WebSphere Business Integration Server

Express Plus

Collaboration Development Guide

V4.3

EHETETEN software

<|ll

WebSphere Business Integration Server

Express Plus

Collaboration Development Guide

V4.3

<|ll

Note!
FBefore using this information and the product it supports, read the information in|[“Notices” on page 433

14May2004

This edition of this document applies to IBM WebSphere Business Integration Server Express, version 4.3, IBM
WebSphere Business Integration Server Express Plus, version 4.3, and to all subsequent releases and modifications
until otherwise indicated in new editions.

To send us your comments about IBM documentation, email doc-comments@us.ibm.com. We look forward to
hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Copyright International Business Machines Corporation 2004. All rights reserved.

US Government Users Restricted Rights—Use, duplication, or disclosure restricted by SGA ADP Schedule Contract
with IBM Corp.

© Copyright International Business Machines Corporation 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface . Xiii
Audience . . . xiii
Scope of this manual . Xiii
How to use this manual . . xiv
Related documents . Xvi
Typographic conventions . Xvi
Summary of Changes. . Xvii
New in version 4.3 . xvii
Part 1. Getting started. .1
Chapter 1. Introduction to collaboration development . . 3
What are collaborations? . . oo e .. 3
Tools for collaboration development . . 10
Overview of the development process .12
Chapter 2. Overview of Process Designer Express . . 15
Starting Process Designer Express . e .15
Process Designer Express layout . 16
Process Designer Express windows .17
Process Designer Express menus . 20
Process Designer Express toolbars . .23
Customizing the main window . .23
Part 2. Creating a collaboration template . 27
Chapter 3. Designing a collaboration. . 29
CollaborationFoundation template. .29
Extending CollaborationFoundation . . 35
WrapperFoundation template . 47
Building collaboration groups .52
Including Web services . . 54
Designing for long-lived busmess processes . 54
Designing for parallel execution . 54
Examples . . 60
An internationalized collaboratlon . 62
Chapter 4. Building a collaboration template . 69
Creating a collaboration template . e . 69
Providing template property information . 70
Defining scenarios . . 84
Creating an activity d1agram . 88
Creating the message file . . 88
Compiling a collaboration template . 89
Converting templates . . .90
Deleting a collaboration template . .91
Testing a collaboration. .91
Chapter 5. Using activity diagrams. . 93
Using the diagram editor functionality .93
Activity diagram symbols .94
Action nodes . . . 96
© Copyright IBM Corp. 2004 iii

Transition Links . 100
Decision nodes . . 104
Service calls . . 108
Subdiagrams . 117
Iterators . . . 121
Using other features of the Symbols toolbar . . . 124
Obtaining values of collaboration configuration properties . 125
Using transactional features . 125
Terminating the execution path . 125
Other activity diagram operations . 127
Chapter 6. Using Act|V|ty Editor . 131
Starting Activity Editor . . 131
The Activity Editor interface . 131
Activity definitions . . 136
Supported function blocks . . 139
Example: Changing a date format . . 141
Example: Creating a duplicate business ob]ect . 144
Chapter 7. Handling exceptions . 147
What is a collaboration exception? . 147
How exceptions are processed. . 149
How to handle exceptions . . 152
Handling particular service-call exceptlons . 158
Exceptions from the Collaboration API . . 161
Chapter 8. Workspace and layout options . . 163
Aligning symbols . . 163
Nudging symbols . . . 165
Zooming or panning on symbols . 166
Using the workspace grid . . 166
Changing display: user preferences . . . 167
Hiding the Symbol Properties dialog boxes . 170
Chapter 9. Creating a message file . 171
Operations that use the message file. 171
Creating a message file . . . 171
Message file: Name and location . . 172
Explanations . . 173
Message parameters . . 174
Maintaining the file . 174
Chapter 10. Coding tips and examples . . 175
Operations on the collaboration . . . 175
Operations on business objects . 185
Executing database queries . . 193
Part 3. Supported function blocks . . 211
Chapter 11. Business object function blocks . . 213
Copy . . 214
Duplicate. . 215
Equal Keys . . 215
Equals. . 216
Exists . . 216
Get Boolean . . 217
Get Business Object . 217
Get Business Object Array . . 218
Get Business Object Type . 219

iV Collaboration Development Guide

Get BusObj At .

Get Double .

Get Float .

Get Int

Get Locale

Get Long . .

Get Long Text .

Get Object

Get String

Get Verb .

Is Blank . .

Is Business Object .

Is Key .

Is Null

Is Required .

Tterate Children

Keys to String .

New Business Object .
New Business Object Array.
Set BusObj At .

Set Content . L.
Set Default Attribute Values
Set Keys .

Set Locale

Set Value . -
Set Value By Position.
Set Value with Create.
Set Verb . .
Set Verb with Create .
Shallow Equals.

Size ..

To String .

Valid Data
Verb:Create .
Verb:Delete .
Verb:Retrieve
Verb:Update.

Chapter 12. Business object array function blocks

Add Element

Duplicate.

Equals. .

Get Element At.

Get Elements

Get Last Index . .
Is Business Object Array.
Max Attribute Value .
Max Business Object Array .
Max Business Objects.
Min Attribute Value .
Min Business Object Array .
Min Business Objects .
Remove All Elements.
Remove Element .
Remove Element At .
Set Element At .

Size

Sum

Swap .

To String .

. 219
. 219
. 220
. 221
. 221
. 222
. 222
. 223
. 224
. 224
. 225
. 225
. 226
. 226
. 227
. 227
. 227
. 228
. 228
. 229
. 229
. 229
. 230
. 230
. 230
. 231
. 232
. 232
. 233
. 233
. 234
. 234
. 234
. 235
. 235
. 236
. 236

. 237
. 237
. 238
. 238
. 239
. 239
. 239
. 240
. 240
. 241
. 242
. 243
. 243
. 244
. 245
. 245
. 246
. 246
. 247
. 247
. 248
. 248

Contents

A\

Chapter 13. Collaboration template functionblocks 249
AnyException L . L L oL ... 0250
AttributeException L L L L L L L oo oo o250
Get Locale Lo
Get Message. . . C e e s 280
Get Message with Parameter C oo e s
GetName L L L L L. L2
Get Property L e 2B2
Get Property Array L ..o 252
Implicit DB Bracketing25
Is Trace Enabled .2
JavaException .25
ObjectException .25
OperationException L L. .25
Property Exists " wvir
Raise Collaboration Exceptlon MGt
Raise Collaboration Exception1 .25
Raise Collaboration Exception2 .25
Raise Collaboration Exception3 .25
Raise Collaboration Exception4 .257
Raise Collaboration Exception 5 e do
Raise Collaboration Exception w1th Parameter 4o
Send Email L L L L0259
ServiceCallException 20
SystemException 260
TransactionException. .260

Chapter 14. Database connection functionblocks. 261
Begin Transaction .. 261
Commit . . 1 s ¥4
Execute Prepared SQL S C o268
Execute Prepared SQL with Parameter) o
Execute SQL. A ¥
Execute SQL with Parameter 2. o o
Execute Stored Procedure .2606
Get Database Connection . . 21 4
Get Database Connection with Transact1on 21 4
Get Next Row oo, 268
Get Update Count. Lo 2600
Has More Rows oo s s s u270
In Transaction L L L s 270
Is Active L L2t
Release L L Lo s s s st
Roll Back. L s s s s 22

Chapter 15. Database stored procedure functionblocks 275
Get Param Typeo o275
Get Param Value 4
New DB Stored Procedure Param s s e s s s 276

Chapter 16. Exception functionblocks279
Catch Collaboration Exception. .29
Get Message. . . C o2
Get Message Number <)
Get Subtype. L L L L L2280
GetType e e e e e e e e s s s 2s
ToString L oL o282

Chapter 17. Execution functionblocks .285
Get Context L L ..o 285

vi Collaboration Development Guide

MAPCONTEXT
New Execution Context .
Set Context .

Chapter 18. Date function blocks .

Add Day .

Add Month .

Add Year.

Date After

Date Before .

Date Equals .

Format Change.

Get Day .

Get Month

Get Year .

Get Year Month Day
Now

yyyy-MM-dd
yyyyMMdd . .
yyyyMMdd HH:mm:ss .

Chapter 19. Logglng and tracmg function blocks .

Log error.

Log Error ID

Log Error ID 1 .

Log Error ID 2 .

Log Error ID 3 .

Log Information

Log Information ID
Log Information ID 1.
Log Information ID 2.
Log Information ID 3.
Log Warning

Log Warning ID

Log Warning ID 1 .
Log Warning ID 2 .
Log Warning ID 3.
Trace . .
Trace ID 1

Trace ID 2

Trace ID 3

Trace on Level .

Chapter 20. Strlng function blocks .

Append Text

r

Is Empty .

Is NULL .

Left Fill

Left String

Lower Case .

Object to String.

Repeat.

Replace

Right Fill .

Right String .

Substring by Posmon
Substring by Value

Text Equal .
Text Equal Ignore Case .

. 285
. 285
. 286

. 287

. 287
. 287
. 288
. 288
. 288
. 289
. 289
. 289
. 289
. 290
. 290
. 290
. 290
. 291
. 291

. 293

. 293
. 293
. 294
. 294
. 294
. 295
. 295
. 295
. 295
. 296
. 296
. 296
. 296
. 297
. 297
. 297
. 297
. 298
. 298
. 299

. 301

Contents

. 301
. 302
. 302
. 302
. 302
. 303
. 303
. 303
. 303
. 304
. 304
. 304
. 304
. 305
. 305
. 305

vii

Text Length . . 306
Trim Left . . 306
Trim Right . 306
Trim Text. . 306
Upper Case . . 306
Chapter 21. Utilities function blocks . 309
Add Element . 309
Catch Error . . 310
Catch Error Type . . 310
Condition . 310
English . 310
French. . 310
German .31
Get Country . . 311
Get Element . . 311
Get Language .31
Ttalian . . 312
Iterate Vector . 312
Japanese . . 312
Korean . 312
Loop . . 313
Move Attrlbute in Chlld . 313
New Locale 313
New Locale with Language . 314
New Vector . . 314
Raise Error . . 314
Raise Error Type . 314
Simplified Chinese . 314
Size o . 315
To Array . . 315
Traditional Chmese . 315
Part 4. Collaboration API reference . 317
Chapter 22. BaseCollaboration class . 319
existsConfigProperty() . 319
getConfigProperty() . 320
getConfigProperty Array() . 320
getCurrentLoopIndex() . . 321
getDBConnection() . 321
getLocale() . 323
getMessage() . 324
getName() . . 325
1mp11C1tDBTransaChonBraCketmg() . 325
isTraceEnabled() . 326
logError(), logInfo(), logWarnmg() . 326
raiseException() . 328
sendEmail() . . 331
trace() . . 332
Chapter 23. BusObj class . . 335
copy() . - . 336
duplicate() . 337
equalKeys() . . 337
equals() . . 338
equalsShallow() . 338
exists() . 339
getBoolean(), getDouble() getFloat() getInt() getLong() get() getBusOb]() getBusOb]Array() getLongText()

getString() . 339

viili Collaboration Development Guide

getLocale()
getType() .
getVerb() .
isBlank() .

isKey()

isNull()
isRequired() .
keysToString() .
set() .
setDefaultAttrValues()
setKeys() .
setLocale()
setVerb() .
setWithCreate() .
toString() .
validData() . .
Deprecated method

Chapter 24. BusObjArray class.
addElement()
duplicate()
elementAt() .
equals()
getElements()
getLastIndex() .
max() . .
maxBusOb]Array()
maxBusObjs()
min() . .
mmBusOb]Array()
minBusObjs()
removeAllElements() .
removeElement() .
removeElementAt()
setElementAt() .
size() .

sum() .

swap().

toString() .

Chapter 25. CwDBConnection class.
beginTransaction() .
commit() .
executePreparedSQL()
executeSQL()
executeStoredProcedure()
getUpdateCount() .
hasMoreRows().
inTransaction() .
isActive().

nextRow ()

release() .

rollBack().

Chapter 26. CwDBStoredProcedureParam class
CwDBStoredProcedureParam()

getParamType().

getValue()

Chapter 27. CxExecutionContext class

. 341
. 342
. 342
. 343
. 343
. 344
. 345
. 345
. 346
. 347
. 347
. 348
. 348
. 349
. 349
. 350
. 351

. 353
. 354
. 354
. 355
. 355
. 355
. 356
. 356
. 357
. 358
. 359
. 360
. 361
. 362
. 362
. 362
. 363
. 363
. 364
. 364
. 365

. 367
. 367
. 368
. 369
. 370
. 372
. 373
. 374
. 374
. 375
. 375
. 376
. 377

. 379
. 379
. 381
. 381

. 383

Contents 1X

Static constants. . 383
CxExecutionContext() . 383
getContext() . . 384
setContext() . . 384
Chapter 28. CollaborationException class . . 387
getMessage() . . 387
getMsgNumber() . . 388
getSubType() . 388
getType() . . 389
toString() . . . 390
Deprecated methods . . 391
Chapter 29. Filter class . . 393
Filter(). . 394
fllterExcludes() . 395
filterIncludes() . . 396
recurseFilter() . 397
recursePreReqs() . 398
Chapter 30. Globals class . . 399
Globals() . . 400
callMap() . . 401
Chapter 31. SmartCollabService class. . 403
SmartCollabService() . . 403
doAgg() 404
doMergeHash(). . 404
doRecursiveAgg() . . 405
doRecursiveSplit() . . 405
getKeyValues() . . 406
merge() . 406
split() . . 407
Chapter 32. StateManagement class . 409
beginTransaction() . . 410
commit() . . 410
deleteBO() . 410
deleteState() . . 411
persistBO() . 411
recoverBO() . . 412
releaseDBConnection() . 413
resetData() . 413
retrieveState() . 413
saveState() . 414
setDBCormectlon() . 414
StateManagement() . 415
updateBO() . . 415
updateState() . 415
Part 5. Appendixes . . 417
Appendix. Standard Collaboration information . . 419
Standard processes for collaboration templates . . 419
Standard properties for collaboration templates . . 426
Notices 433
Programming interface 1nformat10n . . 434
Trademarks and service marks . 434

X Collaboration Development Guide

Glossary e e e e e e e e e e e e e e e e e e e .. 437

IndexX h e . .4

Contents X1

xil Collaboration Development Guide

Preface

The products IBM® WebSphere Business Integration Server Express and IBM®
WebSphere Business Integration Server Express Plus are made up of the following
components: InterChange Server Express, the associated Toolset Express,
CollaborationFoundation, and a set of software integration adapters. The tools in
Toolset Express help you create, modify, and manage business processes. You can
choose from among the prepackaged adapters for your business processes that
span applications. The standard process
template—CollaborationFoundation—allows you to quickly create customized
processes.

This document describes how to use Process Designer Express (which is available
only in WebSphere Business Integration Server Express Plus) to create
collaborations, which are part of the Business Integration Express infrastructure.
Collaborations are programs that contain the business logic for application
integration.

Except where noted, all the information in this guide applies to both IBM
WebSphere Business Integration Server Express and IBM WebSphere Business
Integration Server Express Plus. The term WebSphere Business Integration Server
Express and its variants (for example, Business Integration Express) refer to both
products.

Audience

This document is for customers, consultants, or resellers who create or modify
collaborations. Before you start, you should understand all the concepts explained
in the manual System Implementation Guide.

To develop a collaboration, you should know standard programming concepts and
practice. Also, collaboration development requires some Java® programming
language knowledge. The collaboration API is based on the Java programming
language, and it handles operations that most collaborations perform, such as
manipulating business objects. If you have some programming background, the
examples in this manual may help you to write simple collaborations, even if you
do not know Java.

Scope of this manual

The overall collaboration development process has many phases and can involve
many people, including application experts, business analysts, and programmers.
After analyzing an application integration problem, the collaboration development
team builds the business process for solving it within the WebSphere business
integration system. The team usually starts with a flow chart and migrates the flow
chart to a collaboration.

This manual assumes that you are starting with a specification, flow chart, or
pencil design. It does not cover analysis of business processes, development of
connectors, or design of business objects.

© Copyright IBM Corp. 2004 xiii

Note: In this document backslashes (\) are used as the convention for directory
paths. For UNIX installations, substitute slashes (/) for backslashes. All file
pathnames are relative to the directory where the product is installed on

your system.

