
IBM

WebSphere

InterChange

Server

Technical

Introduction

to

IBM

WebSphere

InterChange

Server

Version 4.3.0

���

IBM

WebSphere

InterChange

Server

Technical

Introduction

to

IBM

WebSphere

InterChange

Server

Version 4.3.0

���

30

September

2004

This

edition

of

this

document

applies

to

IBM

WebSphere

InterChange

Server

(5724-178)

version

4.3.0,

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

To

send

us

your

comments

about

this

documentation,

email

doc-comments@us.ibm.com.

We

look

forward

to

hearing

from

you.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1997,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

manual

.

.

.

.

.

.

.

.

.

. v

Audience

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Prerequisites

for

this

document

.

.

.

.

.

.

.

. v

Related

documents

.

.

.

.

.

.

.

.

.

.

.

. v

Typographic

conventions

.

.

.

.

.

.

.

.

.

. v

New

in

this

release

.

.

.

.

.

.

.

.

. vii

New

in

WebSphere

InterChange

Server

v4.3

.

.

. vii

New

in

WebSphere

InterChange

Server

v4.2.2

.

.

. vii

New

in

WebSphere

InterChange

Server

v4.2.1

.

.

. vii

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

.

.

.

.

.

.

.

.

.

. 1

InterChange

Server

and

the

WebSphere

business

integration

system

.

.

.

.

.

.

.

.

.

.

.

. 1

InterChange

Server

model

.

.

.

.

.

.

.

.

.

. 2

WebSphere

Business

InterChange

Server

Toolset

.

. 2

Collaborations,

business

objects,

and

connectivity

.

. 3

Sample

implementation

solutions

.

.

.

.

.

. 4

Multiple

server

deployment

.

.

.

.

.

.

.

. 5

Connectivity

over

the

Internet

.

.

.

.

.

.

. 5

Data

flow

in

an

InterChange

Server

implementation

8

Publish-and-subscribe

interactions

.

.

.

.

.

. 9

Access

requests

.

.

.

.

.

.

.

.

.

.

.

. 9

Request/response

interactions

.

.

.

.

.

.

. 10

Sample

data

flows

.

.

.

.

.

.

.

.

.

.

. 11

Connectors

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Connector

communication

with

applications

.

. 16

Binding

between

elements

.

.

.

.

.

.

.

.

. 16

Binding

a

trigger

.

.

.

.

.

.

.

.

.

.

. 16

Binding

destinations

.

.

.

.

.

.

.

.

.

. 17

Business

objects

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Roles

of

a

business

object

.

.

.

.

.

.

.

.

. 18

Structure

of

a

business

object

.

.

.

.

.

.

. 18

Application-specific

and

generic

business

objects

20

Data

mapping

.

.

.

.

.

.

.

.

.

.

.

.

. 22

InterChange

Server

.

.

.

.

.

.

.

.

.

.

.

. 23

Event

management

service

.

.

.

.

.

.

.

. 23

Connector

controllers

.

.

.

.

.

.

.

.

.

. 24

Repository

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Database

connectivity

service

.

.

.

.

.

.

. 24

Database

connection

pools

.

.

.

.

.

.

.

. 24

High

availability

.

.

.

.

.

.

.

.

.

.

.

. 25

Transaction

service

.

.

.

.

.

.

.

.

.

.

. 25

Recovery

features

.

.

.

.

.

.

.

.

.

.

. 27

Communication

transport

infrastructure

.

.

.

.

. 28

Distribution

on

a

network

.

.

.

.

.

.

.

. 28

Distribution

across

the

Internet

.

.

.

.

.

.

. 30

Securing

InterChange

Server

.

.

.

.

.

.

.

.

. 30

Encryption

.

.

.

.

.

.

.

.

.

.

.

.

. 30

End-to-end

privacy

.

.

.

.

.

.

.

.

.

.

. 31

Role-based

access

control

.

.

.

.

.

.

.

.

. 34

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Chapter

2.

Tools

for

use

with

InterChange

Server

.

.

.

.

.

.

.

.

. 39

WebSphere

Business

Integration

Toolset

.

.

.

.

. 39

System

Manager

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Component

configuration

.

.

.

.

.

.

.

.

. 40

System

Manager

and

InterChange

Server

modes

41

Development

tools

.

.

.

.

.

.

.

.

.

.

.

. 41

Administrative

tools

.

.

.

.

.

.

.

.

.

.

. 42

Chapter

3.

Collaborations

.

.

.

.

.

.

. 43

Collaboration

templates

and

objects

.

.

.

.

.

. 43

Collaboration

processing

.

.

.

.

.

.

.

.

.

. 44

Service

call

handling

and

long-lived

business

processes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Collaborations

and

concurrent

processing

.

.

.

. 45

Collaboration

groups

.

.

.

.

.

.

.

.

.

.

. 45

Ports

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

Dynamic

service

calls

.

.

.

.

.

.

.

.

.

. 47

Scenarios

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Business

process

logic

.

.

.

.

.

.

.

.

.

.

. 49

Interactions

with

connectors

and

applications

.

.

. 51

Collaboration

startup

.

.

.

.

.

.

.

.

.

.

. 52

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Chapter

4.

Business

objects

.

.

.

.

. 53

Business

object

definitions

and

business

objects

.

. 53

Components

of

a

business

object

definition

.

.

.

. 54

Attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Verbs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

A

closer

look

at

application-specific

business

objects

56

Attribute

organization

.

.

.

.

.

.

.

.

.

. 56

Application-specific

information

.

.

.

.

.

. 56

Modification

options

.

.

.

.

.

.

.

.

.

.

. 58

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Chapter

5.

Connectors

.

.

.

.

.

.

.

. 59

Connector

startup

.

.

.

.

.

.

.

.

.

.

.

. 59

Event

notification

.

.

.

.

.

.

.

.

.

.

.

. 61

Setting

up

the

application’s

event-notification

mechanism

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Detecting

an

event

.

.

.

.

.

.

.

.

.

.

. 64

Processing

an

event

.

.

.

.

.

.

.

.

.

.

. 64

Request

processing

.

.

.

.

.

.

.

.

.

.

.

. 66

Verb-based

processing

.

.

.

.

.

.

.

.

.

. 67

Verb-based

application-specific

information

.

.

. 68

Concurrent

processing

capabilities

.

.

.

.

.

.

. 68

Business

object

construction

and

deconstruction

.

. 69

Business

object

metadata

and

connector

actions

69

Benefits

of

metadata-driven

connector

agents

.

. 70

An

example

of

business

object

construction

.

.

. 70

Connector

configuration

.

.

.

.

.

.

.

.

.

. 71

Connector

properties

.

.

.

.

.

.

.

.

.

. 71

Associated

maps

.

.

.

.

.

.

.

.

.

.

.

. 72

Connector

development

.

.

.

.

.

.

.

.

.

. 72

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

©

Copyright

IBM

Corp.

1997,

2004

iii

|

|

Chapter

6.

Data

mapping

.

.

.

.

.

.

. 75

How

the

InterChange

Server

system

uses

mapping

75

Map

components

and

tools

.

.

.

.

.

.

.

.

. 77

Mapping

transformations

.

.

.

.

.

.

.

.

.

. 78

Simple

transformations

.

.

.

.

.

.

.

.

. 78

Relationship

transformations

.

.

.

.

.

.

. 78

Configuring

connectors

with

maps

.

.

.

.

.

. 79

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Chapter

7.

Transactional

collaborations

81

The

transaction

model

.

.

.

.

.

.

.

.

.

.

. 81

What

is

a

transactional

collaboration?

.

.

.

.

.

. 82

Transactional

scenarios

.

.

.

.

.

.

.

.

. 82

Subtransactions

.

.

.

.

.

.

.

.

.

.

.

. 82

Compensation

and

rollback

.

.

.

.

.

.

.

. 84

Data

isolation

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Transaction

levels

.

.

.

.

.

.

.

.

.

.

.

. 87

None

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Minimal

Effort

.

.

.

.

.

.

.

.

.

.

.

. 88

Best

Effort

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Stringent

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Transactional

collaborations

and

long-lived

business

processes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Chapter

8.

Language-specific

behavior

support

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Locale

support

in

the

WebSphere

Business

Integration

products

.

.

.

.

.

.

.

.

.

.

. 91

Establishing

a

locale

.

.

.

.

.

.

.

.

.

. 92

Processing

locale-dependent

data

.

.

.

.

.

. 92

Design

considerations

.

.

.

.

.

.

.

.

.

.

. 93

Content

data

encoding

.

.

.

.

.

.

.

.

.

. 93

Meta-configuration

data

encoding

.

.

.

.

.

. 93

Log

and

trace

data

encoding

.

.

.

.

.

.

.

. 94

Bidirectional

script

support

.

.

.

.

.

.

.

.

. 94

Bidirectional

language

characteristics

.

.

.

.

. 94

Layout

transformations

and

attributes

.

.

.

.

. 98

Text

layout

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Layout

attributes

.

.

.

.

.

.

.

.

.

.

. 98

Layout

transformations

.

.

.

.

.

.

.

.

. 99

Enabling

bidirectional

scripts

in

WebSphere

Business

Integration

products

.

.

.

.

.

.

.

.

.

.

. 99

Enabling

connectors

for

bidirectional

scripts

.

. 100

Enabling

Adapter

Framework

for

bidirectional

scripts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Enabling

collaborations

for

bidirectional

scripts

101

Enabling

maps

for

bidirectional

scripts

.

.

.

. 102

Handling

bidirectional

text

.

.

.

.

.

.

.

.

. 102

Migrating

data

.

.

.

.

.

.

.

.

.

.

.

. 102

Special

bidirectional

strings

.

.

.

.

.

.

.

. 102

BiDi

APIs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Design

limitations

.

.

.

.

.

.

.

.

.

.

.

. 103

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Programming

interface

information

.

.

.

.

.

. 108

Trademarks

and

service

marks

.

.

.

.

.

.

. 108

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

iv

Technical

Introduction

About

this

manual

IBM(R)

WebSphere(R)

InterChange

Server

and

its

associated

toolset

are

used

with

IBM

WebSphere

Business

Integration

Adapters

to

provide

business

process

integration

and

connectivity

among

leading

e-business

technologies

and

enterprise

applications.

This

document

introduces

the

infrastructure

and

other

major

elements

of

a

system

that

implements

InterChange

Server

as

the

integration

broker

for

a

WebSphere

business

integration

system.

Audience

This

document

is

for

IBM

consultants

and

customers.

Prerequisites

for

this

document

This

document

is

introductory,

and

is

a

prerequisite

to

using

other

documents

in

the

InterChange

Server

documentation

set.

Related

documents

The

complete

set

of

documentation

available

with

this

product

describes

the

features

and

components

common

to

all

WebSphere

InterChange

Server

installations,

and

includes

reference

material

on

specific

components.

You

can

install

the

documentation

from

the

following

sites:

v

For

InterChange

Server

documentation:

http://www.ibm.com/websphere/integration/wicserver/infocenter

v

For

collaboration

documentation:

http://www.ibm.com/websphere/integration/wbicollaborations/infocenter

v

For

WebSphere

Business

Integration

Adapters

documentation:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

These

sites

contain

simple

directions

for

downloading,

installing,

and

viewing

the

documentation.

Typographic

conventions

This

document

uses

the

following

conventions:

courier

font

Indicates

a

literal

value,

such

as

a

command

name,

filename,

information

that

you

type,

or

information

that

the

system

prints

on

the

screen.

bold

Indicates

a

new

term

the

first

time

that

it

appears.

italic,

italic

Indicates

a

variable

name

or

a

cross-reference.

blue

text

Blue

text,

which

is

visible

only

when

you

view

the

manual

online,

indicates

a

cross-reference

hyperlink.

Click

any

blue

text

to

jump

to

the

object

of

the

reference.

{

}

In

a

syntax

line,

curly

braces

surround

a

set

of

options

from

which

you

must

choose

one

and

only

one.

©

Copyright

IBM

Corp.

1997,

2004

v

http://www.ibm.com/websphere/integration/wicserver/infocenter
http://www.ibm.com/websphere/integration/wbicollaborations/infocenter
http://www.ibm.com/websphere/integration/wbiadapters/infocenter

[

]

In

a

syntax

line,

square

brackets

surround

an

optional

parameter.

...

In

a

syntax

line,

ellipses

indicate

a

repetition

of

the

previous

parameter.

For

example,

option[,...]

means

that

you

can

enter

multiple,

comma-separated

options.

<

>

In

a

naming

convention,

angle

brackets

surround

individual

elements

of

a

name

to

distinguish

them

from

each

other,

as

in

<server_name><connector_name>tmp.log.

/,

\

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes.

All

IBM

WebSphere

product

pathnames

in

this

documentation

are

relative

to

the

directory

where

the

IBM

WebSphere

product

is

installed

on

your

system.

%text%

and

$text

Text

within

percent

(%)

signs

indicates

the

value

of

the

Windows

text

system

variable

or

user

variable.

The

equivalent

notation

in

a

UNIX

environment

is

$text,

indicating

the

value

of

the

text

UNIX

environment

variable.

ProductDir

Represents

the

directory

where

the

product

is

installed.

For

the

IBM

WebSphere

InterChange

Server

environment,

the

default

product

directory

is

″IBM\WebSphereICS″.

For

the

IBM

WebSphere

Business

Integration

Adapters

environment,

the

default

product

directory

is

″WebSphereAdapters″.

vi

Technical

Introduction

New

in

this

release

This

chapter

describes

the

new

features

of

IBM

WebSphere

business

integration

system

that

are

covered

in

this

document.

New

in

WebSphere

InterChange

Server

v4.3

The

IBM

WebSphere

InterChange

Server

4.3

release

provides

the

following

features:

v

End-to

end

privacy,

which

secures

messages

as

they

flow

starting

at

the

node

of

origin,

through

any

intermediate

nodes,

to

the

destination

node.

End-to-end

privacy

provides

maceration

and

asymmetric,

dynamic

security

to

the

InterChange

Server.

v

Role-based

access

control,

which

authenticates

users

who

want

to

access

the

InterChange

Server,

then

limits

the

access

the

user

has

to

individual

components

based

on

what

role

the

user

has

been

assigned.

v

Dynamic

service

calls,

which

enables

a

collaboration

to

make

a

service

call

to

a

destination

that

has

not

been

pre-defined

and

explicitly

bound

during

collaboration

development.

v

IBM

Tivoli

License

Manager

(ITLM)

support

v

Language-specific

behavior

support

New

in

WebSphere

InterChange

Server

v4.2.2

The

IBM

WebSphere

InterChange

Server

4.2.2

release

provides

the

following

feature:

v

InterChange

Server

(ICS)

and

other

ICS

components

now

use

the

IBM

Java

Object

Request

Broker

(ORB)

instead

of

the

third-party

VisiBroker

ORB.

New

in

WebSphere

InterChange

Server

v4.2.1

For

the

IBM

WebSphere

InterChange

Server

4.2.1

release,

this

guide

provides

high-level

descriptions

of

new

System

Manager

features.

©

Copyright

IBM

Corp.

1997,

2004

vii

viii

Technical

Introduction

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

This

document

provides

a

high-level

introduction

to

the

use

of

IBM

WebSphere

InterChange

Server

as

the

integration

broker

in

an

IBM

WebSphere

business

integration

system.

InterChange

Server

in

a

WebSphere

business

integration

system

provides

a

distributed

infrastructure

for

solving

cross-application

problems,

including

the

capability

to

v

Move

business

information

among

diverse

sources

to

perform

business

exchanges

across

the

Internet,

and

v

Process

and

route

business

information

among

disparate

applications

in

the

enterprise

environment

This

chapter

provides

an

overview

of

the

architecture,

components,

and

processing

flow

of

an

integration

system

that

uses

InterChange

Server

as

the

integration

broker.

It

contains

the

following

sections:

v

“InterChange

Server

and

the

WebSphere

business

integration

system”

v

“InterChange

Server

model”

on

page

2

v

“WebSphere

Business

InterChange

Server

Toolset”

on

page

2

v

“Collaborations,

business

objects,

and

connectivity”

on

page

3

v

“Data

flow

in

an

InterChange

Server

implementation”

on

page

8

v

“Connectors”

on

page

15

v

“Binding

between

elements”

on

page

16

v

“Business

objects”

on

page

17

v

“Data

mapping”

on

page

22

v

“InterChange

Server”

on

page

23

v

“Communication

transport

infrastructure”

on

page

28

v

“Securing

InterChange

Server”

on

page

30

v

“Summary”

on

page

37

Note:

Throughout

this

manual,

illustrations

are

examples

only,

used

to

show

structure

and

concepts.

They

do

not

necessarily

document

specific

actual

components.

InterChange

Server

and

the

WebSphere

business

integration

system

The

IBM

WebSphere

InterChange

Server

and

its

associated

toolset

are

used

with

IBM(R)

WebSphere(R)

Business

Integration

Adapters

in

a

WebSphere

business

integration

system.

At

the

highest

level,

a

WebSphere

business

integration

system

consists

of

an

integration

broker

and

a

set

of

adapters

that

allow

heterogeneous

business

applications

to

exchange

data

through

the

coordinated

transfer

of

information,

in

the

form

of

business

objects.

InterChange

Server

is

not

the

only

integration

broker

that

can

be

used

as

the

core

of

a

WebSphere

business

integration

system.

Others

include

WebSphere

MQ

Integrator

Broker,

WebSphere

Business

Integration

Message

Broker,

and

WebSphere

Application

Server.

All

these

integration

brokers

can

make

use

of

WebSphere

Business

Integration

Adapters,

which

utilize

connectors

for

application

connectivity

and

business

objects

as

the

containers

for

business

data

exchanged

between

©

Copyright

IBM

Corp.

1997,

2004

1

applications.

However,

there

are

some

differences

between

integration

systems

using

the

two

different

brokers,

and

choosing

the

right

broker

for

your

needs

is

an

important

high-level

decision.

This

guide

focuses

specifically

on

concepts

for

the

integration

system

that

is

implemented

with

InterChange

Server

as

the

integration

broker.

For

information

about

implementing

an

integration

system

that

uses

one

of

the

WebSphere

Message

Brokers

(WebSphere

MQ

Integrator,

WebSphere

MQ

Integrator

Broker,

or

WebSphere

Business

Integration

Message

Broker)

as

the

integration

broker,

see

the

Implementing

Adapters

with

WebSphere

Message

Brokers

guide.

For

information

about

implementing

an

integration

system

that

uses

WebSphere

Application

Server

as

the

integration

broker,

see

Implementing

Adapters

with

WebSphere

Application

Server.

Both

these

implementation

guides

are

part

of

the

WebSphere

Business

Integration

Adapters

documentation

set.

InterChange

Server

model

A

WebSphere

business

integration

system

implemented

with

InterChange

Server

uses

modular

components

and

application-independent

business

logic.

The

InterChange

Server

approach

uses

a

distributed,

hub-and-spoke

infrastructure.

It

enables

you

to

execute

business

processes—e-business

order

fulfillment,

returns

processing,

or

inventory

management,

for

example—that

are

distributed

across

the

Internet,

across

applications

on

local

networks,

or

both.

The

system

is

distributed

and

flexible,

with

reusable

components

and

customization

features

that

make

it

possible

to

meet

site-specific

and

application-specific

needs.

An

implementation

of

InterChange

Server

utilizes

the

connectors

provided

by

the

WebSphere

Business

Integration

Adapters

product,

together

with

several

types

of

modular

and

customizable

components,

including

collaborations,

business

objects,

maps,

and

data

handlers.

The

chapters

that

follow

in

this

guide

described

how

these

components

are

used

in

a

WebSphere

business

integration

system

with

InterChange

Server

as

the

broker.

The

IBM

WebSphere

InterChange

Server

provides

ennoblement

for

use

with

IBM

Tivoli

License

Manager.

IBM

WebSphere

InterChange

Server

provides

support

for

license

management

functions

as

well

as

inventory

functions

for

server

components

and

Toolset.

(See

Access

Development

Guide

for

Enterprise

Java

Beans

and

Access

Development

Guide

J2EE

Connector

Architecture

for

more

information.

WebSphere

Business

InterChange

Server

Toolset

Available

with

InterChange

Server

is

the

WebSphere

Business

Integration

Toolset

that

enables

you

to

v

Develop

and

customize

components

v

Organize

your

components

into

projects

for

deployment

in

successive

stages

of

development

and

production

v

Monitor

a

deployed

InterChange

Server

integration

system

These

are

described

in

Chapter

2,

“Tools

for

use

with

InterChange

Server,”

on

page

39.

2

Technical

Introduction

Collaborations,

business

objects,

and

connectivity

Note:

In

this

document,

“application”

refers

to

an

enterprise

software

product

that

is

being

integrated;

it

does

not

refer

to

a

component

of

the

IBM

WebSphere

InterChange

Server

product.

The

IBM

WebSphere

InterChange

Server

system

uses

a

central

infrastructure

(InterChange

Server)

and

modular

components

in

a

hub-and-spoke

design,

as

follows:

v

Business-process

logic

resides

in

InterChange

Server

collaborations

at

the

hub.

InterChange

Server

collaborations

are

software

modules

that

contain

logic

that

describes

a

distributed

business

process.

There

are

different

collaborations

for

different

fundamental

business

processes—for

example,

a

ContactManager

collaboration,

or

an

InventoryMovement

collaboration.

Collaborations

coordinate

the

functionality

of

business

processes

for

disparate

applications

and

enable

data

exchange

between

them.

Collaborations

are

the

hub;

through

them,

data

is

exchanged

in

the

form

of

business

objects.

v

Data

is

exchanged

between

the

hub

and

the

spokes

in

the

form

of

business

objects.

Business

objects

are

the

messages

used

by

the

IBM

WebSphere

InterChange

Server

system

for

exchanging

data.

Data

handlers

are

used

to

transform

serial

application

data

into

business

objects,

and

maps

are

used

between

a

business

object

that

is

structured

for

the

data

model

of

a

specific

application

and

a

business

object

that

is

generically

structured

for

use

by

collaborations

at

the

hub.

v

Application

and

technology

connectors,

which

are

available

in

the

IBM

WebSphere

Integration

Adapters

product,

supply

connectivity

to

applications

(or

to

web

servers

or

other

programmatic

entities)

at

the

spokes.

Connectors

can

be

configured

to

interact

either

within

a

network,

or

across

the

Internet

and

beyond

firewalls.

Each

connector

consists

of

two

parts—the

connector

controller

and

the

connector

agent.

The

connector

controller

interacts

directly

with

WebSphere

InterChange

Server

collaboration

objects

and

resides

on

a

server

that

has

implemented

the

IBM

WebSphere

InterChange

Server

system

(the

hub

in

a

hub-and-spoke

relationship).

The

connector

agent

interacts

directly

with

an

application,

and

can

reside

with

that

application

on

any

server.

A

remote

agent

technology

can

be

used

to

implement

communication

between

a

connector

controller

at

a

hub

site

and

an

agent

that

resides

at

another

site

across

the

Internet.

Some

connectors

are

designed

to

interact

with

specific

applications.

Application

connectors—for

example,

the

Clarify

connector—

are

intermediaries

between

collaborations

and

applications.

These

connectors

transform

data

from

the

application

into

business

objects

that

can

be

manipulated

by

the

collaborations,

and

transform

business

objects

from

the

collaborations

into

data

that

can

be

received

by

the

specific

application.

Other

connectors

are

designed

for

interactions

that

conform

to

specific

technology

standards.

(For

example,

the

XML

connector

can

be

used

for

sending

data

from

InterChange

Server

collaborations

to

a

web

server,

even

if

that

web

server

resides

beyond

a

firewall

on

a

network

that

is

not

running

the

connector

agent

or

other

IBM

WebSphere

software.)

v

The

Server

Access

Interface

makes

it

possible

for

remote

spoke

sites

that

do

not

implement

WebSphere

InterChange

Server

to

use

access

clients,

which

make

calls

over

the

Internet

to

a

hub

site

that

does

have

InterChange

Server.

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

3

The

Server

Access

Interface

is

part

of

InterChange

Server.

It

is

a

CORBA-compliant

API

that

accepts

synchronous

data

transfers

from

either

internally

networked

or

external

sources.

The

data

is

then

transformed

into

business

objects

that

can

be

manipulated

by

a

collaboration.

The

Server

Access

Interface

makes

it

possible

to

receive

calls

from

external

entities—for

example,

from

web

browsers

at

remote

customer

sites—that

do

not

come

through

connector

agents,

but

instead

come

through

web

servlets

into

the

Server

Access

Interface.

The

Server

Access

Interface

and

the

connectors

both

make

use

of

data

handlers.

In

InterChange

Server

environment,

new

data

handlers

can

be

created

from

a

modular

group

of

base

classes

called

the

Data

Handler

Framework.

The

InterChange

Server

solution

also

includes

a

Protocol

Handler

Framework.

These

frameworks

make

it

easier

to

customize

solutions

and

add

connectivity

for

additional

data

formats

and

protocols

in

the

future.

Sample

implementation

solutions

A

typical

InterChange

Server

solution

includes

one

or

more

collaborations

and

a

set

of

business

objects

that

represent

business

information

relevant

to

an

enterprise.

The

collaborations

and

business

objects

are

used

with

connectors,

with

the

Server

Access

Interface,

or

with

both.

A

connector

can

interact

with

one

or

more

collaborations,

thereby

performing

various

business

processes.

And

each

collaboration

can

interact

with

any

number

of

connectors,

thereby

involving

any

number

of

applications.

For

example,

to

automatically

update

an

enterprise

resource

planning

(ERP)

application

when

customer

information

changes

in

a

customer

interaction

management

(CIM)

application,

the

InterChange

Server

solution

might

consist

of

the

CustomerSync

collaboration,

connectors

for

the

CIM

application

and

the

ERP

application,

and

definitions

of

business

objects

that

represent

customer

information.

Figure

1

illustrates

that

solution.

CIM
Application

CIM
Connector

ERP
Application

ERP
Connector

CustomerSync
Collaboration

Customer data

Customer business object

Figure

1.

CIM-to-ERP

Customer

Data

solution

4

Technical

Introduction

The

solution

in

Figure

1-1

could

be

implemented

either

locally

on

a

network,

or

across

the

Internet.

In

Figure

2,

at

a

site

that

has

not

implemented

either

the

IBM

WebSphere

InterChange

Server

system

or

a

connector,

a

customer

representative

might

wish

to

use

a

web

browser

to

obtain

the

status

of

a

purchase

order

over

the

Internet

from

an

ERP

application

(SAP

in

the

example)

that

resides

at

a

site

using

the

WebSphere

InterChange

Server

system.

To

enable

this,

the

InterChange

Server

solution

uses

the

Server

Access

Interface,

together

with

a

collaboration

(fictional

in

this

example)

for

purchase-order

business

logic,

an

SAP

connector,

and

definitions

of

business

objects

that

represent

purchase-order

status

information.

Multiple

server

deployment

A

single

application

can

interact

with

multiple

InterChange

Servers,

in

a

hubs-and-spokes

environment.

Multiple

InterChange

Servers

can

be

deployed

to

work

together.

Connector

agents

can

be

configured

to

partition

and

route

events

from

an

application

to

different

servers.

This

makes

it

possible

to

balance

an

application’s

processing

load

across

multiple

InterChange

Servers.

In

addition,

InterChange

Servers

can

be

configured

to

interact

with

each

other

through

connectors

and

the

Server

Access

Interface.

Connectivity

over

the

Internet

Connectors

can

enable

the

exchange

of

data

across

the

Internet

in

different

ways.

These

approaches

include:

v

Application

connector

agents

implemented

remotely

This

approach—referred

to

as

remote

agent

technology—uses

JMS,

with

either

SSL

in

native

WebSphere

MQ

or

HTTP/HTTPS

in

WebSphere

MQ

internet

pass-thru

(MQIPT),

to

implement

a

connector

across

the

Internet.

A

single

site

that

has

implemented

the

IBM

WebSphere

InterChange

Server

system

acts

as

the

hub

and

performs

exchanges

across

the

Internet

with

spoke

sites

that

have

implemented

a

remote

connector

agent.

v

Technology

connectors

used

with

the

Server

Access

Interface

Browser

Servlet

Web
Server

Server Access
Interface

Collaboration

SAP
Application

SAP
Connector

POstatus data

POstatus Business Object

START

Figure

2.

Execution

of

a

call

through

the

Server

Access

Interface

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

5

In

this

approach,

the

Server

Access

Interface

is

used

to

pass

synchronous

calls

into

the

IBM

WebSphere

InterChange

Server;

connectors

that

use

Internet

technology

standards

are

used

to

send

data

from

the

IBM

WebSphere

InterChange

Server:

–

Calls

from

external

browsers

(or

other

sources

over

the

Internet)

can

be

received

by

a

web

servlet

that

sends

the

calls

through

the

Server

Access

Interface

to

trigger

business

processes

in

collaborations.

–

On

behalf

of

collaborations,

connectors

for

specific

Internet

technology

standards

(such

as

XML)

engage

in

request/response

interactions

with

external

destinations

that

understand

the

specific

data

format.

The

Server

Access

Interface

resides

at

a

hub

site

on

InterChange

Server

(ICS).

When

the

Server

Access

Interface

receives

a

call,

it

sends

the

data

to

a

handler

for

that

specific

data

format

(such

as

the

XML

data

handler).

The

data

handler

transforms

the

data

into

a

generic

business

object.

The

Server

Access

Interface

then

sends

the

business

object

to

a

collaboration.

The

collaboration

performs

its

processes

on

the

business

object

and

responds,

and

that

response

is

transformed

back

into

the

specific

data

format

that

was

used

at

the

beginning

of

the

process.

To

accept

calls

from

external

processes

and

send

the

calls

as

business

objects

to

a

collaboration,

the

Server

Access

Interface

requires

the

following:

–

A

web

server

that

uses

a

servlet

or

other

process

to

send

data

to

the

Server

Access

Interface.

The

data

must

be

in

a

MIME

type

for

which

data

handlers

have

been

configured

in

InterChange

Server.

The

servlet

uses

the

Server

Access

Interface

to

call

a

data

handler

that

converts

the

data

into

a

business

object

format,

and

then

uses

the

Server

Access

Interface

to

send

the

business

object

as

a

call

into

a

collaboration.

–

A

collaboration

that

has

been

configured

to

handle

requests

that

are

received

as

calls

through

the

Server

Access

Interface.

An

example

of

this

approach

is

illustrated

in

Figure

3.

6

Technical

Introduction

v

Technology

connectors

designed

for

Internet

exchange

Some

connectors

can

enable

both

publish-and-subscribe

and

request/response

interactions

that

exchange

data

over

the

Internet,

without

using

a

remote

agent

configuration.

For

example,

the

TPI

connector

enables

data

exchange

in

XML,

EDI,

or

binary

format

with

remote

trading

partners

over

the

Internet.

Similarly,

the

Email

connector

exchanges

data

over

the

Internet

using

the

SMTP

protocol.

An

example

of

this

approach

is

illustrated

in

Figure

4.

InterChange Server

Data
Format

Handlers

Servlet/
Bean

Collaborations

IIOP

Browser or
Other Client

Program

Synchronous Response

XML
Request/Response

documents

External
Web Server

XML
Connector
controller

XML
Connector

agent

Server
Access

Interface

Web or J2EEServer

Firewall

Call

Access Request

Server Access Interface with XML connector

Figure

3.

Internet

data

exchange

using

Server

Access

Interface

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

7

Data

flow

in

an

InterChange

Server

implementation

In

an

InterChange

Server

implementation,

a

data

flow—the

movement

and

processing

of

data

from

one

application

or

entity

to

another—

can

include

all

of

the

following:

v

Asynchronous

or

synchronous

exchanges

between

disparate

applications

on

a

local

network.

External
Web Server

InterChange Server

IIOP Connector
Controller

Connector
Agent

TPI or Email Connector

FTP, HTTPS, XML, or SMTP
protocols

Collaborations

Figure

4.

Internet

data

exchange

using

TPI

or

e-Mail

Connector

8

Technical

Introduction

v

Asynchronous

or

synchronous

exchanges

between

disparate

applications

across

the

Internet.

v

Asynchronous

or

synchronous

exchanges

between

applications

on

a

local

network

and

external

web

servers.

v

Comprehensive

business

processes

that

include

all

of

the

above.

A

data

flow

can

be

initiated

by

either

of

two

types

of

interactions:

publish-and-subscribe

interactions

or

service

call

interactions.

Both

types

of

interaction

supply

triggers

that

start

the

execution

of

a

collaboration’s

business

processes.

The

collaboration

then

uses

a

third

type

of

interaction—request/response

—to

complete

the

exchange

of

data

with

the

intended

destination.

Publish-and-subscribe

interactions

Connectors

and

collaborations

use

a

publish-and-subscribe

interaction

to

move

information

about

application

events

into

the

IBM

WebSphere

InterChange

Server

for

processing.

In

the

publish-and-subscribe

interaction,

a

collaboration

begins

its

business

process

when

it

is

triggered

to

do

so

by

receipt

of

a

business

object

for

a

particular

type

of

triggering

event—for

example,

Employee.Create—that

represents

an

application

operation.

The

name

of

the

business

object

(Employee)

indicates

a

type

of

business

entity.

The

verb

(Create)

indicates

an

operation

that

occurred

on

that

entity.

Therefore,

the

Employee.Create

event

reports

the

creation

of

an

employee

entity.

The

publish-and-subscribe

interaction

enables

a

triggering

event

to

reach

a

collaboration

as

follows:

v

A

collaboration

subscribes

to

the

event

that

can

trigger

its

execution.

A

collaboration

subscribes

to

an

event

by

requesting

it,

and

then

waiting

for

it.

A

collaboration

that

subscribes

to

Employee.Create

starts

executing

when

the

business

object

for

the

Employee.Create

event

arrives.

v

An

event

occurs

in

an

application,

and

the

event

is

detected

by

the

application

connector’s

event

notification

mechanism.

The

connector

supplies

the

event

to

one

or

more

collaborations

by

publishing

it—making

it

available

as

a

business

object.

Depending

on

the

connector,

an

event

can

be

published

to

a

collaboration

either

asynchronously

or

synchronously.

In

addition,

if

the

long-lived

business

process

feature

of

the

collaboration

is

enabled,

a

collaboration

can

maintain

the

event

in

a

waiting

state,

in

anticipation

of

incoming

events

satisfying

pre-defined

matching

criteria.

