the task context.

Possible values are:

AUTH_NONE

No authorization rights for the associated

context object.

AUTH_READER

Operations on the associated context object

require reader authority, for example,

reading the properties of a process

instance.

DUE Timestamp The time when the task is due.

EXPIRES Timestamp The date when the task expires.

FIRST_ACTIVATED Timestamp The time when the task was activated for the first

time.

FOLLOW_ON_TKIID ID The ID of the instance of the follow-on task.

186 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Table 14. Columns in the TASK view (continued)

Column name Type Comments

HIERARCHY_

POSITION

Integer Possible values are:

HIERARCHY_POSITION_TOP_TASK (0)

The top-level task in the task hierarchy.

HIERARCHY_POSITION_SUB_TASK (1)

The task is a subtask in the task hierarchy.

HIERARCHY_POSITION_FOLLOW_ON_TASK

(2) The task is a follow-on task in the task

hierarchy.

IS_AD_HOC Boolean Indicates whether this task was created dynamically

at runtime or from a task template.

IS_ESCALATED Boolean Indicates whether an escalation of this task has

occurred.

IS_INLINE Boolean Indicates whether the task is an inline task in a

business process.

IS_WAIT_FOR_

SUB_TK

Boolean Indicates whether the parent task is waiting for a

subtask to reach an end state.

KIND Integer The kind of task. Possible values are:

KIND_HUMAN (101)

States that the task is created and

processed by a human.

KIND_WPC_STAFF_ACTIVITY (102)

States that the task is a human task that is

a staff activity of a WebSphere Business

Integration Server Foundation, version 5

business process.

KIND_ORIGINATING (103)

States that the task supports

person-to-computer interactions, which

enables people to create, initiate, and start

services.

KIND_PARTICIPATING (105)

States that the task supports

computer-to-person interactions, which

enable a person to implement a service.

KIND_ADMINISTRATIVE (106)

States that the task is an administrative

task.

LAST_MODIFIED Timestamp The time when the task was last modified.

LAST_STATE_

CHANGE

Timestamp The time when the state of the task was last

modified.

NAME String The name of the task.

NAME_SPACE String The namespace that is used to categorize the task.

ORIGINATOR String The principal ID of the task originator.

OWNER String The principal ID of the task owner.

Chapter 5. Developing 187

Table 14. Columns in the TASK view (continued)

Column name Type Comments

PARENT_

CONTEXT_ID

String The parent context for this task. This attribute

provides a key to the corresponding context in the

calling application component. The parent context is

set by the application component that creates the

task.

PRIORITY Integer The priority of the task.

STARTED Timestamp The time when the task was started

(STATE_RUNNING, STATE_CLAIMED).

STARTER String The principal ID of the task starter.

STATE Integer The state of the task. Possible values are:

STATE_READY (2)

States that the task is ready to be claimed.

STATE_RUNNING (3)

States that the task is started and running.

STATE_FINISHED (5)

States that the task finished successfully.

STATE_FAILED (6)

States that the task did not finish

successfully.

STATE_TERMINATED (7)

States that the task has been terminated

because of an external or internal request.

STATE_CLAIMED (8)

States that the task is claimed.

STATE_EXPIRED (12)

States that the task ended because it

exceeded its specified duration.

STATE_FORWARDED (101)

States that task completed with a follow-on

task.

SUPPORT_

AUTOCLAIM

Boolean Indicates whether this task is claimed automatically

if it is assigned to a single user.

SUPPORT_CLAIM_

SUSP

Boolean Indicates whether this task can be claimed if it is

suspended.

SUPPORT_

DELEGATION

Boolean Indicates whether this task supports work

delegation through creating, deleting, or

transferring work items.

SUPPORT_

FOLLOW_ON

Boolean Indicates whether this task supports the creation of

follow-on tasks.

SUPPORT_SUB_TASK Boolean Indicates whether this task supports the creation of

subtasks.

SUSPENDED Boolean Indicates whether the task is suspended.

TKTID ID The task template ID.

TOP_TKIID ID The top parent task instance ID if this is a subtask.

TYPE String The type used to categorize the task.

TASK_CPROP view:

188 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Use this predefined database view to query custom properties for task objects.

 Table 15. Columns in the TASK_CPROP view

Column name Type Comments

TKIID String The task instance ID.

NAME String The name of the property.

STRING_VALUE String The value for custom properties of type String.

TASK_DESC view:

Use this predefined database view to query multilingual descriptive data for task

objects.

 Table 16. Column in the TASK_DESC view

Column name Type Comments

TKIID String The task instance ID.

LOCALE String The name of the locale associated with the

description or display name.

DESCRIPTION String A description of the task.

DISPLAY_NAME String The descriptive name of the task.

TASK_TEMPL view:

This predefined database view holds data that you can use to instantiate tasks.

 Table 17. Columns in the TASK_TEMPL view

Column name Type Comments

TKTID String The task template ID.

VALID_FROM Timestamp The time when the task template becomes available

for instantiation.

APPLIC_

DEFAULTS_ID

String The ID of the application component that specifies

the defaults for the task template.

APPLIC_NAME String The name of the enterprise application to which the

task template belongs.

BUSINESS_

RELEVANCE

Boolean Specifies whether the task template is business

relevant. The attribute affects logging to the audit

trail. Possible values are:

TRUE The task is business relevant and it is

audited.

FALSE The task is not business relevant and it is

not audited.

CONTAINMENT_

CTX_ID

ID The containment context for this task template. This

attribute determines the life cycle of the task

template. When a containment context is deleted,

the task template is also deleted.

Chapter 5. Developing 189

Table 17. Columns in the TASK_TEMPL view (continued)

Column name Type Comments

CTX_

AUTHORIZATION

Integer Allows the task owner to access the task context.

Possible values are:

AUTH_NONE

No authorization rights for the associated

context object.

AUTH_READER

Operations on the associated context object

require reader authority, for example,

reading the properties of a process

instance.

IS_AD_HOC Boolean Indicates whether this task template was created

dynamically at runtime or when the task was

deployed as part of an EAR file.

IS_INLINE Boolean Indicates whether this task template is modeled as

a task within a business process.

KIND Integer The kind of tasks that are derived from this task

template. Possible values are:

KIND_HUMAN (101)

Specifies that the task is created and

processed by a human.

KIND_ORIGINATING (103)

Specifies that a human can assign a task to

a computer. In this case, a human invokes

an automated service.

KIND_PARTICIPATING (105)

Specifies that a service component (such as

a business process) assigns a task to a

human.

KIND_ADMINISTRATIVE (106)

Specifies that the task is an administrative

task.

NAME String The name of the task template.

NAMESPACE String The namespace that is used to categorize the task

template.

PRIORITY Integer The priority of the task template.

STATE Integer The state of the task template. Possible values are:

STATE_STARTED (1)

Specifies that the task template is available

for creating task instances.

STATE_STOPPED (2)

Specifies that the task template is stopped.

Task instances cannot be created from the

task template in this state.

SUPPORT_

AUTOCLAIM

Boolean Indicates whether tasks derived from this task

template can be claimed automatically if they are

assigned to a single user.

SUPPORT_CLAIM_

SUSP

Boolean Indicates whether tasks derived from this task

template can be claimed if they are suspended.

190 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Table 17. Columns in the TASK_TEMPL view (continued)

Column name Type Comments

SUPPORT_

DELEGATION

Boolean Indicates whether tasks derived from this task

template support work delegation using creation,

deletion, or transfer of work items.

SUPPORT_

FOLLOW_ON

Boolean Indicates whether the task template supports the

creation of follow-on tasks.

SUPPORT_SUB_TASK Boolean Indicates whether the task template supports the

creation of subtasks.

TYPE String The type used to categorize the task template.

TASK_TEMPL_CPROP view:

Use this predefined database view to query custom properties for task templates.

 Table 18. Columns in the TASK_TEMPL_CPROP view

Column name Type Comments

TKTID String The task template ID.

NAME String The name of the property.

DATA_TYPE String The type of the class for non-string custom

properties.

STRING_VALUE String The value for custom properties of type String.

TASK_TEMPL_DESC view:

Use this predefined database view to query multilingual descriptive data for task

template objects.

 Table 19. Columns in the TASK_TEMPL_DESC view

Column name Type Comments

TKTID String The task template ID.

LOCALE String The name of the locale associated with the

description or display name.

DESCRIPTION String A description of the task template.

DISPLAY_NAME String The descriptive name of the task template.

WORK_ITEM view:

Use this predefined database view for queries on work items and authorization

data for process, tasks, and escalations.

 Table 20. Columns in the WORK_ITEM view

Column name Type Comments

WIID ID The work item ID.

OWNER_ID String The principal ID of the owner.

GROUP_NAME String The name of the associated group worklist.

EVERYBODY Boolean Specifies whether everybody owns this

work item.

Chapter 5. Developing 191

Table 20. Columns in the WORK_ITEM view (continued)

Column name Type Comments

OBJECT_TYPE Integer The type of the associated object. Possible

values are:

OBJECT_TYPE_ACTIVITY (1)

Specifies that the work item was

created for an activity.

OBJECT_TYPE_PROCESS_INSTANCE (3)

Specifies that the work item was

created for a process instance.

OBJECT_TYPE_TASK_INSTANCE (5)

Specifies that the work item was

created for a task.

OBJECT_TYPE_TASK_TEMPLATE (6)

Specifies that the work item was

created for a task template.

OBJECT_TYPE_ESCALATION_

INSTANCE (7)

Specifies that the work item was

created for an escalation instance.

OBJECT_TYPE_APPLICATION_

COMPONENT (9)

Specifies that the work item was

created for an application

component.

OBJECT_ID ID The ID of the associated object, for example,

the associated process or task.

ASSOC_OBJECT_TYPE Integer The type of the object referenced by the

ASSOC_OID attribute, for example, task,

process, or external objects. Use the values

for the OBJECT_TYPE attribute.

ASSOC_OID ID The ID of the object associated object with

the work item. For example, the process

instance ID (PIID) of the process instance

containing the activity instance for which

this work item was created.

REASON Integer The reason for the assignment of the work

item. Possible values are:

 REASON_POTENTIAL_STARTER (5)

REASON_POTENTIAL_INSTANCE_

 CREATOR (11)

REASON_POTENTIAL_STARTER (1)

REASON_EDITOR (2)

REASON_READER (3)

REASON_ORIGINATOR (9)

REASON_OWNER (4)

REASON_STARTER (6)

REASON_ESCALATION_RECEIVER (10)

REASON_ADMINISTRATOR (7)

CREATION_TIME Timestamp The date and time when the work item was

created.

192 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Filtering data using variables in queries:

A query result returns the objects that match the query criteria. You might want to

filter these results on the values of variables.

 You can define variables that are used by a process at runtime in its process model.

For these variables, you declare which parts can be queried.

For example, John Smith, calls his insurance company’s service number to find out

the progress of his insurance claim for his damaged car. The claims administrator

uses the customer ID to the find the claim.

1. Optional: List the properties of the variables in a process that can be queried.

Use the process template ID to identify the process. You can skip this step if

you know which variables can be queried.

List variableProperties = process.getQueryProperties(ptid);

for (int i = 0; i < variableProperties.size(); i++)

{

 QueryProperty queryData = (QueryProperty)variableProperties.get(i);

 String variableName = queryData.getVariableName();

 String name = queryData.getName();

 int mappedType = queryData.getMappedType();

 ...

}

2. List the process instances with variables that match the filter criteria.

For this process, the customer ID is modeled as part of the variable

customerClaim that can be queried. You can therefore use the customer’s ID to

find the claim.

QueryResultSet result = process.query

 ("PROCESS_INSTANCE.NAME, QUERY_PROPERTY.STRING_VALUE",

 "QUERY_PROPERTY.VARIABLE_NAME = ’customerClaim’ AND " +

 "QUERY_PROPERTY.NAME = ’customerID’ AND " +

 "QUERY_PROPERTY.STRING_VALUE like ’Smith%’",

 null, null, null, null);

This action returns a query result set that contains the process instance names

and the values of the customer IDs for customers whose IDs start with Smith.

Managing stored queries:

Stored queries provide a way to save queries that are run often. The stored query

can be either a query that is available to all users (public query), or a query that

belongs to a specific user (private query).

 A stored query is a query that is stored in the database and identified by a name.

A private and a public stored query can have the same name; private stored

queries from different owners can also have the same name.

You can have stored queries for business process objects, task objects, or a

combination of these two object types.

Managing public stored queries:

Public stored queries are created by the system administrator. These queries are

available to all users.

Chapter 5. Developing 193

As the system administrator, you can create, view, and delete public stored queries.

If you do not specify a user ID in the API call, it is assumed that the stored query

is a public stored query.

1. Create a public stored query.

For example, the following code snippet creates a stored query for process

instances and saves it with the name CustomerOrdersStartingWithA.

process.createStoredQuery("CustomerOrdersStartingWithA",

 "DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",

 "PROCESS_INSTANCE.NAME LIKE ’A%’",

 "PROCESS_INSTANCE.NAME",

 null,null);

The result of the stored query is a sorted list of all the process-instance names

that begin with the letter A and their associated process instance IDs (PIID).

2. Run the query defined by the stored query.

QueryResultSet result = process.query("CustomerOrdersStartingWithA",

 new Integer(0));

This action returns the objects that fulfill the criteria. In this case, all of the

customer orders that begin with A.

3. List the names of the available public stored queries.

The following code snippet shows how to limit the list of returned queries to

just the public queries.

String[] storedQuery = process.getStoredQueryNames(StoredQueryData.KIND_PUBLIC);

4. Optional: Check the query that is defined by a specific stored query.

A stored private query can have the same name as a stored public query. If

these names are the same, the private stored query is returned. The following

code snippet shows how to return only the public query with the specified

name. If you want to run this query for task-based objects, specify StoredQuery

as the returned object type instead of StoredQueryData.

StoredQueryData storedQuery = process.getStoredQuery

 (StoredQueryData.KIND_PUBLIC, "CustomerOrdersStartingWithA");

String selectClause = storedQuery.getSelectClause();

String whereClause = storedQuery.getWhereClause();

String orderByClause = storedQuery.getOrderByClause();

Integer threshold = storedQuery.getThreshold();

String owner = storedQuery.getOwner();

5. Delete a public stored query.

The following code snippet shows how to delete the stored query that you

created in step 1.

process.deleteStoredQuery("CustomerOrdersStartingWithA");

Managing private stored queries for other users:

Private queries can be created by any user. These queries are available only to the

owner of the query and the system administrator.

 As the system administrator, you can manage private stored queries that belong to

a specific user.

1. Create a private stored query for the user ID Smith.

For example, the following code snippet creates a stored query for process

instances and saves it with the name CustomerOrdersStartingWithA for the

user ID Smith.

194 IBM WebSphere Process Server for z/OS: Business Process Choreographer

process.createStoredQuery("Smith", "CustomerOrdersStartingWithA",

 "DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",

 "PROCESS_INSTANCE.NAME LIKE ’A%’",

 "PROCESS_INSTANCE.NAME",

 null,null, null, null);

The result of the stored query is a sorted list of all the process-instance names

that begin with the letter A and their associated process instance IDs (PIID).

2. Run the query defined by the stored query.

QueryResultSet result = process.query("Smith", "CustomerOrdersStartingWithA",

 null,null, null, null);

 new Integer(0));

This action returns the objects that fulfill the criteria. In this case, all of the

customer orders that begin with A.

3. Get a list of the names of the private queries that belong to a specific user.

For example, the following code snippet shows how to get a list of private

queries that belongs to the user Smith.

String[] storedQuery = process.getStoredQueryNames("Smith");

4. View the details of a specific query.

The following code snippet shows how to view the details of the

CustomerOrdersStartingWithA query that is owned by the user Smith.

StoredQuery storedQuery = process.getStoredQuery

 ("Smith", "CustomerOrdersStartingWithA");

String selectClause = storedQuery.getSelectClause();

String whereClause = storedQuery.getWhereClause();

String orderByClause = storedQuery.getOrderByClause();

Integer threshold = storedQuery.getThreshold();

String owner = storedQuery.getOwner();

5. Delete a private stored query.

The following code snippet shows how to delete a private query that is owned

by the user Smith.

process.deleteStoredQuery("Smith", "CustomerOrdersStartingWithA");

Working with your private stored queries:

If you are not a system administrator, you can create, run, and delete your own

private stored queries. You can also use the public stored queries that the system

administrator created.

1. Create a private stored query.

For example, the following code snippet creates a stored query for process

instances and saves it with a specific name. If a user ID is not specified, it is

assumed that the stored query is a private stored query for the logged-on user.

process.createStoredQuery("CustomerOrdersStartingWithA",

 "DISTINCT PROCESS_INSTANCE.PIID, PROCESS_INSTANCE.NAME",

 "PROCESS_INSTANCE.NAME LIKE ’A%’",

 "PROCESS_INSTANCE.NAME",

 null,null);

This query returns a sorted list of all the process-instance names that begin

with the letter A and their associated process instance IDs (PIID).

2. Run the query defined by the stored query.

QueryResultSet result = process.query("CustomerOrdersStartingWithA",

 new Integer(0));

This action returns the objects that fulfill the criteria. In this case, all of the

customer orders that begin with A.

3. Get a list of the names of the stored queries that the logged-on user can access.

Chapter 5. Developing 195

The following code snippet shows how to get both the public and the private

stored queries that the user can access.

String[] storedQuery = process.getStoredQueryNames();

4. View the details of a specific query.

The following code snippet shows how to view the details of the

CustomerOrdersStartingWithA query that is owned by the user Smith.

StoredQuery storedQuery = process.getStoredQuery

 ("CustomerOrdersStartingWithA");

String selectClause = storedQuery.getSelectClause();

String whereClause = storedQuery.getWhereClause();

String orderByClause = storedQuery.getOrderByClause();

Integer threshold = storedQuery.getThreshold();

String owner = storedQuery.getOwner();

5. Delete a private stored query.

The following code snippet shows how to delete a private stored query.

process.deleteStoredQuery("CustomerOrdersStartingWithA");

Developing applications for business processes

A business process is a set of business-related activities that are invoked in a

specific sequence to achieve a business goal. Examples are provided that show

how you might develop applications for typical actions on processes.

A business process can be either a microflow or a long-running process:

v Microflows are short running business processes that are executed

synchronously. After a very short time, the result is returned to the caller.

v Long-running, interruptible processes are executed as a sequence of activities

that are chained together. The use of certain constructs in a process causes

interruptions in the process flow, for example, invoking a human task, invoking

a service using an synchronous binding, or using timer-driven activities.

Parallel branches of the process are usually navigated asynchronously, that is,

activities in parallel branches are executed concurrently. Depending on the type

and the transaction setting of the activity, an activity can be run in its own

transaction.

Authorization roles for business processes:

Actions that you can take on business processes depend on your authorization

role. This role can be a J2EE role or an instance-based role.

 A role is a set of employees who share the same level of authority. Java 2 Platform,

Enterprise Edition (J2EE) roles are set up when the business process container is

configured. Instance-based roles are assigned to processes and activities when the

process is modeled. Role-based authorization requires that global security is

enabled in WebSphere Application Server.

J2EE roles

The following J2EE roles are supported:

v J2EE BPESystemAdministrator. Users assigned to this role have all privileges.

This role is also referred to as the system administrator for business processes.

v J2EE BPESystemMonitor. Users assigned to this role can view the properties of

all business process objects. This role is also referred to as the system monitor

for business processes.

196 IBM WebSphere Process Server for z/OS: Business Process Choreographer

You can use the administrative console to change the assignment of users and

groups to these roles.

Setting up Roles using RACF security: These RACF permissions apply when the

following security fields are specified:

v com.ibm.security.SAF.authorization= true

RDEFINE EJBROLE BPESystemAdministrator UACC(NONE)

PERMIT BPESystemAdministrator CLASS(EJBROLE) ID(userid) ACCESS(READ)

RDEFINE EJBROLE BPESystemMonitor UACC(NONE)

PERMIT BPESystemMonitor CLASS(EJBROLE) ID(userid) ACCESS(READ)

v com.ibm.security.SAF.delegation= true

RDEFINE EJBROLE JMSAPIUser UACC(NONE) APPLDATA(’ userid’)

You can use Security Authorization Facility (SAF)-based authorization (for

example, using the RACF EJBROLE profile) to control access by a client to Java 2

Platform, Enterprise Edition (J2EE) roles in EJB and Enterprise applications,

including the business process container. For more information on using SAF, see

System Authorization Facility for role-based authorization in the WebSphere

Application Server for z/OS information center.

Instance-based roles

A process instance or an activity is not assigned directly to a staff member in the

process model, instead it is assigned to one of the available roles. Any staff

member that is assigned to an instance-based role can perform the actions for that

role. The association of users to instance-based roles is determined at runtime

using staff resolution.

The following instance-based roles are supported:

v For processes: reader, starter, administrator

v For activities: reader, editor, potential starter, potential owner, owner,

administrator

These roles are authorized to perform the following actions:

 Role Authorized actions

Activity reader View the properties of the associated activity instance, and its

input and output messages.

Activity editor Actions that are authorized for the activity reader, and write

access to messages and other data associated with the activity.

Potential activity starter Actions that are authorized for the activity reader. Members of

this role can send messages to receive or pick activities.

Potential activity owner Actions that are authorized for the activity reader. Members of

this role can claim the activity.

Activity owner Work on and complete an activity. Members of this role can

transfer owned work items to an administrator or a potential

owner.

Activity administrator Repair activities that are stopped due to unexpected errors, and

force terminate long-running activities.

Process starter View the properties of the associated process instance, and its

input and output messages.

Chapter 5. Developing 197

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/csec_ejbroleandg.html

Role Authorized actions

Process reader View the properties of the associated process instance and its

input and output messages. Process readers can also view the

properties, and input and output messages for any activities

that are contained in the process instance, but they cannot see

any information about its subprocesses.

Process administrator Members of this role can administer process instances and

intervene in a process that has started; create, delete, and

transfer work items. Members of this role also have activity

administrator authorization.

Do not delete the user ID of the process starter from your user registry if the

process instance still exists. If you do, the navigation of this process cannot

continue. You receive the following exception in the system log file:

no unique ID for: <user ID>

Required roles for actions on process instances:

Access to the LocalBusinessFlowManager or the BusinessFlowManager interface

does not guarantee that the caller can perform all of the actions on a process. The

caller must be logged on to the client application with a role that is authorized to

perform the action.

 The following table shows the actions on a process instance that a specific role can

take.

 Action Caller’s principal role

Reader Starter Administrator

createMessage x x x

createWorkItem x

delete x

deleteWorkItem x

forceTerminate x

getActiveHandlers x x x

getAllActivities x x

getAllWorkItems x x

getClientUISettings x x

getCustomProperties x x x

getCustomProperty x x x

getCustomPropertyNames x x x

getFaultMessage x x x

getInputClientUISettings x x

getInputMessage x x x

getOutputClientUISettings x x

getOutputMessage x x x

getProcessInstance x x x

getVariable x x x

198 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Action Caller’s principal role

Reader Starter Administrator

getWaitingActivities x x x

getWorkItems x x

resume x

restart x

setCustomProperty x x

setVariable x

suspend x

transferWorkItem x

Required roles for actions on business-process activities:

Access to the LocalBusinessFlowManager or the BusinessFlowManager interface

does not guarantee that the caller can perform all of the actions on an activity. The

caller must be logged on to the client application with a role that is authorized to

perform the action.

 The following table shows the actions on an activity instance that a specific role

can take.

 Action Caller’s principal role

Reader Editor Potential owner Owner Administrator

cancelClaim x x

claim x x

complete x x

createMessage x x x x x

createWorkItem x

deleteWorkItem x

forceComplete x

forceRetry x

getActivityInstance x x x x x

getAllWorkItems x x x x x

getClientUISettings x x x x x

getCustomProperties x x x x x

getCustomProperty x x x x x

getCustomPropertyNames x x x x x

getFaultMessage x x x x x

getFaultNames x x x x x

getInputMessage x x x x x

getOutputMessage x x x x x

getVariable x x x x x

getWorkItems x x x x x

setCustomProperty x x x

Chapter 5. Developing 199

Action Caller’s principal role

Reader Editor Potential owner Owner Administrator

setFaultMessage x x x

setOutputMessage x x x

setVariable x

transferWorkItem x

To potential

owners or

administrators

only

x

Managing the life cycle of a business process:

A process instance comes into existence when a Business Process Choreographer

API method that can start a process is invoked. The navigation of the process

instance continues until all of its activities are in an end state. Various actions can

be taken on the process instance to manage its life cycle.

 Examples are provided that show how you might develop applications for the

following typical life-cycle actions on processes.

Starting business processes:

The way in which a business process is started depends on whether the process is

a microflow or a long-running process. The service that starts the process is also

important to the way in which a process is started; the process can have either a

unique starting service or several starting services.

 Examples are provided that show how you might develop applications for typical

scenarios for starting microflows and long-running processes.

Running a microflow that contains a unique starting service:

A microflow can be started by a receive activity or a pick activity. The starting

service is unique if the microflow starts with a receive activity or when the pick

activity has only one onMessage definition.

 If the microflow implements a request-response operation, that is, the process

contains a reply, you can use the call method to run the process passing the

process template name as a parameter in the call.

If the microflow is a one-way operation, use the sendMessage method to run the

process. This method is not covered in this example.

1. Optional: List the process templates to find the name of the process you want

to run.

This step is optional if you already know the name of the process.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

("PROCESS_TEMPLATE.EXECUTION_MODE =

 PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_MICROFLOW",

 "PROCESS_TEMPLATE.NAME",

 new Integer(50),

 null);

200 IBM WebSphere Process Server for z/OS: Business Process Choreographer

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started by the call method.

2. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained.

ProcessTemplateData template = processTemplates[0];

//create a message for the single starting receive activity

ClientObjectWrapper input = process.createMessage

 (template.getID(),

 template.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//run the process

ClientObjectWrapper output = process.call(template.getName(), input);

DataObject myOutput = null;

if (output.getObject() != null && output.getObject() instanceof DataObject)

{

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

}

This action creates an instance of the process template, CustomerTemplate, and

passes some customer data. The operation returns only when the process is

complete. The result of the process, OrderNo, is returned to the caller.

Running a microflow that contains a non-unique starting service:

A microflow can be started by a receive activity or a pick activity. The starting

service is not unique if the microflow starts with a pick activity that has multiple

onMessage definitions.

 If the microflow implements a request-response operation, that is, the process

contains a reply, you can use the call method to run the process passing the ID of

the starting service in the call.

If the microflow is a one-way operation, use the sendMessage method to run the

process. This method is not covered in this example.

1. Optional: List the process templates to find the name of the process you want

to run.

This step is optional if you already know the name of the process.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

("PROCESS_TEMPLATE.EXECUTION_MODE =

 PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_MICROFLOW",

 "PROCESS_TEMPLATE.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started as microflows.

2. Determine the starting service to be called.

This example uses the first template that is found.

ProcessTemplateData template = processTemplates[0];

ActivityServiceTemplateData[] startActivities =

 process.getStartActivities(template.getID());

Chapter 5. Developing 201

3. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained.

ActivityServiceTemplateData activity = startActivities[0];

//create a message for the service to be called

ClientObjectWrapper input =

 process.createMessage(activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 activity.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//run the process

ClientObjectWrapper output = process.call(activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 input);

//check the output of the process, for example, an order number

DataObject myOutput = null;

if (output.getObject() != null && output.getObject() instanceof DataObject)

{

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

}

This action creates an instance of the process template, CustomerTemplate, and

passes some customer data. The operation returns only when the process is

complete. The result of the process, OrderNo, is returned to the caller.

Starting a long-running process that contains a unique starting service:

If the starting service is unique, you can use the initiate method and pass the

process template name as a parameter. This is the case when the long-running

process starts with either a single receive or pick activity and when the single pick

activity has only one onMessage definition.

1. Optional: List the process templates to find the name of the process you want

to start.

This step is optional if you already know the name of the process.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

 ("PROCESS_TEMPLATE.EXECUTION_MODE =

 PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_LONG_RUNNING",

 "PROCESS_TEMPLATE.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started by the initiate method.

2. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained. If you specify a process-instance name, it

must not start with an underscore. If a process-instance name is not specified,

the process instance ID (PIID) in String format is used as the name.

ProcessTemplateData template = processTemplates[0];

//create a message for the single starting receive activity

ClientObjectWrapper input = process.createMessage

 (template.getID(),

 template.getInputMessageTypeName());

DataObject myMessage = null;

202 IBM WebSphere Process Server for z/OS: Business Process Choreographer

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

//start the process

PIID piid = process.initiate(template.getName(), "CustomerOrder", input);

This action creates an instance, CustomerOrder, and passes some customer

data. When the process starts, the operation returns the object ID of the new

process instance to the caller.

The starter of the process instance is set to the caller of the request. This person

receives a work item for the process instance. The process administrators,

readers, and editors of the process instance are determined and receive work

items for the process instance. The follow-on activity instances are determined.

These are started automatically or, if they are staff, receive, or pick activities,

work items are created for the potential owners.

Starting a long-running process that contains a non-unique starting service:

A long-running process can be started through multiple initiating receive or pick

activities. You can use the initiate method to start the process. If the starting service

is not unique, for example, the process starts with multiple receive or pick

activities, or a pick activity that has multiple onMessage definitions, then you must

identify the service to be called.

1. Optional: List the process templates to find the name of the process you want

to start.

This step is optional if you already know the name of the process.

ProcessTemplateData[] processTemplates = process.queryProcessTemplates

 ("PROCESS_TEMPLATE.EXECUTION_MODE =

 PROCESS_TEMPLATE.EXECUTION_MODE.EXCECUTION_MODE_LONG_RUNNING",

 "PROCESS_TEMPLATE.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted templates that can be started as long-running processes.

2. Determine the starting service to be called.

ProcessTemplateData template = processTemplates[0];

ActivityServiceTemplateData[] startActivities =

 process.getStartActivities(template.getID());

3. Start the process with an input message of the appropriate type.

When you create the message, you must specify its message type name so that

the message definition is contained. If you specify a process-instance name, it

must not start with an underscore. If a process-instance name is not specified,

the process instance ID (PIID) in String format is used as the name.

ActivityServiceTemplateData activity = startActivities[0];

//create a message for the service to be called

ClientObjectWrapper input = process.createMessage

 (activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 activity.getInputMessageTypeName());

DataObject myMessage = null;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the strings in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

Chapter 5. Developing 203

}

//start the process

PIID piid = process.sendMessage(activity.getServiceTemplateID(),

 activity.getActivityTemplateID(),

 input);

This action creates an instance and passes some customer data. When the

process starts, the operation returns the object ID of the new process instance to

the caller.

The starter of the process instance is set to the caller of the request and receives

a work item for the process instance. The process administrators, readers, and

editors of the process instance are determined and receive work items for the

process instance. The follow-on activity instances are determined. These are

started automatically or, if they are staff, receive, or pick activities, work items

are created for the potential owners.

Suspending and resuming a business process:

You can suspend long-running, top-level process instance while it is running and

resume it again to complete it.

 The caller must be an administrator of the process instance or a business process

administrator. To suspend a process instance, it must be in the running or failing

state.

You might want to suspend a process instance, for example, so that you can

configure access to a back-end system that is used later in the process. When the

prerequisites for the process are met, you can resume the process instance. You

might also want to suspend a process to fix a problem that is causing the process

instance to fail, and then resume it again when the problem is fixed.

1. Get the running process, CustomerOrder, that you want to suspend.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder");

2. Suspend the process instance.

PIID piid = processInstance.getID();

process.suspend(piid);

This action suspends the specified top-level process instance. The process

instance is put into the suspended state. Subprocesses with the autonomy

attribute set to child are also suspended if they are in the running, failing,

terminating, or compensating state. Inline tasks that are associated with this

process instance are also suspended; standalone tasks associated with this

process instance are not suspended.

In this state, activities that are started can still be finished but no new activities

are activated, for example, a staff activity in the claimed state can be

completed.

3. Resume the process instance.

process.resume(piid);

This action puts the process instance and its subprocesses into the states they

had before they were suspended.

Restarting a business process:

You can restart a process instance that is in the finished, terminated, failed, or

compensated state.

204 IBM WebSphere Process Server for z/OS: Business Process Choreographer

The caller must be an administrator of the process instance or a business process

administrator.

Restarting a process instance is similar to starting a process instance for the first

time. However, when a process instance is restarted, the process instance ID is

known and the input message for the instance is available.

If the process has more than one receive activity or pick activity (also known as a

receive choice activity) that can create the process instance, all of the messages that

belong to these activities are used to restart the process instance. If any of these

activities implement a request-response operation, the response is sent again when

the associated reply activity is navigated.

1. Get the process that you want to restart.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder");

2. Restart the process instance.

PIID piid = processInstance.getID();

process.restart(piid);

This action restarts the specified process instance.

Terminating a process instance:

Sometimes, it is necessary for someone with process administrator authorization to

terminate a top-level process instance that is known to be in an unrecoverable

state. Because a process instance terminates immediately, without waiting for any

outstanding subprocesses or activities, you should terminate a process instance

only in exceptional situations.

1. Retrieve the process instance that is to be terminated.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder");

2. Terminate the process instance.

If you terminate a process instance, you can terminate the process instance with

or without compensation.

To terminate the process instance with compensation:

PIID piid = processInstance.getID();

process.forceTerminate(piid, CompensationBehaviour.INVOKE_COMPENSATION);

To terminate the process instance without compensation:

PIID piid = processInstance.getID();

process.forceTerminate(piid);

If you terminate the process instance with compensation, the compensation

handler defined for the process template is called. If the process template does

not have a compensation handler defined, the default compensation handler is

called. If you terminated the process instance without compensation, the

process instance is terminated immediately without waiting for activities,

participating tasks, or inline originating tasks to end normally.

Applications that are started by the process and standalone tasks that are

related to the process are not terminated by the force terminate request. If these

applications are to be terminated, you must add statements to your process

application that explicitly terminate the applications started by the process.

Deleting process instances:

Completed process instances are automatically deleted from the Business Process

Choreographer database if the corresponding property is set for the process

Chapter 5. Developing 205

template in the process model. You might want to keep process instances in your

database, for example, to query data from process instances that are not written to

the audit log. However, stored process instance data does not only impact disk

space and performance but also prevents process instances that use the same

correlation set values from being created. Therefore, you should regularly delete

process instance data from the database.

 To delete a process instance, you need process administrator rights and the process

instance must be a top-level process instance.

The following example shows how to delete all of the finished process instances.

1. List the process instances that are finished.

QueryResultSet result =

 process.query("DISTINCT PROCESS_INSTANCE.PIID",

 "PROCESS_INSTANCE.STATE =

 PROCESS_INSTANCE.STATE.STATE_FINISHED",

 null, null, null);

This action returns a query result set that lists process instances that are

finished.

2. Delete the process instances that are finished.

while (result.next())

{

 PIID piid = (PIID) result.getOID(1);

 process.delete(piid);

}

This action deletes the selected process instance and its inline tasks from the

database.

Processing staff activities:

Staff activities in business processes are assigned to various people in your

organization through work items. When a process is started, work items are

created for the potential owners.

 A potential owner claims the activity. This person is responsible for providing the

relevant information and completing the activity.

1. List the activities belonging to a logged-on person that are ready to be worked

on:

QueryResultSet result =

 process.query("ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_READY AND

 ACTIVITY.KIND = ACTIVITY.KIND.KIND_STAFF AND

 WORK_ITEM.REASON =

 WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

 null, null, null);

This action returns a query result set that contains the activities that can be

worked on by the logged-on person.

2. Claim the activity to be worked on:

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ClientObjectWrapper input = process.claim(aiid);

 DataObject activityInput = null ;

 if (input.getObject()!= null && input.getObject() instanceof DataObject)

 {

206 IBM WebSphere Process Server for z/OS: Business Process Choreographer

activityInput = (DataObject)input.getObject();

 // read the values

 ...

 }

}

When the activity is claimed, the input message of the activity is returned.

3. When work on the activity is finished, complete the activity. The activity can be

completed either successfully or with a fault message. If the activity is

successful, an output message is passed. If the activity is unsuccessful, the

activity is put into the failed or stopped state and a fault message is passed.

You must create the appropriate messages for these actions. When you create

the message, you must specify the message type name so that the message

definition is contained.

a. To complete the activity successfully, create an output message.

ActivityInstanceData activity = process.getActivityInstance(aiid);

ClientObjectWrapper output =

 process.createMessage(aiid, activity.getOutputMessageTypeName());

DataObject myMessage = null ;

if (output.getObject()!= null && output.getObject() instanceof DataObject)

{

 myMessage = (DataObject)output.getObject();

 //set the parts in your message, for example, an order number

 myMessage.setInt("OrderNo", 4711);

}

//complete the activity

process.complete(aiid, output);

This action sets an output message that contains the order number.

b. To complete the activity when a fault occurs, create a fault message.

//retrieve the faults modeled for the staff activity

List faultNames = process.getFaultNames(aiid);

//create a message of the appropriate type

ClientObjectWrapper myFault =

 process.createMessage(aiid, faultNames.get(0));

// set the parts in your fault message, for example, an error number

DataObject myMessage = null ;

if (myFault.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)myFault.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setInt("error",1304);

}

process.complete(aiid, (String)faultNames.get(0), myFault);

This action sets the activity in either the failed or the stopped state. If the

continueOnError parameter for the activity in the process model is set to

true, the activity is put into the failed state and the navigation continues. If

the continueOnError parameter is set to false and the fault is not caught on

the surrounding scope, the activity is put into the stopped state. In this state

the activity can be repaired using force terminate or force retry.

Processing a single person workflow:

Chapter 5. Developing 207

Some workflows are performed by only one person, for example, ordering books

from an online bookstore. This type of workflow has no parallel paths. The

completeAndClaimSuccessor API supports the processing of this type of workflow.

 In an online bookstore, the purchaser completes a sequence of actions to order a

book. This sequence of actions can be implemented as a series of staff activities

(participating tasks). If the purchaser decides to order several books, this is

equivalent to claiming the next staff activity. This type of workflow is also known

as page flow because user interface definitions are associated with the activities to

control the flow of the dialogs in the user interface.

The completeAndClaimSuccessor API completes a staff activity and claims the next

one in the same process instance for the logged-on person. It returns information

about the next claimed activity, including the input message to be worked on.

Because the next activity is made available within the same transaction of the

activity that completed, the transactional boundaries must be set in the process

model to participates.

1. Claim the first activity in the sequence of activities.

//

//Query the list of activities that can be claimed by the logged-on user

//

QueryResultSet result =

 process.query("ACTIVITY.AIID",

 "PROCESS_INSTANCE.NAME = ’CustomerOrder’ AND

 ACTIVITY.STATE = ACTIVITY.STATE.STATE_READY AND

 ACTIVITY.KIND = ACTIVITY.KIND.KIND_STAFF AND

 WORK_ITEM.REASON =

 WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

 null, null, null);

...

//

//Claim the first activity

//

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ClientObjectWrapper input = process.claim(aiid);

 DataObject activityInput = null ;

 if (input.getObject()!= null && input.getObject() instanceof DataObject)

 {

 activityInput = (DataObject)input.getObject();

 // read the values

 ...

 }

}

When the activity is claimed, the input message of the activity is returned.

2. When work on the activity is finished, complete the activity, and claim the next

activity.

To complete the activity, an output message is passed. When you create the

output message, you must specify the message type name so that the message

definition is contained.