How to use this manual

This manual is organized as follows:

Part I: Getting Started

Chapter 1, “Introduction to|
collaboration development,” on]
page 3

Chapter 2, “Overview of Process|
Designer Express,” on page 15|

Part II: Creating a Collaboration Template
Chapter 3, “Designing a|
collaboration,” on page 29|

Chapter 4, “Building al
collaboration template,” on page|
6
Chapter 5, “Using activity|
diagrams,” on page 93|

Chapter 6, “Using Activity Editor,”|

on page 131|

Chapter 7, “Handling exceptions,”|
on page 147

Chapter 8, “Workspace and layout|
options,” on page 163|

Chapter 10, “Coding tips and)|
examples,” on page 175

Chapter 9, “Creating a messag¢
file,” on page 171|

Part III: Supported function blocks

Provides an overview of collaborations
and the collaboration development
environment.

Provides detailed information about the
Process Designer Express interface.

Provides information useful in the
design phase of collaboration
development.

Tells you how to create the definition of
a collaboration template.

Describes how to use symbols and other
components to build an activity diagram.
Describes how to use Activity Editor to
create the business logic in the
collaboration template.

Describes how to implement exception
handling in a collaboration template.
Describes some of your options for
arranging the symbols in an activity
diagram and the diagramming area
itself.

Contains code snippets and tips that
show how to perform common
operations.

Explains how to set up the file that all
collaborations need for holding logging
and tracing messages.

Xiv Collaboration Development Guide

Chapter 11, “Business object| Contains reference pages for the function
function blocks,” on page 213 blocks supported in Activity Editor.
Chapter 12, “Business object array|
function blocks,” on page 237
Chapter 13, “Collaboration|
template function blocks,” on page|
249

Chapter 14, “Database connection|
function blocks,” on page 261|
Chapter 15, “Database stored)|
procedure function blocks,” on|
page 275|

Chapter 16, “Exception function|
blocks,” on page 279

Chapter 17, “Execution function|
blocks,” on page 285|

Chapter 18, “Date function|
blocks,” on page 287

Chapter 19, “Logging and tracing]
function blocks,” on page 293
Chapter 20, “String function|
blocks,” on page 301]

Chapter 21, “Utilities function|
blocks,” on page 309|

Part IV: Collaboration API Reference

Part V: Appen

Chapter 22, “BaseCollaboration| Contain reference pages for methods of
class,” on page 319} classes in the collaboration API.
Chapter 23, “BusObj class,” on|

page 335}

Chapter 24, “BusObjArray class,”|
on page 353}

Chapter 25, “CwDBConnection|
class,” on page 367}

Chapter 26)
“CwDBStoredProcedureParam|
class,” on page 379}

Chapter 27, “CxExecutionContexﬂ
class,” on page 383]

Chapter 28
“CollaborationException class,” on|
page 387}

Chapter 29, “Filter class,” on page|
393}

Chapter 30, “Globals class,” on|
page 399

Chapter 31, “SmartCollabService|
class,” on page 403]

Chapter 32, “StateManagement
class,” on page 409|

dix

“Standard Collaboration| Describes the business processes and

information,” on page 419| properties common to all collaborations
based on the CollaborationFoundation
template.

Defines terms used in the manual.

Preface XV

Related documents

The complete set of documentation available with this product describes the
features and components common to all WebSphere Business Integration Server
Express WebSphere Business Integration Server Express Plus installations, and
includes reference material on specific components.

You can download, install, and view the documentation at the following site:
www.ibm.com/websphere/wbiserverexpress/infocenter.

This site contains simple directions for downloading, installing, and viewing the
documentation.

Note: Important information about this product may be available in Technical
Support Technotes and Flashes issued after this document has been
published. These can be found on the WebSphere Business Integration
Support Web site:
http:/ /www.ibm.com/software/integration/websphere/support. Select the
component area of interest and browse the Technotes and Flashes sections.

Typographic conventions

This document uses the following conventions:

courier font Indicates a literal value, such as a command name, file
name, information that you type, or information that
the system prints on the screen.

bold Indicates a new term the first time that it appears.

italic Indicates a variable name or a cross-reference. When
you view a document as a PDF file, cross references are
both italic and blue. You can click on a cross-reference
to jump to the target information.

italic courier Indicates a variable name within literal text.
Separates a code fragment from the rest of the text.
blue text Blue outline, which is visible only when you view the

manual online, indicates a cross-reference hyperlink.
Click inside the outline to jump to the object of the

reference.

{} In a syntax line, curly braces surround a set of options
from which you must choose one and only one.

[] In a syntax line, brackets surround an optional
parameter.

In a syntax line, ellipses indicate a repetition of the
previous parameter. For example, option[,...] means
that you can enter multiple, comma-separated options.

Xvi Collaboration Development Guide

Summary of Changes

New in version 4.3

This is the first release of this guide.

© Copyright IBM Corp. 2004 xvii

xviil Collaboration Development Guide

Part 1. Getting started

© Copyright IBM Corp. 2004

2 Collaboration Development Guide

Chapter 1. Introduction to collaboration development

Welcome to Process Designer Express and to the collaboration development
process. Process Designer Express, available only with IBM WebSphere Business
Integration Server Express Plus, is a powerful modeling and code generation tool
with which you can create collaborations, programs that create enterprise business
processes that involve multiple applications.

This chapter is an introduction to the collaboration development process and the
tools used to develop collaborations.

What are collaborations?

Collaborations are software modules that describe business processes and that run

within IBM InterChange Server Express (ICS). These business processes are

programs that contain the business logic for application integration. A collaboration

can perform various types of Java operations. However, most commonly,

collaborations perform operations on business objects, such as:

* Obtaining and manipulating one or more values in the triggering event

* Sending a business object as a request to an application so that the application
creates, deletes, or updates a specified entity

* Sending a request to an application to retrieve an entity

As shows, a collaboration is a two-part entity, consisting of a repository
definition and a runtime object.

Table 1. Parts of a collaboration

Repository entity Runtime object

Collaboration template Collaboration object

When you install a collaboration, you install a collaboration template. A collaboration
template contains all of the collaboration’s execution logic, but it is not executable.
To execute a collaboration, you must first create a collaboration object from the
template. The collaboration object becomes executable after you configure it by
binding it to connectors or to other collaboration objects, and specifying other
configuration properties.

Note: For an introduction to how collaborations function as a component of the
IBM WebSphere Business Integration Server Express system, see the System
Implementation Guide. This section concentrates on defining a collaboration in
terms of how it is developed.

In this book, both collaboration templates and collaboration objects are often
referred to as simply collaborations, unless it is necessary to distinguish between a
template and an object.

Collaboration templates

A collaboration begins as a collaboration template. A collaboration template is a
specification of the logic within the collaboration. You define a collaboration

© Copyright IBM Corp. 2004 3

template with the Process Designer Express tool, which stores the appropriate
information in System Manager. Development of a collaboration template involves
the following steps:

* Creating the collaboration template
* Building the parts of the collaboration template
* Compiling the collaboration template

Creating a collaboration template

When you develop a collaboration, you use a tool called Process Designer Express
to develop a collaboration template. Process Designer Express provides an
easy-to-use, graphical user interface (GUI) that eliminates much of the coding
usually required to develop a program. This interface makes it easy for you to
declare variables, write code fragments, and so on. Business Integration Express
provides generic collaboration templates to facilitate the development process.
Using Process Designer Express, it is simpler to develop a collaboration template
than to write a standard programming language program. However, the end result
of collaboration development is a program, in the form of a Java class.

Process Designer Express saves the collaboration template information in System
Manager until deployment. After a collaboration is deployed, the collaboration
information is available in InterChange Server Express, where it can be accessed
when the collaboration receives a triggering event. For more information on
Process Designer Express, see [Chapter 2, “Overview of Process Designer Express,’]

Building a collaboration template
Within Process Designer Express, building a collaboration template involves a
two-level development process:

* Activity diagrams
— You create activity diagrams, which are graphical, symbolic descriptions of
the business process and its flow.

— You use Activity Editor to implement additional details of the business
process.

Compiling the template converts the diagrams and their associated code to an
executable Java class.

* Messages—You define messages, which hold the text used in logging, tracing,
and raising exceptions.

When a template is compiled, the message content is placed in a message file
within System Manager. After the collaboration is deployed, the message file is
also stored in InterChange Server Express, where it is accessed during runtime.
For more information, see [Chapter 9, “Creating a message file,” on page 171/

Creating the activity diagrams: A collaboration template consists of:
* scenarios, which specify sets of actions.

When developing a collaboration template, you first divide the collaboration’s
business logic into one or more scenarios.

Every collaboration template is partitioned into one or more units called
scenarios. A scenario specifies exactly how the collaboration responds to a
particular flow trigger. The scenario is like a method in that it describes the
actions that will be taken by the collaboration.

You can create multiple scenarios or put all of the collaboration’s logic into one
scenario.

4 Collaboration Development Guide

* activity diagrams, which describe these actions using code fragments representing
individual actions.

For each scenario, you create an activity diagram that graphically describes the
scenario’s process. An activity diagram is a graphical implementation of the
scenario, including actions, execution flow, and external calls. Activity diagrams
are based on Unified Modeling Language (UML), a standard notation for
modeling business processes. The use of visual programming in diagrams makes
it easy to create a scenario and reduces the amount of actual coding.

The various steps of the activity diagram are the individual actions, or code
fragments.

Every scenario contains at least one, top-level diagram that represents the entry
point of the scenario during execution and contains the overall logic flow of the
scenario. Subdiagrams can divide the details of scenario logic into multiple nested
levels.

An activity diagram looks somewhat like a flow chart. Unlike a flow chart,
however, an activity diagram can create the executable Java code that the
activity diagram represents.

is an example of an activity diagram.

RecervedndReply

Action 1

Javak noeptiol

Mo orders

One or more grders [default)

¥ ¥

Action 2 Action 4

Action 3

End Success Erd Failure

End Success

Figure 1. Activity diagram

The basic unit in an activity diagram is an action, represented by a rectangle. An
action specifies a unit of work in the collaboration and is used to create and store
Java code fragments.

The activity diagram represents all the possible behavior at execution time. The
‘

activity diagram in 1lhas multiple execution paths. An execution path is
represented by a set of symbols and links that flow from the top Start symbol to

Chapter 1. Introduction to collaboration development 5

one of the End symbols at the bottom. A symbol that has multiple outgoing links is
a decision node; it is at this point that the collaboration decides to follow one path
of logic instead of another.

Implementing Java code fragments: Each action contains a Java programming
language code fragment (called an activity definition) to which a developer can add
custom code in the form of function blocks. Process Designer Express embeds the
activity definition in the collaboration template code that it generates and executes
the generated code when the collaboration object executes, as part of the
collaboration flow.

You can add a custom activity definition, if desired. You can:
* Write your own activity.

Much of the business logic in a collaboration template consists of calls to the
Business Integration Express collaboration API. However, the activity is not
limited to calls to the collaboration API; it can contain any Java code that you
want to write. Add your own activity definition or customize an existing activity
by doing one of the following:

— Using Activity Editor, a GUI that facilitates adding activity definitions. It
enables you to either write traditional Java code or graphically model the
programming logic with function blocks.

— Directly typing the Java code fragment into the Code Fragment window of
the action node’s Action Properties dialog box. (Note that you must set
Process Designer user preferences to enable this feature.)

* Import code (as a function block) from another Java class.

You can import external packages of Java classes into the collaboration and use
their methods inside actions.

Note: The class that Process Designer Express generates must run in the
execution context of ICS. Although you can import or write your own
Java code, the code should augment an activity diagram. Performing
other operations that can destroy the flow of execution or consume
excessive resources is discouraged.

Compiling a collaboration template

When you finish the definition of a collaboration template—you have defined its
scenarios, built the activity diagrams, customized its code fragments, and created
its message file—you compile the entire template. The collaboration compilation
process creates three types of files (.class, java, and .txt) that the collaboration
runtime uses.

When you compile a collaboration, these files are automatically created in your
Integration Component Libraries (ICL) project within System Manager. When you
deploy your collaboration object to the server, these files are moved into the
productDir\collaborations directory. describes the files and shows where
they are located after compilation and deployment.

Table 2. Collaboration files

File type Description Location

.class Final executable class file that Process =~ After compilation:
Designer Express produces during ICLProject\ Templates\Classes
compilation

After deployment:
classes\ UserCollaborations

6 Collaboration Development Guide

Table 2. Collaboration files (continued)

File type Description Location

java Source code file that Process Designer After compilation:
Express produces during code ICLProject\ Templates\Src
generation

After deployment:
classes\ UserCollaborations
Axt Message file that contains all of the After compilation:
message text you added to the template ICLProject\Templates\messages

during development
After deployment:

\messages

Important
Make all changes to messages only through Process Designer; never make
changes directly to the message text file. After a collaboration has been
deployed, this file is used by the runtime environment; directly editing it can
cause errors.

After you have compiled a collaboration template, you can use System Manager to
create collaboration objects and deploy these objects and the template to
InterChange Server Express. See Implementation Guide for WebSphere InterChange
Server.

Collaboration objects

Although a collaboration template contains the collaboration’s execution logic, you
must take the following steps before the collaboration can execute:

1. Create a collaboration object.

A collaboration object is an instance of a collaboration template. To create a
collaboration object, you use System Manager.

2. Configure the collaboration object.

The collaboration object becomes executable after you configure it. To configure
the collaboration object, you bind it to connectors or to other collaboration
objects, and specify other configuration properties

The process of specifying the objects with which a collaboration object interacts

is called binding. A collaboration object can be bound to any of the following:

* A connector, other collaboration objects, or access clients with which a
collaboration object interacts. When you bind the collaboration object and
specify the values for its configuration properties, the collaboration object
becomes executable.

For more information on using System Manager to create and configure
collaboration objects, see the Implementation Guide for WebSphere InterChange Server.

ﬂlustrates the creation of a collaboration object called OrderStat from the
template OrderStatus.

Chapter 1. Introduction to collaboration development 7

OrderStatus
Collaboration Template

OrderStat
Collaboration Object

Figure 2. Creating a collaboration object

The OrderStatus collaboration template was created with two defined ports,
through which the collaboration expects to communicate with its source and
destination objects. As part of configuring the OrderStat collaboration object, you
bind it to two external objects. shows that the OrderStat collaboration
object is bound to the SAP connector and to the Vantive connector.

OrderStat
Collaboration Object

Source Destination
| v
SAP Vantive
Connector Connector

Figure 3. Collaboration object bound to connectors

After a collaboration object is bound and configured, you can use System Manager
to test it and deploy it in the runtime environment. A collaboration object can be
configured to run in one thread or in multiple threads, with each thread handling
one triggering event. For concurrent handling of multiple triggering events, you
run a collaboration object in multi-threaded mode.

Collaborations as long-lived business processes

Collaboration objects can be deployed as long-lived business processes, enabling
asynchronous communication between business processes. As a result, business
processes can span a greater length of time. In a long-lived business process, the
event flow context (including global template or port variables and business object
variables created in Process Designer Express, as well as runtime workflow
information) persists throughout a service call.

Service call timeout values can be specified for asynchronous inbound and
synchronous service calls to further define the parameters of a long-lived business
process.

If you plan to use a collaboration object as a long-lived business process, you must
configure the collaboration template accordingly. Before building your
Collaboratlon template, see the information in [“Designing for long-lived business
processes” on page 54.| After you have designed your template see[C
“Building a collaboration template,” on page 69| for information about the specific
configuration tasks required to provide support for long-lived business processes.

8 Collaboration Development Guide

Collaborations and the WebSphere Business Integration
Express system

The WebSphere Business Integration Express system uses a business object to carry
data and action requests from one application to another. A collaboration begins
execution when a scenario within a collaboration object receives a particular
business object and an action (verb). This combination of business object and verb
whose receipt by the collaboration triggers the execution of a scenario is called a
flow trigger. As part of the design of the collaboration template, the collaboration
developer specifies the business objects (and verbs) that act as flow triggers for
each scenario. As part of the configuration of the collaboration object, you bind the
incoming port of the collaboration to a particular source for the flow trigger. The
type of source that sends the flow trigger to the incoming port determines the type
of flow trigger that the collaboration receives.

As shows, a flow trigger can be one of several types, based on the source
of the incoming business object:

Table 3. Types of flow triggers

Flow trigger Source of incoming business object
Triggering event Connector or another collaboration
Triggering access call Access client (through the Server Access

Interface within ICS)

Note: An access client is an external process that can request execution of
collaborations through the Server Access Interface API. For more
information, see the Access Development Guide.