Access

requests

A

collaboration

can

be

designed

to

be

triggered

by

direct

calls

that

are

sent

by

an

access

client,

received

by

the

Server

Access

Interface,

and

sent

to

the

collaboration

as

business

objects.

In

an

InterChange

Server

implementation,

calls

sent

to

collaborations

through

the

Server

Access

Interface

are

referred

to

as

access

requests.

Access

requests

can

originate

from

external

sources

or

from

sources

that

are

configured

within

InterChange

Server

implementation.

Access

request

interactions

are

useful

when

synchronous

communication

is

important—as

when,

for

example,

a

customer

representative

uses

a

web

browser

to

request

inventory

status

information

over

the

Internet.

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

9

Request/response

interactions

A

collaboration

begins

processing

data

when

it

is

triggered

to

do

by

receipt

of

a

triggering

business

object.

The

triggering

business

object

can

be

the

result

of

either

an

access

request

or

an

event

notification.

Once

a

collaboration

has

been

triggered,

it

can

make

requests

of

connectors

to

which

it

has

been

bound,

and

receive

responses.

The

collaboration

makes

its

requests—referred

to

as

service

call

requests—in

the

form

of

generic

business

objects.

The

connectors

transform

the

generic

business

objects

into

data

entities

that

are

understood

by

the

specific

application

or

data

format

for

which

the

connector

is

designed.

The

responses

that

the

collaboration

receives

from

the

connectors—referred

to

as

service

call

responses—can

be

business

objects

containing

business

data

(in

the

case

of

retrieve

requests)

or

status

reports

(successful

or

unsuccessful).

Figure

5

shows

a

simplified

view

of

a

business

process

that

is

initiated

through

a

publish-and-subscribe

interaction

and

completed

through

request/response

interactions.

(In

this

simplified

view,

connector

controllers

and

connector

agents

are

shown

as

a

single

unit,

and

no

distinction

is

made

between

connectors

for

applications

residing

on

a

local

network

and

connectors

for

applications

residing

across

an

Internet

firewall.)

The

example

shows

a

distributed

business

process

that

automatically

generates

an

invoice

when

a

customer

service

representative

finishes

working

on

a

case.

In

this

example,

a

hypothetical

service

billing

collaboration

uses

connectors

to

exchange

business

data

with

three

different

applications.

Figure

5

illustrates

the

following

sequence

in

the

business

process:

1.

A

customer

service

representative

completes

work

on

a

case.

The

connector

detects

the

case

closure

as

an

event

in

the

customer

service

management

application

and

retrieves

the

relevant

case

data.

The

connector

then

publishes

the

event,

making

it

available

to

a

collaboration

that

has

subscribed

to

it.

These

actions

comprise

a

publish-and-subscribe

interaction.

Customer
Service

Management
Application

Connector

Accounting
Application

Connector

Customer
Records

Application

Connector

Service
Billing

Collaboration

Service Case
ClosedClosed

1

Retrieve
Customer Contract

2

Generate
Invoice

3

Figure

5.

A

publish-and-subscribe,

request/response

interaction

10

Technical

Introduction

2.

In

order

to

compute

the

invoice

amount,

the

collaboration

needs

the

terms

of

the

customer

contract.

The

collaboration

sends

a

service

call

request

to

retrieve

the

necessary

data

from

the

connector

for

the

customer

records

application.

The

connector

responds

to

the

request.

These

actions

comprise

a

request/response

interaction

between

the

collaboration

and

the

customer

records

application

and

connector.

3.

Using

both

the

case

information

and

the

customer

contract,

the

collaboration

produces

the

information

needed

to

generate

an

invoice.

It

sends

the

invoice

creation

request

to

the

connector

for

the

accounting

application,

which

forwards

the

request

to

the

application

itself,

and

responds

to

the

collaboration

with

a

notification

of

success

or

failure.

These

actions

comprise

a

request/response

interaction

between

the

collaboration

and

the

accounting

application

and

connector.

A

site

can

tune

the

closeness

with

which

collaborations

and

connectors

are

coupled.

The

collaboration

might,

for

example,

execute

on

a

24-hour

basis,

sending

requests

to

a

connector

that

communicates

with

its

application

only

between

midnight

and

2:00

A.M.

The

collaboration

could

be

designed

and

configured

to

send

the

requests

without

requiring

a

response

and

simply

process

the

responses

when

they

come.

Alternatively,

a

collaboration

that

has

been

enabled

for

long-lived

business

processes

can

save

the

flow

context

of

a

request,

and

send

the

request

with

a

timeout

value,

specifying

the

period

of

time

in

which

a

response

can

cause

the

saved

processing

flow

to

resume.

Sample

data

flows

Figure

6

shows

a

high-level

view

of

the

IBM

WebSphere

InterChange

Server

system

components

used

in

typical

access

request,

publish-and-subscribe,

and

request/response

interactions

to

move

data

among

applications

(or

other

entities,

such

as

web

servers

and

browser).

The

data

moves

in

a

flow

through

InterChange

Server

at

the

hub,

and

is

exchanged

with

applications

on

the

local

network,

applications

configured

with

connector

agents

beyond

an

Internet

firewall,

and

external

entities

such

as

web

servers

and

browsers.

The

flow

can

be

initiated

by

a

access

request

or

by

an

event—or

by

any

type

of

external

or

internal

process.

Once

the

flow

has

been

initiated,

the

collaboration

uses

the

request/response

interaction

to

complete

the

business

process

with

either

local

or

remote

applications

or

other

entities.

In

this

diagram,

one

connector

is

shown

publishing

an

application

event

to

collaborations,

and

another

connector

is

shown

engaging

in

a

request/response

interaction

between

a

collaboration

and

a

web

server

destination.

Note

that

this

illustrates

only

one

possible

configuration;

most

connectors

can

be

configured

to

both

publish

events

and

respond

to

requests

from

collaborations.

Not

shown

in

this

diagram

is

the

possible

configuration

in

which

a

connector

interacts

with

a

locally

configured

technology

server—such

as

a

TPI

server

or

Email

server—to

exchange

data

over

the

Internet.

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

11

In

addition,

note

that

a

connector

agent

and

its

corresponding

application

need

not

reside

locally.

Using

remote

agent

technology,

connector

agents

at

remote

URL

locations

can

both

publish

events

and

respond

to

collaboration

requests.

Application

External Enterprise External Enterprise

Enterprise Implementing the ICS System

Enterprise
Implementing
Remote Agent

InterChange Server

Data
Format

Handlers

Servlet/
Bean

Application

Firewall

Remote
agent

Collaborations

Connector
controller

Connector
controller

Connector
controller

Connector
agent

Connector
agent

Browser or
Other Client

Program

Synchronous Response

Request/Response

External
Web Server

Server
Access

Interface

Web or J2EEServer

JMS

JMS

Firewall

Publish-Subscribe

Call

Access Request

Figure

6.

Business

data

flow

12

Technical

Introduction

Figure

7

shows

some

types

of

data

that

are

exchanged

along

some

of

the

possible

data

paths.

The

numbers

indicate

the

specific

sequence

of

just

one

possible

data

path—in

this

example,

from

an

external

web

browser

into

the

collaborations

by

way

of

the

Server

Access

Interface,

and

then,

after

the

collaboration’s

business

processing,

to

an

external

web

server.

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

13

In

the

Figure

7

example,

the

following

process

takes

place:

1.

A

client

program

communicates

with

a

server

to

send

an

access

request

to

a

collaboration.

The

client

program

could

be

a

web

browser

communicating

14

Application

External Enterprise External Enterprise

Enterprise implementing the ICS System

Enterprise
implementing
remote agent

InterChange Server

Data
handlers

Servlet/
Bean

Application

Firewall

Remote
agent

Collaborations

(XML)

Connector
controller

Connector
controller

Connector
controller

Connector
agent
(XML)

Connector
agent

Browser or
other client

program

External
Web Server

Server
Access

Interface

Web or J2EEServer

JMS

JMS

Firewall

HTTP/S or IIOP protocol

1 8

IIOP
protocol XML data

4

5
6

7

9

10

1113

3

12 Bus Object

B. Object
2

Figure

7.

Sample

business

data

flow

14

Technical

Introduction

with

a

web

server

over

the

HTTP

or

HTTPS

protocol,

or

a

J2EE

client

making

a

J2EE

method

invocation

on

a

J2EE

application

server

using

either

RMI

or

IIOP.

2.

The

call

is

handled

by

the

appropriate

server-side

component

(a

servlet

in

the

case

of

a

web

server,

and

an

EJB

in

the

case

of

a

J2EE

application

server)

that

has

been

configured

to

communicate

with

the

IBM

WebSphere

InterChange

Server

system.

The

component

specifies

a

business

object

that

will

be

created

and

a

collaboration

that

will

be

triggered

by

the

call

and

sends

the

call

to

the

Server

Access

Interface.

3.

The

Server

Access

Interface

receives

the

call

and

passes

it

to

an

appropriate

data

handler

(in

this

example,

an

XML

data

handler).

The

data

handler

transforms

the

data

into

a

business

object

and

passes

it

back

to

the

Server

Access

Interface.

4.

The

Server

Access

Interface

passes

the

business

object

to

the

specified

collaboration.

5.

The

collaboration:

(a)

Performs

its

business

processes

on

the

business

object,

and

(b)

synchronously

returns

a

business

object

to

the

Server

Access

Interface,

to

be

passed

on

to

the

originating

client

browser

or

application.

The

business

object

can

contain

business

data

that

is

the

result

of

the

processing,

or

it

can

be

an

exception

notification.

6.

In

this

example,

the

collaboration’s

business

logic

tells

it

to

send

a

business

object

as

a

request

to

a

technology

connector

that

will

be

used

to

send

the

data

across

the

Internet

to

an

external

web

server.

In

still

other

scenarios,

the

collaboration

might

instead

send

a

business

object

to

an

application

connector

rather

than

a

technology

connector.

The

application

could

reside

locally

or,

if

the

remote

agent

technology

is

being

used,

the

application

and

its

connector

agent

could

reside

across

the

Internet,

remote

from

the

hub.

7.

In

this

example,

the

XML

connector

transforms

the

business

object

into

an

XML

document

and

sends

it

to

a

web

server.

8.

The

web

server

sends

a

response

to

the

XML

connector.

9.

The

XML

connector

transforms

the

response

into

a

business

object

and

sends

it

to

the

collaboration.

10.

The

collaboration

performs

business

processes

for

that

business

object.

11.

The

collaboration

sends

the

business

object

to

the

Server

Access

Interface.

12.

The

Server

Access

Interface

sends

the

business

object

to

the

appropriate

data

handler,

and

receives

the

data

back

in

that

format.

13.

The

Server

Access

Interface

uses

the

IIOP

protocol

to

send

the

data

to

the

servlet.

14.

The

servlet

uses

the

HTTP

or

HTTPS

protocol

to

send

the

data

to

the

originating

web

browser

or

other

entity.

Connectors

Connectors

are

supplied

as

part

of

the

IBM

WebSphere

Business

Integration

Adapters

product.

A

connector

provides

distributed

translation

services

for

the

IBM

WebSphere

InterChange

Server

system,

moving

data

between

collaborations

and

either:

v

An

application

v

A

programmatic

entity—a

remote

web

server,

for

example—that

understands

a

technology

standard,

such

as

XML,

that

is

handled

by

a

connector

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

15

In

an

InterChange

Server

implementation,

a

connector

has

a

distributed

structure:

v

The

connector

controller

interacts

directly

with

collaborations

and

runs

as

a

component

within

the

InterChange

Server

process.

v

A

client

connector

framework

runs

as

a

separate

process

from

InterChange

Server

and,

together

with

an

application-specific

component,

interacts

directly

with

an

application

or

other

programmatic

entity.

In

this

guide,

the

client

connector

framework

and

the

application-specific

component

are

together

referred

to

as

the

connector

agent.

The

two

parts

of

a

connector

can

run

on

the

same

system

or

on

two

different

systems.

The

connector

controller

runs

as

part

of

InterChange

Server

and

so

resides

on

that

system.

However,

the

connector

agent

can

reside

on

any

system

from

which

it

can

communicate

with

both

its

application

and

the

connector

controller.

Connector

communication

with

applications

There

is

one

connector

for

each

version

of

an

application.

Each

connector

is

unique,

because

it

communicates

with

its

application

according

to

the

application’s

interfaces.

If

there

is

an

application

programming

interface

(API),

the

connector

can

use

it.

However,

a

connector

for

an

application

without

an

API

can

use

whatever

method

the

application

provides,

such

as

user

exits

or

email

messages.

To

detect

application

events

in

which

collaborations

are

interested,

a

connector

polls

the

application

or

uses

the

application’s

event

callback

notification

mechanism,

if

there

is

one.

A

connector

can

also

interact

with

the

application

at

the

command

of

a

collaboration

or

to

verify

the

results

of

its

previous

requests.

Binding

between

elements

To

perform

a

business

process,

a

collaboration

can

communicate

with

connectors,

with

other

collaborations,

and

with

external

processes

from

which

it

receives

access

requests

through

the

Server

Access

Interface.

Binding

is

used

to

set

up

communications

between

the

collaboration

and

these

elements

when

the

collaboration

is

configured.

Binding

a

trigger

To

allow

a

collaboration’s

business

processes

to

be

triggered,

you

must

bind

the

collaboration

at

configuration

time

to

an

element

that

will

supply

the

triggering

event

or

call.

Binding

is

done

between

the

collaboration

and

any

element

that

will

participate

in

that

collaboration’s

business

process,

but

only

one

element

can

be

bound

as

the

trigger.

Binding

for

events

When

you

configure

a

collaboration

at

your

site

to

be

triggered

by

events,

you

bind

it

to

a

connector

capable

of

publishing

the

triggering

event.

For

example,

you

might

specify

that

the

collaboration’s

Employee.Delete

event

comes

from

the

PeopleSoft

connector.

To

look

more

closely

at

this

relationship,

recall

that

the

connector

actually

consists

of

a

connector

controller

(which,

like

the

collaboration,

resides

in

InterChange

Server)

and

a

connector

agent

(which

includes

the

client

connector

framework

and

an

application-specific

component,

and

is

separate

from

InterChange

Server).

The

16

Technical

Introduction

connector

controller

maintains

the

binding

information

and

provides

its

connector

agent

with

a

list

of

events

to

which

collaborations

have

subscribed.

When

relevant

application

operations

occur,

the

connector

agent

publishes

the

events

on

that

list

to

the

connector

controller.

The

connector

agent

sends

an

event

to

the

connector

controller

without

knowing

anything

about

its

ultimate

destination

at

a

collaboration.

The

connector

controller

is

therefore

an

intermediary

between

the

connector

agent

and

the

collaboration,

as

Figure

8

illustrates.

Multiple

collaborations

can

subscribe

to

the

same

event.

When

the

connector

controller

publishes

the

event,

it

can

publish

simultaneously

to

all

subscribers.

Binding

to

receive

access

requests

Instead

of

binding

the

collaboration

to

a

connector

for

triggering,

you

can

specify

that

the

collaboration

will

receive

access

requests

from

external

processes

as

triggers.

Binding

destinations

In

addition

to

binding

collaborations

to

triggering

elements,

you

also

bind

collaborations

to

the

destination

elements

with

which

the

collaborations

will

engage

in

request/response

interactions.

Destination

elements

can

be

either

connectors

or

other

collaborations.

A

single

collaboration

can

be

bound

to

multiple

destination

elements.

Business

objects

Collaborations

and

connectors

interact

by

sending

and

receiving

business

objects

through

InterChange

Server.

A

business

object

reflects

a

data

entity—a

collection

of

data

that

can

be

treated

as

an

operative

unit.

For

example,

a

data

entity

can

be

equivalent

to

a

form,

inclusive

of

all

of

the

form’s

fields.

The

form

might

typically

be

used

in

an

application,

or

over

the

Web,

to

contain

business

information

about

customers,

or

employees,

or

invoices.

Client connector
framework

Connector
controller

Collaboration

Subscribe

Publish

Figure

8.

A

connector

providing

a

triggering

event

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

17

Business

objects

are

cached

in

memory

during

collaboration

execution

for

fast

access,

and

also

stored

in

a

persistent

transaction

state

store

to

provide

robust

recovery,

rollback,

and

re-execution

of

collaborations

upon

server

restarts

after

failures.

The

IBM

WebSphere

InterChange

Server

system

creates

business

objects

that

reflect

the

information

contained

in

entities.

In

this

manual,

a

data

entity

is

often

referred

to

in

the

context

of

the

kind

of

business

information

it

contains—for

example,

an

employee

entity

or

a

customer

entity.

This

section

provides

a

first

look

at

business

objects.

A

later

chapter

in

this

guide

contains

more

information

on

business

objects,

their

contents,

and

the

way

that

the

IBM

WebSphere

InterChange

Server

system

manages

and

handles

them.

Roles

of

a

business

object

A

business

object

can

act

as

an

event,

a

request,

or

a

response.

Event

A

business

object

can

report

the

occurrence

of

an

application

event,

an

operation

that

affected

a

data

entity

in

an

application.

The

application

event

might

be

the

creation,

deletion,

or

change

in

value

of

that

collection

of

data.

When

a

connector

detects

an

application

event

and

sends

a

business

object

to

an

interested

collaboration,

the

business

object

has

the

role

of

representing

the

event,

and

so

it

is

called

an

event

in

the

IBM

WebSphere

InterChange

Server

system.

For

example,

a

connector

might

poll

an

application

for

new

employee

entities

on

behalf

of

a

collaboration.

If

the

application

creates

a

new

employee

entity,

the

connector

sends

an

event

business

object

to

the

collaboration.

Request

Requests

are

typically

generated

in

one

of

two

ways:

v

A

collaboration

can

send

a

business

object

as

a

request

to

a

connector,

instructing

the

connector

to

insert,

change,

delete,

or

retrieve

some

data

in

an

application.

For

example,

in

the

service

billing

collaboration

illustrated

in

Figure

5,

the

collaboration

sends

two

business

objects

to

connectors,

one

to

retrieve

a

contract

and

one

to

create

an

invoice.

Both

are

requests.

v

The

Server

Access

Interface

can

send

a

business

object

as

a

request

to

a

collaboration,

if

that

collaboration

has

been

designed

or

customized

to

accept

the

Retrieve

verb

as

a

trigger.

Response

When

a

connector

finishes

processing

a

request,

it

usually

returns

a

response.

For

example,

after

a

connector

receives

a

request

to

retrieve

employee

data

from

an

application,

it

sends

a

business

object

containing

the

employee

data.

Structure

of

a

business

object

A

business

object

is

a

self-describing

unit

that

contains

a

type

(its

name),

processing

instructions

(a

verb),

and

data

(attribute

values).

Figure

9

is

an

example

of

a

simple

business

object,

showing

its

type,

verb,

and

attribute

values.

18

Technical

Introduction

The

next

sections

describe

these

components.

Business

object

type

Each

business

object

has

a

type

name

that

identifies

it

within

the

IBM

WebSphere

InterChange

Server

system.

This

type

is

defined

by

the

business

object

definition.

For

example,

the

type

might

be

Customer,

Employee,

Item,

or

Contract.

Business

object

verbs

A

business

object

verb

specifies

an

action

in

relation

to

the

attribute

values.

The

verb

can

indicate

various

types

of

actions,

depending

on

the

role

of

the

business

object.

Table

1

lists

the

three

business

object

roles

and

describes

the

meaning

of

the

verb

in

a

business

object

that

has

each

role.

Table

1.

Meanings

of

business

object

verbs

Role

of

business

object

Meaning

of

verb

Event

Describes

what

happened

in

an

application.

For

example,

in

an

event,

the

Create

verb

indicates

that

the

source

application

created

a

new

data

entity.

Request

Tells

the

connector

how

to

interact

with

the

application

in

order

to

process

the

business

object.

For

example,

the

Update

verb

is

a

request

to

the

connector

to

update

the

data

entity.

Response

Provides

the

results

of

a

previous

request.

For

example,

in

a

response,

the

Retrieve

verb

indicates

that

the

connector

obtained

the

attribute

values

from

the

application.

Note:

The

naming

convention

is

to

use

the

format

business-object-type.verb

to

indicate

a

particular

type

of

business

object

with

a

particular

verb.

For

example,

Customer.Create

is

a

Customer

business

object

with

the

Create

verb.

Business

object

attribute

values

A

business

object

contains

attribute

values

that

represent

data

fields

associated

with

the

data

entity,

such

as

Last

Name,

First

Name,

Employee

ID,

or

Invoice

Status.

Customer

Create

Como

David

Apt 2C

123 Fairchild

Mountain View

CA

94040

408

6321111

Business object type

Verb

Attribute values

Figure

9.

Business

object

components

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

19

Some

attributes,

instead

of

containing

data,

contain

child

business

objects

or

arrays

of

child

business

objects.

Figure

10

illustrates

the

structure

of

a

Contract

business

object.

The

Line

Item

information

in

the

contract

is

in

an

array

of

child

business

objects.

A

business

object

that

contains

child

business

objects

or

arrays

of

child

business

objects

is

a

hierarchical

business

object.

One

whose

attributes

contain

only

data

is

a

flat

business

object.

Application-specific

and

generic

business

objects

The

IBM

WebSphere

InterChange

Server

system

includes

two

kinds

of

business

objects:

application-specific

and

generic.

v

An

application-specific

business

object

reflects

data

entity

attributes

and

the

data

model

of

a

specific

application

or

other

programmatic

entity.

v

A

generic

business

object

contains

a

set

of

business-related

attributes

that

are

common

across

a

wide

range

of

applications,

not

tied

to

any

specific

application’s

data

model

When

the

connector

agent

(through

its

application-specific

component)

detects

an

application

event

such

as

an

update,

it

retrieves

the

appropriate

data

entity

from

the

application

and

transforms

it

into

an

application-specific

business

object.

Note:

When

this

document

refers

to

a

business

object

whose

name

includes

an

application

name,

such

as

Clarify_Contact

or

Oracle_Customer,

it

refers

to

an

application-specific

business

object.

A

Clarify_Contact

business

object,

for

example,

contains

the

set

of

information

that

the

Clarify

application

stores

about

a

contact.

In

another

application,

a

contact

entity

might

store

a

Contract

Create

ID

Customer ID

Date

Text
Authorization

Line Items Line-item
Business Object 1

Line-item
Business Object 2

Line-item
Business Object 3

Figure

10.

Business

object

with

child

business

objects

20

Technical

Introduction

somewhat

different

set

of

information,

store

the

information

in

a

different

order

or

format,

or

have

a

different

name.

After

the

connector

agent

has

built

an

application-specific

business

object,

it

sends

the

business

object

to

the

connector

controller

in

InterChange

Server.

The

connector

controller

exchanges

business

objects

between

collaborations

and

the

connector

agent.

Collaborations

are

generally

application-neutral,

so

the

business

object

that

a

connector

controller

exchanges

with

a

collaboration

must

be

a

generic

business

object.

The

use

of

generic

business

objects

enhances

the

reusability

of

the

collaboration

because

its

business

logic

is

not

bound

to

specific

versions

of

specific

applications.

Note:

Generic

business

object

names

do

not

include

a

company

name

or

product

name.

Examples

include

Contact,

Employee,

and

Customer.

Figure

11

shows

where

the

two

kinds

of

business

objects

fit

within

the

IBM

WebSphere

InterChange

Server

system:

the

collaboration

interacts

using

generic

business

objects

and

the

connector

agent

supports

business

objects

designed

for

specific

applications.

You

can

use

the

same

connector

to

run

multiple

types

of

collaborations,

if

the

connector

supports

the

business

objects

used

by

those

collaborations.

App A
Connector Agent

App B
Connector Agent

App C
Connector Agent

Generic

Application-Specific

InterChange Server

Collaboration

Generic
Business
Objects

App A
Business
Objects

App B
Business
Objects

App C
Business
Objects

Figure

11.

Generic

and

application-specific

business

objects

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

21

Data

mapping

Figure

11

shows

different

types

of

business

objects

at

each

application

and

at

the

collaborations.

The

IBM

WebSphere

InterChange

Server

system,

therefore,

must

convert

business

objects

into

like

forms

so

that

it

can

send

events

and

data

across

applications

and

collaborations.

Data

mapping

is

the

process

of

converting

business

objects

from

one

type

to

another.

Data

mapping

is

required

whenever

the

IBM

WebSphere

InterChange

Server

system

sends

data

between

a

source

and

a

destination

that

does

not

exactly

share

the

source’s

data

model.

Unlike

custom

application

integration

solutions

that

map

data

directly

from

one

application

to

another,

InterChange

server

collaborations

generally

use

the

generic

business

object

between

the

application-specific

data

models.

The

generic

business

object

serves

as

a

common,

cross-application

data

set.

If

you

change

applications

in

the

future,

you

need

only

get

a

new

connector

and

map

the

new

application-specific

business

object

to

the

generic

business

object.

Collaborations

then

continue

to

work

as

they

did

previously.

Whenever

a

collaboration

transfers

a

business

object

across

dissimilar

applications,

mapping

transforms

the

business

object

to

and

from

the

common

data

set.

Business

object

transformation

takes

place:

v

From

application-specific

to

generic

when

business

objects

pass

from

connectors

to

collaborations

v

From

generic

to

application-specific

when

business

objects

pass

from

collaborations

to

connectors

For

example,

in

a

collaboration

that

synchronizes

Clarify_BusOrg

data

with

SAP_CustomerMaster

data,

mapping

occurs

twice:

Each

connector

controller

manages

the

mapping

of

business

objects

that

pass

between

its

connector

agent

and

InterChange

Server.

To

actually

perform

data

mapping,

however,

the

system

invokes

the

use

of

the

mapping

tools—Map

Designer

and

Relationship

Designer.

These

tools

let

you

create

and

modify

detailed

mapping

specifications

and

execute

mapping

at

runtime.

A

connector

controller

invokes

the

mapping

function

when

it

receives

business

objects

that

require

mapping.

Figure

13

illustrates

the

invocation

of

mapping

from

the

connector

controller.

Clarify
Business Org
Application

SAP
Customer Master

Application

Generic Customer
Business Objects

First Mapping:
Clarify Business Org to Generic

Second Mapping:
Generic to SAP Customer Master

Figure

12.

Mapping

transformations

22

Technical

Introduction

InterChange

Server

InterChange

Server

is

a

multi-threaded,

Java-based

execution

framework

for

collaborations.

InterChange

Server

runs

within

its

own

Java

Virtual

Machine

(JVM).

InterChange

Server

runs

on

Windows

and

UNIX

systems.

This

section

describes

the

following

the

services

and

features

of

InterChange

Server:

v

“Event

management

service”

v

“Connector

controllers”

on

page

24

v

“Repository”

on

page

24

v

“Database

connectivity

service”

on

page

24

v

“Database

connection

pools”

on

page

24

v

“High

availability”

on

page

25

v

“Transaction

service”

on

page

25

v

“Recovery

features”

on

page

27

Event

management

service

InterChange

Server

persistently

stores

every

business

object

that

it

receives

during

the

execution

of

a

collaboration.

This

allows

InterChange

Server

to

recover

from

an

unexpected

termination

or

from

the

failure

of

a

collaboration

without

losing

event

notifications

or

calls.

Mapping
Specifications
and Execution

App A
Connector Agent

App B
Connector Agent

App C
Connector Agent

Generic

Application-Specific

Connector
Controller

Connector
Controller

Connector
Controller

InterChange Server

Collaboration

Generic
Business
Objects

App A
Business
Objects

App B
Business
Objects

App C
Business
Objects

Figure

13.

Mapping

control

and

execution

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

23

Connector

controllers

A

connector

controller

is

an

interface

between

the

client-side

of

a

connector

and

InterChange

Server.

A

connector

controller

routes

business

objects

as

they

traverse

the

IBM

WebSphere

InterChange

Server

system,

linking

the

client-side

of

connectors

to

collaborations

and

managing

the

mapping

process.

Through

the

connector

controller,

an

administrator

can:

v

Trace

interactions

between

InterChange

Server

and

the

connector

agent.

v

Enable

and

disable

interactions

between

InterChange

Server

and

the

connector

agent.

v

Specify

the

type

of

mapping

to

perform

for

each

business

object

arriving

from

or

departing

to

the

connector

agent.

Repository

InterChange

Server

maintains

configuration

information

and

definitions

of

all

objects

in

a

persistent

store

called

the

InterChanger

Server

repository,

which

consists

of

a

set

of

tables

in

a

relational

database.

The

tables

store

object

definitions

and

configuration

information

in

the

form

of

XML

documents.

Database

connectivity

service

The

database

connectivity

service

manages

interactions

between

InterChange

Server

and

the

repository.

The

database

connectivity

service

interacts

with

the

repository

by

means

of

the

Java

Database

Connectivity

API

(JDBC),

as

Figure

14

illustrates.

Note:

Some

databases

have

Open

Database

Connectivity

(ODBC)

drivers

but

do

not

have

native

JDBC

drivers.

For

those

databases,

you

can

use

an

available

JDBC-to-ODBC

bridge.

An

InterChange

Server

implementation

supports

a

number

of

database

vendors

and

continues

to

certify

additional

databases.

For

the

current

list

of

supported

databases,

refer

to

the

System

Installation

Guide

for

Windows

or

for

UNIX.

Database

connection

pools

You

can

use

the

System

Manager

tool

of

the

IBM

WebSphere

InterChange

Server

system

to

define

database

connection

pools

in

InterChange

Server.

User-defined

InterChange Server

DB Connectivity Service

JDBC

Collaboration definitions

Connector definitions

Business object definitions

Others...Repository

Figure

14.

Database

connectivity

service

and

the

repository

24

Technical

Introduction

database

connection

pools

make

it

possible

for

developers

to

directly

access

relational

databases

from

within

a

collaboration

or

map.

This

feature

provides

support

for

v

Automated

database

connection

life-cycle

management

v

Simplified

APIs

for

SQL

statements

and

stored

procedure

execution

v

Container-managed

transaction

bracketing

High

availability

The

IBM

WebSphere

InterChange

Server

system

can

be

configured

to

provide

high

availability

(HA)

for

InterChange

Server

(ICS).

On

Windows

systems,

the

HA

configuration

runs

under

Microsoft

Cluster

Server

(MSCS)

software.

The

HA

configuration

requires

two

Microsoft-certified

cluster

server

machines.

The

servers

are

set

up

with

identical

InterChange

Server

system

configurations

and

are

designated

in

the

MSCS

software

as

a

cluster

system.

One

machine

is

configured

in

MSCS

as

the

primary

(the

active

server

until

a

failure

occurs),

and

the

other

as

the

backup.

The

two

machines

share

a

cluster

name

and

a

cluster

IP

address

that

external

processes

use

for

accessing

the

active

server.

Both

the

primary

and

backup

servers

have

access

to

a

shared

RAID

storage

system,

which

is

controlled

by

the

active

server.

When

a

hardware

failure

is

detected,

the

HA

configuration

provides

shutdown

of

the

ICS,

and

automatic

migration

and

restart

of

the

ICS

(and

the

third-party

software,

and

HA-supported

connectors)

on

the

cluster

backup

system.

The

cluster

backup

server

becomes

the

active

server,

assuming

the

cluster

name

and

IP

address

of

the

primary

server,

and

automatically

takes

over

system

processing

until

such

time

that

you

correct

the

failure

on

the

primary

server

and

initiate

a

failback

(that

is,

manually

return

processing

to

the

primary

server)

For

an

overview

of

the

HA

environment,

see

the

System

Administration

Guide.

For

information

on

how

to

configure

ICS

for

use

in

an

HA

environment,

see

your

System

Installation

Guide.

Transaction

service

Any

application

integration

solution

encounters

risks

as

it

moves

data

from

one

application

to

another.

When

data

leaves

the

protected

realm

of

one

application

and

its

database

and

travels

across

a

network

to

another

application,

any

number

of

problems

can

occur.

For

example:

v

The

network

might

go

down.

v

The

destination

application

might

crash

before

receiving

the

data.

v

An

error

might

occur

in

the

destination

application

before

it

has

a

chance

to

process

the

new

data.

Consider

a

collaboration

that

involves

three

applications:

human

resources,

payroll,

and

product

cost

accounting.

Each

stores

employee

salaries.

Figure

15

is

a

high-level

view

of

the

cross-application

business

logic

for

handling

an

employee’s

salary

increase.

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

25

When

an

employee

gets

a

raise,

someone

enters

a

new

salary

into

the

human

resources

application.

The

collaboration

automatically

updates

the

employee

salary

in

the

payroll

application,

and

then

adjusts

the

project

cost

in

the

product

cost

accounting

application.

If

a

system

error

prevents

the

salary

update

from

reaching

the

product

cost

accounting

application,

data

inconsistency

can

result.

The

value

for

the

employee’s

salary

is

now

different

in

the

various

applications,

and

the

product

cost

is

incorrectly

computed.

Traditionally,

painstaking

cross-checking

was

required

or

the

data

remained

faulty

until

someone

noticed

the

problem.

The

IBM

WebSphere

InterChange

Server

system,

however,

offers

a

higher

level

of

service

with

strict

controls

to

which

you

can

trust

enterprise

data,

with

services

that

can

run

a

collaboration

as

if

it

were

a

type

of

transaction.

Transactional

collaborations

Transactional

qualities

are

desirable

and

achievable

for

collaborations

where

data

consistency

is

important

across

applications.

Like

other

transactions,

a

transactional

collaboration

involves

a

set

of

steps.

If

an

error

occurs,

InterChange

Server

can

undo

each

completed

step,

performing

a

transaction-like

rollback.

However,

collaborations

are

different

from

traditional

transactions

in

some

important

ways:

v

Collaboration

actions

are

distributed,

and

there

is

no

centralized

control

over

the

participating

databases.

v

Collaborations

that

respond

to

events

(as

in

the

publish-and-subscribe

model)

are

long-lived;

they

execute

asynchronously,

because

to

isolate

application

data

while

they

execute

would

adversely

affect

application

users.

v

Applications

save

data

changes

caused

by

collaborations,

thereby

providing

a

distributed,

cross-application

form

of

durability.

However,

if

a

collaboration

needs

to

roll

back,

it

might

need

to

undo

previously

saved

operations.

The

techniques

that

InterChange

Server

uses

to

support

transactional

collaborations,

therefore,

differ

from

those

that

support

traditional

transactions.

The

Product Cost
Accounting
Application

Payroll
Application

Human
Resources
Application

Update salary;
Recalculate project cost

Update salary

Update salary

Figure

15.