ActivityInstanceData activity = process.getActivityInstance(aiid);

ClientObjectWrapper output =

 process.createMessage(aiid, activity.getOutputMessageTypeName());

DataObject myMessage = null ;

if (output.getObject()!= null && output.getObject() instanceof DataObject)

{

 myMessage = (DataObject)output.getObject();

 //set the parts in your message, for example, an order number

208 IBM WebSphere Process Server for z/OS: Business Process Choreographer

myMessage.setInt("OrderNo", 4711);

}

//complete the activity and claim the next one

CompleteAndClaimSuccessorResult successor =

 process.completeAndClaimSuccessor(aiid, output);

This action sets an output message that contains the item number and claims

the next activity in the sequence. If AutoClaim is set for successor activities, a

random activity is returned as the next activity. If there are no more successor

activities that can be assigned to this user, Null is returned. If AutoClaim is set

for successor activities and if there are multiple paths that can be followed, all

of the successor activities are claimed and a random activity is returned as the

next activity.

If the process contains parallel paths that can be followed and these paths

contain staff activities for which the logged-on user is a potential owner of

more than one of these activities, a random activity is claimed automatically

and returned as the next activity.

3. Work on the next activity.

String name = successor.getActivityName();

ClientObjectWrapper nextInput = successor.getInputMessage();

if (nextInput.getObject()!=

 null && nextInput.getObject() instanceof DataObject)

{

 activityInput = (DataObject)input.getObject();

 // read the values

 ...

}

4. Continue with step 2 to complete the activity.

Sending a message to a waiting activity:

You can use inbound message activities (receive activities, onMessage in pick

activities, onEvent in event handlers) to synchronize a running process with events

from the ″outside world″. For example, the receipt of an e-mail from a customer in

response to a request for information might be such an event.

 You can use originating tasks to send the message to the activity.

1. List the activity service templates that are waiting for a message from the

logged-on user in a process instance with a specific process instance ID.

ActivityServiceTemplateData[] services = process.getWaitingActivities(piid);

2. Send a message to the first waiting service.

It is assumed that the first service is the one that you want serve. The caller

must be a potential starter of the activity that receives the message, or an

administrator of the process instance.

VTID vtid = services[0].getServiceTemplateID();

ATID atid = services[0].getActivityTemplateID();

String inputType = services[0].getInputMessageTypeName();

// create a message for the service to be called

 ClientObjectWrapper message =

 process.createMessage(vtid,atid,inputMessageTypeName);

 DataObject myMessage = null;

 if (message.getObject()!= null && message.getObject() instanceof DataObject)

 {

 myMessage = (DataObject)message.getObject();

 //set the strings in the message, for example, chocolate is to be ordered

Chapter 5. Developing 209

myMessage.setString("Order", "chocolate");

 }

 // send the message to the waiting activity

 process.sendMessage(vtid, atid, message);

}

This action sends the specified message to the waiting activity service and

passes some order data.

You can also specify the process instance ID to ensure that the message is sent

to the specified process instance. If the process instance ID is not specified, the

message is sent to the activity service, and the process instance that is

identified by the correlation values in the message. If the process instance ID is

specified, the process instance that is found using the correlation values is

checked to ensure that it has the specified process instance ID.

Handling events:

An entire business process and each of its scopes can be associated with event

handlers that are invoked if the associated event occurs. Event handlers are similar

to receive or pick activities in that a process can provide Web service operations

using event handlers.

 You can invoke an event handler any number of times as long as the

corresponding scope is running. In addition, multiple instances of an event handler

can be activated concurrently.

The following code snippet shows how to get the active event handlers for a given

process instance and how to send an input message.

1. Determine the data of the process instance ID and list the active event handlers

for the process.

ProcessInstanceData processInstance =

 process.getProcessInstance("CustomerOrder2711");

EventHandlerTemplateData[] events = process.getActiveEventHandlers(

 processInstance.getID());

2. Send the input message.

This example uses the first event handler that is found.

EventHandlerTemplateData event = null;

if (events.length > 0)

{

 event = events[0];

 // create a message for the service to be called

 ClientObjectWrapper input = process.createMessage(

 event.getID(), event.getInputMessageTypeName());

 if (input.getObject() != null && input.getObject() instanceof DataObject)

 {

 DataObject inputMessage = (DataObject)input.getObject();

 // set content of the message, for example, a customer name, order number

 inputMessage.setString("CustomerName", "Smith");

 inputMessage.setString("OrderNo", "2711");

 // send the message

 process.sendMessage(event.getProcessTemplateName(),

 event.getPortTypeNamespace(),

 event.getPortTypeName(),

 event.getOperationName(),

 input);

 }

 }

210 IBM WebSphere Process Server for z/OS: Business Process Choreographer

This action sends the specified message to the active event handler for the

process.

Analyzing the results of a process:

A process can expose Web services operations that are modeled as Web Services

Description Language (WSDL) one-way or request-response operations. If a

long-running process exposes a one-way operation, the results of the process, such

as the values of process variables, must be retrieved from the database.

 The results of the process are stored in the database only if the process template

from which the process instance was derived does not specify automatic deletion

of the derived process instances.

Analyze the results of the process, for example, check the order number.

QueryResultSet result = process.query

 ("PROCESS_INSTANCE.PIID",

 "PROCESS_INSTANCE.NAME = ’CustomerOrder’ AND

 PROCESS_INSTANCE.STATE =

 PROCESS_INSTANCE.STATE.STATE_FINISHED",

 null, null, null);

if (result.size() > 0)

{

 result.first();

 PIID piid = (PIID) result.getOID(1);

 ClientObjectWrapper output = process.getOutputMessage(piid);

 DataObject myOutput = null;

 if (output.getObject() != null && output.getObject() instanceof DataObject)

 {

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

 }

}

Repairing activities:

A long-running process can contain activities that are also long running. These

activities might encounter uncaught errors and go into the stopped state. An

activity in the running state might also appear to be not responding. In both of

these cases, a process administrator can act on the activity in a number of ways so

that the navigation of the process can continue.

 The Business Process Choreographer API provides the forceRetry and

forceComplete methods for repairing activities. Examples are provided that show

how you might add repair actions for activities to your applications.

Forcing the completion of an activity:

Activities in long-running processes can sometimes encounter faults. If these faults

are not caught by a fault handler in the enclosing scope and the associated activity

template specifies that the activity stops when an error occurs, the activity is put

into the stopped state so that it can be repaired. In this state, you can force the

completion of the activity.

You can also force the completion of activities in the running state if, for example,

an activity is not responding.

Additional requirements exist for certain types of activities.

Chapter 5. Developing 211

Staff activities

You can pass parameters in the force-complete call, such as the message

that should have been sent or the fault that should have been raised.

Script activities

You cannot pass parameters in the force-complete call. However, you must

set the variables that need to be repaired.

Invoke activities

You can also force the completion of invoke activities that call an

asynchronous service that is not a subprocess if these activities are in the

running state. You might want to do this, for example, if the asynchronous

service is called and it does not respond.
1. List the stopped activities in the stopped state.

QueryResultSet result =

 process.query("DISTINCT ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND

 PROCESS_INSTANCE.NAME=’CustomerOrder’",

 null, null, null);

This action returns the stopped activities for the CustomerOrder process

instance.

2. Complete the activity, for example, a stopped staff activity.

In this example, an output message is passed.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ActivityInstanceData activity = process.getActivityInstance(aiid);

 ClientObjectWrapper output =

 process.createMessage(aiid, activity.getOutputMessageTypeName());

 DataObject myMessage = null;

 if (output.getObject()!= null && output.getObject() instanceof DataObject)

 {

 myMessage = (DataObject)output.getObject();

 //set the parts in your message, for example, an order number

 myMessage.setInt("OrderNo", 4711);

 }

 boolean continueOnError = true;

 process.forceComplete(aiid, output, continueOnError);

}

This action completes the activity. If an error occurs, the continueOnError

parameter determines the action to be taken if a fault is provided with the

forceComplete request.

In the example, continueOnError is true. This value means that if a fault is

provided, the activity is put into the failed state. The fault is propagated to the

enclosing scopes of the activity until it is either handled or the process scope is

reached. The process is then put into the failing state and it eventually reaches

the failed state.

Retrying the execution of a stopped activity:

If an activity in a long-running process encounters an uncaught fault in the

enclosing scope and if the associated activity template specifies that the activity

stops when an error occurs, the activity is put into the stopped state so that it can

be repaired. You can retry the execution of the activity.

212 IBM WebSphere Process Server for z/OS: Business Process Choreographer

You can set variables that are used by the activity. With the exception of script

activities, you can also pass parameters in the force-retry call, such as the message

that was expected by the activity.

1. List the stopped activities.

QueryResultSet result =

 process.query("DISTINCT ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND

 PROCESS_INSTANCE.NAME=’CustomerOrder’",

 null, null, null);

This action returns the stopped activities for the CustomerOrder process

instance.

2. Retry the execution of the activity, for example, a stopped staff activity.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ActivityInstanceData activity = process.getActivityInstance(aiid);

 ClientObjectWrapper input =

 process.createMessage(aiid, activity.getOutputMessageTypeName());

 DataObject myMessage = null;

 if (input.getObject()!= null && input.getObject() instanceof DataObject)

 {

 myMessage = (DataObject)input.getObject();

 //set the strings in your message, for example, chocolate is to be ordered

 myMessage.setString("OrderNo", "chocolate");

 }

 boolean continueOnError = true;

 process.forceRetry(aiid, input, continueOnError);

}

This action retries the activity. If an error occurs, the continueOnError

parameter determines the action to be taken if an error occurs during

processing of the forceRetry request.

In the example, continueOnError is true. This means that if an error occurs

during processing of the forceRetry request, the activity is put into the failed

state. The fault is propagated to the enclosing scopes of the activity until it is

either handled or the process scope is reached. The process is then put into the

failing state and it eventually reaches the failed state.

BusinessFlowManagerService interface:

The BusinessFlowManagerService interface exposes business-process functions that

can be called by a client application.

 The methods that can be called by the BusinessFlowManagerService interface

depend on the state of the process or the activity and the authorization of the

person that uses the application containing the method. The main methods for

manipulating business process objects are listed here. For more information about

these methods and the other methods that are available in the

BusinessFlowManagerService interface, see the Javadoc in the com.ibm.bpe.api

package.

Process templates

A process template is a versioned, deployed, and installed process model that

contains the specification of a business process. It can be instantiated and started

by issuing appropriate requests, for example, sendMessage(). The execution of the

process instance is driven automatically by the server.

Chapter 5. Developing 213

Table 21. API methods for process templates

Method Description

getProcessTemplate Retrieves the specified process template.

queryProcessTemplate Retrieves process templates that are stored

in the database.

Process instances

The following API methods start process instances.

 Table 22. API methods for starting process instances

Method Description

call Creates and runs a microflow.

callWithReplyContext Creates and runs a microflow with a unique

starting service or a long-running process

with a unique starting service from the

specified process template. The call waits

asynchronously for the result.

callWithUISettings Creates and runs a microflow and returns

the output message and the client user

interface (UI) settings.

initiate Creates a process instance and initiates

processing of the process instance. Use this

method for long-running processes. You can

also use this method for microflows that you

want to fire and forget.

sendMessage Sends the specified message to the specified

activity service and process instance. If a

process instance with the same correlation

set values does not exist, it is created. The

process can have either unique or

non-unique starting services.

getStartActivities Returns information about the activities that

can start a process instance from the

specified process template.

getActivityServiceTemplate Retrieves the specified activity service

template.

 Table 23. API methods for controlling the life cycle of process instances

Method Description

suspend Suspends the execution of a long-running,

top-level process instance that is in the

running or failing state.

resume Resumes the execution of a long-running,

top-level process instance that is in the

suspended state.

restart Restarts a long-running, top-level process

instance that is in the finished, failed, or

terminated state.

214 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Table 23. API methods for controlling the life cycle of process instances (continued)

Method Description

forceTerminate Terminates the specified top-level process

instance, its subprocesses with child

autonomy, and its running, claimed, or

waiting activities.

delete Deletes the specified top-level process

instance and its subprocesses with child

autonomy.

query Retrieves the properties from the database

that match the search criteria.

Activities

For invoke activities, you can specify in the process model that these activities

continue in error situations. If the continueOnError flag is set to false and an

unhandled error occurs, the activity is put into the stopped state. A process

administrator can then repair the activity. The continueOnError flag and the

associated repair functions can, for example, be used in a long-running process

where an invoke activity fails occasionally, but the effort required to model

compensation and fault handling is too high.

The following methods are available for working with and repairing activities.

 Table 24. API methods for controlling the life cycle of activity instances

Method Description

claim Claims a ready activity instance for a user to

work on the activity.

cancelClaim Cancels the claim of the activity instance.

complete Completes the activity instance.

completeAndClaimSuccessor Completes a staff activity and claims the

next one in the same process instance for the

logged-on person.

forceComplete Forces the completion of an activity instance

that is in the running or stopped state.

forceRetry Forces the repetition of an activity instance

that is in the running or stopped state.

query Retrieves the properties from the database

that match the search criteria.

Variables and custom properties

The interface provides a get and a set method to retrieve and set values for

variables. You can also associate named properties with, and retrieve named

properties from, process and activity instances. Custom property names and values

must be of the java.lang.String type.

 Table 25. API methods for variables and custom properties

Method Description

getVariable Retrieves the specified variable.

setVariable Sets the specified variable.

Chapter 5. Developing 215

Table 25. API methods for variables and custom properties (continued)

Method Description

getCustomProperty Retrieves the named custom property of the

specified activity or process instance.

getCustomProperties Retrieves the custom properties of the

specified activity or process instance.

getCustomPropertyNames Retrieves the names of the custom properties

for the specified activity or process instance.

setCustomProperty Stores custom-specific values for the

specified activity or process instance.

Developing applications for human tasks

A task is the means by which components invoke humans as services or by which

humans invoke services. Examples of typical applications for human tasks are

provided.

For more information on the Business Process Choreographer API, see the Javadoc

in the com.ibm.task.api package.

Authorization roles for human tasks:

Actions that you can take on human tasks depend on your authorization role. This

role can be a J2EE role or an instance-based role.

 A role is a set of employees who share the same level of authority. Java 2 Platform,

Enterprise Edition (J2EE) roles are set up when the human task container is

configured. Instance-based roles are assigned to human tasks and escalations when

the task is modeled. Role-based authorization requires that global security is

enabled in WebSphere Application Server.

J2EE roles

The following J2EE roles are supported:

v J2EE TaskSystemAdministrator. Users assigned to this role have all privileges.

This role is also referred to as the system administrator for human tasks.

v J2EE TaskSystemMonitor. Users assigned to this role can view the properties of

all of the task objects. This role is also referred to as the system monitor for

human tasks.

You can use the administrative console to change the assignment of users and

groups to these roles.

Setting up Roles using RACF security: These RACF permissions apply when the

following security fields are specified:

v com.ibm.security.SAF.authorization= true

RDEFINE EJBROLE TaskSystemAdministrator UACC(NONE)

PERMIT TaskSystemAdministrator CLASS(EJBROLE) ID(userid) ACCESS(READ)

RDEFINE EJBROLE TaskSystemMonitor UACC(NONE)

PERMIT TaskSystemMonitor CLASS(EJBROLE) ID(userid) ACCESS(READ)

v com.ibm.security.SAF.delegation= true

RDEFINE EJBROLE JMSAPIUser UACC(NONE) APPLDATA(’ userid’)

216 IBM WebSphere Process Server for z/OS: Business Process Choreographer

You can use Security Authorization Facility (SAF)-based authorization (for

example, using the RACF EJBROLE profile) to control access by a client to Java 2

Platform, Enterprise Edition (J2EE) roles in EJB and Web applications, including

the WebSphere Application Server administrative console application. For more

information, see System Authorization Facility for role-based authorization in the

WebSphere Application Server for z/OS information center.

Instance-based roles

A task instance or an escalation instance is not assigned directly to a staff member

in the task model, instead it is assigned to one of the available roles. Any staff

member that is assigned to an instance-based role can perform the actions for that

role. The association of users to instance-based roles is determined at runtime

using staff resolution.

The following instance-based roles are supported:

v For tasks: potential instance creator, originator, potential starter, starter, potential

owner, owner, reader, editor, administrator

v For escalations: escalation receiver

These roles are authorized to perform the following actions:

 Role Authorized actions

Potential instance creator Members of this role can create an instance of the task. If no

potential instance creator is defined for the task template or the

application components, then all users are considered to be a

member of this role.

Originator Members of this role have administrative rights until the task

starts. When the task starts, the originator has the authority of a

reader and can perform some administrative actions, such as

suspending and resuming tasks, and transferring work items.

Potential starter Members of this role can start an existing task instance. If a

potential starter is not specified, the originator becomes the

potential starter. For inline tasks without a potential starter, the

default is everybody.

Starter Members of this role have the authority of a reader and can

perform some administrative actions, such as transferring work

items.

Potential owner Members of this role can claim a task. If no potential owner is

defined for the task template or the application components,

then all users are considered to be a member of this role. If staff

resolution fails for this role, then the administrators are assigned

as the potential owners.

Owner Work on and complete a task.

Reader View the properties of all of the task objects, but cannot work

on them.

Editor Members of this role can work with the content of a task, but

cannot claim or complete it

Administrator Members of this role can administer tasks, task templates, and

escalations.

Escalation receiver Members of this role have the authority of a reader for the

escalation and the escalated task.

Required roles for actions on tasks:

Chapter 5. Developing 217

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/csec_ejbroleandg.html

Access to the LocalHumanTaskManager or the HumanTaskManager interface does

not guarantee that the caller can perform all of the actions on a task; the caller

must also be authorized to perform the action. The following table shows the

actions that a specific role can take.

 Action Caller’s principal role

Owner Pot

owner

Starter Pot

starter

Origin Admin Editor Reader Esc

receiver

callTask X1 X1 X1

cancelClaim X X

claim X X

complete X X

completeWithFollowOn

Task3

X X

createFaultMessage X X X X X1 X X X X

createInputMessage X X X X X1 X X X X

createOutputMessage X X X X X1 X X X X

createWorkItem X1, 2 X

delete X X

deleteWorkItem X1, 2 X

getCustomProperty X X X X X1 X X X X

getDocumentation X X X X X1 X X X X

getFaultMessage X X X X X1 X X X X

getFaultNames X X X X X1 X X X X

getInputMessage X X X X X1 X X X X

getOutputMessage X X X X X1 X X X X

getRoleInfo X X X X X1 X X X X

getTask X X X X X1 X X X X

getUISettings X X X X X1 X X X X

resume X X1 X

setCustomProperty X X X1 X X

setFaultMessage X X X

setOutputMessage X X X

startTask X X1 X

startTaskAsSubtask4 X X

suspend X X1 X

suspendWithCancelClaim X X

terminate X X1 X1 X

transferWorkItem X X X6 X

update X X X1 X X

updateInactiveTask X5

218 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Action Caller’s principal role

Owner Pot

owner

Starter Pot

starter

Origin Admin Editor Reader Esc

receiver

Notes:

1. For stand-alone tasks, ad-hoc tasks, and tasks derived from task templates only.

2. For potential owner, potential starter, editor, reader and escalation receiver work items only.

3. The caller must also have at least task reader rights to the follow-on task.

4. The caller must also have at least task reader rights to the subtask.

5. For stand-alone tasks and ad-hoc tasks only.

6. For potential owner, potential starter, originator, editor, reader and escalation receiver work items only.

Abbreviations:

Admin Administrator

Esc receiver

Escalation receiver

Origin Originator

Pot owner

Potential owner

Pot starter

Potential starter

Starting an originating task that invokes a synchronous interface:

Originating tasks that invoke a synchronous interface include inline originating

tasks in a microflow, stand-alone originating tasks in a microflow, and originating

tasks that start an SCA (Service Component Architecture) component that is

implemented, for example, by a simple Java class.

 This scenario creates an instance of a task template and passes some customer

data. The task remains in the running state until the two-way operation returns.

The result of the task, OrderNo, is returned to the caller.

1. Optional: List the task templates to find the name of the originating task you

want to run.

This step is optional if you already know the name of the task.

TaskTemplate[] taskTemplates = task.queryTaskTemplates

("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_ORIGINATING",

 "TASK_TEMPL.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted originating templates.

2. Create an input message of the appropriate type.

TaskTemplate template = taskTemplates[0];

// create a message for the selected task

ClientObjectWrapper input = task.createInputMessage(template.getID());

DataObject myMessage = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

Chapter 5. Developing 219

3. Create the task and run the task synchronously.

For a task to run synchronously, it must be a two-way operation. The example

uses the createAndCallTask method to create and run the task.

ClientObjectWrapper output = task.createAndCallTask(template.getName(),

 template.getNamespace(),

 input);

4. Analyze the result of the task.

DataObject myOutput = null;

if (output.getObject() != null && output.getObject() instanceof DataObject)

{

 myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

}

Starting an originating task that invokes an asynchronous interface:

Originating tasks that invoke an asynchronous interface include inline originating

tasks in a microflow, stand-alone originating tasks in a microflow, and originating

tasks that start an SCA (Service Component Architecture) component that is

implemented, for example, by a simple Java class.

 This scenario creates an instance of a task template and passes some customer

data.

1. Optional: List the task templates to find the name of the originating task you

want to run.

This step is optional if you already know the name of the task.

TaskTemplate[] taskTemplates = task.queryTaskTemplates

 ("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_ORIGINATING",

 "TASK_TEMPL.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted originating templates.

2. Create an input message of the appropriate type.

TaskTemplate template = taskTemplates[0];

// create a message for the selected task

ClientObjectWrapper input = task.createInputMessage(template.getID());

DataObject myMessage = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

3. Create the task and run it asynchronously.

The example uses the createAndStartTask method to create and run the task.

task.createAndStartTask(template.getName(),

 template.getNamespace(),

 input,

 null);

Creating and starting a task instance:

This scenario shows how to create an instance of a task template that defines a

human task and start the task instance.

220 IBM WebSphere Process Server for z/OS: Business Process Choreographer

1. Optional: List the task templates to find the name of the originating task you

want to run.

This step is optional if you already know the name of the task.

TaskTemplate[] taskTemplates = task.queryTaskTemplates

("TASK_TEMPL.KIND=TASK_TEMPL.KIND.KIND_HUMAN",

 "TASK_TEMPL.NAME",

 new Integer(50),

 null);

The results are sorted by name. The query returns an array containing the first

50 sorted human task templates.

2. Create an input message of the appropriate type.

TaskTemplate template = taskTemplates[0];

// create a message for the selected task

ClientObjectWrapper input = task.createInputMessage(template.getID());

DataObject myMessage = null ;

if (input.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)input.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setString("CustomerName", "Smith");

}

3. Create and start the human task; a reply handler is not specified in this

example.

The example uses the createAndStartTask method to create and start the task.

TKIID tkiid = task.createAndStartTask(template.getName(),

 template.getNamespace(),

 input,

 null);

Work items are created for the people concerned with the task instance. For

example, a potential owner can claim the new task instance.

4. Claim the task instance.

ClientObjectWrapper input2 = task.claim(tkiid);

DataObject taskInput = null ;

if (input2.getObject()!= null && input2.getObject() instanceof DataObject)

{

 taskInput = (DataObject)input2.getObject();

 // read the values

 ...

}

When the task instance is claimed, the input message of the task is returned.

Processing participating or purely human tasks:

Participating or purely human tasks are assigned to various people in your

organization through work items. Participating tasks and their associated work

items are created, for example, when a process navigates to a staff activity. One of

the potential owners claims the task associated with the work item. This person is

responsible for providing the relevant information and completing the task.

1. List the tasks belonging to a logged-on person that are ready to be worked on.

QueryResultSet result =

 task.query("TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_READY AND

 (TASK.KIND = TASK.KIND.KIND_PARTICIPATING OR

 TASK.KIND = TASK.KIND.KIND_HUMAN)AND

 WORK_ITEM.REASON =

 WORK_ITEM.REASON.REASON_POTENTIAL_OWNER",

 null, null, null);

Chapter 5. Developing 221

This action returns a query result set that contains the tasks that can be worked

on by the logged-on person.

2. Claim the task to be worked on.

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 ClientObjectWrapper input = task.claim(tkiid);

 DataObject taskInput = null ;

 if (input.getObject()!= null && input.getObject() instanceof DataObject)

 {

 taskInput = (DataObject)input.getObject();

 // read the values

 ...

 }

}

When the task is claimed, the input message of the task is returned.

3. When work on the task is finished, complete the task.

The task can be completed either successfully or with a fault message. If the

task is successful, an output message is passed. If the task is unsuccessful, a

fault message is passed. You must create the appropriate messages for these

actions.

a. To complete the task successfully, create an output message.

ClientObjectWrapper output =

 task.createOutputMessage(tkiid);

DataObject myMessage = null ;

if (output.getObject()!= null && output.getObject() instanceof DataObject)

{

 myMessage = (DataObject)output.getObject();

 //set the parts in your message, for example, an order number

 myMessage.setInt("OrderNo", 4711);

}

//complete the task

task.complete(tkiid, output);

This action sets an output message that contains the order number. The task

is put into the finished state.

b. To complete the task when a fault occurs, create a fault message.

//retrieve the faults modeled for the task

List faultNames = task.getFaultNames(tkiid);

//create a message of the appropriate type

ClientObjectWrapper myFault =

 task.createFaultMessage(tkiid, (String)faultNames.get(0));

// set the parts in your fault message, for example, an error number

DataObject myMessage = null ;

if (myFault.getObject()!= null && input.getObject() instanceof DataObject)

{

 myMessage = (DataObject)myFault.getObject();

 //set the parts in the message, for example, a customer name

 myMessage.setInt("error",1304);

}

task.complete(tkiid, (String)faultNames.get(0), myFault);

This action sets a fault message that contains the error code. The task is put

into the failed state.

Suspending and resuming a task instance:

222 IBM WebSphere Process Server for z/OS: Business Process Choreographer

You can suspend human task instances or participating task instances and resume

them again to complete them.

 The task instance can be in the ready or claimed state. It can be escalated. The

caller must be the owner, originator, or administrator of the task instance.

You can suspend a task instance while it is running. You might want to do this, for

example, so that you can gather information that is needed to complete the task.

When the information is available, you can resume the task instance.

1. Get a list of tasks that are claimed by the logged-on user.

QueryResultSet result = task.query("DISTINCT TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_CLAIMED",

 null, null, null);

This action returns a query result set that contains a list of the tasks that are

claimed by the logged-on user.

2. Suspend the task instance.

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 task.suspend(tkiid);

}

This action suspends the specified task instance. The task instance is put into

the suspended state.

3. Resume the process instance.

task.resume(tkiid);

This action puts the task instance into the state it had before it was suspended.

Analyzing the results of a task:

A participating or purely human task runs asynchronously. If a reply handler is

specified when the task starts, the output message is automatically returned when

the task completes. If a reply handler is not specified, the message must be

retrieved explicitly.

 The results of the task are stored in the database only if the task template from

which the task instance was derived does not specify automatic deletion of the

derived task instances.

Analyze the results of the task.

The example shows how to check the order number of a successfully completed

task.

QueryResultSet result = task.query("DISTINCT TASK.TKIID",

 "TASK.NAME = ’CustomerOrder’ AND

 TASK.STATE = TASK.STATE.STATE_FINISHED",

 null, null, null);

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 ClientObjectWrapper output = task.getOutputMessage(tkiid);

 DataObject myOutput = null;

 if (output.getObject() != null && output.getObject() instanceof DataObject)

 {

Chapter 5. Developing 223

myOutput = (DataObject)output.getObject();

 int order = myOutput.getInt("OrderNo");

 }

}

Terminating a task instance:

Sometimes it is necessary for someone with administrator rights to terminate a task

instance that is known to be in an unrecoverable state. Because the task instance is

terminated immediately, you should terminate a task instance only in exceptional

situations.

1. Retrieve the task instance to be terminated.

Task taskInstance = task.getTask(tkiid);

2. Terminate the task instance.

TKIID tkiid = taskInstance.getID();

task.terminate(tkiid);

The task instance is terminated immediately without waiting for any

outstanding tasks.

Deleting task instances:

Task instances are only automatically deleted when they complete if this is

specified in the associated task template from which the instances are derived. This

example shows how to delete all of the task instances that are finished and are not

automatically deleted.

1. List the task instances that are finished.

QueryResultSet result =

 task.query("DISTINCT TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_FINISHED",

 null, null, null);

This action returns a query result set that lists task instances that are finished.

2. Delete the task instances that are finished.

while (result.next())

{

 TKIID tkiid = (TKIID) result.getOID(1);

 task.delete(tkiid);

}

Releasing a claimed task:

When a potential owner claims a task, this person is responsible for completing the

task. However, sometimes the claimed task must be released so that another

potential owner can claim it.

 Sometimes it is necessary for someone with administrator rights to release a

claimed task. This situation might occur, for example, when a task must be

completed but the owner of the task is absent. The owner of the task can also

release a claimed task.

1. List the claimed tasks owned by a specific person, for example, Smith.

QueryResultSet result =

 task.query("DISTINCT TASK.TKIID",

 "TASK.STATE = TASK.STATE.STATE_CLAIMED AND

 TASK.OWNER = ’Smith’",

 null, null, null);

224 IBM WebSphere Process Server for z/OS: Business Process Choreographer

This action returns a query result set that lists the tasks claimed by the

specified person, Smith.

2. Release the claimed task.

if (result.size() > 0)

{

 result.first();

 TKIID tkiid = (TKIID) result.getOID(1);

 task.cancelClaim(tkiid, true);

}

This action returns the task to the ready state so that it can be claimed by one

of the other potential owners. Any output or fault data that is set by the

original owner is kept.

Managing work items:

During the lifetime of an activity instance or a task instance, the set of people

associated with the object can change, for example, because a person is on

vacation, new people are hired, or the workload needs to be distributed differently.

To allow for these changes, you can develop applications to create, delete, or

transfer work items.

 A work item represents the assignment of an object to a user or group of users for

a particular reason. The object is typically a staff activity instance, a process

instance, or a human task. The reasons are derived from the role that the user has

for an activity or task. An activity or task can have multiple work items because a

user can have different roles in association with the activity or task, and a work

item is created for each of these roles.

The actions that can be taken to manage work items depend on the role that the

user has, for example, an administrator can create, delete and transfer work items,

but the task owner can transfer work items only.

v Create a work item.

// query the task instance for which an additional

// administrator is to be specified

QueryResultSet result = task.query("TASK.TKIID",

 "TASK.NAME=’CustomerOrder’",

 null, null, null);

if (result.size() > 0)

{

 result.first();

 // create the work item

 task.createWorkItem((TKIID)(result.getOID(1)),

 WorkItem.REASON_ADMINISTRATOR,"Smith");

}

This action creates a work item for the user Smith who has the administrator

role.

v Delete a work item.

// query the task instance for which a work item is to be deleted

QueryResultSet result = task.query("TASK.TKIID",

 "TASK.NAME=’CustomerOrder’",

 null, null, null);

if (result.size() > 0)

{

 result.first();

 // delete the work item

 task.deleteWorkItem((TKIID)(result.getOID(1)),

 WorkItem.REASON_READER,"Smith");

}

Chapter 5. Developing 225

This action deletes the work item for the user Smith who has the reader role.

v Transfer a work item.

// query the task that is to be rescheduled

QueryResultSet result =

 task.query("DISTINCT TASK.TKIID",

 "TASK.NAME=’CustomerOrder’ AND

 TASK.STATE=TASK.STATE.STATE_READY AND

 WORK_ITEM.REASON=WORK_ITEM.REASON.REASON_POTENTIAL_OWNER AND

 WORK_ITEM.OWNER_ID=’Miller’",

 null, null, null);

if (result.size() > 0)

{

 result.first();

 // transfer the work item from user Miller to user Smith

 // so that Smith can work on the task

 task.transferWorkItem((TKIID)(result.getOID(1)),

 WorkItem.REASON_POTENTIAL_OWNER,"Miller","Smith");

}

This action transfers the work item to the user Smith so that he can work on it.

Creating task templates and task instances at runtime:

You usually use a modeling tool, such as WebSphere Integration Developer to

build task templates. You then install the task templates in WebSphere Process

Server and create instances from these templates, for example, using Business

Process Choreographer Explorer. However, you can also create human or

participating task instances or templates at runtime. You might want to do this, for

example, when the task definition is not available when the application is

deployed, the tasks that are part of a workflow are not yet known, or you need a

task to cover some ad-hoc collaboration between a group of people.

1. Optional: If your interfaces contain types that are not simple Java types, create

or identify an application that contains the data types that are used by the

runtime task or template.

The runtime task or task template runs in the context of the application and

gets access to the data types. Ensure that your application also contains a task

or process definition so that the application is loaded by Business Process

Choreographer. These tasks or processes can be dummy tasks or processes.

2. Create a task model.

The model refers to the data types in the application identified in step 1.

3. Validate the task model.

4. Create the task template or the task instance.

Use the HumanTaskManagerService interface to complete this action. If your

interfaces contain types other than simple Java types, specify the name of the

application that contains the data type definitions when you create your task

instance or template.

Creating runtime tasks that use simple Java types:

This example creates a runtime task that uses only simple Java types in its

interface, for example, a String object.

 The example runs only inside the context of the calling enterprise application, for

which the resources are loaded.

1. Access the ClientTaskFactory and create a resource set to contain the definitions

of the new task model.

226 IBM WebSphere Process Server for z/OS: Business Process Choreographer

ClientTaskFactory factory = ClientTaskFactory.newInstance();

ResourceSet resourceSet = factory.createResourceSet();

2. Create the WSDL definition and add the descriptions of your operations.

// create the WSDL interface

Definition definition = factory.createWSDLDefinition

 (resourceSet, new QName("http://www.ibm.com/task/test/", "test"));

// create a port type

PortType portType = factory.createPortType(definition, "doItPT");

// create an operation; the input and output messages are of type String:

// a fault message is not specified

Operation operation = factory.createOperation

 (definition, portType, "doIt",

 new QName("http://www.w3.org/2001/XMLSchema", "string"),

 new QName("http://www.w3.org/2001/XMLSchema", "string"),

 null);

3. Create the EMF model of your new human task.

If you are creating a task instance, a valid-from date (UTCDate) is not required.

TTask humanTask = factory.createTTask(resourceSet,

 TTaskKinds.HTASK_LITERAL,

 "TestTask",

 new UTCDate("2005-01-01T00:00:00"),

 "http://www.ibm.com/task/test/",

 portType,

 operation);

This step initializes the properties of the task model with default values.

4. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,

humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements

TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings

TVerb verb = taskFactory.createTVerb();

verb.setName("John");

// create escalationReceiver and add verb

TEscalationReceiver escalationReceiver =

 taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver

TEscalation escalation = taskFactory.createTEscalation();

escalation.setEscalationReceiver(escalationReceiver);

5. Create the task model that contains all the resource definitions.

TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validate the task model and correct any validation problems that are found.

ValidationProblem[] validationProblems = taskModel.validate();

7. Create the runtime task instance or template.

Use the HumanTaskManagerService interface to create the task instance or the

task template. Because the application uses simple Java types only, you do not

need to specify an application name.

v The following snippet creates a task instance:

task.createTask(taskModel, null, "HTM");

v The following snippet creates a task template:

task.createTaskTemplate(taskModel, null);

Chapter 5. Developing 227

If a runtime task instance is created, it can now be started. If a runtime task

template is created, you can now create task instances from the template.

Creating runtime tasks that use complex types:

This example creates a runtime task that uses complex types in its interface. The

complex types are already defined, that is, the local file system on the client has

XSD files that contain the description of the complex types.

 The example runs only inside the context of the calling enterprise application, for

which the resources are loaded.

1. Access the ClientTaskFactory and create a resource set to contain the definitions

of the new task model.

ClientTaskFactory factory = ClientTaskFactory.newInstance();

ResourceSet resourceSet = factory.createResourceSet();

2. Add the XSD definitions of your complex types to the resource set so that they

are available when you define your operations.

The files are located relative to the location where the code is executed.

factory.loadXSDSchema(resourceSet, "InputBO.xsd");

factory.loadXSDSchema(resourceSet, "OutputBO.xsd");

3. Create the WSDL definition and add the descriptions of your operations.

// create the WSDL interface

Definition definition = factory.createWSDLDefinition

 (resourceSet, new QName("http://www.ibm.com/task/test/", "test"));

// create a port type

PortType portType = factory.createPortType(definition, "doItPT");

// create an operation; the input message is an InputBO and

// the output message an OutputBO;

// a fault message is not specified

Operation operation = factory.createOperation

 (definition, portType, "doIt",

 new QName("http://Input", "InputBO"),

 new QName("http://Output", "OutputBO"),

 null);

4. Create the EMF model of your new human task.

If you are creating a task instance, a valid-from date (UTCDate) is not required.

TTask humanTask = factory.createTTask(resourceSet,

 TTaskKinds.HTASK_LITERAL,

 "TestTask",

 new UTCDate("2005-01-01T00:00:00"),

 "http://www.ibm.com/task/test/",

 portType,

 operation);

This step initializes the properties of the task model with default values.

5. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,

humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements

TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings

TVerb verb = taskFactory.createTVerb();

verb.setName("John");

// create escalationReceiver and add verb

TEscalationReceiver escalationReceiver =

228 IBM WebSphere Process Server for z/OS: Business Process Choreographer

taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver

TEscalation escalation = taskFactory.createTEscalation();

escalation.setEscalationReceiver(escalationReceiver);

6. Create the task model that contains all the resource definitions.

TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

7. Validate the task model and correct any validation problems that are found.

ValidationProblem[] validationProblems = taskModel.validate();

8. Create the runtime task instance or template.

Use the HumanTaskManagerService interface to create the task instance or the

task template. You must provide an application name that contains the data

type definitions so that they can be accessed. The application must also contain

a dummy task or process so that the application is loaded by Business Process

Choreographer.

v The following snippet creates a task instance:

task.createTask(taskModel, "BOapplication", "HTM");

v The following snippet creates a task template:

task.createTaskTemplate(taskModel, "BOapplication");

If a runtime task instance is created, it can now be started. If a runtime task

template is created, you can now create task instances from the template.

Creating runtime tasks that use an existing interface:

This example creates a runtime task that uses an interface that is already defined,

that is, the local file system on the client has a file that contains the description of

the interface.

 The example runs only inside the context of the calling enterprise application, for

which the resources are loaded.

1. Access the ClientTaskFactory and create a resource set to contain the definitions

of the new task model.

ClientTaskFactory factory = ClientTaskFactory.newInstance();

ResourceSet resourceSet = factory.createResourceSet();

2. Access the WSDL definition and the descriptions of your operations.

The interface description is located relative to the location where the code is

executed.

Definition definition = factory.loadWSDLDefinition(

 resourceSet, "interface.wsdl");

PortType portType = definition.getPortType(

 new QName(definition.getTargetNamespace(), "doItPT"));

Operation operation = portType.getOperation("doIt", null, null);

3. Create the EMF model of your new human task.

If you are creating a task instance, a valid-from date (UTCDate) is not required.

TTask humanTask = factory.createTTask(resourceSet,

 TTaskKinds.HTASK_LITERAL,

 "TestTask",

 new UTCDate("2005-01-01T00:00:00"),

 "http://www.ibm.com/task/test/",

 portType,

 operation);

This step initializes the properties of the task model with default values.

Chapter 5. Developing 229

4. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,

humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements

TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings

TVerb verb = taskFactory.createTVerb();

verb.setName("John");

// create escalationReceiver and add verb

TEscalationReceiver escalationReceiver =

 taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver

TEscalation escalation = taskFactory.createTEscalation();

escalation.setEscalationReceiver(escalationReceiver);

5. Create the task model that contains all the resource definitions.

TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validate the task model and correct any validation problems that are found.