Because connectors are the most common source of flow triggers, the term
“triggering events” is often used to refer to the incoming business objects of a
collaboration. For example, the Template Definition window includes a tab called
Ports and Triggering Events. From this tab, you can define collaboration ports and
assign triggering events to its scenarios. However, even though the titles of this tab
and the associated table within this tab include the term “triggering events”, this
tab handles assignments of either type of flow trigger: triggering events or
triggering access calls. If the scenario receives its business object from a connector,
its flow trigger is a triggering event (as the name of the tab indicates). If the
scenario receives its business object from an access client, its flow trigger is a
triggering access call. In this case, you would still use the Ports and Triggering
Events table to assign a triggering access call to a scenario.

The type of flow trigger for the collaboration is not actually determined until the
port of the collaboration object is configured:

* Internal port—when the port is bound to a connector, it receives its business
object in the form of a triggering event.

* External port—when the port is bound to an access client, it receives its business
object in the form of a triggering access call.

For more information on how to configure a collaboration object, see the
Implementation Guide for WebSphere InterChange Server. For more information on the
Ports and Triggering Events tab of the Template Definition window, see ["Defining]
fports and triggering events (the Ports and Triggering Events tab)” on page 82|

Chapter 1. Introduction to collaboration development 9

Tools for collaboration development

The platform for collaboration development is Windows 2000. Collaborations are
written in Java. [Table 4| lists the tools that WebSphere Business Integration Express
provides for collaboration development.

Table 4. Tools for collaboration development

Tool

Description For more information

Process Designer Express Graphical tool that assists in the development |“Process Designer Express”|

WebSphere Business
Integration Express
Collaboration API

System Manager

of the collaboration template.

Set of Java classes with which you can |“Collaboration API” on page 10|
customize the generated collaboration code.

(The methods in the API can also accessed

through the Activity Editor function blocks.)

Tool that provides graphical windows to create [“System Manager” on page 11
and configure a collaboration object.

Integrated Test Environment A suite of tools used to test business processes. |“Test Connector” on page 12|

(Test Connector)

Use the Test Connector tool (available in the
Integrated Test Environment and as a
standalone tool) to simulate a generic connector
so you can easily test a collaboration’s design.

Process Designer Express

Process Designer Express is used for creating, editing, compiling, and deleting
collaboration templates. When modifying an existing template, you can use Process
Designer Express to edit the template’s properties, as well as to add or edit
scenarios and activity diagrams.

For detailed information about the Process Designer Express interface, see
(Chapter 2, “Overview of Process Designer Express,” on page 15

Collaboration API

The Business Integration Express collaboration API provides several classes whose
methods you can use in a collaboration template. The following sections describe
how these classes facilitate common collaboration functionality.

Note: You can access the API though both traditional Java calls and through the
supported function blocks in Activity Editor. See [Chapter 6, “Using Activity]
[Editor,” on page 131| for more information.

Interacting with a collaboration object

The BaseCollaboration class generically defines the behavior and functions of a
collaboration, such as obtaining the values of configuration properties, writing
messages to a log file, and tracing.

When you create a collaboration template, you create a Java class that is a subclass
of BaseCollaboration. As such, your collaboration inherits all of the methods of
BaseCollaboration. These methods allow a collaboration to perform operations such
as:

* Get the value of a configuration property
* Raise an exception
¢ Write informational, warning, and error messages to a log file

10 Collaboration Development Guide

For more information on the methods of the BaseCollaboration class, see
(Chapter 22, “BaseCollaboration class,” on page 319

Interacting with business objects
A collaboration generally interacts with and manipulates business objects. Methods
of the BusODbj class enable a collaboration to perform operations such as:

* Get the name of a business object
* Get the key values of a business object

* Get the number of child business objects contained in a hierarchical business
object

* Test whether the attribute values of two business objects are equal

* Copy attribute values from one business object to another

For more information on the methods of the BusObj class, see [Chapter 23, “BusObj|
class,” on page 335.|

Interacting with business object arrays

Collaborations frequently get and set the values of business object attributes. When
a business object is hierarchical, one or more of its attributes is a child business
object, or perhaps an array of child business objects. A child business object
appears as an array to the collaboration.

Methods on the BusObjArray class let a collaboration interact with and manipulate
business object arrays. These methods perform operations such as:

* Set or get elements of the array
+ Copy an array to another array
* Add a business object to the array

* Get the number of elements in the array

For more information on the methods of the BusObjArray class, see
[“BusObjArray class,” on page 353

Interacting with exceptions

When errors occur in a collaboration, the collaboration or the collaboration runtime
environment raises an exception. The exception is contained in an object of the
CollaborationException class. This class lets a collaboration object interact with an
exception object and perform the following operations:

* Get the exception type or subtype

* Get the exception message

For more information on the methods of the CollaborationException class, see
(Chapter 28, “CollaborationException class,” on page 387,

System Manager

System Manager is a graphical tool that provides an interface to ICS and its
repository. It enables you to do the following collaboration-related tasks:

* Create a collaboration object

* Bind a collaboration object

e Set collaboration-specific properties of a collaboration object

* Test a collaboration’s design (through the Test Connector tool)
* Deploy a collaboration object to the runtime environment

Chapter 1. Introduction to collaboration development 11

For more information on how to use System Manager to create, configure, and
deploy a collaboration object, see the Implementation Guide for WebSphere InterChange
Server.

Test Connector

The Test Connector is a graphical tool for testing collaborations and connectors. It
is available both in the Integrated Test Environment and as a standalone tool.

Note: If you are testing access clients, you must use Test Connector through the
Integrated Test Environment.

The Test Connector tool simulates an actual connector, allowing you to easily test
the design of your collaborations by sending in a triggering event or sending a
service call request. For more information on how to use Test Connector, see the
Implementation Guide for WebSphere InterChange Server.

Overview of the development process

This section provides an overview of the collaboration development process, which
includes the following high-level steps:

1. Install and set up the WebSphere Business Integration Express software
(including the Java Development Kit and all other required third-party
products). See the WebSphere Business Integration Server Express Installation Guide
for specific installation and configuration instructions.

2. Design and implement the collaboration.

Stages of collaboration development
The stages of collaboration development are as follows:
1. Design the business process that the collaboration will implement.
2. Create the business object definitions.
Create the collaboration template, including meta-information and definitions.
Create each scenario and its activity diagram.
Customize any required code fragments.
Create the message text.
Compile the template.
Create a collaboration object from the collaboration template.
Test and debug the collaboration.

©C©®X®NOO A

[y

Deploy the collaboration to the runtime environment.

[Figure 4 on page 13| provides a visual overview of the collaboration development
process and a quick reference to chapters where you can find information on
specific topics.

Note: Some of the overall collaboration development tasks fall outside the
somewhat more narrow scope of developing a collaboration template, and
therefore are not documented in this guide. For each of these tasks,
provides a reference to the appropriate document in the WebSphere Business
Integration Server Express library.

Note that if a team of people is available for collaboration development, the major

tasks of developing a collaboration can be done in parallel by different members of

the development team.

12 Collaboration Development Guide

Task:

Design collaboration
architecture

v

Design and develop

Steps:

Identify business processes

Investigate use of collaboration templates

Customize for special business flows

business objects

Build the

A4

Design structure of business objects

Implement business objects

collaboration template

v

Create the
collaboration object

Test and debug

Create the collaboration template and edit
its properties

Create the scenarios and activity diagrams

Customize the code fragments

Implement error and message handling

Create collaboration object definition

Customize runtime features, if necessary

Test collaboration in IBM WebSphere
InterChange Server system

Recode as needed

Figure 4. Overview of the collaboration development tasks

Chapter 1. Introduction to collaboration development

Refer to:

Chapter 3

Business Object
Development Guide

Chapter 4
Chapter 5

Chapter 8

Chapter 9

Implementation
Guide for WebSphere
InterChange Server

Implementation
Guide for WebSphere
InterChange Server

13

14 Collaboration Development Guide

Chapter 2. Overview of Process Designer Express

Process Designer Express enables you to perform the following collaboration
development tasks:

* Create, edit, compile, or delete a template definition through the Template
Definitions window.

* Define or edit an activity diagram for a scenario of the collaboration template
through the diagram editor.

This chapter provides an introduction to Process Designer Express. It describes the
interface and how to navigate through the Process Designer Express windows,
menus, and toolbars to perform the tasks required for collaboration development.

Starting Process Designer Express

The method by which you start Process Designer Express can vary depending on
whether you are creating a new collaboration template or editing an existing
collaboration template.

Important
Before you can start Process Designer Express, you must ensure that System
Manager is running.

There are several ways to start Process Designer Express from within System
Manager, as described in

Table 5. Starting Process Designer Express from within System Manager

Method Result
Right-click the Collaboration Templates Process Designer Express opens and
folder from the object browser view, then displays the New Template dialog box.

click Create New Collaboration Template
from the context menu.

Double-click a collaboration template within | Process Designer Express opens and
the Collaboration Templates folder displays the template definition you
double-clicked.

Create and use a user project shortcut to the | Process Designer Express opens and
component in the Integration Component displays the template definition associated
Libraries with the shortcut.

You can also launch Process Designer Express from the Start menu. Click Start —>
Programs —> IBM WebSphere Business Integration Express —> Toolset Express
—> Development —> Process Designer Express.

Process Designer Express displays in its own dockable window. You can launch

more than one Process Designer Express instance at a time to edit more than one
collaboration template definition.

© Copyright IBM Corp. 2004 15

Process Designer Express layout

When you start Process Designer Express, by default the main window is
displayed as shown in

f;—‘ Process Designer - sampleHello : Project_1
File Edit ‘Wiew Template Tools ‘Window Help

|jaEEg|menjzsa||ga=a]r=xcesecaes]t |
xl

[=] & sampleHello
%—J Definitions
El ::1-2' Scenarios
Do ;a, ReceivetndReply

:| Meszages

Ready I

Figure 5. Process Designer Express main window

The layout of the Process Designer Express window consists of the following areas:
¢ Template tree (dockable)
The template tree view in the left pane uses a hierarchical format to list the
collaboration template’s definitions, scenarios, and messages. Click the plus sign
(+) next to an existing scenario node in the tree to expand its subtree and view
its existing scenarios and subdiagrams, if any.
* Working Area of the Main Window, which can be blank or it can display the
following;:
— Template Definitions window
This window is used to provide general information about the collaboration

template, variable declarations, or port information. See [“Template Definitions|
[window” on page 17] for more information.

— Diagram editor window

This window is used to display the nodes of the activity diagram. For more
information, see[“Diagram editor window” on page 18}

— Template Messages window

This window is used to write or edit the template’s message file. For more
information, see|“Template Messages window” on page 19,

The Template Definitions and Template Messages windows and the Diagram
Editor can be minimized, maximized, and sized (opened to a user-specified size)
within the working area. For more information, see [“Displaying windows within]
[the working area” on page 24|

* Compile output window (dockable)

The compile output window (often called just the output window) displays
results from the compilation of a collaboration template. Process Designer
Express automatically displays this window when you compile the collaboration
temilate. For more information, see [‘Compiling a collaboration template” on|

16 Collaboration Development Guide

Note: Process Designer Express stores the configuration of its main window when
it exits. Therefore, any changes you make to this configuration display when
you next open Process Designer Express. (For more information, see
[“Customizing the main window” on page 23}) [Figure 5[shows the default
configuration of the main window. If previous invocations of Process
Designer Express have changed this configuration, your main window can
be different.

You can access Process Designer Express’s functionality in any of the following
ways:

* Pull-down menus at the top of the window

* Icons in the toolbars

* Context-sensitive menu (a popup menu accessed through a right-mouse click)
* Keyboard shortcuts

Process Designer Express windows

Template Definitions window

The Template Definitions window provides four tabs for defining collaboration
properties.

* General tab—provides fields in which you specify general information about the
collaboration template, such as its name, description, minimum transaction level,
and package.

* Declarations tab—provides fields in which you specify variable declarations.

* Properties tab—provides fields in which you specify the name, type, and value
for user-defined collaboration template properties.

* Ports and Triggering Events tab—provides fields in which you specify port
names and their associated business objects and verbs.

— Important
IBM recommends that you do not add, modify, or delete a business object
to or from the repository using Business Object Designer or System
Manager after you have bound the business object to a collaboration object
running in a production environment. For more information see|”Definin
ports and triggering events (the Ports and Triggering Events tab)” on page)

57

Chapter 2. Overview of Process Designer Express 17

E= Template Definitions _ O] x|

General |Declaratic-ns | Properties I Ports and Triggering Events I

Mame:

I sampleHello

Description:

[~ Long Lived Business Process Support
Minimum Transaction Level: INQne vI Package: I

Loply | Discard I Cloze

Figure 6. Template Definitions window

There are several ways to open the Template Definitions window, which displays
in the working area of the main window:

* In the template tree view, double-click Definitions.

* In the template tree view, select Definitions, right-click and choose Open
Template Definitions.

* From the Template pull-down menu, choose Open Template Definitions.
* Use the shortcut key combination Ctr1+T.

The Template Definitions window contains Apply and Discard buttons; these
buttons appear at the bottom of the window regardless of which tab is currently
displayed. The Apply button commits the changes to the template, but does not
save them (you must use the File —> Save command to save all changes). The
Discard button lets you revert to the previously saved definition, discarding
changes that you have not yet saved.

Note: The Discard and Apply buttons affect the data contained in all tabs, not just
the tab that is currently visible.

Diagram editor window

The diagram editor is a tool within Process Designer Express that enables you to
create and edit activity diagrams. This window displays in the working area of the
main window when you open an activity diagram. In the diagram editor, you can
add nodes, service calls, and transition links to an activity diagram; change the
placement of items; add and edit text labels and fonts; and add and change
individual component properties.

There are several ways to open the diagram editor:

18 Collaboration Development Guide

* In the template tree view, expand the Scenarios node and double-click on the
name of a diagram; alternately, right-click on the name and choose Open
Diagram.

* In the template tree view, expand the Scenarios node, select the name of a
diagram, and choose Open Diagram from the Template pull-down menu.
* From the Template pull-down menu, choose Open All Diagrams.

- Scenario: ReceiveAndReply

. StartToFrstaction

2
Obtain and Log Eveht -

| | 3

Figure 7. Diagram editor window

For more information on how to use the diagram editor, see [“Creating an activity]|

[diagram” on page 8§

Template Messages window

The Template Messages window provides an area in which you can write or edit

the template’s message file. When you compile the template, the message text is
written to the appropriate Integration Component Library project’s
Template\messages directory within System Manager.

There are several ways to open the Template Messages window:
* In the template tree view, double-click Messages.

* In the template tree view, select Messages, right-click and choose Open
Messages.

e From the Template pull-down menu, choose Open Template Messages.
* Use the shortcut key combination Ctr1+M.

8 Template Messages =10 x|
Message ID Message Explanation
»
Description: |

Figure 8. Template Messages window

Chapter 2. Overview of Process Designer Express

19

Process Designer Express menus

In Process Designer Express, the enabled menus and menu options depend on
what displays in the Working Area. The following sections explain the main menus
of Process Designer Express when the Working Area is empty or displays the
Template Definitions window:

+ [“Functions of the File menu”]

» |[“Functions of the View menu” on page 21|

* [“Functions of the Template menu” on page 22|

+ [“Functions of the Window menu” on page 23|

Note: When the Working Area displays the diagram editor, Process Designer
Express enables options in the Edit menu, and enables different options in
some of the other menus. Most of these functions pertain to working with
activity diagrams, and are discussed in[“Accessing diagram editor|
[functionality: Process Designer Express menus” on page 93|

Functions of the File menu

When the Working Area is empty or it displays the Template Definitions or
Template Messages window, the File menu displays the following options:

* New—Creates a new collaboration template.

* Open—Opens an existing collaboration template definition. Contains the
following two options:

— From Project—Opens a collaboration template from an Integration
Component Library user project.

— From File—Opens a collaboration template from a .cwt file stored in the file
system.

* Close—Closes the collaboration template.
e Save—Saves the current collaboration template. Contains the following two
options:
— To Project—Saves a collaboration template to an Integration Component
Library user project.

— To File—Saves a collaboration template to a .cwt file that is stored in the file
system.

* Save As—Saves the current collaboration template under a different name.
Contains the following two options:

— To Project—Saves a collaboration template to an Integration Component
Library user project.