Three

applications

process

employee

salaries

26

Technical

Introduction

transaction

levels

associated

with

collaborations

define

the

rigor

with

which

InterChange

Server

enforces

transactional

semantics.

Recovery

features

An

InterChange

Server

implementation

provides

features

for

improving

the

time

it

takes

ICS

to

reboot

after

a

failure,

for

making

ICS

available

for

other

work

before

all

flows

have

been

recovered,

and

for

controlling

the

resubmission

of

failed

events:

v

Asynchronous

recovery

InterChange

Server

does

not

wait

for

collaborations

and

connectors

to

recover

before

it

completes

boot-up;

collaborations

and

connectors

are

allowed

to

recover

asynchronously

after

InterChange

Server

has

booted.

This

makes

it

possible

to

use

System

Manager

troubleshooting

tools,

such

as

System

Monitor

and

the

Administer

Unresolved

Flows

dialog,

while

the

connectors

and

collaborations

are

still

recovering.

v

Deferred

recovery

Use

of

this

feature

is

optional

and

is

configured

through

the

use

of

collaboration

object

properties.

If

you

enable

this

feature

for

a

collaboration,

when

an

ICS

failure

occurs,

the

recovery

of

the

collaboration’s

WIP

flows

is

deferred

until

after

the

server

has

rebooted,

thereby

saving

the

memory

usage

associated

with

those

flows.

After

the

server

has

rebooted,

you

can

use

the

Administer

Unresolved

Flows

dialog

in

System

Manager

to

resubmit

the

events.

v

Persist

service

call

in-transit

state

You

may

want

to

prevent

a

recovery

from

automatically

resubmitting

all

service

calls

that

were

in

transit

when

a

failure

occurred,

to

avoid

the

possibility

of

a

nontransactional

collaboration

sending

duplicate

events

to

a

destination

application.

This

is

accomplished

by

configuring

the

collaboration

(prior

to

the

server

failure)

so

that

it

will

persist

any

service

call

event

in

the

In-Transit

state

when

a

failure

and

recovery

occurs.

When

InterChange

Server

recovers,

the

flows

that

were

processing

service

calls

remain

in

the

In-Transit

state,

and

you

can

use

the

Administer

Unresolved

Flows

dialog

to

examine

individual

unresolved

flows

and

control

when

(or

if)

they

are

resubmitted.

v

Guaranteed

event

delivery

features

For

JMS-enabled

connectors

(connectors

that

use

JMS

as

their

transport

mechanism),

the

following

features

can

be

useful

for

guaranteed

event

delivery

in

recovery

situations:

–

Container

managed

events

The

container

managed

events

feature

is

valid

for

JMS-enabled

connectors

that

use

a

JMS

event

store.

It

ensures

that

if

a

system

crash

and

recovery

occurs,

an

event

that

was

in

process

between

the

event

store

and

the

connector

framework

will

be

received

exactly

once

by

the

connector

framework,

and

will

not

be

delivered

twice.

This

feature

is

optional

and

configured

through

connector

properties;

it

is

used

only

with

connectors

that

use

JMS

as

their

transport

mechanism.

–

Duplicate

event

elimination

The

duplicate

event

elimination

feature,

valid

for

JMS-enabled

connectors,

uses

unique

event

identifiers

in

the

application-specific

code

of

the

connector

to

ensure

that

events

will

not

be

delivered

in

duplicate

to

the

delivery

queue.

This

feature

is

optional

and

configured

through

connector

properties;

it

is

used

only

with

connectors

that

use

JMS

as

their

transport

mechanism

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

27

Communication

transport

infrastructure

The

modular

architecture

of

an

InterChange

Server

implementation

constitutes

a

distributed

system

that

accommodates

many

different

types

of

site

configurations.

InterChange

Server

implementation

architecture

enables

distributed

interaction

over

multiple

machines

on

a

network,

and

distributed

interaction

across

Internet

firewalls.

Distribution

on

a

network

Interactions

between

distributed

InterChange

Server

components

on

a

network

are

enabled

by

the

Common

Object

Request

Broker

Architecture

(CORBA)

and

by

messaging

technologies,

including

native

WebSphere

MQ

messaging

and

Java

Messaging

Service

(JMS).

Different

configurations

are

possible.

CORBA

might

be

used

for

request/response

interactions

and

administrative

communications

between

the

connector

agent

and

ICS,

with

native

WebSphere

MQ

performing

the

delivery

of

events

in

publish-and-subscribe

operations.

Alternatively,

Java

Messaging

Service

might

be

used

for

all

communications

and

interactions

between

a

connector

agent

and

ICS.

CORBA

The

Common

Object

Request

Broker

Architecture

(CORBA)

defines

a

set

of

standards

and

interfaces

for

distributed

objects

on

a

network.

The

Object

Request

Broker

(ORB)

is

a

set

of

libraries

and

other

components

that

client

applications

and

object

servers

use

to

communicate.

InterChange

Server

uses

the

IBM

Java

ORB

product.

The

ORB

makes

InterChange

Server

accessible

to

its

clients,

the

connector

agent,

and

System

Manager.

An

InterChange

Server

registers

with

the

ORB’s

name

service,

from

which

a

client

obtains

the

information

it

needs

to

find

and

start

interacting

with

the

server.

The

client

and

server

perform

object-to-object

interactions

by

means

of

the

ORB’s

Interface

Definition

Language

(IDL).

At

a

transport

level,

they

communicate

by

means

of

the

Internet

Inter-ORB

Protocol

(IIOP).

ORB-based

communication

is

typically

used

for

the

following

purposes:

v

The

Server

Access

Interface

uses

ORB-based

communication

to

handle

calls.

v

In

request/response

interactions,

collaborations

and

connectors

use

ORB-based

communication

to

exchange

business

objects.

v

A

connector

agent

uses

ORB-based

communication:

–

At

startup,

when

it

interacts

with

InterChange

Server

to

get

its

initial

configuration.

–

During

operation,

when

it

receives

directives

from

the

connector

controller

to

report

its

status,

pause,

stop,

or

resume.
v

Optionally,

ORB-based

communication

can

also

be

used

for

event

delivery

in

a

publish-and-subscribe

interaction.

In

the

IIOP

request/response

protocol,

communication

either

succeeds

or

fails

immediately,

so

both

programs

must

be

running

for

the

components

to

communicate.

However,

for

request/response

interactions

in

an

InterChange

Server

implementation,

you

can

use

a

connector

property

to

set

a

store-and-forward

mode,

specifying

how

a

connector

controller

will

respond

to

a

collaboration’s

request

in

a

situation

where

the

connector

agent

is

unavailable:

v

If

you

set

the

property

to

True,

the

connector

controller

won’t

fail

any

collaboration

requests

even

if

the

connector

agent

is

unavailable.

A

request

is

28

Technical

Introduction

blocked

until

the

connector

agent

is

operational.

This

causes

a

collaboration

to

wait

until

the

connector

agent

is

operational

before

it

completes

the

processing

flow

for

the

request.

v

If

set

to

False,

the

connector

controller

fails

all

collaboration

requests

if

the

connector

agent

is

unavailable.

This

causes

a

collaboration

to

complete

the

processing

of

the

request

according

to

its

business

logic

for

processing

a

failed

request.

Figure

16

shows

the

components

that

constitute

the

IBM

Java

ORB

for

use

with

InterChange

Server.

There

are

different

components

for

the

different

languages

in

which

InterChange

Server

components

address

their

ORB

drivers,

but

the

C++

and

Java

components

communicate

with

each

other

as

one

system.

The

IBM

Transient

Naming

Server

provides

the

naming

service.

These

ORB

components

need

not

be

separated.

At

some

sites,

all

of

them

might

reside

on

the

same

machine.

Messaging

technologies

Messaging

embodies

a

communication

style

in

which

programs

asynchronously

exchange

discrete

units

of

data

(messages).

Programs

that

use

a

messaging

transport

need

not

establish

connections

or

wait

for

messages;

each

program

asynchronously

sends

and

receives

messages

by

interacting

with

the

messaging

service.

The

messaging

service

provides

guaranteed

delivery,

storing

the

message

if

the

destination

program

is

unavailable

and

retrying

until

it

is

available.

Messaging

systems

supported

with

an

InterChange

Server

environment

include

both

native

IBM

WebSphere

MQ

messaging

and

Java

Messaging

Service

(JMS)

software.

A

common

implementation

approach

is

to

use

a

messaging

system

for

the

delivery

of

events

in

publish-and-subscribe

interactions,

and

to

use

the

ORB

for

request/response

interactions.

However,

there

can

be

circumstances

where

JMS

is

used

for

both

types

of

interactions.

When

JMS

is

the

delivery

transport

mechanism,

data

persistence

can

be

provided

through

the

long-lived

business

processes

feature.

When

this

feature

is

used,

a

process

initiated

by

a

request

on

a

collaboration

can

be

placed

in

a

waiting

state

with

a

timeout

value,

so

that

the

process

will

be

resumed

if

and

when

a

specified

ORB server:
InterChange Server

ORB client:
Connector agent

IBM Java ORB

IBM Java ORB

ORB client:
System Manager

IBM Java ORB

IBM Transient
Naming
Server

Repository

Figure

16.

ORB

components

in

the

WebSphere

InterChange

Server

system

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

29

data

response

is

received.

Use

of

this

feature

requires

that

the

feature

be

enabled

during

the

creation

of

the

collaboration

template.

Distribution

across

the

Internet

The

InterChange

Server

system

supports

secure

socket

layer

(SSL)

communication

for

distributing

connector

controller/connector

agent

interactions

across

Internet

firewalls.

The

implementation

is

a

hub-and-spoke

relationship,

in

which

the

hub

is

a

site

that

has

installed

a

complete

IBM

WebSphere

InterChange

Server

system,

and

the

spokes

are

remote

sites

that

exchange

data

with

the

hub

across

firewalls.

A

spoke

site

requires

a

remote

connector

agent,

but

does

not

require

a

complete

IBM

WebSphere

InterChange

Server

system.

Two

alternative

configurations

can

be

used:

v

WebSphere

MQ

with

SSL

v

WebSphere

MQ

internet

pass-thru

using

HTTP/HTTPS

Securing

InterChange

Server

The

WebSphere

Business

Integration

system

is

a

distributed

system

with

critical

business

data

that

needs

to

be

secured.

Unauthorized

parties

need

to

be

prevented

from

viewing

or

modifying

the

data

while

it

is

in

transit

or

when

it

is

stored

on

disk.

Securing

data

in

any

system

includes

three

security

services,

authentication,

message

integrity,

and

privacy.

Authentication

involves

verifying

that

someone

is

who

they

claim

to

be.

Authentication

governs

access

control

which

restricts

access

to

parts

of

the

system

based

on

who

the

authenticated

user

is

and

what

permissions

the

user

has

been

granted.

Message

integrity

ensures

that

the

data

has

not

been

modified.

Privacy

ensures

that

only

authorized

users

can

view

data.

Integrity,

privacy

and

authentication

can

be

accomplished

with

encryption,

while

RBAC

can

be

accomplished

by

setting

up

user

IDs

and

passwords.

Encryption

Besides

the

three

security

services,

there

are

three

security

mechanisms

that

are

involved

with

securing

InterChange

Server.

Two

of

the

mechanisms

involve

encoding

data

through

encryption.

They

are

symmetric

encryption

and

asymmetric

encryption.

Symmetric

encryption

involves

encoding

data

using

an

encryption

algorithm,

or

key.

The

same

key,

is

used

to

encode

the

data

and

decode

the

data.

In

a

distributed

system,

where

one

process

has

to

encrypt

the

data

and

another

process

has

to

decrypt

the

data,

the

key

needs

to

be

securely

shared

or

exchanged,

so

that

unauthorized

users

cannot

use

the

key

to

access

the

data.

The

ability

to

share

a

key

can

also

be

a

challenging

task

in

symmetric

encryption.

The

mechanism

of

asymmetric

encryption

is

commonly

used

to

share

or

exchange

a

key.

It

involves

encrypting

data

and

decrypting

data

using

a

key

pair.

One

key

in

the

key

pair

is

a

private

key

that

is

kept

secret,

and

the

other

key

in

the

key

pair

is

a

public

key

that

is

shared

and

distributed

to

others.

Data

encrypted

with

a

public

key

can

only

be

decrypted

by

the

corresponding

private

key

in

the

key

pair.

The

sender

encrypts

the

data

using

the

public

key

of

the

receiver,

so

that

only

the

appropriate

receiver

can

decrypt

the

data

using

its

own

private

key.

Since

asymmetric

encryption

is

that

it

is

slow,

it

is

not

used

to

encrypt

data.

Instead,

it

is

used

to

asymmetrically

encrypt

and

decrypt

the

secret

key,

which

in

turn

is

used

30

Technical

Introduction

to

symmetrically

encrypt

the

data.

This

process

affords

the

best

mix

of

security

and

speed

because

it

is

the

strength

of

the

key

that

is

more

important

in

maintaining

privacy

within

a

system.

The

private

key

can

also

be

used

to

create

a

digital

signature

for

the

data,

which

can

be

used

to

verify

the

identity

of

the

sender

(authentication)

and

the

integrity

of

the

data

sent

(message

integrity).

To

create

a

digital

signature,

the

data

is

a

small

size

fixed-length

message

digest

in

a

process

called

hashing,

which

is

a

one-way

function

that

creates

a

map

or

message

digest.

The

message

digest

is

encrypted

with

the

sender’s

private

key,

which

creates

the

digital

signature.

The

digital

signature

is

appended

to

the

data,

and

sent

to

the

receiver.

The

receiver

decrypts

the

digital

signature

back

into

the

message

digest

using

the

public

key,

which

verifies

the

signature,

since

the

public

key

can

only

decrypt

data

encrypted

with

the

private

key,

which

only

the

sender

has.

Then

the

receiver

hashes

the

data

to

create

a

message

digest,

and

compares

it

with

the

message

digest

that

was

sent.

If

both

message

digests

are

the

same,

the

receiver

can

verify

that

the

data

has

not

been

changed

since

it

was

signed

by

the

sender.

To

secure

critical

business

data,

InterChange

Server

includes

the

following

security

features:

v

End-to-end

privacy,

(also

labeled

end-to-end

security),

which

secures

data

as

it

flows

from

a

source

adapter

process,

through

the

InterChange

Server,

to

the

destination

adapter

process.

End-to-end

privacy

uses

asymmetric

and

dynamic

security

in

addressing

authentication,

integrity

and

privacy.

v

Role-based

access

control,

which

restricts

access

to

parts

of

the

system

based

on

who

the

authenticated

user

is

and

what

permissions

the

user

has

been

granted.

Role-based

access

control

addresses

access

control

and

authentication.

End-to-end

privacy

Adapter

processes

and

InterChange

Server

communicate

by

sending

messages.

Messages

are

bidirectional,

so

that

both

InterChange

Server

and

the

adapter

processes

send

messages

and

receive

messages.

SSL

offers

node-to-node,

or

link

level

security.

Messages

can

be

secured

as

they

travel

between

nodes,

but

not

when

they

are

stored

to

disk

at

a

node.

The

messages

and

data

are

in

the

clear,

where

they

can

be

viewed

and

modified

by

unauthorized

users.

End-to-end

privacy

can

secure

the

messages

as

they

flow

starting

at

the

node

of

origin,

through

any

intermediate

nodes,

to

the

destination

node.

Using

asymmetric

and

dynamic

security,

messages

are

secured

in

transit

and

are

secured

as

they

are

stored

when

they

are

at

queue

managers

on

disk,

awaiting

processing.

Messages

are

secured

with

varying

levels

of

security,

which

can

include

encryption

and

end

point

authentication.

End

point

authentication

occurs

when

the

end

points

in

the

communication,

such

as

InterChange

Server

or

an

adapter,

prove

they

are

who

they

claim

to

be

by

using

digital

signatures.

Asymmetric

and

dynamic

security

In

a

distributed

system,

communicating

parties

can

be

both

senders

and

receivers.

When

the

communication

needs

to

be

secured,

and

the

security

levels

are

the

same

for

incoming

and

outgoing

messages,

it

is

considered

symmetric

security.

This

type

of

security

creates

a

tight

coupling

between

the

server

and

an

adapter.

SSL

represents

a

form

of

symmetric

security.

Many

third

party

security

products

are

based

on

the

Secure

Sockets

Layer

(SSL)

security

protocol.

SSL

provides

data

encryption,

server

authentication,

message

integrity,

and

optional

client

authentication

for

a

TCP/IP

connection.

SSL

is

usually

associated

with

tightly

coupled

systems

that

use

symmetric

security,

so

all

data

is

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

31

encrypted

whether

the

data

is

critical

or

not.

SSL

cannot

tell

non-secure

data

from

secure

data.

If

the

security

levels

between

incoming

and

outgoing

messages

can

be

different,

it

is

considered

asymmetric

security.

For

example,

suppose

a

user

needs

to

authenticate

with

a

server,

using

a

user

ID

and

password,

before

receiving

a

large

document

from

the

server.

The

user

ID

and

password

need

to

be

encrypted,

so

that

they

cannot

be

viewed

in

transit

by

an

unauthorized

user,

but

the

document

does

not

need

to

be

encrypted

when

in

transit.

Using

SSL,

both

the

user

ID

and

password

and

the

large

document

are

encrypted.

Encrypting

the

large

document

can

impact

the

performance

of

the

server.

Using

asymmetric

security,

the

message

flow

from

the

user

can

be

set

to

encrypt

the

user

ID

and

password,

but

the

message

flow

from

the

server

to

the

user

can

be

set

so

it

is

not

encrypted.

The

user

ID

and

password

from

the

user

are

protected

by

encryption,

while

server

performance

is

enhanced

because

the

large

document

is

not

encrypted

before

it

is

sent

to

the

user.

Asymmetric

security

also

enables

dynamic

updates

to

security

parameters

between

communicating

parties.

Using

asymmetric

security,

such

as

SSL,

security

parameters

are

established

when

the

communication

starts.

Changes

to

security

parameters

are

not

in

effect

until

a

new

communications

session

begins.

Using

asymmetric

security,

changes

to

the

security

parameters

can

be

dynamic

because

the

communicating

parties

have

individual

security

parameter

definitions.

A

change

to

the

security

parameters

for

one

party

does

not

interrupt

the

current

security

session

and

require

an

update

to

other

parties.

While

asymmetric

security

can

provide

flexibility,

its

weakness

is

that

it

directly

couples

with

end

nodes

leaving

the

loosely

or

indirectly

coupled

middle

nodes

vulnerable

to

data

to

manipulation

by

unauthorized

sources.

Using

end-to-end

privacy,

security

can

be

set

at

the

application

layer

in

order

to

secure

messages

before

they

enter

and

leave

an

application.

This

type

of

security

eliminates

the

danger

of

unauthorized

sources

accessing

messages

while

residing

on

middle

nodes.

End-to-end

privacy

also

provides

a

way

that

different

message

types

can

have

different

levels

of

security.

Levels

of

security

The

level

of

security

is

configured

for

each

message

type,

for

individual

adapters

and

InterChange

Server.

There

are

four

levels

of

security:

None

No

security

level

is

set,

so

messages

are

sent

from

an

adapter

or

InterChange

Server

as

normal.

This

is

the

default

level

of

security.

Integrity

The

sender,

either

an

adapter

or

InterChange

Server,

adds

a

digital

signature

to

the

message.

The

receiver

verifies

the

signature

using

the

public

key

of

the

sender.

The

receiver

is

authenticating

the

sender

by

verifying

the

signature,

since

only

the

sender

has

access

to

its

own

private

key,

and

could

use

it

to

generate

the

signature.

The

signature

is

a

message

digest

of

the

data,

so

when

the

receiver

creates

a

message

digest

and

verifies

that

the

message

digest

matches

the

message

digest

sent

with

the

message,

the

message

integrity

is

guaranteed.

Integrity

also

implies

authentication,

since

in

the

process

of

verifying

that

the

data

has

not

changed,

the

identity

of

the

sender

is

verified.

Privacy

The

sender

completely

encrypts

the

message.

The

receiver

decrypts

the

message

and

passes

it

on

for

further

processing.

When

an

adapter

or

InterChange

Server

sends

a

message

with

Privacy

configured,

it

generates

a

secret

key;

encrypts

the

message

with

the

secret

key;

encrypts

the

secret

key

with

the

receiver’s

public

key;

includes

the

encrypted

secret

key

with

the

message;

then

sends

the

message.

The

receiver

decrypts

the

secret

key,

32

Technical

Introduction

using

its

own

private

key;

decrypts

the

message

using

the

decrypted

secret

key;

and

forwards

the

message

for

further

processing.

The

secret

key

is

encrypted

with

the

public

key

of

the

receiver.

The

encrypted

secret

key

can

be

decrypted

only

with

the

private

key

of

the

receiver,

so

the

message

is

secure

because

only

the

receiver

has

access

to

its

own

private

key.

Integrity

plus

Privacy

The

sender

adds

a

digital

signature

to

each

message,

as

described

in

Integrity,

and

then

completely

encrypts

the

message,

as

described

in

Privacy.

InterChange

Server

and

the

adapters

maintain

their

own

keystores.

A

keystore

is

a

password

protected

file

used

to

securely

store

public

and

private

keys.

InterChange

Server

maintains

a

keystore

that

contains

its

own

public

and

private

key

pair,

and

the

public

keys

of

all

installed

adapters.

An

individual

adapter

maintains

a

keystore

that

contains

its

own

public

and

private

key

pair,

the

public

key

of

InterChange

Server

and

the

public

keys

of

all

the

processes

to

which

it

communicates.

Combinations

of

the

levels

of

security

and

the

types

of

messages

to

secure

are

possible,

for

individual

adapters

and

InterChange

Server.

For

example,

Integrity

can

be

configured

for

administrative

messages

from

InterChange

Server,

while

Privacy

can

be

configured

for

business

object

messages

from

the

SAP

adapter,

and

no

security

can

be

set

from

the

e-mail

adapter.

Message

types

There

are

four

types

of

messages,

coming

from

an

adapter

or

InterChnage

Server,

that

can

be

secured:

All

messages

(All)

All

messages

from

an

adapter

or

InterChange

Server

are

secured.

Administrative

messages

(Admin)

All

administrative

messages

from

an

adapter

or

InterChange

Server

are

secured.

All

Business

Objects

(BO)

All

business

object

messages

from

an

adapter

or

InterChange

Server

are

secured.

Individual

Business

Object

(BO

specification

name)

Specific

business

object

messages

from

an

adapter

or

InterChange

Server

are

secured

by

specifying

the

name

of

the

business

object

specification

to

be

secured.

To

secure

messages

using

end-to-end

privacy,

an

administrator

needs

to

determine

what

type

of

messages

to

secure,

what

level

of

security

is

required,

and

then

configure

both

InterChange

Server

and

individual

adapters.

When

end-to-end

privacy

is

configured

for

InterChange

Server,

it

only

applies

to

messages

sent

from

InterChange

Server.

When

end-to-end

privacy

is

configured

for

an

individual

adapter,

it

only

applies

to

messages

sent

from

the

individual

adapter.

All

existing

events

must

be

removed

from

the

system

before

turning

on

end-to-end

privacy.

Existing

events

will

not

be

processed

correctly

when

end-to-end

privacy

is

configured.

For

more

information

concerning

configuring

end-to-end

privacy,

see

the

System

Administration

Guide.

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

33

Role-based

access

control

To

prevent

unauthorized

users

from

accessing

any

system,

user

IDs

and

passwords

address

a

basic

security

requirement.

A

user

ID

is

issued

to

a

user,

who

is

an

individual

or

a

process

that

wants

to

access

the

system.

Authenticating

a

user

does

not

mean

that

they

should

have

access

to

all

parts

of

the

system.

There

might

be

critical

or

sensitive

parts

of

the

system

that

should

only

be

accessed

by

select

users,

while

other

parts

of

the

system

can

be

accessible

to

all

users.

Access

control

refers

to

restricting

access

to

parts

of

the

system

based

on

who

the

authenticated

user

is

and

what

permissions

the

user

has

been

granted.

Individual

users

can

be

granted

permission

to

access

various

components,

but

managing

permissions

in

this

way

can

be

time

consuming

for

administrators.

Role-based

access

control

authenticates

users

who

want

to

access

InterChange

Server,

then

limits

the

access

the

user

has

to

individual

components

based

on

what

role

the

user

has

been

assigned.

Roles

A

role

is

a

collection

of

one

or

more

users

that

have

some

functional

association.

Assigning

permissions

based

on

roles

reduces

the

administrative

burden

significantly.

For

each

operation

that

needs

to

be

secured,

the

administrator

defines

roles

that

are

allowed

to

perform

the

operation.

Only

users

that

are

members

of

the

permitted

roles

are

allowed

to

perform

the

operation.

When

permissions

are

assigned

to

roles,

the

role

permissions

are

referred

to

as

the

security

policy

for

the

role.

Users

can

be

assigned

to

multiple

roles.

An

operation

or

an

action

is

not

secured

if

no

roles

are

assigned

to

it,

and

every

authenticated

user

can

perform

the

action.

Users

are

only

allowed

to

perform

an

action

that

is

secured

if

the

user

has

been

assigned

to

a

role

that

has

been

granted

access

to

the

action.

A

predefined

role

of

administrator

has

been

included

with

InterChange

Server

as

a

default

role.

Members

of

the

administrator

role

have

permission

to

perform

all

operations

on

the

server,

including

creating

users,

creating

roles

and

granting

permissions

to

roles.

The

administrator

has

the

ability

to

create

additional

roles

that

better

reflect

the

organizational

structure.

For

example,

an

organization

may

have

several

developer

roles

such

as

Finance

Developers

or

Redevelopers

to

restrict

access

to

the

components

developed

by

the

different

groups.

Users

can

belong

to

multiple

roles.

Default

roles

cannot

be

deleted.

An

administrator

can

query

the

system

for

users

who

are

currently

logged

in

to

the

system.

A

user

can

be

logged

in

to

a

maximum

of

20

sessions

at

one

time.

The

administrator

can

logout

the

particular

session

of

any

user

that

is

currently

logged

in.

The

administrator

can

also

logout

all

the

open

sessions

of

a

user,

so

that

if

a

user

has

forgotten

to

logout,

the

administrator

can

logout

for

the

user.

An

exception

is

thrown

when

a

user

tries

to

log

in

and

already

has

20

open

sessions.

An

administrator

can

also

reset

a

user’s

password.

A

guest

user

has

been

predefined

as

a

default

user,

and

assigned

a

password

of

guest.

Default

users

cannot

be

deleted.

There

is

no

limit

to

the

number

of

sessions

that

guest

can

log

into.

InterChange

Server

administrator

can

import

or

export

security

policies,

which

are

the

permissions

assigned

to

components,

as

security.xml.

Role

definitions

and

role

membership

information

can

be

exported

to

and

imported

from

a

file,

from

the

System

Manager

and

from

the

command

line

tool

repos_copy

by

a

user

with

the

appropriate

role.

The

file

is

named

RoleMembership.xml.

Users

and

passwords

can

be

exported

to

and

imported

from

a

binary

file,

which

can

be

imported

to

another

34

Technical

Introduction

server.

Exporting

passwords

is

a

security

risk.

The

file

should

be

exported

to

a

directory

that

is

secured

by

the

operating

system

security

and

should

be

deleted

after

it

is

imported.

The

default

security

policy

is

that

only

a

user

in

the

administrator

role

can

start,

stop,

administer

security,

export

config

files

and

deploy

config

files

in

InterChange

Server.

The

default

permissions

for

a

new

component

are

that

all

actions

can

be

performed

by

an

authenticated

user.

A

component

is

not

secured

by

default.

Role-based

access

control

is

not

automatically

configured

during

InterChange

Server

installation.

To

configure

role-based

access

control,

refer

to

the

System

Administration

Guide.

Before

turning

on

role-based

access

control,

at

least

one

user

must

be

added

to

the

administrator

role.

If

InterChange

Server

uses

a

repository

implementation,

a

user

needs

to

be

created

to

add

to

the

administrator

role.

If

role-based

access

control

has

been

turned

on

and

the

server

is

started

without

at

least

one

user

in

the

administrator

role,

the

server

logs

an

error

message

and

starts

with

role-based

access

control

turned

off.

A

user

ID

and

password

are

not

required

to

start

the

server,

and

all

users

have

access

to

all

operations.

When

role-based

access

control

is

turned

on,

a

user

ID

and

password

are

required

to

start

the

server

and

all

permissions

or

access

checks

are

functional.

Auditing

Auditing

allows

administrators

to

track

who

performed

secure

operations,

such

as

logging

in,

logging

out,

and

administering

users,

roles

and

permissions.

Auditing

data

that

is

collected

includes

the

date

and

time,

user

ID,

operation

performed

and

status

of

the

operation,

such

as

success,

access

denied

or

an

exception

occurred.

The

audit

log

is

not

written

to

the

usual

Interchangesystem.log

file.

It

is

written

to

a

separate

file

in

the

your_ics_dir_name/log/audit

directory,

which

is

not

secure.

The

audit

log

file

contains

information

that

should

be

secured

by

the

operating

system,

so

that

unauthorized

users

cannot

view

the

files.

The

size

of

the

log

file

and

the

frequency

with

which

new

log

files

are

created

can

be

configured.

The

name

of

the

file

depends

on

how

often

a

new

log

files

needs

to

be

created,

after

the

log

file

exceeds

the

file

size

settings.

Frequency

options

include

daily,

weekly

and

monthly.

The

default

value

is

weekly.

The

format

of

the

audit

log

file

name

is

Daily

file:

icsaudit_yyyymmmdd_nnn.log

Weekly

file:

icsaudit_yyyymmmwx_nnn.log

Where

x

=

1,2,3....

Week

numbers

Monthly

file

:

icsaudit_yyyymmm_nnn.log

where

yyyy

is

the

year,

mmm

is

the

month,

dd

is

the

day,

wx

is

the

week

number

and

nnn

=

001......999,

when

multiple

files

need

to

be

created

in

a

period

because

the

log

file

size

setting

has

been

exceeded.

The

operations

that

can

be

audited

include:

v

Login

and

logout

v

Server

start

and

stop,

security,

administering

roles

and

users,

monitoring,

view

failed

events,

MMS

-

deploy,

export,

delete,

compile,

export

configuration

files,

and

deploy

configuration

files

v

Collaboration

object

start,

stop,

pause,

shutdown,

execute

(AccessFramework

call),

resolve

transactional

status,

submit

Failed

events,

delete

Failed

events,

cancel

LLBP

flow

v

Connector

start,

stop,

pause,

shutDown

agent,

submit

failed

events,

delete

failed

events

v

Map

start

and

stop

v

Relationship

start

and

stop

v

Benchmark

start

and

stop

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

35

User

Registry

The

user

registry

is

the

system

that

stores

usernames

and

passwords.

By

default,

users

and

passwords

are

stored

in

the

local

WBI

repository.

The

userRegistry

configuration

parameter

can

be

used

to

configure

InterChange

Server

to

use

a

Lightweight

Directory

Access

Protocol

(LDAP)

directory

as

a

user

registry.

The

LDAP

is

a

protocol

for

accessing

enterprise

directory

services.

Enterprise

directories

are

used

to

store

information

that

can

be

shared

across

several

applications.

For

example,

user

information

that

may

be

required

by

all

enterprise

applications

may

include

username,

password

and

email

address.

If

this

data

is

stored

in

the

proprietary

database

of

each

individual

application,

the

data

is

duplicated,

and

it

is

difficult

to

be

kept

synchronized.

When

a

new

employee

joins

the

company,

a

user

ID

and

password

have

to

be

created

for

the

employee

in

each

application.

However,

with

a

directory

service,

the

user

ID

and

password

only

need

to

be

created

once

in

the

directory,

and

enterprise

applications

can

reuse

that

information.

The

provider

is

set

to

LDAP

to

use

an

LDAP

directory

for

the

user

repository,

while

it

is

set

to

REPOS

to

use

the

local

WBI

repository

as

the

user

registry.

When

the

WBI

repository

is

used

for

storing

users

and

passwords,

it

is

strongly

recommended

that

a

separate

database

be

used

for

this.

The

URL

for

the

database

that

hosts

the

user

registry

can

be

specified.

This

is

a

hierarchical

property

called

USER_REGISTRY

in

the

configuration

file

interchangesystem.cfg.

The

structure

is

identical

to

the

existing

REPOSITORY

property

such

that

a

databaseURL,

username

and

password

can

be

specified.

The

property

can

be

edited

using

the

server

configuration

tool.

It

is

recommended

that

there

be

one

user

registry

per

enterprise,

whether

using

LDAP

or

a

WBI

database,

so

that

multiple

instances

of

InterChange

Server

can

share

the

same

user

registry

without

importing

and

exporting

users

and

passwords.

InterChange

Server

can

use

the

username

and

password

from

an

LDAP

directory,

using

the

InetOrgPerson

schema

as

described

in

RFC

2798.

The

InetOrgPerson

schema

has

Object

Identifier

(OID)

2.16.840.1.113730.3.2.2,

which

are

numbers

assigned

by

IETF

that

uniquely

identify

each

schema.

InterChange

Server

makes

no

assumption

on

the

directory

tree

structure

within

the

directory.

Users

can

specify

a

base

distinguished

name

(baseDN)

as

part

of

configuration

for

both

users

and

role.

This

baseDN

is

used

as

the

root

for

any

searches

or

updates.

Securing

components

and

actions

The

list

of

components

that

can

be

secured,

along

with

securable

actions,

includes:

Table

2.

Securable

components

Securable

components

Securable

Actions

InterChange

Server

v

Start

v

Shutdown

v

Security

-

administering

roles

and

users

v

Monitor

v

View

failed

events

v

MMS

-

Deploy

v

MMS

-

Export

v

MMS

-

Delete

v

MMS

-

Compile

v

MMS

-

Export

config

files

v

MMS

-

Deploy

config

files

36

Technical

Introduction

Table

2.

Securable

components

(continued)

Securable

components

Securable

Actions

Collaboration

objects

v

Start

v

Stop

v

Pause

v

Shutdown

v

Execute

(Access

Framework

call)

v

Resolve

transactional

status

v

Submit

failed

events

v

Delete

failed

events

v

Cancel

LLBP

flow

Connectors

v

Start

v

Stop

v

Pause

v

Shutdown

agent

v

Submit

failed

flow

v

Delete

failed

flow

Maps

v

Start

v

Stop

Relationships

v

Start

v

Stop

Benchmarks

v

Start

v

Stop

Summary

This

chapter

introduced

the

major

components

of

the

IBM

WebSphere

InterChange

Server

system.