ValidationProblem[] validationProblems = taskModel.validate();

7. Create the runtime task instance or template.

Use the HumanTaskManagerService interface to create the task instance or the

task template. You must provide an application name that contains the data

type definitions so that they can be accessed. The application must also contain

a dummy task or process so that the application is loaded by Business Process

Choreographer.

v The following snippet creates a task instance:

task.createTask(taskModel, "BOapplication", "HTM");

v The following snippet creates a task template:

task.createTaskTemplate(taskModel, "BOapplication");

If a runtime task instance is created, it can now be started. If a runtime task

template is created, you can now create task instances from the template.

Creating runtime tasks that use an interface from the calling application:

This example creates a runtime task that uses an interface that is part of the calling

application. For example, the runtime task is created in a Java snippet of a business

process and uses an interface from the process application.

 The example runs only inside the context of the calling enterprise application, for

which the resources are loaded.

1. Access the ClientTaskFactory and create a resource set to contain the definitions

of the new task model.

ClientTaskFactory factory = ClientTaskFactory.newInstance();

// specify the context class loader so that following resources are found

ResourceSet resourceSet = factory.createResourceSet

 (Thread.currentThread().getContextClassLoader());

2. Access the WSDL definition and the descriptions of your operations.

Specify the path within the containing package JAR file.

230 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Definition definition = factory.loadWSDLDefinition(resourceSet,

 "com/ibm/workflow/metaflow/interface.wsdl");

 PortType portType = definition.getPortType(

 new QName(definition.getTargetNamespace(), "doItPT"));

Operation operation = portType.getOperation("doIt", null, null);

3. Create the EMF model of your new human task.

If you are creating a task instance, a valid-from date (UTCDate) is not required.

TTask humanTask = factory.createTTask(resourceSet,

 TTaskKinds.HTASK_LITERAL,

 "TestTask",

 new UTCDate("2005-01-01T00:00:00"),

 "http://www.ibm.com/task/test/",

 portType,

 operation);

This step initializes the properties of the task model with default values.

4. Modify the properties of your human task model.

// use the methods from the com.ibm.wbit.tel package, for example,

humanTask.setBusinessRelevance(TBoolean, YES_LITERAL);

// retrieve the task factory to create or modify composite task elements

TaskFactory taskFactory = factory.getTaskFactory();

// specify escalation settings

TVerb verb = taskFactory.createTVerb();

verb.setName("John");

// create escalationReceiver and add verb

TEscalationReceiver escalationReceiver =

 taskFactory.createTEscalationReceiver();

escalationReceiver.setVerb(verb);

// create escalation and add escalation receiver

TEscalation escalation = taskFactory.createTEscalation();

escalation.setEscalationReceiver(escalationReceiver);

5. Create the task model that contains all the resource definitions.

TaskModel taskModel = ClientTaskFactory.createTaskModel(resourceSet);

6. Validate the task model and correct any validation problems that are found.

ValidationProblem[] validationProblems = taskModel.validate();

7. Create the runtime task instance or template.

Use the HumanTaskManagerService interface to create the task instance or the

task template. You must provide an application name that contains the data

type definitions so that they can be accessed.

v The following snippet creates a task instance:

task.createTask(taskModel, "WorkflowApplication", "HTM");

v The following snippet creates a task template:

task.createTaskTemplate(taskModel, "WorkflowApplication");

If a runtime task instance is created, it can now be started. If a runtime task

template is created, you can now create task instances from the template.

Creating plug-ins to customize human task functionality:

Business Process Choreographer provides an event handling infrastructure for

events that occur during the processing of human tasks. Plug-in points are also

provided so that you can adapt the functionality to your needs. You can use the

service provider interfaces (SPIs) to create customized plug-ins for handling events

and the processing of staff queries.

Chapter 5. Developing 231

You can create plug-ins for human task API events and escalation notification

events. You can also create a plug-in that processes the results that are returned

from staff resolution. For example, at peak periods you might want to add users to

the result list to help balance the workload.

You can register your plug-ins on different levels, for all tasks on a global level, for

the tasks in an application component, for all of the tasks associated with a task

template, or for a single task instance.

Creating API event handlers:

An API event occurs when an API method manipulates a human task. Use the API

event handler plug-in service provider interface (SPI) to create plug-ins to handle

the task events sent by the API or the internal events that have equivalent API

events.

 Complete the following steps to create an API event handler.

1. Write a class that implements the APIEventHandlerPlugin2 interface or extends

the APIEventHandler implementation class. This class can invoke the methods

of other classes.

v If you use the APIEventHandlerPlugin2 interface, you must implement all of

the methods of the APIEventHandlerPlugin2 interface and the

APIEventHandlerPlugin interface.

v If you extend the SPI implementation class, overwrite the methods that you

need.

This class runs in the context of a Java 2 Enterprise Edition (J2EE) Enterprise

JavaBeans (EJB) application. Ensure that this class and its helper classes follow

the EJB specification.

Tip: If you want to call the HumanTaskManagerService interface from this

class, do not call a method that updates the task that produced the event.

This action results in a database deadlock.

2. Assemble the plug-in class and its helper classes into a JAR file.

If the helper classes are used by several J2EE applications, you can package

these classes in a separate JAR file that you register as a shared library.

3. Create a service provider configuration file for the plug-in in the

META-INF/services/ directory of your JAR file.

The configuration file provides the mechanism for identifying and loading the

plug-in. This file conforms to the Java 2 service provider interface specification.

a. Create a file with the name com.ibm.task.spi.plug-
in_nameAPIEventHandlerPlugin, where plug-in_name is the name of the

plug-in.

For example, if your plug-in is called Customer and it implements the

com.ibm.task.spi.APIEventHandlerPlugin interface, the name of the

configuration file is com.ibm.task.spi.CustomerAPIEventHandlerPlugin.

b. In the first line of the file that is neither a comment line nor a blank line,

specify the fully qualified name of the plug-in class that you created in step

1.

For example, if your plug-in class is called MyAPIEventHandler and it is in

the com.customer.plugins package, then the first line of the configuration

file must contain the following entry:

com.customer.plugins.MyAPIEventHandler.

232 IBM WebSphere Process Server for z/OS: Business Process Choreographer

You have an installable JAR file that contains a plug-in that handles API events

and a service provider configuration file that can be used to load the plug-in.

Tip: You only have one eventHandlerName property available to register event

handlers. If you want to use an API event handler and a notification event

handler both plug-in implementations must have the same name, for

example, Customer as the event handler name for the SPI implementations.

If you want to package both plug-in implementations into the same JAR file,

create two files in the META-INF/services/ directory, for example,

com.ibm.task.spi.CustomerNotificationEventHandlerPlugin and

com.ibm.task.spi.CustomerAPIEventHandlerPlugin2. You can also package

both SPI implementations in different JAR files.

You can also implement both interfaces with one class. If you choose this

method, you also need two entries in the META-INF/services/ directory.

Because class loading problems can occur if you implement both interfaces in

a single class, do not package the class in two different JAR files.

You now need to install and register the plug-in so that it is available to the

human task container at runtime. You can register API event handlers with a task

instance, a task template, or an application component.

API event handlers:

API events occur when a human task is modified or it changes state. To handle

these API events, the event handler is invoked directly before the task is modified

(pre-event method) and just before the API call returns (post-event method).

 If the pre-event method throws an ApplicationVetoException exception, the API

action is not performed, the exception is returned to the API caller, and the

transaction associated with the event is rolled back. If the pre-event method was

triggered by an internal event and an ApplicationVetoException exception is

thrown, the internal event, such as an automatic claim, is not performed but an

exception is not returned to the client application. In this case, an information

message is written to the SystemOut.log file. If the API method throws an

exception during processing, the exception is caught and passed to the post-event

method. The exception is passed again to the caller after the post-event method

returns.

The following rules apply to pre-event methods:

v Pre-event methods receive the parameters of the associated API method or

internal event.

v Pre-event methods can throw an ApplicationVetoException exception to prevent

processing from continuing.

The following rules apply to post-event methods:

v Post-event methods receive the parameters that were supplied to the API call,

and the return value. If an exception is thrown by the API method

implementation, the post-event method also receives the exception.

v Post-event methods cannot modify return values.

v Post-event methods cannot throw exceptions; runtime exceptions are logged but

they are ignored.

Chapter 5. Developing 233

To implement API event handlers, you can use either the APIEventHandlerPlugin2

interface, which extends the APIEventHandlerPlugin interface, or extend the

default com.ibm.task.spi.APIEventHandler SPI implementation class. If your event

handler inherits from the default implementation class, it always implements the

most recent version of the SPI. If you upgrade to a newer version of Business

Process Choreographer, fewer changes are necessary if you want to exploit new SPI

methods.

If you have both a notification event handler and an API event handler, both of

these handlers must have the same name because you can register only one event

handler name.

Creating notification event handlers:

Notification events are produced when human tasks are escalated. Business Process

Choreographer provides functionality for handling escalations, such as creating

escalation work items or sending e-mails. You can create notification event

handlers to customize the way in which escalations are handled.

 To implement notification event handlers, you can use either the

NotificationEventHandlerPlugin interface, or you can extend the default

com.ibm.task.spi.NotificationEventHandler service provider interface (SPI)

implementation class.

Complete the following steps to create a notification event handler.

1. Write a class that implements the NotificationEventHandlerPlugin interface or

extends the NotificationEventHandler implementation class. This class can

invoke the methods of other classes.

If you use the NotificationEventHandlerPlugin interface, you must implement

all of the interface methods. If you extend the SPI implementation class,

overwrite the methods that you need.

This class runs in the context of a Java 2 Enterprise Edition (J2EE) Enterprise

JavaBeans (EJB) application. Ensure that this class and its helper classes follow

the EJB specification.

The plug-in is invoked with the authority of the EscalationUser role. This role

is defined when the human task container is configured.

Tip: If you want to call the HumanTaskManagerService interface from this

class, do not call a method that updates the task or the escalation that

produced the event. This action results in a database deadlock.

2. Assemble the plug-in class and its helper classes into a JAR file.

If the helper classes are used by several J2EE applications, you can package

these classes in a separate JAR file that you register as a shared library.

3. Create a service provider configuration file for the plug-in in the

META-INF/services/ directory of your JAR file.

The configuration file provides the mechanism for identifying and loading the

plug-in. This file conforms to the Java 2 service provider interface specification.

a. Create a file with the name com.ibm.task.spi.plug-
in_nameNotificationEventHandlerPlugin, where plug-in_name is the name of

the plug-in.

For example, if your plug-in is called HelpDeskRequest (event handler name)

and it implements the com.ibm.task.spi.NotificationEventHandlerPlugin

interface, the name of the configuration file is

com.ibm.task.spi.HelpDeskRequestNotificationEventHandlerPlugin.

234 IBM WebSphere Process Server for z/OS: Business Process Choreographer

b. In the first line of the file that is neither a comment line nor a blank line,

specify the fully qualified name of the plug-in class that you created in step

1.

For example, if your plug-in class is called MyEventHandler and it is in the

com.customer.plugins package, then the first line of the configuration file

must contain the following entry: com.customer.plugins.MyEventHandler.

You have an installable JAR file that contains a plug-in that handles notification

events and a service provider configuration file that can be used to load the

plug-in. You can register API event handlers with a task instance, a task template,

or an application component.

Tip: You only have one eventHandlerName property available to register event

handlers. If you want to use an API event handler and a notification event

handler both plug-in implementations must have the same name, for

example, Customer as the event handler name for the SPI implementations.

If you want to package both plug-in implementations into the same JAR file,

create two files in the META-INF/services/ directory, for example,

com.ibm.task.spi.CustomerNotificationEventHandlerPlugin and

com.ibm.task.spi.CustomerAPIEventHandlerPlugin2. You can also package

both SPI implementations in different JAR files.

You can also implement both interfaces with one class. If you choose this

method, you also need two entries in the META-INF/services/ directory.

Because class loading problems can occur if you implement both interfaces in

a single class, do not package the class in two different JAR files.

You now need to install and register the plug-in so that it is available to the

human task container at runtime. You can register notification event handlers with

a task instance, a task template, or an application component.

Creating plug-ins to post-process staff query results:

Staff resolution returns a list of the users that are assigned to a specific role, for

example, potential owner of a task. You can create a plug-in to change the results

of staff queries returned by staff resolution. For example, to improve workload

balancing, you might have a plug-in that removes users from the query result who

already have a high workload.

 You can have only one post-processing plug-in; this means that the plug-in must

handle the staff results from all tasks. Your plug-in can add or remove users, or

change user or group information. It can also change the result type, for example,

from a list of users to a group, or to everybody.

Because the plug-in runs after staff resolution completes, any rules that you have

to preserve confidentiality or security have already been applied. The plug-in

receives information about users that have been removed during staff resolution

(in the HTM_REMOVED_USERS map key). You must ensure that your plug-in

uses this context information to preserve any confidentiality or security rules you

might have.

To implement post-processing of staff query results, you use the

StaffQueryResultPostProcessingPlugin interface. The interface has methods for

modifying the query results for tasks, escalations, task templates, and application

components.

Chapter 5. Developing 235

Complete the following steps to create a plug-in to post-process staff query results.

1. Write a class that implements the StaffQueryResultPostProcessingPlugin

interface.

You must implement all of the interface methods. This class can invoke

methods of other classes.

This class runs in the context of a Java 2 Enterprise Edition (J2EE) Enterprise

JavaBeans (EJB) application. Ensure that this class and its helper classes follow

the EJB specification.

Tip: If you want to call the HumanTaskManagerService interface from this

class, do not call a method that updates the task that produced the event.

This action results in a database deadlock.

The following example shows how you might change the editor role of a task

called SpecialTask.

public StaffQueryResult processStaffQueryResult

 (StaffQueryResult originalStaffQueryResult,

 Task task,

 int role,

 Map context)

{

 StaffQueryResult newStaffQueryResult = originalStaffQueryResult;

 StaffQueryResultFactory staffResultFactory =

 StaffQueryResultFactory.newInstance();

 if (role == com.ibm.task.api.WorkItem.REASON_EDITOR &&

 task.getName() != null &&

 task.getName().equals("SpecialTask"))

 {

 UserData user = staffResultFactory.newUserData

 ("SuperEditor",

 new Locale("en-US"),

 "SuperEditor@company.com");

 ArrayList userList = new ArrayList();

 userList.add(user);

 newStaffQueryResult = staffResultFactory.newStaffQueryResult(userList);

 }

 return(newStaffQueryResult);

}

2. Assemble the plug-in class and its helper classes into a JAR file.

If the helper classes are used by several J2EE applications, you can package

these classes in a separate JAR file that you register as a shared library.

3. Create a service provider configuration file for the plug-in in the

META-INF/services/ directory of your JAR file.

The configuration file provides the mechanism for identifying and loading the

plug-in. This file conforms to the Java 2 service provider interface specification.

a. Create a file with the name com.ibm.task.spi.plug-
in_nameStaffQueryResultPostProcessingPlugin, where plug-in_name is the

name of the plug-in.

For example, if your plug-in is called MyHandler and it implements the

com.ibm.task.spi.StaffQueryResultPostProcessingPlugin interface, the name

of the configuration file is

com.ibm.task.spi.MyHandlerStaffQueryResultPostProcessingPlugin.

b. In the first line of the file that is neither a comment line nor a blank line,

specify the fully qualified name of the plug-in class that you created in step

1.

For example, if your plug-in class is called StaffPostProcessor and it is in

the com.customer.plugins package, then the first line of the configuration

236 IBM WebSphere Process Server for z/OS: Business Process Choreographer

file must contain the following entry:

com.customer.plugins.StaffPostProcessor. You have an installable JAR file

that contains a plug-in that handles notification events and a service

provider configuration file that can be used to load the plug-in.
4. Install the plug-in.

You can have only one post-processing plug-in for staff query results. You must

install the plug-in as a shared library.

5. Register the plug-in.

a. In the administrative console, go to the Custom Properties page of the

human task container (Application servers → server_name → Human task

container → Custom properties).

b. Add a custom property with the name Staff.PostProcessingPlugin, and a

value of the name that you gave to your plug-in, MyHandler in this example.

Installing plug-ins:

To use a plug-in, you must install the plug-in so that it can be accessed by the task

container.

 The way in which you install the plug-in depends on whether the plug-in is to be

used by only one Java 2 Enterprise Edition (J2EE) application, or several

applications.

Complete one of the following steps to install a plug-in.

v Install a plug-in for use by a single J2EE application.

Add your plug-in JAR file to the application EAR file. In the deployment

descriptor editor in WebSphere Integration Developer, install the JAR file for

your plug-in as a project utility JAR file for the J2EE application of the main

enterprise JavaBeans (EJB) module.

v Install a plug-in for use by several J2EE applications.

Put the JAR file in a WebSphere Application Server shared library and associate

the library with the applications that need access to the plug-in. To make the

JAR file available in a network deployment environment, distribute the JAR file

on each server manually, and then install the shared library once for each cell.

You can now register the plug-in.

Registering plug-ins:

You can register your plug-ins on different levels in the task container artifact

hierarchy. For example, for all tasks on a global level, for the tasks of an

application component, for all of the tasks associated with a task template, or for a

single task instance.

 When you register multiple plug-ins, scoping is supported. This means that a

plug-in that is registered on a lower level of the task container artifact hierarchy,

such as a task instance, is used instead of the plug-in that is registered on a higher

level, such as a task template or application component. Scoping is supported for

all of the hierarchy levels. The task container uses the plug-in that is registered on

the lowest level of the hierarchy.

You can register a plug-in in one of the following ways.

v Register the plug-in in the task model.

Chapter 5. Developing 237

In the task editor in WebSphere Integration Developer in the Details page of the

properties area for the task, specify the name of the event handler in the Event

handler name field.

v Register the plug-in for ad-hoc tasks or task templates that you create at

runtime.

Use the setEventHandlerName method of the TTask class to register the name of

the event handler.

v Change the registered event handler for a task instance at runtime.

Use the update(Task task) method to use a different event handler for a task

instance at runtime. The caller must have task administrator authority to update

this property.

v Register the plug-in on a global level.

In the administration console on the Custom properties page for the human task

container, define a custom property for the plug-in. The value of the custom

property is the plug-in name.

HumanTaskManagerService interface:

The HumanTaskManagerService interface exposes task-related functions that can be

called by a local or a remote client.

 The methods that can be called depend on the state of the task and the

authorization of the person that uses the application containing the method. The

main methods for manipulating task objects are listed here. For more information

about these methods and the other methods that are available in the

HumanTaskManagerService interface, see the Javadoc in the com.ibm.task.api

package.

Task templates

The following methods are available to work with task templates.

 Table 26. API methods for task templates

Method Description

getTaskTemplate Retrieves the specified task template.

createAndCallTask Creates and runs a task instance from the

specified task template and waits

synchronously for the result.

createAndStartTask Creates and starts a task instance from the

specified task template.

createTask Creates a task instance from the specified

task template.

createInputMessage Creates an input message for the specified

task template. For example, create a message

that can be used to start a task.

queryTaskTemplates Retrieves task templates that are stored in

the database.

238 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Task instances

The following methods are available to work with task instances.

 Table 27. API methods for task instances

Method Description

getTask Retrieves a task instance; the task instance

can be in any state.

callTask Starts an originating task synchronously.

startTask Starts a task that has already been created.

suspend Suspends the human or participating task.

resume Resumes the human or participating task.

terminate Terminates the specified task instance. If an

originating task is terminated, this action has

no impact on the invoked service.

delete Deletes the specified task instance.

claim Claims the task for processing.

update Updates the task instance.

complete Completes the task instance.

cancelClaim Releases a claimed task instance so that it

can be worked on by another potential

owner.

createWorkItem Creates a work item for the task instance.

transferWorkItem Transfers the work item to a specified

owner.

deleteWorkItem Deletes the work item.

Escalations

The following methods are available to work with escalations.

 Table 28. API methods for working with escalations

Method Description

getEscalation Retrieves the specified escalation instance.

Custom properties

Tasks, task templates, and escalations can all have custom properties. The interface

provides a get and a set method to retrieve and set values for custom properties.

You can also associate named properties with, and retrieve named properties from

task instances. Custom property names and values must be of the java.lang.String

type. The following methods are valid for tasks, task templates, and escalations.

 Table 29. API methods for variables and custom properties

Method Description

getCustomProperty Retrieves the named custom property of the

specified task instance.

getCustomProperties Retrieves the custom properties of the

specified task instance.

Chapter 5. Developing 239

Table 29. API methods for variables and custom properties (continued)

Method Description

getCustomPropertyNames Retrieves the names of the custom properties

for the task instance.

setCustomProperty Stores custom-specific values for the

specified task instance.

Allowed actions for tasks:

The actions that can be carried out on a task depend on whether the task is a

participating task, a purely human task, an originating task, or an administrative

task.

 You cannot use all of the actions provided by the LocalHumanTaskManager or the

HumanTaskManager interface for all kinds of tasks. The following table shows the

actions that you can carry out on each kind of task.

Action

Kind of task

Participating task Human task Originating task Administrative task

callTask X1

cancelClaim X X1

claim X X1

complete X X1 X

completeWithFollowOnTask4 X X1

completeWithFollowOnTask5 X3 X3

createFaultMessage X X X X

createInputMessage X X X X

createOutputMessage X X X X

createWorkItem X X1 X X

delete X1 X1 X X1

deleteWorkItem X X1 X X

getCustomProperty X X1 X X

getDocumentation X X1 X X

getFaultNames X X1

getFaultMessage X X1 X

getInputMessage X X1 X

getOutputMessage X X1 X

getRoleInfo X X1 X X

getTask X X1 X X

getUISettings X X1 X X

resume X X1

setCustomProperty X X1 X X

setFaultMessage X X1

setOutputMessage X X1

startTask X1 X1 X X

240 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Action

Kind of task

Participating task Human task Originating task Administrative task

startTaskAsSubtask6 X X1

startTaskAsSubtask7 X3 X3

suspend X X1

suspendWithCancelClaim X X1

terminate X1 X1 X1

transferWorkItem X X1 X X

updateInactiveTask X2 X3 X2 X2

updateTask X X1 X X

Notes:

1. For stand-alone tasks, ad-hoc tasks, and task templates only

2. For stand-alone tasks, inline tasks in business processes, and ad-hoc tasks only

3. For stand-alone tasks and ad-hoc tasks only

4. The tasks kinds that can have follow-on tasks

5. The task kinds that can be used as follow-on tasks

6. The tasks kinds that can have subtasks

7. The task kinds that can be used as subtasks

Handling exceptions and faults

A BPEL process might encounter a fault at different points in the process.

Business Process Execution Language (BPEL) faults originate from:

v Web service invocations (Web Services Description Language (WSDL) faults)

v Throw activities

v BPEL standard faults that are recognized by Business Process Choreographer

Mechanisms exist to handle these faults. Use one of the following mechanisms to

handle faults that are generated by a process instance:

v Pass control to the corresponding fault handlers

v Compensate previous work in the process

v Stop the process and let someone repair the situation (force-retry, force-complete)

A BPEL process can also return faults to a caller of an operation provided by the

process. You can model the fault in the process as a reply activity with a fault

name and fault data. These faults are returned to the API caller as checked

exceptions.

If a BPEL process does not handle a BPEL fault or if an API exception occurs, a

runtime exception is returned to the API caller. An example for an API exception is

when the process model from which an instance is to be created does not exist.

The handling of faults and exceptions is described in the following tasks.

Handling API exceptions:

If a method in the BusinessFlowManagerService interface or the

HumanTaskManagerService interface does not complete successfully, an exception

Chapter 5. Developing 241

is thrown that denotes the cause of the error. You can handle this exception

specifically to provide guidance to the caller.

However, it is common practice to handle only a subset of the exceptions

specifically and to provide general guidance for the other potential exceptions. All

specific exceptions inherit from a generic ProcessException or TaskException. It is a

best practice to catch generic exceptions with a final catch(ProcessException) or

catch(TaskException) statement. This statement helps to ensure the upward

compatibility of your application program because it takes account of all of the

other exceptions that can occur.

Checking which fault is set for an activity:

1. List the task activities that are in a failed or stopped state.

QueryResultSet result =

 process.query("ACTIVITY.AIID",

 "(ACTIVITY.STATE = ACTIVITY.STATE.STATE_FAILED OR

 ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED) AND

 ACTIVITY.KIND=ACTIVITY.KIND.KIND_STAFF",

 null, null, null);

This action returns a query result set that contains failed or stopped activities.

2. Read the name of the fault.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ClientObjectWrapper faultMessage = process.getFaultMessage(aiid);

 DataObject fault = null ;

 if (faultMessage.getObject() != null && faultMessage.getObject()

 instanceof DataObject)

 {

 fault = (DataObject)faultMessage.getObject();

 Type type = fault.getType();

 String name = type.getName();

 String uri = type.getURI();

 }

}

This returns the fault name. You can also analyze the unhandled exception for

a stopped activity instead of retrieving the fault name.

Checking which fault occurred for a stopped invoke activity:

If an activity causes a fault to occur, the fault type determines the actions that you

can take to repair the activity.

1. List the staff activities that are in a stopped state.

QueryResultSet result =

 process.query("ACTIVITY.AIID",

 "ACTIVITY.STATE = ACTIVITY.STATE.STATE_STOPPED AND

 ACTIVITY.KIND=ACTIVITY.KIND.KIND_INVOKE",

 null, null, null);

This action returns a query result set that contains stopped invoke activities.

2. Read the name of the fault.

if (result.size() > 0)

{

 result.first();

 AIID aiid = (AIID) result.getOID(1);

 ActivityInstanceData activity = process.getActivityInstance(aiid);

 ProcessException excp = activity.getUnhandledException();

242 IBM WebSphere Process Server for z/OS: Business Process Choreographer

if (excp instanceof ApplicationFaultException)

 {

 ApplicationFaultException fault = (ApplicationFaultException)excp;

 String faultName = fault.getFaultName();

 }

}

Developing Web service API client applications

You can develop client applications that access business process applications and

human task applications through Web services APIs.

Client applications can be developed in any Web service client environment,

including Java Web services and Microsoft .NET.

Introduction: Web services

Web services are Web-based enterprise applications that use open, XML-based

standards and transport protocols to exchange data with client applications. Web

services allow the use of a language- and environment-neutral programming

model.

Web services use the following core technologies:

v XML (Extensible Markup Language). XML solves the problem of data

independence. You use it to describe data, and also to map that data into and

out of any application or programming language

v WSDL (Web Services Description Language). You use this XML-based language

to create a description of an underlying application. It is this description that

turns an application into a Web service, by acting as the interface between the

underlying application and other Web-enabled applications.

v SOAP (Simple Object Access Protocol). SOAP is the core communications

protocol for the Web, and most Web services use this protocol to talk to each

other.

Web service components and sequence of control

A number of client-side and server-side components participate in the sequence of

control that represents a Web service request and response.

A typical sequence of control is as follows.

1. On the client side:

a. A client application (provided by the user) issues a request for a Web

service.

b. A proxy client (also provided by the user, but which can be automatically

generated using client-side utilities) wraps the service request in a SOAP

request envelope.

c. The client-side development infrastructure forwards the request to a URL

defined as the Web service’s endpoint.
2. The network transmits the request to the Web service endpoint using HTTP or

HTTPS.

3. On the server side:

a. The generic Web services API receives and decodes the request.

b. The request is either handled directly by the generic Business Flow Manager

or Human Task Manager component, or forwarded to the specified business

process or human task.

c. The returned data is wrapped in a SOAP response envelope.

Chapter 5. Developing 243

http://www.w3.org/XML/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

4. The network transmits the response to the client-side environment using HTTP

or HTTPS.

5. Back on the client side:

a. The client-side development infrastructure unwraps the SOAP response

envelope.

b. The proxy client extracts the data from the SOAP response and passes it to

the client application.

c. The client application processes the returned data as necessary.

Overview of the Web services APIs

Web services APIs allow you to develop client applications that use Web services

to access business processes and human tasks running in the Business Process

Choreographer environment.

The Business Process Choreographer Web services API provides two separate Web

service interfaces (WSDL port types):

v The Business Flow Manager API. Allows client applications to interact with

microflows and long-running processes, for example:

– Create process templates and process instances

– Claim existing processes

– Query a process by its ID

Refer to “Developing applications for business processes” on page 196 for a

complete list of possible actions.

v The Human Task Manager API. Allows client applications to:

– Create and start tasks

– Claim existing tasks

– Complete tasks

– Query a task by its ID

– Query a collection of tasks.

Refer to “Developing applications for human tasks” on page 216 for a complete

list of possible actions.

Client applications can use either or both of the Web service interfaces.

Example

The following is a possible outline for a client application that accesses the Human

Task Manager Web services API to process a participating human task:

1. The client application issues a query(...) Web service call to the WebSphere

Process Server requesting a list of participating tasks to be worked on by a

user.

2. The list of participating tasks is returned in a SOAP/HTTP response envelope.

3. The client application then issues a claim(...) Web service call to claim one of

the participating tasks.

4. The WebSphere Process Server returns the task’s input message.

5. The client application issues a complete(...) Web service call to complete the

task with an output or fault message.

244 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Requirements for business processes and human tasks

Business processes and human tasks developed with the WebSphere Integration

Developer to run on the Business Process Choreographer must conform to specific

rules to be accessible through the Web services APIs.

The requirements are:

1. The interfaces of business processes and human tasks must be defined using

the ″document/literal wrapped″ style defined in the Java API for XML-based

RPC (JAX-RPC 1.1) specification. This is the default style for all business

processes and human tasks developed with the WID.

2. Fault messages exposed by business processes and human tasks for Web service

operations must comprise a single WSDL message part defined with an XML

Schema element. For example:

<wsdl:part name="myFault" element="myNamespace:myFaultElement"/>

 Related information

 Java API for XML based RPC (JAX-RPC) downloads page

 Which style of WSDL should I use?

Developing client applications

The client application development process consists of a number of steps.

1. Decide which Web services API your client application needs to use: the

Business Flow Manager API, Human Task Manager API, or both.

2. Export the necessary files from the WebSphere Process Server environment.

Alternatively, you can copy the files from the WebSphere Process Server client

CD.

3. In your chosen client application development environment, generate a proxy

client using the exported artifacts.

4. Optional: Generate helper classes. Helper classes are required if your client

application interacts directly with concrete processes or tasks on the WebSphere

server. They are not, however, necessary if your client application is only going

to perform generic tasks such as issuing queries.

5. Develop the code for your client application.

6. Add any necessary security mechanisms to your client application.

Copying artifacts

A number of artifacts must be copied from the WebSphere environment to help in

the creation of client applications.

There are two ways to obtain these artifacts:

v Publish and export them from the WebSphere Process Server environment.

v Copy files from the WebSphere Process Server client CD.

Publishing and exporting artifacts from the server environment:

Before you can develop client applications to access the Web services APIs, you

must publish and export a number of artifacts from the WebSphere server

environment.

 The artifacts to be exported are:

v Web Service Definition Language (WSDL) files describing the port types and

operations that make up the Web services APIs.

Chapter 5. Developing 245

http://java.sun.com/xml/downloads/jaxrpc.html
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

v XML Schema Definition (XSD) files containing definitions of data types

referenced by services and methods in the WSDL files.

v Additional WSDL and XSD files describing business objects. Business objects

describe concrete business processes or human tasks running on the WebSphere

server. These additional files are only required if your client application needs to

interact directly with the concrete business processes or human tasks through

the Web services APIs. They are not necessary if your client application is only

going to perform generic tasks, such as issuing queries.

After these artifacts are published, you need to copy them to your client

programming environment, where they are used to generate a proxy client and

helper classes.

Specifying the Web service endpoint address:

The Web service endpoint address is the URL that a client application must specify

to access the Web services APIs. The endpoint address is written into the WSDL

file that you export to generate a proxy client for your client application.

 The Web service endpoint address to use depends on your WebSphere server

configuration:

v Scenario 1. A single WebSphere server. The WebSphere endpoint address to

specify is the host name and port number of the server, for example host1:9080.

v Scenario 2. A WebSphere cluster composed of several servers. The WebSphere

endpoint address to specify is the host name and port of the server that is

hosting the Web services APIs, for example, host2:9081.

v Scenario 3. A Web server is used as a front end. The WebSphere endpoint

address to specify is the host name and port of the Web server, for example:

host:80.

By default, the Web service endpoint address takes the form protocol://host:port/
context_root/fixed_path. Where:

v protocol. The communications protocol to be used between the client application

and the WebSphere server. The default protocol is HTTP. You can instead choose

to use the more secure HTTPS (HTTP over SSL) protocol. It is recommended to

use HTTPS.

v host:port. The host name and port number used to access the machine that is

hosting the Web services APIs. These values vary depending on the WebSphere

server configuration; for example, whether your client application is to access

the application directly or through a Web server front end.

v context_root. You are free to choose any value for the context root. The value

you choose must, however, be unique within each WebSphere cell. The default

value uses a ″node_server/cluster″ suffix that eliminates the risk of naming

conflicts.

v fixed_path is either /sca/com/ibm/bpe/api/BFMWS (for the Business Flow Manager

API) or /sca/com/ibm/task/api/HTMWS (for the Human Task Manager API) and

cannot be modified.

The Web service endpoint address is initially specified when configuring the

business process container or human task container:

1. Log on to the administrative console with a user ID with administrator rights.

2. Choose Applications → SCA modules.

246 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Note: You can also select Applications → Enterprise applications to display a

list of all available enterprise applications.

3. Select BPEContainer (for the business process container) or TaskContainer (for

the human task container) from the list of SCA modules or applications.

4. Choose Provide HTTP endpoint URL information from the list of Additional

properties.

5. Select one of the default prefixes from the list, or enter a custom prefix. Use a

prefix from the default prefix list if your client applications are to connect

directly to the application server hosting the Web services API. Otherwise,

specify a custom prefix.

6. Click Apply to copy the selected prefix to the SCA module.

7. Click OK. The URL information is saved to your workspace.

You can view the current value in the administrative console (for example, for the

business process container: Enterprise Applications → BPEContainer → View

Deployment Descriptor).

In the exported WSDL file, the location attribute of the soap:address element

contains the specified Web services endpoint address. For example:

<wsdl:service name="BFMWSService">

 <wsdl:port name="BFMWSPort" binding="this:BFMWSBinding">

 <soap:address location=

 "https://myserver:9080/WebServicesAPIs/sca/com/ibm/bpe/api/BFMWS"/>

 Related concepts

 “Adding security (Java Web services)” on page 256
You must secure Web service communications by implementing security

mechanisms in your client application.
 Related tasks

 “Adding security (.NET)” on page 262
You can secure Web service communications by integrating security

mechanisms into your client application.

Publishing WSDL files:

A Web Service Definition Language (WSDL) file contains a detailed description of

all the operations available with a Web services API. Separate WSDL files are

available for the Business Flow Manager and Human Task Manager Web services

APIs. You must first publish these WSDL files then copy them from the WebSphere

environment to your development environment, where they are used to generate a

proxy client.

 Before publishing the WSDL files, be sure to specify the correct Web services

endpoint address. This is the URL that your client application uses to access the

Web services APIs.

You only need to publish WSDL files once.

Note: If you have the WebSphere Process Server client CD, you can copy the files

directly from there to your client programming environment instead.

Publishing the business process WSDL:

Use the administrative console to publish the WSDL file.

1. Log on to the administrative console with a user ID with administrator rights.

Chapter 5. Developing 247

2. Select Applications → SCA modules

Note: You can also select Applications → Enterprise applications to display a

list of all available enterprise applications.

3. Choose the BPEContainer application from the list of SCA modules or

applications.

4. Select Publish WSDL files from the list of Additional properties

5. Click on the zip file in the list.

6. On the File Download window that appears, click Save.

7. Browse to a local folder and click Save.

The exported zip file is named BPEContainer_WSDLFiles.zip. The zip file contains

a WSDL file that describes the Web services, and any XSD files referenced from

within the WSDL file.

Publishing the human task WSDL:

Use the administrative console to publish the WSDL file.

1. Log on to the administrative console with a user ID with administrator rights.

2. Select Applications → SCA modules

Note: You can also select Applications → Enterprise applications to display a

list of all available enterprise applications.

3. Choose the TaskContainer application from the list of SCA modules or

applications.

4. Select Publish WSDL files from the list of Additional properties

5. Click on the zip file in the list.

6. On the File Download window that appears, click Save.

7. Browse to a local folder and click Save.

The exported zip file is named TaskContainer_WSDLFiles.zip. The zip file contains

a WSDL file that describes the Web services, and any XSD files referenced from

within the WSDL file.

Exporting business objects:

Business processes and human tasks have well-defined interfaces that allow them

to be accessed externally as Web services. If these interfaces reference business

objects, you need to export the interface definitions and business objects to your

client programming environment.

 This procedure must be repeated for each business object that your client

application needs to interact with.

In WebSphere Process Server, business objects define the format of request,

response and fault messages that interact with business processes or human tasks.

These messages can also contain definitions of complex data types.

For example, to create and start a human task, the following items of information

must be passed to the task interface:

v The task template name

v The task template namespace

248 IBM WebSphere Process Server for z/OS: Business Process Choreographer

v An input message, containing formatted business data

v A response wrapper for returning the response message

v A fault message for returning faults and exceptions

These items are encapsulated within a single business object. All operations of the

Web service interface are modeled as a ″document/literal wrapped″ operation.

Input and output parameters for these operations are encapsulated in wrapper

documents. Other business objects define the corresponding response and fault

message formats.

In order to create and start the business process or human task through a Web

service, these wrapper objects must be made available to the client application on

the client side.

This is achieved by exporting the business objects from the WebSphere

environment as Web Service Definition Language (WSDL) and XML Schema

Definition (XSD) files, importing the data type definitions into your client

programming environment, then converting them to helper classes for use by the

client application.

1. Launch the WebSphere Integration Developer (WID) Workspace if it is not

already running.

2. Select the Library module containing the business objects to be exported. A

Library module is a compressed file that contains the necessary business

objects.

3. Export the Library module.

4. Copy the exported files to your client application development environment.

Example

Assume a business process exposes the following Web service operation:

<wsdl:operation name="updateCustomer">

 <wsdl:input message="tns:updateCustomerRequestMsg"

 name="updateCustomerRequest"/>

 <wsdl:output message="tns:updateCustomerResponseMsg"

 name="updateCustomerResponse"/>

 <wsdl:fault message="tns:updateCustomerFaultMsg"

 name="updateCustomerFault"/>

 </wsdl:operation>

with the WSDL messages defined as:

<wsdl:message name="updateCustomerRequestMsg">

 <wsdl:part element="types:updateCustomer"

 name="updateCustomerParameters"/>

 </wsdl:message>

 <wsdl:message name="updateCustomerResponseMsg">

 <wsdl:part element="types:updateCustomerResponse"

 name="updateCustomerResult"/>

 </wsdl:message>

 <wsdl:message name="updateCustomerFaultMsg">

 <wsdl:part element="types:updateCustomerFault"

 name="updateCustomerFault"/>

 </wsdl:message>

The concrete customer-defined elements ″types:updateCustomer″,

″types:updateCustomerResponse″ and ″types:updateCustomerFault″ must be

passed to and received from the Web services APIs using <xsd:any> parameters in

all generic operations (call, sendMessage, and so on) performed by the client

Chapter 5. Developing 249

application. These customer-defined elements are created, serialized and

deserialized on the client application side using helper classes that are generated

using the exported XSD files.