— To File—Saves a collaboration template to a .cwt file that is stored in the file
system.

* Delete—Displays the Delete template from Project” dialog box, from which you
can choose the collaboration template to delete.

* Compile—Compiles the collaboration template. For more information, see
[“Compiling a collaboration template” on page 89}

e Compile All—Enables you to compile all collaboration templates in your project,
or to specify a subset for compilation. For more information, see

multiple collaboration templates” on page 89
P p pag

e Import—Imports files into the template definition. The Process Designer Express
Importer can import BPEL and UML (in XMI format) files; the files are
converted as necessary to InterChange Server Express template files.

20 Collaboration Development Guide

* Export—Exports files. You can export a template file to UML (in XMI format) or
BPEL format. The Process Designer Express Exporter tool performs all necessary
format conversions.

* Exit—Closes Process Designer Express.

When the Working Area displays the diagram editor, the File menu displays the
additional Page Setup, Print Preview, and Print options to enable printing of an
activity diagram. When the Working Area displays the Template Messages
window, the File menu displays an additional option that allows you to print the
message file.

Functions of the Edit menu

The Edit menu options are available only when the diagram editor is active.
Options include standard Windows edit commands (Undo, Redo, Cut, Copy,
Paste, and Delete) and the following special Process Designer Express options:

* Select All—Selects all nodes in the current activity diagram.

* Find ID—Finds the activity diagram ID.

* Find Text—Lets you find text in the current activity diagram.

* Replace Text—Lets you find and replace text in the current activity diagram.

* Properties—Lets you edit the properties of a selected symbol. This option is
enabled only when a symbol is selected in the workspace.

* Font—Lets you change the font and color of text labels of selected symbols in an
activity diagram. You can change the font of the currently selected symbols and
links or you can change the font of all components by first using the Select All
option to select all components in a diagram, then applying the font change.
This option is only activated when a symbol is selected in the workspace.

Functions of the View menu

The View menu functions are valid when Process Designer Express first opens and
when the Working Area display pertains to the visual appearance of activity
diagrams. Many of these functions can be toggled on or off:

* Preferences—Opens the User Preferences dialog box, which enables you to
specify how items are represented in Process Designer Express.

* Template Tree—When this option is on, Process Designer Express displays the
template tree view as the left pane of the Process Designer Express window.

* Output Window—When this option is on, Process Designer Express displays the
results of the template compilation.

* Toolbars—Controls display of the different toolbars of Process Designer Express.
The submenu options include:

— Standard—When this option is on, Process Designer Express displays the
buttons for the Standard toolbar.

— Symbols—When this option is on, Process Designer Express displays the
buttons for the Symbols toolbar.

— Align—When this option is on, Process Designer Express displays the buttons
for the Alignment toolbar.

— Nudge—When this option is on, Process Designer Express displays the
buttons for the Nudge toolbar.

— Zoom—When this option is on, Process Designer Express displays the buttons
for Zoom/Pan toolbar.

— Programs—When this option is on, Process Designer Express displays the
buttons for accessing other Business Integration Express programs.

Chapter 2. Overview of Process Designer Express 21

Status bar—When this option is on, Process Designer Express can display its
single-line status message at the bottom of the main window.

In addition, Process Designer Express enables the following diagram options when
the diagram editor is active:

View Types—When on, displays a symbol’s type. This option is useful to help
you learn to recognize a node by its shape.

View UIDs—When on, displays the unique ID (UID) of each symbol.

View Labels—When on, displays the user-provided symbol label.

Lock (Read only)—When on, puts the activity diagram into read-only mode.
Refresh—Refreshes the activity diagram display.

Grid—When on, displays the workspace grid lines. When off, grid lines are
hidden.

Snap to Grid—When on, new symbols are automatically aligned with the grid
lines when they are placed in the activity diagram.

Grid Properties—Lets you set the grid properties. (Note that Angle Snap is not
applicable to activity diagrams, though it can be toggled on and off.)

Page Bounds—Shows the page boundaries as dashed lines.

Zoom commands—Lets you enlarge the activity diagram or zoom to one section.
You can also perform zoom commands from the Zoom toolbar. For more
information on zooming, see [“Zooming or panning on symbols” on page 166

Functions of the Template menu

When the Working Area is empty or it displays the Template Definitions or
Template Messages windows, the Template menu displays the following options:

Whenever any object except a scenario is selected in the template tree view:

— Open All Diagrams—Opens all activity diagrams defined for the
collaboration template.

— Close All Diagrams—Closes all open activity diagrams.
— New Scenario—Displays the New Scenario dialog box.

— Open Template Definitions—Displays the Template Definitions window,
from which you can modify properties of the collaboration template.
— Open Template Messages—Displays the Template Messages window, from

which you can define or modify the message file associated with the
collaboration template.

Whenever a scenario is selected in the template tree view, the following
additional menu items are available:

— Open Diagram—Opens the activity diagram for the current scenario.
— Rename Scenario—Enables you to rename the current scenario.

— Delete Scenario—Deletes the current selected scenario and its activity
diagrams.

— Open Scenario Definition—Enables you to edit scenario-level variables.

When the diagram editor is open, the following menu items are available in
addition to those already described:

— Size Diagram—Resizes the activity diagram in units of vertical and
horizontal page counts, and is relevant for printing the activity diagram. The
Diagram size dialog contains spin controls for numeric page inputs. Note that
diagram size is directly related to paper orientation (landscape or portrait)
and paper selection.

22 Collaboration Development Guide

— Save Diagram as Text File—Saves the current activity diagram to a file in a

text format (.txt).

Functions of the Tools menu

The Tools menu enables you to launch other Business Integration Express tools.

The options are as follows:

* Map Designer—Opens Map Designer Express.

* Business Object Designer—Opens Business Object Designer Express.

* Relationship Designer—Opens Relationship Designer Express.

Functions of the Window menu

The Window menu pull-down options encompass the standard Multiple Document
Interface (MDI) window display functions. Use these options to control display
features such as tiling, cascading, and activating open windows.

Process Designer Express toolbars

Process Designer Express provides toolbars with common tasks you need to
perform. These toolbars are dockable; that is, you can detach them from the palette
of the main window and float them over the main window or the desktop.

lists the toolbars that Process Designer Express provides.

Table 6. Process Designer Express toolbars

Toolbar name Toolbar appearance

Standard Deag|sa s inex &2
Symbols Na[ocoocooas|t s
Alignment TogPas
Nudge EEET)
Zoom/Pan

For more information

None

“Introduction to the symbols” on page
9
“Aligning symbols” on page 163)|

[“Nudging symbols” on page 165|

“Zooming or panning on symbols” on|

page 166|

Customizing the main window

Process Designer Express provides the following ways to customize its main

window:

¢ Choose which windows display

¢ Float a dockable window

* Choose how windows within the working area display

Choosing windows to display

As shows, when you first open Process Designer Express, the template
tree view displays in the left pane. The working area displays on the right and is
empty. The output window does not display. You can customize the appearance of

the main window options from the View menu.

describes the options of the View pull-down menu and how they affect the
appearance of the Process Designer Express main window.

Chapter 2. Overview of Process Designer Express 23

Table 7. View Menu options for main window customization

View Menu option Element displayed

Template Tree The template’s definitions, scenarios, and messages as the
left-hand pane.

Output Window The output window as a small window under the template tree
view (if it displays) and the working area.

Toolbars A menu that provides options for displaying the Process

Designer Express toolbars:

Standard The main toolbar in the Process Designer
Express palette, which provides buttons that
allow you to connect to or disconnect from
ICS, open a template from the Server or from a
file, save and compile a template, cut, copy,
paste, and delete a template, and print.

Symbols The Diagram Symbols toolbar provides the
symbols to add to an activity diagram.

Align The Alignment toolbar contains alignment
features for activity diagram symbols.

Nudge The Nudge toolbar contains features that
slightly move selected symbols of an activity
diagram.

Zoom The Zoom/Pan toolbar contains features that
zoom or pan selected symbols of an activity
diagram.

Status Window A single-line pane in which Process Designer Express displays

status information

When a menu option appears with a check mark to the left, the associated element
displays. To turn off display of the element, choose the associated menu option.
The check mark disappears to indicate that the element does not currently display.
Conversely, you can turn on display of an undisplayed element by choosing the
associated menu option. In this case, the check mark appears beside the displaying
element.

Floating a dockable window

Process Designer Express supports the following portions of the main window as
dockable windows:

e Template tree view
* Output window

¢ Toolbars

By default, a dockable window is usually placed along the edge of the main
window and moves as part of the main window. When you float a dockable
window, you detach it from the main window, allowing it to function as an
independent window. To float a dockable window, hold down the left mouse
button, grab the border of the window and drag it onto the main window or
desktop.

Displaying windows within the working area

The working area of the Process Designer Express main window allows you to
display windows within it in any of the following ways:

24 Collaboration Development Guide

* Maximized—One window takes up the entire working area. You can switch
between maximized windows by choosing the name of the desired window
from the Windows pull-down menu. If you have kept the default user
preferences for Workbook Diagram Windows, you can also switch between
maximized windows by choosing the corresponding Workbook tab below the
working area. For more information, see[“Changing general display” on page]

fi67

* Sizable—Each window is its own separate area within the working area. You can
resize these windows and can cause them to overlap and move within the
working area. Sizable windows are useful when you want simultaneous display
of more than one activity diagram or an activity diagram and the Template
Definitions or Template Messages window.

* Minimized—Each window is represented as an icon at the bottom of the
working area. You can restore a minimized window by double-clicking its
minimized representation.

Chapter 2. Overview of Process Designer Express 25

26 Collaboration Development Guide

Part 2. Creating a collaboration template

© Copyright IBM Corp. 2004

27

28 Collaboration Development Guide

Chapter 3. Designing a collaboration

This chapter describes design guidelines meant to help you achieve reusable,
well-behaved collaborations.

In general, it is good practice to develop a standard collaboration template to
facilitate development of user-defined collaborations. Use of such a template
ensures:

* Consistency of collaboration design
When based on a standard template, your collaborations can all:

— Perform the same verb operations on the business object in the destination
application that corresponds to the collaboration’s flow trigger

- Handle errors using the same error handling mechanism, greatly simplifying
the technical support of the final collaborations

— Use ports with identical names, types, and expected behavior
* Simplicity of documenting the collaboration

Documenting the behavior of the collaborations based on the standard template
can become much simpler because it too can be based on a template of
information that the user needs to understand the collaboration’s behavior.

* Incorporation of “best practices”

Best practices that IBM recommends (see [“Coding recommendations” on page]
and that your own site develops can be incorporated into the standard
template and automatically included into collaborations based on this standard
template.

WebSphere Business Integration Express Plus provides a standard collaboration
template (CollaborationFoundation) and a standard wrapper collaboration template
(WrapperFoundation) that you can use as-is, or modify to meet your requirements.
See [“CollaborationFoundation template”|and [“WrapperFoundation template” on|
lpage 47| for more information.

In addition, this chapter provides guidelines for the following tasks:

* Creating collaboration object groups. See[“Building collaboration groups” on|
for more information.

* Handling parallel execution, including event sequencing and event isolation. See
[“Designing for parallel execution” on page 54| for more information.

» Creating an internationalized collaboration template. See [‘An internationalized|
[collaboration” on page 62| for more information.

CollaborationFoundation template

The CollaborationFoundation collaboration template is a tool that facilitates the
development of user-defined collaborations that perform functions such as the
following:
* Synchronization
A collaboration performs synchronization when it replicates data from one
application to another. Such a synchronization typically processes data from a
source application that does not expect a result.

© Copyright IBM Corp. 2004 29

CollaborationFoundation contains the verb logic, data filtering, and error
handling used by most collaborations that perform synchronization; this is the
basic synchronization logic. CollaborationFoundation has five empty
subdiagrams, each named Additional Processing, that enable you to extend the
collaboration’s business process without modifying the base synchronization
logic.

This section primarily describes the basic synchronization logic and offers
recommendations for extending the CollaborationFoundation template to meet
the requirements of the collaborations you plan to develop.

* Data access

A collaboration can be triggered by a Retrieve request from a source application
that waits for the result. A collaboration can also be triggered by a source
application that sends a synchronization event and waits for the collaboration to
return a full business object from the destination application. Such events require
a source application that can send a synchronous request or that uses the Server
Access Interface.

This chapter describes the access functionality in Retrieve Process and
Additional Retrieve Process.

* Data piping
A collaboration performs data piping when it moves data from one application
to another without performing any filtering or verification of the data. To build
such a collaboration from CollaborationFoundation, bind the From port to the
source application, and then bind both the DestinationAppRetrieve and To ports
to the destination application.

Note: You can also modify a product-delivered collaboration to simply move
data from a source to a destination. Bind the From port to the source
application, bind both the DestinationAppRetrieve and To ports to the
destination application, and bind all other ports to the port connector. It is
important that you do not change the default value of any configuration

property.

The following sections provide additional information about the
CollaborationFoundation template:

« |“CollaborationFoundation features”|

* |"Using the CollaborationFoundation template” on page 33|

« |“CollaborationFoundation ports” on page 34|

« |"Extending CollaborationFoundation” on page 35|

CollaborationFoundation features

A collaboration object generated from the CollaborationFoundation template can
perform a Create, Retrieve, Delete, or Update action on a business object in the
destination application that corresponds to the collaboration’s triggering business
object.

Handling the triggering business object

Behavior of the Retrieve verb: CollaborationFoundation is designed to enable the
triggering business object to use the Retrieve verb. If the collaboration is bound to
a source connector that makes a synchronous request, the triggering business
object’s values are returned to the source connector as soon as the collaboration
completes its processing. The values are returned as if the business object’s values
had been passed by reference.

30 Collaboration Development Guide

This template provides the standard properties shown in [Table 8} these properties

affect the behavior of business flows.

Table 8. CollaborationFoundation standard properties for business flow

Standard property

Description

CONVERT_CREATE

Configures a collaboration object to convert
the verb sent to the destination from Create
to Update if the triggering business object

already exists in the destination application.

CONVERT_UPDATE

Configures a collaboration object to convert
the Update verb to the Create verb if the
business object does not already exist in the
destination application.

USE_RETRIEVE

Configures a collaboration object to retrieve
its triggering business object from the
destination application before it
synchronizes data. This property is useful
when performing compensation processing
and when setting the verb based on whether
the business object already exists in the
destination application.

ADDITIONAL_RETRIEVE

Configures a collaboration object to retrieve
the business object from the destination
application after it synchronizes data. This
property is useful when the source
application requires a full-valued business
object to be returned from the destination
application, but the destination application’s
connector does not return a complete
business object after creating or updating its
data.

[Figure 9 on page 32| shows the main business flow for a collaboration when the
USE_RETRIEVE property evaluates to false.

Chapter 3. Designing a collaboration 31

Triggering business
object

Triggering verb is Create,
Lelate, or Update?

Triggering werb is

Raise
No — N
exceplion

s Yes
¥ ¥

Initialize Busbj variables and Retrieve Process

get collab property settings

| Additional Processing #1 l—FaiI-pI Raise exception |
T

Suoceed

[Fiteing Froces |

Sucoeed
¥

| Additional Processing #2 }—Fail—b| Raize exception

Mote : All exceptions

are zent through the email
process. See the Email
Frocess graphic.

| | USE_RETRIEVE Frocess | |

T
Suooeed

¥
D| Additional Processing #3 }—Fail
T
Sucoeed
¥

Send triggering BusObj
to destination

Succeed

¥
|Raise exception | | Raise exception |

h 4
Change werb and send -
- . . Raise
triggering BusObj —Fail "
N) excaption
to destination.

Sucoeed I

Raize exception }C—Fail —| Additional Processing #4 |
I

Suoceed

ADDITIONAL_RETRIEVE = true™

Wes

ADDITIONAL R:TRIEVE F Fail ralse
I | = focess | I_ al axmaption

Ho I

Suoceed
Lq Additional Pvrocessin #5 | —fail naise
8 exzapltion

Scczed

Figure 9. CollaborationFoundation main business-process flow

Filtering data in the triggering business object: You can configure a collaboration
object to filter data in specified attributes of the triggering business object. You can
use the results of the filtering to determine whether the collaboration needs to
synchronize a triggering business object with specific data. The template provides
the following four properties for filtering data:

* 1 _FILTER_ATTRIBUTE

* 1_INCLUDE_VALUES

* 1_EXCLUDE_VALUES

* 1_FAIL_ON_INVALID_VALUE

For information on adding additional properties that can specify multiple filtering
attributes, see the description of the 1_FILTER_ATTRIBUTE property in “Standard

32 Collaboration Development Guide

[Collaboration information,” on page 419.|In addition, [Figure 83 on page 424]
illustrates the collaboration’s filtering behavior.