The

key

points

to

remember

are:

v

Collaborations

interact

with

connectors

and

with

the

Server

Access

Interface

to

create

distributed

business

processes.

Collaborations

contain

the

business

process

logic;

connectors

bridge

the

IBM

WebSphere

InterChange

Server

system

and

the

application

environment

to

help

implement

the

business

process

logic

across

applications.

The

Server

Access

Interface

and

the

XML

Connector

let

you

extend

the

business

process

logic

across

the

Internet.

v

All

interactions

involving

a

collaboration

take

place

through

the

exchange

of

business

objects.

When

the

Server

Access

Interface

receives

a

call,

or

when

a

connector

receives

information

about

an

application

event,

a

business

object

is

created

and

sent

to

the

collaboration.

v

A

business

object

is

generic

or

application-specific.

Collaborations

process

generic

business

objects,

and

connectors

process

application-specific

business

objects.

v

InterChange

Server

is

the

center

of

collaboration

execution.

It

includes

a

repository,

connector

controllers,

the

event

management

service,

the

database

connectivity

service,

and

the

transaction

service.

v

System

Manager

displays,

configures,

and

controls

the

execution

of

the

objects

stored

at

each

InterChange

Server.

Chapter

1.

Overview

of

IBM

WebSphere

InterChange

Server

37

v

Components

are

distributed.

The

collaboration/connector

protocol,

messaging,

and

the

ORB

provide

the

glue

between

components.

v

Messages

in

InterChange

Server

can

be

secured

using

end-to-end

privacy.

InterChange

Server

can

be

secured

using

role-based

access

control.

The

next

chapter

takes

a

closer

look

at

collaborations.

38

Technical

Introduction

Chapter

2.

Tools

for

use

with

InterChange

Server

Available

with

InterChange

Server

is

the

following

set

of

tools:

v

“WebSphere

Business

Integration

Toolset”

v

“Development

tools”

on

page

41

v

“Administrative

tools”

on

page

42

WebSphere

Business

Integration

Toolset

The

WebSphere

Business

Integration

Toolset

provides

administrative

and

development

tools

for

use

with

InterChange

Server.

The

WebSphere

Business

Integration

toolset

is

only

supported

on

Windows

2000

and

Windows

XP.

Administrative

tools

include:

v

System

Manager

v

System

Monitor

v

Flow

Manager

v

Log

Viewer

v

Relationship

Manager

For

more

information

about

administrative

tools

and

tasks,

see

the

System

Administration

Guide.

Development

tools

include:

v

Map

Designer

v

Relationship

Manager

v

Process

Designer

v

Business

Object

Designer

v

Connector

Configurator

These

development

tools

are

described

in

more

detail

in

the

Implementation

Guide

for

WebSphere

InterChange

Server,

and

in

the

development

guides

for

different

components.

The

WebSphere

Business

Integration

Toolset

tools

can

be

accessed

through

a

Windows

shortcut

by

selecting

Start

>

Programs

>

WebSphere

Business

Integration

Toolset,

then

selecting

Administrative

for

the

administrative

tools,

or

Development

for

the

development

tools.

The

IBM

WebSphere

Business

Integration

Toolset

provides

enablement

for

use

with

IBM

Tivoli

License

Manager

(ITLM).

It

provides

support

for

inventory

functions.

ITLM

provides

more

control

and

flexibility

over

what

is

paid

for

software,

and

it

enables

customers

to

pay

for

software

based

on

utilization

rather

than

full

machine

capacity.

ILTM

measures

the

usage

of

products

and

reports

the

use

to

IBM.

Features

include:

v

Collection

of

inventory

data,

and

extraction

of

information

on

products

used

and

installed

at

each

site.

v

Storage

and

maintenance

of

software

procurement

and

contract

information

for

products

purchased

by

different

customers

or

independent

organizations,

together

with

license

terms

and

conditions.

©

Copyright

IBM

Corp.

1997,

2004

39

v

Comparison

of

procured,

installed

and

used

licenses,

and

reconciliation

of

the

information

derived

from

these

three

different

views.

v

Compilation

of

metering

and

inventory

results

to

identify

the

license

entitlement

needed

for

each

product

and

procure

the

required

number

of

licenses.

v

Supervision

that

software

products

are

used

in

accordance

with

the

agreements

between

customers

and

vendors.

System

Manager

The

System

Manager

interface

is

derived

from

the

Eclipse

platform—an

open-source

integrated

development

environment

for

the

creation

of

tools.

The

Eclipse

platform

provides

tools

developers

with

a

development

kit

and

runtime

that

enables

the

developer

to

write

plug-ins

that

allow

the

user

to

work

with

a

particular

type

of

resource.

Note:

System

Manager

is

installed

as

a

plug-in

that

can

be

used

in

IBM-branded

versions

of

the

Eclipse

platform.

You

access

System

Manager

as

an

Eclipse-based

perspective.

The

System

Manager

perspective

provides

views

and

editors

that

help

you

generally

with

using

your

system

and

accessing

the

tools,

as

well

as

providing

an

interface

for

deploying

the

integration

projects

that

you

develop.

These

perspectives

include

support

for

the

following

tasks:

v

Accessing

IBM

WebSphere

InterChange

Server

development

tools

v

Performing

configuration

tasks

on

individual

modular

components

used

in

an

IBM

WebSphere

InterChange

Server

system

v

Working

with

instances

of

InterChange

Server

v

Handling

groups

of

integration

components

as

user

projects,

and

deploying

components

to

the

repository

v

Benchmarking

the

performance

characteristics

of

a

business

integration

system

and

its

components

Tasks

in

System

Manager

are

accessible

through

a

menu

and

corresponding

toolbar,

as

well

as

through

the

WebSphere

Business

Integration

System

Manager

view.

The

WebSphere

Business

Integration

System

Manager

view,

displayed

in

the

left-hand

panel

of

System

Manager,

shows

a

folder-style

list

of

libraries

of

modular

integration

components

(such

as

business

object

definitions,

database

connection

pools,

and

collaboration

templates

and

objects).

You

can

perform

development

and

configuration

tasks

by

right-clicking

on

the

icon

for

a

component

in

a

library.

From

System

Manager,

you

can

access

the

GUI

tools

for

creating

collaboration

templates,

business

object

definitions,

maps,

and

relationships.

Note

that

some

development

tools

can

also

be

accessed

and

run

independently

of

System

Manager.

See

“Development

tools”

on

page

41

for

a

list

of

some

of

the

available

development

tools.

Component

configuration

You

can

use

System

Manager

to

manipulate

the

modular

IBM

WebSphere

InterChange

Server

components—referred

to

as

integration

components—that

are

used

to

implement

the

exchange

of

business

data

in

an

IBM

WebSphere

InterChange

Server

environment.

These

components

include

collaborations,

40

Technical

Introduction

connectors,

business

objects,

maps,

relationships,

and

database

connection

pools.

From

System

Manager,

you

can

perform

component-related

configuration

tasks

such

as:

v

Configuring

collaboration

objects

from

collaboration

templates,

including

their

port

bindings

and

the

general

properties

with

which

they

run

in

InterChange

Server.

v

Accessing

the

tool

for

viewing

and

revising

the

repository

definitions

of

standard

and

specific

connector

properties,

and

specifying

the

business

objects

and

maps

that

the

connectors

use.

System

Manager

and

InterChange

Server

modes

When

you

are

developing

integration

components,

you

can

use

server

mode

selections

in

System

Manager

to

control

the

manner

and

extent

to

which

the

component

definitions

and

configurations

you

have

created

are

loaded

into

the

repository.

Server

mode

selections

are

available

for

the

design,

testing,

and

production

stages

of

development.

For

information

about

using

server

modes,

see

the

Implementation

Guide

for

WebSphere

InterChange

Server.

Development

tools

You

can

create

and

modify

collaborations,

connectors,

business

objects,

maps,

and

relationships.

Development

tools

are

used

for

creating

and

configuring

the

system

components

in

a

development

environment,

before

the

system

is

made

live

for

production.

These

tools

are

described

in

more

detail

in

the

Implementation

Guide

for

WebSphere

InterChange

Server,

and

in

the

development

guides

for

different

components.

Table

3

lists

and

describes

some

of

the

software

tools

available

in

a

development

environment.

Table

3.

Development

Tools

Audience

Tool

Description

Collaboration

developers

Process

Designer

A

graphical

tool

with

which

you

can

define

collaboration

templates.

For

more

information

about

Process

Designer

and

how

to

develop

collaborations,

see

the

Collaboration

Development

Guide.

Collaboration

and

map

developers

Test

Environment

and

Virtual

Test

Connector

Provides

an

environment

in

which

you

can

test

business

integration

interfaces

you

have

developed.

Provides

graphical

interfaces

to

emulate

connectors,

start

the

required

components,

and

examine

business

object

data.

For

more

information

about

Test

Environment

and

how

to

test

collaborations,

maps,

and

connectors,

see

the

Implementation

Guide

for

WebSphere

InterChange

Server.

Connector

developers

Connector

Configurator

Used

for

adding

application-specific

properties

to

a

connector

definition,

for

setting

property

values,

and

for

configuring

the

connector

definition

with

its

business

objects

and

maps.

For

more

information

about

Connector

Configurator

and

how

to

develop

connectors,

see

the

Connector

Development

Guide

for

Java

or

the

Connector

Development

Guide

for

C++.

Map

developers

Map

Designer

A

graphical

tool

that

specifies

data

transformations.

For

more

information

about

Map

Designer

and

how

to

develop

maps,

see

the

Map

Development

Guide.

Map

developers

Relationship

Designer

A

graphical

tool

that

defines

relationships

between

types

of

objects.

These

relationships

are

important

in

mapping,

for

example,

to

specify

the

relationship

between

one

type

of

business

object

and

another.

For

more

information

about

Relationship

Designer

and

how

to

develop

relationships,

see

the

Map

Development

Guide

Chapter

2.

Tools

for

use

with

InterChange

Server

41

Table

3.

Development

Tools

(continued)

Audience

Tool

Description

Business

Object

Developers

Business

Object

Designer

A

forms-based

interface

used

for

creating

business

object

definitions

both

manually

and

from

Object

Discovery

Agents

(ODAs).

For

more

information

about

Business

Object

Designer

and

how

to

design

business

object

definitions,

see

the

Business

Object

Development

Guide.

Business

Object

Developers

Object

Discovery

Agent

Development

Kit

(ODK)

An

API

that

facilitates

creation

of

Object

Discovery

Agents

(ODAs).

ODAs

identify

business

object

requirements

specific

to

a

data

source

and

to

generate

definitions

from

those

requirements.

For

more

information

about

Business

Object

Designer

and

how

to

develop

Object

Discovery

Agents

(ODAs),

see

the

Business

Object

Development

Guide

All

Developers

Benchmarking

wizard

The

benchmarking

tool

enables

you

to

test

various

IBM

WebSphere

components,

interfaces,

and

systems

to

measure

their

throughput.

The

benchmarking

tool

is

accessed

through

System

Manager.

For

more

information

about

the

Benchmarking

wizard,

see

the

Benchmarking

Guide.

Administrative

tools

System

Manager

provides

access

to

some

administrative

tools,

including

access

to

System

Monitor

for

managing

the

states

of

integration

components.

For

more

information

about

administrative

tools

and

tasks,

see

the

System

Administration

Guide.

42

Technical

Introduction

Chapter

3.

Collaborations

In

an

InterChange

Server

implementation,

the

term

collaborations

refers

to

software

modules

that

contain

code

and

business

process

logic

that

drives

interactions

between

applications.

A

collaboration

can

be

simple,

consisting

of

just

a

few

steps,

or

complex,

involving

several

steps

and

other

collaborations.

Collaborations

can

be

distributed

across

any

number

of

applications,

can

handle

synchronous

and

asynchronous

service

calls,

and

can

support

long-lived

business

processes.

This

chapter

describes

collaborations,

what

they

consist

of,

and

how

you

interact

with

them.

This

chapter

is

an

overview

of

collaborations

and

the

components

you

use

for

viewing,

modifying,

and

creating

collaborations.

It

contains

the

following

sections:

v

“Collaboration

templates

and

objects”

v

“Collaboration

processing”

on

page

44

v

“Collaborations

and

concurrent

processing”

on

page

45

v

“Collaboration

groups”

on

page

45

v

“Ports”

on

page

46

v

“Scenarios”

on

page

48

v

“Business

process

logic”

on

page

49

v

“Interactions

with

connectors

and

applications”

on

page

51

v

“Collaboration

startup”

on

page

52

v

“Summary”

on

page

52

For

detailed

instructions

about

using

the

IBM

WebSphere

InterChange

Server

collaboration

tool

to

create

collaboration

templates,

refer

to

the

Collaboration

Development

Guide.

Collaboration

templates

and

objects

When

you

install

a

collaboration,

you

install

a

collaboration

template.

A

collaboration

template

contains

all

of

the

collaboration’s

execution

logic,

but

it

is

not

executable.

To

execute

a

collaboration,

you

must

first

create

a

collaboration

object

from

the

template.

The

collaboration

object

becomes

executable

after

you

configure

it

by

binding

it

to

connectors

or

to

other

collaboration

objects,

and

by

specifying

other

configuration

properties.

Note:

The

toolset

available

with

InterChange

Server

includes

a

collaboration

design

tool

called

Process

Designer,

with

which

you

can

customize

and

create

collaboration

templates.

You

can

use

the

same

collaboration

template

to

create

multiple

collaboration

objects.

For

example,

suppose

that

you

are

using

a

Contact

Manager

collaboration

to

integrate

front

office

and

back

office

applications.

If

one

department

of

the

company

uses

Clarify

and

another

department

uses

Siebel

front-office

applications,

and

both

use

SAP

back-office

applications,

you

can

create

two

collaboration

objects

from

the

ContactManager

collaboration

template.

©

Copyright

IBM

Corp.

1997,

2004

43

You

then

can

configure

each

collaboration

object

so

that

both

are

bound

to

different

connectors

for

their

source

application

but

they

are

each

bound

to

the

same

connector

for

their

destination

application.

Note:

This

manual

uses

the

term

“collaboration”

when

describing

behavior,

design,

and

features.

It

uses

“collaboration

template”

and

“collaboration

object”

only

when

the

distinction

is

important,

usually

in

reference

to

the

configuration

process

or

the

repository.

Collaboration

processing

A

collaboration

begins

a

processing

flow

when

it

is

triggered

to

do

so

by

the

arrival

of

a

business

object.

The

trigger

can

be

any

of

the

following:

v

A

business

object

from

an

event

published

by

a

connector

in

a

publish-and-subscribe

interaction

(described

in

Chapter

1)

v

An

access

request

received

through

the

Server

Access

Interface

(described

in

Chapter

1)

v

A

service

call

from

a

connector,

described

later

in

this

chapter

Service

call

handling

and

long-lived

business

processes

Collaborations

have

the

capability

to

interact

with

connectors

in

a

manner

that

persists

the

context

of

a

service

call

data

flow

for

a

specified

period

of

time,

without

requiring

the

originating

service

call

process

to

wait

synchronously.

If

an

appropriate

response

to

the

service

call

is

received

with

the

specified

time

period,

Siebel-to-SAP
ContactManager

Collaboration Object

Clarify-to-SAP
ContactManager

Collaboration Object

ContactManager
Collaboration Template

Create collaboration object

Figure

17.

Creating

collaboration

objects

from

a

template

SAP
Connector

Siebel-to-SAP
ContactManager

Collaboration Object

Siebel
Connector

Clarify
Connector

Destination Destination

Source Source

Clarify-to-SAP
ContactManager

Collaboration Object

Figure

18.

Configuring

collaboration

objects

44

Technical

Introduction

the

data

flow

is

resumed

and

processing

continues.

This

feature

is

referred

to

as

long-lived

business

processes

for

collaborations,

and

can

be

enabled

during

the

creation

of

the

collaboration

template.

Collaborations

in

an

InterChange

Server

implementation

can

support

the

following

types

of

service

calls:

v

Synchronous

outbound

from

the

collaboration

v

Asynchronous

outbound

from

the

collaboration

v

Asynchronous

inbound

to

the

collaboration

Synchronous

outbound

service

call

The

synchronous

outbound

service

call

uses

a

synchronous

request/response

mechanism.

The

service

call

sends

the

request

but

does

not

complete

until

the

response

arrives

and

is

processed.

Synchronous

service

calls

support

compensation.

In

addition,

they

support

a

time-out

value

for

long-lived

business

processes.

Asynchronous

outbound

service

call

An

asynchronous

outbound

service

call

sends

a

request

from

the

collaboration

but

does

not

expect

or

wait

for

a

response

before

continuing

its

processing.

Asynchronous

outbound

service

calls

support

compensation,

but

do

not

support

a

time-out

value

for

long-lived

business

processes.

Asynchronous

inbound

service

call

An

asynchronous

inbound

service

call

waits

to

receive

an

incoming

event

and

is

used

in

conjunction

with

long-lived

business

processes.

When

an

asynchronous

inbound

service

call

is

created,

it

is

given

a

time-out

value;

if

the

service

call

does

not

receive

an

incoming

event

before

the

timeout

expires,

an

exception

is

raised.

Asynchronous

inbound

service

calls

are

available

only

if

the

Long

Lived

Business

Process

Support

option

of

the

collaboration

template

has

been

enabled.

The

feature

is

used

only

for

exchanges

with

connectors

Asynchronous

inbound

service

calls

do

not

support

compensation.

Collaborations

and

concurrent

processing

A

collaboration

begins

a

processing

flow

when

it

is

triggered

to

do

so

by

the

arrival

of

a

business

object.

By

default,

the

collaboration

completes

the

processing

of

one

flow

before

it

processes

the

flow

for

the

next

triggering

business

object.

However,

you

can

configure

a

collaboration

to

process

multiple

concurrent

event-triggered

flows.

If

a

collaboration

is

configured

in

this

way,

it

will

identify

any

flows

that

have

business

object

dependencies

and

process

them

in

order,

but

it

will

allow

flows

that

do

not

have

conflicts

to

process

concurrently.

Collaboration

groups

A

collaboration

object

can

be

bound

to

another

collaboration

object

to

form

a

collaboration

group.

A

collaboration

group

harnesses

the

power

of

multiple

discrete

collaborations

to

integrate

related

business

processes.

Chapter

3.

Collaborations

45

The

relationships

between

collaborations

in

a

collaboration

group

are

restricted

only

by

the

fact

that

one

collaboration

supplies

business

objects

to

the

other.

Collaboration

groups

can

be

connected

in

any

number

of

topologies,

such

as

chains

or

even

webs.

Collaboration

groups

are

also

useful

for

providing

data

isolation.

For

details,

see

the

Collaboration

Development

Guide.

Ports

A

collaboration

has

a

set

of

interfaces

to

the

outside

world

called

ports.

In

a

collaboration

template,

each

port

is

a

variable

that

represents

a

business

object

that

the

collaboration

object

receives

or

produces

at

runtime.

For

example,

consider

a

hypothetical

Service

Billing

collaboration

that

is

triggered

by

the

closing

of

a

case

in

a

customer

service

management

application.

The

collaboration

retrieves

the

customer’s

contract

as

a

business

object

from

a

customer

records

application,

then

uses

the

information

in

the

contract

to

send

an

invoice

business

object

to

an

accounting

application.

Such

a

collaboration

might

use

three

ports,

one

for

each

of

the

connectors

with

which

it

interacts.

Each

port

is

associated

with

a

particular

type

of

business

object,

as

shown

in

Figure

2-3:

At

configuration

time,

an

administrator

creates

a

collaboration

object

that

contains

the

template’s

ports.

The

administrator

binds

the

ports

for

that

specific

collaboration

object,

associating

each

port

with

a

connector,

or

with

another

collaboration

object.

For

some

collaborations

(those

whose

templates

accept

the

Retrieve

verb),

a

port

can

be

configured

instead

as

External,

so

that

it

can

receive

a

triggering

business

object

from

an

access

request—an

external

call

on

the

Server

Access

Interface.

The

ports

enable

communication

between

bound

entities,

so

that

the

collaboration

object

can

accept

the

business

object

that

triggers

its

business

processes,

and

then

send

and

receive

business

objects

as

requests

and

responses.

Figure

20

illustrates

a

fictional

collaboration,

with

its

triggering

port

bound

to

accept

the

Case

business

object

as

a

call

from

external

processes,

and

its

other

ports

bound

to

connectors

that

use

Contract

and

Invoice

business

objects.

Invoice

Contact

Case

Service Billing
Collaboration

Ports

Figure

19.

Ports

in

the

Service

Billing

collaboration

46

Technical

Introduction

To

make

an

analogy,

a

computer

has

various

hardware

interfaces.

To

hook

up

a

computer

with

peripherals

such

as

speakers

or

a

monitor,

you

attach

cables

and

wires

whose

shapes

are

complementary

to

the

shapes

of

the

computer’s

interfaces.

The

“shape”

of

a

collaboration

port

is

the

type

of

business

object

that

can

pass

through

it.

An

administrator

can

bind

a

port

only

to

a

connector

that

supports

specific

types

of

business

objects,

just

as

you

can

plug

a

computer

cable

only

into

the

interface

that

matches

its

shape.

A

collaboration

can

be

bound

to

another

collaboration

if

each

has

a

port

that

supports

the

same

type

of

business

object.

Figure

21

illustrates

two

collaboration

objects

bound

at

ports

that

support

the

Item

business

object.

Port

names

often

indicate

the

role

of

the

port’s

supported

business

object

in

the

collaboration.

For

example,

if

a

collaboration

receives

customer

information

and

generates

contract

information,

its

ports

might

be

called

InCustomer

and

OutContract.

Dynamic

service

calls

Collaborations

implement

service

calls

with

explicit

binding,

which

means

that

the

collaboration

service

call

needs

be

configured

to

connect

to

a

known

destination,

such

as

a

connector

or

another

collaboration,

while

the

collaboration

is

being

developed

from

a

collaboration

template.

The

explicit

binding

is

static,

which

means

that

if

the

port

assignments

are

changed,

the

collaboration

objects

need

to

be

redeployed

into

InterChange

Server

before

they

can

be

used.

Collaborations

also

cannot

be

deployed

until

all

ports

are

bound.

Invoice

Contact

Case

Connector 1 Connector 2

Access
Service Billing

Collaboration
for

Bindings

Direct Call

Figure

20.

Ports

bound

to

connectors

Connector Connector

Order Item

Collaboration
Object A

Item Order

Collaboration
Object B

Figure

21.

Binding

two

collaboration

objects

Chapter

3.

Collaborations

47

|

|
|
|
|
|
|
|

InterChange

Server

includes

an

API

which

enables

dynamic

service

calls,

so

that

a

collaboration

can

make

a

service

call

to

a

destination

that

has

not

been

pre-defined

and

explicitly

bound

during

collaboration

development.

The

dynamic

service

call

API

captures

all

the

required

details

about

the

consumer

so

that

a

collaboration

can

interact

with

many

connectors,

and

the

number

and

type

of

connectors

can

change

dynamically.

When

creating

a

collaboration

to

receive

a

dynamic

service

call,

an

inbound

port

should

be

bound

as

an

external

port

during

port

binding

in

the

System

Manager

tool,

so

that

the

collaboration

can

receive

the

triggering

business

object

through

the

external

port.

The

API

can

pass

the

essential

information

about

the

client,

such

as

the

client’s

name

and

type.

The

API

can

also

use

the

source

adapter

information

to

determine

where

to

send

the

service

request.

The

dynamic

service

call

API

is

synchronous.

The

dynamic

service

call

API

enables

dynamic

service

binding

without

the

need

for

any

tools.

The

API

and

the

associated

set

of

parameters

can

be

used

within

collaboration

templates

with

minimal

changes

or

influences

to

existing

collaborations.

The

API

itself

does

not

handle

exceptions

or

define

failure

behavior,

so

these

issues

need

to

be

addressed

in

the

collaboration

template.

The

API

also

does

not

provide

quality

of

service,

such

as

transaction

support

compensation.

See

the

Collaboration

Development

Guide

for

API

information.

The

dynamic

service

call

has

limited

or

no

support

for

the

following:

v

Dynamic

service

calls

from

one

collaboration

to

another

do

not

form

a

collaboration

group,

since

there

is

no

explicit

port

binding

between

the

collaborations.

v

Dynamic

service

calls

do

not

support

compensation,

so

there

are

no

rollback

semantics

for

dynamic

service

calls.

v

An

LLBP

collaboration

can

only

make

a

dynamic

service

call

to

a

connector,

and

it

must

use

JMS

as

the

transport

type.

An

LLBP

collaboration

cannot

receive

a

dynamic

service

call,

because

an

LLBP

collaboration

cannot

bind

to

an

external

port.

Scenarios

Inside

a

collaboration,

one

or

more

scenarios

contain

the

“code”

that

implements

a

business

process.

Each

scenario

specifies

what

happens

in

response

to

the

arrival

of

particular

types

of

business

objects

that

represent

particular

types

of

events.

Scenarios

contain

all

of

the

processing

work

of

a

collaboration.

The

relationship

between

collaborations

and

scenarios

is

similar

to

the

relationship

between

traditional

programs

and

routines.

Routines

enable

a

programmer

to

break

up

the

logic

of

a

program

in

any

number

of

ways.

For

example,

a

program

can

contain

one

large

routine

that

handles

various

input

arguments

or

several

routines,

each

of

which

handles

a

different

input

argument.

Similarly,

a

collaboration

developer

can

use

one

scenario

or

multiple

scenarios

to

perform

the

work

of

a

collaboration.

A

collaboration

that

synchronizes

employees,

for

example,

could

be

designed

in

either

of

the

following

ways:

v

One

scenario

handles

Employee.Create,

Employee.Delete,

and

Employee.Update

event

notifications.

v

One

scenario

handles

Employee.Create,

one

handles

Employee.Delete,

and

one

handles

Employee.Update.

Figure

22

illustrates

these

two

approaches.

48

Technical

Introduction

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|
|

Although

scenarios

execute

independently

of

each

other,

you

do

not

independently

configure

and

manage

each.

You

configure

the

collaboration,

and

all

of

the

collaboration’s

scenarios

inherit

those

settings.

Business

process

logic

Scenarios

contain

the

collaboration’s

business

process

logic.

A

highly

simplified

example,

shown

in

Figure

23,

illustrates

the

logic

in

a

fictional

scenario.

The

collaboration

replicates

changes

to

the

employee

information

in

a

source

application

by

moving

them

to

a

destination

application.

This

scenario

specifically

handles

the

Create

verb.

Collaboration

One Big Scenario

If bus obj is Employee, Create, then
Action
Action
End
Else
I f bus obj is Employee, Delete, then
Action
Action
End
Else
If bus obj is Employee, Update, then...

Collaboration

Employee.Create
Scenario

Action
Action
Action
End

Employee.Delete
Scenario

Action
Action
Action
End

Employee.Update
Scenario

Action
Action
Action
End

Figure

22.

Scenarios

in

Collaborations

Chapter

3.

Collaborations

49

In

Figure

23,

the

scenario’s

trigger

is

the

Employee.Create

event

notification

business

object.

When

the

Employee.Create

business

object

arrives,

the

scenario

starts.

First,

the

scenario

checks

to

see

whether

the

employee

information

already

exists

in

the

destination

application.

If

the

employee

information

already

exists

in

the

destination

application,

the

scenario

stops.

If

the

employee

information

does

not

yet

exist,

the

scenario

passes

the

Employee.Create

request

business

object

to

the

connector

for

the

destination

application.

A

verification

step

ensures

that

the

operation

is

successful.

The

business

process

logic

in

an

actual

scenario

typically

consists

of

many

more

steps,

each

of

which

implements

an

action

by

the

collaboration.

These

are

some

examples

of

the

types

of

actions

that

a

collaboration

might

contain:

v

Get

the

type,

attribute

values,

or

verb

of

a

received

business

object

v

Create

a

new

business

object,

either

without

values

or

by

cloning

an

existing

business

object

v

Compare

an

attribute

value

with

a

constant

or

with

another

attribute

value

v

Compare

two

business

objects

to

see

whether

they

are

equal

v

Send

a

business

object

to

a

connector

or

another

collaboration

to

request

an

operation;

process

the

result

of

the

operation

Verify creation of the
employee entity in
the destination app

If employee entity
does not exist, pass
business object to
destination app

Start
Scenario

End
Scenario

Is there a corresponding
employee entity already
in the destination app?

If employee entity
exists, stop

Trigger:
Employee.Create

Figure

23.

High-level

view

of

a

scenario

50

Technical

Introduction

v

Get

the

value

of

one

of

the

collaboration’s

configurable

properties

v

Log

informational,

warning,

or

error

messages

Interactions

with

connectors

and

applications

Through

its

ports,

a

collaboration

interacts

with

connectors,

with

the

Access

Interface,

and

with

other

collaborations.

The

collaboration

receives

its

trigger,

sends

requests,

and

gets

responses

through

these

ports.

These

are

translated

to

and

from

application

operations.

Using

the

scenario

shown

in

Figure

23

as

a

simple

example,

Figure

24

shows

how

the

collaboration

drives

operations

throughout

the

in

a

publish-and-subscribe

interaction.

Figure

24

shows

only

a

single

execution

path,

the

path

that

is

taken

if

the

destination

application

does

not

yet

contain

information

about

the

employee.

The

shaded

arrow

paths

in

Figure

24

show

the

translations

that

Connector

B

makes

as

it

transfers

collaboration

requests

into

requests

to

the

application

API

and

transfers

application

responses

into

its

own

responses

to

the

collaboration.

In

this

figure,

the

representation

of

a

connector

includes

both

the

connector

agent

and

connector

controller

functions.

Verify that employee
creation succeeded

If no, pass employee
business object to
destination

Start
Scenario

End
Scenario

Does employee
info exist already
in the destination?

Triggering Event:
Employee.Create

Connector A Application A

Employee.Create

Employee.Retrieve

Employee.Create

Polling

Employee
Created

Retrieve
failed

Status of
create
operation

Status of
create
operation

Connector B

No such
employee

Create
employee
record

Get
employee
record

Application A

Figure

24.

Processing

at

runtime

Chapter

3.

Collaborations

51

Figure

24

illustrates

the

following

process:

1.

When

Application

A

creates

a

new

employee

record,

Connector

A

retrieves

it.

2.

Connector

A

creates

an

Employee.Create

business

object

and

sends

this

event

notification

to

the

collaboration,

where

its

arrival

triggers

the

start

of

this

scenario.

3.

The

scenario

checks

to

see

whether

the

employee

information

is

really

new

by

trying

to

retrieve

information

on

the

same

employee

from

the

destination

application.

To

do

so,

the

scenario

sends

a

Employee.Retrieve

request

to

Connector

B.

4.

Connector

B

tries

to

retrieve

the

employee

information,

but

learns

that

the

employee

does

not

exist

in

Application

B.

The

connector

returns

a

failure

status

to

the

collaboration.

5.

Now

the

scenario

proceeds

to

send

the

Employee.Create

request.

When

Connector

B

receives

the

Employee.Create

request,

it

uses

Application

B’s

API

to

create

the

new

employee.

6.

Connector

B

returns

a

success

status

to

indicate

that

the

operation

succeeded.

7.

The

scenario

receives

the

success

status

and

ends.

Collaboration

startup

At

design

time,

the

collaboration

developer

specifies

the

business

objects

whose

receipt

by

the

collaboration

triggers

the

execution

of

each

scenario.

When

you

configure

and

enable

a

collaboration,

the

collaboration

starts

up.

The

collaboration

subscribes

to

all

of

the

business

objects

that

trigger

its

scenarios,

and

then

it

waits.

When

a

connector

agent

sends

its

controller

one

of

the

subscribed-to

business

objects:

1.

The

connector

controller

passes

the

business

object

to

the

collaboration.

2.

The

collaboration

invokes

the

appropriate

scenario,

which

begins

executing.

Once

you

have

configured

and

enabled

a

collaboration,

you

do

not

need

to

enable

it

again

unless

you

explicitly

disable

it.

If

InterChange

Server

shuts

down

and

restarts,

it

also

restarts

all

previously

active

collaborations.

Summary

This

chapter

described

some

of

the

features

of

collaborations.

The

key

points

to

remember

are:

v

You

create

collaboration

objects

from

collaboration

templates

and

bind

them

to

connectors

and

to

other

collaboration

objects

to

make

them

executable.

v

Collaborations

represent

business

objects

indirectly,

through

ports.

You

configure

a

collaboration

object

by

binding

each

of

its

ports

to

a

business

object

definition

and

to

either

a

connector,

or

another

collaboration

object,

or

to

external

calls.

v

Scenarios

implement

the

business

process

logic

of

collaborations.

Scenarios

are

event

handlers

that

execute

upon

the

arrival

of

business

objects.

As

scenarios

execute,

they

both

send

business

objects

to

connectors

and

receive

business

objects

from

connectors.

v

To

enable

a

collaboration

to

execute,

you

configure

and

start

it.

The

collaboration

subscribes

to

the

types

of

business

objects

that

can

trigger

its

scenarios.

When

one

of

them

arrives,

the

collaboration

executes

the

appropriate

scenario.

The

next

chapter

takes

a

closer

look

at

business

objects.

52

Technical

Introduction

Chapter

4.

Business

objects

Business

objects

carry

the

meaning

of

business

processes

from

one

application

to

another,

traversing

collaborations

and

connectors

with

both

data

and

action

requests.

This

chapter

looks

at

the

structure

and

components

of

business

objects.

It

contains

the

following

sections:

v

“Business

object

definitions

and

business

objects”

v

“Components

of

a

business

object

definition”

on

page

54

v

“A

closer

look

at

application-specific

business

objects”

on

page

56

v

“Modification

options”

on

page

58

v

“Summary”

on

page

58

Business

object

definitions

and

business

objects

Chapter

1,

“Overview

of

IBM

WebSphere

InterChange

Server,”

on

page

1,

introduced

business

objects

without

distinguishing

between

business

object

definitions

and

instances

of

the

business

objects

themselves.

Let’s

look

at

that

distinction

now:

v

A

business

object

definition

specifies

the

types

and

order

of

information

in

each

entity

that

IBM

WebSphere

InterChange

Server

handles,

and

the

verbs

that

it

supports.