 Related tasks

 “Creating helper classes for BPEL processes (.NET)” on page 259
Certain Web services API operations require client applications to use

″document/literal″ style wrapped elements. Client applications require helper

classes to help them generate the necessary wrapper elements.

Using files on the client CD:

As an alternative to exporting artifacts from the WebSphere server environment,

you can copy the files necessary for generating a client application from the

WebSphere Process Server client CD.

 In this case, you must manually modify the default Web services endpoint address

of the Business Flow Manager API or Human Task Manager API.

If the client application is to access both APIs, you must edit the default endpoint

address for both APIs.

Copying files from the client CD:

The files necessary to access the Web services APIs are available on the WebSphere

Process Server client CD.

1. Access the client CD and browse to the ProcessChoreographer\client directory.

2. Copy the necessary files to your client application development environment.

For the Business Flow Manager API, copy:

BFMWS.wsdl

Describes the Web services available in the Business Flow Manager Web

services API. This file contains the endpoint address.

BFMIF.wsdl

Describes the parameters and data type of each Web service in the

Business Flow Manager Web services API.

BFMIF.xsd

Describes data types used in the Business Flow Manager Web services

API.

BPCGEN.xsd

Contains data types that are common between the Business Flow

Manager and Human Task Manager Web services APIs.
For the Human Task Manager API, copy:

HTMWS.wsdl

Describes the Web services available in the Human Task Manager Web

services API. This file contains the endpoint address.

HTMIF.wsdl

Describes the parameters and data type of each Web service in the

Human Task Manager Web services API.

HTMIF.xsd

Describes data types used in the Human Task Manager Web services

API.

250 IBM WebSphere Process Server for z/OS: Business Process Choreographer

BPCGEN.xsd

Contains data types that are common between the Business Flow

Manager and Human Task Manager Web services APIs.

Note: The BPCGen.xsd file is common to both APIs.

After you copy the files, you must manually change the Web services API endpoint

address the BFMWS.wsdl or HTMWS.wsdl files to that of the WebSphere

application server that is hosting the Web services APIs.

Manually changing the Web service endpoint address:

If you copy files from the client CD, you must change the default Web service

endpoint address specified in WSDL files to that of the server that is hosting the

Web services APIs.

 You can use the administrative console to set the Web service endpoint address

before exporting the WSDL files. If, however, you copy the WSDL files from the

WebSphere Process Server client CD, you must modify the default Web service

endpoint address manually.

The Web service endpoint address to use depends on your WebSphere server

configuration:

v Scenario 1. There is a single WebSphere server. The WebSphere endpoint address

to specify is the host name and port number of the server, for example

host1:9080.

v Scenario 2. A WebSphere cluster composed of several servers. The WebSphere

endpoint address to specify is the host name and port of the server that is

hosting the Web services APIs, for example, host2:9081.

v Scenario 3. A Web server is used as a front end. The WebSphere endpoint

address to specify is the host name and port of the Web server, for example:

host:80.

Changing the Business Flow Manager API endpoint:

If you copy the Business Flow Manager API files from the WebSphere Process

Server client CD, you must manually edit the default endpoint address.

 1. Navigate to the directory containing the files copied from the client CD.

2. Open the BFMWS.wsdl file in a text editor or XML editor.

3. Locate the soap:address element (towards the bottom of the file).

4. Modify the value of the location attribute with the HTTP URL of the server on

which the Web service API is running. To do this:

a. Optionally, replace http with https to use the more secure HTTPS protocol.

b. Replace localhost with the host name or IP address of the Web services

APIs server endpoint address.

c. Replace 9080 with the port number of the application server.

d. Replace BPEContainer_N1_server1 with the ″context root″ of the application

running the Web services API. The default context root is composed of:

v BPEContainer. The application name.

v N1. The node name.

v server1. The server name.
e. Do not modify the fixed portion of the URL (/sca/com/ibm/bpe/api/BFMWS) .

Chapter 5. Developing 251

For example, if the application is running on the server s1.n1.ibm.com and the

server is accepting SOAP/HTTP requests at port 9080, modify the

<soap:address> element as follows:

<soap:address location="http://si.n1.ibm.com:9080/

 BPEContainer_N1_server1/sca/com/ibm/bpe/api/BFMWS"/>

 Related concepts

 “Adding security (Java Web services)” on page 256
You must secure Web service communications by implementing security

mechanisms in your client application.
 Related tasks

 “Adding security (.NET)” on page 262
You can secure Web service communications by integrating security

mechanisms into your client application.

Changing the Human Task Manager API endpoint:

If you copy the Human Task Manager API files from the WebSphere Process Server

client CD, you must manually edit the default endpoint address.

1. Navigate to the directory containing the files copied from the client CD.

2. Open the HTMWS.wsdl file in a text editor or XML editor.

3. Locate the soap:address element (towards the bottom of the file).

4. Modify the value of the location attribute with the correct endpoint address.

To do this:

a. Optionally, replace http with https to use the more secure HTTPS protocol.

b. Replace localhost with the host name or IP address of the Web services

API server’s endpoint address.

c. Replace 9080 with the port number of the application server.

d. Replace HTMContainer_N1_server1 with the ″context root″ of the application

running the Web services API. The default context root is composed of:

v HTMContainer. The application name.

v N1. The node name.

v server1. The server name.
e. Do not modify the fixed portion of the URL (/sca/com/ibm/task/api/HTMWS).

For example, if the application is running on the server s1.n1.ibm.com and the

server is accepting SOAP/HTTPS requests at port 9081, modify the

<soap:address> element as follows:

<soap:address location="https://si.n1.ibm.com:9081/

 HTMContainer_N1_server1/sca/com/ibm/task/api/HTMWS"/>

 Related concepts

 “Adding security (Java Web services)” on page 256
You must secure Web service communications by implementing security

mechanisms in your client application.
 Related tasks

 “Adding security (.NET)” on page 262
You can secure Web service communications by integrating security

mechanisms into your client application.

Developing client applications in the Java Web services

environment

You can use any Java-based development environment compatible with Java Web

services to develop client applications for the Web services APIs.

252 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Generating a proxy client (Java Web services):

Java Web service client applications use a proxy client to interact with the Web

services APIs.

 A proxy client for Java Web services contains a number of Java Bean classes that

the client application calls to perform Web service requests. The proxy client

handles the assembly of service parameters into SOAP messages, sends SOAP

messages to the Web service over HTTP, receives responses from the Web service,

and passes any returned data to the client application.

Basically, therefore, a proxy client allows a client application to call a Web service

as if it were a local function.

Note: You only need to generate a proxy client once. All client applications

accessing the same Web services API can then use the same proxy client.

In the IBM Web services environment, there are two ways to generate a proxy

client:

v Using Rational® Application Developer or WebSphere Integration Developer

integrated development environments.

v Using the WSDL2Java command-line tool.

Other Java Web services development environments usually include either the

WSDL2Java tool or proprietary client application generation facilities.

Using Rational Application Developer to generate a proxy client:

The Rational Application Developer integrated development environment allows

you to generate a proxy client for your client application.

 Before generating a proxy client, you must have previously exported the WSDL

files that describe the business process or human task Web services interfaces from

the WebSphere environment (or the WebSphere Process Server client CD) and

copied them to your client programming environment.

1. Add the appropriate WSDL file to your project:

v BFMWS.WSDL for business processes

v HTMWS.WSDL for human tasks
2. Modify the Web Service wizard properties:

a. In Rational Application Developer, choose Preferences → Web services →

Code generation → IBM WebSphere runtime.

b. Select the Generate Java from WSDL using the no wrapped style option.
3. Select the BFMWS.WSDL or HTMWS.WSDL file.

4. Choose the client side container type: client (client container), ejb (EJB

container), java (Java container), or none.

5. Right-click and choose Web services → Generate client.

6. Follow the on-screen instructions.

A proxy client, made up of a number of proxy, locator and helper Java classes, is

generated and added to your project. The deployment descriptor is also updated.

Using WSDL2Java to generate a proxy client:

Chapter 5. Developing 253

WSDL2Java is a command-line tool that generates a proxy client. A proxy client

make it easier to program client applications.

 Before generating a proxy client, you must have previously exported the WSDL

files that describe the business process or human task Web services APIs from the

WebSphere environment (or the WebSphere Process Server client CD) and copied

them to your client programming environment.

1. Use the WSDL2Java tool to generate a proxy client: Type:

wsdl2java options WSDLfilepath

Where:

v options include:

-noWrappedOperations (-w)

Disables the detection of wrapped operations. Java beans for request

and response messages are generated.

Note: This is not the default value.

-role (-r)

Specify the value client to generate files and binding files for

client-side development.

-container (-c)

The client-side container to use. Valid arguments include:

client A client container

ejb An Enterprise JavaBeans (EJB) container.

none No container

web A Web container

-output (-o)

The folder in which to store the generated files.
For a complete list of WSDL2Java parameters, use the -help command line

switch, or refer to the online help for the WSDL2Java tool in the WID/RAD.

v WSDLfilepath is the path and filename of the WSDL file that you exported

from WebSphere environment or copied from the client CD.

The following example generates a proxy client for the Human Task Activities

Web services API:

call wsdl2java.bat -r client -c client -noWrappedOperations

 -output c:\ws\proxyClient c:\ws\bin\HTMWS.wsdl

2. Include the generated class files in your project.

Creating helper classes for BPEL processes (Java Web services):

Business objects referenced in concrete API requests (for example, sendMessage, or

call) require client applications to use ″document/literal wrapped″ style elements.

Client applications require helper classes to help them generate the necessary

wrapper elements.

 To create helper classes, you must have exported the WSDL file of the Web services

API from the WebSphere Process Server environment.

254 IBM WebSphere Process Server for z/OS: Business Process Choreographer

The call() and sendMessage() operations of the Web services APIs allow interaction

with BPEL processes on the WebSphere Process Server. The input message of the

call() operation expects the document/literal wrapper of the process input message

to be provided.

There are a number of possible techniques for generating helper classes for a BPEL

process or human task, including:

1. Use the SoapElement object.

In the Rational Application Developer environment available in WebSphere

Integration Developer, the Web service engine supports JAX-RPC 1.1. In

JAX-RPC 1.1, the SoapElement object extends a Document Object Model (DOM)

element, so it is possible to use the DOM API to create, read, load, and save

SOAP messages.

For example, assume the WSDL file contains the following input message for a

workflow process or human task:

<xsd:element name="operation1">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="input1" nillable="true" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

To create the corresponding SOAP message using the DOM API:

SOAPFactory soapfactoryinstance = SOAPFactory.newInstance();

SOAPElement soapmessage = soapfactoryinstance.createElement

 ("operation1", namespaceprefix, interfaceURI);

SOAPElement inputelement = soapfactoryinstance.createElement("input1");

inputelement.addTextNode(message value);

soapmessage.addChildElement(outputelement);

The following example shows how to create input parameters for the

sendMessage operation:

SendMessage inWsend = new SendMessage();

inWsend.setProcessTemplateName(processtemplatename);

inWsend.setPortType(porttype);

inWsend.setOperation(operationname);

inWsend.set_any(soapmessage);

2. Use the WebSphere Custom Data Binding feature.

This technique is described in the following developerWorks articles:

v How to choose a custom mapping technology for Web services

v Developing Web Services with EMF SDOs for complex XML schema
 Interoperability With Patterns and Strategies for Document-Based Web Services

 Web Services support for Schema/WSDL(s) containing optional JAX-RPC

1.0/1.1 XML Schema Types

Creating a client application (Java Web services):

A client application sends requests to and receives responses from the Web services

APIs. By using a proxy client to manage communications and helper classes to

format complex data types, a client application can invoke Web service methods as

if they were local functions.

 Before starting to create a client application, generate the proxy client and any

necessary helper classes.

Chapter 5. Developing 255

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0601_gallardo/0601_gallardo.html?ca=dnw-704
http://www-128.ibm.com/developerworks/webservices/library/ws-emfsdo/
http://java.sun.com/developer/technicalArticles/xml/jaxrpcpatterns2/
http://www-1.ibm.com/support/docview.wss?uid=swg21207642
http://www-1.ibm.com/support/docview.wss?uid=swg21207642

You can develop client applications using any Web services-compatible

development tool, for example IBM Rational Application Developer (RAD). You

can build any type of Web services application to call the Web services APIs.

1. Create a new client application project.

2. Generate the proxy client and add the Java helper classes to your project.

3. Code your client application.

4. Build the project.

5. Run the client application.

The following example shows how to use the Business Flow Manager Web service

API.

// create the service locator and the proxy

 BFMWSServiceLocator locator = new BFMWSServiceLocator();

 BFMIF proxy = locator.getBFMWSPort();

 // prepare the input data for the operation

 GetProcessTemplate iW = new GetProcessTemplate();

 iW.setIdentifier(your_process_template_name);

 // invoke the operation

 GetProcessTemplateResponse oW = proxy.getProcessTemplate(iW);

 // process output of the operation

 ProcessTemplateType ptd = oW.getProcessTemplate();

 System.out.println("getName= " + ptd.getName());

 System.out.println("getPtid= " + ptd.getPtid());

 Related tasks

 “Generating a proxy client (Java Web services)” on page 253
Java Web service client applications use a proxy client to interact with the Web

services APIs.

 “Creating helper classes for BPEL processes (Java Web services)” on page 254
Business objects referenced in concrete API requests (for example, sendMessage,

or call) require client applications to use ″document/literal wrapped″ style

elements. Client applications require helper classes to help them generate the

necessary wrapper elements.

Adding security (Java Web services):

You must secure Web service communications by implementing security

mechanisms in your client application.

 WebSphere Application Server currently supports the following security

mechanisms for the Web services APIs:

v The user name token

v Lightweight Third Party Authentication (LTPA)
 Related concepts

 “Authorization roles for human tasks” on page 157
Actions that you can take on human tasks depend on your authorization role.

This role can be a J2EE role or an instance-based role.

 “Authorization roles for business processes” on page 149
Actions that you can take on business processes depend on your authorization

role. This role can be a J2EE role or an instance-based role.
 Related information

 Securing applications during assembly and deployment

256 IBM WebSphere Process Server for z/OS: Business Process Choreographer

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/tsec_assemble.html

Implementing the user name token:

The user name token security mechanism provides user name and password

credentials.

 With the user name token security mechanism, you can choose to implement

various callback handlers. Depending on your choice:

v You are prompted to supply a user name and password each time you run the

client application.

v The user name and password are written into the deployment descriptor.

In either case, the supplied user name and password must match those of an

authorized role in the corresponding business process container or human task

container.

The user name and password are encapsulated in the request message envelope,

and so appear ″in clear″ in the SOAP message header. It is therefore strongly

recommended that you configure the client application to use the HTTPS (HTTP

over SSL) communications protocol. All communications are then encrypted. You

can select the HTTPS communications protocol when you specify the Web service

API’s endpoint URL address.

To define a user name token:

1. In the Rational Application Developer environment available in WebSphere

Integration Developer, choose WS Binding → Security Request Generator

Binding Configuration → Token Generator.

2. On the Token Generator dialog, choose Username as the Token type.

3. In the Call back handler field, type either

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler (which

prompts for the user name and password when you run the client application)

or com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler.

4. If you choose NonPromptCallbackHandler, you must specify a valid user

name and password in the deployment descriptor.

 Related tasks

 “Specifying the Web service endpoint address” on page 246
The Web service endpoint address is the URL that a client application must

specify to access the Web services APIs. The endpoint address is written into

the WSDL file that you export to generate a proxy client for your client

application.
 Related information

 IBM WebSphere Developer Technical Journal: Web services security with

WebSphere Application Server V6

Implementing the LTPA security mechanism:

The Lightweight Third Party Authentication (LTPA) security mechanism can be

used when the client application is running within a previously established

security context.

 The LTPA security mechanism is only available if your client application is running

in a secure environment in which a security context has already been established.

For example, if your client application is running in an Enterprise JavaBeans (EJB)

container, then the EJB client must log in before being able to invoke the client

application. A security context is then established. If the EJB client application then

Chapter 5. Developing 257

http://www-128.ibm.com/developerworks/websphere/techjournal/0604_singh/0604_singh.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0604_singh/0604_singh.html

invokes a Web service, the LTPA callback handler retrieves the LTPA token from

the security context and adds it to the SOAP request message. On the server side,

the LTPA token is handled by the LTPA mechanism.

To implement the LTPA security mechanism:

1. In the Rational Application Developer environment available in WebSphere

Integration Developer, choose WS Binding → Security Request Generator

Binding Configuration → Token Generator.

2. On the Token Generator dialog, choose LTPAToken as the Token type.

3. In the Call back handler field, type

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler.

At runtime, the LTPATokenCallbackHandler retrieves the LTPA token from the

existing security context and adds it to the SOAP request message.

Adding transaction support (Java Web services):

Java Web service client applications can be configured to allow server-side request

processing to participate in the client’s transaction, by passing a client application

context as part of the service request. This atomic transaction support is defined in

the Web Services-Atomic Transaction (WS-AT) specification.

 WebSphere Application Server runs each Web services API request as a separate

atomic transaction. Client applications can be configured to use transaction support

in one of the following ways:

v Participate in the transaction. Server-side request processing is performed within

the client application transaction context. Then, if the server encounters a

problem while the Web services API request is running and rolls back, the client

application’s request is also rolled back.

v Not use transaction support. WebSphere Application Server still creates a new

transaction in which to run the request, but server-side request processing is not

performed with the client application transaction context.
 Related information

 Web Services Atomic Transaction support in WebSphere Application Server

Developing client applications in the .NET environment

Microsoft .NET offers a powerful development environment in which to connect

applications through Web services.

Generating a proxy client (.NET):

.NET client applications use a proxy client to interact with the Web service APIs. A

proxy client shields client applications from the complexity of the Web service

messaging protocol.

 To create a proxy client, you must first export a number of WSDL files from the

WebSphere environment and copy them to your client programming environment.

Note: If you have the WebSphere Process Server client CD, you can copy the files

from there instead.

A proxy client comprises a set of C# bean classes. Each class contains all the

methods and objects exposed by a single Web service. The service methods handle

258 IBM WebSphere Process Server for z/OS: Business Process Choreographer

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/cjta_wstran.html

the assembly of parameters into complete SOAP messages, send SOAP messages to

the Web service over HTTP, receives responses from the Web service, and handle

any returned data.

Note: You only need to generate a proxy client once. All client applications

accessing the Web services APIs can then use the same proxy client.

1. Use the WSDL command to generate a proxy client: Type:

wsdl options WSDLfilepath

Where:

v options include:

/language

Allows you to specify the language used to create the proxy class.

The default is C#. You can also specify VB (Visual Basic), JS (JScript),

or VJS (Visual J#) as the language argument.

/output

The name of the output file, with the appropriate suffix. For

example, proxy.cs

/protocol

The protocol implemented in the proxy class. SOAP is the default

setting.
For a complete list of WSDL.exe parameters , use the /? command line

switch, or refer to the online help for the WSDL tool in Visual Studio.

v WSDLfilepath is the path and filename of the WSDL file that you exported

from the WebSphere environment or copied from the client CD.

The following example generates a proxy client for the Human Task Manager

Web services API:

 wsdl /language:cs /output:proxyclient.cs c:\ws\bin\HTMWS.wsdl

2. Compile the proxy client as a Dynamic Link Library (DLL) file.

Creating helper classes for BPEL processes (.NET):

Certain Web services API operations require client applications to use

″document/literal″ style wrapped elements. Client applications require helper

classes to help them generate the necessary wrapper elements.

 To create helper classes, you must have exported the WSDL file of the Web services

API from the WebSphere Process Server environment.

The call() and sendMessage() operations of the Web services APIs cause BPEL

processes to be launched within WebSphere Process Server. The input message of

the call() operation expects the document/literal wrapper of the BPEL process

input message to be provided. To generate the necessary beans and classes for the

BPEL process, copy the <wsdl:types> element into a new XSD file, then use the

xsd.exe tool to generate helper classes.

1. If you have not already done so, export the WSDL file of the BPEL process

interface from WebSphere Integration Developer.

2. Open the WSDL file in a text editor or XML editor.

3. Copy the contents of all child elements of the<wsdl:types> element and paste it

into a new, skeleton, XSD file.

4. Run the xsd.exe tool on the XSD file:

call xsd.exe file.xsd /classes /o

Chapter 5. Developing 259

Where:

file.xsd

The XML Schema Definition file to convert.

/classes (/c)

Generate helper classes that correspond to the contents of the specified

XSD file or files.

/output (/o)

Specify the output directory for generated files. If this directory is

omitted, the default is the current directory.
For example:

call xsd.exe ProcessCustomer.xsd /classes /output:c:\temp

5. Add the class file that is generated to your client application. If you are using

Visual Studio, for example, you can do this using the Project → Add Existing

Item menu option.

If the ProcessCustomer.wsdl file contains the following:

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:bons1="http://com/ibm/bpe/unittest/sca"

 xmlns:tns="http://ProcessTypes/bpel/ProcessCustomer"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 name="ProcessCustomer"

 targetNamespace="http://ProcessTypes/bpel/ProcessCustomer">

 <wsdl:types>

 <xsd:schema targetNamespace="http://ProcessTypes/bpel/ProcessCustomer"

 xmlns:bons1="http://com/ibm/bpe/unittest/sca"

 xmlns:tns="http://ProcessTypes/bpel/ProcessCustomer"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace="http://com/ibm/bpe/unittest/sca"

 schemaLocation="xsd-includes/http.com.ibm.bpe.unittest.sca.xsd"/>

 <xsd:element name="doit">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="input1" nillable="true" type="bons1:Customer"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="doitResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="output1" nillable="true" type="bons1:Customer"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

 </wsdl:types>

 <wsdl:message name="doitRequestMsg">

 <wsdl:part element="tns:doit" name="doitParameters"/>

 </wsdl:message>

 <wsdl:message name="doitResponseMsg">

 <wsdl:part element="tns:doitResponse" name="doitResult"/>

 </wsdl:message>

 <wsdl:portType name="ProcessCustomer">

 <wsdl:operation name="doit">

 <wsdl:input message="tns:doitRequestMsg" name="doitRequest"/>

 <wsdl:output message="tns:doitResponseMsg" name="doitResponse"/>

 </wsdl:operation>

 </wsdl:portType>

</wsdl:definitions>

The resulting XSD file contains:

260 IBM WebSphere Process Server for z/OS: Business Process Choreographer

<xsd:schema xmlns:bons1="http://com/ibm/bpe/unittest/sca"

 xmlns:tns="http://ProcessTypes/bpel/ProcessCustomer"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://ProcessTypes/bpel/ProcessCustomer">

 <xsd:import namespace="http://com/ibm/bpe/unittest/sca"

 schemaLocation="Customer.xsd"/>

 <xsd:element name="doit">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="input1" type="bons1:Customer" nillable="true"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="doitResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="output1" type="bons1:Customer" nillable="true"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

 Related information

 Microsoft documentation for the XML Schema Definition Tool (XSD.EXE)

Creating a client application (.NET):

A client application sends requests to and receives responses from the Web services

APIs. By using a proxy client to manage communications and helper classes to

format complex data types, a client application can invoke Web service methods as

if they were local functions.

 Before starting to create a client application, generate the proxy client and any

necessary helper classes.

You can develop .NET client applications using any .NET-compatible development

tool, for example, Visual Studio .NET. You can build any type of .NET application

to call the generic Web service APIs.

1. Create a new client application project. For example, create a WinFX Windows

Application in Visual Studio.

2. In the project options, add a reference to the Dynamic Link Library (DLL) file

of the proxy client. Add all of the helper classes that contain business object

definitions to your project. In Visual Studio, for example, you can do this using

the Project → Add existing item option.

3. Create a proxy client object. For example:

HTMClient.HTMReference.HumanTaskManagerComponent1Export_HumanTaskManagerHttpService service =

 new HTMClient.HTMReference.HumanTaskManagerComponent1Export_HumanTaskManagerHttpService();

4. Declare any business object data types used in messages to be sent to or

received from the Web service. For example:

HTMClient.HTMReference.TKIID id = new HTMClient.HTMReference.TKIID();

ClipBG bg = new ClipBG();

Clip clip = new Clip();

5. Call specific Web service functions and specify any required parameters. For

example, to create and start a human task:

HTMClient.HTMReference.createAndStartTask task =

 new HTMClient.HTMReference.createAndStartTask();

HTMClient.HTMReference.StartTask sTask = new HTMClient.HTMReference.StartTask();

sTask.taskName = "SimpleTask";

Chapter 5. Developing 261

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpconxmlschemadefinitiontoolxsdexe.asp

sTask.taskNamespace = "http://myProcess/com/acme/task";

sTask.inputMessage = bg;

task.inputTask = sTask;

id = service.createAndStartTask(task).outputTask;

6. Remote processes and tasks are identified with persistent IDs (id in the

example in the previous step). For example, to claim a previously created

human task:

HTMClient.HTMReference.claimTask claim = new HTMClient.HTMReference.claimTask();

claim.inputTask = id;

 Related tasks

 “Generating a proxy client (.NET)” on page 258
.NET client applications use a proxy client to interact with the Web service APIs.

A proxy client shields client applications from the complexity of the Web

service messaging protocol.

 “Creating helper classes for BPEL processes (.NET)” on page 259
Certain Web services API operations require client applications to use

″document/literal″ style wrapped elements. Client applications require helper

classes to help them generate the necessary wrapper elements.

Adding security (.NET):

You can secure Web service communications by integrating security mechanisms

into your client application.

 These security mechanisms can include user name token (user name and

password), or custom binary and XML-based security tokens.

1. Download and install the Web Services Enhancements (WSE) 2.0 SP3 for

Microsoft .NET. This is available from:

http://www.microsoft.com/downloads/details.aspx?familyid=1ba1f631-c3e7-
420a-bc1e-ef18bab66122&displaylang=en

2. Modify the generated proxy client code as follows.

Change:

public class Export1_MyMicroflowHttpService : System.Web.Services.Protocols.SoapHttpClientProtocol {

To:

public class Export1_MyMicroflowHttpService : Microsoft.Web.Services2.WebServicesClientProtocol {

Note: These modifications are lost if you regenerate the proxy client by

running the WSDL.exe tool.

3. Modify the client application code by adding the following lines at the top of

the file:

 using System.Web.Services.Protocols;

 using Microsoft.Web.Services2;

 using Microsoft.Web.Services2.Security.Tokens;

 ...

4. Add code to implement the desired security mechanism. For example, the

following code adds user name and password protection:

 string user = "U1";

 string pwd = "password";

 UsernameToken token =

 new UsernameToken(user, pwd, PasswordOption.SendPlainText);

 me._proxy.RequestSoapContext.Security.Tokens.Clear();

 me._proxy.RequestSoapContext.Security.Tokens.Add(token);

262 IBM WebSphere Process Server for z/OS: Business Process Choreographer

http://www.microsoft.com/downloads/details.aspx?familyid=1ba1f631-c3e7-420a-bc1e-ef18bab66122&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=1ba1f631-c3e7-420a-bc1e-ef18bab66122&displaylang=en

Querying business-process and task-related objects

You can use the Web services APIs to query business-process and task-related

objects in the Business Process Choreographer database to retrieve specific

properties of these objects.

The Business Process Choreographer database stores template (model) and instance

(runtime) data for managing business processes and tasks.

Through the Web services APIs, client applications can issue queries to retrieve

information from the database about business processes and tasks.

Client applications can issue a one-off query to retrieve a specific property of an

object. Queries that you use often can be saved. These stored queries can then be

retrieved and used by your client application.

Queries on business-process and task-related objects:

Use the query interface of the Web services APIs to obtain information about

business processes and tasks.

 Client applications use an SQL-like syntax to query the database.

Example for Java Web services

string processTemplateName = "ProcessCustomerLR";

query query1 = new query();

query1.selectClause = "DISTINCT PROCESS_INSTANCE.STARTED, PROCESS_INSTANCE.PIID";

query1.whereClause =

 "PROCESS_INSTANCE.TEMPLATE_NAME = ’" + processTemplateName + "’";

query1.orderByClause = "PROCESS_INSTANCE.STARTED";

query1.threshold = null;

query1.timeZone = "UTC"; query1.skipTuples = null;

queryResponse queryResponse1 = proxy.query(query1);

Information retrieved from the database is returned through the Web services APIs

as a query result set.

For example:

QueryResultSetType queryResultSet = queryResponse1.queryResultSet;

if (queryResultSet != null) {

 Console.WriteLine("--> QueryResultSetType");

 Console.WriteLine(" . size= " + queryResultSet.size);

 Console.WriteLine(" . numberColumns= " + queryResultSet.numberColumns);

 string indent = " . ";

 // -- the query column info

 QueryColumnInfoType[] queryColumnInfo = queryResultSet.QueryColumnInfo;

 if (queryColumnInfo.Length > 0) {

 Console.WriteLine();

 Console.WriteLine("= . QueryColumnInfoType size= " + queryColumnInfo.Length);

 Console.Write(" | tableName ");

 for (int i = 0; i < queryColumnInfo.Length ; i++) {

 Console.Write(" | " + queryColumnInfo[i].tableName.PadLeft(20));

 }

 Console.WriteLine();

 Console.Write(" | columnName ");

 for (int i = 0; i < queryColumnInfo.Length ; i++) {

 Console.Write(" | " + queryColumnInfo[i].columnName.PadLeft(20));

 }

 Console.WriteLine();

 Console.Write(" | data type ");

 for (int i = 0; i < queryColumnInfo.Length ; i++) {

Chapter 5. Developing 263

QueryColumnInfoTypeType tt = queryColumnInfo[i].type;

 Console.WriteLine(" | " + tt.ToString());

 }

 Console.WriteLine();

 }

 else {

 Console.WriteLine("--> queryColumnInfo= <null>");

 }

 // - the query result values

 string[][] result = queryResultSet.result;

 if (result !=null) {

 Console.WriteLine();

 Console.WriteLine("= . result size= " + result.Length);

 for (int i = 0; i < result.Length; i++) {

 Console.Write(indent +i);

 string[] row = result[i];

 for (int j = 0; j < row.Length; j++) {

 Console.Write(" | " + row[j]);

 }

 Console.WriteLine();

 }

 }

 else {

 Console.WriteLine("--> result= <null>");

 }

}

else {

 Console.WriteLine("--> QueryResultSetType= <null>");

}

The query function returns objects according to the caller’s authorization. The

query result set only contains the properties of those objects that the caller is

authorized to see.

Predefined database views are provided for you to query the object properties. For

process templates, the query function has the following syntax:

ProcessTemplateData[] queryProcessTemplates

 (java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

For task templates, the query function has the following syntax:

TaskTemplate[] queryTaskTemplates

 (java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

For the other business-process and task-related objects, the query function has the

following syntax:

QueryResultSet query (java.lang.String selectClause,

 java.lang.String whereClause,

 java.lang.String orderByClause,

 java.lang.Integer skipTuples

 java.lang.Integer threshold,

 java.util.TimeZone timezone);

The query interface also contains a queryAll method. You can use this method to

retrieve all of the relevant data about an object, for example, for monitoring

purposes. The caller of the queryAll method must have one of the following Java 2

Platform, Enterprise Edition (J2EE) roles: BPESystemAdministrator,

264 IBM WebSphere Process Server for z/OS: Business Process Choreographer

BPESystemMonitor, TaskSystemAdministrator, or TaskSystemMonitor.

Authorization checking using the corresponding work item of the object is not

applied.

Example for .NET

ProcessTemplateType[] templates = null;

 try {

 queryProcessTemplates iW = new queryProcessTemplates();

 iW.whereClause = "PROCESS_TEMPLATE.STATE=PROCESS_TEMPLATE.STATE.STATE_STARTED";

 iW.orderByClause = null;

 iW.threshold = null;

 iW.timeZone = null;

 Console.WriteLine("--> queryProcessTemplates ... ");

 Console.WriteLine("--> query: WHERE " + iW.whereClause + " ORDER BY " +

 iW.orderByClause + " THRESHOLD " + iW.threshold + " TIMEZONE" + iW.timeZone);

 templates = proxy.queryProcessTemplates(iW);

 if (templates.Length < 1) {

 Console.WriteLine("--> No templates found :-(");

 }

 else {

 for (int i = 0; i < templates.Length ; i++) {

 Console.Write("--> found template with ptid: " + templates[i].ptid);

 Console.WriteLine(" and name: " + templates[i].name);

 /* ... other properties of ProcessTemplateType ... */

 }

 }

 }

 catch (Exception e) {

 Console.WriteLine("exception= " + e);

 }

Query parameters:

Each query must specify a number of SQL-like clauses and parameters.

 A query is made up of:

v Select clause

v Where clause

v Order-by clause

v Skip-tuples parameter

v Threshold parameter

v Time-zone parameter

Predefined views for queries on business-process and human-task objects:

Predefined database views are provided for business-process and human-task

objects.

 Use these views when you query reference data for these objects. When you use

these views, you do not need to explicitly add join predicates for view columns,

these constructs are added automatically for you. You can use the query function

of the Web services APIs to query this data.

Managing stored queries:

Chapter 5. Developing 265

Stored queries provide a way to save queries that are run often. The stored query

can be either a query that is available to all users (public query), or a query that

belongs to a specific user (private query).

 A stored query is a query that is stored in the database and identified by a name.

A private and a public stored query can have the same name; private stored

queries from different owners can also have the same name.

You can have stored queries for business process objects, task objects, or a

combination of these two object types.

 Managing public stored queries
Public stored queries are created by the system administrator. These queries are

available to all users.

 Managing private stored queries for other users
Private queries can be created by any user. These queries are available only to

the owner of the query and the system administrator.

 Working with your private stored queries
If you are not a system administrator, you can create, run, and delete your own

private stored queries. You can also use the public stored queries that the

system administrator created.

Developing Web applications for business processes and

human tasks, using JSF components

Business Process Choreographer Explorer provides several JavaServer Faces (JSF)

components. You can extend and integrate these components to add

business-process and human-task functionality to Web applications.

You can use WebSphere Integration Developer to build your Web application.

1. Create a dynamic project and change the Web Project Features properties of the

Web project to include the JSF base components.

For more information on creating a Web project, go to the information center

for WebSphere Integration Developer.

2. Add the prerequisite Business Process Choreographer Explorer Java archive

(JAR files).

Add the following files to the WEB-INF/lib directory of your project:

v bpcclientcore.jar

v bfmclientmodel.jar

v htmclientmodel.jar

v bpcjsfcomponents.jar

These files are in the install_root/ProcessChoreographer/client directory.

3. Add the EJB references that you need to the Web application deployment

descriptor, web.xml file.

 <ejb-ref id="EjbRef_1">

 <ejb-ref-name>ejb/BusinessProcessHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.bpe.api.BusinessFlowManagerHome</home>

 <remote>com.ibm.bpe.api.BusinessFlowManager</remote>

 </ejb-ref>

 <ejb-ref id="EjbRef_2">

 <ejb-ref-name>ejb/HumanTaskManagerEJB</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.task.api.HumanTaskManagerHome</home>

 <remote>com.ibm.task.api.HumanTaskManager</remote>

 </ejb-ref>

266 IBM WebSphere Process Server for z/OS: Business Process Choreographer

<ejb-local-ref id="EjbLocalRef_1">

 <ejb-ref-name>ejb/LocalBusinessProcessHome</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home>com.ibm.bpe.api.LocalBusinessFlowManagerHome</local-home>

 <local>com.ibm.bpe.api.LocalBusinessFlowManager</local>

 </ejb-local-ref>

 <ejb-local-ref id="EjbLocalRef_2">

 <ejb-ref-name>ejb/LocalHumanTaskManagerEJB</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <local-home>com.ibm.task.api.LocalHumanTaskManagerHome</local-home>

 <local>com.ibm.task.api.LocalHumanTaskManager</local>

 </ejb-local-ref>

4. Add the Business Process Choreographer Explorer JSF components to the JSF

application.

a. Add the tag libraries that you need for your applications to the JavaServer

Pages (JSP) files. Typically, you need the JSF and HTML tag libraries, and

the tag library required by the JSF components.

v <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

v <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

v <%@ taglib uri="http://com.ibm.bpe.jsf/taglib" prefix="bpe" %>

b. Add an <f:view> tag to the body of the JSP page, and an <h:form> tag to

the <f:view> tag.

c. Add the JSF components to the JSP files.

Depending on your application, add the List component, the Details

component, the CommandBar component, or the Message component to the

JSP files. You can add multiple instances of each component.

d. Configure the managed beans in the JSF configuration file.

By default, the configuration file is the faces-config.xml file. This file is in

the WEB-INF directory of the Web application. Depending on the

component that you add to your JSP file, you also need to add the

references to the query and other wrapper objects to the JSF configuration

file.

e. Implement the custom code that you need to support the JSF components.
5. Deploy the application.

Map the EJB references to the Java Naming and Directory Interface (JNDI)

names or manually add the references to the ibm-web-bnd.xmi file.

The following table lists the reference bindings and their default mappings.

 Table 30. Mapping of the reference bindings to JNDI names

Reference binding JNDI name Comments

ejb/BusinessProcessHome com/ibm/bpe/api/BusinessFlowManagerHome Remote session bean

ejb/LocalBusinessProcessHome com/ibm/bpe/api/BusinessFlowManagerHome Local session bean

ejb/HumanTaskManagerEJB com/ibm/task/api/HumanTaskManagerHome Remote session bean

ejb/LocalHumanTaskManagerEJB com/ibm/task/api/HumanTaskManagerHome Local session bean

Your deployed Web application contains the functionality provided by the Business

Process Choreographer Explorer components.

Business Process Choreographer Explorer components

The Business Process Choreographer Explorer components are a set of

configurable, reusable elements that are based on the JavaServer Faces (JSF)

Chapter 5. Developing 267

technology. You can imbed these elements in Web applications. The Web

applications can then access installed business process and human task

applications.

The components consist of a set of JSF components and a set of client model

objects. The relationship of the components to Business Process Choreographer,

Business Process Choreographer Explorer, and other custom clients is shown in the

following figure.

 JSF components

The Business Process Choreographer Explorer components include the following

JSF components. You imbed these JSF components in your JavaServer Pages (JSP)

files when you build Web applications for working with business processes and

human tasks.

v List component

The List component displays a list of application objects in a table, for example,

tasks, activities, process instances, process templates, work items, or escalations.

This component has an associated list handler.

v Details component

The Details component displays the properties of tasks, work items, activities,

process instances, and process templates. This component has an associated

details handler.

v CommandBar component

The CommandBar component displays a bar with buttons. These buttons

represent commands that operate on either the object in a details view or the

selected objects in a list. These objects are provided by a list handler or a details

handler.

v Message component

268 IBM WebSphere Process Server for z/OS: Business Process Choreographer

The Message component displays a message that can contain either a Service

Data Object (SDO) or a simple type.

Client model objects

The client model objects are used with the JSF components. The objects implement

some of the interfaces of the underlying Business Process Choreographer API and

wrap the original object. The client model objects provide national language

support for labels and converters for some properties.

List handling in the List component:

Every instance of the List component is associated with an instance of the

com.ibm.bpe.jsf.handler.BPCListHandler class.

 This list handler tracks the selected items in the associated list and it provides a

notification mechanism. The list handler is bound to the List component through

the model attribute of the bpe:list tag.

The notification mechanism of the list handler is implemented using the

com.ibm.bpe.jsf.handler.ItemListener interface. Business Process Choreographer

Explorer uses this notification mechanism to associate the list entries with the

details pages for the different kinds of items. The trigger for a notification event is

typically one of the properties of the items that is displayed in the current list.