To filter on a second attribute, the CollaborationFoundation template provides the
following set of properties:

* 2_FILTER_ATTRIBUTE

* 2_INCLUDE_VALUES

» 2_EXCLUDE_VALUES

* 2_FAIL_ON_INVALID_VALUE

To filter on multiple attributes, provide a set of filter properties for each property.
Provide a unique number for each set of properties. In other words, the filter
properties for the third attribute can use 3_ as the prefix. Although the prefix must

be different for each set of attributes, the property names themselves must be
identical to those shown above.

Error handling

CollaborationFoundation provides standard properties for error handling.
describes these properties.

Table 9. Standard properties for error handling

Error-handling property Description

INFORMATIONAL_EXCEPTION Specifies whether a collaboration object must
end successfully and send the exception to a
trace, or end in failure and raise an
exception to be logged.

SEND_EMAIL Specifies whether a collaboration object
sends email to a specified address when an
exception occurs, regardless of the value of
INFORMATIONAL_EXCEPTION.

[“Email process for error handling” on page 425 illustrates the collaboration’s email
process for error handling.

For both of the error-handling properties, you can specify the behavior for all
exceptions or for a smaller set of comma-delimited message numbers. The message
numbers correspond to those in the collaboration’s message file
(collaborations\messages\ CollaborationFoundation.txt).

Using the CollaborationFoundation template
Perform the following tasks to use the CollaborationFoundation template:
1. Copy the entire CollaborationFoundation template to your development area.
2. Rename the collaboration template to reflect the collaboration you are building.

3. Within Process Designer, use the Ports and Triggering Events tab of the
Template Definitions window to change the type of the existing ports
(DestinationAppRetrieve, To, From) to assign the appropriate business objects
to them. For more information, see [“CollaborationFoundation ports” on page|

4. Create additional sets of filter properties if you want your collaboration to filter
more than one business object attribute.

WebSphere Business Integration Server Express provides a set of configuration
properties that enable you to include or exclude business objects from

synchronization based on specified values in a specified attribute. If you want
to filter synchronization based on values in more than one attribute, you must

Chapter 3. Designing a collaboration 33

create an additional set of the configuration properties for each attribute you
want to evaluate. For more information, see [“Standard properties for|

[collaboration templates” on page 426

5. If necessary, create additional collaboration functionality by adding code to the
Additional Processing subdiagrams. These sub diagrams have no functionality
in the CollaborationFoundation template. They exist to enable easy

customization of the collaboration.

6. Save the collaboration template and compile it.

CollaborationFoundation ports

illustrates CollaborationFoundation’s ports. The tables that follow

provide information about each port.

Controller

DestinationAppRetirieve

Controller

pr
H
7
e — s - Pl

Cserers
CollabFoundation

To

Controller

------- 2

Figure 10. CollaborationFoundation collaboration ports

The DestinationAppRetrieve port

lists the features of the CollaborationFoundation’s DestinationAppRetrieve

port.

Table 10. Port features (DestinationAppRetrieve port)

Port feature

Value

Business Object

A reference-valued BusObj. The default
value is Controller.

Verbs Used

Retrieve

Compensating Verbs

None

Purpose

Retrieves the full-valued business object
from the destination and uses it to set the
verb.

Bound To

Destination application’s connector

Configuration Property

USE_RETRIEVE

The To port

able 11| lists the features of the CollaborationFoundation’s To port.

Table 11. Port features (To port)

Port feature

Value

Business Object

A full-valued BusObj. The default value is
Controller.

Verbs Used

Create, Update, or Delete

Compensating Verbs

None

34 Collaboration Development Guide

Table 11. Port features (To port) (continued)

Port feature Value

Purpose Sends a business object out of the
collaboration. Often the collaboration sends
a copy of the triggering business object
through this port to the destination.

Bound To Destination application’s connector or
another collaboration (for additional
processing)

Configuration Property None

The From port
lists the features of the CollaborationFoundation’s From port.

Table 12. Port features (From port)

Port feature Value

Business Object triggeringBusODbj (the default value is
Controller)

Verbs Used Create, Retrieve, Update, or Delete

Compensating Verbs None

Purpose Receives the triggering business object

Bound To Source application or a calling collaboration

Configuration Property None

Extending CollaborationFoundation

This section contains information to help you customize collaborations based on
the CollaborationFoundation template. Refer to the following sections:

+ |"Coding recommendations”|

* [“Common modifications” on page 39|

Coding recommendations

This section describes coding practices to help you standardize your code with that
in product-delivered collaborations.

* [“Naming conventions”|

* |"Processing the flow trigger” on page 36|

Naming conventions
It is good practice to establish naming conventions for use in your collaboration
templates. The following list provides some naming conventions:

* Identify each variable’s type by prefixing its name with a meaningful letter. For
example, prefix a String variable’s name with the letter “s”; prefix a Boolean
variable’s name with the letter ”b”. The following code initializes two such
variables:

String sExceptionType
Boolean bBranch

* Collaboration configuration properties should be in all uppercase letters to easily

distinguish them from program variables. The following code obtains the value

of the SEND_EMAIL property:

Chapter 3. Designing a collaboration 35

bSendEmail = getConfigProperty("SEND _EMAIL");

Processing the flow trigger

Process Designer automatically declares a variable of type BusObj called
triggeringBusObj. This variable holds the flow trigger (usually a triggering event),
which caused the scenario to execute.

Several situations might require you to work with the flow trigger even after it has
been through processing such as having data added to it after being sent out
through service calls, or having the values of attributes manipulated. Such
situations include the following:

* Sending the flow trigger out through service calls to perform a rollback during
the compensation steps of a transactional collaboration

¢ Comparing the values of attributes in the flow trigger with the values of
attributes in a business object returned by a service call or database lookup

To handle these situations, it is recommended that you create an intermediate
BusObj variable that is a copy of the flow trigger, then manipulate the intermediate
variable and send it out through service calls as necessary rather than modify the
flow trigger.

Note: Creating copies of business objects consumes system resources. If your
business process does not require an intermediate variable (because there are
not transactional requirements, and you do not ever have to compare the
values of attributes before and after certain situations, for instance), use the
flow trigger rather than a copy of it to preserve resources.

If your collaboration is configured to be a long-lived business process,
however, the content of the flow trigger business object (triggeringBusObj) is
not preserved across service calls. In this case, always make a copy of the
triggering flow.

There are several APIs available that enable you to copy the contents of one
business object into another and each has advantages and disadvantages; the
sections [“Using the copy() method”| and [“Using the duplicate() method” on page|
address each approach.

Using the copy() method: The copy() method can be used to copy the contents of
one business object variable into another business object variable of the same type.
It is recommended that you take this approach because the collaboration templates
delivered by WebSphere Business Integration Server Express do so, and having
consistency between delivered and custom-built components results in greater
maintainability.

To follow this approach you must instantiate a new BusODbj object of the same type
as the triggering business object; it is recommended that you perform the
instantiation in the scenario definition of the scenario and that you name the
variable that stores the copy processingBusObj. To satisfy these requirements and
recommendations, add the following line of code to the scenario definition of the
scenario:

BusObj processingBusObj;
processingBusObj = triggeringBusObj.duplicate();

Next you must run the copy() method on the processingBusObj variable and pass
the triggeringBusObj variable to it as an argument. It is good practice to do this in
the first action node of the top-level diagram of the scenario--one that you dedicate

36 Collaboration Development Guide

exclusively to initializing variables. The example code below copies the contents of
the triggeringBusObj variable into the processingBusObj variable:

processingBusObj.copy(triggeringBusObj);

Using the duplicate() method: For example, the code fragment below declares a
variable of the same type as the flow trigger and sets its values by duplicating the
values in the business object of the flow trigger:

BusObj processingBusObj;
processingBusObj = triggeringBusObj.duplicate();

The collaboration uses processingBusObj to manipulate data as required. When it is
ready to send the data to the destination application, the collaboration copies the
intermediate variable to the ToBusObj variable. It uses ToBusObj in its service call
to the destination application. The code fragment below shows the statement that
copies the data to ToBusObj:

ToBusObj.copy(processingBusObj);

After the service call returns successfully to the collaboration, the collaboration
copies ToBusObj’s values to triggeringBusObj, as shown below:

triggeringBusObj.copy(ToBusObj);

WebSphere Business Integration Server Express collaborations do not generally
change the original value of triggeringBusObj until the collaboration has received
the returned ToBusObj from the To port. Using the intermediate variable ensures
that the collaboration changes the value of triggeringBusObj only after successfully
receiving values from the destination application.

Raising exceptions

Catch exceptions at the level at which they occur, then raise them to the top
process in the collaboration. By catching the exception, you can specify how to
handle the exception and control how it appears to the user; for example, you can
make clear the context in which the exception occurred. Moreover, creating action
nodes for exception handling provides visual documentation of each place in the
code where exceptions can occur.

In any collaboration, you must raise each trapped exception until it reaches the
collaboration runtime environment. If you use a service call that triggers another
collaboration, the calling collaboration must check for exceptions as a result of the
service call.

To raise exception text to a calling diagram, declare separate string variables to
store the message text and the exception type. For example, the following code
declares two such string variables:

String sMessage
String sExceptionType

Use branching to provide different behavior when the service call succeeds or fails.
In the branch that handles failure, assign values into the two string variables. For
example:

sMessage = currentException.getMessage();
sExceptionType = currentException.getType();

Before returning control to the process that made the service call, raise the
exception. For example:

Chapter 3. Designing a collaboration 37

raiseException(ServiceCallException, 4000, SendRefBusObj.getType(),
SendRefBusObj.getVerb(), SendRefBusObj.keysToString(),
sExceptionType, sMessage);

The code above specifies error message 4000, which is the standard error message
for collaboration failure. The message file includes the following text:

4000

Collaboration Failed: {1}.{2} with keys ({3}) synchronization failed

and the exception is {4}.{5}.

[EXPL]

The business object could not be synchronized in the destination.

In the preceding text, the raiseException() method substitutes the values shown in
i-

Table 13. Substituted values in raiseException() call

Variable Substituted text

{1} The value that SendRefBusObj.getType() returns

{2} The value that SendRefBusObj.getVerb() returns

{3} The value that SendRefBusObj.keysToString() returns
{4} The value in the sExceptionType variable

{5} The value in the sMessage variable

If the process that makes the service call is not the topmost process in the
collaboration, the process making the service call must raise the exception to its
calling process. Each process above the calling process must also raise the
exception so that the error message can be logged from the topmost process.

Branching

The flow of a collaboration diagram is often based on the value of a collaboration
configuration property. The collaboration can use the property value to set a
boolean variable, which it later uses to determine which path to take. For example,
the following code declares and initializes a boolean variable named bBranch:

boolean bBranch = false;

InterChange Server Express sets the value of the branching variable according to
conditions in the code. These conditions may be based on the value of several
boolean variables. For example, suppose the collaboration evaluates its
CONDITION_TWO property only if its CONDITION_ONE property evaluates to
true.

The code below bases a branch on the value of two boolean variables:

* bCondition1, which contains the value configured for the collaboration’s
CONDITION_ONE property

* bCondition2, which contains the value configured for the collaboration’s
CONDITION_TWO property

This code sets the value of bBranch to true if CONDITION_ONE evaluates to true
and CONDITION_TWO evaluates to false; it sets the value of bBranch to false if
CONDITION_ONE evaluates to false or CONDITION_TWO evaluates to true:

if (bConditionl && !bCondition2)
{

bBranch = true;

}

38 Collaboration Development Guide

else

{

bBranch = false;

}

Wrapper collaborations

A wrapper collaboration is a collaboration that handles the verification or
synchronization of a business object for another collaboration. The calling
collaboration sends a top-level business object that is referenced on its own flow
trigger to the wrapper collaboration.

For example, a SalesOrderProcessing collaboration can synchronize the generic
Order business object. Generic Order contains references to a generic Customer
business object, which represents the customer making the order. Moreover, generic
Order contains an array of generic OrderLineltem business objects. Each
OrderLineltem references a generic Item business object, which represents the
items ordered.

To modularize collaboration logic, you can provide separate collaboration
templates to process generic Order and the generic business objects that it
references. For example, to process an Order that references Customer and Item
business objects, you can provide the following templates:

¢ SalesOrderProcessing—processes the order.
* CustomerWrapper and CustomerSync—process the referenced customer.
* ItemWrapper and ItemSync—process the referenced items.

Separating business object processing into different, specific collaborations not only
enhances the reusability of each collaboration template, but also prevents two
collaborations from modifying the same data at the same time. For more
information, see [“Problems in concurrent processing” on page 55|

Common modifications

This section discusses the following common modifications to the
CollaborationFoundation code:

« |"Handling dependent data”}
* [“Delegating the checking of dependent data” on page 40|

« |"Performing recursive checking of dependent data” on page 45|

Use the modifications presented in this section to standardize your customized
collaborations with those delivered with the product.

Handling dependent data

A business object is said to have dependent data when it references another
business object that affects its own processing. For example, assume that you want
to synchronize Order, Customer and Item business objects at your site. Before your
SalesOrderProcessing collaboration object synchronizes each Order, it needs to
ensure that the Customer referenced by the Order already exists in the destination
application. Furthermore, you want it to ensure that each Item referenced by each
OrderLineltem also exists in the destination application, and perhaps even halt the
Order’s synchronization until you have verified that its referenced business object
exists. In a case like this, the Order object is dependent upon the existence of its
referenced Customer and Item objects.

Because WebSphere Business Integration Server Express delivers several
collaborations whose triggering business objects may reference a Customer or an

Chapter 3. Designing a collaboration 39

Item business object, a single installation sometimes simultaneously runs more
than one collaboration object that is trying to synchronize the same Customer or
Item data. To maintain data consistency and prevent multiple collaborations from
concurrently modifying the same instance of the same type of business object,
delegate synchronization of referenced business objects to separate collaboration
objects. Collaborations call intermediate wrapper collaborations to handle the
verification or synchronization of business objects referenced on their triggering
business objects. Wrapper collaborations facilitate data isolation in environments
that run multiple collaborations.

Use wrapper collaborations to maintain data consistency in an environment that
runs multiple collaborations. For example, assume that two CustomerSync
collaboration objects run on the same installation. One runs in conjunction with
SalesOrderProcessing, while the other runs independently. In this scenario, the
independent CustomerSync collaboration object synchronizes Customer data
between the same two applications as the SalesOrderProcessing collaboration
object. If you use SalesOrderProcessing to delegate the synchronization of
reference-valued Customer business objects to the intermediate CustomerWrapper
collaboration object, the software provides event isolation. In other words, the
system does not allow the standalone CustomerSync collaboration object to work
on the same business object at the same time as the CustomerSync collaboration
object called by SalesOrderProcessing.

For more information on synchronizing business objects referenced by a triggering
business object, see|“Problems in concurrent processing” on page 55/

Delegating the checking of dependent data
You can extend CollaborationFoundation to delegate a dependency check to
another collaboration. To do so, you must perform the following tasks:

* Add a port that is going to be bound to the called collaboration.

* Add a collaboration configuration property that enables you to specify whether
the collaboration verifies or synchronizes referenced business objects. If you opt
to synchronize referenced Item or Contact business objects, you might need to
create additional configuration properties.

* Add messages that provide information if the verification or synchronization
fails.

e Add a scenario to process the dependency check.

Adding a port: To delegate dependent data, create a port for each dependent
business object. Maintain consistency with other product-delivered collaborations
by naming the new port ToBONameWrapper, where BOName refers to the
dependent, reference-valued business object. For example, SalesOrderProcessing
uses a port called ToCustomerWrapper to send reference-valued Customer business
objects to CustomerWrapper.

Create one such port for each reference-valued business object to be sent to a
wrapper collaboration. For example, SalesOrderProcessing also uses ports named
SendContactRef and SendItemRef.

Adding a configuration property: To delegate checking of a referenced business
object to another collaboration, create a new collaboration configuration property.
This property enables the person configuring the collaboration to specify whether
the collaboration is going to verify or synchronize the referenced business object.