The

InterChange

Server

repository

stores

business

object

definitions.

v

A

business

object

is

an

instance

of

the

definition,

containing

actual

data.

Business

objects

are

created

at

runtime

and

not

stored

in

the

repository.

Figure

25

illustrates

the

relationship

between

business

object

definition

and

business

object.

©

Copyright

IBM

Corp.

1997,

2004

53

Both

connector

agents

and

collaboration

scenarios

use

business

object

definitions

to

create

business

objects.

Components

of

a

business

object

definition

Chapter

1,

“Overview

of

IBM

WebSphere

InterChange

Server,”

on

page

1,

described

the

components

of

a

business

object

in

somewhat

simplified

terms

as

a

type,

attribute

values,

and

verbs.

This

section

goes

into

more

detail

about

the

major

components

of

a

business

object

definition.

Overall,

a

business

object

definition

is

identified

by

its

name.

The

name

indicates

the

business

object

definition

type,

such

as

Customer,

VantiveCase,

or

Invoice.

An

application-specific

business

object

can

also

have

application-specific

information

that

helps

the

connector

agent

process

it.

All

business

objects

also

contain

attributes

and

verbs,

as

the

next

sections

describe.

Attributes

Attributes

in

a

business

object

definition

describe

the

values

connected

with

the

entity,

such

as

Last

Name,

Employee

ID,

Case

Number,

Amount,

or

Date

Initiated.

At

runtime,

attributes

are

filled

in

with

actual

data.

For

example,

an

Employee

business

object

definition

might

contain

attributes

for

the

employee’s

name,

address,

employee

ID,

and

other

relevant

information.

The

attributes

of

a

business

object

are

analogous

to

the

fields

of

a

form

or

columns

in

a

database

table.

Supported
verbs Attributes

Business object definition

Contact

Create
Retrieve
Update
Delete

Attribute name Type

Entity Name
Entity ID
Reference ID
Reference Name
Cust_Phone_Cntry
Cust_Phone_No
Cust_Fax_Cntry
Cust_Fax_No
Type
Status
IndustryString
Primary_Addr?
Address_Line1
Address_Line2
Address_Line3
City
State
Region
Postal_Code1
Postal_Code2
Country

Verb: Create

Business object

Type Contact

Attribute value

Jane's Car Wash
50059
Null
Null
01
415-333-4444
01
415-666-7777
Regular
Active
Retail Sanitation
Yes
200 Airport Blvd
Null
Null
Burlingame
CA
WE
94010
3111
USA

String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String

Figure

25.

Business

object

definition

and

business

object

54

Technical

Introduction

An

attribute

can

also

refer

to

a

child

business

object

or

to

an

array

of

child

business

objects,

such

as

an

array

of

line

items

in

a

contract

or

part

references

in

an

invoice.

ObjectEventId

attribute

The

ObjectEventId

attribute

is

a

required

attribute

and

is

the

last

attribute

in

every

business

object.

When

a

connector

publishes

an

event,

it

uses

the

ObjectEventId

attribute

of

the

business

object

definition

to

store

a

unique

value

that

identifies

the

specific

business

object

instance

that

is

being

created.

The

value

of

the

ObjectEventId

attribute

is

generated

and

handled

by

the

system,

which

uses

it

to

identify

and

track

the

flow

of

the

specific

event

through

the

system.

The

developer

should

not

map

the

ObjectEventId

attribute

or

populate

it

through

the

use

of

a

connector

agent

or

data

handler.

Simple

and

compound

attribute

types

If

an

attribute’s

type

is

a

basic

data

type,

such

as

String,

Boolean,

Double,

Float,

or

Integer,

the

attribute

value

is

a

discrete

piece

of

data,

such

as

the

value

of

a

field

in

a

database.

Such

an

attribute

is

often

called

a

simple

attribute.

Examples

include

LastName,

CustomerID,

PartNumber,

AssignedTo,

and

Price.

If

an

attribute’s

type

is

the

name

of

another

business

object

definition

(a

compound

type),

the

attribute

value

is

a

child

business

object

or

an

array

of

child

business

objects.

Such

an

attribute

is

called

a

compound

attribute.

Examples

include

Customer,

Contract,

and

Oracle_Contact.

Attribute

properties

A

number

of

properties

define

the

value

that

the

attribute

represents.

Without

showing

all

possible

properties,

Figure

26

illustrates

the

place

of

attribute

properties

in

a

business

object

definition.

The

set

of

properties

for

a

particular

attribute

depends

on

whether

the

attribute

type

is

basic

or

compound;

that

is,

an

attribute’s

properties

differ

depending

on

whether

the

attribute

refers

to

a

single

unit

of

data

or

to

a

child

business

object.

Header

Attribute

Attribute

Attribute

Supported verbs

Business object definition Name

Type

Key value?

Maximum length

Application-specific
information

Default value

Required?

Figure

26.

Attribute

properties

Chapter

4.

Business

objects

55

Verbs

Verbs

indicate

actions

on

the

data

in

the

business

object.

A

business

object

definition

contains

a

list

of

verbs;

a

business

object

contains

only

one

verb.

The

most

common

verbs

associated

with

business

object

definitions

are

Create,

Retrieve,

Update,

and

Delete.

The

meaning

of

a

verb

differs

according

to

the

role

of

the

business

object.

The

verb

can

describe

an

application

event,

make

a

call,

make

a

request,

or

identify

the

result

of

a

previous

request.

Note:

Some

applications

do

not

support

requests

for

hard

deletes.

For

such

applications,

the

IBM

WebSphere

InterChange

Server

system

performs

the

equivalent

logical

deletion,

which

is

usually

an

update

to

inactive

status.

Furthermore,

even

if

an

application

supports

hard

deletes,

you

can

configure

the

IBM

WebSphere

InterChange

Server

system

so

that

it

converts

Delete

verbs

to

Update

verbs

when

sending

requests

to

that

application.

A

closer

look

at

application-specific

business

objects

An

application-specific

business

object

contains

the

data

that

a

connector

agent

moves

into

and

out

of

a

particular

application.

Therefore,

each

application-specific

business

object

definition

reflects

the

application’s

data

model

and

the

connector

agent’s

access

method.

Even

when

two

application-specific

business

objects

refer

to

similar

application

entities,

differences

appear

in

the

way

that

attributes

are

organized

and

in

the

application-specific

information

for

them.

Attribute

organization

Applications

often

organize

the

same

information

in

different

ways.

For

example,

Application

A

stores

a

telephone

number

and

fax

number

for

a

contact

in

four

fields,

but

Application

B

stores

the

same

numbers

in

two

fields.

The

business

object

definitions

for

the

Application

A

business

object

and

the

Application

B

business

object

have

different

attributes

to

reflect

this

difference.

Application-specific

information

Application-specific

business

objects

also

differ

because

each

can

optionally

contain

built-in

processing

instructions

for

its

connector

agent,

called

application-specific

information.

Application-specific

information

can

consist

of

any

information

that

the

connector

agent

needs

to

process

the

business

object.

Main phone country code

Main phone number

Main fax country code

Main fax number

Application A

Telephone number

Fax number

Application B

Figure

27.

Telephone

data

in

two

applications

56

Technical

Introduction

A

business

object

definition

can

have

application-specific

information

that

applies

to

the

entire

business

object,

to

each

attribute,

and

to

each

verb.

At

each

place

where

application-specific

information

appears

in

a

business

object

definition,

it

provides

information

that

the

connector

uses

in

its

interactions

with

the

application.

Application-specific

information

for

a

business

object

Application-specific

information

for

the

business

object

provides

information

that

the

connector

agent

uses

when

processing

the

business

object

as

a

whole.

Application-specific

information

for

an

attribute

Often,

application-specific

information

that

applies

to

an

attribute

identifies

the

attribute

value’s

location

in

the

application.

The

connector

agent

uses

this

identifier

when

building

API

calls

to

the

application

to

retrieve

or

enter

the

attribute

value.

Application-specific

information

takes

different

forms

for

different

applications.

Sometimes

the

connector

agent

can

reference

the

attribute

location

by

means

of

the

application’s

form

and

field

names;

other

times

the

reference

is

more

complex.

Table

4

illustrates

two

examples

of

application-specific

information

for

a

Customer

business

object.

Table

4.

Application-specific

information

for

sample

attributes

Attribute

Application-specific

information

for

sample

Application

1

Application-specific

information

for

sample

Application

2

Customer

ID

CUST:CID

cust:site_id::3::

Customer

name

CUST:CNAM

cust:name::3::

Status

CUST:CSTAT

cust:status::1:0:Status

Industry

CUST:CIND

cust:industry_type::3::Industry

The

values

have

the

following

meanings:

v

The

Sample

Application

1

value

specifies

a

field

in

the

CUST

table.

v

The

Sample

Application

2

value

specifies

a

table,

field,

and

relation

in

the

application

database,

using

the

following

format:

table:field:relation:type:default-value

where

type

is

1

(int),

2

(float),

or

3

(string)

In

exceptional

cases,

application-specific

information

for

attributes

is

unnecessary.

For

example,

some

applications

provide

very

direct

and

easy

to

use

designations

for

units

of

data.

Imagine

that

an

application

identifies

sample

fields

as

Table

5

illustrates.

Table

5.

Sample

application

identifiers

Attribute

Application’s

identifier

for

the

field

containing

the

value

Customer

ID

XCustomerID

Customer

name

XCustomerName

Status

XStatus

Industry

XIndustry

In

the

example

that

Table

5

illustrates,

it

is

easy

for

the

connector

agent

to

associate

an

attribute

with

its

identifier

in

the

application

because

the

rules

for

conversion

Chapter

4.

Business

objects

57

are

so

regular:

add

the

X

or

subtract

the

X.

Therefore,

the

attributes

in

business

objects

for

this

application

may

not

need

application-specific

information.

Application-specific

information

for

verbs

A

business

object

definition

can

include

application-specific

information

for

each

verb

that

it

supports.

The

application-specific

information

instructs

the

connector

agent

how

to

process

the

business

object

when

that

verb

is

active.

Modification

options

You

can

modify

either

generic

or

application-specific

business

object

definitions,

and

might

need

to

modify

both.

For

example,

to

change

a

collaboration

so

that

it

processes

some

additional

application

data,

you

must

modify

both

types

of

business

object

definitions,

adding

attributes

so

that

each

business

object

carries

that

data.

If

you

modify

a

business

object

definition,

you

must

also

modify

mapping

components.

Summary

This

chapter

described

the

definition

and

use

of

business

objects

in

the

IBM

WebSphere

InterChange

Server

system.

The

key

points

to

remember

are:

v

Business

object

definitions

are

specifications

that

define

the

types

and

order

of

application

data

and

the

set

of

verbs

that

can

trigger

operations

on

the

data.

A

business

object

is

an

instance

of

a

definition,

containing

actual

data

and

a

verb.

v

Application-specific

business

objects

for

the

same

types

of

entities

differ

because

application

models

differ.

The

differences

are

apparent

mostly

in

the

order

and

number

of

attributes

and

the

application

specific

information.

v

Business

object

definitions

contain

verbs

and

attributes.

Attributes

with

basic

data

types

refer

to

data;

attributes

with

compound

data

types

refer

to

child

business

objects.

v

Inside

a

business

object

definition,

application-specific

information

contains

relevant

application

data.

A

connector

agent

uses

application-specific

information

to

drive

its

interactions

with

the

application.

v

You

can

modify

both

application-specific

and

generic

business

objects

if

you

need

to

modify

the

data

flow

at

a

site.

58

Technical

Introduction

Chapter

5.

Connectors

A

connector

mediates

between

an

application

(or

other

programmatic

entity,

such

as

a

Web

server)

and

one

or

more

collaborations.

A

connector

can

be

specific

to

an

application—such

as

SAP

R/3,

version

4—or

to

a

technology,

such

as

a

data

format

or

protocol

(XML

or

EDI).

A

connector’s

communications

with

collaborations

can

take

two

forms:

v

Application

event

notifications,

which

connectors

for

specific

applications

pass

to

collaborations,

and

v

Request

processing,

which

connectors

perform

on

behalf

of

collaborations.

Connectors

can

be

configured

for

applications

that

reside

on

the

local

network,

and

for

remote

applications

that

reside

across

an

Internet

firewall.

Most

connectors

share

certain

common

behaviors,

differing

only

in

the

manner

in

which

they

interact

with

applications

and

with

application-specific

business

objects.

This

chapter

is

an

introduction

to

both

the

common

behavior

of

connectors

and

to

the

areas

in

which

they

differ.

It

contains

the

following

sections:

v

“Connector

startup”

v

“Event

notification”

on

page

61

v

“Request

processing”

on

page

66

v

“Concurrent

processing

capabilities”

on

page

68

v

“Business

object

construction

and

deconstruction”

on

page

69

v

“Connector

configuration”

on

page

71

v

“Connector

development”

on

page

72

v

“Summary”

on

page

73

Connectors

for

many

applications

and

technologies

are

available

as

part

of

the

WebSphere

Business

Integration

Adapters

product.

A

WebSphere

Business

Integration

Adapter

includes

both

a

connector

and

its

message

files

and

configuration

tool,

and

it

may

also

include

mechanisms

for

creating

and

handling

business

objects

specific

to

that

connector.

If

you

need

to

create

a

custom

connector

or

to

modify

an

existing

connector,

however,

you

will

need

detailed

knowledge

of

connector

behavior.

For

more

information

on

how

to

create

a

custom

connector,

see

the

Connector

Development

Guide

for

Java

or

the

Connector

Development

Guide

for

C++.

Connector

startup

In

an

InterChange

Server

system,

a

connector

has

the

following

components,

each

of

which

must

be

started

for

the

connector

to

run:

v

A

connector

controller

starts

up

with

the

InterChange

Server;

if

the

connector

has

been

configured,

the

InterChange

Server

automatically

creates

a

controller

for

it.

v

A

connector

agent

must

be

explicitly

started,

using

a

command

line

or

shortcut.

However,

you

can

optionally

configure

a

connector

agent

to

restart

automatically

after

an

abnormal

shutdown

or

failure.

A

connector

agent

communicates

with

a

particular

InterChange

Server

at

startup

and

throughout

the

time

that

the

connector

agent

executes.

When

you

start

a

connector

agent,

you

supply

the

name

of

an

InterChange

Server.

The

first

thing

©

Copyright

IBM

Corp.

1997,

2004

59

that

the

connector

agent

does

is

contact

InterChange

Server,

to

requests

its

own

configuration

settings

and

the

business

object

definitions

that

it

is

configured

to

support.

An

InterChange

Server

need

not

be

running

when

you

start

a

connector

agent.

However,

the

connector

agent

cannot

perform

any

useful

work

until

it

obtains

the

information

it

needs

to

initialize.

If

you

start

a

connector

agent

when

its

InterChange

Server

is

not

running,

the

connector

agent

repeatedly

attempts

to

contact

the

server.

Before

a

connector

agent

can

connect

to

an

application,

it

must

receive

its

configuration

and

download

its

business

object

definitions

from

the

InterChange

Server

repository.

It

also

obtains

a

list

of

collaboration

event

subscriptions

that

it

must

support.

The

following

figure

illustrates

the

connector

agent’s

three-step

startup.

Application

Connector Agent

ORB

Connector
Controller

InterChange Server

Connector Configuration
Business Object Definitions

Subscriptions

1 3

2

The

connector

agent

performs

its

startup

tasks

in

this

sequence:

1.

Contacts

the

InterChange

Server

for

configuration

information

and

business

object

definitions.

2.

Connects

to

the

application.

3.

Contacts

the

connector

controller

for

a

list

of

subscriptions.

A

connector

downloads

its

business

object

definitions

and

certain

of

its

configuration

properties,

such

as

its

application

user

name

and

password,

only

at

startup

time.

The

values

of

some

other

properties,

such

as

the

property

that

controls

connector

tracing,

can

be

changed

dynamically.

Figure

28.

Connector

startup

60

Technical

Introduction

Event

notification

Many

(but

not

all)

connectors

engage

in

a

publish-and-subscribe

interaction

with

collaborations

and

use

event-notification

to

trigger

events

in

those

collaborations.

A

connector

whose

application

provides

triggering

events

for

InterChange

Server

collaborations

must

learn

about

those

events

and

send

the

associated

data

to

the

subscribing

collaboration.

The

following

figure

illustrates

a

connector’s

interactions

with

respect

to

event

notification.

Application

Connector Agent

Connector Controller

InterChange Server

Detecting and Retrieving Events

Sending Events

Delivering Events

Subscribing
Collaborations

Connector Controller-
to-Collaboration
Event Notification

Connector Agent-to-
Connector Controller
Event Notification

Application-to-
Connector Agent
Event Notification

The

ways

in

which

connector

agents

detect

and

retrieve

events

differ

from

one

connector

to

another.

However,

the

way

in

which

connector

agents

send

events

to

connector

controllers,

and

the

way

in

which

connector

controllers

deliver

those

events

to

collaborations,

is

standard

across

all

connectors.

The

following

subsections

describe

general

concepts

regarding

the

operation

of

most

connectors,

including:

v

How

connectors

use

application

event

notification

mechanisms,

and

v

How

connectors

detect

and

process

events.

This

discussion

is

not

intended

to

describe

the

specific

implementation

of

any

particular

connector.

Setting

up

the

application’s

event-notification

mechanism

To

a

connector,

an

application

event

is

any

operation

that

affects

the

data

of

an

application

entity

that

is

associated

with

a

business

object

definition.

There

are

other

types

of

events

in

applications;

for

example,

a

mouse

click

is

an

event

to

an

application’s

window

system

or

forms

interface.

The

connector,

however,

is

Figure

29.

Event

notification

in

a

connector

Chapter

5.

Connectors

61

interested

only

in

data-level

events

that

create,

update,

delete,

or

otherwise

affect

the

content

of

the

application’s

data

store.

Some

applications

explicitly

trap

and

report

events,

providing

user-friendly

event

management

and

configurable

event

text.

Other

applications,

without

a

concept

of

discrete,

reportable

events,

might

silently

update

their

databases

when

something

happens.

For

most

connectors,

an

implementor

needs

to

perform

some

application

configuration

to

set

up

an

event

notification

mechanism

for

the

connector’s

use.

An

event

notification

mechanism

is

an

ordered

list

of

operations

that

take

place

in

the

application.

It

might

have

the

physical

form

of

an

application

event

queue,

an

email

inbox,

or

a

database

table.

What

types

of

event

notification

mechanisms

do

connectors

use?

The

next

sections

illustrate

some

general

approaches.

When

applications

have

event

support

If

an

application

is

event-based,

it

probably

has

an

event

notification

interface

for

use

by

client

applications

such

as

connectors.

The

application

might

also

permit

implementors

to

configure

the

text

of

the

event

report.

For

such

applications,

setting

up

the

connector’s

event

notification

mechanism

is

a

normal

application

setup

task.

For

example,

imagine

that

an

application

lets

you

install

a

script

that

executes

when

a

particular

type

of

event

occurs

and

that

the

script

can

place

a

notification

in

an

event

inbox.

To

install

the

connector

for

that

application,

you

create

a

user

account

for

the

connector,

write

or

obtain

scripts

for

handling

the

events

you

want

to

track,

install

the

scripts,

specify

the

type

of

event

that

triggers

each

script,

and

create

the

inbox.

When

you

are

done,

the

connector

agent

periodically

retrieves

the

inbox

contents

to

check

for

new

events.

The

following

figure

illustrates

an

application

configuration

that

includes

an

event

inbox.

Application

Event-Triggered
Script

Event
Notification

Event
Box

Polling

Connector

Event
Notification
Mechanism

Another

application

might

have

an

internal

workflow

system

that

can

generate

email

messages

or

write

to

an

event

queue

when

a

particular

operation

occurs.

Figure

31

illustrates

an

application

that

has

a

business

object

repository

where

Figure

30.

Example

Using

an

event

inbox

for

event

notification

62

Technical

Introduction

business

objects

and

events

are

defined.

In

the

figure,

Customer

is

an

application

business

object

and

Create,

Delete,

and

Update

are

the

types

of

events

associated

with

it.

When

a

business

object

event

such

as

Customer.Update

takes

place,

the

event

is

sent

to

the

workflow

system,

which

places

an

entry

in

an

event

table

in

the

application

database.

When

applications

lack

event

support

The

preferred

method

for

a

connector

to

interact

with

application

events

is

through

the

application’s

API,

which

provides

a

framework

that

enforces

the

application’s

data

model

and

logic.

However,

some

application

APIs

do

not

provide

native

support

for

event

notification.

One

way

that

a

connector

can

receive

event

notifications

from

such

an

application

is

to

interact

with

the

application

database.

For

example,

an

implementor

can

set

up

a

trigger

on

an

Employee

table

that

detects

updates

to

the

rows.

When

an

update

occurs,

the

trigger

inserts

information

about

the

update

into

a

special

table.

Each

new

row

that

appears

in

this

table

of

events

represents

an

event

notification.

The

connector

can

use

SQL

queries

to

retrieve

new

events

from

the

table.

Customer.Update

Workflow

Application

Connector

Business Object Repository

Create Delete
Update

Business
Object

Events

Polling

Customer

Figure

31.

Example:

Using

application

workflow

for

event

notification

Chapter

5.

Connectors

63

Figure

32

illustrates

this

approach.

In

Figure

32,

the

application

database

has

a

trigger

on

the

creation

of

records

in

the

Employee

Table.

Each

time

the

application

inserts

a

new

record,

the

trigger

creates

a

row

in

the

event

table.

The

row

contains

the

key

values

of

the

new

employee

record

(last

name

and

employee

ID),

the

system

time,

and

the

event

type,

Create.

Detecting

an

event

A

connector

agent

learns

about

application

events

by

polling

for

new

events

in

the

event

notification

mechanism.

The

polling

method

is

completely

application-specific,

based

on

the

event

notification

mechanism

that

the

connector

uses.

Polling

is

configurable.

When

you

use

System

Manager

to

configure

a

connector,

you

can:

v

Adjust

the

frequency

with

which

the

connector

agent

polls

v

Specify

the

hours

during

which

the

connector

agent

polls

A

connector

agent

need

not

poll

an

application

if

collaborations

are

not

interested

in

the

application’s

events.

If

a

particular

application

participates

in

collaborations

but

is

not

the

source

of

events,

you

can

stop

the

connector

agent

from

polling

by

setting

its

polling

frequency

to

“no.”

Processing

an

event

After

detecting

an

event,

the

connector

agent:

v

Associates

the

application

event

with

a

business

object

definition

and

verb

that

represent

the

event

v

Checks

for

subscriptions

to

the

event

v

Retrieves

application

data

v

Sends

a

business

object

to

the

connector

controller,

if

necessary

v

Archives

the

event

(optional)

Employee Table

12345 Aleph Alek 3344 Oak Street
67890 Bays Betty 294 Pine Ave
83920 Camph Cal 97 A Street
39482 Deck Debbie 1264 Rhineland
33993 Ellis Edgar 3 Ash street

Event Table

Camph 83920 971022 14:20:33 Create
Ellis 33993 971022 22:00:00 Create

Trigger

For new row
insert into event table
last name, ID,
system time, "Create"

Application Database

Figure

32.

Example:

Using

the

database

for

event

notification

64

Technical

Introduction

Associating

an

application

event

with

a

business

object

definition

When

a

connector

agent

retrieves

an

event,

it

must

determine

whether

any

collaboration

has

subscribed

to

the

event.

However,

because

collaborations

subscribe

to

events

in

the

form

business-object-type.verb,

the

connector

must

first

determine

which

business

object

definition

and

verb

represent

the

event.

The

connector

agent

uses

the

event

text

to

associate

the

event

with

a

business

object

definition

and

verb,

as

Table

6

shows.

Table

6.

Event

Text

and

Business

Object

Formation

Type

of

data

in

the

application

event

Examples

Use

Application

entity

type

Customer,

Part,

Item

Determining

the

associated

business

object

definition

Operation

that

occurred

Create,

Update,

Delete

Determining

the

active

verb

of

the

business

object

For

example,

a

connector

can

associate

the

following

event

text

with

an

Employee.Create

business

object:

1997.10.19.12:50.22

employee

created

lname=”como”

id=”101961”

The

event

text

contains:

v

A

time

stamp

that

helps

to

uniquely

identify

the

event

v

The

application

entity

“employee”

v

The

operation

“created”

v

The

employee’s

last

name

and

ID,

key

values

with

which

the

connector

agent

can

retrieve

the

rest

of

the

employee

information

Although

this

example

is

simple,

other

types

of

event

text

might

require

more

processing

by

the

connector

agent.

Checking

for

subscriptions

After

the

connector

agent

associates

an

event

with

a

business

object

definition

and

verb,

it

checks

its

internal

list

of

subscriptions

to

find

out

whether

any

collaboration

is

interested

in

the

event.

The

list

of

subscriptions

is

always

current

because

the

connector

controller

updates

the

connector

agent

whenever

subscriptions

change.

If

the

event

does

not

match

any

current

subscription,

the

connector

agent

logs

a

warning

message

and

discards

the

event.

Building

a

business

object

If

there

is

a

subscription

for

an

event,

the

connector

agent

builds

a

business

object,

uses

the

key

values

to

retrieve

application

data,

and

fills

in

the

business

object.

“Business

object

construction

and

deconstruction”

on

page

69

describes

and

illustrates

the

process

of

building

a

business

object.

Sending

the

business

object

to

the

connector

controller

A

connector

agent

sends

a

business

object

to

the

connector

controller

by

means

of

the

transport

in

use

(messaging

or

CORBA).

The

connector

agent

knows

only

that

there

is

a

subscription

for

the

business

object

but

does

not

know

which

collaboration

or

collaborations

are

the

subscribers;

the

connector

controller

takes

care

of

delivery

to

the

collaborations.

Chapter

5.

Connectors

65

Archiving

events

Application

event

archives

are

useful

for

troubleshooting

and

record

keeping.

An

event

archive

contains

status

information

about

each

event,

such

as:

v

Successfully

sent

to

the

InterChange

Server

v

No

subscription

for

the

event

v

Processing

failed

If

an

application

provides

an

event

archiving

feature,

the

connector

generally

uses

it.

A

connector

for

an

application

that

does

not

support

event

archiving

might

have

its

own

event

archive.

For

example,

if

a

connector’s

event

notification

mechanism

is

like

the

database

mechanism

illustrated

in

Figure

32,

a

database

trigger

could

copy

deleted

events

to

an

archive

table.

Request

processing

Connectors

can

receive

requests

from

collaborations

and

make

requests

to

the

application

on

their

behalf.

For

example,

a

collaboration

might

send

a

connector

a

request

to

delete

a

contract,

update

a

part,

or

create

a

customer,

in

the

form

of

a

Contract.Delete,

Part.Update,

or

Customer.Create

business

object.

When

a

connector

controller

receives

a

collaboration’s

request,

it

forwards

the

request

to

the

connector

agent.

The

connector

agent

translates

the

business

object

into

an

application

request—typically

a

set

of

calls

to

the

API—and

then

returns

the

results.

Figure

33

illustrates

a

connector’s

interactions

with

respect

to

handling

collaboration

requests.

Note:

A

collaboration

sends

a

business

object

to

a

specific

connector

in

a

request/response

type

of

interaction,

unlike

the

publish/subscribe

interactions

that

characterize

event

notification.

Application or
Web Server

Connector Agent

Connector Controller

InterChange Server

Request Response

Request Response

Figure

33.

Connector

interactions

for

request

handling

66

Technical

Introduction

When

a

connector

agent

receives

a

request,

it

determines

how

to

process

the

request

based

on

three

types

of

information:

v

The

verb

of

the

business

object

v

Application-specific

information

for

the

verb

v

Metadata

that

is

contained

in

the

business

object

definition

itself

and

used

in

the

construction

and

deconstruction

of

the

business

object

These

factors

are

described

in

the

topics

that

follow.

Verb-based

processing

A

connector

agent

reacts

to

the

Create,

Retrieve,

Update,

or

Delete

verb

in

a

request

according

to

the

logic

and

API

of

its

application.

Two

connector

agents

might

handle

the

same

type

of

request

differently,

although

the

result

is

logically

the

same.

For

some

connectors,

only

one

method

is

required

for

performing

operations

on

a

business

object,

regardless

of

what

verb

the

request

contains.

But

for

many

connectors,

each

verb

requires

a

different

method.

When

a

connector

agent

receives

a

request,

it

invokes

the

method

in

the

application

that

matches

the

business

object’s

active

verb.

For

example,

when

a

connector

agent

receives

an

AppAEmployee.Update

business

object,

it

invokes

the

Update

method

on

the

AppAEmployee

object.

The

Update

method

interacts

with

the

application

in

order

to

perform

the

update.

Figure

34

illustrates

some

verb

handling

methods.

When

the

connector

in

Figure

34

receives

a

Customer.Create,

Item.Retrieve,

or

Contract.Delete

request,

it

invokes

its

DoCreate,

DoRetrieve,

or

DoDelete

method,

respectively.

Connector Agent

Connector Controller

InterChange Server

DoCreate() DoRetrieve() DoDelete()

Customer.Create Item.Retrieve Contract.Delete

Collaboration Collaboration Collaboration

Figure

34.

Processing

requests

Chapter

5.

Connectors

67

Verb-based

application-specific

information

In

a

business

object

definition,

application-specific

information

provides

additional

input

to

a

connector

agent

that

is

processing

an

instance

of

the

business

object.

Each

verb

can

have

application-specific

information.

The

format

and

content

of

the

application-specific

information

itself

is

completely

connector-specific.

For

example,

application-specific

information

for

the

Retrieve

verb

in

a

business

object

definition

might

supply

special

input

arguments

to

the

Retrieve

method

in

that

connector

agent.

As

an

example,

suppose

that

the

MyApp

application

has

three

forms

in

which

information

about

InventoryItem

appears:

v

InventoryItem-New

v

InventoryItem-Change

v

InventoryItem-Remove

When

the

MyApp

connector

agent

performs

an

operation

on

an

inventory

item,

it

must

reference

the

correct

form

for

that

operation.

The

application-specific

information

field

associated

with

each

verb

in

the

InventoryItem

business

object

definition

can

store

the

form

name.

The

combination

of

verb-specific

methods

and

application-specific

input

to

those

methods

gives

a

connector

agent

unique

instructions

for

processing.

Concurrent

processing

capabilities

The

multi-threaded

nature

of

the

Java-based

InterChange

Server

makes

concurrent

processing

possible

for

events

that

connector

controllers

deliver

to

collaborations.

Depending

upon

the

applications

and

connectors

being

implemented,

concurrent

processing

can

also

be

used

for

requests

received

by

connector

agents.

This

is

done

either

through

multiple

threads

or

through

the

use

of

parallel

processes.

This

capability

can

be

used

for

requests

originating

from

either

collaborations

or

access

clients.

The

manner

in

which

concurrent

processing

can

be

implemented

depends

upon

the

type

and

design

of

the

connector:

v

If

a

connector

agent

was

written

in

C++,

it

is

inherently

single-threaded.

However,

C++

connector

agents

can

be

made

to

run

concurrent

processes

through

the

use

of

Connector

Agent

Parallelism,

a

feature

that

runs

processes

concurrently

by

instantiating

multiple

slave

processes

out

of

a

single-threaded

master

process

in

the

connector

agent.

This

feature

can

be

activated

or

deactivated

through

the

use

of

configurable

settings

in

the

System

Manager.

v

If

a

connector

agent

was

written

in

Java,

it

is

inherently

capable

of

concurrent

processing

through

multi-threading,

without

use

of

the

Connector

Agent

Parallelism

feature.

v

Some

connector

agents

written

in

Java

might

have

been

designed

to

enforce

single-threaded

processing,

even

though

the

Java

Connector

Development

Kit

(JCDK)

itself

is

multi-threaded.

Typically

a

Java

connector

agent

might

be

designed

in

this

way

if

the

API

libraries

of

the

application

impose

restrictions

that

require

that

the

connector

agent

run

only

a

single

thread.

For

such

connectors,

the

Connector

Agent

Parallelism

feature

can

be

used

to

instantiate

multiple

slave

processes

out

of

the

single-threaded

master

process

of

the

connector

agent.

68

Technical

Introduction

Note

that

the

use

of

Connector

Agent

Parallelism

requires

that

the

application

itself

be

able

to

support

concurrent

processing.

Some

applications

may

have

architectures

or

processing

requirements

that

make

concurrent

processing

impractical.

Business

object

construction

and

deconstruction

A

connector

agent

accomplishes

its

event

notification

and

request-handling

tasks

by

constructing

and

deconstructing

business

objects:

v

When

a

connector

agent

retrieves

an

event

that

it

must

send

to

the

InterChange

Server,

it

constructs

a

business

object

that

represents

the

event.

v

When

a

connector

agent

receives

a

business

object

that

represents

a

request

from

a

collaboration,

it

deconstructs

the

business

object

to

create

an

application

request.

Business

object

metadata

and

connector

actions

A

connector’s

transformation

of

an

application

event

to

a

business

object

and

from

a

business

object

to

an

application

request

is

driven

by

data

definitions

(metadata)

that

are

defined

when

a

business

object

is

designed.

Connector

agents

and

business

object

metadata

are

designed

to

work

together.

The

design

of

a

connector

agent

and

its

business

objects

is

analogous

to

the

design

of

a

computer

device

in

which

certain

functionality

can

be

implemented

by

either

the

software

or

hardware.

The

developer

considers

performance,

extensibility,

and

other

issues

to

decide

where

to

implement

key

features.

Similarly,

the

division

of

work

between

the

connector

agent

and

its

business

objects

is

a

result

of

the

connector

developer’s

design

decisions.

IBM

WebSphere

InterChange

Server

design

principles

encourage

using

the

business

object

metadata

to

drive

connector

logic,

rather

than

hard-coding

logic

in

connector

agents.

In

addition

to

properties

that

specify

the

types,

sizes,

and

default

values

for

attributes,

business

object

definitions

use

application-specific

fields

to

pass

specific

instructions

to

the

connector

agent

on

how

to

process

the

business

object.

For

example,

recall

that

Chapter

4,

“Business

objects,”

on

page

53,

presents

some

examples

of

application-specific

information

for

the

attributes

of

a

business

object

that

represents

a

customer.

Table

7

shows

some

of

those

examples.

Table

7.