To exploit the notification mechanism, set the value of the action attribute of the

bpe:column tag for the property to the JavaServer Faces (JSF) navigation target your

application is to continue with when the notification event is triggered. The List

component renders the entry in the column as a JSF command link. If the link is

triggered, the object that represents the entry in the list is determined, and it is

passed to all of the registered item listeners. You can register implementations of

this interface in the configuration file of your JSF application.

The BPCListHandler class also provides a refreshList method. You can use this

method in JSF method bindings to implement a user interface control for running

the query again.

Query implementations

You can use the list handler to display all kinds of objects and their properties. The

content of the list that is displayed depends on the list of objects that is returned

by the implementation of the com.ibm.bpc.clientcore.Query interface that is

configured for the list handler. You can set the query either programmatically

using the setQuery method of the BPCListHandler class, or you can configure it in

the JSF configuration files of the application.

You can run queries not only against the Business Process Choreographer APIs, but

also against any other source of information that is accessible from your

application, for example, a content management system or a database. The only

requirement is that the result of the query is returned as a java.util.List of

objects by the execute method.

The type of the objects returned must guarantee that the appropriate getter

methods are available for all of the properties that are displayed in the columns of

the list for which the query is defined. To ensure that the type of the object that is

returned fits the list definitions, you can set the value of the type property on the

Chapter 5. Developing 269

BPCListHandler instance that is defined in the faces configuration file to the fully

qualified class name of the returned objects. You can return this name in the

getType call of the query implementation. At run time, the list handler checks that

the object types conform to the definitions.

To map error messages to specific entries in a list, the objects returned by the

query must implement a method with the signature public Object getID().

Error handling

You can take advantage of the error handling functions provided by the

BPCListHandler class in the following error situations.

v Errors that occur when queries are run or commands are executed

If an error occurs during the execution of a query, the BPCListHandler class

distinguishes between errors that were caused by insufficient access rights and

other exceptions. To catch errors due to insufficient access rights, the rootCause

parameter of the ClientException that is thrown by the execute method of the

query must be a com.ibm.bpe.api.EngineNotAuthorizedException or a

com.ibm.task.api.NotAuthorizedException exception. The List component

displays the error message instead of the result of the query.

If the error is not caused by insufficient access rights, the BPCListHandler class

passes the exception object to the implementation of the

com.ibm.bpc.clientcore.util.ErrorBean interface that is defined by the BPCError

key in your JSF application configuration file. When the exception is set, the

error navigation target is called.

v Errors that occur when working with items that are displayed in a list

The BPCListHandler class implements the com.ibm.bpe.jsf.handler.ErrorHandler

interface. You can provide information about these errors with the map

parameter of type java.util.Map in the setErrors method. This map contains

identifiers as keys and the exceptions as values. The identifiers must be the

values returned by the getID method of the object that caused the error. If the

map is set and any of the IDs match any of the items displayed in the list, the

list handler automatically adds a column containing the error message to the list.

To avoid outdated error messages in the list, reset the errors map. In the

following situations, the map is reset automatically:

– The refreshList method BPCListHandler class is called.

– A new query is set on the BPCListHandler class.

– The CommandBar component is used to trigger actions on items of the list.

The CommandBar component uses this mechanism as one of the methods for

error handling.

CommandBar component:

Use the CommandBar component to add action buttons to your application. The

component creates the buttons for the actions in the user interface and handles the

events that are created when a button is clicked.

 These buttons trigger functions that act on the objects that are returned by a

com.ibm.bpe.jsf.handler.ItemProvider interface, such as the BPCListHandler class,

or the BPCDetailsHandler class. The CommandBar component uses the item

provider that is defined by the value of the model attribute in the bpe:commandbar

tag.

270 IBM WebSphere Process Server for z/OS: Business Process Choreographer

How commands are processed

When a button in the command-bar section of the application’s user interface is

clicked, the associated event is handled by the CommandBar component in the

following way.

1. The CommandBar component identifies the implementation of the

com.ibm.bpc.clientcore.Command interface that is specified for the button that

generated the event.

2. If the model associated with the CommandBar component implements the

com.ibm.bpe.jsf.handler.ErrorHandler interface, the clearErrorMap method is

invoked to remove error messages from previous events.

3. The getSelectedItems method of the ItemProvider interface is called. The list of

items that is returned is passed to the execute method of the command, and the

command is invoked.

4. The CommandBar component determines the JavaServer Faces (JSF) navigation

target. If an action attribute is not specified in the bpe:commandbar tag, the

return value of the execute method specifies the navigation target. If the action

attribute is set to a JSF method binding, the string returned by the method is

interpreted as the navigation target. The action attribute can also specify an

explicit navigation target.

Error handling

An action method that is specified by the action attribute in the bpe:commandbar

tag is invoked if one of the following conditions are met:

v An exception is not thrown

v If an exception is thrown, it is an ErrorsInCommandException exception

You can implement error handling in the CommandBar component in several

ways:

v You can decide not to use any of the features of the CommandBar component.

If, for example, you want to display the errors on a page that is specific to the

selected command, the implementation of the command can catch the exceptions

that occur and propagate them to a page bean that is used for the error page.

You can make the page bean available to the command implementation by using

the context attribute of the bpe:commandbar tag. After the exception is set on the

page bean, the command returns the string of the JSF navigation rule that is

defined for the error page.

v If you want to display an error message below the command-bar section in the

user interface, create an exception class that implements the

com.ibm.bpc.clientcore.exception.CommandBarMessage marker interface. This

interface provides a message catalog of error messages.

v If the command operates on a list of items, you might want to track the success

of the command for each of the items in the list. To track the errors, map each

exception to the item for which the operation failed. The CommandBar

component can pass a map, which contains the identifiers as keys and the

exceptions as values, to the model object that is defined for the CommandBar

component.

For this mechanism to work, the model object must implement the

com.ibm.bpe.jsf.handler.ErrorHandler interface and the command must throw a

com.ibm.bpc.clientcore.exception.ErrorsInCommandException exception. The

CommandBar component then passes the map contained in the exception to the

error handler. The action method is triggered although an error occurred, and

Chapter 5. Developing 271

the current view is refreshed. The Business Process Choreographer Explorer

application makes use of this method to display exceptions in lists.

v If you throw a ClientException exception that does not implement the

CommandBarMessage interface and the exception is not an

ErrorsInCommandException, the CommandBar component propagates the

exception to the BPCError error bean that is defined in the configuration file of

your application. The error processing continues with the error page.

Utilities provided by the Business Process Choreographer Explorer JSF

components:

The JavaServer Faces (JSF) components provide utilities for user-specific time zone

information and error handling.

 User-specific time zone information

The BPCListHandler class uses the com.ibm.bpc.clientcore.util.User interface to get

information about the time zone and locale of each user. The List component

expects the implementation of the interface to be configured with user as the

managed-bean name in your JavaServer Faces (JSF) configuration file. If this entry

is missing from the configuration file, the time zone in which WebSphere Process

Server is running is returned.

The com.ibm.bpc.clientcore.util.User interface is defined as follows:

public interface User {

 /**

 * The locale used by the client of the user.

 * @return Locale.

 */

 public Locale getLocale();

 /**

 * The time zone used by the client of the user.

 * @return TimeZone.

 */

 public TimeZone getTimeZone();

 /**

 * The name of the user.

 * @return name of the user.

 */

 public String getName();

}

ErrorBean interface for error handling

The JSF components exploit a predefined managed bean, BPCError, for error

handling. This bean implements the com.ibm.bpc.clientcore.util.ErrorBean interface.

In error situations that trigger the error page, the exception is set on the error bean.

The error page is displayed in the following situations:

v If an error occurs during the execution of a query that is defined for a list

handler, and the error is generated as a ClientException error by the execute

method of a command

v If a ClientException error is generated by the execute method of a command and

this error is not an ErrorsInCommandException error nor does it implement the

CommandBarMessage interface

v If an error message is displayed in the component, and you follow the hyperlink

for the message

272 IBM WebSphere Process Server for z/OS: Business Process Choreographer

A default implementation of the com.ibm.bpc.clientcore.util.ErrorBeanImpl

interface is available.

The interface is defined as follows:

public interface ErrorBean {

 public void setException(Exception ex);

 /*

 * This setter method call allows a locale and

 * the exception to be passed. This allows the

 * getExceptionMessage methods to return localized Strings

 *

 */

 public void setException(Exception ex, Locale locale);

 public Exception getException();

 public String getStack();

 public String getNestedExceptionMessage();

 public String getNestedExceptionStack();

 public String getRootExceptionMessage();

 public String getRootExceptionStack();

 /*

 * This method returns the exception message

 * concatenated recursively with the messages of all

 * the nested exceptions.

 */

 public String getAllExceptionMessages();

 /*

 * This method is returns the exception stack

 * concatenated recursively with the stacks of all

 * the nested exceptions.

 */

 public String getAllExceptionStacks();

}

Adding the List component to a JSF application

Use the Business Process Choreographer Explorer List component to display a list

of client model objects, for example, business process instances or task instances.

1. Add the List component to the JavaServer Pages (JSP) file.

Add the bpe:list tag to the h:form tag. The bpe:list tag must include a

model attribute. Add bpe:column tags to the bpe:list tag to add the properties

of the objects that are to appear in each of the rows in the list.

The following example shows how to add a List component to display task

instances.

<h:form>

 <bpe:list model="#{TaskPool}">

 <bpe:column name="name" action="taskInstanceDetails" />

 <bpe:column name="state" />

 <bpe:column name="kind" />

 <bpe:column name="owner" />

 <bpe:column name="originator" />

 </bpe:list>

</h:form>

The model attribute refers to a managed bean, TaskPool. The managed bean

provides the list of Java objects over which the list iterates and then displays in

individual rows.

Chapter 5. Developing 273

2. Configure the managed bean referred to in the bpe:list tag.

For the List component, this managed bean must be an instance of the

com.ibm.bpe.jsf.handler.BPCListHandler class.

The following example shows how to add the TaskPool managed bean to the

configuration file.

<managed-bean>

<managed-bean-name>TaskPool</managed-bean-name>

<managed-bean-class>com.ibm.bpe.jsf.handler.BPCListHandler</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>query</property-name>

 <value>#{TaskPoolQuery}</value>

 </managed-property>

 <managed-property>

 <property-name>type</property-name>

 <value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

 </managed-property>

</managed-bean>

<managed-bean>

<managed-bean-name>htmConnection</managed-bean-name>

<managed-bean-class>com.ibm.task.clientmodel.HTMConnection</managed-bean-class>

<managed-bean-scope>application</managed-bean-scope>

 <managed-property>

 <property-name>jndiName</property-name>

 <value>java:comp/env/ejb/LocalHumanTaskManagerEJB</value>

 </managed-property>

</managed-bean>

The example shows that TaskPool has two configurable properties: query and

type. The value of the query property refers to another managed bean,

TaskPoolQuery. The value of the type property specifies the bean class, the

properties of which are shown in the columns of the displayed list. The

associated query instance can also have a property type. If a property type is

specified, it must be the same as the type specified for the list handler.

To provide a connection to Human Task Manager, the TaskPool managed bean

is implemented using the htmConnection managed bean.

3. Add the custom code for the managed bean that is referred to by the list

handler.

The following example shows how to add custom code for the TaskPool

managed bean.

public class MyTaskQuery implements Query {

 public List execute throws ClientException {

 // Examine the faces-config file for a managed bean "htmConnection".

 //

 FacesContext ctx = FacesContext.getCurrentInstance();

 Application app = ctx.getApplication();

 ValueBinding htmVb = app.createValueBinding("#{htmConnection}");

 htmConnection = (HTMConnection) htmVb.getValue(ctx);

 HumanTaskManagerService taskService =

 htmConnection.getHumanTaskManagerService();

 // Then call the actual query method on the Human Task Manager service.

 //

 QueryResultSet queryResult = taskService.query(

 "DISTINCT TASK.TKIID, TASK.NAME, TASK.KIND, TASK.STATE, TASK.TYPE,"

 + "TASK.STARTED, TASK.ACTIVATED, TASK.DUE, TASK.EXPIRES, TASK.PRIORITY" ,

274 IBM WebSphere Process Server for z/OS: Business Process Choreographer

"TASK.KIND IN(101,102,105) AND TASK.STATE IN(2)

 AND WORK_ITEM.REASON IN (1)",

 null,

 null,

 null);

 List applicationObjects = transformToTaskList (queryResult);

 return applicationObjects ;

 }

 private List transformToTaskList(QueryResultSet result) {

ArrayList array = null;

int entries = result.size();

array = new ArrayList(entries);

// Transforms each row in the QueryResultSet to a task instance beans.

 for (int i = 0; i < entries; i++) {

 result.next();

 array.add(new TaskInstanceBean(result, connection));

 }

 return array ;

 }

}

The TaskPoolQuery bean queries the properties of the Java objects. This bean

must implement the com.ibm.bpc.clientcore.Query interface. When the list

handler refreshes its contents, it calls the execute method of the query. The call

returns a list of Java objects. The getType method must return the class name of

the returned Java objects.

Your JSF application now contains a JavaServer page that displays the properties of

the requested list of objects, for example, the state, kind, owner, and originator of

the task instances that are available to you.

List component: Tag definitions:

The Business Process Choreographer Explorer List component displays a list of

objects in a table, for example, tasks, activities, process instances, process

templates, work items, and escalations.

 The List component consists of the JSF component tags: bpe:list and bpe:column.

The bpe:column tag is a subelement of the bpe:list tag.

Component class

com.ibm.bpe.jsf.component.ListComponent

Example syntax

<bpe:list model="#{ProcessTemplateList}">

 rows="20"

 styleClass="list"

 headerStyleClass="listHeader"

 rowClasses="normal">

 <bpe:column name="name" action="processTemplateDetails"/>

 <bpe:column name="validFromTime"/>

 <bpe:column name="executionMode" label="Execution mode"/>

 <bpe:column name="state" converterID="my.state.converter"/>

 <bpe:column name="autoDelete"/>

 <bpe:column name="description"/>

</bpe:list>

Chapter 5. Developing 275

Tag attributes

The body of the bpe:list tag can contain only bpe:column tags. When the table is

rendered, the List component iterates over the list of application objects and

provides the specific object for each column.

 Table 31. bpe:list attributes

Attribute Required Description

model yes A value binding for a managed bean of

the

com.ibm.bpe.jsf.handler.BPCListHandler

class.

styleClass no The cascading style sheet (CSS) style for

rendering the overall table containing

titles, rows, and paging buttons.

headerStyleClass no The CSS style class for rendering the table

header.

cellStyleClass no The CSS style class for rendering

individual table cells.

buttonStyleClass no The CSS style class for rendering the

buttons in the footer area.

rowClasses no The CSS style class for rendering the rows

in the table.

rows no The number of rows that are shown on a

page. If the number of items exceeds the

number of rows, paging buttons are

displayed at the end of the table. Value

expressions are not supported for this

attribute.

checkbox no Determines whether the check box for

selecting multiple items is rendered. The

attribute has a value of either true or

false.

 Table 32. bpe:column attributes

Attribute Required Description

name yes The name of the object property that is

shown in this column. This name must

correspond to a named property as

defined in the corresponding client model

class.

action no If this attribute is specified as an outcome

string, it defines an outcome used by the

JavaServer Faces (JSF) navigation handler

to determine the next page.

If this attribute is specified as a method

binding (#{.....}), the method to be called

has the signature String method() and its

return value is used by the JSF navigation

handler to determine the next page.

276 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Table 32. bpe:column attributes (continued)

Attribute Required Description

label no The label displayed in the header of the

column or the cell of the table header row.

If this attribute is not set, a default label is

provided by the client model class.

converterID no The ID used to register the converter in

the JSF configuration file. If a converter

ID is not specified, the implementation of

the objects displayed in the list can

contain a definition of a converter for the

current property. The List component uses

this converter.

Adding the Details component to a JSF application

Use the Business Process Choreographer Explorer Details component to display the

properties of tasks, work items, activities, process instances, and process templates.

1. Add the Details component to the JavaServer Pages (JSP) file.

Add the bpe:details tag to the <h:form> tag. The bpe:details tag must contain

a model attribute. You can add properties to the Details component with the

bpe:property tag. If the Details component does not contain any properties, all

of the properties of the object are displayed.

The following example shows how to add a Details component to display some

of the properties for a task instance.

<h:form>

 <bpe:details model="#{TaskInstanceDetails}">

 <bpe:property name="displayName" />

 <bpe:property name="owner" />

 <bpe:property name="kind" />

 <bpe:property name="state" />

 <bpe:property name="escalated" />

 <bpe:property name="suspended" />

 <bpe:property name="originator" />

 <bpe:property name="activationTime" />

 <bpe:property name="expirationTime" />

 </bpe:details>

</h:form>

The model attribute refers to a managed bean, TaskInstanceDetails. The bean

provides the properties of the Java object.

2. Configure the managed bean referred to in the bpe:details tag.

For the Details component, this managed bean must be an instance of the

com.ibm.bpe.jsf.handler.BPCDetailsHandler class. This handler class wraps a

Java object and exposes its public properties to the details component.

The following example shows how to add the TaskInstanceDetails managed

bean to the configuration file.

<managed-bean>

 <managed-bean-name>TaskInstanceDetails</managed-bean-name>

 <managed-bean-class>com.ibm.bpe.jsf.handler.BPCDetailsHandler</managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>type</property-name>

 <value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

 </managed-property>

</managed-bean>

Chapter 5. Developing 277

The example shows that the TaskInstanceDetails bean has a configurable type

property. The value of the type property specifies the bean class

(com.ibm.task.clientmodel.bean.TaskInstanceBean), the properties of which are

shown in the rows of the displayed details.

Your JSF application now contains a JavaServer page that displays the details of

the specified object, for example, the details of a task instance.

Details component: Tag definitions:

The Business Process Choreographer Explorer Details component displays the

properties of tasks, work items, activities, process instances, and process templates.

 The Details component consists of the JSF component tags: bpe:details and

bpe:property. The bpe:property tag is a subelement of the bpe:details tag.

Component class

com.ibm.bpe.jsf.component.DetailsComponent

Example syntax

<bpe:details model=”#{MyActivityDetails}”>

 <bpe:property name=”name”/>

 <bpe:property name=”owner”/>

 <bpe:property name=”activated”/>

</bpe:details>

<bpe:details model=”#{MyActivityDetails}” style=”style” styleClass=”cssStyle”>

 style=”style”

 styleClass=”cssStyle”

</bpe:details>

Tag attributes

Use bpe:property tags to specify both the subset of attributes that are shown and

the order in which these attributes are shown. If the details tag does not contain

any attribute tags, it renders all of the available attributes of the model object.

 Table 33. bpe:details attributes

Attribute Required Description

model yes A value binding for a managed bean of the

com.ibm.bpe.jsf.handler.BPCDetailsHandler

class.

styleClass no The cascading style sheet style (CSS) class

for rendering the HTML element.

columnClasses no A list of CSS styles, separated by commas,

for rendering columns.

rowClasses no A list of CSS styles, separated by commas,

for rendering rows.

 Table 34. bpe:property attributes

Attribute Required Description

name yes The name of the property to be displayed.

This name must correspond to a named

property as defined in the corresponding

client model class.

278 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Table 34. bpe:property attributes (continued)

Attribute Required Description

label no The label for the property. If this attribute

is not set, a default label is provided by

the client model class.

converterID no The ID used to register the converter in the

JavaServer Faces (JSF) configuration file.

Adding the CommandBar component to a JSF application

Use the Business Process Choreographer Explorer CommandBar component to

display a bar with buttons. These buttons represent commands that operate on the

details view of an object or the selected objects in a list.

When the user clicks a button in the user interface, the corresponding command is

run on the selected objects. You can add and extend the CommandBar component

in your JSF application.

1. Add the CommandBar component to the JavaServer Pages (JSP) file.

Add the bpe:commandbar tag to the <h:form> tag. The bpe:commandbar tag must

contain a model attribute.

The following example shows how to add a CommandBar component that

provides refresh and claim commands for a task instance list.

<h:form>

 <bpe:commandbar model="#{TaskInstanceList}">

 <bpe:command commandID="Refresh" >

 action="#{TaskInstanceList.refreshList}"

 label="Refresh"/>

 <bpe:command commandID="MyClaimCommand" >

 label="Claim" >

 commandClass="<customcode>"/>

 </bpe:commandbar>

</h:form>

The model attribute refers to a managed bean. This bean must implement the

ItemProvider interface and provide the selected Java objects. The CommandBar

component is usually used with either the List component or the Details

component in the same JSP file. Generally, the model that is specified in the tag

is the same as the model that is specified in the List component or Details

component on the same page. So for the List component, for example, the

command acts on the selected items in the list.

In this example, the model attribute refers to the TaskInstanceList managed

bean. This bean provides the selected objects in the task instance list. The bean

must implement the ItemProvider interface. This interface is implemented by

the BPCListHandler class and the BPCDetailsHandler class.

2. Optional: Configure the managed bean that is referred to in the

bpe:commandbar tag.

If the CommandBar model attribute refers to a managed bean that is already

configured, for example, for a list or details handler, no further configuration is

required. If you change the configuration of either of these handlers or you use

a different managed bean, add a managed bean that implements the

ItemProvider interface to the JSF configuration file.

3. Add the code that implements the custom commands to the JSF application.

Chapter 5. Developing 279

The following code snippet shows how to write a command class that extends

the command bar. This command class (MyClaimCommand) is referred to by

the bpe:command tag in the JSP file.

The command checks the preconditions and any other prerequisites, for

example, the correct number of selected items. It then retrieves a reference to

the human task API, HumanTaskManagerService. The command iterates over

the selected objects and tries to process them. The task is claimed through the

HumanTaskManagerService API by an ID. If an exception does not occur, the

state is updated for the corresponding TaskInstanceBean object. This action

avoids retrieving the value of the object from the server again.

public class MyClaimCommand implements Command {

 public String execute(List selectedObjects) throws ClientException {

 if(selectedObjects != null && selectedObjects.size() > 0) {

 try {

 // Determine HumanTaskManagerService from an HTMConnection bean.

 // Configure the bean in the faces-config.xml for easy access

 // in the JSF application.

 FacesContext ctx = FacesContext.getCurrentInstance();

 ValueBinding vb =

 ctx.getApplication().createValueBinding("{htmConnection}");

 HTMConnection htmConnection = (HTMConnection) htmVB.getValue(ctx);

 HumanTaskManagerService htm =

 htmConnection.getHumanTaskManagerService();

 Iterator iter = selectedObjects.iterator() ;

 while(iter.hasNext()) {

 try {

 TaskInstanceBean task = (TaskInstanceBean) iter.next() ;

 TKIID tiid = task.getID() ;

 htm.claim(tiid) ;

 task.setState(new Integer(TaskInstanceBean.STATE_CLAIMED)) ;

 }

 catch(Exception e) {

 ; // Error while iterating or claiming task instance.

 // Ignore for better understanding of the sample.

 }

 }

 }

 catch(Exception e) {

 ; // Configuration or communication error.

 // Ignore for better understanding of the sample

 }

 }

 return null;

 }

 // Default implementations

 public boolean isMultiSelectEnabled() { return false; }

 public boolean[] isApplicable(List itemsOnList) {return null; }

 public void setContext(Object targetModel) {; // Not used here }

}

The command is processed in the following way:

a. A command is invoked when a user clicks the corresponding button in the

command bar. The CommandBar component retrieves the selected items

from the item provider that is specified in the model attribute and passes

the list of selected objects to the execute method of the commandClass

instance.

b. The commandClass attribute refers to a custom command implementation

that implements the Command interface. This means that the command

280 IBM WebSphere Process Server for z/OS: Business Process Choreographer

must implement the public String execute(List selectedObjects) throws

ClientException method. The command returns a result that is used to

determine the next navigation rule for the JSF application.

c. After the command completes, the CommandBar component evaluates the

action attribute. The action attribute can be a static string or a method

binding to a JSF action method with the public String Method() signature.

Use the action attribute to override the outcome of a command class or to

explicitly specify an outcome for the navigation rules. The action attribute is

not processed if the command generates an exception other than an

ErrorsInCommandException exception.

Your JSF application now contains a JavaServer page that implements a customized

command bar.

CommandBar component: Tag definitions:

The Business Process Choreographer Explorer CommandBar component displays a

bar with buttons. These buttons operate on the object in a details view or the

selected objects in a list.

 The CommandBar component consists of the JSF component tags: bpe:commandbar

and bpe:command. The bpe:command tag is a subelement of the bpe:commandbar tag.

Component class

com.ibm.bpe.jsf.component.CommandBarComponent

Example syntax

<bpe:commandbar model="#{TaskInstanceList}">

 <bpe:command

 commandID="Work on"

 label="Work on..."

 commandClass="com.ibm.bpc.explorer.command.WorkOnTaskCommand"

 context="#{TaskInstanceDetailsBean}"/>

 <bpe:command

 commandID="Cancel"

 label="Cancel"

 commandClass="com.ibm.task.clientmodel.command.CancelClaimTaskCommand"

 context="#{TaskInstanceList}"/>

</bpe:commandbar>

Tag attributes

 Table 35. bpe:commandbar attributes

Attribute Required Description

model yes A value binding expression to a managed

bean that implements the ItemProvider

interface. This managed bean is usually the

com.ibm.bpe.jsf.handler.BPCListHandler class

or the

com.ibm.bpe.jsf.handler.BPCDetailsHandler

class that is used by the List component or

Details component in the same JavaServer

Pages (JSP) file as the CommandBar

component.

Chapter 5. Developing 281

Table 35. bpe:commandbar attributes (continued)

Attribute Required Description

styleClass no The cascading style sheet (CSS) style for

rendering the bar.

buttonStyleClass no The CSS style for rendering the buttons in

the command bar.

 Table 36. bpe:command attributes

Attribute Required Description

commandID yes The ID of the command.

commandClass yes The command class that is triggered.

action no A JavaServer Faces (JSF) action method that

has the signature: String method(). The value

that is returned by the action method, or that

is directly specified as a literal overrides the

target returned by the execute method of the

command. The action attribute is not

processed if the command generates an

exception other than an

ErrorsInCommandException exception.

If this attribute is specified as an outcome

string, it defines a result that is used by the

JSF navigation handler to determine the

navigation rule and the next page to display.

If this attribute is specified as a method

binding (#{.....}), the method to be called has

the signature String method(). Its return

value is used by the JSF navigation handler

to determine the navigation rule and the next

page to display.

label yes The label of the button that is rendered in the

command bar.

styleClass no The CSS style for rendering the button. This

style overrides the button style defined for

the command bar.

context no A value binding expression, which refers to a

managed bean. Use this attribute if the

command needs to initialize the target page

or bean.

Adding the Message component to a JSF application

Use the Business Process Choreographer Explorer Message component to render

data objects and primitive types in a JavaServer Faces (JSF) application.

If the message type is a primitive type, a label and an input field are rendered. If

the message type is a data object, the component traverses the object and renders

the elements within the object.

1. Add the Message component to the JavaServer Pages (JSP) file.

Add the bpe:form tag to the <h:form> tag. The bpe:form tag must include a

model attribute.

The following example shows how to add a Message component.

282 IBM WebSphere Process Server for z/OS: Business Process Choreographer

<h:form>

 <h:outputText value="Input Message" />

 <bpe:form model="#{MyHandler.inputMessage}" readOnly="true" />

 <h:outputText value="Output Message" />

 <bpe:form model="#{MyHandler.outputMessage}" />

</h:form>

The model attribute of the Message component refers to a

com.ibm.bpc.clientcore.MessageWrapper object. This wrapper object wraps

either a Service Data Object (SDO) object or a Java primitive type, for example,

int or boolean. In the example, the message is provided by a property of the

MyHandler managed bean.

2. Configure the managed bean referred to in the bpe:form tag.

The following example shows how to add the MyHandler managed bean to the

configuration file.

<managed-bean>

<managed-bean-name>MyHandler</managed-bean-name>

<managed-bean-class>com.ibm.bpe.sample.jsf.MyHandler</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>type</property-name>

 <value>com.ibm.task.clientmodel.bean.TaskInstanceBean</value>

 </managed-property>

</managed-bean>

3. Add the custom code to the JSF application.

The following example shows how to implement input and output messages.

public class MyHandler implements ItemListener {

 private TaskInstanceBean taskBean;

 private MessageWrapper inputMessage, outputMessage

 /* Listener method, e.g. when a task instance was selected in a list handler.

 * Ensure that the handler is registered in the faces-config.xml or manually.

 */

 public void itemChanged(Object item) {

 if(item instanceof TaskInstanceBean) {

 taskBean = (TaskInstanceBean) item ;

 }

 }

 /* Get the input message wrapper

 */

 public MessageWrapper getInputMessage() {

 try{

 inputMessage = taskBean.getInputMessageWrapper() ;

 }

 catch(Exception e) {

 ; //...ignore errors for simplicity

 }

 return inputMessage;

 }

 /* Get the output message wrapper

 */

 public MessageWrapper getOutputMessage() {

 // Retrieve the message from the bean. If there is no message, create

 // one if the task has been claimed by the user. Ensure that only

 // potential owners or owners can manipulate the output message.

 try{

Chapter 5. Developing 283

outputMessage = taskBean.getOutputMessageWrapper();

 if(outputMessage == null

 && taskBean.getState() == TaskInstanceBean.STATE_CLAIMED) {

 HumanTaskManagerService htm = getHumanTaskManagerService();

 outputMessage = new MessageWrapperImpl();

 outputMessage.setMessage(

 htm.createOutputMessage(taskBean.getID()).getObject()

);

 }

 }

 catch(Exception e) {

 ; //...ignore errors for simplicity

 }

 return outputMessage

 }

}

The MyHandler managed bean implements the

com.ibm.jsf.handler.ItemListener interface so that it can register itself as an item

listener to list handlers. When the user clicks an item in the list, the MyHandler

bean is notified in its itemChanged(Object item) method about the selected

item. The handler checks the item type and then stores a reference to the

associated TaskInstanceBean object. To use this interface, add an entry to the

appropriate list handler in the faces-config.xml file.

The MyHandler bean provides the getInputMessage and getOutputMessage

methods. Both of these methods return a MessageWrapper object. The methods

delegate the calls to the referenced task instance bean. If the task instance bean

returns null, for example, because a message is not set, the handler creates and

stores a new, empty message. The Message component displays the messages

provided by the MyHandler bean.

Your JSF application now contains a JavaServer page that can render data objects

and primitive types.

Message component: Tag definitions:

The Business Process Choreographer Explorer Message component renders

commonj.sdo.DataObject objects and primitive types, such as integers and strings,

in a JavaServer Faces (JSF) application.

 The Message component consists of the JSF component tag: bpe:form.

Component class

com.ibm.bpe.jsf.component.MessageComponent

Example syntax

<bpe:form model="#{TaskInstanceDetailsBean.inputMessageWrapper}"

 simplification="true" readOnly="true"

 styleClass4table="messageData"

 styleClass4output="messageDataOutput">

</bpe:form>

284 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Tag attributes

 Table 37. bpe:form attributes

Attribute Required Description

model yes A value binding expression that refers to

either a commonj.sdo.DataObject object or

a com.ibm.bpc.clientcore.MessageWrapper

object.

simplification no If this attribute is set to true, properties

with a cardinality of zero or one are

shown. By default, this attribute is set to

true.

readOnly no If this attribute is set to true, a read-only

form is rendered. By default, this attribute

is set to false.

style4validinput no The cascading style sheet (CSS) style for

rendering input that is valid.

style4invalidinput no The CSS style for rendering input that is

not valid.

styleClass4validInput no The CSS class name for rendering input

that is valid.

styleClass4invalidInput no The CSS class name for rendering input

that is not valid.

styleClass4output no The CSS style class name for rendering the

output elements.

styleClass4table no The class name of the CSS table style for

rendering the tables rendered by the

message component.

buttonStyleClass no The CSS style for the buttons that work on

arrays or lists.

Mapping of client model objects

The client model objects implement the corresponding interfaces of the Business

Process Choreographer API.

This wrapping of the interfaces provides locale-sensitive labels and converters for a

set of properties. The following table shows the mapping of the Business Process

Choreographer interfaces to the corresponding client model objects.

 Table 38. How Business Process Choreographer interfaces are mapped to client model objects

Business Process Choreographer interface Client model object class

com.ibm.bpe.api.ActivityInstanceData com.ibm.bpe.clientmodel.bean.ActivityInstanceBean

com.ibm.bpe.api.ActivityServiceTemplateData com.ibm.bpe.clientmodel.bean.ActivityServiceTemplateBean

com.ibm.bpe.api.ProcessInstanceData com.ibm.bpe.clientmodel.bean.ProcessInstanceBean

com.ibm.bpe.api.ProcessTemplateData com.ibm.bpe.clientmodel.bean.ProcessTemplateBean

com.ibm.task.api.Escalation com.ibm.task.clientmodel.bean.EscalationBean

com.ibm.task.api.Task com.ibm.task.clientmodel.bean.TaskInstanceBean

com.ibm.task.api.TaskTemplate com.ibm.task.clientmodel.bean.TaskTemplateBean

Chapter 5. Developing 285

286 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Chapter 6. Deploying

Installing business process and human task applications

You can distribute Service Component Architecture (SCA) Enterprise JavaBeans

(EJB) modules that contain business processes or human tasks, or both, to

deployment targets. A deployment target can be a server or a cluster.

Verify that the business process container or task container is installed and

configured for each application server or cluster on which you want to install your

application.

Before you install a business process or human task application, make sure that the

following conditions are true:

v The servers on which you want to install the application are running.

v In each cluster, at least one server on which you want to install Enterprise

JavaBeans modules with processes or tasks is running.

You can install business process and task applications from the administrative

console, from the command line, or by running an administrative script, for

example. When you run an administrative script to install a business process

application or a human task application, a server connection is required. Do not

use the -conntype NONE option as an installation option.

1. If you are installing an application on a cluster, verify that the application uses

the data source that is named after the cluster.

For example, if the application was generated using the default data source

BPEDB, change the data source for the application to BPEDB_cluster_name, where

cluster_name is the name of the cluster on which you installed the application.

2. Install the application.

All business process templates and human task templates are put into the start

state. You can create process instances and task instances from these templates.

Before you can create process instances or task instances, you must start the

application.

Deployment of models

When WebSphere Integration Developer or service deploy generates the

deployment code for your process, the constructs in the process or task model are

mapped to various Java 2 Enterprise Edition (J2EE) constructs and artifacts. All

deployment code is packaged into the enterprise application (EAR) file. Each new

version of a model that is to be deployed must be packaged into a new enterprise

application.

When you install an enterprise application that contains business process model or

human task model J2EE constructs, the model constructs are stored as process

templates or task templates, as appropriate, in the Business Process Choreographer

database. If the database system is not running, or if it cannot be accessed, the

deployment fails. Newly installed templates are, by default, in the started state.

However, the newly installed enterprise application is in the stopped state. Each

installed enterprise application can be started and stopped individually.

© Copyright IBM Corp. 2007 287

New versions of a process template or task template have the same name, but a

different valid-from attribute. You can deploy many different versions of a process

template or task template, each in a different enterprise application. However, no

two versions of the same process can have the same valid-from date. If you want

to install different versions of the same process, specify a different valid-from date

for each version. All the different process versions are stored in the database.

If you do not specify a valid-from date, the date is determined as follows:

v For a human task, the valid-from date is the date on which the application was

installed.

v For a business process, the valid-from date is the date on which the process was

modeled.

Deploying business process applications interactively

You can install an application interactively at runtime using the wsadmin tool and

the installInteractive script. You can use this script to change settings that cannot

be changed if you use the administrative console to install the application.

Perform the following steps to install business process applications interactively.

1. Start the wsadmin tool.

In the profile_root/bin directory, enter wsadmin.

2. Install the application.

At the wsadmin command-line prompt, enter the following command:

$AdminApp installInteractive application.ear

where application.ear is the qualified name of the enterprise archive file that

contains your process application. You are prompted through a series of tasks

where you can change values for the application.

3. Save the configuration changes.

At the wsadmin command-line prompt, enter the following command:

$AdminConfig save

You must save your changes to transfer the updates to the master configuration

repository. If a scripting process ends and you have not saved your changes,

the changes are discarded.

Configuring process application data source and set reference

settings

You might need to configure process applications that run SQL statements for the

specific database infrastructure. These SQL statements can come from information

service activities or they can be statements that you run during process installation

or instance startup.

When you install the application, you can specify the following types of data

sources:

v Data sources to run SQL statements during process installation

v Data sources to run SQL statements during the startup of a process instance

v Data sources to run SQL snippet activities

The data source required to run an SQL snippet activity is defined in a BPEL

variable of type tDataSource. The database schema and table names that are

required by an SQL snippet activity are defined in BPEL variables of type

tSetReference. You can configure the initial values of both of these variables.

288 IBM WebSphere Process Server for z/OS: Business Process Choreographer

You can use the wsadmin tool to specify the data sources.

1. Install the process application interactively using the wsadmin tool.

2. Step through the tasks until you come to the tasks for updating data sources

and set references.

Configure these settings for your environment. The following example shows

the settings that you can change for each of these tasks.

3. Save your changes.

Example: Updating data sources and set references, using the

wsadmin tool

In the Updating data sources task, you can change data source values for initial

variable values and statements that are used during installation of the process or

when the process starts. In the Updating set references task, you can configure the

settings related to the database schema and the table names.

Task [24]: Updating data sources

//Change data source values for initial variable values at process start

Process name: Test

// Name of the process template

Process start or installation time: Process start

// Indicates whether the specified value is evaluated

//at process startup or process installation

Statement or variable: Variable

// Indicates that a data source variable is to be changed

Data source name: MyDataSource

// Name of the variable

JNDI name:[jdbc/sample]:jdbc/newName

// Sets the JNDI name to jdbc/newName

Task [25]: Updating set references

// Change set reference values that are used as initial values for BPEL variables

Process name: Test

// Name of the process template

Variable: SetRef

// The BPEL variable name

JNDI name:[jdbc/sample]:jdbc/newName

// Sets the JNDI name of the data source of the set reference to jdbc/newName

Schema name: [IISAMPLE]

// The name of the database schema

Schema prefix: []:

// The schema name prefix.

// This setting applies only if the schema name is generated.

Table name: [SETREFTAB]: NEWTABLE

// Sets the name of the database table to NEWTABLE

Table prefix: []:

// The table name prefix.

// This setting applies only if the prefix name is generated.

When you can install a process application on a cluster in

which no servers are running

This topic explains the exceptional circumstances in which you might need to

install an application on a cluster that has no running servers.

During the installation of a business process application on a server, the Java

Naming and Directory Interface (JNDI) name of the data source of the

corresponding business process container must be resolved. You cannot, therefore,

Chapter 6. Deploying 289

install an application without a server connection. In a Network Deployment (ND)

environment, this server is the deployment manager.

Restrictions lifted

If you want to install a business process application on a cluster in an ND

environment, no server in the cluster need be running if the following conditions

are true:

v The required data sources are defined at the cell level.

v The process application does not specify human tasks.

For process applications that have no human tasks, the data source lookup

operation is accomplished within the namespace of the deployment manager, when

a lookup operation in the namespace of the application server previously failed. If

the application is successfully installed, ignore any error messages in the

SystemOut.log file that indicate a failure of the data source lookup operation

within the application server namespace.

When it will work

v The lookup operation within the deployment manager namespace is successful

only if the data source JNDI name is defined at the cell level.

v If you use the wizard to configure a business process container or human task

container on a stand-alone server, the data source is defined at the server level.