40 Collaboration Development Guide

To maintain consistency with the product-delivered collaborations, name the new
property VERIFY_SYNC_BOName, where BOName is the reference-valued business
object. For example, SalesOrderProcessing contains a property called
VERIFY_SYNC_CUSTOMER, which it uses to delegate checking of a Customer
business object. Establish the possible values of this property as follows:

¢ neither—Prevents delegation.

¢ sync—Causes the collaboration to send the reference-valued business object with
the Sync verb to the appropriate wrapper collaboration for synchronization.

* verify—Causes the collaboration to send the reference-valued business object
with the Exists verb to the appropriate wrapper collaboration for verification.

By default, the system sets a VERIFY_SYNC_BOName property to neither.

Error-handling properties: When a collaboration delegates an array of
reference-valued business objects, it must be prepared to handle the
synchronization or verification failure of any element in the array. The
product-delivered collaborations provide configuration properties that enable you
to specify how to handle the failure of individual elements of an array during
verification or synchronization.

For example, the generic Order business object contains an array of OrderLineltem
child business objects; each of these OrderLineltem objects can reference an Item
business object. Therefore, the collaboration that handles the Order business object
can delegate an array of Item business objects. Similarly, the generic Order
business object contains an array of OrderContactRef child business objects, and
each OrderContactRef can reference a Contact business object. Therefore, the
collaboration handling the Order business object can delegate an array of Contact
business objects.

The SalesOrderProcessing collaboration, which handles Order business objects,
provides configuration properties that enable you to specify what happens when
one or more referenced business objects in an array fail synchronization or
verification.

One option is to stop synchronization of the triggering business object if any
business object in a delegated array of referenced business objects fails
synchronization or verification. Another option is to remove the failed business
object from the array and continue synchronization of the triggering business
object.

A collaboration evaluates options for handling a failed reference-valued business
object only if it is attempting to verify or synchronize that business object.
Therefore, the collaboration needs to evaluate a property that provides such
options only if its corresponding VERIFY_SYNC_BOName property evaluates to
verify or sync.

The collaborations provided with Business Integration Express have two
configuration properties that provide options when a referenced business object in
an array fails verification or synchronization. One of these properties handles failed
Contact business objects; the other handles failed Item business objects.

The following example demonstrates how an array of Contact business objects is

handled. In this example, both SalesOrderProcessing and InstalledProductSync
delegate arrays of reference-valued Contact business objects. Both use the

Chapter 3. Designing a collaboration 41

FAIL_ON_CONTACT_ERROR property to determine the collaboration’s behavior
when the called collaboration fails to verify or synchronize one of the Contact
objects in the array.

If you modify CollaborationFoundation to delegate an array of Contact objects,
maintain consistency with other collaborations by coding your collaboration to
evaluate FAIL_ON_CONTACT_ERROR only if VERIFY_SYNC_CONTACT
evaluates to verify or sync and if ContactWrapper fails to verify or synchronize
any of the referenced Contact objects. The product-delivered collaborations perform
the following operations based on the value of FAIL_ON_CONTACT_ERROR:

* True—The collaboration stops processing.

 False—The collaboration continues processing and removes each failed Contact
from the array of child business objects.

By default, the FAIL_ON_CONTACT_ERROR property is set to true.

The following paragraphs demonstrate how arrays of Item business objects are
handled. WebSphere Business Integration Server Express business objects can
contain an array of references to Item and Contact business objects. Therefore, each
generic Order can reference an array of generic Item objects; you can configure
SalesOrderProcessing to delegate an array of referenced Item business objects to
ItemWrapper.

To handle errors for an individual Item that fails verification or synchronization,
SalesOrderProcessing uses the FIND_ALL_ITEM_ERRORS property. The
collaboration evaluates FIND_ALL_ITEM_ERRORS only if VERIFY_SYNC_ITEM
evaluates to verify or sync and if IltemWrapper fails to verify or synchronize any
of the referenced Item business objects.

illustrates the way in which CollaborationFoundation handles an array of
referenced Item business objects when VERIFY_SYNC_ITEM evaluates to sync and
FIND_ALL_ITEM_ERRORS evaluates to true.

Example of Processing an Array of Referenced ltems
VERIFY_SYNC_ITEM=Sync
FIND_ALL _ITEM_ERRORS=true

Order
Crrclerld

Customer
Customerld w{Objectld

OrderLinetteming

OrderLineltem
Linettemid
temid

OrderLineltern
Linetemid
ftemlc

OrderLineltem
Linetemid
ftemic

(OrderLineltermn tem . R
Linctemid temid @ Collaboration delegstes synchronizstion: success

ttemid

@ Collaboration raizes exception for tems #2 and 3 and stops

Figure 11. Example of processing an array of referenced ltem business objects

Collaborations perform the following operations based on the value of
FIND_ALL_ITEM_ERRORS:

e True—The collaboration continues processing and sending referenced Item
business objects. After handling the last Item in the array, the collaboration raises

42 Collaboration Development Guide

an exception for each failed Item and stops processing. This setting enables an
administrator to receive all item errors at once.

 False—The collaboration stops processing. The setting requires an administrator
to restart the collaboration after each item error. The administrator must find
and fix each error.

By default, the value of FIND_ALL_ITEM_ERRORS is false.

Processing multiple types of items: WebSphere Business Integration Server Express
delivers the generic Item business objects listed in|Table 14

Table 14. Generic Item business objects

Generic Item business object Description

ItemBasic Contains data attributes that are common
across all the logical organizations that use
item data. It is considered a prerequisite for
other Business Integration Express generic
Item business objects.

ItemOrder Contains data attributes that capture the set
of fields maintained for a specific order
management organizational entity.

ItemPlanning Contains data attributes that pertain to
planning for an item’s future requirements
and restocking.

Item A flat business object that represents item
data. Several collaborations use this business
object as a placeholder. Generic Item enables
collaborations to determine at runtime the
actual type of Item business object to be
processed. Therefore, generic Item must exist
on an installation in order to bind a
connector to a collaboration that processes
generic ItemBasic, [temOrder, and
ItemPlanning.

If a triggering business object can reference an Item business object, it is important
to allow the person configuring the collaboration object to specify which type of
referenced Item to verify or synchronize. The ITEM_TYPE property provides this
functionality.

If the collaboration you build from CollaborationFoundation has a triggering
business object that references Item business objects, extend your collaboration to
use the ITEM_TYPE property. Define its set of values to include every type of Item
business object available on your system.

By default, the ITEM_TYPE property is set to Item.

Adding messages: To examine or modify CollaborationFoundation’s messages,
edit its message file (collaborations\messages\CollaborationFoundation.txt).
Maintain consistency with other Business Integration Express collaborations by
creating messages that provide information if any aspect of the dependency
checking fails.

Because the WebSphere Business Integration Server Express synchronization and
wrapper collaborations provide their own error messages, collaborations developed
from CollaborationFoundation need not contain error messages specific to each

Chapter 3. Designing a collaboration 43

failed synchronization or verification of related business objects. However, these
customized collaborations must explicitly handle the messages received from their
called collaborations. For more information on handling these messages, see
[‘Raising exceptions” on page 37

Adding Scenarios: To delegate checking of a referenced business object to another
collaboration, you must create a collaboration scenario that evaluates whether the
collaboration should verify or synchronize the referenced business object.

The scenario must check the value of the collaboration’s VERIFY_SYNC_BOName
property to determine whether the collaboration has been configured to verify or
synchronize the referenced business object. You can also have the scenario perform
other preliminary checking of the referenced business object before it calls a
Wrapper collaboration.

For example, the following code enhances performance by preventing the
collaboration from calling the CustomerWrapper collaboration unless it is truly
required:

// Get the value of the configuration property
String vsc = getConfigProperty("VERIFY_SYNC_CUSTOMER");

// By default, do not branch to Wrapper call.
bBranch= false;

// 1f VERIFY_SYNC_CUSTOMER evaluates to "neither" or

// if the source application's business object does not contain the

// Customer's primary key, do not change the value of bBranch.

if (vsc.equals("neither") || (processingBusObj.isNull("CustomerID")))"
{}

else

// Get the Customer's primary key from the source

// and destination application's business objects.

// Note: The DestinationAppRetrieveBusObj variable

// contains a value only if the USE_RETRIEVE property evaluates
// to "true" and has already been processed.

String sc=processingBusObj.getString("CustomerID");

String dc=DestinationAppRetrieveBusObj.getString("CustomerID");

// 1f the Customer's primary key is the same in both the
// source and destination application (therefore, no need to
// synchronize), the verb is Update, and USE_RETRIEVE evaluates
// to "true", do not change the value of bBranch.
if (sVerb.equals("update") && bUseRetrieve && sc.equals.(DC))
{1
else
{
// If the verb is Create, or if the Customer's primary
// keys are not identical and the verb is Update, call
// the Wrapper collaboration.
bBranch = true;
1
1

For an example of a collaboration template that includes the above code, see
SalesOrderProcessing. Its Additional Processing 3 subdiagram includes code that
checks the values of its VERIFY_SYNC_CUSTOMER, VERIFY_SYNC_ITEM, and
VERIFY_SYNC_CONTACT properties to determine which of several paths to
follow.

44 Collaboration Development Guide

Because SalesOrderProcessing processes the USE_RETRIEVE diagram before
processing the Additional Processing 3 subdiagram, its
DestinationAppRetrieveBusObj variable can already contain the destination
application’s business object.

Performing recursive checking of dependent data

Most business objects reference other business objects whose types are different
from their own. For example, Order references Customer, Contact, and Item. Order
does not reference another Order business object. Because Order is not the only
generic business object that can reference Customer, Contact, and Item objects, the
collaboration that modifies Order needs to delegate processing of the referenced
business objects to the appropriate wrapper collaborations. To maintain data
consistency in environments that run multiple collaborations, no two
product-delivered collaborations modify a business object of the same type.

The discussion of business object modification becomes more complicated,
however, when analyzing the collaborations that modify InstalledProduct and Item
business objects.

InstalledProduct business objects and their parent InstalledProduct: Like Order,
an InstalledProduct business object can reference Customer, Contact, and Item.
Unlike any other generic business object, however, InstalledProduct can also
reference another InstalledProduct as its parent. illustrates the
relationship between multiple InstalledProduct business objects.

InstalledProduct
Objectld
MUl vwalue —Parentld

References

Contains
InstalledProduct

Chijectd
RelatedCustomerRef Parertld
Containg References
A
T
i RelatedCustomerRef
Corting E—— InstalledProduct
Obijectld
Parentld
RoleUsage ;
Contzins Cortains
A
RelatedCustomerRef
Rolelsage

I
Cortains
A

RoleUsage

Figure 12. Relationship between multiple InstalledProduct business objects

shows that the parent InstalledProduct does not contain its child
InstalledProduct. Instead, the child contains a reference to its parent in its Parentld
attribute, whose type is String. Any InstalledProduct that has a null in its Parentld
attribute is at the top of its product hierarchy.

Item business objects and their prerequisite Item objects: Item business objects
also introduce a new level of complexity to business object modification. As shown
in [Table 14 on page 43 WebSphere Business Integration Server Express delivers a
family of Item business objects. The business integration system handles Item
business objects flexibly; collaborations use the value of their ITEM_TYPE property
to determine which type of Item they are configured to handle.

Chapter 3. Designing a collaboration 45

Although one Item does not reference another as its parent, an Item business object
can reference another business object in the Item family as its prerequisite. For
example, ItemOrder and ItemPlanning can both reference ItemBasic as a
prerequisite. By default, the PREQ_ITEMORDER and PREQ_ITEMPLANNING
properties of the ItemSync collaboration specify ItemBasic as the prerequisite for
both of these Item business objects.

Recursively processing business objects of the same type or type family: When
a business object references another business object of the same type or type
family, the same collaboration that modifies the triggering business object can
modify the referenced business object. In other words, the InstalledProductSync
collaboration must delegate the handling of its triggering business object’s
referenced Customer, Contact, and Item objects.

However, InstalledProductSync can synchronize not only its triggering
InstalledProduct but the parent InstalledProduct of the triggering business object,
and the parent of the parent. Moreover, ItemSync can synchronize not only its
triggering ItemOrder, but the ItemBasic prerequisite of the triggering business
object. If the triggering business object’s prerequisite has its own prerequisite,
ItemSync can synchronize them all.

WebSphere Business Integration Server Express provides two collaborations that
recursively process a stack of business objects:

¢ InstalledProductSync—Builds a stack of parent InstalledProduct business objects
by starting at the bottom with the triggering business object and building
upward to the topmost parent. The collaboration then synchronizes the
InstalledProduct business objects, moving from the top of the stack to the
bottom. At each node in the hierarchy, the collaboration delegates handling of all
referenced business objects that are not of the type InstalledProduct before it
actually synchronizes the InstalledProduct business object. In other words,
InstalledProductSync can recursively synchronize multiple business objects by
using the Last-In-First-Out (LIFO) method.

For example, assume that an organization that builds cars manages the
components as separate installed products within a product hierarchy. In this
case, the fuel injector is handled as an installed product, the parent of the fuel
injector (the engine) is handled as an installed product, and the parent of the
engine (the car) is handled as an installed product. To synchronize the fuel
injector, InstalledProductSync builds a stack; the fuel injector is located at the
bottom of the stack. The collaboration places the car at the top of the stack.
When synchronizing, InstalledProductSync synchronizes the car first and the
fuel injector last.

InstalledProductSync is based on the assumption that the parent of an
InstalledProduct object must exist before the InstalledProduct is created, much as
a boss must exist before an employee is hired.

* ItemSync—Works its way down a hierarchy of prerequisite Item business
objects, removing a business object from the hierarchy if its prerequisite business
object already exists in the destination application. In other words, ItemSync
performs a depth-first search when recursively synchronizing prerequisite
business objects within the hierarchy.

ItemSync’s process differs from the InstalledProductSync process as follows:

— ItemSync can handle any number of dependencies. The collaboration is
designed to facilitate processing of generic business objects developed at a
user’s installation. With moderate modifications, ItemSync can accept
user-defined business objects as triggering business objects or as prerequisites.

46 Collaboration Development Guide

— As it moves down through its list of prerequisites, [temSync evaluates each
failed prerequisite to determine whether the prerequisite has a prerequisite
above it in the hierarchy that was successfully retrieved. If it does, [temSync
keeps only the failed prerequisite on the list.

If you plan to modify CollaborationFoundation to perform recursive processing,
examine the code for the InstalledProductSync and ItemSync collaborations. You
can copy scenarios from those collaborations into the collaboration that you
build from CollaborationFoundation. You can then modify the scenarios to meet
your specific needs. For more information about these collaborations, see the
reference pages for InstalledProductSync and ItemSync.

WrapperFoundation template

The WrapperFoundation collaboration template is a tool that makes it easy to
develop user-defined wrapper collaborations that adhere to Business Integration
Express standards. A wrapper collaboration is a collaboration that handles the
verification or synchronization of a business object for another collaboration. The
calling collaboration sends a top-level business object that is referenced on its own
triggering business object to the wrapper collaboration.

For example, the SalesOrderProcessing collaboration synchronizes the generic
Order business object. Generic Order contains references to a generic Customer
business object, which represents the customer making the order. Moreover, generic
Order contains an array of generic OrderLineltem business objects. Each
OrderLineltem references a generic Item business object, which represents the
items ordered.

To modularize collaboration logic in such a situation, Business Integration Express
provides separate collaboration templates to process generic Order and the generic
business objects that it references. For instance, Business Integration Express
provides the following templates to process an Order business object that
references Customer and Item business objects:

* SalesOrderProcessing—Processes the order.
* CustomerWrapper and CustomerSync—Processes the referenced customer.
* ItemWrapper and ItemSync—Processes the referenced items.

Separating business object processing into different, specific collaborations not only
enhances the reusability of each collaboration template, but also prevents two
collaborations from modifying the same data at the same time. For more
information, see [“Problems in concurrent processing” on page 55

To maintain consistency across all synchronization and access collaborations,
WebSphere Business Integration Express builds the templates for these
collaborations from the CollaborationFoundation template. To maintain consistency
across all wrapper collaborations, all wrapper collaboration templates are built
from the WrapperFoundation template. You can use WrapperFoundation to
develop your own wrapper collaborations.