Sample

application-specific

information

Attribute

Application-specific

information

Customer

ID

CUST1:CID

Customer

name

CUST1:CNAM

Status

CUST1:CSTAT

When

processing

a

business

object,

the

connector

agent

reads

the

definition

and

uses

the

application-specific

information

to

build

an

application

request:

v

To

obtain

the

customer

ID,

the

connector

agent

obtains

the

value

of

Form

CUST1,

Field

CID.

v

To

obtain

the

customer

name,

the

connector

agent

obtains

the

value

of

Form

CUST1,

Field

CNAM.

v

To

obtain

the

customer

status,

the

connector

agent

obtains

the

value

of

Form

CUST1,

Field

CSTAT.

Chapter

5.

Connectors

69

Because

application-specific

information

and

other

metadata

in

the

business

object

definition

guides

the

actions

of

a

connector

agent,

a

connector

agent’s

behavior

can

be

described

as

metadata-driven.

Benefits

of

metadata-driven

connector

agents

A

metadata-driven

connector

agent

is

flexible,

because

it

does

not

have

hard-coded

instructions

on

how

to

handle

each

type

of

business

object

that

it

supports.

Without

recoding

or

recompiling,

the

connector

agent

automatically

supports

new

business

object

definitions,

as

long

as

they

match

the

connector’s

specifications.

A

metadata-driven

connector

agent

also

supports

new

or

changed

attributes

within

a

business

object

definition.

The

connector

agent

processes

the

attributes

automatically

as

it

loops

through

the

attributes

of

the

business

object

definition.

An

example

of

business

object

construction

The

following

process

describes

how

a

connector

agent

creates

a

business

object

from

its

definition:

1.

The

connector

agent

loops

through

the

business

object

definition

attribute

by

attribute,

using

application-specific

information

to

prepare

an

API

call

or

build

a

query

to

obtain

the

application

entity.

2.

The

connector

agent

sends

the

request

to

the

application

and

retrieves

the

results.

3.

The

connector

agent

loops

through

the

results,

using

the

value

of

AppSpecificInfo

to

determine

which

retrieved

value

represents

each

business

object

attribute.

Figure

35

is

an

example

of

a

connector

agent

that

is

building

a

business

object

from

the

definition.

The

connector

agent

has

retrieved

an

application

event

involving

an

item

whose

key

value,

the

item

number,

is

123.

The

connector

agent

must

build

an

Item

business

object

from

the

business

object

definition,

which

contains

four

attributes:

Group,

Description,

Price,

and

ItemNum.

70

Technical

Introduction

Using

the

item

number,

123,

to

identify

the

item,

the

connector

agent

retrieves

the

values

of

the

remaining

attributes.

Application-specific

information

provides

the

form

and

field

identifier

for

the

required

data.

For

example,

FormXFieldB

identifies

Group

data.

The

connector

agent

requests

the

value

of

Field

B

in

Form

X

for

item

ID

123.

The

connector

agent

then

uses

the

returned

value,

“hardware,”

to

fill

in

the

value

of

the

business

object’s

Group

attribute.

The

process

of

deconstruction

works

in

the

opposite

way.

The

connector

agent

uses

the

business

object

definition

to

determine

how

to

make

an

application

request

from

the

data

contained

in

the

business

object

that

it

received.

Connector

configuration

Before

a

connector

can

be

used,

you

must

provide

it

with

a

connector

definition,

which

contains

the

following

information:

v

Values

of

connector

configuration

properties

for

use

by

the

connector

agent

and

connector

controller

v

The

business

objects

that

the

connector

will

support

v

In

some

cases,

specific

maps

for

use

between

specified

business

objects

The

Connector

Configurator

tool

provides

tabs

to

allow

you

to

set

this

information.

Connector

properties

There

are

two

types

of

connector

properties:

v

Standard

properties

Attribute: ItemNum

Attribute: Price

Attribute: Description

ItemNum=123
Group= hardware
Description=
Price=

Business Object Item
Application Result

hardware
hammer
$12.98

ApplicationAPI

Connector Agent
Business Object Definition Item

Application Request

Where ItemNum=123
Get
 FormXFieldB
 FormXFieldC
 FormXFieldD

Attribute: Group

Type=String
Key=False
Required=True
AppSpecificInfo= FormXFieldB
MaxLength=128

Figure

35.

Building

a

business

object

in

a

connector

Chapter

5.

Connectors

71

Standard

properties

are

available

for

all

connectors.

Standard

properties

include

the

following:

–

An

indication

of

whether

the

connector

agent

logs

messages

locally

or

sends

them

to

the

InterChange

Server

for

inclusion

in

the

general

log

file

–

Location

of

the

log

file

for

connector

agents

that

log

locally

–

Application

login

and

password
v

Connector-specific

properties

Connector-specific

properties

are

typically

values

that

a

specific

connector

agent

needs

in

order

to

establish

a

session

with

the

application.

These

are

examples

of

connector-specific

properties

for

various

connectors:

–

Name

or

IP

address

of

the

machine

running

the

application

–

Identification

of

application

gateway

systems

–

Name

of

the

application

database

–

Name

of

the

event

inbox

Connector

properties

can

be

set

using

the

Connector

Configurator

tool.

With

certain

restrictions,

connector

properties

can

also

be

set

in

local

configuration

files

that

reside

on

the

machine

where

the

connector

agent

is

installed.

Some

connector

configuration

properties

can

also

be

set

at

the

command

line.

Associated

maps

The

connector

controller

uses

map

references

when

it

receives

a

business

object

that

requires

mapping.

If

data

transformations

are

required

between

a

particular

generic

and

application-specific

business

object,

you

must

specify

the

map

that

performs

this

transformation.

You

specify

the

associated

maps

in

Connector

Configurator.

Connector

development

When

you

develop

or

modify

a

connector,

you

create

the

connector

agent

itself

and

the

business

object

definitions

it

will

use,

and

then

you

create

a

connector

repository

definition.

Note

that

you

do

not

need

to

create

or

modify

a

connector

controller;

the

connector

controller

component

is

internal

to

InterChange

Server

and

is

instantiated

by

InterChange

Server

for

each

connector

that

you

define

in

the

repository.

Connector

development

involves

creating

the

relationship

between

the

connector

and

a

particular

application.

The

actual

coding

of

a

connector

is

usually

a

fairly

straightforward

process.

The

most

challenging

tasks

are:

v

Designing

the

application’s

event-notification

method

v

Defining

application-specific

business

object

definitions

and

mapping

them

to

generic

business

object

definitions

v

Defining

the

relationship

between

the

application-specific

business

objects

and

the

connector

For

detailed

information

on

connector

architecture,

modifications,

and

development,

refer

to

the

Connector

Development

Guide

for

Java

or

the

Connector

Development

Guide

for

C++.

72

Technical

Introduction

Summary

This

chapter

was

an

overview

of

connectors

and

how

they

work.

The

key

points

to

remember

are:

v

Connectors

have

two

main

roles.

These

are

notifying

collaborations

about

application

events

and

carrying

out

application

requests

on

behalf

of

collaborations.

v

In

its

event

notification

role,

a

connector

interacts

with

the

application

to

detect

changes

in

the

application

and

process

the

data

associated

with

those

changes.

v

In

its

role

as

the

implementor

of

collaboration

requests,

a

connector

uses

unique

functions

that

implement

each

business

object

verb

that

the

connector

supports.

v

When

a

connector

agent

constructs

a

business

object

from

an

application

event

or

deconstructs

a

business

object

to

create

an

application

request,

the

connector

agent

is

driven

by

the

application-specific

information

and

other

metadata

in

the

business

object

definition.

The

next

chapter

goes

into

more

detail

about

how

mapping

works.

Chapter

5.

Connectors

73

74

Technical

Introduction

Chapter

6.

Data

mapping

Data

mapping

is

the

process

by

which

the

IBM

WebSphere

InterChange

Server

system

passes

data

from

an

application-specific

business

object

to

a

generic

business

object

or

from

a

generic

object

to

an

application-specific

business

object.

Mapping

allows

the

IBM

WebSphere

InterChange

Server

system

to

handle

differences

in

the

data

modeling

of

different

applications.

Note:

When

a

collaboration

transfers

information

across

two

or

more

installations

of

the

same

application,

mapping

is

not

required

unless

different

customizations

have

been

done

at

each

installation.

Data

mapping

occurs

in

the

IBM

WebSphere

InterChange

Server

system

at

runtime,

using

maps

that

you

create

prior

to

runtime.

This

chapter

is

an

overview

of

the

mapping

process

and

the

components

you

use

for

viewing,

modifying,

and

creating

maps

and

relationships.

It

contains

the

following

sections:

v

“How

the

InterChange

Server

system

uses

mapping”

v

“Map

components

and

tools”

on

page

77

v

“Mapping

transformations”

on

page

78

v

“Configuring

connectors

with

maps”

on

page

79

v

“Summary”

on

page

79

For

detailed

instructions

about

using

the

IBM

WebSphere

InterChange

Server

mapping

tool

to

create

maps,

refer

to

the

Map

Development

Guide.

How

the

InterChange

Server

system

uses

mapping

Mapping

make

it

possible

for

collaborations

to

take

the

data

from

a

business

object

of

one

application

and

transform

it

to

generate

a

business

object

for

a

disparate

application.

In

the

mapping

process,

collaborations

interact

with

connectors,

with

the

Access

Interface,

or

with

both.

The

IBM

WebSphere

InterChange

Server

system

provides

comprehensive

support

for

data

mapping

between

business

objects,

including

the

following

capabilities:

v

Transforming

data

values

from

one

or

more

attributes

in

a

source

business

object

to

one

or

more

attributes

in

a

destination

business

object

v

Establishing

and

maintaining

relationships

between

data

entities

that

are

equivalent

but

are

represented

differently

and

cannot

be

directly

transformed

v

Enabling

access

to

external

mapping

resources,

such

as

databases

for

performing

queries

and

third-party

mapping

products

In

an

IBM

WebSphere

InterChange

Server

environment,

mapping

typically

takes

place

between

application-specific

business

objects

and

generic

business

objects.

The

IBM

WebSphere

InterChange

Server

system

does

not

map

application-specific

business

objects

directly

to

other

application-specific

business

objects.

Instead,

the

generic

object

acts

as

an

intermediary

between

two

application

data

models,

carrying

the

mapped

information

from

one

data

model

to

the

collaboration

(either

through

a

connector

or

through

the

Server

Access

Interface),

then

carrying

mapped

information

from

the

collaboration

to

a

connector

for

another

data

model.

©

Copyright

IBM

Corp.

1997,

2004

75

Figure

5-1

illustrates

the

way

that

data

mapping

occurs

at

runtime,

using

a

fictionalized

Employee

Management

collaboration

as

an

example:

The

Employee

Management

collaboration

receives

an

employee

business

object

from

the

source

connector,

then

sends

an

employee

business

object

to

the

destination

connector.

(In

this

example,

a

collaboration

receives

a

business

object

from

a

connector;

a

similar

mapping

process

takes

place

when

a

collaboration

receives

a

business

object

from

the

Access

Interface.)

Figure

5-1

illustrates

the

following

sequence:

1.

The

App

A

connector

agent

produces

an

App

A

Employee

business

object

and

sends

it

to

the

connector

controller.

2.

The

connector

controller

passes

the

App

A

Employee

business

object

to

the

InterChange

Server

for

mapping.

The

request

includes

the

name

of

the

data

map

that

the

Server

must

use,

based

on

the

map

name

specified

in

the

connector

configuration.

3.

The

map

returns

the

generic

Employee

business

object

to

the

connector

controller.

4.

The

connector

controller

checks

the

collaborations

that

have

subscriptions

to

the

generic

Employee

business

object.

In

this

case,

Collaboration1

has

a

subscription,

so

the

connector

controller

hands

the

business

object

to

Collaboration1.

5.

The

collaboration

performs

some

processing

and

then

produces

another

generic

Employee

business

object

as

output,

which

it

sends

to

the

connector

controller.

6.

The

connector

controller

passes

the

generic

business

object

to

the

InterChange

Server,

requesting

mapping

to

the

App

B

Employee

business

object.

7.

The

map

returns

the

application-specific

business

object

to

the

connector

controller.

App A
Connector Agent

App B
Connector Agent

App A
Connector Controller

App B
Connector Controller

InterChange Server

Collaboration
1

App A
Employee

Generic
Employee

Map

App B
Employee

App A
Employee

App B
Employee

Generic
Employee

Map

1

2 3 4 5 6 7

8

Figure

36.

Data

mapping

at

runtime

76

Technical

Introduction

8.

The

connector

controller

passes

the

App

B

business

object

to

the

App

B

connector

agent,

which

can

then

pass

the

data

in

the

business

object

into

Application

B.

The

example

above

used

two

maps—one

from

the

App

A

Employee

business

object

to

the

generic

Employee

business

object

used

by

the

collaboration,

and

one

from

the

generic

Employee

business

object

to

the

App

B

Employee

business

object.

The

Employee

data

moved

in

only

one

direction—from

App

A

toward

App

B.

If

you

wanted

to

exchange

the

Employee

data

in

both

directions

between

the

two

different

applications,

four

maps

would

be

required:

v

A

map

from

the

application-specific

business

object

of

Application

A

to

the

generic

business

object

used

by

the

collaboration.

v

A

map

from

the

generic

business

object

to

the

application-specific

business

object

of

Application

B.

v

A

map

from

the

application-specific

business

object

of

Application

B

to

the

generic

business

object.

v

A

map

from

the

generic

business

object

to

the

application-specific

business

object

of

Application

A.

Map

components

and

tools

The

IBM

WebSphere

InterChange

Server

system

contains

a

Java

mapping

API,

the

Mapping

API,

that

includes

methods

for

handling

common

data

transformation

situations.

Graphical

design

tools

are

provided

for

creating

the

two

principal

components

of

IBM

WebSphere

InterChange

Server

mapping—maps

and

relationship

definitions:

v

A

map

contains

the

Java

code

that

specifies

how

to

transform

attributes

from

one

or

more

source

business

objects

to

one

or

more

destination

business

objects.

You

need

a

map

for

every

business

object

that

you

intend

to

transfer

between

different

applications.

When

you

modify

business

objects,

you

might

also

need

to

modify

the

associated

maps.

You

typically

create

one

map

for

each

source

business

object

you

want

to

transform.

The

Map

Designer

tool

is

used

for

creating

and

compiling

maps.

v

A

relationship

definition

establishes

an

association

between

two

or

more

data

entities

in

the

IBM

WebSphere

InterChange

Server

system.

Relationship

definitions

within

maps

are

most

often

used

for

transforming

business

object

attributes

in

which

the

data

has

a

similar

purpose

but

is

represented

differently

in

each

application.

Most

maps

use

one,

or

a

few,

relationship

definitions.

The

Relationship

Designer

tool

is

used

for

creating

relationship

definitions

and

the

table

schemas

that

are

used

to

store

the

runtime

relationship

instance

data.

Both

map

and

relationship

definitions

reside

in

the

InterChange

Server’s

repository.

Like

business

object

definitions,

relationship

definitions

function

as

specifications

or

templates

for

the

instances

that

are

created.

Unlike

instances

of

business

objects,

relationship

instances

persist,

and

are

stored

in

special

tables

for

each

relationship.

Each

time

the

system

receives

a

request

to

transform

a

given

business

object,

it

executes

the

associated

map,

and,

depending

upon

the

purpose

of

the

transformation,

creates

one

or

more

instances

of

its

associated

relationship

definitions.

Relationship

instances

created

during

map

execution

contain

the

runtime

data

from

the

attributes

they

associate,

and

this

data

is

stored

in

the

relationship

tables.

Chapter

6.

Data

mapping

77

For

more

information

about

how

the

mapping

tools

work,

start

with

Chapter

1

of

the

Map

Development

Guide.

Mapping

transformations

A

map

associates

a

source

business

object

with

a

destination

business

object,

and

contains

a

series

of

transformation

steps—one

for

each

attribute

that

is

being

transformed.

Each

transformation

step

contains

Java

code

that

calculates

the

value

of

the

attribute.

Within

a

data

map,

the

conversion

of

source

to

destination

attributes

can

be

simple,

or

it

can

require

establishing

and

maintaining

relationships

between

data

entities

that

are

equivalent

but

are

represented

differently

and

cannot

be

directly

transformed.

Simple

transformations

In

a

simple

case

of

data

transformation,

the

values

of

the

source

and

destination

attributes

have

a

clear

correspondence

and

similar

meanings,

although

the

attributes

might

be

structured

differently.

Simple

mapping

includes

actions

such

as

these:

v

Copy

a

source

attribute

value

to

one

or

more

destination

attribute

values.

v

Split

a

source

attribute

value

into

multiple

destination

attributes

values.

v

Join

multiple

source

attribute

values

into

one

destination

attribute

value.

v

Ignore

a

source

attribute

value

for

which

the

destination

business

object

has

no

equivalent

attribute.

Figure

5-2

is

an

example

of

simple

mapping

for

a

few

of

these

operations:

Relationship

transformations

Some

attributes

do

not

lend

themselves

to

simple

transformations.

Different

applications

may

have

attributes

that

are

equivalent,

containing

information

for

a

similar

purpose,

but

which

have

incompatible

formats

or

values.

For

example,

for

a

Country

attribute,

one

application

might

use

a

two-letter

code

(such

as

US,

FR,

or

EG)

while

another

application

uses

a

numeral

(such

as

1,

2,

or

3).

To

associate

such

attributes

between

different

applications,

you

create

relationship

definitions,

associating

the

data

of

the

source

and

destination

attributes.

Key:

1 Ignore

2 Copy

3 Split
AddrSeqNum

CustomerName

Country_code

Phone

Fax

No equivalent, no mapping

CustomerName
CustomerName
Customer_Phone_Ctry
Cust_Phone_Area
Cust_Phone_Number
Cust_Fax_Ctry
Cust_Fax_Area
Cust_Fax_Number

1
2

2

3

3

Figure

37.

Simple

mapping

78

Technical

Introduction

Kinds

of

relationships

When

you

create

a

relationship

definition,

you

list

the

participants

(business

objects

or

other

data

entities)

that

are

involved

in

the

relationship,

and

you

specify

a

type

(either

the

name

of

a

business

object

definition

or

the

word

Data)

for

each

participant.

Based

on

the

types

of

the

participants

and

the

number

of

instances

of

each

participant

that

can

be

related

in

that

definition,

relationships

are

classified

into

the

following

categories:

v

An

identity

relationship

establishes

an

association

between

business

objects

or

other

data

on

a

one-to-one

basis.

For

each

relationship

instance

there

can

be

only

one

instance

of

each

participant.

Identity

relationships

typically

transform

the

key

attributes

of

business

objects,

such

as

ID

numbers

and

product

codes.

v

A

non-identity

relationship

establishes

an

association

between

business

objects

or

other

data

on

a

one-to-many

or

many-to-many

basis.

For

each

relationship

instance

there

can

be

one

or

more

instances

of

each

participant.

An

example

of

a

non-identity

relationship

is

an

RMA-to-Order

transformation,

in

which

a

single

RMA

(Return

Materials

Authorization)

business

object

can

yield

one

or

more

Order

business

objects.

v

A

lookup

relationship

establishes

an

association

between

data,

such

as

attributes

in

business

objects.

The

data

can

be

related

on

a

one-to-one,

one-to-many,

or

many-to-many

basis.

Participants

in

lookup

relationships

are

of

type

Data.

Lookup

relationships

typically

transform

non-key

attributes

whose

values

are

represented

with

codes,

such

as

marital

status

or

currency

code.

For

more

information

about

relationship

definitions,

start

with

Chapter

1

of

the

Map

Development

Guide.

Configuring

connectors

with

maps

When

you

use

System

Manager

to

install

and

configure

a

connector,

you

specify

the

name

of

an

IBM

WebSphere

InterChange

Server

map,

stored

in

the

InterChange

Server’s

repository,

for

transforming

each

business

object

that

the

connector

supports.

When

a

connector

controller

sends

a

business

object

for

mapping,

it

executes

the

map,

sending

the

business

object

and

the

mapping

information

as

input.

Summary

This

chapter

introduced

the

terminology

and

concepts

associated

with

business

object

mapping.

The

key

points

to

remember

are:

v

Data

mapping

transforms

business

objects.

As

business

objects

travel

from

source

applications

to

collaborations,

mapping

transforms

application-specific

business

objects

to

generic

business

objects.

As

business

objects

travel

from

collaborations

to

destination

applications,

mapping

transforms

generic

business

objects

to

application-specific

business

objects.

v

Maps

can

be

created

using

the

Map

Designer

and

Relationship

Designer

tools.

v

Simple

mapping

can

be

done

in

the

Map

Designer.

For

mapping

that

involves

attributes

that

are

equivalent

but

incompatible

in

format,

use

Relationship

Designer.

All

of

the

previous

chapters

described

basic

features

of

the

IBM

WebSphere

InterChange

Server

system.

The

next

chapter

describes

an

advanced

feature

relevant

to

some

users.

Chapter

6.

Data

mapping

79

80

Technical

Introduction

Chapter

7.

Transactional

collaborations

Transactional

collaborations

provide

data

consistency

assurances

for

business

processes.

This

chapter

introduces

the

features

of

transactional

collaborations.

It

contains

the

following

sections:

v

“The

transaction

model”

v

“What

is

a

transactional

collaboration?”

on

page

82

v

“Data

isolation”

on

page

86

v

“Transaction

levels”

on

page

87

v

“Recovery”

on

page

89

v

“Transactional

collaborations

and

long-lived

business

processes”

on

page

89

v

“Summary”

on

page

90

The

transaction

model

This

section

briefly

reviews

the

concepts

from

which

the

IBM

WebSphere

InterChange

Server

transactional

model

are

derived.

If

you

are

familiar

with

databases

and

transactional

processing,

skip

to

the

next

section.

A

transaction

is

a

set

of

related

and

interdependent

steps

that

form

a

logical

unit

of

work.

Grouping

the

steps

into

a

transaction

ensures

that

the

set

of

steps

are

treated

as

an

atomic

unit:

either

the

entire

set

of

steps

succeeds,

or

the

entire

set

of

steps

fails.

Figure

38

illustrates

a

database

transaction

that

contains

two

updates,

update

1

and

update

2.

As

a

transaction

is

executing,

it

locks

the

part

of

the

database

that

it

is

modifying,

making

the

data

unavailable

for

modifications

by

other

transactions.

Isolation

of

data

from

outside

interference

is

one

of

the

defining

qualities

of

transactions.

If

the

transaction’s

operations

succeed,

the

transaction

completes

by

writing

changes

to

disk

in

a

commit

operation.

A

commit

operation

releases

the

transaction’s

locks,

making

the

updated

data

available

to

other

transactions.

If

an

error

occurs

partway

through

execution,

making

it

impossible

for

the

entire

transaction

to

succeed,

the

entire

transaction

fails.

Rather

than

leave

partial

results

in

the

database,

the

transaction

backs

out

the

changes

that

it

has

already

made,

leaving

the

database

with

the

values

that

it

had

before

the

transaction

started.

The

back-out

process

is

called

rollback.

Begin transaction
 update 1
 update 2
 if update 2 fails, undo update 1
 else commit

Figure

38.

A

database

transaction

©

Copyright

IBM

Corp.

1997,

2004

81

Another

type

of

database

transaction,

two-phase

commit,

is

adapted

for

distributed

use

across

multiple

databases.

Two-phase

commit

uses

a

transaction

monitor

to

coordinate

concurrent

updates.

The

transaction

monitor

first

checks

that

all

databases

can

make

the

desired

change.

Even

if

all

can

make

the

change,

they

must

wait

for

the

transaction

monitor’s

signal

before

doing

so.

If

all

cannot

make

the

change,

none

do.

Every

transaction

must

maintain

data

consistency

in

its

database,

but

the

two-phase

commit

protocol

extends

the

scope

of

this

requirement

beyond

individual

databases.

A

common

example

is

a

funds

transfer,

in

which

the

transaction

monitor

ensures

that

the

funds

debited

from

one

account

are

credited

in

the

other

account

or

that

neither

account

is

modified.

What

is

a

transactional

collaboration?

A

transactional

collaboration

is

a

collaboration

whose

data

modifications

can

be

rolled

back.

Like

database

transactions,

transactional

collaborations

are

all-or-nothing

operations:

either

the

entire

collaboration

succeeds

or

the

entire

collaboration

fails.

In

addition,

a

transactional

collaboration

can

detect

and

react

to

data

isolation

violations

that

might

compromise

the

logic

of

its

data

operations.

Transactional

collaborations

are

based

on

the

principles

established

in

database

transactions

and

two-phase

commit

protocols.

However,

transactional

collaborations

differ

from

database

transactions

because

of

the

unique

nature

of

collaborations:

distributed

across

any

number

of

applications,

asynchronous,

long

lived,

and

positioned

outside

of

applications

rather

than

inside

them.

A

transactional

collaboration

and

a

nontransactional

collaboration

execute

differently.

A

transactional

collaboration

executes

under

the

control

of

the

InterChange

Server’s

transaction

service,

which

controls

execution,

rollback,

and

isolation

checking.

This

section

describes

the

components

of

transactional

collaborations.

Transactional

scenarios

A

collaboration

template’s

Minimum

Transaction

Level

property

determines

whether

the

collaboration

is

transactional,

and

applies

to

all

of

its

scenarios.

All

collaboration

objects

created

from

a

template

inherit

its

minimum

transaction

level.

Actual

transactional

logic

applies

at

the

scenario

level.

In

a

transactional

collaboration,

each

scenario

is

a

transactional

scenario,

whose

start

implicitly

begins

a

transaction

and

whose

successful

completion

implicitly

commits

the

transaction.

Each

scenario

runs

in

a

single

execution

context.

If

a

collaboration

is

part

of

a

collaboration

group,

a

scenario

might

call

another

collaboration

to

do

some

work

and

then

return.

The

scenario

that

is

called

executes

within

the

caller’s

execution

context

and

is

part

of

the

same

transaction.

Subtransactions

Each

time

a

step

in

a

scenario

causes

an

application

to

modify

data,

that

step

initiates

a

transaction

in

the

application

itself.

A

step

that

causes

an

application

transaction

is

a

subtransaction

step:

a

transaction

within

a

transaction,

where

the

larger

transaction

is

the

scenario

itself.

82

Technical

Introduction

To

illustrate

transactional

concepts,

this

chapter

uses

the

scenario

shown

in

Figure

39.

The

scenario

handles

updates

as

part

of

a

pricing

management

collaboration.

The

collaboration

ensures

that

when

an

ERP

application

changes

the

price

of

a

product,

the

change

is

matched

in

the

customer

service

application

and

product

configuration

application.

The

illustration

omits

all

processing

details

that

are

irrelevant

to

transactional

semantics.

The

scenario

has

four

action

steps,

Action

1

(A1)

through

Action

4

(A4),

and

it

interacts

with

three

business

objects,

A,

B,

and

C.

Business

object

A

represents

a

particular

product

in

the

ERP

system,

B

represents

the

same

product

in

the

customer

service

application,

and

C

represents

the

product

in

the

product

configuration

application.

Note:

The

format

BusinessObject.Attribute

represents

a

particular

attribute

in

a

business

object.

For

example,

A.Price

represents

the

Price

attribute

of

business

object

A.

The

scenario

appears

on

the

left.

On

the

right,

comments

show

what

happens

when

a

product

manager

logs

into

the

ERP

system

and

changes

the

price

of

the

product

to

$700.

Note:

For

simplicity,

the

figures

in

this

chapter

do

not

show

connectors.

To

make

the

scenario

transactional,

the

first

step

is

to

identify

the

subtransaction

steps.

Figure

40

shows

that

the

subtransactional

steps

in

the

scenario

are

A2

and

A4,

because

they

cause

transactions

at

the

customer

service

and

product

configuration

applications,

respectively.

Scenario

Retrieve BA1

Retrieve CA3

Update B = AA2

Update C = AA4

A Receive business object A
from the ERP system.

Retrieve business object B
from the customer service
application.

Send an update request to
the customer service
application, setting the price
of B to the price of A.

Retrieve business object C
from the product configuration
application.

Send an update request to
the product configutation
application, setting the price
of C to the price of A.

Sample Value

Price of A= $700

Price of B = $200

Price of B
updated to $700

Price of C = $200

Price of C
updated to $700

Figure

39.

Sample

scenario

Chapter

7.

Transactional

collaborations

83

A

step

that

performs

a

retrieve

request,

such

as

A1

or

A3,

is

not

a

subtransactional

step

because

it

does

not

cause

the

modification

of

data.

Compensation

and

rollback

The

way

that

a

transactional

scenario

responds

to

failure

differs

from

the

way

that

nontransactional

scenarios

respond

to

failure.

When

a

nontransactional

scenario

fails,

the

collaboration

simply

logs

an

error

and

terminates.

When

a

transactional

scenario

fails,

the

scenario

rolls

back

to

leave

data

in

a

consistent

state

across

all

of

the

involved

databases.

Use

of

compensation

in

rollback

When

an

error

occurs,

subtransactions

might

have

already

caused

applications

to

commit

work.

Therefore,

rollback

is

done

through

the

use

of

compensation

steps,

actions

that

counteract

the

effects

of

other

actions.

A

compensation

step

executes

only

during

rollback.

During

rollback,

the

InterChange

Server

steps

backward

through

the

execution

path.

For

each

subtransaction

step

that

completed,

the

server

executes

the

associated

compensation.

Rollback

is

complete

when

all

executed

transactional

steps

have

been

compensated.

If

an

error

occurs

during

rollback,

the

InterChange

Server

simply

logs

the

error.

A

compensation

step

can

consist

of

any

action

that

a

collaboration

developer

wants

to

use

to

counteract

the

original

action.

Table

8

lists

some

common

ways

in

which

a

collaboration

developer

might

choose

to

compensate

for

specific

actions.

Table

8.

Compensation

Examples

Action

Compensation

Create

business

object

Delete

business

object

Delete

business

object

Create

business

object

Begin transaction
update B
End transaction

Begin transaction
update C
End transaction

Subtransaction
Step

Subtransaction
Step

Scenario

Retrieve BA1

Retrieve CA3

Update B = AA2

Update C = AA4

A

Product
Configuration

Product
Configuration

Customer
Service

Customer
Service

Figure

40.

Subtransaction

steps

in

a

transactional

scenario

84

Technical

Introduction

Table

8.

Compensation

Examples

(continued)

Action

Compensation

Update

business

object

Update

business

object,

restoring

the

former

values

Although

compensation

typically

consists

of

reversing

the

original

action’s

data

modifications,

it

need

not

do

so.

For

example,

compensation

for

a

create

request

could

be

another

create

request,

this

time

causing

a

record

to

be

written

to

an

audit

log.

Compensation

is

therefore

a

logical

undo

operation,

and

not

necessarily

an

actual

undo

operation.

Designing

for

rollback

A

collaboration

designer

must

design

the

scenario

to

enable

rollback

to

occur.

Figure

41

shows

how

the

example

scenario

could

be

modified

to

permit

rollback.

The

example

has

changed

as

follows:

v

Action

steps

A1

and

A3

now

use

B1

and

C1

to

store

the

original

values

of

B

and

C.

v

Compensation

steps

C2

and

C4

are

new

compensation

steps

that

restore

the

original

values

of

B

and

C

Imagine

that

the

scenario

encounters

an

error

after

executing

A2.

During

rollback,

compensation

step

C2

executes,

using

the

value

stored

in

B1

to

return

B

to

its

original

value.

Runtime

illustration

The

following

figure

illustrates

execution

of

the

sample

scenario.

In

the

illustrated

runtime

sequence,

action

steps

A1,

A2,

and

A3

execute

successfully.

During

the

execution

of

A4,

however,

an

error

occurs

at

the

application.

When

the

scenario

receives

an

error

instead

of

a

successful

status

for

A4,

it

fails,

and

rollback

begins.

Scenario

B1 = Retrieve B

Action

A1

C1 = Retrieve CA3

Update B = AA2

Compensation

Update B = B1

Update C = C1Update C = AA4

C2

C4

Figure

41.

Actions

and

compensations

Chapter

7.

Transactional

collaborations

85

Stepping

back

through

the

steps,

the

transaction

service

proceeds

as

follows:

v

A4

never

completed

modifying

data,

so

it

does

not

need

compensation.

v

A3

was

a

retrieve

operation,

so

it

does

not

need

compensation.

v

A2

completed

a

data

modification

and

has

compensation

defined,

so

its

compensation,

C2,

is

executed.

Begin transaction
update B
End transaction

Begin transaction
update B
End transaction

Begin transaction
update C...
ERROR! FAILED!

Transaction

B1 = Retrieve BA1

START EXECUTION

START ROLLBACK

Customer
Service

ROLLBACK COMPLETE

C1 = Retrieve C

Update B = B1

A3

Update B = AA2

Update C = AA4

C2

A

Product
Configuration

Product
Configuration

Customer
Service

Customer
Service

Data

isolation

The

IBM

WebSphere

InterChange

Server

system

provides

several

levels

of

transactional

execution

for

collaborations.

At

the

higher

levels,

the

InterChange

Server

detects

isolation

violations.

Isolation

is

the

assurance

that,

while

a

transaction

is

executing,

it

has

exclusive

access

to

its

data.

Because

the

transaction’s

data

does

not

change

between

operations

inside

the

transaction,

the

effects

of

the

transaction’s

logic

are

predictable.

In

a

database

transaction

or

two-phase

commit,

database

locks

ensure

isolation

during

execution

of

the

transaction.

In

the

IBM

WebSphere

InterChange

Server

environment,

a

transactional

scenario

cannot

lock

data

between

steps;

each

step

causes

an

application

transaction

that,

upon

completion,

releases

its

lock.

Other

programs

can

then

view

and

modify

the

updated

data.

A

scenario

might

need

to

use

the

same

piece

of

data

more

than

once.

For

example,

multiple

action

steps

might

update

the

same

data.

Furthermore,

if

a

scenario

fails

and

rolls

back,

a

compensation

step

might

revisit

data

that

was

set

by

previous

actions,

restoring

it

to

the

original

value.

Figure

42.

Rollback

of

a

transactional

scenario

86

Technical

Introduction

For

data

that

a

scenario

uses

more

than

once,

the

time

period

between

the

completion

of

an

application

transaction

caused

by

one

step

and

the

start

of

an

application

transaction

caused

by

another

step

is

a

window

of

vulnerability.

Figure

43

illustrates

the

window

of

vulnerability

between

two

transactional

steps

that

update

the

same

business

object.