The same is true if you use the configuration script bpeconfig.jacl, which is

provided in the ProcessChoreographer/config directory of your application

server installation. In this case, you must define the data source manually at the

cell level and use this data source when you install the business process

container.

v If you configure a business process container with the wizard on a cluster

member, the data source is automatically defined at the cell level. The JNDI

name is scoped by the cluster name. The same is true if you use the

configuration script bpeconfig.jacl, which is provided in the

ProcessChoreographer/config directory of your application server installation. In

this case, you do not need to change anything manually.

When it will not work

Process applications that contain human tasks require an additional JNDI name

lookup operation to locate the staff plug-in provider. Therefore, to help ensure

successful installation of such applications, make sure that the cluster includes a

running server.

Scoping side effects

A side effect of the name lookup is that if an application server is not running and

a data source is defined on its server or node level with the same name as a data

source at the cell level, the cell level data source takes precedence. This means that

you might end up using different data sources during deployment than you use at

run time.

Attention: Avoid name clashes. If you define data sources at the cell level

manually, use JNDI names that have the scope of the cluster name or server name

and node name appended to them, for example, jdbc/BPEDB_cluster_name.

290 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Uninstalling business process and human task applications,

using the administrative console

To uninstall an enterprise application that contains business processes or human

tasks, perform the following actions:

1. Stop all process and task templates in the application.

This action prevents the creation of process and task instances.

a. Click Applications → Enterprise Applications in the administrative console

navigation pane.

b. Select the application that you want to stop.

c. Under Related Items, click EJB Modules, then select an Enterprise

JavaBeans (EJB) module. If you have more than one EJB module, select the

EJB module that corresponds to the Service Component Architecture (SCA)

module that contains the business process or human task. You can find the

corresponding EJB module by appending EJB to the SCA module name. For

example, if your SCA module was named TestProcess, the EJB module is

TestProcessEJB.jar.

d. Under Additional Properties, click Business Processes or Human Tasks, or

both, as appropriate.

e. Select all process and task templates by clicking the appropriate check box.

f. Click Stop.
Repeat this step for all EJB modules that contain business process templates or

human task templates.

2. Verify that the database, at least one application server for each cluster, and the

stand-alone server where the application is deployed are running.

In a Network Deployment (ND) environment, the deployment manager, all

ND-managed stand-alone application servers, and at least one application

server must be running for each cluster where the application is installed.

3. Verify that no process instances or task instances are running nor that any are

in end states with the autoDelete flag set to false.

If necessary, an administrator can use Business Process Choreographer Explorer

to delete any process or task instances.

4. Stop and uninstall the application:

a. Click Applications → Enterprise Applications in the administrative console

navigation pane.

b. Select the application that you want to uninstall and click Stop.

This step fails if any process instances or task instances still exist in the

application.

c. Select again the application that you want to uninstall, and click Uninstall.

d. Click Save to save your changes.

The application is uninstalled.

Uninstalling business process and human task applications,

using administrative commands

Administrative commands provide an alternative to the administrative console for

uninstalling applications that contain business processes or human tasks.

If global security is enabled, verify that your user ID has operator authorization.

Chapter 6. Deploying 291

Ensure that the server process to which the administration client connects is

running.

v In an ND environment, the server process is the deployment manager.

v In a stand-alone environment, the server process is the application server.

To ensure that the administrative client automatically connects to the server

process, do not use the -conntype NONE option as a command option.

The following steps describe how to use the bpcTemplates.jacl script to uninstall

applications that contain business process templates or human task templates. You

must stop a template before you can uninstall the application to which it belongs.

You can use the bpcTemplates.jacl script to stop and uninstall templates in one

step.

Before you uninstall applications, you can delete process instances or task instances

associated with the templates in the applications, for example, using Business

Process Choreographer Explorer. You can also use the -force option with the

bpcTemplates.jacl script to delete any instances associated with the templates, stop

the templates, and uninstall them in one step.

CAUTION:

Because this option deletes all process instance and task instance data, you

should use this option with care.

1. Change to the Business Process Choreographer samples directory. Type the

following:

cd install_root/ProcessChoreographer/admin

2. Stop the templates and uninstall the corresponding application.

install_root/bin/wsadmin -f bpcTemplates.jacl

 [-user user_name]

 [-password user password]

 -uninstall application_name

 [-force]

Where:

user_name

If global security is enabled, provide the user ID for authentication.

user_password

If global security is enabled, provide the user password for authentication.

application_name

If global security is enabled, provide the user password for authentication.

-force

Causes any running instances to be stopped and deleted before the

application is uninstalled.

The application is uninstalled.

292 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Chapter 7. Monitoring

Monitoring business processes and human tasks

Monitoring of processes and human tasks is controlled through the monitoring

pane in the WebSphere Integration Developer. This approach has to be followed

regardless of whether audit trailing is to be enabled or whether events are to be

emitted.

WebSphere Process Server includes the Common Event Infrastructure that provides

standard formats and mechanisms for managing event data.

Business Process Choreographer sends events whenever situations occur that

require monitoring and the Common Event Infrastructure service is available.

These events adhere to the Common Base Event specification. You can use generic

tools to process these events.

You can also use Java snippets to create and send user data events. For more

information, see the Common Event Infrastructure documentation on sending

events.

Situation-independent event data

Common Base Events that are emitted on behalf of business processes and human

tasks can contain information that is independent of the situation for which the

event was created. This event data is the same for all business process and human

task events.

The following table shows the values of the attributes of the CommonBaseEvent

element and of the sourceComponentID element that these events can contain.

 Attribute Description

CommonBaseEvent element

creationTime The time at which the event is created in universal

coordinated time (UTC).

globalInstanceId The identifier of the Common Base Event instance. This ID

is automatically generated.

sequenceNumber Sequential numbering issued by the event factory.

severity The impact that the event has on business processes or on

human tasks. This attribute is set to 10 (information).

version Set to 1.0.1.

extensionName The value depends on the object that creates the event and

on the event.

sourceComponentId element

component For business processes and human tasks: Set to WPS#,

followed by the identification of the current platform and

the version identification of the underlying software stack.

componentIdType Set to the string: ″ProductName″.

executionEnvironment A string that identifies the operating system.

© Copyright IBM Corp. 2007 293

Attribute Description

instanceId The identifier of the server. This identifier has the format

cell name/node name/server name. The delimiters are

platform dependent.

location Set to the host name of the executing server.

locationType Set to the IP address or host name.

processId The process identifier of the operating system.

subcomponent For business processes, set to BFM.

For human tasks, set to HTM.

threadId The thread identifier of the Java Virtual Machine (JVM).

componentType For business processes, set to:

 www.ibm.com/namespaces/autonomic/Workflow_Engine

For human tasks, set to:

 www.ibm.com/xmlns/prod/websphere/scdl/human-task

Business process events

Events that are emitted on behalf of business processes consist of

situation-independent data and data that is specific to business process events. The

attributes and elements that are specific to business process events are described.

Business process events can have the following categories of event content.

Event data specific to business processes

In business processes, events relate to processes, activities, scopes, links, and

variables. The object-specific content of each of these event types is described.

If not specified otherwise, the object-specific content is written as

extendedDataElement XML elements of type string.

Process

Events of process instances have the following object-specific event content:

 Attribute Description

processTemplateName The name of the process template from which the instance

was derived

processTemplateValidFrom The date from which the template is valid

processTemplateId The identifier of the process template

processInstanceDescription Optional: The description of the process instance

294 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Attribute Description

processInstanceExecutionState A string value that represents the state of the process. It has

the format: state number-state description. This attribute can

have one of the following values:

 1 - STATE_READY

2 - STATE_RUNNING

3 - STATE_FINISHED

4 - STATE_COMPENSATING

5 - STATE_FAILED

6 - STATE_TERMINATED

7 - STATE_COMPENSATED

8 - STATE_TERMINATING

9 - STATE_FAILING

10 - STATE_INDOUBT

11 - STATE_SUSPENDED

12 - STATE_COMPENSATION_FAILED

PayloadType The string full

Activity and scope

Activities and scopes have the following object-specific event content:

 Attribute Description

processTemplateName The name of the process template from which the instance

was derived.

processTemplateValidFrom The date from which the template is valid.

activityTemplateName Optional: The name of the activity template from which the

instance was derived.

activityInstanceDescription Optional: The description of the activity instance.

Chapter 7. Monitoring 295

Attribute Description

activityKind A string value that identifies the activity kind. This value

has the format: kind number-kind description. This attribute

can have one of the following values:

 3 - KIND_EMPTY

21 - KIND_INVOKE

23 - KIND_RECEIVE

24 - KIND_REPLY

25 - KIND_THROW

26 - KIND_TERMINATE

27 - KIND_WAIT

29 - KIND_COMPENSATE

30 - KIND_SEQUENCE

32 - KIND_SWITCH

34 - KIND_WHILE

36 - KIND_PICK

38 - KIND_FLOW

42 - KIND_SCRIPT

43 - KIND_STAFF

44 - KIND_ASSIGN

45 - KIND_CUSTOM

46 - KIND_RETHROW

47 - KIND_FOR_EACH_SERIAL

48 - KIND_FOR_EACH_PARALLEL

1000 - SQLSnippet

1001 - RetrieveSet

1002 - InvokeInformationService

1003 - AtomicSQLSnippetSequence

state A string value that represents the state of the activity. It has

the format: state number-state description. Note that the state

codes for activities are different from those used for

processes. This attribute can have one of the following

values:

 1 - STATE_INACTIVE

2 - STATE_READY

3 - STATE_RUNNING

4 - STATE_SKIPPED

5 - STATE_FINISHED

6 - STATE_FAILED

7 - STATE_TERMINATED

8 - STATE_CLAIMED

9 - STATE_TERMINATING

10 - STATE_FAILING

11 - STATE_WAITING

12 - STATE_EXPIRED

13 - STATE_STOPPED

bpelId A string value that represents the wpc:id attribute of the

activity.

PayloadType The payload type. The value of the string can be one of:

none, digest, or full. The value depends on the setting in

WebSphere Integration Developer and whether business

object (BO) content is written to the event. If an event does

not contain a business object, the value is always set to full.

296 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Link

Links have the following object-specific event content:

 Attribute Description

processTemplateName The name of the process template from which the instance

was derived

processTemplateValidFrom The date from which the template is valid

flowBpelId A string value that represents the wpc:id attribute of the

flow activity that contains the link

elementName The name of the link that was evaluated

description A description of the link. This attribute is only included if

specified in the process model.

PayloadType The string full

Variable

Variables have the following object-specific event content.

 Attribute Description

processTemplateName The name of the process template from which the instance

was derived.

processTemplateValidFrom The date from which the template is valid.

variableName The name of the variable that was changed.

variableData Emitted when WBI Monitor compatible events are

requested. An XML representation of the content of the

variable. Each property of the data object is reported in the

form of a nested extended data element. The element type

may be of type ’boolean’ or ’string’, with an appropriate

value.

variableData_BO Emitted when non-WBI Monitor compatible events are

requested. This element is of type ’noValue’ and contains

an XML representation of the content of the variable. Each

property of the data object is reported in the form of a

nested extended data element.

bpelId A string value that represents the wpc:id attribute of the

activity.

PayloadType The payload type. The value of the string can be one of:

none, digest, or full. The value depends on the setting in

WebSphere Integration Developer and whether business

object content is written to the event. If an event does not

contain a business object, the value is always set to full.

Situations in business process events

Business process events can be emitted in different situations. The data for these

situations is described in situation elements.

Chapter 7. Monitoring 297

Business process events can contain one of the following situation elements.

 Situation

name

Content of the Common Base Event

Start categoryName is set to StartSituation.

situationType

Type StartSituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

situationQualifier START_COMPLETED

Stop categoryName is set to StopSituation.

situationType

Type StopSituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

situationQualifier STOP_COMPLETED

Destroy categoryName is set to DestroySituation.

situationType

Type DestroySituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

Fail categoryName is set to StopSituation.

situationType

Type StopSituation

reasoningScope EXTERNAL

successDisposition UNSUCCESSFUL

situationQualifier STOP_COMPLETED

Report categoryName is set to ReportSituation.

situationType

Type ReportSituation

reasoningScope EXTERNAL

reportCategory STATUS

Business process events

Business process events are sent if monitoring is requested for the business process

elements in WebSphere Integration Developer. A list of all the events that can be

emitted by business processes can be found here.

The following types of events can be caused by business process:

v “Process events” on page 299

v “Activity events” on page 301

v “Activity scope events” on page 303

v “Link events” on page 304

v “Variable events” on page 305

298 IBM WebSphere Process Server for z/OS: Business Process Choreographer

XML syntax

The payloads for business process events have the following syntax:

�� BPC.BFM.BASE BPCEventCode processTemplateName processTemplateValidFrom BPC.BFM.PROCESS.BASE

BPC.BFM.ACTIVITY.BASE

BPC.BFM.LINK.STATUS

BPC.BFM.VARIABLE.STATUS

 ��

Where:

BPCEventCode

The Business Process Choreographer event code that identifies the number

of the event type. Possible event codes are listed in the following tables.

processTemplateName

The name of the process template.

processTemplateValidFrom

The valid from attribute of the process template.

The name of event elements are in uppercase, for example BPC.BFM.BASE, and the

names of extended data elements are in mixed case, for example, BPCEventCode.

Except where indicated, all data elements are of the type string.

Key to table columns

The columns in the following tables contain:

Code Contains the number of the event. This value is provided as the

BPCEventCode extended data element for all BPC.BFM.BASE elements.

Extension name

Contains the string value that is used as the value of the extensionName

attribute of the Common Base Event. This is also the name of the XML

extended data element provide additional data about the event.

 If WebSphere Business Integration Modeler is used to generate the

Business Process Execution Language (BPEL) and the monitoring

specification, the extension name can be extended by a hash character (#)

followed by additional characters. Also, events that emit message data

contain additional extendedDataElements. Refer to the documentation for

WebSphere Business Integration Modeler for more information.

Situation

Refers to the situation name of the business process event. For details of

situations, see “Situations in business process events” on page 297.

Event nature

A pointer to the event situation for a business process element in the

EventNature parameter, as they are displayed in WebSphere Integration

Developer.

Process events

The following table describes all process events.

 Code Description Extension name Situation Event nature

21000 Process started BPC.BFM.PROCESS.START Start ENTRY

Chapter 7. Monitoring 299

Code Description Extension name Situation Event nature

21001 Process suspended BPC.BFM.PROCESS.STATUS Report SUSPENDED

21002 Process resumed BPC.BFM.PROCESS.STATUS Report RESUMED

21004 Process completed BPC.BFM.PROCESS.STATUS Stop EXIT

21005 Process terminated BPC.BFM.PROCESS.STATUS Stop TERMINATED

21019 Process restarted BPC.BFM.PROCESS.START Report RESTARTED

21020 Process deleted BPC.BFM.PROCESS.STATUS Destroy DELETED

42001 Process failed BPC.BFM.PROCESS. FAILURE Fail FAILED

42003 Process

compensating

BPC.BFM.PROCESS.STATUS Report COMPENSATING

42004 Process

compensated

BPC.BFM.PROCESS.STATUS Stop COMPENSATED

42009 Process

terminating

BPC.BFM.PROCESS.STATUS Report TERMINATING

42010 Process failing BPC.BFM.PROCESS.STATUS Report FAILING

42027 Correlation set

initialized

BPC.BFM.PROCESS.CORREL Report CORRELATION

42041 Process work item

deleted

BPC.BFM.PROCESS. WISTATUS Report WI_DELETED

42042 Process work item

created

BPC.BFM.PROCESS. WISTATUS Report WI_CREATED

42046 Process

compensation

failed

BPC.BFM.PROCESS.STATUS Fail COMPFAILED

42047 Process event

received

BPC.BFM.PROCESS.STATUS Report EV_RECEIVED

42049 Process event

escalated

BPC.BFM.PROCESS.ESCALATED Report EV_ESCALATED

42056 Process work item

transferred

BPC.BFM.PROCESS. WITRANSFER Report WI_TRANSFERRED

The payloads for process events have the following syntax:

BPC.BFM.PROCESS.BASE

�� BPC.BFM.PROCESS.BASE processInstanceExecutionState BPC.BFM.PROCESS.STATUS ��

BPC.BFM.PROCESS.STATUS:

�

 BPC.BFM.PROCESS.STATUS processTemplateId processInstanceDescription

BPC.BFM.PROCESS.CORREL

correlationSet

BPC.BFM.PROCESS.ESCALATED

escalationName

BPC.BFM.PROCESS.FAILURE

processFailedException

BPC.BFM.PROCESS.START

username

BPC.BFM.PROCESS.WISTATUS

username

BPC.BFM.PROCESS.WITRANSFER

current

target

Where:

300 IBM WebSphere Process Server for z/OS: Business Process Choreographer

processInstanceExecutionState

The current execution state of the process in the following format: <state

code>-<state name>

processTemplateId

The ID of the process template.

processInstanceDescription

The description of the process instance.

correlationSet

The correlation set instance, in the following format:

<?xml version="1.0"?>

<correlationSet name=”correlation set name”>

 <property name=”property name”

 value=”property value”/>*

</correlationSet>

escalationName

The name of the escalation.

processFailedException

The exception message that lead to the failure of the process.

username

For BPC.BFM.PROCESS.START this is the name of the user who requested

the start or restart of the process. For BPC.BFM.PROCESS.WISTATUS this

is a list of users whose work item was created or deleted.

current

The user name of the current owner of the work item. This is the user

whose work item has been transferred away.

target The user name of the new owner of the work item.

For process events, the following event correlation sphere identifiers are also

written to the Common Base Event as context data elements:

v The ECSCurrentID provides the ID of the process instance.

v The ECSParentID provides the value of the ECSCurrentID before the process

instance start event of the current process.

Activity events

The following table describes all activity events.

 Code Description Extension name Situation Event nature

21006 Activity ready BPC.BFM.ACTIVITY.STATUS Start CREATED

21007 Activity started For invoke activities: BPC.BFM.ACTIVITY.

MESSAGE. For all other activity types:

BPC.BFM.ACTIVITY.STATUS

Start ENTRY

21011 Activity completed For invoke, staff, receive, and reply

activities: BPC.BFM.ACTIVITY. MESSAGE.

For all other activity types:

BPC.BFM.ACTIVITY.STATUS

Stop EXIT

21021 Claim canceled BPC.BFM.ACTIVITY.STATUS Report DEASSIGNED

21022 Activity claimed BPC.BFM.ACTIVITY.CLAIM Report ASSIGNED

21027 Activity

terminated

BPC.BFM.ACTIVITY.STATUS Stop TERMINATED

Chapter 7. Monitoring 301

Code Description Extension name Situation Event nature

21080 Activity failed BPC.BFM.ACTIVITY.FAILURE Failed FAILED

21081 Activity expired BPC.BFM.ACTIVITY.STATUS Report EXPIRED

42005 Activity skipped BPC.BFM.ACTIVITY.STATUS Report SKIPPED

42012 Activity output

message set

BPC.BFM.ACTIVITY.MESSAGE Report OUTPUTSET

42013 Activity fault

message set

BPC.BFM.ACTIVITY.MESSAGE Report FAULTSET

42015 Activity stopped BPC.BFM.ACTIVITY.STATUS Stop STOPPED

42031 Activity force

retried

BPC.BFM.ACTIVITY.STATUS Report FRETRIED

42032 Activity force

completed

BPC.BFM.ACTIVITY.STATUS Stop FCOMPLETED

42036 Activity has

message received

BPC.BFM.ACTIVITY.MESSAGE Report EXIT

42037 Loop condition

true

BPC.BFM.ACTIVITY.STATUS Report CONDTRUE

42038 Loop condition

false

BPC.BFM.ACTIVITY.STATUS Report CONDFALSE

42039 Work item deleted BPC.BFM.ACTIVITY. WISTATUS Report WI_DELETED

42040 Work items

created

BPC.BFM.ACTIVITY. WISTATUS Report WI_CREATED

42050 Activity escalated BPC.BFM.ACTIVITY.ESCALATED Report ESCALATED

42054 Activity work

items refreshed

BPC.BFM.ACTIVITY. WISTATUS Report WI_REFRESHED

42055 Work item

transferred

BPC.BFM.ACTIVITY. WITRANSFER Report WI_TRANSFERRED

42057 For each - activity

branches started

BPC.BFM.ACTIVITY. FOREACH Report BRANCHES_STARTED

The payloads for activity events have the following syntax:

BPC.BFM.ACTIVITY.BASE

�� BPC.BFM.ACTIVITY.BASE activityKind state bpelId BPC.BFM.ACTIVITY.STATUS ��

BPC.BFM.ACTIVITY.STATUS:

�

�

 BPC.BFM.ACTIVITY.STATUS activityTemplateId

activityTemplateName

activityInstanceDescription

BPC.BFM.ACTIVITY.CLAIM

username

principal

BPC.BFM.ACTIVITY.ESCALATED

escalationName

BPC.BFM.ACTIVITY.FAILURE

activityFailedException

BPC.BFM.ACTIVITY.FOREACH

parallelBranchesStarted

BPC.BFM.ACTIVITY.MESSAGE

message

message_BO

BPC.BFM.ACTIVITY.WISTATUS

username

BPC.BFM.ACTIVITY.WITRANSFER

current

target

Where:

302 IBM WebSphere Process Server for z/OS: Business Process Choreographer

activityKind

The activity kind, for example, sequence or invoke. The format is: <kind

code>-<kind name>

state The current state of the activity instance in the format: <state code>-<state

name>

bpelId The wpc:id attribute of the activity in the BPEL file. It is unique for

activities inside a process model.

activityTemplateName

The name of the activity template.

activityTemplateId

The internal ID of the activity template.

activityInstanceDescription

The description of the activity instance.

username

For BPC.BFM.ACTIVITY.CLAIM this is the user for whom the task has

been claimed. For BPC.BFM.ACTIVITY.WISTATUS this is a list users who

are associated with the work item.

principal

The name of the user who has claimed the activity.

escalationName

The name of the escalation.

activityFailedException

The exception that caused the activity to fail.

parallelBranchesStarted

The number of branches started.

message or message_BO

The input or the output message for the service as a string or Business

Object (BO) representation. The format depends on whether the Monitor

Compatible Events option was selected on the Event Monitor tab in

WebSphere Integration Developer.

current

The user name of the current owner of the work item. This is the user

whose work item has been transferred away.

target The user name of the new owner of the work item.

For activity events, the following event correlation sphere identifiers are also

written to the Common Base Event as context data elements:

v The ECSCurrentID provides the ID of the activity.

v The ECSParentID provides the ID of the containing process.

Activity scope events

The following table describes all activity scope events.

 Code Description Extension name Situation Event nature

42020 Scope started BPC.BFM.ACTIVITY.STATUS Start ENTRY

42021 Scope skipped BPC.BFM.ACTIVITY.STATUS Report SKIPPED

42022 Scope failed BPC.BFM.ACTIVITY.FAILURE Fail FAILED

Chapter 7. Monitoring 303

Code Description Extension name Situation Event nature

42023 Scope terminating BPC.BFM.ACTIVITY.STATUS Report FAILING

42024 Scope terminated BPC.BFM.ACTIVITY.STATUS Stop TERMINATED

42026 Scope completed BPC.BFM.ACTIVITY.STATUS Stop EXIT

42043 Scope

compensating

BPC.BFM.ACTIVITY.STATUS Report COMPENSATING

42044 Scope

compensated

BPC.BFM.ACTIVITY.STATUS Stop COMPENSATED

42045 Scope

compensation

failed

BPC.BFM.ACTIVITY.STATUS Fail COMPFAILED

42048 Scope event

received

BPC.BFM.ACTIVITY.STATUS Report EV_RECEIVED

42051 Scope event

escalated

BPC.BFM.ACTIVITY.ESCALATED Report EV_ESCALATED

Activity scope events are a type of activity events, whose syntax is described above

for BPC.BFM.ACTIVITY.STATUS.

For activity scope events, the following event correlation sphere identifiers are also

written to the Common Base Event as context data elements:

v The ECSCurrentID provides the ID of the scope.

v The ECSParentID provides the ID of the containing process.

Link events

The following table describes all link events.

 Code Description Extension name Situation Event nature

21034 Link evaluated

true

BPC.BFM.LINK.STATUS Report CONDTRUE

42000 Link evaluated

false

BPC.BFM.LINK.STATUS Report CONDFALSE

The payloads for link events have the following syntax:

BPC.BFM.LINK.STATUS

�� BPC.BFM.LINK.STATUS flowBpelId

elementName

description
 ��

Where:

elementName

The name of the link.

description

The description of the link.

flowBpelId

The ID of the flow activity where the link is defined.

304 IBM WebSphere Process Server for z/OS: Business Process Choreographer

For link events, the following event correlation sphere identifiers are also written

to the Common Base Event as context data elements:

v The ECSCurrentID provides the ID of the source activity of the link.

v The ECSParentID provides the ID of the containing process.

Variable events

The following table describes the variable events.

 Code Description Extension name Situation Event nature

21090 Variable update BPC.BFM.VARIABLE.STATUS Report CHANGED

The payloads for variable events have the following syntax:

BPC.BFM.VARIABLE.STATUS

�� BPC.BFM.VARIABLE.STATUS variableName bpelId

variableData

variableData_BO

 ��

Where:

variableName

The name of the variable.

variableData or variableData_BO

If the variable variableName has not been intialized, there is no variableData

or VariableData_BO element. The variable’s data contents either a string or

Business Object (BO) representation. The format depends on whether the

Monitor Compatible Events option was selected on the Event Monitor tab

in WebSphere Integration Developer.

bpelId The Business Process Choreographer ID for the variable.

For the variable event, the following event correlation sphere identifiers are written

to the Common Base Event as context data elements:

v The ECSCurrentID provides the ID of the containing scope or process.

v The ECSParentID is the ECSCurrentID before the process instance start event of

the current process.

Human task events

Events that are emitted on behalf of human tasks consist of situation-independent

data and data that is specific to human task events. The attributes and elements

that are specific to human task events are described.

Human task events can have the following categories of event content.

Event data specific to human tasks

Events are created on behalf of tasks and escalations. The object-specific content of

each of these event types is described.

Chapter 7. Monitoring 305

Tasks

If not specified otherwise, the content is written as extendedDataElements of type

string.

Task events have the following object-specific event content.

 Attribute Description

taskTemplateName The name of the task template from which the instance was

derived.

taskTemplateValidFrom The date from which the template is valid.

taskTemplateId The identifier of the task template from which the instance

is derived.

taskInstanceDescription Optional: The description of the task instance.

PayloadType The payload type. The value of the string can be one of:

none, digest, or full. The value depends on the setting in

WebSphere Integration Developer and whether business

object content is written to the event. If an event does not

contain a business object, the value is always set to full.

Escalation

Escalations have the following object-specific event content:

 Attribute Description

taskTemplateName The name of the task template from which the instance was

derived.

taskTemplateValidFrom The date from which the template is valid.

taskTemplateId The identifier of the task template from which the instance

is derived.

escalationName The name of the escalation.

escalationInstanceDescription Optional: The description of the escalation instance.

PayloadType The payload type. The value of the string can be one of:

none, digest, or full. The value depends on the setting in

WebSphere Integration Developer and whether business

object content is written to the event. If an event does not

contain a business object, the value is always set to full.

Situations in human task events

Human task events can be emitted in different situations. The data for these

situations are described in situation elements.

306 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Human task events can contain one of the following situation elements.

 Situation

name

Content of the Common Base Event

Start categoryName is set to StartSituation.

situationType

Type StartSituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

situationQualifier START_COMPLETED

Stop categoryName is set to StopSituation.

situationType

Type StopSituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

situationQualifier STOP_COMPLETED

Destroy categoryName is set to DestroySituation.

situationType

Type DestroySituation

reasoningScope EXTERNAL

successDisposition SUCCESSFUL

Fail categoryName is set to StopSituation.

situationType

Type StopSituation

reasoningScope EXTERNAL

successDisposition UNSUCCESSFUL

situationQualifier STOP_COMPLETED

Report categoryName is set to ReportSituation.

situationType

Type ReportSituation

reasoningScope EXTERNAL

reportCategory STATUS

Human task events

Human task events are sent if monitoring is requested for the elements of the task

in WebSphere Integration Developer. A list of all the events that can be emitted by

human tasks can be found here.

The following types of events can be caused by human tasks:

v “Task events” on page 309

v “Escalation events” on page 310

Note: Events are only emitted for ad-hoc tasks if the business relevance flag is set

to true in the task model.

Chapter 7. Monitoring 307

XML syntax

The payloads for human task events have the following syntax:

BPC.HTM.BASE

�� BPC.HTM.BASE HTMEventCode BPC.HTM.TASK.BASE ��

BPC.HTM.TASK.BASE:

 BPC.HTM.TASK.BASE taskTemplateName taskTemplateValidFrom taskTemplateId BPC.HTM.TASK.STATUS

BPC.HTM.ESCALATION.STATUS

Where:

HTMEventCode

The Business Process Choreographer event code that identifies the number

of the event type. Possible event codes are listed in the following tables.

taskTemplateName

The name of the task template.

taskTemplateValidFrom

The date and time from which the task template is valid.

taskTemplateId

The ID of the template.

The name of event elements are in uppercase, for example BPC.HTM.BASE, and

the names of extended data elements are in mixed case, for example,

HTMEventCode. Except where indicated, all data elements are of the type string.

Key to table columns

The Code column contains the number of the event. The value is written to the

Common Base Event as an extended data element with the name HTMEventCode.

The columns are as follows:

Extension name

Contains the string value that is used as the value of the extensionName

attribute of the Common Base Event.

 If WebSphere Business Integration Modeler is used to create the underlying

task model, the extension name for events that contain message data in

their payload can be extended by a hash character (#) followed by

additional characters. These additional characters are used to distinguish

Common Base Events that carry different message objects. Events that emit

message data also contain additional nested extendedDataElements in

order to report the contents of the data object. Refer to the documentation

for WebSphere Business Integration Modeler for more information.

Situation

Refers to the situation name of the human task event. For details of

situations, see “Situations in human task events” on page 306.

Event nature

A pointer to the event situation for a business process element in the

EventNature parameter, as they are displayed in WebSphere Integration

Developer.

308 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Task events

The following table describes all task events.

 Code Description Extension name Situation Event nature

51001 Task created BPC.HTM.TASK. INTERACT Report CREATED

51002 Task deleted BPC.HTM.TASK.STATUS Destroy DELETED

51003 Task started BPC.HTM.TASK.STATUS Start ENTRY

51004 Task completed BPC.HTM.TASK.STATUS Stop EXIT

51005 Claim canceled BPC.HTM.TASK.STATUS Report DEASSIGNED

51006 Task claimed BPC.HTM.TASK. INTERACT Report ASSIGNED

51007 Task terminated BPC.HTM.TASK.STATUS Stop TERMINATED

51008 Task failed BPC.HTM.TASK. FAILURE Fail FAILED

51009 Task expired BPC.HTM.TASK.STATUS Report EXPIRED

51010 Waiting for

subtasks

BPC.HTM.TASK.STATUS Report WAITFORSUBTASK

51011 Subtasks

completed

BPC.HTM.TASK.STATUS Stop SUBTASKCOMPLETED

51012 Task restarted BPC.HTM.TASK.STATUS Report RESTARTED

51013 Task suspended BPC.HTM.TASK.STATUS Report SUSPENDED

51014 Task resumed BPC.HTM.TASK.STATUS Report RESUMED

51015 Task completed

and follow-on task

started

BPC.HTM.TASK. FOLLOW Report COMPLETEDFOLLOW

51101 Task properties

updated

BPC.HTM.TASK.STATUS Report UPDATED

51103 Output message

updated

BPC.HTM.TASK. MESSAGE Report OUTPUTSET

51104 Fault message

updated

BPC.HTM.TASK. MESSAGE Report FAULTSET

51201 Work item deleted BPC.HTM.TASK. WISTATUS Destroy WI_DELETED

51202 Work items created BPC.HTM.TASK. WISTATUS Report WI_CREATED

51204 Work item

transferred

BPC.HTM.TASK. WITRANSFER Report WI_TRANSFERRED

51205 Work items

refreshed

BPC.HTM.TASK. WISTATUS Report WI_REFRESHED

The payloads for task events have the following syntax:

Chapter 7. Monitoring 309

BPC.HTM.TASK.STATUS

��

�

 BPC.HTM.TASK.STATUS

taskInstanceDescription

BPC.HTM.TASK.FOLLOW

followTaskId

BPC.HTM.TASK.MESSAGE

message

message_BO

BPC.HTM.TASK.INTERACT

username

BPC.HTM.TASK.FAILURE

taskFailedException

BPC.HTM.TASK.WISTATUS

username

BPC.HTM.TASK.WITRANSFER

current

target

 ��

Where:

taskInstanceDescription

The description of the task.

followTaskId

The ID of the task that was started as a follow-on-task.

message or message_BO

A string or business object representation that contains the input or output

message. The format depends on whether the Monitor Compatible Events

option was selected on the Event Monitor tab in WebSphere Integration

Developer.

taskFailedException

A string containing the faultNameSpace and faultName separated by a

semicolon (;).

username

For BPC.HTM.TASK.INTERACT this is the name of the user associated

with the task. For BPC.BPC.TASK.WISTATUS this is a list of users whose

work item was created or deleted.

current

The name of the current user. This is the user whose work item has been

transferred away.

target The user name of the work item receiver.

For task events, the following identifiers of event correlation spheres are written as

the context data elements to the Common Base Event:

v The ESCcurrentID provides the ID of the task instance.

v The ECSParentID is the ECSCurrentID before the task instance event.

Escalation events

The following table describes all task escalation events.

 Code Description Extension name Situation

53001 Escalation fired BPC.HTM.ESCALATION. STATUS Report

53201 Work item deleted BPC.HTM.ESCALATION. WISTATUS Destroy

53202 Work item created BPC.HTM.ESCALATION. WISTATUS Report

53204 Escalation transferred BPC.HTM.ESCALATION. WITRANSFER Report

53205 Work item refreshed BPC.HTM.ESCALATION. WISTATUS Report

310 IBM WebSphere Process Server for z/OS: Business Process Choreographer

The payloads for escalation events have the following syntax:

BPC.HTM.ESCALATION.STATUS

��

�

 BPC.HTM.ESCALATION.STATUS escalationName

escalationInstanceDescription

BPC.HTM.ESCALATION.WISTATUS

username

BPC.HTM.ESCALATION.WITRANSFER

current

target

 ��

Where:

EscalationName

The name of the escalation.

escalationInstanceDescription

The description of the escalation.

username

This is a list of users whose work item was escalated.

current

The name of the current user. This is the user whose work item has been

transferred away.

target The user name of the work item receiver.

For task events, the following identifiers of event correlation spheres are written as

the context data elements to the Common Base Event:

v The ESCcurrentID provides the ID of the escalation.

v The ECSParentID provides the ID of the associated task instance.

Chapter 7. Monitoring 311

312 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Chapter 8. Tuning business processes

Use this task to improve the performance of business processes.

After successfully running business processes, you can perform this task to

improve performance.

1. Define how to measure the baseline performance, and which measurements

you want to optimize.

For example, for some business applications, it is preferable to reduce the

response time for end-users under peak-load conditions. For other applications,

the rate that the system can process transactions might be more important than

the actual duration of each transaction.

2. Make baseline measurements.

Make the baseline measurements under conditions of load, time-of-day, and

day-of-week that are appropriate for tuning your application. Normally, the

most important baseline measurements are the throughput and response times.

Throughput values are measured after a specific bottleneck capacity is reached,

for example 100% CPU load, disk I/O at maximum, or network I/O at 100%.

Reliable response time values are best measured for a single process instance

during low server utilization.

3. Tune the processes.

Depending on whether your application uses long-running processes or

microflows, perform one of the following steps:

v To tune long-running processes, perform the steps that are described in

“Tuning long-running processes” on page 314. These processes tend to run

for a long time, but can be interrupted by events or human interaction. Their

performance therefore depends on the performance of the Business Process

Choreographer database and the messaging service.

v To tune microflows, perform the steps that are described in “Tuning

microflows” on page 321. These processes tend to run for only a short time.

They use the database only for audit logging, if enabled, and to retrieve the

template information. They do not use messaging support for storing

persistent data. These processes involve no human interaction.
4. Tune the application.

Many different options are available to achieve the same functionality in an

application, and some of them are more efficient than others. Identify and

review any performance-critical code. Maximize asynchronicity, and ensure that

actions are not unnecessarily serialized. Try to minimize the amount and

complexity of data submitted to the process, as serialization/deserialization

costs are directly related to the size and complexity of data objects used in the

process. Consider shortening timeouts that do not result in error conditions.

Identify opportunities to cache the results of database queries.

5. Review the current configuration for performance bottlenecks that can be

eliminated.

Possibilities to consider include:

v Installing more processors, more memory, and faster disks.

v Storing the database logs on different physical disks from the data, and

distributing the data on several disks.

v Using DB2, rather than Cloudscape, for optimal performance.

© Copyright IBM Corp. 2007 313

6. Repeat the benchmark measurements under similar load conditions to those of

the baseline measurements.

Keep a permanent record of the application performance measurements to

objectively measure any future changes in performance.

The business processes are configured to run measurably faster.

Tuning long-running processes

Use this task to improve the performance of long-running business processes.

Long-running processes can include user-interaction, asynchronous invocations,

multiple receives, picks, and event handlers, for example; they use database and

messaging subsystems for storing persistent states. The following topics describe

how to improve the performance of long-running processes.

Specifying initial database settings

Use this task to specify initial DB2 database settings. Note that this information is

provided only as an example.

Attention: The following information relates to the Business Process

Choreographer database. For information about tuning a WebSphere default

messaging database, see Tuning and problem solving for messaging engine data

stores in the WebSphere Application Server for z/OS information center.

For additional information on creating databases in WebSphere Process Server for

z/OS see Considerations for creating the database and Creating databases and storage

groups in the Installing and configuring WebSphere Process Server for z/OS PDF.

To achieve good database operation, specify the initial database settings. You will

fine-tune the settings later, in “Fine-tuning the database” on page 319.

1. Separate the log files from the data files.

Putting the database log file on a disk drive that is separate from the data

tends to improve performance, provided that sufficient disk drives are

available. If few disk drives are available, distributing the table spaces, as

described in the previous section, is usually more beneficial than putting the

database log on a separate drive.

For example, if you use DB2 on a Windows system, you can change the

location of the log files for the database named BPEDB to the F:\db2logs

directory, by entering the following command:

db2 UPDATE DB CFG FOR BPEDB USING NEWLOGPATH F:\db2logs

2. Create table spaces.

After you create the database, explicitly create table spaces. Example scripts to

create table spaces are provided by Business Process Choreographer in the

ProcessChoreographer subdirectory of your WebSphere Application Server

installation. Customize these scripts to accommodate the needs of a particular

scenario. Your goal, when creating the table spaces, is to distribute input and

output operations over as many disk drives as possible that are available to

DB2. By default, these scripts create the following table spaces:

AUDITLOG

Contains the audit trail tables for processes and tasks. Depending on

314 IBM WebSphere Process Server for z/OS: Business Process Choreographer

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.pmc.zseries.doc/tasks/tjm0270_.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.pmc.zseries.doc/tasks/tjm0270_.html

the degree of auditing that is used, access to tables in this table space

can be significant. If auditing is turned off, tables in this table space are

not accessed.

COMP

Contains the compensation tables for business processes from Business

Process Choreographer Version 5. Depending on the percentage of

compensable processes and activities, the tables in this table space

might require high disk bandwidth. If compensation is not used within

business processes, the tables in this table space are not used.