WrapperFoundation features

A wrapper collaboration object generated from the WrapperFoundation template
can verify the existence of its triggering business object in the destination
application or facilitate its synchronization. This section contains the following
topics:

* |“Verification processing” on page 48|

Chapter 3. Designing a collaboration 47

* |"Synchronization processing’]

Verification processing

When a wrapper collaboration receives its reference-valued triggering business
object with the Exists verb, it verifies the existence of its triggering business object
by retrieving it from the destination application. The wrapper collaboration uses
the Retrieve verb for this verification.

If the verification succeeds, the wrapper collaboration returns a success status to its
calling collaboration.

If the verification fails, the wrapper collaboration’s behavior depends on the setting
of its CONTINUE_WITH_WARNING configuration property.

For more information and an illustration of the verification process, see the user
guide for the particular wrapper collaboration you are using.

Synchronization processing

When a wrapper collaboration receives its reference-valued triggering business
object with the Sync verb, it facilitates the synchronization of the business object. It
does so by retrieving all values from the source application and sending the
full-valued business object with the Create verb to the appropriate synchronization
collaboration.

If the synchronization collaboration succeeds in creating the business object in the
destination application, the wrapper collaboration returns a success status to its
calling collaboration.

If the synchronization collaboration fails to create the business object in the
destination application, the wrapper collaboration’s behavior depends on the
setting of its CONTINUE_WITH_WARNING configuration property.

To prevent the called synchronization collaboration from attempting to create an
existing object and returning a failure status to the wrapper collaboration, use the
following settings for the synchronization collaboration:

* Set the USE_RETRIEVE configuration property to true.
* Set the INFORMATIONAL_EXCEPTIONS configuration property to 3010.

For more information and an illustration of the synchronization process, see the
user guide for the wrapper collaboration template you are using.

Using the WrapperFoundation template

Perform the following tasks when you want to use the WrapperFoundation
template:

1. Copy the entire WrapperFoundation template to your development area.
2. Rename the template to reflect the collaboration you are going to build.

3. From within Process Designer, use the Ports and Triggering Events tab of the
Template Definitions window to change the type of existing ports
(DestinationAppRetrieve, From, SourceApp, and To) to assign the appropriate
business objects to them. For example, to create an InvoiceWrapper template,
you must change each port’s business object from the default value (Controller)
to the Invoice business object. For more information, see [*WrapperFoundation|
[ports” on page 49)

48 Collaboration Development Guide

WrapperFoundation ports

illustrates WrapperFoundation’s ports. The tables that follow the figure
provide information about each port.

Controller Controller
[l)eslinalionAppHellieve

|
Controller

brrvrnnss
SourceApp WrapperFoundationPorts To

Figure 13. WrapperFoundation collaboration ports

WrapperFoundation’s DestinationAppRetrieve port

lists the features of the WrapperFoundation template’s
DestinationAppRetrieve port.

Table 15. Port features for the WrapperFoundation DestinationAppRetrieve port

Port feature Value

Business Object Business object for which the wrapper
collaboration is named. For example,
CustomerWrapper sends a reference-valued
Customer business object. This business
object defaults to Controller.

Verbs Used Retrieve

Purpose Retrieves the business object from the
destination application

Bound To Destination application’s connector

WrapperFoundation’s From port
lists the features of the WrapperFoundation template’s From port.

Table 16. Port features for the WrapperFoundation From port

Port feature Value

Business Object Business object for which the wrapper
collaboration is named. For example,
CustomerWrapper is triggered by a
Customer business object. The default value
is Controller.

Verbs Used Sync, Exists

Purpose Receives the triggering business object from
the calling collaboration

Bound To The ToBusObjWrapper port of the calling
collaboration

WrapperFoundation’s SourceApp port
[Table 17 on page 50| lists the features of the WrapperFoundation template’s

SourceApp port.

Chapter 3. Designing a collaboration 49

Table 17. Port features for the WrapperFoundation SourceApp port

Port feature Value

Business Object Business object for which the wrapper
collaboration is named. For example,
CustomerWrapper retrieves a Customer
business object from the source application.
The business object defaults to Controller.

Verbs Used Retrieve

Purpose Retrieves the triggering business object from
the source application.

Bound To Source application’s connector

WrapperFoundation’s To port
lists the features of the WrapperFoundation template’s To port.

Table 18. Port features for the WrapperFoundation To port

Port feature Value

Business Object Business object for which the wrapper
collaboration is named. For example,
CustomerWrapper sends a reference-valued
Customer business object. This business
object defaults to Controller.

Verbs Used Create

Purpose Sends a business object out of the
collaboration. Usually used to send a
full-valued business object to the relevant
synchronization collaboration,

Bound To The From port of the collaboration that
synchronizes or subscribes to the business
object

Extending WrapperFoundation

CustomerPartnerWrapper and ItemWrapper provide examples of WebSphere
Business Integration Express collaborations that were built from
WrapperFoundation and were modified to meet specific needs. This section
describes those modifications as examples of ways you can modify the
WrapperFoundation template.

CustomerPartnerWrapper

Because different applications use CustomerPartner data in significantly different
ways, CustomerPartnerWrapper handles its business object’s keys in a unique way.
Some applications require CustomerPartner to contain the identifier of its
associated Customer object as well as its own identifier. Other applications do not
require the Customer object’s identifier and do not provide that identifier when
sending the business object to the Business Integration Express system.

If a collaboration receives a CustomerPartner business object from a system that
does not provide the Customer identifier, but must synchronize the object to a
system that does require the identifier, the collaboration must obtain the additional
data and provide it to the destination application. For this reason,
CustomerPartnerWrapper does not use the command provided by
WrapperFoundation to set the business object’s keys:

50 Collaboration Development Guide

SourceAppBusObj.setKeys (triggeringBusObj);

Instead of using the above command, which WrapperFoundation provides in the
Sync scenario’s Retrieve from Source node, CustomerPartnerWrapper gets the
values for the key in the following two separate statements:
SourceAppBusObj.set ("ObjectId",

triggeringBusObj.getString("ObjectID"));
SourceAppBusObj.set ("AdditionalKey",

triggeringBusObj.getString("AdditionalkKey"));

Also located in the Sync scenario’s Retrieve from Source node, these statements use
both the Objectld and the AdditionalKey attributes as the potential key.

In the Sync scenario’s Prepare Object for Sync Collaboration node,
WrapperFoundation contains the following code:

ToBusObj =(SourceAppBusObj).duplicate();
ToBusObj.setKeys(triggeringBusObj);

In the equivalent node, CustomerPartnerWrapper uses two separate statements to
set the key for ToBusObj:
ToBusObj =(SourceAppBusObj).duplicate();

ToBusObj.set("ObjectId", triggeringBusObj.getString("ObjectId"));
ToBusObj.set("AdditionalKey", triggeringBusObj.getString("AdditionalKey"));

ltemWrapper

[Table 14 on page 43|lists the four different types of generic item business objects
delivered with WebSphere Business Integration Express. It is assumed that you are
planning to define your own types of generic item business objects to meet the
specific needs of your environment. Therefore, the ItemSync collaboration was
designed to be easily extended to handle user-defined triggering and prerequisite
item business objects. For more information, refer to the user’s guide for the
ItemSync collaboration.

Because ItemWrapper can be triggered by any type of generic Item business object,
the collaboration must first determine the type of business object that triggered it.
Therefore, ItemWrapper’s Scenario Definitions for both the Verify and Sync
scenarios contain the following statement, which is not found in other wrapper
collaboration templates:

BusObj getItemFlvrBusObj = new BusObj(triggeringBusObj.getType());

The above statement creates a business object unique to ItemWrapper
(getltemFlvrBusODbj). This statement also gets the type of the triggering business
object and uses it to set the type of the business object used in ltemWrapper’s
verification and synchronization scenarios.

All wrapper collaborations create a DestinationAppBusObj and a
SourceAppBusObj business object in the Declarations section of the collaboration’s
Template Definition. The type of these business objects is the same as that of the
triggering business object. Whereas other wrapper collaborations use

Destination AppBusObj and SourceAppBusObj to retrieve data from the destination
and source applications, ItemWrapper uses getltemFlvrBusObj. Before retrieving
the item from the destination application in the Verify scenario or from the source
application in the Sync scenario, ItemWrapper uses the key values of
triggeringBusODbj to set the keys of getltemFlvrBusObj, as follows:

getItemFlvrBusObj.setKeys(triggeringBusObj);

Chapter 3. Designing a collaboration 51

In the Sync scenario, ItemWrapper uses the values in getltemFlvrBusObj to create
the business object that it sends to the destination, as follows:
toltemF1vrBusObj = getItemFlvrBusObj.duplicate();

//toltemFlvrRef.copy(getItemFlvrRef);
toItemF1vrBusObj.setKeys (triggeringBusObj);

A standard wrapper collaboration, such as ContactWrapper, creates a ToBusObj,
which it instantiates from SourceAppBusODbj. The following example illustrates this
creation and instantiation:

ToBusObj =(SourceAppBusObj).duplicate();
ToBusObj.setKeys(triggeringBusObj);

Because ItemWrapper does not use the standard FromBusObj, the collaboration’s
code comments out the code in the Initialize Variables node of both the Verify and
Sync scenarios.

Other extensions to the template
You can extend WrapperFoundation to contain additional ports, properties,
processing logic, and messages. For more information, see

[CollaborationFoundation” on page 35.]

Building collaboration groups

A collaboration group is a set of collaboration objects that represents a combined
business process. A collaboration group lets you combine discrete units of logic.
The collaboration objects are bound to each other through the same types of ports
through which they can also bind to connectors.

Collaboration groups provide the following benefits:

* Enable you to modularize logic. You can develop and test a unit of logic once,
and then deploy it multiple times.

* Enable you to expand existing collaborations. You can create collaboration
templates that call or are called by existing collaborations.

Collaboration groups are formed from two or more collaborations. Within a group,
collaborations are bound to other collaborations, and there is always the notion of
a caller collaboration and a called collaboration. For any two collaborations that are
bound to each other, one is the caller collaboration and one is the called
collaboration. A caller collaboration is bound such that one of its service calls sends
a business object that triggers the execution of another collaboration. The called
collaboration receives the business object, which is its triggering event. The called
collaboration returns the result to the caller after executing. See

business
. object
Caller Collaboration ! Called Collaboration
sgnds _business object receives triggering event
triggering event and executes;
results returns results

Figure 14. Caller and called collaborations

Within a collaboration group, a collaboration that does not support long-lived
business processes cannot bind to a collaboration that is deployed as a long-lived
business process.

52 Collaboration Development Guide

Example of a collaboration group: Collaboration for Customer
Manager

An example of a collaboration group is the Business Integration Express product
Collaboration for Customer Manager, which consists of the following
collaborations:

* CustomerSync

* CustomerWrapper

* CustomerPartnerSync

¢ CustomerPartnerWrapper

When you install the Collaboration for Customer Manager, you receive all
collaboration templates. You can configure them and bind them (establish the
communication between collaborations using ports) in various ways to form a
unified process.

The CustomerSync collaboration synchronizes a SoldTo customer; that is, the
CustomerSync collaboration ties together events and data with the SoldTo
customer. You can also choose to synchronize data and events about related
customer information. In that case, you could bind CustomerSync to the
CustomerPartnerWrapper, which performs some preprocessing, and then bind
CustomerPartnerWrapper to CustomerPartnerSync. illustrates this set of
bindings.

Customer Partner CustomerPartner
Wrapper Sync

\ Bindings /

Figure 15. Bound collaboration group

CustomerSync

Creating a collaboration group
Here are the general steps for creating a collaboration group:
* In the calling collaboration:

— Create a port for the type of business object to be passed to the called
collaboration.

— Set up a service call that passes the business object along with the verb that
you want the called collaboration to handle.

— Handle the results of the service call as usual.

Note: If one of the collaborations in a collaboration group is configured for
Service Call In-Transit persistence, all collaborations in that group will
be configured automatically by InterChange Server Express to maintain
consistent recovery behavior. For more information, see
land exactly-once requests” on page 159

e In the called collaboration:

— Create a port for the type of business object to be received from the caller
collaboration.

— Create a scenario and assign the triggering event to the scenario.

Chapter 3. Designing a collaboration 53

Including Web services

WebSphere Business Integration Express supports the use of Web services in
collaborations. A Web service is a modular application whose public interfaces and
bindings are defined with XML, and it is accessible through open protocols such as
HTTP and SOAP. A Web service can be included in a collaboration template’s
activity definition. When the corresponding collaboration object is run, the Web
service is invoked. No modification of InterChange Server Express is required.

Use System Manager to locate and register Web services. Registered Web services
become part of the Integration Component Library (ICL) project. In addition, any
business objects needed for the Web services are automatically generated and
placed in the ICL project. For more information on using System Manager to
register and manage Web services, see the System Implementation Guide.

To include a Web service in a collaboration template, you must export it from the
ICL project in System Manager. Each method is exported as a function block to
Activity Editor, where it can be placed in an activity definition. For more
information on exporting a Web service and adding it to an activity definition, see
[“Web services function blocks” on page 137

To configure a timeout value for the Web service, add a collaboration configuration
property called ws_timeout (see [“Defining collaboration configuration propertieq
[(the Properties tab)” on page 79). The timeout value is specified in milliseconds;
the default value for ws_timeout is 10000 (10 seconds).

Designing for long-lived business processes

If you plan to deploy your collaboration as a long-lived business process, keep the
following in mind when designing and building the collaboration template:

* Use global template or port variables for any data that you want to persist
through the business process.

* The references for all CwDBConnection objects are released before a service call
in a long-lived business process environment, and all active database
transactions are implicitly committed. If necessary, design your template to
re-acquire the CwDBConnection objects after the service call has finished. In
addition, reinitialize the database transaction context after the service call if you
are using explicit database transaction bracketing.

* If the collaboration is going to be bound to an adapter, ensure that the adapter is
configured to use JMS as the transport mechanism. Long-lived business
processes cannot use an adapter with any other type of transport.

* Long-lived business process collaborations cannot be bound to external Access
Clients.

* Within a collaboration group, collaborations that do not support long-lived
business processes cannot bind to a long-lived business process collaboration.

Designing for parallel execution

InterChange Server Express provides a parallel-execution environment: it can run
multiple collaborations concurrently in separate threads and it can also run
multiple threads of the same collaboration (known as multithreading).

54 Collaboration Development Guide

Attention: The thread pool for collaborations is used only for event-triggered flows
and not for call-triggered flows. However, call-triggered flows are also
multi-threaded in execution in that they use the thread pool of the IBM
Java Object Request Broker (ORB).

Multithreading capabilities

Each server has a maximum number of threads that can be simultaneously
spawned to process business object subscriptions. You can set your own maximum
number of threads to be spawned, based on your individual situation and what
you determine to be optimal for performance. Of course, the number you set
cannot be greater than the number of threads allowed by the server.

To set the maximum number of threads that can potentially be spawned, specify
the number of threads in System Manager.

Note: If the destination connector is configured for parallel processing, code the
collaboration template to verify that the request was successfully sent to the
application. Add this code to the node immediately following the exception
transition link for the service call. For more information, see |getSubType()| in
[Chapter 28, “CollaborationException class,” on page 387)

Important: If the destination connector is single-threaded, it must be configured
for parallel processing to take advantage of a multi-threaded
collaboration. For more information, see the Implementation Guide for
WebSphere InterChange Server.

Problems in concurrent processing

In any concurrent processing environment, there is always the danger of data
inconsistency. Data inconsistency can occur whether the concurrent processing is
by means of multiple processes or multiple threads. If two programs or two
threads access the same data at the same time, there is always the possibility that
one may modify the data and adversely affect the operations of the other program
or thread in unexpected ways. Concurrent processing environments handle this
problem by synchronizing access to shared data; a thread or process locks a
portion of data so that another thread or process cannot simultaneously access it.

For a simple example of the problem as it might occur in the business integration
environment, consider the following situation:

* An application user at a InterChange Server Express source application must
add $10,000 to an employee’s $40,000 salary.

* The application user accidentally enters a salary increase of $100,000. The user
realizes that the entry was incorrect and updates the salary again, this time
subtracting $100,000.

* Both operations result in the sending of an Employee.Update event for the same
employee ID to the InterChange Server Express system.

* The events are processed out of order and sent to another application for
synchronization.

* In the destination application, the first update operation attempts to set the
employee’s salary to -$60,000—it tries to subtract $100,000 from the employee’s
salary of $40,000. This causes a semantic error and unexpected results, because
employee salaries cannot fall below zero. The second update could then
encounter an error also.