During

the

window

of

vulnerability,

data

isolation

cannot

be

guaranteed.

Other

transactions

might

step

in

to

change

the

state

of

the

data

between

the

scenario’s

visits,

possibly

causing

errors

in

the

scenario’s

results.

For

some

collaborations,

isolation

might

not

be

relevant;

for

example,

a

collaboration

might

be

the

only

program

that

modifies

the

data.

However,

if

a

scenario

modifies

data

that

other

programs

might

also

modify,

isolation

violations

can

be

problematic.

The

IBM

WebSphere

InterChange

Server

system

provides

isolation

checking

for

collaborations

that

need

to

protect

against

isolation

violations.

If

a

collaboration

runs

at

Best

Effort

or

Stringent

transaction

level,

the

transaction

service

and

connectors

work

together

to

determine

whether

data

has

been

compromised

between

repeat

visits.

The

next

section

describes

the

transaction

levels

and

explains

how

isolation

checking

occurs

at

each

level.

Transaction

levels

A

collaboration’s

transaction

level

determines

the

mechanisms

by

which

the

system

executes

the

scenarios

in

the

collaboration.

A

collaboration

becomes

transactional

at

the

development

phase,

when

its

developer

determines

whether

the

collaboration

requires

transactional

execution.

If

it

does,

the

developer

adds

compensation

steps

to

the

scenarios

in

the

template

and

specifies

the

collaboration’s

transaction

level.

Every

collaboration

has

one

of

the

following

transaction

levels:

v

None

B1 = Retrieve B

Other Steps...

Update B = A

Update B = D

A

Window of
Vulnerability
for B

Figure

43.

Window

of

vulnerability

Chapter

7.

Transactional

collaborations

87

v

Minimal

Effort

v

Best

Effort

(note

that

this

level

is

not

supported

for

long-lived

collaborations)

v

Stringent

During

configuration,

System

Manager

displays

the

minimum

transaction

level

of

a

collaboration

template,

which

a

collaboration

object

made

from

that

template

inherits.

Other

factors

affect

the

transaction

level

at

which

a

collaboration

object

actually

executes,

however.

At

configuration

time,

an

administrator

binds

the

collaboration

object

to

connectors

or

collaboration

objects,

or

to

both.

Each

connector

or

collaboration

object

has

a

particular

transaction

level,

and

the

collaboration

must

run

at

a

level

that

all

bindings

support.

For

example,

a

connector’s

transaction

level

represents

the

level

of

support

that

it

can

provide,

based

on

the

capabilities

of

its

application.

The

collaboration

cannot

run

at

a

level

that

one

of

its

connectors

does

not

support.

None

A

collaboration

whose

transaction

level

is

None

is

not

transactional.

If

an

error

occurs

during

the

execution

of

the

collaboration,

an

error

message

is

logged.

Even

if

a

collaboration

template

contains

compensation

steps,

a

collaboration

object

created

from

that

template

could

execute

at

transaction

level

None.

This

could

happen,

for

example,

if

the

connector

object’s

bindings

do

not

support

a

higher

transaction

level.

If

that

happens,

the

compensations

are

ignored.

Minimal

Effort

A

collaboration

with

Minimal

Effort

transaction

level

has

compensations

defined

for

its

scenario’s

transactional

steps.

If

an

error

occurs

during

execution

of

a

scenario,

the

InterChange

Server

rolls

back

the

scenario,

executing

the

compensation

for

each

transactional

step

that

executed.

If

the

scenario

called

a

different

collaboration

object

to

do

a

piece

of

work—that

is,

if

the

collaboration

is

part

of

a

collaboration

group—the

scenario

that

executed

in

that

collaboration

also

rolls

back.

The

Minimal

Effort

transaction

level

might

be

appropriate

for

a

collaboration

under

the

following

conditions:

v

It

is

important

to

roll

back

on

failure

to

undo

committed

work.

v

The

collaboration’s

scenarios

modify

data

that

no

other

program

or

collaboration

modifies,

so

there

is

no

need

to

use

isolation

checking.

Best

Effort

A

collaboration

that

executes

at

the

Best

Effort

transaction

level

uses

isolation

checking.

The

Best

Effort

transaction

level

is

appropriate

for

collaborations

that

must

guard

against

any

data

inconsistency.

When

a

collaboration

executes

with

isolation

checking:

v

The

InterChange

Server’s

transaction

service

works

with

connectors

to

check

data

that

a

scenario

revisits

during

the

course

of

its

execution.

v

The

system

checks

the

current

state

of

the

data

against

its

last

known

state

before

applying

a

subsequent

operation.

88

Technical

Introduction

–

If

the

data

is

the

same

since

the

previous

check,

the

data

has

been

virtually

isolated,

and

the

operation

proceeds.

–

If

the

data

is

not

the

same

since

the

previous

check,

the

operation

results

in

an

error.

Isolation

checking

provides

good

transactional

semantics,

but

requires

additional

database

access

at

the

InterChange

Server

and

more

communication

between

connectors

and

the

InterChange

Server.

This

additional

system

work

has

an

effect

on

performance.

For

this

reason,

you

should

weigh

performance

concerns

against

data

consistency

issues

when

choosing

a

transaction

level.

However,

even

at

Best

Effort

transaction

level,

a

small

window

of

vulnerability

exists.

Between

the

start

of

the

isolation

check

and

the

time

that

the

collaboration

continues

its

operation,

another

transaction

could

modify

the

data.

Nonetheless,

Best

Effort

is

the

highest

transaction

level

available

with

many

combinations

of

applications,

because

few

application

APIs

support

the

Stringent

level.

Note:

The

Best

Effort

transaction

level

is

not

supported

for

long-lived

collaborations.

Stringent

Stringent

transaction

level

provides

the

highest

degree

of

isolation

assurance,

but

it

is

available

only

with

applications

whose

APIs

allow

client

applications

to

do

atomic

test

and

set

operations.

The

connector

working

with

such

an

application

locks

data

during

the

isolation

check,

thereby

removing

the

possibility

that

another

program

could

modify

the

scenario’s

data.

Few

applications

currently

provide

this

ability.

Recovery

Any

software

program

runs

the

risk

of

interruption

from

a

hardware

or

software

event

that

unexpectedly

stops

execution.

The

InterChange

Server

has

a

robust

mechanism

for

recovering

transactions

that

are

in

progress

when

an

unexpected

exit

occurs.

When

the

InterChange

Server

comes

back

up

after

an

unexpected

exit,

it

checks

for

collaborations

that

were

in

an

active

transaction

state

at

the

time

of

exit.

A

two-phased

recovery

then

begins:

1.

The

InterChange

Server

reactivates

each

interrupted

transactional

collaboration

and

rolls

it

back

(unless

the

collaboration

was

using

the

long-lived

business

process

feature).

During

this

period,

the

server

does

not

deliver

new

events

to

the

collaboration.

2.

The

InterChange

Server

retrieves

the

original

triggering

event

for

each

interrupted

collaboration

from

the

event

management

service

and

redelivers

it.

The

collaboration

runs,

reprocessing

the

event.

When

recovery

is

complete,

the

InterChange

Server

allows

the

collaboration

to

process

new

events.

Transactional

collaborations

and

long-lived

business

processes

Transactional

collaborations

can

make

use

of

the

long-lived

business

process

feature,

which

is

enabled

as

an

option

when

you

create

the

collaboration

template.

For

a

collaboration

object

created

from

a

template

that

has

the

feature

enabled,

if

the

InterChange

Server

crashes

while

the

flow

is

waiting

for

a

service

call

Chapter

7.

Transactional

collaborations

89

response,

the

flow

will

be

able

to

continue

from

its

saved

context

during

recovery.

But

if

the

feature

is

not

enabled,

an

InterChange

Server

crash

triggers

compensational

rollbacks

Summary

This

chapter

was

an

overview

of

transactional

collaborations.

The

key

points

to

remember

are:

v

The

IBM

WebSphere

InterChange

Server

transactional

model

is

derived

from

the

use

of

transactions

in

DBMS

environments.

However,

the

IBM

WebSphere

InterChange

Server

model

is

adapted

to

suit

the

unique

nature

of

collaborations.

v

A

transactional

collaboration

is

one

in

which

the

scenarios

are

equipped

to

handle

rollback,

and

that

executes

under

the

control

of

the

InterChange

Server’s

transaction

services.

v

When

a

scenario

in

a

transactional

collaboration

fails,

the

InterChange

Server

rolls

the

scenario

back,

executing

the

compensation

for

each

completed

action.

v

With

higher

transaction

levels,

the

system

can

also

provide

isolation

checking.

v

Recovery

mechanisms

for

transactional

collaborations

ensure

that

the

InterChange

Server

does

not

leave

collaborations

in

an

unknown

transactional

state,

even

after

a

system

failure

or

other

unexpected

event.

90

Technical

Introduction

Chapter

8.

Language-specific

behavior

support

WebSphere

InterChange

Server

and

WebSphere

Business

Integration

Adapters

(WebSphere

Business

Integration

products)

support

bidirectional

languages

such

as

Hebrew

and

Arabic

through

bidirectional

enablement.

Bidirectional

enablement

is

a

mechanism

for

accurately

displaying

and

processing

of

bidirectional

script

data

inside

components

(connectors,

Adapter

Framework,

collaborations

and

maps)

bundled

with

WebSphere

Business

Integration

products.

While

WebSphere

Business

Integration

products

can

process

data

in

any

bidirectional

format,

the

data

in

WebSphere

Business

Integration

products

domain

is

set

to

one

uniform

bidirectional

format,

which

is

the

Windows

standard

bidirectional

format

(logical

left

to

right).

This

chapter

provides

an

overview

of

bidirectional

support

in

WebSphere

Business

Integration

products

and

the

requirements

and

processes

used

in

enabling

bidirectional

support.

It

contains

the

following

sections:

v

“Locale

support

in

the

WebSphere

Business

Integration

products”

v

“Bidirectional

script

support”

on

page

94

v

“Layout

transformations

and

attributes”

on

page

98

v

“Enabling

bidirectional

scripts

in

WebSphere

Business

Integration

products”

on

page

99

v

“Design

limitations”

on

page

103

Locale

support

in

the

WebSphere

Business

Integration

products

The

locale

is

the

part

of

a

user’s

environment

that

brings

together

information

about

how

to

handle

data

specific

to

the

particular

country,

language,

or

territory.

The

locale

is

typically

installed

as

part

of

the

operating

system.

The

locale

provides

the

following

information

for

the

user

environment:

v

Cultural

conventions

according

to

the

language

and

country

(or

territory):

–

Data

Formats:

-

Dates:

define

full

and

abbreviated

names

for

weekdays

and

months,

as

well

as

the

structure

of

the

date

(including

date

separator)

-

Numbers:

define

symbols

for

the

thousands

separator

and

decimal

point,

as

well

as

where

these

symbols

are

placed

within

the

number

-

Times:

define

indicators

for

12-hour

time

(such

as

AM

and

PM

indicators)

as

well

as

the

structure

of

the

time

-

Monetary

values:

define

numeric

and

currency

symbols,

as

well

as

where

these

symbols

are

placed

within

the

monetary

value
–

Collation

order:

how

to

sort

data

for

the

particular

character

code

set

and

language

–

String

handling

includes

tasks

such

as

letter

case

(upper

case

and

lower

case)

comparison,

substrings,

and

concatenation
v

Character

encoding:

the

mapping

from

a

character

(a

letter

of

the

alphabet)

to

a

numeric

value

in

a

character

code

set.

For

example,

the

ASCII

character

code

set

encodes

the

letter

A

as

65,

while

the

EBCIDIC

character

set

encodes

this

letter

as

43.

The

character

code

set

contains

encoding

for

all

characters

in

one

or

more

language

alphabets.

©

Copyright

IBM

Corp.

1997,

2004

91

The

locale

name

has

the

following

format:

11_TT.codeset

where

11

is

a

two-character

language

code

(usually

in

lower

case),

TT

is

a

two-letter

country

and

territory

code

(usually

in

upper

case),

and

codeset

is

the

name

of

the

associated

character

code

set.

The

codeset

portion

of

the

name

is

optional.

The

locale

is

typically

installed

as

part

of

the

installation

of

the

operating

system.

Establishing

a

locale

Setting

default

user

locale

to

a

bidirectional

locale,

(Arabic

or

Hebrew),

is

a

prerequisite

for

enabling

correct

processing

of

locale-dependent

data.

If

the

user

default

locale

is

not

set

to

a

bidirectional

locale,

then

the

bidirectional

characters

are

incorrectly

displayed

(see

System

Installation

Guide

for

Windows

for

more

information).

The

Windows

locale

setting

for

Hebrew

is

usually:

iw_IL,

and

for

Arabic

it

is

usually:

ar_AE.

The

ASCII

code

set

for

Arabic

is

1256

and

for

Hebrew

is

1255

(see

System

Installation

Guide

for

Windows

for

details

on

how

to

set

bidirectional

locales).

Processing

locale-dependent

data

The

Java

runtime

environment

within

the

Java

Virtual

Machine

(JVM)

represents

data

in

the

Unicode

character

code

set.

Unicode

contains

encoding

for

characters

in

most

known

character

code

sets

(both

single-byte

and

multibyte).

Most

components

in

the

WebSphere

Business

Integration

products

are

written

in

Java.

Therefore,

when

data

is

transferred

between

most

WebSphere

Business

Integration

product

components,

there

is

no

need

for

character

conversion.

If

data

is

transferred

between

an

external

application

and

the

WebSphere

Business

Integration

environment,

it

can

be

in

one-byte

character

code

rather

than

Unicode

which

is

two-byte,

therefore

steps

need

to

be

taken

to

make

the

correct

character

conversion

from

one

format

to

another.

To

address

this

event,

connectors

have

been

internationalized

so

that

they

can

support

both

double-byte

and

single-byte

character

sets

to

deliver

message

text

in

the

specified

language.

When

a

connector

transfers

data

from

a

location

that

uses

one

character

code

set

to

a

broker,

it

transforms

the

data

from

a

single-byte

code

set

to

a

double-byte

code

set

(Unicode)

because

the

integration

broker

uses

Unicode.

Because

log

and

informational

messages

include

data

in

one-byte

code

set,

the

appropriate

locale

setting

is

needed

for

accurate

transformation

of

bidirectional

text

between

Unicode

and

one-byte

code

sets.

Therefore,

to

log

error

and

informational

messages

in

the

appropriate

language

and

for

the

appropriate

country

or

territory,

configure

the

locale

standard

configuration

property

for

your

environment

to

the

specific

bidirectional

language

setting.

For

more

information

on

configuration

properties,

see

Establishing

a

locale

in

the

System

Installation

Guide

for

Windows.

Note:

You

must

properly

set

the

default

code

page

in

the

DOS

prompt.

If

the

code

page

is

not

properly

set,

the

data

flashed

out

might

not

be

readable

by

standard

Windows

editors

or

viewers

(see

Changing

your

DOS

prompt

code

page

for

ASCII

settings

for

Hebrew

and

Arabic

in

the

System

Installation

Guide

for

Windows).

92

Technical

Introduction

Design

considerations

Encoding

is

processed

within

the

WebSphere

Business

Integration

environment

at

three

levels:

v

Content

data

v

Meta

and

configuration

data

v

Log

and

trace

data

The

content

data

level

processes

the

business

object

runtime

instance

data.

The

meta

and

configuration

level

processes

the

data

used

by

connectors

to

establish

and

maintain

communication

between

external

applications

and

the

WebSphere

Business

Integration

environment.

The

log

and

trace

data

level

processes

informational

messages

logged

into

various

logs

and

trace

files.

Some

adapters

are

more

flexible

than

others

with

encoding

support.

For

example,

an

XML

connector

has

the

ability

to

process

the

encoding

specification

in

the

XML

file

headers

that

provides

full

encoding

support.

A

connector

for

SAP,

on

the

other

hand,

has

limited

encoding

support

provided

by

the

SAP

client

API.

For

content

level

as

well

as

the

meta

and

configuration

data

level,

if

the

connector

does

provide

a

configuration

option,

then

the

locale

setting

is

overwritten

by

the

encoding

specification

option.

For

the

log

and

trace

data

level,

the

default

DOS

prompt

code

set

is

used

for

encoding

flashed

data.

Content

data

encoding

There

is

no

uniform

approach

for

content

data

encoding

support

among

connectors.

There

are

three

basic

approaches

that

can

be

used

to

deal

with

the

variety

of

ways

connectors

handle

content

data

encoding

support.

These

approaches

are:

v

Automatically

handling

encoding

by

middleware

or

third

party

APIs

used

for

serialization

and

de-serialization

of

business

object

data

(for

example,

SAP/PS

client

API

and

JDBC

driver

for

RDBMS)

v

Using

the

underlying

technology

that

has

the

appropriate

configuration

for

the

connector

or

data

handler

(for

example,

using

the

charset

parameter

in

the

XML

header

for

XML

DH

or

MIME

charset

specification

per

attachment

in

the

Email

connector)

v

Enabling

WebSphere

Business

Integration

products

to

handle

encoding

internally

and

specifying

via

a

provided

mechanism

such

as

the

DataEncoding

attribute

of

MO_JTextConnector_Default

meta-business

object

used

in

JText

connector

These

three

approaches

provide

a

means

of

handling

content

data

by

the

adapters

(see

your

adapter

guide

to

find

out

what

approach

is

applicable

for

your

specific

adapter).

Meta-configuration

data

encoding

The

encoding

support

for

meta-configuration

data

often

depends

on

the

capabilities

of

the

middleware

adapter

code

used

for

setting

up

a

connection

to

an

external

application.

The

meta

and

configuration

data

encoded

in

ASCII

in

WebSphere

Tools

(as

part

of

the

adapter

template

or

supported

business

object

templates)

is

stored

in

the

repository

as

Unicode.

At

runtime,

this

data

is

used

as

an

argument

for

either

native

Java

APIs

or

third

party

APIs

to

establish

a

communication

link

with

an

external

source.

The

middleware

used

for

establishing

a

communication

link

in

the

adapter

code

can

range

from

native

Java

APIs

or

packages,

(for

example,

Email

or

WebSphere

MQ

connectors),

to

third

party

APIs

(for

example,

PeopleSoft).

In

Chapter

8.

Language-specific

behavior

support

93

addition,

there

can

be

several

layers

of

middleware

separating

the

adapter

Java

code

from

the

external

source

as

in

the

case

of

JText

and

the

File

System

folder

located

on

a

non-Windows

system.

If

the

File

System

folder

is

accessed

from

the

Windows

process,

the

call

issued

from

the

Java

API

might

be

indirectly

serviced

by

the

software

allowing

the

mounting

of

non-Windows

partitions

instead

of

the

target

Windows

File

System.

Because

neither

native

Java

APIs,

third

party

API,

nor

middleware

is

guaranteed

to

support

explicit

encoding

specification,

WebSphere

Business

Integration

products

only

support

Unicode

encoding

for

meta

and

configuration

bidirectional

data.

Log

and

trace

data

encoding

By

default,

the

encoding

of

the

bidirectional

data

flashed

out

into

the

log

and

trace

files

is

identical

to

the

code

page

of

the

DOS

prompt

that

invokes

the

process.

Unfortunately,

the

default

DOS

prompt

code

page

associated

with

the

bidirectional

locales

for

Arabic

and

Hebrew

is

not

the

same

as

the

standard

code

page

for

those

languages

on

the

Windows

operating

system

(1256

and

1255).

Consequently,

if

the

DOS

prompt

code

page

for

the

WebSphere

Business

Integration

Java

processes

is

not

changed,

the

bidirectional

data

flashed

out

by

those

processes

into

the

log

trace

files

is

not

correctly

displayed

in

most

Windows

viewers

using

standard

code

pages

for

bidirectional

languages

data

display

(see

Changing

your

DOS

prompt

code

page

in

the

System

Installation

Guide

for

Windows

for

more

information).

Bidirectional

script

support

WebSphere

Business

Integration

products

provide

bidirectional

support

for

languages

with

a

bidirectional

script.

A

bidirectional

script

contains

both

text

that

is

written

from

right

to

left

and

embedded

numbers

or

segments

of

text

in

western

scripts,

(for

example

Latin-based

scripts

such

as

English,

French,

Cyrillic-based,

or

Greek)

that

are

written

from

left

to

right.

Arabic

and

Hebrew

are

the

two

major

language

groups

that

use

bidirectional

scripts.

The

Arabic

script

group

includes

Arabic,

Farsi

(Persian),

Urdu,

as

well

as

other

languages.

The

Hebrew

script

group

includes

not

only

Hebrew,

but

also

Yiddish

and

Ladino.

Because

both

language

groups

have

alphabets

(only

27

characters),

they

can

accommodate

a

single-byte

encoding

scheme.

Bidirectional

language

characteristics

There

are

two

main

characteristics

that

distinguish

bidirectional

script

from

a

Western

language

script

(such

as

English,

French,

German,

Greek

and

others).

These

two

characteristics

are

bidirectionality

and

shaping.

Bidirectionality

Bidirectionality

consists

of

seven

key

concepts:

v

Segmentation

v

Nesting

v

Global

orientation

v

Logical

vs.

physical

order

of

bidirectional

text

v

Text-types

and

associated

re-ordering

methods

v

Symmetrical

swapping

v

Widget

mirroring

of

translated

GUIs

Note:

In

all

examples

shown

below,

capitalized

letters

such

as,

DCBA

are

used

to

represent

Arabic

or

Hebrew

letters.

94

Technical

Introduction

Segmentation

Segmentation

is

defined

as

a

string

that

has

one

portion

of

text

within

a

string

that

has

a

distinct

directionality.

Therefore,

a

script

can

have

the

main

portion

consisting

in

a

right-to-left

orientation

while

another

portion(s)

has

a

left-to-right

orientation.

An

example

of

bidirectional

segmentation

is

the

street

address,

Entrance

B

25

Maple

Street.

this

address

when

written

in

Hebrew

is:

B

ECNARTNE

25

TEERTS

ELPAM.

In

this

example,

the

major

parts

of

the

string

text,

B

ECNARTNE

and

TEERTS

ELPAM,

have

a

right-to-left

orientation

but

the

number

25

has

a

left-to-right

orientation.

Nesting

Nesting

is

defined

as

a

text

segment

that

has

one

directionality

while

also

having

within

that

segment

an

additional

segment

with

an

opposite

directionality.

Again,

using

the

street

address,

B

ECNARTNE

25

TEERTS

ELPAM.

This

address

has

one

level

of

nesting.

The

street

name,

TEERTS

ELPAM,

is

written

with

a

right-to-left

orientation,

but

the

flow

is

then

reversed

to

allow

the

correct

entry

of

the

street

number

25that

has

a

left-to-right

orientation.

After

the

street

number,

the

flow

orientation

is

reversed

again

to

right

to

left

for

B

ECNARTNE.

Global

orientation

Global

orientation,

which

is

also

referred

to

as

Writing

Order,

Reading

Order,

or

Paragraph

Direction

designates

the

side

of

the

screen,

window,

or

page

where

the

writing

of

the

text

has

started.

In

addition,

global

orientation

is

context

dependent.

This

means

that

text

meaning

is

dependent

on

its

context.

An

example,

of

context

dependency

is

demonstrated

using

a

sentence

written

as

a

bidirectional

script.

The

sentence

reads:

FRED

DOES

NOT

BELIEVE

taht

yas

syawla

i.

This

sentence

has

one

meaning

when

it

is

read

from

left

to

right

(Fred

does

not

believe

I

always

say

that),

and

another

meaning

when

read

from

right

to

left,

(I

always

say

that

Fred

does

not

believe).

Because

the

global

orientation

is

not

always

obvious

from

the

context,

the

application

developer

must

be

aware

of

how

the

text

will

be

read

(left

to

right

or

right

to

left).

Physical

and

logical

text

ordering

Bidirectional

text

can

be

stored

in

either

logical

or

physical

order.

In

workstation

environments,

the

preferred

means

for

entering

and

processing

bidirectional

text

is

logical

order

because

text

is

processed

similarly

to

Latin

text.

When

using

logical

order

in

storage,

you

must

provide

the

means

to

reverse

segments

whose

direction

is

opposite

to

the

global

orientation.

For

example,

if

global

orientation

is

English

(left

to

right),

then

segments

in

Arabic

and

Hebrew

need

special

processing

to

appear

in

their

native

right-to-left

direction.

Conversely,

the

preferred

way

to

store

bidirectional

text

in

mainframes

for

entering

and

processing

bidirectional

text

is

in

physical

order.

Therefore,

when

integrating

bidirectional

text

from

mainframe

and

workstation

environments

you

must

transform

the

text

to

a

layout

where

all

the

text

has

the

same

text

order.

When

using

text

order

in

bidirectional

scripts,

physical

and

logical

order

are

also

important.

Physical

order

refers

is

how

the

text

segment

is

physically

presented

and

logical

order

refers

to

how

text

script

segments

are

typed

(or

pronounced

if

read

aloud).

Depending

on

the

situation,

some

segments

may

need

to

be

re-ordered

in

either

logical

or

physical

order.

For

example,

the

statement:

my

wife’s

name

is

ILIN

Chapter

8.

Language-specific

behavior

support

95

Overall,

this

statement

has

a

left-to-right

orientation.

The

reader

reads

the

text

with

the

first

letter

being

m,

followed

by,

y,

and

so

forth.

In

the

physical

order,

the

letters

i

and

s

are

followed

by

the

letter

I

of

the

segment

containing

ILIN,

but

in

Hebrew,

ILIN

is

pronounced

NILI,

therefore,

in

the

logical

order,

the

first

letter

of

the

name

segment,

is

N

not

I.

Text-type

Text-type

is

defined

as

the

most

appropriate

approach

for

recording

a

specific

text.

This

means

that

different

text-types

require

different

recording

techniques.

There

are

three

text-types.

used

for

recording:

visual,

implicit

(logical),

and

explicit.

Visual

text-type

is

the

oldest

form

of

recording,

and

is

a

simple

copy

of

the

entire

screen.

This

form

of

text-type

is

dependent

on

the

programmer

knowing

where

the

embedded

segments

are

located

and

processing

them

accordingly.

Many

legacy

applications

and

their

files

use

this

type

of

text.

Implicit

text-type

recording

assumes

that

the

letters

of

the

Latin

alphabet

have

inherent

left-to-right

directionality,

and

that

Arabic,

Persian,

Urdu,

and

Hebrew

alphabets

have

inherent

right-to-left

directionality.

To

accommodate

bidirectionality,

an

algorithm

of

implicit

text

processing

is

used

to

recognize

segments

based

on

their

inherent

directional

characteristics,

allowing

segment

inversion

to

be

performed

automatically.

The

main

limitation

of

implicit

text-typing

is

the

inability

to

handle

strings

where

numbers

and

letters

(in

both

left-to-right

and

right-to-left)

are

mixed,

such

as

in

the

case

of

part

numbers.

Explicit

text-type

recording

assumes

that

there

are

additional

control

characters

embedded

in

a

text

string

that

directs

the

explicit

algorithm

to

perform

segment

inversions,

shaping

or

numeral

selections,

and

other

transformations.

The

limitation

of

explicit

text-typing

is

needed

for

automatic

processes

to

handle

embedded

controls.

There

is

a

specific

technique

that

bridges

implicit

and

explicit

text-typing.

This

technique

is

the

basic

display

algorithm

that

is

defined

in

the

Unicode

Standard

Bidi

algorithm.

Symmetrical

swapping

Symmetrical

swapping

is

the

ability

to

handle

characters,

such

as:

<,

(,[,{,

that

have

a

complementary

symmetric

character

with

an

opposite

directional

meaning:

>,),],}.

These

characters

are

problematic

because

global

swapping

would,

for

example,

change

A

>

B

to

B

>

A.

Symmetrical

swapping

enables

character

conversion

of

the

symbol

to

B

<

A.

Widget

mirroring

Widget

mirroring

of

a

translated

GUI

mirrors

the

GUI

to

match

the

directionality

of

the

language.

For

example,

Widget

mirroring

can

move

the

menu

buttons

and

navigation

tree

to

the

right

instead

of

the

left.

Otherwise

the

frames

and

windows

are

not

mirrored.

Figure

44

on

page

97

96

Technical

Introduction

shows

widget

mirroring

of

a

drop-down

menu.

Shaping

Shaping

is

a

characteristic

of

many

complex

languages,

particularly

the

cursive

languages

Arabic

and

Hebrew.

A

writing

system

is

cursive

if

it

has

adjacent

characters

in

a

word

connected

to

each

other,

and

is

more

suited

to

handwriting

than

to

printing.

In

Arabic,

for

example,

some

letters

can

only

connect

to

the

letter

on

their

right.

In

addition,

letters

can

assume

different

shapes

according

to

their

position

in

the

word

and

the

connective

properties

of

adjacent

letters.

These

points

make

shaping

important

in

rendering

bidirectional

text

intelligible.

The

shaping

process

renders

characters

to

their

appropriate

presentation

forms

by

replacing

an

abstract

representation

of

a

character

with

the

proper

shape.

This

is

accomplished

by

using

the

base

form

of

a

character

to

allow

the

selection

of

a

particular

cursive

character

without

specifying

its

shape.

The

proper

shape

of

a

character

is

then

selected

by

a

shape

determination

routine

that

allows

for

automatic

(algorithmic)

selection

of

the

appropriate

shape

according

to

the

context

directed

by

either

the

software

or

the

user.

In

most

cases,

the

basic

shapes

of

a

cursive

language

text

are

stored.

There

are

two

other

characteristics

that

make

up

shaping.

They

are

character

composition

and

national

numbers.

Character

composition

is

defined

as

the

correspondence

between

the

number

of

text

characters

stored

with

the

number

of

text

characters

presented.

To

maintain

correspondence,

devices

such

as

ligatures

and

diacritics

are

used.

Ligatures

are

used

when

two

or

more

characters

can

be

represented

by

a

single

character

that

occupies

one

presentation

cell.

Diacritics

in

bidirectional

scripts

are

marks

located

in

a

certain

orientation

to

a

consonant,

(either

above,

within,

below

or

near

it),

to

represent

vowels.

When

these

marks

are

stored,

they

occupy

physical

positions,

but

if

they

are

used

for

representation,

they

can

occupy

the

same

cell

as

the

associated

consonants.

In

Arabic,

spacing

diacritics

are

currently

implemented

as

separate

characters

that

are

rendered

following

the

character

to

which

the

diacritics

belong.

National

numbers

also

need

special

treatment

because

they

are

used

differently

in

different

languages.

For

example,

in

Hebrew,

numbers

are

represented

using

Arabic

digits

(1,2,3...0).

However,

cursive

languages

such

as

Arabic,

Farsi

and

Urdu

have

their

own

national

glyphs

to

represent

digits.

The

label

for

digits

used

in

Figure

44.

Widget-mirrored

window

showing

bidirectional

labels

Chapter

8.

Language-specific

behavior

support

97

cursive

languages

is

either

Hindi

or

Arabic-Indic

digits.

Whether

in

Arabic,

Hindi

or

Arabic-Indic,

all

simple

numbers

are

presented

left

to

right,

but

mathematical

formulas

can

differ

from

language

to

language.

For

example,

in

Arabic,

mathematical

formulas

are

written

left

to

right,

but

in

Persian,

they

are

written

right

to

left.

Therefore,

while

numbers

are

usually

encoded

as

Arabic

digits,

they

can

be

presented

as

either

nation-specific

glyphs

or

Arabic

digits

according

to

the

intent

of

the

user

or

developer.

Layout

transformations

and

attributes

Enabling

bidirectional

scripts

calls

for

special

attention

to:

v

“Text

layout”

v

“Layout

attributes”

v

“Layout

transformations”

on

page

99

Text

layout

Bidirectional

text

can

have

different

layouts.

A

layout

differs

according

to

the

segments

used

in

the

text,

and

also

in

the

case

of

Arabic

script,

it

also

differs

in

the

shaping

of

characters

and

the

numerical

shapes

used.

Transformations

between

the

different

layouts

require

transformation

functions,

also

called

layout

functions

or

layout

services

functions.

Layout

attributes

To

define

the

characteristics

of

a

bidirectional

text

layout,

a

set

of

attributes

is

needed.

Bidirectional

attributes

are

needed

to

ascertain

the

actual

layout

of

text

is

and

how

it

should

be

transformed.

These

attributes

are

usually

external

to

the

text

and

are

stored

in

an

external

resource

file.

The

five

bidirectional

attributes

are:

v

Orientation

v

Text-type

v

Text

shaping

v

Symmetric

swapping

v

Numerical

shapes

Orientation

Orientation

designates

the

boundary

of

the

presentation

area,

(window,

frame,

page),

where

the

writing

of

the

bidirectional

text

starts.

This

designation

is

based

on

the

directionality

of

the

first

character

in

the

text.

The

directionality

can

be

right

to

left,

left

to

right,

or

contextual.)

Text

type

Text

type

designates

the

kind

of

algorithm

used

when

transforming

the

text

layout.

There

are

three

types

of

algorithms

that

can

be

used:

visual,

implicit,

or

explicit.

A

visual

algorithm

copies

entire

lines

of

text

as

they

appear

regardless

of

existing

embedded

directional

segments.

An

implicit

algorithm

recognizes

directional

segments

based

on

the

natural

directionality

of

the

characters,

(for

example,

right

to

left

for

Arabic

and

left

to

right

for

English),

and

preforms

segment

inversions

accordingly.

An

explicit

algorithm

recognizes

directional

segments

and

performs

inversions

based

on

visual,

explicit,

and

directional

controls

embedded

in

the

text.

Text

shaping

Text

shaping

is

important

for

Arabic

scripts

where

characters

assume

different

shapes

according

to

their

position

in

a

word

as

well

as

the

connectivity

traits

of

the

surrounding

characters.

98

Technical

Introduction

Symmetric

shaping

Symmetric

shaping

designates

when

specific

characters

such

as

(,

>,

[,

{

need

to

be

interchanged

with

),

<,

],

}

in

order

to

preserve

the

logical

meaning

of

the

presented

text.

Numeral

shapes

Numeral

shapes

designates

whether

the

numbers

embedded

in

an

Arabic

script

have

to

be

presented

using

the

European

digit

shapes

or

Arabic-Indic

digit

shapes.

No

single

combination

of

possible

values

of

bidirectional

layout

attributes

is

predominant.

Existing

applications

process

data

with

different

possible

combinations

of

these

values.