INSTANCE

Holds the process instance and task tables. It is always used intensively,

regardless of the kind of long-running process that is run. Where

possible, spread this table space over several disk drives.

SCHEDTS

Contains the tables that are used by the WebSphere scheduling

component. Access to tables in the scheduler table space is usually low,

because of the caching mechanisms used in the scheduler.

STAFFQRY

Contains the tables that are used to temporarily store staff query results

that are obtained from staff registries like Lightweight Directory Access

Protocol (LDAP). When business processes contain many person

activities, tables in this table space are frequently accessed.

TEMPLATE

Contains the tables that store the template information for processes

and tasks. The tables are populated during the deployment of an

application. At run time the access rate is low. The data is not updated,

and only new data is inserted during deployment.

WORKITEM

Holds the tables that are required for work item processing. Work items

are used for human task interaction. Depending on the number of

human tasks in the business processes, access to the tables in this table

space can vary from a low access rate to significantly high access rate.

The access rate is not zero, even when no explicit human tasks are

used, because work items are also generated to support administration

of long-running processes.
To create a database for high performance, perform the following actions:

a. Create the database.

b. Create the table spaces on the desired disks.

For example, the following script is based on the createTablespaceDb2.ddl

file that is located in the ProcessChoreographer subdirectory of your

WebSphere Application Server installation. It creates table spaces using

three different disk drives on a Windows system:

-- Scriptfile to create tablespaces for DB2 UDB

-- Replace occurence or @location@ in this file with the location

-- where you want the tablespace containers to be stored, then run:

-- db2 connect to BPEDB

-- db2 -tf createTablespaceDb2.ddl

CREATE TABLESPACE TEMPLATE MANAGED BY SYSTEM USING(’D:/BPE/TEMPLATE’);

CREATE TABLESPACE STAFFQRY MANAGED BY SYSTEM USING(’D:/BPE/STAFFQRY’);

Chapter 8. Tuning business processes 315

CREATE TABLESPACE AUDITLOG MANAGED BY SYSTEM USING(’E:/BPE/AUDITLOG’);

CREATE TABLESPACE COMP MANAGED BY SYSTEM USING(’D:/BPE/COMP’);

CREATE TABLESPACE INSTANCE MANAGED BY SYSTEM USING(’D:/BPE/INSTANCE’, ’E:/BPE/INSTANCE’);

CREATE TABLESPACE WORKITEM MANAGED BY SYSTEM USING(’F:/BPE/WORKITEM’);

CREATE TABLESPACE SCHEDTS MANAGED BY SYSTEM USING(’ F:/BPE/SCHEDTS’);

Notice how the INSTANCE table space is distributed across two drives.

c. Create the tables.

Create Business Process Choreographer tables by running the script

provided for the respective database. For DB2, for example, use the

createSchemaDb2.ddl file in the ProcessChoreographer directory.
3. Tune the database.

Use a capacity planning tool for your initial database settings.

If you are using DB2, start the DB2 configuration advisor from the DB2 Control

Center, by selecting DB2 configuration advisor from the pop-up menu of the

Business Process Choreographer database. Do the following actions:

a. Allocate memory to DB2.

For Server, allocate to DB2 only as much memory as is physically available

to it without swapping.

b. Specify the type of workload.

For Workload, select Mixed (queries and transactions).

c. For Transactions, specify the length of the transactions and the estimated

number of transactions to be processed each minute.

Select More than 10, to indicate that long transactions are used.

Then, in the Transactions per minute field, select the estimated number of

transactions processed each minute. To determine this number, assume that

each activity in the process has one transaction. The number of transactions

performed in one minute is then as follows:

number of transactions performed each minute = number of processes completed

each minute * number of activities in each process

d. Tune the database for faster transaction performance and slower recovery.

For Priority, select Faster transaction performance.

e. If possible, tune the database populated with the typical amount of data in

production. For Populated, select Yes. Otherwise, select No.

f. Tune the parallel connections setting.

For Connections, specify the maximum number of parallel connections that

can be made to the application server. Guidelines for determining this value

are as follows:

v The number of database connections required is determined by the

number of Java DataBase Connectivity (JDBC) connections to the

WebSphere Application Server. The JDBC connections are provided by the

JDBC connection pool, which is in the WebSphere Application Server. For

p JDBC connections, p * 1.1 database connections are required. How to

estimate a realistic value for p is described in “Tuning the application

server” on page 318.

v If Business Process Choreographer and the database are installed on the

same physical server, Business Process Choreographer needs no remote

316 IBM WebSphere Process Server for z/OS: Business Process Choreographer

database connections. However, because remote connections might be

required for remote database management, specify a low value, rather

than zero.

v If Business Process Choreographer and DB2 are installed on separate

servers, set the number of remote applications in accordance with the rule

previously described for local connections.
g. For Isolation, select Read stability. This isolation level is required for

Business Process Choreographer.
The configuration advisor displays suggested changes. You can either apply the

changes now, or save them to a file to apply later.

Your long-running processes are running as fast as possible under the current

environment and loading conditions.

Planning messaging engine settings

Use this task to plan your initial settings for the messaging engine.

To achieve the best performance for long-running processes, tune the message

queuing system for maximum performance of persistent messages.

If you use WebSphere Platform Messaging, follow the instructions given in Service

integration in the WebSphere Application Server for z/OS information center, to set

up and tune the data stores for the messaging engines.

If you use the IBM WebSphere MQ messaging product, rather than the default

messaging services, complete the following steps.

1. Tune MQ parameter settings.

Tune the following MQ parameter settings:

v Log file pages

v Log buffer page

v Log primary files

v Log secondary files

v Log default path

v Maximum channels

v Channel application bind type

The default locations for both the persistent queue data and the MQ logs is the

MQ installation directory. Put the data storage for the persistent queues and the

WebSphere MQ logs on different disk drives. By changing the path to the log

file to refer to another disk drive, you can change the location for the MQ logs.

Make these changes before you create the queue managers for Business Process

Choreographer.

2. Tune WebSphere MQ service properties for Business Process Choreographer.

These values must be set before you create the queue managers that are used

by Business Process Choreographer. Set each parameter to its maximum value,

as shown in the following table:

Chapter 8. Tuning business processes 317

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/welc6tech_si.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.zseries.doc/info/zseries/ae/welc6tech_si.html

Table 39. Tuning WebSphere MQ service properties for Business Process Choreographer

Parameter Value Comment

Log file pages 16384 On Windows systems, not all versions of WebSphere MQ support

setting the number of log file pages to 16384 by using the MQ

administration tools. In this case, change the value of the Windows

registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\

 CurrentVersion\Configuration\LogDefaults

to:

16384

Log primary

files

10

Log secondary

files

53

Log buffer

pages

512

3. Tune the queue manager properties.

Specify the queue manager properties for the maximum number of channels

and the type of binding for the channel application, as shown in the following

table:

 Table 40. Tuning queue manager properties

Queue manager properties Value

Maximum channels Use the default

Channel application bind type FASTPATH

Your queue manager is operating optimally.

Tuning the application server

Use this task to tune the application server.

Before you start this task, you must have specified the initial settings for the

database, as described in “Specifying initial database settings” on page 314.

To ensure that the business process container can perform optimally, you need to

adjust the server settings.

1. Estimate the application server resources that you need for each business

process container.

a. One data source to read and write business process state information to a

database: BPEDDataSourceDb2 in the server scope DB2 Universal JDBC

Driver Provider (XA)

b. Calculate the maximum concurrency of transactions, t, for the process

navigation by adding the following:

v The maximum number of clients concurrently connected through the

Business Process Choreographer API

v The number of concurrent endpoints defined in the JMS activation

specification BPEInternalActivationSpec

318 IBM WebSphere Process Server for z/OS: Business Process Choreographer

v The number of concurrent endpoints defined in the JMS activation

specification HTMInternalActivationSpec

Note: To view the activation specifications for the process server, in the

administrative console, click Resources → JMS Providers → Default

messaging → JMS activation specification.

c. Calculate the number of parallel JDBC connections required to the process

server database, p = 1.1 * t

Note: The value of p must not be greater than the number of connections

allowed by the database.

d. Calculate the number of parallel JDBC connections required to the

messaging database, m = t + x, where x is the number of additional JMS

sessions to allow for overload situations where additional messages are

generated and must be served

e. Set the SQL Statement cache size to 30
2. Tune the JDBC provider settings for the process server database (BPEDB).

a. Set Max Connections to the value p. The value of p must not be greater

than the number of connections allowed by the database.

b. Set the SQL Statement cache size to 300.
3. Tune the JDBC provider settings for the messaging database.

Set Max Connections to the value m.

4. Tune the heap size.

Here are some guidelines for the size of the server heap:

v 256 MB is too low, and results in poor performance.

v 512 MB is adequate as an initial heap size for many systems.

v 1024 MB is a reasonable upper limit.
5. Tune any services that are used by your business processes. Make sure that

your supporting services are tuned to cope with the degree of concurrency and

load demands that Business Process Choreographer makes on the service.

The application server is tuned for improved performance.

Fine-tuning the messaging provider

Use this task to improve the performance of your messaging provider.

If you use WebSphere Platform Messaging, refer to Tuning and problem solving for

messaging engine data stores.

The performance of your messaging provider is improved.

Fine-tuning the database

Use this task to fine-tune the database.

The business process container and business processes must be running.

A common problem is that the database runs out of lock list space, resulting in

lock escalation, which severely impacts performance. Depending on the structure

of the business processes run, you might therefore need to customize the settings

of certain performance-related parameters in your database management system.

Chapter 8. Tuning business processes 319

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.pmc.zseries.doc/tasks/tjm0270_.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.pmc.zseries.doc/tasks/tjm0270_.html

Note: If you are not using DB2, refer to your database management system

documentation for information about monitoring the performance of the

database, identifying and eliminating bottlenecks, and fine-tuning its

performance. The rest of this topic offers advice for DB2 users.

1. Tune the lock list space, to help ensure optimum performance.

Check the db2diag.log file for your DB2 instance. Look for entries like the

following example:

2005-07-24-15.53.42.078000 Instance:DB2 Node:000

PID:2352(db2syscs.exe) TID:4360 Appid:*LOCAL.DB2.027785142343

data management sqldEscalateLocks Probe:4 Database:BPEDB

ADM5503E The escalation of "10" locks on table "DB2ADMIN.ACTIVITY_INSTANCE_B_T"

to lock intent "X" has failed. The SQLCODE is "-911".

This type of message indicates that the parallelism for business process

applications has improved to the point where the number of available locks is

now too small. Increase the LOCKLIST value to approximately 10 * p, where p

is your estimate for the maximum number of parallel JDBC connections that

are required at any time. For example, if you sized your Business Process

Choreographer database, BPEDB, with a value of p=50, enter the following

command:

db2 UPDATE DB CFG FOR BPEDB USING LOCKLIST 500

2. If you used the DB2 configuration advisor, your database throughput is

probably pretty good. You can, however, further improve the performance, in

the following ways:

v Follow the best practices for database tuning that are described in the DB2

online documentation, books, and articles.

v Use DB2 monitors, and examine the db2diag.log file for more information

about bottlenecks within the database.

v Regularly run runstats on your database.

v Tune the following DB2 parameters:

LOCKLIST

See the description in step 1.

AVG_APPLS

It is better to set this parameter too high rather than too low. For

example, if there are a maximum of 20 connected applications, set

AVG_APPLS to 50.

LOGBUFSZ

Increasing the size of the buffer for the DB2 log decreases how often

a full log buffer must be written to disk.

LOG_FILSIZ

Increasing the size of the log files reduces how often they are

switched.
3. Adjust database and database manager settings according to workload

requirements. After the configuration advisor has configured the database, you

can also tune the following settings:

MINCOMMIT

A value of 1 is strongly recommended. The DB2 Configuration Advisor

may suggest other values.

NUM_IOSERVERS

Must match the number of physical disks that the database resides on.

You should have at least as many IOSERVERs as you have disks.

320 IBM WebSphere Process Server for z/OS: Business Process Choreographer

IOSERVERs do not use many system resources, so it is better to set a

value that is too high rather than too low.

Your long-running processes are running as fast as possible under the current

environment and loading conditions.

Tuning microflows

Use this task to improve the performance of microflows.

Microflows run in memory, without any user-interaction or persistent messaging

support. Database access is required only if audit logging or Common Event

Infrastructure (CEI) are enabled for the microflow. The processing of a microflow

occurs in a single thread, and normally, in a single transaction. The performance of

microflows mainly depends on the services called. However, if the memory

available for the server is too small, the performance of microflows will be

reduced.

1. Tune the Java Virtual Machine (JVM) heap size.

By increasing the Java heap size, you can improve the throughput of

microflows, because a larger heap size reduces the number of garbage

collection cycles that are required. Keep the value low enough to avoid heap

swapping to disk. For guidelines on the size of the server heap, see the relevant

step in “Tuning the application server” on page 318.

2. Tune the JVM garbage collection. Using the Throughput Garbage Collector

achieves the best throughput, however the garbage collection pauses can be

100-1000 ms, depending on the heap size. If response time is more important

than throughput, use the Low Pause Garbage Collector.

3. Make sure that there are enough database connections. You need at least one

JDBC connection to the process database for each concurrently running

microflow. It must be enough, not only for the connections to the database

itself, but also connections in the connection pool of the data source.

4. Tune the Object Request Broker (ORB) thread pool size. If remote clients

connect to the server-side ORB, make sure that there are enough threads

available in the ORB Thread Pool.

5. Tune the default thread pool size. To increase the number of microflows that

can run concurrently, you must increase the default thread pool size. To change

the value, using the Administrative Console, click Application Servers → server

→ Thread pools → Default.

Your microflows are running as fast as possible under the current environment and

loading conditions.

Tuning business processes that contain human tasks

There are various ways to improve the performance of business processes that

contain human tasks.

The following topics describe how to tune business processes that contain human

tasks.

Chapter 8. Tuning business processes 321

Reduce concurrent access to human tasks

When two or more people try to claim the same human task, only one person will

succeed. The other person is denied access.

Only one person can claim a human task. If several people attempt to work with

the same human task at the same time, the probability of collision increases.

Collisions cause delays, because of lock waits on the database or rollbacks. Some

ways to avoid or reduce the incidence of collision are as follows:

v If concurrent access is high, limit the number of users who can access a

particular human task.

v Avoid unnecessary human task queries from clients, by using intelligent claim

mechanisms. For example, you might take one of the following steps:

– Try to claim another item from the list if the first claim is unsuccessful.

– Always claim a random human task.

– Reduce the number of potential owners for the task, for example, by

assigning the task to a group with fewer members.

– Limit the size of the task list by specifying a threshold on the query used to

retrieve the list. Also consider using filtering to limit the number of hits. You

can filter for properties of a task, for example, only showing tasks with

priority one or tasks that are due within 24 hours from now. For an inline

task, you can also filter for business data that is associated with the task

using custom properties or query properties. To perform such filtering, you

must specify an appropriate where clause on the query that retrieves the task

list.

– Minimize or avoid dynamic staff queries, that is, ones that use variables.

– Use a client caching mechanism for human task queries, to avoid running

several queries at the same time.

Reduce query response time

Reduce the time that the database takes to respond to queries.

When you use a custom client, make sure that the queries set a threshold. From a

usability viewpoint, retrieving hundreds or thousands of items is typically

undesirable, because the larger the number of database operations, the longer the

task takes to complete, and because a person can manage only a small number of

results at a time. By specifying a threshold, you minimize database load and

network traffic, and help to ensure that the client can present the data quickly.

A better way to handle a query that returns a large number of items might be to

rewrite the query, to return a smaller result set of items. You can do this by

querying work items for only a certain process instance or work items with only a

certain date.

You can also reduce the query result by using filter criteria.

Avoid scanning whole tables

When you use the query application programming interfaces (APIs), to list the

objects in the database, you can specify filters that narrow the results you want to

retrieve. In these filters, you can specify the values and ranges of object attributes.

322 IBM WebSphere Process Server for z/OS: Business Process Choreographer

When database queries are processed, the filter information is translated into

WHERE clauses in a Structured Query Language (SQL) statement. These WHERE

clauses map the object attributes to column names in the affected database tables.

If your query specifies a filter that does not translate to an indexed table column,

the SQL statement will probably cause the table to be scanned. This scanning

impacts performance negatively and increases the risk of deadlocks. Although this

performance impact can be tolerated if it happens only a few times a day, it could

adversely affect efficiency if it took place several times a minute.

In such circumstances, a custom index can dramatically reduce the impact. In a

real customer situation, a custom index helped to reduce the API response time

from 25 seconds to 300 milliseconds. Instead of reading 724 000 rows of the

database table, only six rows had to be read.

Depending on the filter criteria that you specify, some columns might not be

included in an index. If this is the case, and if a table scan is used, resulting in

slow query performance, check the access path of the statement, using DB2

Explain, for example. If necessary, define a new index.

Chapter 8. Tuning business processes 323

324 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Chapter 9. Troubleshooting Business Process Choreographer

Troubleshooting the Business Process Choreographer configuration

Use this topic to solve problems relating to the configuration of the business

process container, or the human task container.

The purpose of this section is to aid you in understanding why the configuration

of your business process container or human task container is not working as

expected and to help you resolve the problem. The following tasks focus on

problem determination and finding solutions to problems that might occur during

the configuration of the business process container or the human task container.

Business Process Choreographer log files

This describes where to find the log files for your Business Process Choreographer

configuration.

Profile creation

The profile actions for Business Process Choreographer write to the

bpcaugment.log file in the logs directory.

If you select the sample configuration option in the profile wizard, it invokes the

bpeconfig.jacl script, and actions are logged in the bpeconfig.log file in the logs

directory.

Administrative scripts

All of the Business Process Choreographer scripts that are run using wsadmin are

logged in the wsadmin.traceout file. However, because this file is overwritten each

time that wsadmin is invoked, make sure that you save this log file before

invoking wsadmin again.

Configuration-related scripts

The script files bpeconfig.jacl, taskconfig.jacl, clientconfig.jacl, and bpeunconfig.jacl

write their log files in the logs directory with the names bpeconfig.log,

taskconfig.log, clientconfig.log, and bpeunconfig.log. The configuration scripts

setUpEventCollector.bat (.sh on Unix systems) and setupObserver.bat (.sh on Unix

systems) write their log files in the logs directory to the files setupOberver.log and

setupEventCollector.log, respectively. Also check the wsadmin.traceout file.

Administrative utility scripts

The administrative scripts in the util subdirectory of the ProcessChoreographer

directory do not write their own log files. Check the wsadmin.traceout file and the

application server log files.

Configuration checker

The bpecheck.jacl script file, found in the ProcessChoreographer/config directory,

can be used to check for common configuration problems. The results are written

to the bpecheck.log file in the logs directory.

© Copyright IBM Corp. 2007 325

Enabling tracing for Business Process Choreographer

This describes what to do before contacting support.

Enabling tracing

Business Process Choreographer tracing uses the standard WebSphere Process

Server tracing mechanism. This must be enabled in the normal way.

The trace specification is as follows:

=info:com.ibm.bpe.=all:com.ibm.task.*=all:com.ibm.ws.staffsupport.*=all

where com.ibm.bpe.*=all traces business processes and com.ibm.task.*=all traces

human tasks. The remaining aspects of human tasks, the staff plug-ins, are traced

by com.ibm.ws.staffsupport.

What to send support

After enabling tracing, recreate your problem scenario then provide the following

files:

v SystemOut.log

v SystemErr.log

v trace.log

These files are located in install_root/profiles/profile_name/logs/

The WebSphere Application Server FFDC log, located in the ffdc folder, also

contains information helpful to support in the absence of a trace.

The task container application fails to start

Startup bean named ejb/htm/TaskContainerStartUpBean forced the application to

stop.

Symptom

The following errors are written to the SystemOut.log file:

WSVR0037I: Starting EJB jar: taskejb.jar

NMSV0605W: A Reference object looked up from the context "java:"

with the name "comp/env/scheduler/DefaultUserCalendarHome"

was sent to the JNDI Naming Manager and an exception resulted.

Reference data follows:

Reference Factory Class Name: com.ibm.ws.naming.util.IndirectJndiLookupObjectFactory

Reference Factory Class Location URLs:

Reference Class Name: java.lang.Object

Type: JndiLookupInfo

Content: JndiLookupInfo:

jndiName="com/ibm/websphere/scheduler/calendar/DefaultUserCalendarHome";

providerURL=""; initialContextFactory=""

:

StartBeanInfo E STUP0005E: Startup bean named ejb/htm/TaskContainerStartUpBean

forced application to stop.

ApplicationMg W WSVR0101W: An error occurred starting, TaskContainer_utxtlb10Node01_server1

ApplicationMg A WSVR0217I: Stopping application: TaskContainer_utxtlb10Node01_server1

EJBContainerI I WSVR0041I: Stopping EJB jar: taskejb.jar

326 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Reason

You get this error if the SchedulerCalendars application is not available when the

TaskContainer application starts.

Resolution

Either install the SchedulerCalendars application manually, or if it is already

installed, add a new target mapping for it.

In a default profile, the SchedulerCalendars application is available automatically

as a WebSphere system application. However, in a custom profile it is not available

automatically.

The bpeconfig.jacl script tries to install the SchedulerCalendars application, but this

is not always possible.

If you use the administrative console install wizard to configure Business Process

Choreographer in an ND environment, you must install the SchedulerCalendars

application manually.

Troubleshooting the Business Process Choreographer

database and data source

Use this task to solve problems with the Business Process Choreographer database

and data source.

Both the business process container and the human-task container need a database.

Without the database, enterprise applications that contain business processes and

human tasks will not work.

v If you are using DB2:

– If you use the DB2 Universal JDBC driver type 4 and get DB2 internal errors

such as "com.ibm.db2.jcc.a.re: XAER_RMERR : The DDM parameter value is

not supported. DDM parameter code point having unsupported value :

0x113f DB2ConnectionCorrelator: NF000001.PA0C.051117223022" when you

test the connection on the Business Process Choreographer data source or

when the server starts up, perform the following actions:

1. Check the class path settings for the data source. In a default setup the

WebSphere variable ${DB2UNIVERSAL_JDBC_DRIVER_PATH} can point to the

WebSphere Process Server embedded DB2 Universal JDBC driver which is

found in the universalDriver_wbi directory.

2. The version of the driver might not be compatible with your DB2 server

version. Make sure that you use the original db2jcc.jar files from your

database installation, and not the WebSphere Process Server embedded

DB2 Universal JDBC driver. If required, changed the value of the

WebSphere variable ${DB2UNIVERSAL_JDBC_DRIVER_PATH} to point to your

original db2jcc.jar file.

3. Restart the server.
– If the db2diag.log file of your DB2 instance contains messages like ADM5503E

as illustrated below:

2004-06-25-15.53.42.078000 Instance:DB2 Node:000

PID:2352(db2syscs.exe) TID:4360 Appid:*LOCAL.DB2.027785142343

data management sqldEscalateLocks Probe:4 Database:BPEDB

ADM5503E The escalation of "10" locks on table "GRAALFS .ACTIVITY_INSTANCE_T"

 to lock intent "X" has failed. The SQLCODE is "-911"

Chapter 9. Troubleshooting Business Process Choreographer 327

Increase the LOCKLIST value. For example to set the value to 500, enter the

following DB2 command:

db2 UPDATE DB CFG FOR BPEDB USING LOCKLIST 500

This can improve performance significantly.

– To avoid deadlocks, make sure your database system is configured to use

sufficient memory, especially for the bufferpool. For DB2, use the DB2

Configuration Advisor to determine reasonable values for your configuration.

– If you get errors mentioning the data source implementation class

COM.ibm.db2.jdbc.DB2XADataSource:

- Check that all WebSphere environment variables that are used in the

server.policy file, have been set correctly. For example, DB2_INSTALL_ROOT

and DB2_JDBC_DRIVER_PATH.

- Check that the class path definition for your JDBC provider is correct, and

that it does not have two entries.

- Check that the component-managed authentication alias is set to

cellName/BPEAuthDataAliasdbType_Scope. Where, cellName is the name of

the cell, dbType is the database type, and Scope is the scope of the definition.
– If you are using a remote DB2 for z/OS database, and you get SQL code

30090N in the SystemOut.log file when the application server attempts to start

the first XA transaction with the remote database, perform the following:

- Make sure that the instance configuration variable SPM_NAME points to the

local server with a host name not longer than eight characters. If the host

name is longer than eight characters, define a short alias in the etc/hosts

file.

- Otherwise, you might have invalid syncpoint manager log entries in the

sqllib/spmlog directory. Try clearing the entries in the sqllib/spmlog

directory and restart.

- Consider increasing the value of SPM_LOG_FILE_SZ.
v If you are using Cloudscape:

– If you get a “Too many open files” error on Linux or UNIX systems, increase

the number of file handles available, for example, to 4000 or more. For more

information about how to increase the number of available file handles, refer

to the documentation for your operating system.

– If you get a ″Java class not found″ exception when trying to invoke

Cloudscape tools, make sure that you have set up the Java environment, and

that your classpath environment variable includes the following JAR files:

- db2j.jar

- db2jtools.jar

- db2jcc.jar

- db2jcview.jar

– If you cannot connect to your Cloudscape database using the Cloudscape

tools (like ij or cview) and you get the following exception:

ERROR XJ040: Failed to start database ’c:\WebSphere\AppServer\profiles\profile_name\databases\BPEDB’,

 see the next exception for details.

ERROR XSDB6: Another instance of Cloudscape may have already booted the database

 c:\WebSphere\AppServer\profiles\profile_name\databases\BPEDB.

you must stop your WebSphere Application Server before using these tools

because only one application can access the Cloudscape database at a time.
v If you get a database error when installing an enterprise application that

contains a business process or human task. When an enterprise application is

328 IBM WebSphere Process Server for z/OS: Business Process Choreographer

installed, any process templates and task templates are written into the Business

Process Choreographer database. Make sure that the database system used by

the business process container is running and accessible.

v If you have problems using national characters. Make sure that your database

was created with support for Unicode character sets.

v If tables or views cannot be found in the database. When configuring the

authentication alias for the data source, you must specify the same user ID that

was used to create the database tables (or to run the scripts to create them).

Troubleshooting business process and human tasks

Use this topic to solve problems relating to business processes and human tasks.

The following tasks focus on troubleshooting problems that can happen during the

execution of a business process or task.

Troubleshooting the installation of business process and

human task applications

When installing an application containing business processes, human tasks, or both

in an ND environment, you get an exception in the deployment manager

SystemErr.log file

Symptom

When installing an application containing business processes, human tasks, or both

in an ND environment, you find the following exception in the deployment

manager SystemErr.log file:

SystemErr R com.ibm.ws.management.commands.sib.SIBAdminCommandException:

CWSJA0012E: Messaging engine not found.

at com.ibm.ws.management.commands.sib.SIBAdminCommandHelper.createDestination

 (SIBAdminCommandHelper.java:787)

at com.ibm.ws.management.commands.sib.CreateSIBDestinationCommand.afterStepsExecuted

 (CreateSIBDestinationCommand.java:459)

at com.ibm.websphere.management.cmdframework.provider.AbstractTaskCommand.execute

 (AbstractTaskCommand.java:547)

at com.ibm.ws.sca.internal.deployment.sib.SIBAdminHelper.call(SIBAdminHelper.java:136)

at com.ibm.ws.sca.internal.deployment.sib.SIBAdminHelper.createSIBDestination

 (SIBAdminHelper.java:112)

at com.ibm.ws.sca.internal.deployment.sib.SIBAdmin.createDestination(SIBAdmin.java:327)

at com.ibm.ws.sca.internal.deployment.sib.SIBDestinationTask.createDestination

 (SIBDestinationTask.java:263)

at com.ibm.ws.sca.internal.deployment.sib.SIBDestinationTask.preInstallModule

 (SIBDestinationTask.java:71)

at com.ibm.ws.sca.internal.deployment.SCATaskBase.installModule(SCATaskBase.java:57)

at com.ibm.ws.sca.internal.deployment.sib.SIBDestinationTask.processArtifacts

 (SIBDestinationTask.java:228)

at com.ibm.ws.sca.internal.deployment.sib.SIBDestinationTask.install

 (SIBDestinationTask.java:287)

at com.ibm.ws.sca.internal.deployment.SCAInstallTask.performInstallTasks

 (SCAInstallTask.java:116)

at com.ibm.ws.sca.internal.deployment.SCAInstallTask.performTask

 (SCAInstallTask.java:61)

at com.ibm.ws.management.application.SchedulerImpl.run(SchedulerImpl.java:253)

at java.lang.Thread.run(Thread.java:568)

Reason

The bus member for the ″SCA.SYSTEM.cellName.Bus″ bus is missing.

Chapter 9. Troubleshooting Business Process Choreographer 329

Resolution

In the administrative console, click Service Integration → Buses →

SCA.SYSTEM.cellName.Bus. In the Topology section, click Bus members. Add the

server or cluster where you want to install the business process or human task

application as a bus member, then restart the affected server or cluster and try

installing the application again.

Troubleshooting the execution of business processes

This describes the solutions to common problems with business process execution.

In Business Process Choreographer Explorer, you can search for error message

codes on the IBM technical support pages.

1. On the error page, click the Search for more information link. This starts a

search for the error code on the IBM technical support site. This site only

provides information in English.

2. Copy the error message code that is shown on the error page to the clipboard.

The error code has the format CWWBcnnnnc, where each c is a character and nnnn

is a 4-digit number. Go to the WebSphere Process Server technical support

page.

3. Paste the error code into the Additional search terms field and click Go.

Solutions to specific problems are in the following topics.

ClassCastException when stopping an application containing a

microflow

The SystemOut.log file contains ClassCastException exceptions around the time

when an application containing a microflow had been stopped.

Reason

When an application is stopped, the classes contained in the EAR file are removed

from the class path. However, microflow instances may still be executing that need

these classes.

Resolution

Perform the following actions:

1. Stop the microflow process template first. From now on, it is not possible to

start new microflow instances from that template.

2. Wait for at least the maximum duration of the microflow execution so that any

running instances can complete.

3. Stop the application.

XPath query returns an unexpected value from an array

Using an XPath query to access a member in an array returns an unexpected value.

Reason

A common cause for this problem is assuming that the first element in the array

has an index value of zero. In XPath queries in arrays, the first element has the

index value one.

330 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Resolution

Check that your use of index values into arrays start with element one.

An activity has stopped because of an unhandled fault

(Message: CWWBE0057I)

The system log contains a CWWBE0057I message, the process is in the state

″running″, but it does not proceed its navigation on the current path.

Reason

Invoke activities, inline human tasks, and Java snippets are put in a stopped state,

if all of the following happen:

v A fault is raised by the activity

v The fault is not handled on the enclosing scope

v The continueOnError attribute of the activity is set to false

Resolution

The solution to this problem requires actions at two levels:

1. An administrator must repair the stopped activity instance manually. For

example, to force complete or force retry the stopped activity instance.

2. The reason for the failure must be investigated. In some cases the failure is

caused by a modeling error that must be corrected in the model.

For example, if you use the WebSphere Scheduler default calendar, and have an

expiration time with ’Timeout’ defined for your activity, make sure that the

definition of the time period is in the correct format, in particular make sure that

there is no blank between the number and the unit of time. Examples of correctly

specified timeout periods:

v 1minute

v 2hours 4minutes 1second

v 1day 1hour

A microflow is not compensated

A microflow has called a service, and the process fails, but the undo service is not

called.

Resolution

There are various conditions that must be met to trigger the compensation of a

microflow. Check the following:

1. Log on to the Business Process Choreographer Explorer and click Failed

Compensations to check whether the compensation service has failed and

needs to be repaired.

2. The compensation of a microflow is only triggered when the transaction for the

microflow is rolled back. Check whether this is the case.

3. The compensationSphere attribute of the microflow must be set to required.

4. A compensation service is only run, if the corresponding forward service has

not participated in the microflow’s transaction. Ensure that the forward service

does not participate in the navigation transaction, for example, on the reference

of the process component, set the Service Component Architecture (SCA)

qualifier suspendTransaction to True.

Chapter 9. Troubleshooting Business Process Choreographer 331

A long-running process appears to have stopped

A long-running process is in the state running, but it appears that it is doing

nothing.

Reason

There are various possible reasons for such behavior:

1. A navigation message has been retried too many times and has been moved to

the retention or hold queue.

2. A reply message from the Service Component Architecture (SCA) infrastructure

failed repeatedly.

3. The process is waiting for an event, timeout, or for a long-running invocation

or task to return.

4. An activity in the process is in the stopped state.

Resolution

Each of the above reasons requires different corrective actions:

1. Check if there are any messages in the retention or hold queue, as described in

the PDF for administering.

2. Check if there are any in the failed event management view of the

administrative console.

v If there are any failed events from Service Component Architecture (SCA)

reply messages, reactivate the messages.

v Otherwise, either force complete or force retry the long-running activity.
3. Check if there are activities in the stopped state, and repair these activities. If

your system log contains a CWWBE0057I message you might also need to

correct your model as described in Message: CWWBE0057I.

Invoking a synchronous subprocess in another EAR file fails

When a long-running process calls another process synchronously, and the

subprocess is located in another enterprise archive (EAR) file, the subprocess

invocation fails.

Example of the resulting exception:

com.ibm.ws.sca.internal.ejb.util.EJBStubAdapter com.ibm.ws.sca.internal.ejb.util.EJBStubAdapter#003

Exception:

java.rmi.AccessException: CORBA NO_PERMISSION 0x49424307 No; nested exception is:

org.omg.CORBA.NO_PERMISSION: The WSCredential does not contain a forwardable token.

Please enable Identity Assertion for this scenario.

vmcid: 0x49424000 minor code: 307 completed: No

at com.ibm.CORBA.iiop.UtilDelegateImpl.mapSystemException(UtilDelegateImpl.java:202)

at javax.rmi.CORBA.Util.mapSystemException(Util.java:84)

Reason

Common Secure Interoperability Version 2 (CSIv2) identity assertion must be

enabled when calling a synchronous subprocess in another EAR file.

Resolution

Configure CSIv2 inbound authentication and CSIv2 outbound authentication.

332 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Unexpected exception during execution (Message:

CWWBA0010E)

Either the queue manager is not running or the Business Process Choreographer

configuration contains the wrong database password.

Resolution

Check the following:

1. If the systemout.log file contains "javax.jms.JMSException: MQJMS2005:

failed to create MQQueueManager", start the queue manager.

2. Make sure that the database administrator password stored in the Business

Process Choreographer configuration matches the one set in the database.

Event unknown (Message: CWWBE0037E)

An attempt to send an event to a process instance or to start a new process

instance results in a ″CWWBE0037E: Event unknown.″ exception.

Reason

A common reason for this error is that a message is sent to a process but the

receive or pick activity has already been navigated, so the message cannot be

consumed by this process instance again.

Resolution

To correct this problem:

v If the event is supposed to be consumed by an existing process instance, you

must pass correlation set values that match an existing process instance which

has not yet navigated the corresponding receive or pick activity.

v If the event is supposed to start a new process instance, the correlation set

values must not match an existing process instance.

For more information about using correlation sets in business processes, see

technote 1171649.

Cannot find nor create a process instance (Message:

CWWBA0140E)

An attempt to send an event to a process instance results in a

’CreateRejectedException’ message.

Reason

A common reason for this error is that a message is sent to a receive or pick

activity that cannot instantiate a new process instance because its createInstance

attribute is set to no and the values that are passed with the message for the

correlation set which is used by this activity do not match any existing process

instances.

Resolution

To correct this problem you must pass a correlation set value that matches an

existing process instance.

For more information about using correlation sets in business processes, see

Correlation sets in BPEL processes.

Chapter 9. Troubleshooting Business Process Choreographer 333

http://www.ibm.com/support/docview.wss?rs=1079&tc=SSCXMC3&uid=swg21171649
http://www.ibm.com/support/docview.wss?rs=1079&tc=SSCXMC3&uid=swg21171649

Uninitialized variable or NullPointerException in a Java snippet

Using an uninitialized variable in a business process can result in diverse

exceptions.

Symptoms

Exceptions such as:

v During the execution of a Java snippet or Java expression, that reads or

manipulate the contents of variables, a NullPointerException is thrown.

v During the execution of an assign, invoke, reply or throw activity, the BPEL

standard fault ″uninitializedVariable″ (message CWWBE0068E) is thrown.

Reason

All variables in a business process have the value null when a process is started,

the variables are not pre-initialized. Using an uninitialized variable inside a Java

snippet or Java expression leads to a NullPointerException.

Resolution

The variable must be initialized before it is used. This can be done by an assign

activity, for example, the variable needs to occur on the to-spec of an assign, or the

variable can be initialized inside a Java snippet.

Standard fault exception ″missingReply″ (message:

CWWBE0071E)

The execution of a microflow or long-running process results in a BPEL standard

fault ″missingReply″ (message: CWWBE0071E), or this error is found in the system

log or SystemOut.log file.

Reason

A two-way operation must send a reply. This error is generated if the process ends

without navigating the reply activity. This can happen in any of the following

circumstances:

v The reply activity is skipped.

v A fault occurs and corresponding fault handler does not contain a reply activity.

v A fault occurs and there is no corresponding fault handler.

Resolution

Correct the model to ensure that a reply activity is always performed before the

process ends.

Parallel paths are sequentialized

There are two or more parallel invoke activities inside a flow activity, but the

invoke activities are run sequentially.

Resolution

v To achieve real parallelism, each path must be in a separate transaction. Set the

’transactional behavior’ attribute of all the parallel invoke activities to ’commit

before’ or ’requires own’.

v If you are using Cloudscape as the database system, the process engine will

serialize the execution of parallel paths. You cannot change this behavior.

334 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Copying a nested data object to another data object destroys the

reference on the source object

A data object, Father, contains another data object, Child. Inside a Java snippet or

client application, the object containing Child is fetched and set on a substructure

of data object, Mother. The reference to Child in data object Father disappears.

Reason

The reference to Child is moved from Father to Mother.

Resolution

When such a data transformation is performed in a Java snippet or client

application, and you want to retain the reference in Father, copy the data object

before it is assigned to another object. The following code snippet illustrates how

to do this:

BOCopy copyService = (BOCopy)ServiceManager.INSTANCE.locateService

 ("com/ibm/websphere/bo/BOCopy");

DataObject Child = Father.get("Child");

DataObject BCopy = copyService.copy(Child);

Mother.set("Child", BCopy);

CScope is not available

Starting a microflow or running a navigation step in a long-running process fails

with an assertion, saying: ’postcondition violation !(cscope != null) ’.

Reason

In certain situations, the process engine uses the compensation service, but it was

not enabled.

Resolution

Enable the compensation service as described in the PDF for administration.

Working with process-related or task-related messages

Describes how to get more information about Business Process Choreographer

messages that are written to the display or a log file.

Messages that belong to Business Process Choreographer are prefixed with either

CWWB for process-related messages, or CWTK for task-related messages. The

format of these messages is PrefixComponentNumberTypeCode. The type code can be:

I Information message

W Warning message

E Error message

When processes and tasks run, messages are either displayed in Business Process

Choreographer Explorer, or they are added to the SystemOut.log file and traces. If

the message text provided in these files is not enough to help you solve your

problem, you can use the WebSphere Application Server symptom database to find

more information. To view Business Process Choreographer messages, check the

activity.log file by using the WebSphere log analyzer.

1. Start the WebSphere log analyzer.

Run the following script: install_root/bin/waslogbr.sh

Chapter 9. Troubleshooting Business Process Choreographer 335

2. Optional: Click File > Update database > WebSphere Application Server

Symptom Database to check for the newest version of the symptom database.

3. Optional: Load the activity log.

a. Select the activity log file

v install_root/profiles/profile_name/logs/activity.log file
b. click Open.

Troubleshooting Business Process Choreographer Explorer

Use this to solve problems relating to the Business Process Choreographer

Explorer.

Use the following information to solve problems relating to Business Process

Choreographer Explorer.

v If you try to access Business Process Choreographer Explorer with a browser,

but get the error message ’HTTP 404 - File not found’, try the following:

– Use the administrative console to make sure that the Web client application

BPCExplorer_node_name_server_name is actually deployed and running on the

server.

– In the administrative console, on the page for the application, under ″View

Deployment Descriptor″, verify that the context root is the one you used

when setting up the Business Process Choreographer Explorer.
v If you get an error message when using Business Process Choreographer

Explorer, click the Search for more information link on the error page. This

starts a search for the error code on the IBM technical support site. This site only

provides information in English. Copy the error message code that is shown on

the Business Process Choreographer Explorer Error page to the clipboard. The

error code has the format CWWBcnnnnc, where each c is a character and nnnn is a

4-digit number. Go to the WebSphere Process Server technical support page.

Paste the error code into the Additional search terms field and click Go.

v If you get a StandardFaultException with the standard fault missingReply

(message CWWBE0071E), this is a symptom of a problem with your process

model. For more information about solving this, see “Troubleshooting the

administration of business processes and human tasks” on page 337.

v If you can log onto Business Process Choreographer Explorer, but some items

are not displayed, or if certain buttons are not enabled, this indicates a problem

with your authorization.

Possible solutions to this problem include:

– Use the administrative console to turn security on.

– Check that you are logged onto Business Process Choreographer Explorer

using the correct identity. If you log on with a user ID that is not a process or

task administrator, all administrative views and options will be invisible or

not enabled.

– Use WebSphere Integration Developer to check or modify the authorization

settings defined in the business process.
v Error message CWWBU0001E: ″A communication error occurred when the

BFMConnection function was called″ or ″A communication error occurred when

the HTMConnection function was called″. This error can indicate that the

business process container or human task container, respectively, has been

stopped and the client could not connect to the server. Verify that the business

process container and the human task container are running and accessible. The

nested exception might contain further details about the problem.

336 IBM WebSphere Process Server for z/OS: Business Process Choreographer

v Error message WWBU0024E: ″Could not establish a connection to local business

process EJB with a reason ″Naming Exception″. This error is thrown if users

attempt to log on while the business process container is not running. Verify that

the application BPEContainer_InstallScope is running, where InstallScope is either

the cluster_name or hostname_servername.

 Related tasks

 “Troubleshooting the execution of business processes” on page 330
This describes the solutions to common problems with business process

execution.

Troubleshooting the administration of business processes

and human tasks

This article describes how to solve some common problems with business

processes and human tasks.

The following information can help you to debug problems with your business

processes and human tasks.

v The administrative console stops responding if you try to stop a business

process application while it still has process instances. Before you try to stop the

application, you must stop the business processes so that no new instances are

created, and do one of the following:

– Wait for all of the existing process instances to end in an orderly way.

– Terminate and delete all of the process instances.

Only then can you stop the process application. For more information about

preventing this problem, refer to technote 1166009.

v The administrative console stops responding if you try to stop a human task

application while it still has task instances. To stop the application, you must:

1. Stop the human tasks so that no new instances are created.

2. Perform one of the following:

– Wait for all of the existing task instances to end in an orderly way.

– Terminate and delete all task instances.
3. Stop the task application.

Troubleshooting the staff service, staff plug-ins, and staff

resolution

Use the following information to help solve problems relating to staff assignments

of people to authorization roles.

Topics covered are:

v Errors during staff verb deployment

v Entries in the staff repository are not reflected in work item assignments

v Unexpected staff assignment for tasks or processes

v Stopped staff activities

v Changes to the staff repository that are not immediately reflected in work item

assignments

v Error and warning messages relating to staff resolution

v Issues with group work items and the ″Group″ verb

You can also search for additional information in the Technical support search

page.

Chapter 9. Troubleshooting Business Process Choreographer 337

http://www.ibm.com/support/docview.wss?rs=1079&tc=SSCXMC3&uid=swg21166009
http://www.ibm.com/software/integration/wps/support/

Errors during staff verb deployment

If you are using the LDAP staff plug-in, deployment might fail due to

incorrect values of the plug-in configuration parameters. Make sure that all

mandatory parameters are set. To set the BaseDN parameter to the root of

the LDAP directory tree, specify an empty string; set the BaseDN

parameter to two apostrophe (’) characters (’’). Do not use double

quotation marks (″). Failure to set the BaseDN parameter results in a

NullPointerException exception at deployment time.

Entries in the staff repository are not reflected in work item assignments

The maximum number of user IDs retrieved by a staff query is specified

by the Threshold variable, which is defined in the XSL transformation file

in use. The XSL transformation file used for the LDAP staff plug-in is, for

example, LDAPTransformation.xsl, which is located in

install-root/ProcessChoreographer/Staff on Linux and UNIX platforms and

in install-root\ProcessChoreographer\Staff on Windows platforms. The

default Threshold value is 20. To change this value:

1. Create a new staff plug-in provider configuration, providing your own

version of the XSL file

2. Adapt the following entry in the XSL file according to your needs:

 <xsl:variable name="Threshold">20</xsl:variable>

Note: If you specify a large Threshold value, it might result in a decrease

in performance. For this reason, do not specify a value greater than

100.

Unexpected staff assignments for tasks or process instances

Default staff assignments are performed if you do not define staff verbs for

certain roles for your tasks, or if staff resolution fails or returns no result.

These defaults might result in unexpected user authorization; for example,

a process starter receives process administrator rights. In addition, many

authorizations are inherited by dependent artifacts. For example, the

process administrator may also become the administrator of all inline tasks.

 The following tables illustrate which defaults apply for which situation:

 Table 41. Roles for business processes

Roles for business

processes

If the role is not defined

in the process model ...

If the role is defined in the process

model, but staff resolution fails or

does not return proper results ...

Process administrator Process starter becomes

process administrator

The following exception occurs and

the process is not started:

EngineAdministratorCannotBe

ResolvedException

Process reader No reader No reader

 Table 42. Roles for inline human tasks and their escalations

Roles for inline human

tasks and their

escalations

If the role is not defined

in the task model ...

If the role is defined in the task

model, but staff resolution fails or

does not return proper results ...

Task administrator Only inheritance applies Only inheritance applies

Task potential instance

creator

Everybody becomes

potential instance creator

Everybody becomes potential

instance creator

338 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Table 42. Roles for inline human tasks and their escalations (continued)

Roles for inline human

tasks and their

escalations

If the role is not defined

in the task model ...

If the role is defined in the task

model, but staff resolution fails or

does not return proper results ...

Task potential starter Everybody becomes

potential starter

Everybody becomes potential starter

Task potential owner Everybody becomes

potential owner

Administrators become potential

owners

Task editor No editor No editor

Task reader Only inheritance applies Only inheritance applies

Escalation receiver Administrators become

escalation receivers

Administrators become escalation

receivers

The following inheritance rules apply for inline tasks:

v Process administrators become administrators for all inline tasks, their

subtasks, follow-on tasks, and escalations.

v Process readers become readers for all inline tasks, their subtasks,

follow-on tasks, and escalations.

v Task administrators become administrators for all subtasks, follow-on

tasks, and escalations of all these tasks.

v Task readers become readers for all subtasks, follow-on tasks, and

escalations of all these tasks.

v Members of any task role become readers for this task’s escalations,

subtasks, and follow-on tasks

v Escalation receivers become readers for the escalated task.

 Table 43. Roles for stand-alone human tasks and their escalations

Roles for stand-alone

human tasks and their

escalations

If the role is not defined in

the task model ...

If the role is defined in task

model, but staff resolution

fails or does not return

correct results ...

Task administrator Originator becomes

administrator

The exception

AdministratorCannotBe

ResolvedException is thrown

and the task is not started

Task potential instance

creator

Everybody becomes potential

instance creator

Everybody becomes potential

instance creator

Task potential starter Originator becomes potential

starter

The exception

CannotCreateWorkItem

Exception is thrown and the

task is not started

Potential owner Everybody becomes potential

owner

Administrators become

potential owners

Editor No editor No editor

Reader Only inheritance applies Only inheritance applies

Escalation receiver Administrators become

escalation receivers

Administrators become

escalation receivers

The following inheritance rules apply for stand-alone tasks:

v Task administrators become administrators for all subtasks, follow-on

tasks, and escalations of all these tasks.

Chapter 9. Troubleshooting Business Process Choreographer 339

v Task readers become readers for all subtasks, follow-on tasks, and

escalations of all these tasks.

v Members of any task role become readers for this task’s escalations,

subtasks, and follow-on tasks

v Escalation receivers become readers for the escalated task.

Note: When a method is invoked via the Business Flow Manager API,

members of the J2EE role BPESystemAdministrator have

administrator authorization, and members of the J2EE role

BPESystemMonitor have reader authorization.

Note: When a method is invoked via the Human Task Manager API,

members of the J2EE role TaskSystemAdministrator have

administrator authorization, and members of the J2EE role

TaskSystemMonitor have reader authorization.

Stopped staff activities

If you encounter one or more of the following problems:

v Human tasks cannot be claimed, even though the business process

started navigating successfully.

v The SystemOut.log file contains the following message: CWWB0057I:

Activity ’MyStaffActivity’ of processes ’MyProcess’ has been

stopped because of an unhandled failure...

This message indicates that WebSphere Application Server security might

not be enabled. Human tasks and processes that use people authorization

require that security is enabled and the user registry is configured. Take

the following steps:

1. Check that WebSphere security is enabled. In the administrative

console, go to Security → Global Security and make sure the Enable

global security check box is selected.

2. Check that the user registry is configured. In the administrative

console, go to Security → User Registries and check the Active user

registry attribute.

3. Restart the activity, if stopped.

Changes to the staff repository are not immediately reflected in work-item

assignments

 Business Process Choreographer caches the results of staff assignments

evaluated against a staff directory, such as a Lightweight Directory Access

Protocol (LDAP) server, in the runtime database. When changes occur in

the staff directory, these are not immediately reflected in the database

cache.

 The Administration guide describes three ways to refresh this cache:

v Refreshing staff query results, using the Administrative Console. Use

this method if you have major changes and need to refresh the results

for almost all staff queries.

v Refreshing staff query results, using administrative commands. Use

this method if you write administration scripts using the wsadmin tool,

or if you want to immediately refresh only a subset of the staff query

results.

v Refreshing staff query results, using the refresh daemon. Use this

method to set up a regular and automatic refresh of all expired staff

query results.

340 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Note: None of these methods can refresh the group membership

association of a user for the Group verb. This group membership is

cached in the user’s login session (WebSphere security LTPA token),

which by default expires after two hours. Also note that the group

membership list of the process starter ID that is used for process

navigation, is never refreshed.

Error and warning messages relating to staff resolution

Some common errors can occur when accessing a staff repository during

staff resolution. To see details for these errors, you can enable tracing with

the following trace settings: com.ibm.bpe.*=all:

com.ibm.task.*=all:com.ibm.ws.staffsupport.ws.*=all

 The following common error situations are indicated by warning or error

messages:

v Could not connect to LDAP server in the trace.log file indicates failure

to connect to the LDAP server. Check your network settings, the

configuration (especially the provider URL) for the staff plug-in provider

you use, and verify whether your LDAP server requires an SSL

connection.

v javax.xml.transform.TransformerException:

org.xml.sax.SAXParseException: Element type "xsl:template" must be

followed by either attribute specifications, ">" or "/>" in the

System.out or System.err files indicates that the LDAPTransformation.xsl

file cannot be read. Check your staff plug-in provider configuration and

the configured XSLT file for errors.

v LDAP object not found. dn: uid=unknown,cn=users,dc=ibm,dc=com

[LDAP: error code 32 - No Such Object] in the trace.log file indicates

that an LDAP entry cannot be found. Check the task model’s staff verb

parameters and the LDAP directory content for mismatches in the task

model.

v Requested attribute "uid" not found in:

uid=test222,cn=users,dc=ibm,dc=com in the trace.log file indicates that

an attribute cannot be found in the queried LDAP object. Check the task

model’s staff verb parameters and the LDAP directory content for

mismatches in the task model. Also check the XSLT file of your staff

provider configuration for errors.

Issues with group work items and the ″Group″ verb

When using the Group verb, some special situations can occur:

v Group members are not authorized, although the group name is

specified:

– Specify the group short name when using the Local OS registry for

WebSphere security, and the group dn when using the LDAP registry.

– Make sure that you respect the case sensitivity of the group name.

One possible reason for this situation is that you have configured the

LDAP user registry for WebSphere security and selected the Ignore case

for authorization option. If so, either deselect the option, or specify

LDAP group dn in all uppercase.

v Changes in group membership are not immediately reflected in

authorization. This might happen, when the affected user is still logged

on. The group membership of a user is cached in her login session, and

(by default) expires after two hours. You can either wait for the login

session to expire (default is two hours), or restart the application server.

Chapter 9. Troubleshooting Business Process Choreographer 341

The refresh methods offered by Human Task Manager do not apply for

this verb. Note that the group membership list of the process starter is

never refreshed.

Using process-related and task-related audit trail information

Explains the event types and database structures for business processes and human

tasks.

Logging must be enabled for the business process container, the task container, or

both.

If logging is enabled, whenever a significant step during the running of a business

process or a human task occurs, information is written to the audit log or Common

Event Infrastructure (CEI) log. For more information about CEI, refer to the

Monitoring WebSphere Process Server PDF. The following topics describe the event

types and database structures for business processes and human tasks.

Audit event types for business processes

This describes the types of events that can be written to the audit log during the

processing of business processes.

For an event to be logged, the following conditions must be met:

v The corresponding audit logging type is enabled for the business process

container

v The event must be enabled for the corresponding entity in the process model

The following tables list the codes for audit events that can occur while business

processes are running.

 Table 44. Process instance events

Audit event Event code

PROCESS_STARTED 21000

PROCESS_SUSPENDED 21001

PROCESS_RESUMED 21002

PROCESS_COMPLETED 21004

PROCESS_TERMINATED 21005

PROCESS_RESTARTED 21019

PROCESS_DELETED 21020

PROCESS_FAILED 42001

PROCESS_COMPENSATING 42003

PROCESS_COMPENSATED 42004

PROCESS_TERMINATING 42009

PROCESS_FAILING 42010

PROCESS_CORRELATION_SET_INITIALIZED 42027

PROCESS_COMPENSATION_INDOUBT 42030

PROCESS_WORKITEM_DELETED 42041

PROCESS_WORKITEM_CREATED 42042

PROCESS_COMPENSATION_FAILED 42046

PROCESS_EVENT_RECEIVED 42047

342 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Table 44. Process instance events (continued)

Audit event Event code

PROCESS_EVENT_ESCALATED 42049

PROCESS_WORKITEM_TRANSFERRED 42056

 Table 45. Activity events

Audit event Event code

ACTIVITY_READY 21006

ACTIVITY_STARTED 21007

ACTIVITY_COMPLETED 21011

ACTIVITY_CLAIM_CANCELED 21021

ACTIVITY_CLAIMED 21022

ACTIVITY_TERMINATED 21027

ACTIVITY_FAILED 21080

ACTIVITY_EXPIRED 21081

ACTIVITY_LOOPED 42002

ACTIVITY_SKIPPED 42005

ACTIVITY_TERMINATING 42008

ACTIVITY_FAILING 42011

ACTIVITY_OUTPUT_MESSAGE_SET 42012

ACTIVITY_FAULT_MESSAGE_SET 42013

ACTIVITY_STOPPED 42015

ACTIVITY_FORCE_RETRIED 42031

ACTIVITY_FORCE_COMPLETED 42032

ACTIVITY_UNDO_STARTED 42033

ACTIVITY_UNDO_SKIPPED 42034

ACTIVITY_UNDO_COMPLETED 42035

ACTIVITY_MESSAGE_RECEIVED 42036

ACTIVITY_LOOP_CONDITION_TRUE 42037

ACTIVITY_LOOP_CONDITION_FALSE 42038

ACTIVITY_WORKITEM_DELETED 42039

ACTIVITY_WORKITEM_CREATED 42040

ACTIVITY_ESCALATED 42050

ACTIVITY_WORKITEM_REFRESHED 42054

ACTIVITY_WORKITEM_TRANSFERRED 42055

ACTIVITY_PARALLEL_BRANCHES_STARTED 42057

 Table 46. Events related to variables

Audit event Event code

VARIABLE_UPDATED 21090

Chapter 9. Troubleshooting Business Process Choreographer 343

Table 47. Control link events

Audit event Event code

LINK_EVALUATED_TO_TRUE 21034

LINK_EVALUATED_TO_FALSE 42000

 Table 48. Process template events

Audit event Event code

PROCESS_INSTALLED 42006

PROCESS_UNINSTALLED 42007

 Table 49. Scope instance events

Audit event Event code

SCOPE_STARTED 42020

SCOPE_SKIPPED 42021

SCOPE_FAILED 42022

SCOPE_FAILING 42023

SCOPE_TERMINATED 42024

SCOPE_COMPLETED 42026

SCOPE_COMPENSATING 42043

SCOPE_COMPENSATED 42044

SCOPE_COMPENSATION_FAILED 42045

SCOPE_EVENT_RECEIVED 42048

SCOPE_EVENT_ESCALATED 42051

Audit event types for human tasks

This describes the types of events that can be written to the audit log during the

processing of human tasks.

For an event to be logged, the following conditions must be met:

v The corresponding audit logging type is enabled for the human task container

v The event must be enabled for the corresponding entity in the task model

The following tables list the codes for audit events that can occur while human

tasks are running.

 Table 50. Task instance events

Audit event Event code

TASK_CREATED 51001

TASK_DELETED 51002

TASK_STARTED 51003

TASK_COMPLETED 51004

TASK_CLAIM_CANCELLED 51005

TASK_CLAIMED 51006

TASK_TERMINATED 51007

TASK_FAILED 51008

344 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Table 50. Task instance events (continued)

Audit event Event code

TASK_EXPIRED 51009

TASK_WAITING_FOR_SUBTASK 51010

TASK_SUBTASKS_COMPLETED 51011

TASK_RESTARTED 51012

TASK_SUSPENDED 51013

TASK_RESUMED 51014

TASK_COMPLETED_WITH_FOLLOW_ON 51015

TASK_UPDATED 51101

TASK_OUTPUT_MESSAGE_UPDATED 51103

TASK_FAULT_MESSAGE_UPDATED 51104

TASK_WORKITEM_DELETED 51201

TASK_WORKITEM_CREATED 51202

TASK_WORKITEM_TRANSFERRED 51204

TASK_WORKITEM_REFRESHED 51205

 Table 51. Task template events

Audit event Event code

TASK_TEMPLATE_INSTALLED 52001

TASK_TEMPLATE_UNINSTALLED 52002

 Table 52. Escalation instance events

Audit event Event code

ESCALATION_FIRED 53001

ESCALATION_WORKITEM_DELETED 53201

ESCALATION_WORKITEM_CREATED 53202

ESCALATION_WORKITEM_TRANSFERRED 53204

ESCALATION_WORKITEM_REFRESHED 53205

Structure of the audit trail database view for business processes

The AUDIT_LOG_B database view provides audit log information about business

processes.

To read the content of the audit trail, use SQL or any other administration tool that

supports the reading of database tables and views.

Audit events are related to process entities. The audit event types depend on the

entity to which the event refers. The audit event types include:

v Process template events (PTE)

v Process instance events (PIE)

v Activity instance events (AIE)

v Events related to variables (VAR)

v Control link events (CLE)

v Scope-related events (SIE).

Chapter 9. Troubleshooting Business Process Choreographer 345

For a list of the audit event type codes, see “Audit event types for business

processes” on page 342.

The following table describes the structure of the AUDIT_LOG_B audit trail view. It

lists the names of the columns, the event types, and gives a short description for

the column.

Inline tasks are logged in the AUDIT_LOG_B audit trail view and not in the TASK_LOG

audit trail view. For example, claiming an inline participating task results in an

ACTIVITY_CLAIMED event; a task-related event is not generated.

 Table 53. Structure of the AUDIT_LOG_B audit trail view

Name PTE PIE AIE VAR CLE SIE Description

AIID x The ID of the activity instance that is

related to the current event.

ALID x x x x x x Identifier of the audit log entry.

EVENT_TIME x x x x x x Timestamp of when the event occurred

in Coordinated Universal Time (UTC)

format.

EVENT_TIME_UTC x x x x x x Timestamp of when the event occurred

in Coordinated Universal Time (UTC)

format.

AUDIT_EVENT x x x x x x The type of event that occurred.

PTID x x x x x x Process template ID of the process that

is related to the current event.

PIID x x x x x Process instance ID of the process

instance that is related to the current

event.

VARIABLE_NAME x The name of the variable related to the

current event.

SIID x The ID of the scope instance related to

the event.

PROCESS_TEMPL

_NAME

x x x x x x Process template name of the process

template that is related to the current

event.

TOP_LEVEL_PIID x x x x x Identifier of the top-level process that

is related to the current event.

PARENT_PIID x x x x x Process instance ID of the parent

process, or null if no parent exists.

VALID_FROM x x x x x x Valid-from date of the process template

that is related to the current event.

VALID_FROM_ UTC x x x x x x Valid-from date of the process template

that is related to the current event in

Coordinated Universal Time (UTC)

format.

ATID x The ID of the activity template related

to the current event.

ACTIVITY_NAME x x Name of the activity on which the

event occurred.

346 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Table 53. Structure of the AUDIT_LOG_B audit trail view (continued)

Name PTE PIE AIE VAR CLE SIE Description

ACTIVITY_KIND x Kind of the activity on which the event

occurred. Possible values are:

 KIND_EMPTY 3

KIND_INVOKE 21

KIND_RECEIVE 23

KIND_REPLY 24

KIND_THROW 25

KIND_TERMINATE 26

KIND_WAIT 27

KIND_COMPENSATE 29

KIND_SEQUENCE 30

KIND_SWITCH 32

KIND_WHILE 34

KIND_PICK 36

KIND_FLOW 38

KIND_SCRIPT 42

KIND_STAFF 43

KIND_ASSIGN 44

KIND_CUSTOM 45

KIND_RETHROW 46

KIND_FOR_EACH_SERIAL 47

KIND_FOR_EACH_PARALLEL 49

These are the constants defined for

ActivityInstanceData.KIND_*

ACTIVITY_STATE x State of the activity that is related to

the event. Possible values are:

 STATE_INACTIVE 1

STATE_READY 2

STATE_RUNNING 3

STATE_SKIPPED 4

STATE_FINISHED 5

STATE_FAILED 6

STATE_TERMINATED 7

STATE_CLAIMED 8

STATE_TERMINATING 9

STATE_FAILING 10

STATE_WAITING 11

STATE_EXPIRED 12

STATE_STOPPED 13

These are the constants defined for

ActivityInstanceData.STATE_*

CONTROL_LINK_

NAME

x Name of the link that is related to the

current link event.

PRINCIPAL x x x x x Name of the principal. This is not set

for PROCESS_DELETED events.

VARIABLE_DATA x Data for variables for variable

updated events.

Chapter 9. Troubleshooting Business Process Choreographer 347

Table 53. Structure of the AUDIT_LOG_B audit trail view (continued)

Name PTE PIE AIE VAR CLE SIE Description

EXCEPTION_TEXT x x x Exception message that caused an

activity or process to fail. Applicable

for:

 PROCESS_FAILED

ACTIVITY_FAILED

SCOPE_FAILED

DESCRIPTION x x x x x Description of activity or process,

containing potentially resolved

replacement variables.

CORR_SET_INFO x The string representation of the

correlation set that was initialized at

process start time. Provided with the

processCorrelationSetInitialized event

(42027).

USER_NAME x x The name of the user whose work item

has been changed. This is applicable

for the following events:

v Process instance work item deleted

v Activity instance work item deleted

v Process instance work item created

v Activity instance work item created

ADDITIONAL_ INFO x x x The contents of this field depends on

the type of the event:

ACTIVITY_WORKITEM_

TRANSFERRED,

PROCESS_WORK_ITEM_

TRANSFERRED

The name of the user that

received the work item.

ACTIVITY_WORKITEM_ CREATED,

ACTIVITY_WORKITEM_

REFRESHED,

ACTIVITY_ESCALATED

The list of all of the users for

which the work item was

created or refreshed,

separated by ’,’. If the list

contains only one user, the

USER_NAME field is filled

with the user name of this

user and the

ADDITIONAL_INFO field

will be empty (null).

PROCESS_EVENT_RECEIVED,

SCOPE_EVENT_RECEIVED

If available, the type of

operation that was received

by an event handler. The

following format is used: ’{’

port type namespace ’}’ port

type name ’:’ operation name.

This field is not set for

’onAlarm’ events.

348 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Structure of the audit trail database view for human tasks

The TASK_AUDIT_LOG database view provides audit log information about

human tasks.

Inline tasks are logged in the AUDIT_LOG_B view. All other task types are logged

in the TASK_AUDIT_LOG view.

To read the content of the audit trail, use SQL or any other administration tool that

supports the reading of database tables and views.

Audit events are related to task entities. The audit event types depend on the

entity to which the event refers. The audit event types include:

v Task instance events (TIE)

v Task template events (TTE)

v Escalation instance events (EIE)

The following table describes the structure of the TASK_AUDIT_LOG audit trail view.

It lists the names of the columns, the event types, and gives a short description for

the column.

Inline tasks are logged in theAUDIT_LOG_B audit trail view and not in the

TASK_AUDIT_LOG audit trail view. For example, claiming an inline participating task

results in an ACTIVITY_CLAIMED event; a task-related event is not generated.

 Table 54. Structure of the TASK_AUDIT_LOG audit trail view

Name TIE TTE EIE Description

ALID x x x The identifier of the audit log entry.

AUDIT_EVENT x x x The type of event that occurred. For a list of audit

event codes, see “Audit event types for human

tasks” on page 344.

CONTAINMENT_ CTX_ID x x The identifier of the containing context, for example,

ACOID, PTID, or PIID.

DESCRIPTION x x Resolved description string, where placeholders in

the description are replaced by their current values.

All affected languages are logged together in this

column, formatted as an XML document. Only

languages with descriptions containing placeholders

for create-like events, or that have been explicitly

updated for update-like events, are logged.

ESIID x The identifier of the escalation instance that is

related to the current event.

ESTID x The identifier of the escalation template that is

related to the current event.

EVENT_TIME x x x The time when the event occurred in Coordinated

Universal Time (UTC) format.

FAULT_NAME x The name of the fault message. This attribute is

applicable to the following events:

 TASK_FAILED

TASK_FAULT_MESSAGE_UPDATED

Chapter 9. Troubleshooting Business Process Choreographer 349

Table 54. Structure of the TASK_AUDIT_LOG audit trail view (continued)

Name TIE TTE EIE Description

FAULT_NAME_SPACE x The namespace of the fault message type. This

attribute is applicable to the following events:

 TASK_FAILED

TASK_FAULT_MESSAGE_UPDATED

FOLLOW_ON_TKIID x The ID of the follow-on task instance.

MESSAGE_DATA x Contents of the newly created or updated input,

output, or fault message.

NAME x x x The name of the task instance, task template, or

escalation instance that is associated with the event.

NAMESPACE x x The namespace of the task instance, task template,

or escalation instance that is associated with the

event.

NEW_USER The new owner of a transferred or created work

item. If the value is made available via the USERS

field, this value may be null . Also see the field

USERS. This attribute applies to the following

events:

x TASK_WORKITEM_CREATED

x TASK_WORKITEM_TRANSFERRED

x ESCALATION_WORKITEM_CREATED

x ESCALATION_WORKITEM_TRANSFERRED

OLD_USER The previous owner of a transferred work item. This

attribute is applicable to the following events:

x TASK_WORKITEM_TRANSFERRED

x TASK_WORKITEM_DELETED

x ESCALATION_WORKITEM_TRANSFERRED

x ESCALATION_WORKITEM_DELETED

PARENT_CONTEXT_ID x The ID of the parent context of the task, for

example, an activity template or a task instance. This

is only set for subtasks and follow-on tasks.

PARENT_TASK_NAME x The name of the parent task instance or template.

This is only set for subtasks and follow-on tasks.

PARENT_TASK_NAMESP x The namespace of the parent task instance or

template. This is only set for subtasks and follow-on

tasks.

PARENT_TKIID x The identifier of the parent task instance.

PRINCIPAL x x x The name of the principal whose request triggered

the event.

TASK_KIND x x The kind of the task. Possible values are:

 KIND_HUMAN 101

KIND_ORIGINATING 103

KIND_PARTICIPATING 105

KIND_ADMINISTRATIVE 106

350 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Table 54. Structure of the TASK_AUDIT_LOG audit trail view (continued)

Name TIE TTE EIE Description

TASK_STATE x The state of the task or task template. Possible

values for task templates are:

 STATE_STARTED 1

STATE_STOPPED 2

Possible values for task instances are:

 ’1’ :’STATE_INACTIVE’

’2’ :’STATE_READY’

’3’ :’STATE_RUNNING’

’5’ :’STATE_FINISHED’

’6’ :’STATE_FAILED’

’7’ :’STATE_TERMINATED’

’8’ :’STATE_CLAIMED’

’12’ :’STATE_EXPIRED’

’101’:’FORWARDED’

TKIID x x The identifier of the task instance.

TKTID x x The identifier of the task template.

TOP_TKIID x The identifier of the top task instance.

USERS x x The new user IDs assigned to a task or escalation

work item. If the value is made available via the

NEW_USER field, this may have the value null. See

the field NEW_USER for a list of events to which

this attribute applies.

VALID_FROM x Valid-from date of the task template that is related

to the current event.

WORK_ITEM_REASON x x The reason for the assignment of the work item.

Possible values are:

 POTENTIAL_OWNER 1

EDITOR 2

READER 3

OWNER 4

POTENTIAL_STARTER 5

STARTER 6

ADMINISTRATOR 7

POTENTIAL_SENDER 8

ORIGINATOR 9

ESCALATION_RECEIVER 10

POTENTIAL_INSTANCE_CREATOR 11

The reason is set for all events related to work

items: ESCALATION_RECEIVER is set for escalation

work item related events, while the other reasons

apply to task work item related events.

Chapter 9. Troubleshooting Business Process Choreographer 351

352 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing 2-31 Roppongi 3-chome, Minato-ku Tokyo

106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

© Copyright IBM Corp. 2007 353

IBM Corporation 577 Airport Blvd., Suite 800 Burlingame, CA 94010 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows: © (your company name) (year). Portions of

this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp.

enter the year or years. All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

354 IBM WebSphere Process Server for z/OS: Business Process Choreographer

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

IBM and related trademarks: http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org/).

WebSphere Process Server for z/OS, Version 6.0.2

Notices 355

356 IBM WebSphere Process Server for z/OS: Business Process Choreographer

����

Printed in USA

	Contents
	Chapter 1. Planning to use Business Process Choreographer
	About Business Process Choreographer
	Business Process Choreographer and Network Deployment
	Business Process Choreographer scenarios for clustering

	Chapter 2. Configuring Business Process Choreographer
	Using the bpeconfig.jacl script file to configure Business Process Choreographer
	Configuring the business process container using the installation wizard
	Creating the queue manager and queues for the business process container
	Creating clustered queue managers and queues for the business process container

	Creating the database for the business process container
	Creating a Cloudscape database for Business Process Choreographer
	Creating a DB2 for z/OS database for Business Process Choreographer

	Business process container installation wizard settings
	JDBC provider
	Implementation class name
	Class path (for JDBC provider)
	Data source user name
	Data source password
	Custom Properties
	JMS provider
	Queue manager
	Class path (JMS provider)
	JMS user ID
	JMS password
	WebService Endpoint context root
	JMS API user ID
	JMS API password
	Administrator security role mapping
	System monitor security role mapping
	Business Process Choreographer Explorer
	Context root
	Enable audit logging
	Enable Common Event Infrastructure logging
	Business Process Choreographer Observer
	JMS user ID (for the observer)
	JMS password (for the observer)

	Business process container settings
	Enable Common Event Infrastructure logging
	Enable audit logging
	Retry Limit
	Retention Queue Message Limit
	Retention Queue
	Hold Queue

	Customizing the WebSphere MQ JMS resources in a cluster

	Configuring the human task container, using the installation wizard
	Human task container installation wizard settings
	JMS provider
	Queue manager
	Class path
	JMS user ID
	JMS password
	Webservice Endpoint context root
	Escalation user ID
	Escalation password
	Administrator security role mapping
	System monitor security role mapping
	Mail session
	Enable Common Event Infrastructure logging
	Enable audit logging

	Human task container settings
	E-mail session JNDI name
	Enable Common Event Infrastructure logging
	Enable audit logging
	Sender e-mail address
	Escalation URL prefix
	Task URL prefix
	Administrator URL prefix
	Process Explorer URL prefix
	Staff query refresh schedule
	Timeout for staff query result
	Enable group work items
	Human task container custom properties

	Configuring the LDAP staff plug-in provider
	Staff service settings
	Enable service at server startup

	Staff plug-in provider collection
	Name
	Description

	Staff plug-in provider settings
	Scope
	Name
	Description
	JAR File

	Staff plug-in configuration collection
	Name
	Description
	JNDI Name
	XSL Transform File

	Staff plug-in configuration settings
	Scope
	Name
	Description
	JNDI Name
	XSL Transform File

	About the staff service
	Predefined staff verbs
	Implementing new custom verbs
	Adapting the LDAP transformation file

	Overview: Configuring Business Process Choreographer Explorer
	About Business Process Choreographer Explorer
	Configuring Business Process Choreographer Explorer

	Configuring the Business Process Choreographer Observer infrastructure
	About Business Process Choreographer Observer
	Configuring the Business Process Choreographer event collector
	Configuring Business Process Choreographer Observer

	Activating Business Process Choreographer
	Verifying that Business Process Choreographer works
	Understanding the startup behavior of the business process container

	Configuring Business Process Choreographer to use an LDAP user registry
	Federating a stand-alone node that has Business Process Choreographer configured
	Promoting a server that has Business Process Choreographer configured to a cluster

	Chapter 3. Removing the Business Process Choreographer configuration
	Using a script to remove the Business Process Choreographer configuration
	Using the administrative console to remove the Business Process Choreographer configuration
	Using the administrative console to remove the Business Process Choreographer event collector
	Using the administrative console to remove Business Process Choreographer Observer

	Chapter 4. Administering
	Using Business Process Choreographer Explorer
	Business Process Choreographer Explorer user interface
	Business Process Choreographer Explorer navigation pane
	Starting Business Process Choreographer Explorer
	Customizing Business Process Choreographer Explorer
	Customizing the Business Process Explorer interface for different user groups
	Personalizing the Business Process Choreographer Explorer interface
	Changing the appearance of the default Web application
	Customizing input and output forms

	Administering Business Process Choreographer
	Using the administrative console to administer Business Process Choreographer
	Administering the compensation service for a server
	Querying and replaying failed messages, using the administrative console
	Refreshing staff query results, using the administrative console
	Enabling Common Base Events and the audit trail

	Using scripts to administer Business Process Choreographer
	Deleting audit log entries, using administrative commands
	Deleting process templates and task templates that are no longer valid
	Deleting completed process instances
	Deleting data from the observer database
	Querying and replaying failed messages, using administrative commands
	Refreshing staff query results, using administrative commands
	Refreshing staff query results, using the refresh daemon
	Removing unused staff query results, using administrative commands

	Administering business processes and human tasks
	About business processes
	Business process types
	Additional BPEL activities
	Life cycle management and versioning behavior of subprocesses
	Data exchange between business processes and services

	About human tasks
	Administering process templates and process instances
	Business process administration—frequently asked questions
	Authorization roles for business processes
	Stopping and starting process templates with the administrative console
	Stopping and starting process templates with administrative commands
	Managing the process life cycle
	Repairing processes and activities

	Administering task templates and task instances
	Authorization roles for human tasks
	Stopping and starting task templates with the administrative console
	Stopping and starting task templates with the administrative commands
	Creating and starting a task instance
	Working on your tasks
	Managing work assignments
	Viewing task escalations

	Reporting on business processes and activities

	Chapter 5. Developing
	Developing client applications for business processes and tasks
	Developing EJB client applications for business processes and human tasks
	Accessing the EJB APIs
	Querying business-process and task-related objects
	Developing applications for business processes
	Developing applications for human tasks
	Handling exceptions and faults

	Developing Web service API client applications
	Introduction: Web services
	Web service components and sequence of control
	Overview of the Web services APIs
	Requirements for business processes and human tasks
	Developing client applications
	Copying artifacts
	Developing client applications in the Java Web services environment
	Developing client applications in the .NET environment
	Querying business-process and task-related objects

	Developing Web applications for business processes and human tasks, using JSF components
	Business Process Choreographer Explorer components
	Adding the List component to a JSF application
	Adding the Details component to a JSF application
	Adding the CommandBar component to a JSF application
	Adding the Message component to a JSF application
	Mapping of client model objects

	Chapter 6. Deploying
	Installing business process and human task applications
	Deployment of models
	Deploying business process applications interactively
	Configuring process application data source and set reference settings

	When you can install a process application on a cluster in which no servers are running
	Uninstalling business process and human task applications, using the administrative console
	Uninstalling business process and human task applications, using administrative commands

	Chapter 7. Monitoring
	Monitoring business processes and human tasks
	Situation-independent event data
	Business process events
	Event data specific to business processes
	Situations in business process events
	Business process events

	Human task events
	Event data specific to human tasks
	Situations in human task events
	Human task events

	Chapter 8. Tuning business processes
	Tuning long-running processes
	Specifying initial database settings
	Planning messaging engine settings
	Tuning the application server
	Fine-tuning the messaging provider
	Fine-tuning the database

	Tuning microflows
	Tuning business processes that contain human tasks
	Reduce concurrent access to human tasks
	Reduce query response time
	Avoid scanning whole tables

	Chapter 9. Troubleshooting Business Process Choreographer
	Troubleshooting the Business Process Choreographer configuration
	Business Process Choreographer log files
	Enabling tracing for Business Process Choreographer
	The task container application fails to start
	Troubleshooting the Business Process Choreographer database and data source

	Troubleshooting business process and human tasks
	Troubleshooting the installation of business process and human task applications
	Troubleshooting the execution of business processes
	ClassCastException when stopping an application containing a microflow
	XPath query returns an unexpected value from an array
	An activity has stopped because of an unhandled fault (Message: CWWBE0057I)
	A microflow is not compensated
	A long-running process appears to have stopped
	Invoking a synchronous subprocess in another EAR file fails
	Unexpected exception during execution (Message: CWWBA0010E)
	Event unknown (Message: CWWBE0037E)
	Cannot find nor create a process instance (Message: CWWBA0140E)
	Uninitialized variable or NullPointerException in a Java snippet
	Standard fault exception "missingReply" (message: CWWBE0071E)
	Parallel paths are sequentialized
	Copying a nested data object to another data object destroys the reference on the source object
	CScope is not available

	Working with process-related or task-related messages
	Troubleshooting Business Process Choreographer Explorer
	Troubleshooting the administration of business processes and human tasks
	Troubleshooting the staff service, staff plug-ins, and staff resolution
	Using process-related and task-related audit trail information
	Audit event types for business processes
	Audit event types for human tasks
	Structure of the audit trail database view for business processes
	Structure of the audit trail database view for human tasks

	Notices
	Programming interface information
	Trademarks and service marks