Therefore,

when

a

bidirectional

data

stream

is

passed

to

an

application,

it

is

important

that

the

application

can

recognize

the

associated

text

attributes.

Layout

transformations

Bidirectional

text

is

stored

and

processed

in

different

environments

(platforms)

and

in

different

layouts.

In

order

to

create

a

transformation

from

one

layout

to

another,

layout

transformation

functions

are

required.

WebSphere

Business

Integration

products

use

layout

transformation

functions

that

are

based

on

the

Unicode

BiDi

Algorithm.

This

algorithm

can

be

found

at:

http://www.unicode.org/reports/tr9/)

and

are

implemented

in

IBM

Java

SDK

1.4.1:

http://www-106.ibm.com/developmentworks/java/jdk/bidirectional/JAVABIDI.htm

Enabling

bidirectional

scripts

in

WebSphere

Business

Integration

products

Bidirectional

script

enablement

in

WebSphere

Business

Integration

products

occurs

at

different

levels

and

through

different

component

configurations.

Bidirectional

enablement

is

actualized

on

three

different

levels.

v

Through

displaying,

typing,

storing,

and

retrieving

bidirectional

script

characters

created

using

WebSphere

Toolset

(for

example,

Connector

Configurator,

BO

Designer,

System

Manager,

etc.)

v

Using

the

code

page

translation

for

converting

bidirectional

characters

from

one

format

to

another

(between

Unicode

code

set

and

single-byte

code

set)

v

Using

bidirectional

text

transformations

to

translate

between

Windows

bidirectional

format

(format

used

in

WebSphere

Business

Integration

environment)

and

different

bidirectional

formats

used

in

external

applications.

The

following

WebSphere

Business

Integration

products

are

enabled

for

processing

bidirectional

scripts

data:

Toolset,

Adapter

Framework,

ICS

broker,

as

well

as

nine

adapters

(JText,

JDBC,

Email,

XML,

WebSphere

MQ,

SAP,

PeopleSoft,

Web

services,

and

Lotus

Domino)

and

appropriate

ODAs

(JDBC,

XML,

WSDL).

Out

of

those

components

mentioned

above,

those

belonging

to

the

first-level

are

the

WebSphere

Business

Integration

Toolset

that

are

Java-based

tools

such

as

System

manager,

C++-based

tools

such

as

Business

Object

Designer

and

Connector

Configurator,

and

Web-based

tools

such

as

Dashboard.

Those

components

belonging

to

the

second-level

components

are

the

bidirectional

enabled

adapters.

Those

components

belonging

to

the

third-level

are

the

bidirectional

enabled

adapters

and

Adapter

Framework.

Chapter

8.

Language-specific

behavior

support

99

Connectors

Connectors

mediate

between

an

application

and

one

or

more

collaborations.

They

process

content

bidirectional

data

from

an

application

and

use

meta

and

configuration

data

defined

by

WebSphere

Tools,

like

Connector

Configurator,

to

establish

communication

between

an

application

that

uses

the

native

bidirectional

format

to

one

or

more

collaborations.

Adapter

Framework

The

Adapter

Framework

provides

a

structure

that

links

an

application

to

one

or

more

collaborations

and

handles

the

transfer

of

the

content

data

between

an

application

and

a

collaboration.

The

Adapter

Framework

is

enabled

for

bidirectional

languages

and

enforces

consistency

of

content

data

bidirectional

format.

Toolset

The

WebSphere

Business

Integration

Toolset

provides

administrative

and

development

tools

for

use

with

InterChange

Server.

The

tools

in

the

Toolset

are

implicitly

enabled

for

processing

bidirectional

script

data

and

do

not

require

any

additional

configuration

aside

from

the

bidirectional

locale

(see

System

Installation

Guide

for

Windows

for

more

information).

The

next

section

provides

a

brief

overview

for

enabling

each

of

the

following

components:

v

“Enabling

connectors

for

bidirectional

scripts”

v

“Enabling

Adapter

Framework

for

bidirectional

scripts”

on

page

101

v

“Enabling

collaborations

for

bidirectional

scripts”

on

page

101

v

“Enabling

maps

for

bidirectional

scripts”

on

page

102

Enabling

connectors

for

bidirectional

scripts

A

connector

mediates

between

an

application

(or

other

programmatic

entity,

such

as

a

Web

server)

and

one

or

more

collaborations.

A

connector

can

be

specific

to

an

application—such

as

SAP

R/3,

version

4—or

to

a

technology,

such

as

a

data

format

or

protocol

(XML

or

EDI).

Connector

communications

with

collaborations

can

take

two

forms:

v

Application

event

notifications

that

are

passed

to

connectors

from

for

specific

applications

v

Request

processing,

that

connectors

perform

on

behalf

of

collaborations.

(See

Chapter

5,

“Connectors,”

on

page

59

for

more

information.)

Connectors

process

content

data

from

a

data

source

(application

or

programming

entity)

using

meta

and

configuration

data

defined

by

a

WebSphere

Tool

such

as

Connector

Configurator.

In

the

WebSphere

product

environment

the

meta

and

configuration

data

is

represented

and

stored

in

standard

Windows

bidirectional

format.

Because

an

external

application

can

hold

the

same

meta

and

configuration

data

in

a

bidirectional

format

different

from

the

Windows

bidirectional

format

used

in

the

WebSphere

Business

Integration

products,

a

transformation

is

required

for

correct

communication

between

the

WebSphere

Business

Integration

environment

and

the

external

application.

Connectors

that

are

bidirectional

language

enabled

can

be

configured

by

the

connector

BiDi.Metadata

standard

property

to

enforce

the

bidirectional

format

of

the

meta

and

configuration

data

specific

to

that

external

application.

100

Technical

Introduction

Enabling

Adapter

Framework

for

bidirectional

scripts

The

Adapter

Framework

links

a

connector

to

InterChange

Server

and

WebSphere

Business

Integration

Adapters

allowing

content

to

flow

between

an

application

or

programming

entity

and

one

or

more

collaborations.

Whereas

connectors

process

the

meta

and

configuration

type

of

data,

the

Adapter

Framework

processes

the

actual

data

content

such

as

the

business

object

attribute

values.

This

is

because

the

Adapter

Runtime

component

is

common

to

all

connectors.

The

role

of

the

Adapter

Framework

becomes

one

of

preserving

data

consistency

between

the

WebSphere

Business

Integration

environment

presentation,

in

which

data

is

represented

in

Windows

bidirectional

format,

and

external

application

presentations,

where

might

use

different

bidirectional

formats.

Therefore,

if

data

is

flowing

from

the

WebSphere

Business

Integration

environment

to

an

external

application,

the

Adapter

Framework

makes

the

necessary

transformations,

if

needed,

from

Windows

bidirectional

format

to

an

external

bidirectional

format.

Conversely,

if

the

external

bidirectional

format

is

different

from

the

Windows

bidirectional

format

used

in

WebSphere

Business

Integration

environment,

the

Adapter

Framework

performs

the

necessary

transformations

in

to

the

Windows

bidirectional

format.

The

Adapter

Framework

can

also

keep

data

consistent

when

a

broker

other

than

the

WebSphere

Business

Integration

broker

is

used.

If

the

broker

uses

a

bidirectional

format

that

is

different

from

that

of

Windows,

there

is

an

option

to

change

the

default

bidirectional

format

into

a

format

used

by

that

broker.

Enabling

collaborations

for

bidirectional

scripts

In

a

WebSphere

product

implementation,

the

term

collaborations

refers

to

software

modules

that

contain

code

and

business

process

logic

that

drive

interactions

between

applications.

A

collaboration

can

be

simple,

consisting

of

just

a

few

steps,

or

complex,

involving

several

steps

and

other

collaborations.

Collaborations

can

be

distributed

across

any

number

of

applications,

can

handle

synchronous

and

asynchronous

service

calls,

and

can

support

long-lived

business

processes.

WebSphere

product

support

for

bidirectional

scripts

includes

collaborations.

Collaborations

receive

data

coming

from

either

the

WebSphere

environment

(connectors,

access

interface,

or

other

collaborations)

or

from

external

sources

such

as

Web

Service.

The

bidirectional

data

format

is

enforced

either

implicitly,

by

one

of

the

enabled

connectors,

or

explicitly,

by

bidirectional

support

or

API.

If

data

coming

from

a

component

that

does

not

enforce

bidirectional

support,

such

as

Web

Service

or

a

connector

that

is

non-bidirectional

language

enabled,

then

format

inconsistencies

can

occur

and

cause

the

business

logic

in

the

collaborations

to

fail

or

to

produce

incorrect

results.

You

can

avoid

these

types

of

errors

by:

v

Accepting

input

from

sources

that

are

enabled

for

bidirectional

languages

or

in

the

same

bidirectional

format

as

WebSphere

Business

Integration

products.

v

Invoking

bidirectional

support

in

connectors

that

are

enabled

for

bidirectional

languages

that

enforce

bidirectional

format

of

data

passed

into

the

collaborations.

v

Using

the

BiDi

APIs

in

the

CwBidiEngine

class

to

enforce

bidirectional

format

of

data

used

or

introduced

into

WebSphere

product

domain

from

an

external

data

source

(refer

to

the

CwBidiEngine

chapter

in

Collaboration

Development

Guide).

Chapter

8.

Language-specific

behavior

support

101

Enabling

maps

for

bidirectional

scripts

WebSphere

Business

Integration

products

support

maps

with

bidirectional

scripts.

Maps

receive

data

either

from

connectors

or

from

external

sources.

Therefore,

data

passing

into

the

WebSphere

Business

Integration

product

environment

that

comes

from

a

bidirectional

language

enabled

connector

is

guaranteed

to

be

in

a

uniform

bidirectional

language

format

(standard

Windows

bidirectional

format).

However,

data

can

be

introduced

into

a

map

from

unknown

external

sources,

for

instance,

data

that

is

exported

through

a

Web

service.

In

the

event

that

a

Web

service

operates

with

bidirectional

data

that

is

not

in

Windows

bidirectional

format,

two

results

are

possible.

The

first

result

is

that

the

connection

to

such

a

service

might

fail.

The

second

result

is

that

the

bidirectional

data

is

in

a

format

different

from

Windows

bidirectional

format

that

gives

unpredictable

results

in

data

processing

because

the

data

is

being

compared

against

data

in

Windows

bidirectional

format

(see,

Using

bidirectional

functionality

in

Activity

Editor

in

the

Map

Development

Guide)

These

errors

can

be

avoided

using

the

same

steps

discussed

in

“Enabling

collaborations

for

bidirectional

scripts”

on

page

101.

Handling

bidirectional

text

There

are

certain

situations

where

special

attention

needs

to

be

taken

when

handling

bidirectional

text.

One

situation

that

needs

special

attention

is

migrating

repository

data

from

previous

versions

of

WebSphere

Business

Integration

that

are

not

enabled

for

bidirectional

languages

(see

“Migrating

data”

for

more

information).

If

special

actions

are

not

taken,

then

data

with

two

different

bidirectional

formats

can

reside

in

the

same

repository

that

can

interfere

with

proper

processing

and

functioning

of

business

logic.

Another

situation

involves

transforming

bidirectional

text

with

exceptional

patterns

such

as

an

FTP

URL,

and

email

addresses

(see

“BiDi

APIs”

on

page

103

for

more

information).

Migrating

data

Some

precautions

should

be

used

when

migrating

data

from

previous

versions

of

WebSphere

Business

Integration

products.

During

the

migration

process

the

bidirectional

data

stored

from

an

earlier

version

can

persist

and

be

used

along

with

new

bidirectional

data

introduced

via

the

connectors

that

are

enabled

for

bidirectional

languages.

If

this

situation

occurs,

the

Window

format

for

the

bidirectional

data

being

manipulated

on

the

server

level

is

not

guaranteed.

Consequently,

the

processing

of

bidirectional

data

in,

for

example,

collaborations

or

maps,

might

be

irreversibly

corrupted.

It

is

suggested

that

before

migrating

to

the

current

WebSphere

product

version,

you

convert

all

bidirectional

data

in

the

repository

into

the

Windows

bidirectional

format

by

using

the

BiDi

APIs

provided

in

the

current

version.

(See

the

CxBidiEngine

chapter

in

Map

Development

Guide

for

more

information.)

Special

bidirectional

strings

FTP

URL,

and

email

addresses

are

cases

where

explicit

application

of

bidirectional

transformation

can

result

in

the

data

being

inaccurately

interpreted.

To

ensure

accurate

interpretation,

such

strings

are

analyzed

before

transformation

is

begun

and

problematic

subcomponents

within

the

string

values

are

identified.

In

cases

where

problematic

subcomponents

are

identified,

the

string

is

split

and

bidirectional

transformation

is

applied

on

each

of

the

subcomponents.

After

the

transformation

process

has

completed,

the

subcomponents

are

reassembled

into

102

Technical

Introduction

one

single

string

that

represents

the

accurate

transformed

value.

This

value

is

then

stored

for

later

use.

This

process

is

used

for

the

treatment

of

Meta

Business

Objects.

BiDi

APIs

WebSphere

Business

Integration

products

come

bundled

with

BiDi

API

class

to

enforce

bidirectional

format

in

different

components.

The

BiDi

API

class

functions

can

be

used

in

the

Adapter

Framework

to

enforce

the

bidirectional

format

of

the

content

data,

in

connectors

to

enforce

the

bidirectional

format

of

meta

and

configuration

data,

and

in

collaborations

and

maps

to

enforce

the

bidirectional

format

of

data

imported

from

an

external

source.

BiDi

methods

Within

the

BiDi

API

class

are

three

methods:

v

BiDiBusObjTransformation

v

BiDiBOTransformation

v

BiDiStringTransformation

BiDiBusObjTransformation

function

The

BiDiBusObjTransformation

method

transforms

BusinessObject

type

business

objects

from

one

bidirectional

format

to

the

other.

This

method

is

useful

for

collaborations.

(See

CxBiDiEngine

chapter

in

either

the

Collaboration

Development

Guide

for

more

information.)

BiDiBOTransformation

function

The

BiDiBOTransformation

function

is

applied

to

BusinessObject

instances.

This

function

is

useful

for

the

Adapter

Framework.

(See

CxBiDiEngine

chapter

in

either

the

Collaboration

Development

Guide

or

Map

Development

Guide

for

more

information.)

BiDiStringTransformation

function

The

BiDiStringTransformation

function

is

applied

to

String

objects.

This

function

can

be

used

on

objects

both

internal

and

external

to

WebSphere

product

environment.

(See

CxBiDiEngine

chapter

in

either

the

Collaboration

Development

Guide

or

Map

Development

Guide

for

more

information.)

Design

limitations

The

current

design

provides

a

limited

solution

for

bidirectional

support.

Listed

here

are

some

of

the

limitations:

v

Support

for

bidirectional

metadata

is

provided

by

only

one

parameter

applicable

for

all

metadata

bidirectional

properties.

This

means

that

when

an

attribute

is

based

on

one

bidirectional

parameter,

either

all

metadata

attributes

or

no

metadata

attributes

are

transformed.

Therefore,

you

cannot

set

different

bidirectional

formats

for

different

metadata

bidirectional

properties

or

specify

what

meta-data

parameters

you

want

to

leave

unaffected

by

this

bidirectional

property.

v

Because

not

all

components

in

WebSphere

Business

Integration

products

are

enabled

for

bidirectional

languages

for

example,

Server

Access

Interface

and

various

connectors,

in

case

such

components

are

used

alongside

ones

that

are

enabled

for

bidirectional

languages,

no

uniform

bidirectional

format

of

data

residing

on

either

InterChange

Server

or

WebSphere

Business

Integration

Adapters

can

be

guaranteed.

Consequently,

this

situation

might

result

in

inconsistent

representation

of

bidirectional

data

on

either

InterChange

Server

or

Chapter

8.

Language-specific

behavior

support

103

WebSphere

Business

Integration

Adapters

and

incorrect

processing

based

on

it.

However

no

mechanism,

for

enforcing

uniform

bidirectional

format

of

data

in

the

either

InterChange

Server

or

WebSphere

Business

Integration

Adapters

is

provided.

The

responsibility

for

enforcing

this

format

is

the

responsibility

of

the

user.

For

enforcing

bidirectional

format

on

data

received

from

components

that

are

not

enabled

for

bidirectional

languages

the

user

is

provided

with

BiDi

APIs.

v

Support

for

bidirectional

content

is

provided

at

the

connector

level.

Consequently,

the

user

is

restricted

to

use

only

one

bidirectional

format

specification

per

connector.

In

other

words,

all

business

objects

supported

on

the

particular

connector

are

supposed

to

hold

bidirectional

data

in

only

one

bidirectional

format.

v

WebSphere

Business

Integration

products

are

enabled

for

bidirectional

languages

when

the

proper

manual

installation

configuration

is

performed

(see

System

Installation

Guide

for

Windows

for

more

information).

v

WebSphere

Business

Integration

products

have

only

nine

adapters

that

are

enabled

for

bidirectional

languages:

JText,

JDBC,

Email,

XML,

WebSphere

MQ,

SAP,

PeopleSoft,

Web

services,

and

Lotus

Domino.

v

Selection

of

the

WebSphere

Business

Integration

products

internal

bidirectional

format

to

be

identical

to

Windows

bidirectional

format

is

closely

related

to

the

fact

that

WebSphere

product

Tools,

such

as

Connector

Configurator,

Map

Designer,

BO

Designer,

etc.,

are

supported

only

on

the

Windows

platform.

In

the

event

that

tools

support

is

expanded

to

include

different

platforms,

the

current

design

will

not

be

sufficient

and

will

need

to

be

modified.

v

Selection

of

Windows

bidirectional

format

as

the

internal

format

for

InterChange

Server

and

WebSphere

Business

Integration

Adapters

presents

limits

for

communication

with

applications

using

different

bidirectional

formats.

For

example,

two

applications

using

a

visual

bidirectional

format

that

communicates

via

WebSphere

Business

Integration

products

that

have,

by

design,

an

internal

logical

bidirectional

format.

This

is

due

to

limitation

of

bidirectional

transformation

that

is

not

transitive.

v

WebSphere

does

not

support

bidirectional

characters

as

part

of

business

object

and

business

object

attribute

names.

Consequently,

after

the

generation

of

a

business

object

template

based

on

XML/XSD

files

or

database

tables

with

attribute,

element,

or

column

names

having

bidirectional

characters,

you

are

required

to

rename

all

business

object

and

business

object

attribute

names

including

non-Latin

characters,

so

that

they

only

include

Latin

characters.

v

Currently,

only

XML

and

delimited

data

handlers

are

supported.

Request-Response

data

handler

is

supported

only

if

it

uses

either

XML

and

delimited

data

handlers

or

uses

XML

and

delimited

data

handlers

separately

for

Request-Response

handling.

EDI,

Fixed

Width,

and

Name-Value

data

handlers

are

not

supported.

v

WebSphere

does

not

support

non-Latin

characters,

including

bidirectional

characters,

as

part

of

its

basic

entity

names,

for

example

Connector,

Collaboration,

Map,

Business

Object,

Business

Object

attribute,

etc.

Summary

This

chapter

introduced

bidirectional

text

and

how

it

is

enabled

in

WebSphere

Business

Integration

system.

The

key

points

to

remember

are:

v

Bidirectional

scripts

have

text

that

runs

left

to

right

and

have

segments

embedded

that

run

right

to

left.

104

Technical

Introduction

v

Bidirectional

text

has

two

major

characteristics,

bidirectionality

and

shaping.

Each

characteristic

must

be

addressed

when

developing

bidirectional

applications.

v

A

locale

must

be

set

up

to

utilize

bidirectional

text

scripts.

v

InterChange

Server

is

enabled

for

bidirectional

languages

if

appropriate

system

configuration

is

performed

(see

System

Installation

Guide

for

Windows

for

more

information).

WebSphere

Business

Integration

Adapters

include

nine

adapters

that

are

enabled

for

bidirectional

languages.

v

Internal

bidirectional

format

in

WebSphere

Business

Integration

products

is

Windows

bidirectional

format

(logical,

left

to

right).

Chapter

8.

Language-specific

behavior

support

105

106

Technical

Introduction

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Burlingame

Laboratory

Director

IBM

Burlingame

Laboratory

577

Airport

Blvd.,

Suite

800

©

Copyright

IBM

Corp.

1997,

2004

107

Burlingame,

CA

94010

U.S.A

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

necessarily

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

Programming

interface

information

Programming

interface

information,

if

provided,

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

you

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries,

or

both:

108

Technical

Introduction

IBM

the

IBM

logo

AIX

CrossWorlds

DB2

DB2

Universal

Database

Domino

Lotus

Lotus

Notes

MQIntegrator

MQSeries

Tivoli

WebSphere

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

MMX,

Pentium,

and

ProShare

are

trademarks

or

registered

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

System

Manager

and

Adapter

Monitor

include

software

developed

by

the

Eclipse

Project

(http://www.eclipse.org/).

Notices

109

110

Technical

Introduction

Index

A
Access

client

3,

9

Access

control

34

Activity

step

(scenario)

50,

51

API
Bidirectional

text

103

Application
event-based

62

Application-specific

business

object

20,

56

Application-specific

information

56

in

business

object

57

in

business

object

attribute

57

in

business

object

verb

58,

68

Archiving

events

66

Asymmetric

31

Asymmetric

and

dynamic

31

Asymmetric

and

dynamic

security

31

Attribute

(business

object)

19,

54,

55

application-specific

information

for

57

compound

55

data

types

of

55

organization

56

properties

55

simple

55

transferred

by

mapping

78

Authentication

34

B
Basic

attribute

type

55

Benchmarking

wizard

42

Best

effort

transaction

level

88

Bidi

support
locale

91

BiDiBOTransformation

function
Bidirectional

Transformation

API

103

BiDiBusObjTransformation

function
Bidirectional

Transformation

API

103

Bidirectional

Characteristics

94

bidirectional

language
Enabling

WebSphere

for

99

bidirectional

languages
Enabling

maps

for

102

Support

for

WebSphere

94

Bidirectional

languages
bidirectionality

94

Design

considerations

103

Handling

text

102

layout

transformations

98

shaping

97

Bidirectional

Languages
processing

locale-dependent

92

Bidirectional

text
BiDi

API

103

Handling

102

Bidirectional

Transformation

API
BiDiBusObjTransformation

function

103

Bidirectional

Transformation

API,

BiDiBOTransformation

function

103

Bidirectionality
defined

94

BidiStringTransformation

function

103

Business

object

3,

17,

53

application-specific

20,

56

application-specific

information

in

57

as

event

notification

18

as

request

18

as

response

18

attribute

19,

54,

55

attribute

values

19

child

20

components

18

construction

65,

69

deconstruction

69

flat

20

generic

20,

21,

22

hierarchical

20

mapping

22,

75

modification

58

roles

of

18

type

19

verb

19,

56

Business

object

definition

53

associating

with

event

65

components

54

connector

download

of

60

Business

Object

Designer

42

Business

process
implementation

of

48

logic

3,

49

long-lived

44

C
call

interactions

9

Characteristics
Bidirectional

94

Child

business

object

20

Collaboration

3,

43

binding

16,

46

business

process

48,

51

concurrent

processing

45

configuring

41,

44

connectors

and

51,

59

group

45

long-lived

45

object

43

ports

46

processing

44

properties

43

publisher

of

business

objects

9

recovery

89

scenario

48

service

call

10,

45

startup

52

subscriber

to

business

objects

9

template

41,

43,

82

transactional

26,

81

Collaboration

(continued)
trigger

9

Collaboration

object

43,

46

Collaboration

template

41,

43,

46

Common

Object

Request

Broker

Architecture

(CORBA)

28

Compensation

84

Compound

attribute

type

55

Configuration
collaboration

41,

44

connector

71

InterChange

Server

system

40

Connectivity

3,

5

Connector

3,

15,

59

client

connector

framework

16

collaborations

and

51,

59

communication

with

application

16

components

16

configuration

60,

71

development

72

event

notification

behavior

61

metadata-driven

70

modification

72

multithreaded

68

properties

41,

71

publisher

of

business

objects

9

request

processing

behavior

66,

68

startup

59

transaction

level

88

Connector

agent

3,

16

checking

for

subscriptions

65

constructing

business

objects

65,

69

creating

72

location

of

16

polling

and

64

processing

events

64

processing

requests

66,

68

sending

business

object

65

starting

59

Connector

Configurator

41,

71,

72

Connector

controller

3,

16,

24

as

InterChange

Server

service

24

location

of

16

starting

59

user

interactions

with

24

Connectors
Bidirectional

enabling

100

CORBA

(Common

Object

Request

Broker

Architecture)

28

D
Data

encoding
meta-configuration

93

Data

handler

3

Data

mapping
See

Mapping

Database
repository

24

supported

vendors

24

transactions

in

81

©

Copyright

IBM

Corp.

1997,

2004

111

Design
content

data

encoding

93

Design

considerations
Bidirectional

languages

103

Locale

93

Diacritic
defined

97

Dynamic

31

E
Enabling

Adapter

Framework
bidirectional

101

Enabling

collaborations
bidirectional

101

Enabling

connectors
bidirectional

100

Enabling

maps

for

bidirectional

languages

102

Enabling

WebSphere

for

bidirectional

languages

99

Encryption

30

End-to-end

31

End-to-end

privacy

31

Establishing
locale

92

Event

18,

61

archiving

66

binding

16

detecting

64

inbox

62

processing

64

text

of

65

triggering

9

Event

management

service

23,

24

Event

notification

9,

61

business

object

role

in

18

connector

role

in

61

setting

up

61

F
Flat

business

object

20

G
Generic

business

object

20,

21,

22

H
Handling

bidirectional

text

102

Hierarchical

business

object

20

I
IBM

Tivoli

License

Manager

2,

39

Identity

relationship

79

IDL

(Interface

Definition

Language)

28

Integration

component

40

Inter-ORB

protocol

(IIOP)

28

InterChange

Server

23,

30

concurrent

processing

68

configuration

tool

for

40

connector

controllers

24

database

connectivity

pools

24

InterChange

Server

(continued)
database

connectivity

service

24

development

tools

41

event

management

service

23

high

availability

25

maps

and

75

modes

of

41

multiple

5

overview

1

platform

of

23

recovery

27

repository

24

tools

for

39

transaction

service

25

InterChange

Server

repository

24

Interface

Definition

Language

(IDL)

28

Internet

5,

30

Internet

distribution

30

Isolation

86,

87

ITLM

2,

39

J
Java

Database

Connectivity

(JDBC)

API

24

Java

Messaging

Service

(JMS)

28

Java

Virtual

Machine

(JVM)

23

JDBC

(Java

Database

Connectivity)

API

24

L
languages

Enabling

maps

for

bidirectional

102

Enabling

WebSphere

for

bidirectional

99

WebSphere

support

for

bidirectional

94

Layout

transformations
bidirectional

languages

98

Levels

32

Ligature
defined

97

Locale
Design

considerations

93

Establishing

92

support

for

91

Locale-dependent

data
processing

92

Lookup

relationship

79

M
Map

Designer

22,

41,

77

Map

reference

79

Mapping

22,

75

management

of

22

map

reference

79

purpose

of

75

relationship

transformations

78

simple

transformations

78

when

used

22

Maps

3,

77

creating

41

Mapping

API

77

transformations

78

maps

for

bidirectional

languages
Enabling

102

Message

types

33

Messaging

technologies

29

Meta-configuration
data

encoding

93

Metadata

69

Minimal

effort

transaction

level

88

N
Non-identity

relationship

79

O
Object

Discovery

Agent

Development

Kit

(ODK)

42

Object

Request

Broker

(ORB)

28

ObjectEventId

attribute

55

ODBC

(Open

Database

Connectivity)

24

Open

Database

Connectivity

(ODBC)

24

ORB

(Object

Request

Broker)

28

P
Polling

64

Port

46

Privacy

31

Process

Designer

41,

43

Processing

data
locale-dependent

92

Properties
collaboration

43

connector

41,

71

Publish-and-subscribe

interactions

7,

9,

28

R
Recovery

27,

89

Relationship

definition

77,

78

identity

79

lookup

79

non-identity

79

Relationship

Designer

22,

41,

77

Repository

24

connectivity

to

24

Request

business

object

18

Request

processing

66,

68,

69

verb-based

67

Request/response

interactions

10,

28

Response

business

object

18

Role-based

34

Role-based

access

control

34

S
Scenario

48,

51

activity

step

50,

51

organization

options

48

rollback

84

transactional

82

Securing

30

Security

29,

30,

31,

32,

33,

34

Security

levels

32

112

Technical

Introduction

Server

Access

Interface

3,

9

Service

call

10,

45

Shaping
bidirectional

languages

97

Standard

properties

(connector)

71

Startup
collaboration

52

connector

59

Stringent

transaction

level

89

Subtransaction

step

82,

84

illustration

of

84

Support
locale

91

System

Manager

24,

40,

42

System

Monitor

42

T
Test

Environment

41

Transaction

26

Transaction

levels

87,

89

Transaction

service

25

Transactional

collaboration

26,

81,

90

isolation

in

86,

87

model

for

82

recovery

89

rollback

84

transaction

levels

87,

89

window

of

vulnerability

87

Trigger

16

direct

calls

9

events

9

Two-phase

commit

82

V
Verb

19,

56,

65

application-specific

information

58,

68

Virtual

Test

Connector

41

W
WebSphere

business

integration

system

1

WebSphere

Business

Integration

Toolset

2

WebSphere

for

bidirectional

languages,

bidirectional

support

94

WebSphere

for

bidirectional

languages,

Enabling

99

WebSphere

MQ

28,

29

WebSphere

support

for

bidirectional

languages

94

Workflow

(notification

example)

62

Index

113

114

Technical

Introduction

����

Printed

in

USA

	Contents
	About this manual
	Audience
	Prerequisites for this document
	Related documents
	Typographic conventions

	New in this release
	New in WebSphere InterChange Server v4.3
	New in WebSphere InterChange Server v4.2.2
	New in WebSphere InterChange Server v4.2.1

	Chapter 1. Overview of IBM WebSphere InterChange Server
	InterChange Server and the WebSphere business integration system
	InterChange Server model
	WebSphere Business InterChange Server Toolset
	Collaborations, business objects, and connectivity
	Sample implementation solutions
	Multiple server deployment
	Connectivity over the Internet

	Data flow in an InterChange Server implementation
	Publish-and-subscribe interactions
	Access requests
	Request/response interactions
	Sample data flows

	Connectors
	Connector communication with applications

	Binding between elements
	Binding a trigger
	Binding for events
	Binding to receive access requests

	Binding destinations

	Business objects
	Roles of a business object
	Event
	Request
	Response

	Structure of a business object
	Business object type
	Business object verbs
	Business object attribute values

	Application-specific and generic business objects

	Data mapping
	InterChange Server
	Event management service
	Connector controllers
	Repository
	Database connectivity service
	Database connection pools
	High availability
	Transaction service
	Transactional collaborations

	Recovery features

	Communication transport infrastructure
	Distribution on a network
	CORBA
	Messaging technologies

	Distribution across the Internet

	Securing InterChange Server
	Encryption
	End-to-end privacy
	Asymmetric and dynamic security
	Levels of security
	Message types

	Role-based access control
	Roles
	Auditing
	User Registry
	Securing components and actions

	Summary

	Chapter 2. Tools for use with InterChange Server
	WebSphere Business Integration Toolset
	System Manager
	Component configuration
	System Manager and InterChange Server modes

	Development tools
	Administrative tools

	Chapter 3. Collaborations
	Collaboration templates and objects
	Collaboration processing
	Service call handling and long-lived business processes
	Synchronous outbound service call
	Asynchronous outbound service call
	Asynchronous inbound service call

	Collaborations and concurrent processing
	Collaboration groups
	Ports
	Dynamic service calls

	Scenarios
	Business process logic
	Interactions with connectors and applications
	Collaboration startup
	Summary

	Chapter 4. Business objects
	Business object definitions and business objects
	Components of a business object definition
	Attributes
	ObjectEventId attribute
	Simple and compound attribute types
	Attribute properties

	Verbs

	A closer look at application-specific business objects
	Attribute organization
	Application-specific information
	Application-specific information for a business object
	Application-specific information for an attribute
	Application-specific information for verbs

	Modification options
	Summary

	Chapter 5. Connectors
	Connector startup
	Event notification
	Setting up the application’s event-notification mechanism
	When applications have event support
	When applications lack event support

	Detecting an event
	Processing an event
	Associating an application event with a business object definition
	Checking for subscriptions
	Building a business object
	Sending the business object to the connector controller
	Archiving events

	Request processing
	Verb-based processing
	Verb-based application-specific information

	Concurrent processing capabilities
	Business object construction and deconstruction
	Business object metadata and connector actions
	Benefits of metadata-driven connector agents
	An example of business object construction

	Connector configuration
	Connector properties
	Associated maps

	Connector development
	Summary

	Chapter 6. Data mapping
	How the InterChange Server system uses mapping
	Map components and tools
	Mapping transformations
	Simple transformations
	Relationship transformations
	Kinds of relationships

	Configuring connectors with maps
	Summary

	Chapter 7. Transactional collaborations
	The transaction model
	What is a transactional collaboration?
	Transactional scenarios
	Subtransactions
	Compensation and rollback
	Use of compensation in rollback
	Designing for rollback
	Runtime illustration

	Data isolation
	Transaction levels
	None
	Minimal Effort
	Best Effort
	Stringent

	Recovery
	Transactional collaborations and long-lived business processes
	Summary

	Chapter 8. Language-specific behavior support
	Locale support in the WebSphere Business Integration products
	Establishing a locale
	Processing locale-dependent data

	Design considerations
	Content data encoding
	Meta-configuration data encoding
	Log and trace data encoding

	Bidirectional script support
	Bidirectional language characteristics
	Bidirectionality
	Shaping

	Layout transformations and attributes
	Text layout
	Layout attributes
	Layout transformations

	Enabling bidirectional scripts in WebSphere Business Integration products
	Enabling connectors for bidirectional scripts
	Enabling Adapter Framework for bidirectional scripts
	Enabling collaborations for bidirectional scripts
	Enabling maps for bidirectional scripts

	Handling bidirectional text
	Migrating data
	Special bidirectional strings
	BiDi APIs
	BiDi methods
	BiDiBusObjTransformation function
	BiDiBOTransformation function
	BiDiStringTransformation function

	Design limitations
	Summary

	Notices
	Programming interface information
	Trademarks and service marks

	Index