Chapter 3. Designing a collaboration 55

InterChange Server Express has the following features to ensure data consistency
and address this problem:

* |“Event sequencing’]

« |“Event isolation”]

Event sequencing

Event sequencing ensures that two threads of the same collaboration do not work on
the same data concurrently. If multiple events have the same business object type
and key values, the server queues them and delivers them in order of arrival. The
collaboration thread that receives the first event must complete before the
collaboration receives the next event. Event sequencing thereby preserves execution
order, even in the presence of multi-threaded execution, despite that the various
threads could execute at varying speeds.

You do not need to design a collaboration in any special way to take advantage of
event sequencing; it is done automatically.

Event isolation

Event isolation ensures that two collaborations do not work on the same data
concurrently. Sometimes multiple collaborations handle the same types of business
objects. An event arrives and triggers a particular collaboration. This collaboration
starts its execution and, while it executes, it has sole access to that business object
instance in InterChange Server Express. If another event relating to the same data
arrives, InterChange Server Express queues the newly arrived event until the
executing collaboration completes its processing of the first event. Some restrictions
apply to this feature; they are described in the following sections.

InterChange Server Express does not do event isolation automatically.
Collaboration developers must design templates in a certain way to take advantage
of event isolation. This section describes the rules and gives some examples of
design decisions that help achieve this goal.

Note: These guidelines apply only to collaborations that perform operations that
change data and operate in an environment where multiple collaborations
are in use. If you are developing a collaboration that performs only retrieve
operations and will always be the sole collaboration using that business
object type on its server, you can disregard these guidelines.

When event isolation is applied

InterChange Server Express determines the application of event isolation at
runtime, based on an analysis of the events that arrive and the ports of active
collaborations. The criteria for event analysis is the same as for event sequencing:
events are the same when the business object type and key values are the same.

The analysis of active collaborations considers the set of each collaboration’s ports
that are bound to connectors. In port matching, InterChange Server Express checks
whether:

* Among any of the collaborations, the ports are bound to the same set of
connectors

* Among the ports bound to the same set of connectors, the ports bound to the
same connector have the same business object type

For example, two collaborations have matching ports if both have these port
bindings:

56 Collaboration Development Guide

Connectorl /Business object type A
Connector2 /Business object type B

It is not important whether a port is used for incoming events or outgoing requests
and responses; only the connector binding and the business object type matters.

Ports bound to other collaborations are not considered when determining the
collaborations for which event isolation applies.

Port matching example: ports that match: illustrates two collaborations,
X and Y, for which event isolation would apply. The small black rectangles at the
edges of the collaborations indicate ports.

Connector 1 — A Collaboration X } Connector 2

Connector 1

Collaboration Y } Connector 2

T
©

Connector 3 — Collaboration Z

Figure 16. Matching ports

In X has two ports and Y has three ports. However, port matching
considers only the two ports of Y that are bound to connectors; it disregards the
port that is bound to collaboration Z. Both collaborations have the following ports
bound to connectors:

* One port defined for business object type A and bound to connector 1.
* One port defined for business object C and bound to connector 2.

This example meets the criteria for event isolation, and the server isolates the
incoming or triggering event. Therefore, event A instances would be subject to
isolation in these two collaborations.

Port matching example: ports that do not match: Keep in mind that the server
considers all ports when comparing collaborations; it does not confine port
matching analysis to ports that receive triggering events. If two collaborations
receive the same type of event from the same connector but send an outgoing
business object to two different connectors, their events are not isolated.

illustrates two collaborations whose outgoing ports are bound to
different connectors. Their event instances are not isolated.

Chapter 3. Designing a collaboration 57

Connector 1 — A Collaboration X c Connector 2
Connector 1 — A Collaboration Y (O Connector 3

Figure 17. Unmatched ports

Design rules
You must design collaborations in a certain way if you want to benefit from event
instance isolation. This section describes how to:

* Use delegation to form collaboration groups
* Handle child business objects as reference-valued objects

Using delegation: Each collaboration template that modifies a business object
should be dedicated to modifying only that type of business object. If the
collaboration needs to modify another type of business object, such as a child
business object, then you should create a separate collaboration whose purpose is
to modify the other business object. Then, have the first collaboration delegate
(pass) the other business object to the second collaboration for modification.

The rule of dedicating a single collaboration to modifying only one type of
business object helps maintain data consistency. It prevents multiple collaborations
from concurrently modifying the same instance of the same type of business object.
Delegation ensures that the data consistency of a child business object is
maintained with respect to instances of the same business object that are processed
by other collaborations. Remember that you can use a business object in one
context as a child and in another context on its own.

Imagine that you need to write a business process that deals with a business object
A and a set of information, B, associated with it as a child business object. The
business object structure might look similar to the illustration shown in
where the B business object is a child of the A business object.

Figure 18. Example of a hierarchical business object

If a collaboration already exists that processes B business objects, you should
delegate work on the B child business object to that collaboration. Alternatively,
you might need to create another collaboration.

When you want to work on the data associated with the A business object, you
must work on both the A business object and its set of B data, or the child business
object. You would therefore create two different collaboration templates—one
collaboration modifies business object A and the other modifies the child business
object B—and you might combine these two templates into a collaboration group.
Each collaboration template handles the operations on one business object.

illustrates a collaboration group, A/B, that contains an A-Processor
collaboration and a B-Processor collaboration. The A-Processor collaboration

58 Collaboration Development Guide

processes the A business object. When the A-Processor collaboration needs to
modify the B child business object, it uses a service call to send the B business
object to the B-Processor collaboration. In a dotted line shows delegation.

A/B Collaboration Group

A-Processor .- .. B-Processor
Collaboration .7 . Collaboration

.

.
.
.
. .
. .
. .
A g <

A

Figure 19. Delegation of a child business object

Handling child business objects as reference-valued: When a collaboration
receives a delegated child business object (such as the case of the B-Processor
collaboration in , it should treat the business object as a reference-valued
business object. A reference-valued business object contains only the values for
attributes that are defined as primary keys for the business object. A full-valued
business object, in contrast, contains values for other attributes.

In the figures in this chapter, reference-valued business objects are marked (r) and
full-valued business objects are marked (f). is an example of a business
object with a reference-valued child.

B(r)

Figure 20. Hierarchical business object with a reference-valued child

Depending on the originating connector, events might be sent with
reference-valued or full-valued child business objects. A collaboration that receives
a delegated child business object might therefore receive all of its attribute values
or only its primary key values. However, the collaboration should always treat the
delegated child business object that it receives as reference-valued. It should
assume only that the primary key values are correct; it should ignore attribute
values that are not primary keys.

If the collaboration needs to perform operations on the child business object’s
non-key attributes, it must resolve the reference by retrieving the full-valued
version of the business object from the source application. If the child business
object is reference-valued, the retrieve operation obtains the additional attribute
values. If the child business object is full-valued, the retrieve operation ensures that
the associated data is current and valid.

Chapter 3. Designing a collaboration 59

illustrates the delegation of B as a reference-valued business object and

the collaboration’s resolution of the reference by retrieval from the source

collaboration.
A/B Collaboration Group
A-Processor B(r) k. B-Processor
Collaboration .~ *. Collaboration

] ‘1

|- 00000 H
A

o e
e

Source Connector Destination Connector

>

Figure 21. Resolving the reference

Examples

illustrates an environment in which event isolation is in effect between
two different collaborations, B-Processor collaboration and B-to-C collaboration.

60 Collaboration Development Guide

A/B Collaboration Group B-to-C
Collaboration

A-Processor .’ . B-Processor
Collaboration 4 . Collaboration

Source Connector Destination Connector

Figure 22. Two collaborations subject to event isolation

Notice that both the B-Processor collaboration and the B-to-C collaboration:
* receive events of business object type B

¢ produce business objects of type C

* are bound to the same set of connectors

Therefore, port matching would result in event isolation for these collaborations.

The next example (shown in illustrates how you can use collaboration
objects created from the same template in two different ways in the same
environment. This practice enables you to reuse and extend an existing
collaboration template, such as when you want to add features to the collaboration.

Suppose that a Y-Processor collaboration template exists and that a collaboration
object instantiated from the Y-Processor template, Y-Processor Collaborationl, is in
use. You want to create new collaboration features that include and extend the
functions of the Y-Processor collaboration template.

One way to do this is to reuse the Y-Processor collaboration template and create a
new Y-Processor collaboration object that you use in a collaboration group. That is,
you instantiate a second Y-Processor collaboration object, Y-Processor
Collaboration2, from the Y-Processor template and place it in a collaboration group.
There are now two Y-Processor collaborations for which event isolation is needed.
An intermediary collaboration—Collaboration Z in the example—can provide
additional functions and ensure event isolation, without requiring changes to
Y-Processor.

In the server applies event isolation to the Y business objects received by

the collaborations with dark outlines, Collaboration Z and Y-Processor
Collaborationl. The numbers indicate the sequence of processing.

Chapter 3. Designing a collaboration 61

X-Processor
Collaboration

Collaboration Gr oup

Y-Processor

Collaboration2| |0
destination

e

Y-Processor

Collaboration1 to

destination

Y(f)

Connector

!

Application

Figure 23. Retrieving a full-valued business object

Collaboration Z and Y-Processor Collaboration2 work as a team, in terms of event

isolation. The guidelines for delegated business objects are followed by
Collaboration Z on behalf of Y-Processor Collaboration?2.

An internationalized collaboration

An internationalized collaboration is a collaboration that has been written so that it

can be customized for a particular locale. A locale is the part of a user’s
environment that brings together information about how to handle data that is

specific to the end user’s particular country, language, or territory. The locale is
typically installed as part of the operating system. Creating a collaboration that

handles locale-sensitive data is called the internationalization (I18N) of the

collaboration. Preparing an internationalized collaboration for a particular locale is

called the localization (L10N) of the collaboration.

This section provides the following information on an internationalized

collaboration:

* |"What is a locale?” on page 63|

* |“Design considerations for an internationalized collaboration” on page 63|

62 Collaboration Development Guide

What is a locale?
A locale provides the following information for the user environment:
¢ Cultural conventions according to the language and country (or territory):
— Data formats:
- Dates: define full and abbreviated names for weekdays and months, as well
as the structure of the date (including date separator).
- Numbers: define symbols for the thousands separator and decimal point, as
well as where these symbols are placed within the number.
- Times: define indicators for 12-hour time (such AM and PM indicators) as
well as the structure of the time.
- Monetary values: define numeric and currency symbols, as well as where
these symbols are placed within the monetary value.
— Collation order: how to sort data for the particular character code set and
language.
- String handling includes tasks such as letter “case” (upper case and lower
case) comparison, substrings, and concatenation.

* A character encoding — the mapping from a character (a letter of the alphabet) to
a numeric value in a character code set. For example, the ASCII character code
set encodes the letter “A” as 65, while the EBCIDIC character set encodes this
letter as 43. The character code set contains encodings for all characters in one or
more language alphabets.

A locale name has the following format:
Il TT.codeset

where 11 is a two-character language code (usually in lower case), TT is a
two-letter country and territory code (usually in upper case), and codeset is the
name of the associated character code set. The codeset portion of the name is often
optional. The locale is typically installed as part of the installation of the operating
system.

Design considerations for an internationalized collaboration

This section provides the following categories of design considerations for
internationalizing a collaboration:

* [“Locale-sensitive design principles”|

« |“Character-encoding design principles” on page 68|

Locale-sensitive design principles

To be internationalized, a collaboration must be coded to be locale-sensitive; that is,
its behavior must take the locale setting into consideration and perform the task
appropriate to that locale. For example, for locales that use English, the

collaboration should obtain its error messages from an English-language message
file.

The collaboration code that Process Designer Express creates is not
internationalized. Once Process Designer Express generates your collaboration
code, you must take the steps outlined in this section to internationalize your
collaboration template.

lists the locale-sensitive design principles that an internationalized
collaboration must follow.

Chapter 3. Designing a collaboration 63

Table 19. Locale-sensitive design principles for collaborations

Design principle

For more information

The text of all error and status messages

“Text strings”

needs to be isolated from the collaboration
template in a message file and translated
into the language of the locale.

The locale of a business object must be |“Business object locales” on page 66|
preserved during execution of the

collaboration.

“Collaboration configuration properties” on|

page 62]

Properties of collaboration configuration
properties must be handled to include
possible inclusion of multibyte characters.

Other locale-specific tasks must be [“Other locale-sensitive tasks” on page 68|

considered.

Text strings: It is good programming practice to design an internationalized
collaboration so that it refers to an external message file when it needs to obtain
text strings rather than hardcoding text strings in the collaboration code. When a
collaboration needs to generate a text message, it retrieves the appropriate message
by its message number from the message file. Once all messages are gathered in a
single message file, this file can be localized by having the text translated into the
appropriate language or languages. For more information on globalized message
files, see [Chapter 9, “Creating a message file,” on page 171|

To globalize the logging, exception, and email operations, make sure that all these
operations use message files to generate text messages. By putting message strings
in a message file, you assign a unique identifier to each message. lists the
types of operations that use a message file and the associated Collaboration API
methods in the BaseCollaboration class that the collaboration template uses to
retrieve their messages from a message file.

Table 20. Methods to retrieve messages from a message file

Message-file operation BaseCollaboration method

Logging TogInfo(), TogError(), TogWarning()

Exception Handling raiseException()

Email Notification sendMail()

Note: InterChange Server Express standards recommend that trace messages are
not included in a collaboration message file. Trace messages do not need to
display in the language of the customer’s locale because they are intended
for the product debugging process.

Handling logging and exception messages: To ensure that logging and
exception-handling are always obtained from the collaboration message file, do not
use the forms of the methods in that allow you to specify the message
string directly within the call. For example, to log an error to the log destination,
do not use the following call to logError():

TogError("Log this message to the Tog destination");
Instead, create a unique identifier for the message and place the text within the

collaboration message file. If this message were assigned a unique identifier of 712,
its entry in the message file would appear as follows:

64 Collaboration Development Guide

712
Log this message to the log destination.

You can optionally add message parameters to this message as needed.

In an internationalized collaboration, the preceding call to logError() should be
replaced with the following call, which obtains the log message from the
collaboration message file:

TogError(712);

Similarly, you should obtain all exception messages from the collaboration message
file by avoiding use of the following form of raiseException():

void raiseException(String exceptionType, String message)
Instead, use one of the raiseException() forms that includes a message number.

Handling email messages: The sendEmail() method allows you to send a message to
specified email recipients. In an internationalized collaboration, email messages
should go in the collaboration message file. However, the sendEmail() method does
not provide a form that allows you to specify the unique identifier of a message.
Therefore, to send an email message, you must first extract the message from the
message file and then use sendEmail() to send the retrieved message string.

shows the method that the collaboration can use to retrieve a message
from a message file.

Table 21. Method to retrieve a message from the message file

Collaboration library class BaseCollaboration method

BaseCollaboration getMessage()

The following code fragment retrieves message 100 from the collaboration message
file and includes this message as part of an email message:

String retrievedMsg = getMessage(100);
sendEmail(retrievedMsg, subjectlLine, recipientList);

Handling miscellaneous strings: In addition to handling the message-file operations
in an internationalized collaboration template should not contain any
miscellaneous hardcoded strings. You should isolate these strings into the message
file as well.

To globalize hardcoded strings, take the following steps:

* Generate a uniquely numbered message in the collaboration message file for the
hardcoded string.

Note: In the message file, you can also include an optional explanation to the
isolated string. In this explanation, you can put the scenario name and
action-node number where the string is used. This information can easily
track the position of the source and make changes when needed.

* In the collaboration template, use the getMessage() method to specify the
isolated string by its message number.

For example, suppose your collaboration template contains the following line of
code with a hardcoded string:

String imsgl00 = "s*xx*x*x*Before entering order-to-ATP mapx**xskx*";

Chapter 3. Designing a collaboration 65

To isolate this hardcoded string from the collaboration code, create a message in
the message file and assign it a unique message number (100):

100

*x*xkx*xkx*Before entering order-to-ATP map*x#**x*

[EXPL]
ATP Transaction: 162

In the collaboration template, replace the code that contains the hardcoded string
with code that retrieves the isolated string (message 100) from the message file:
String imsgl00 = getMessage(100);

//retrieve the message numbered ' 100"

String imsgl00 = getMessage(100);

//display the retrieved message

For more information on the use of message files, see [Chapter 9, “Creating al
[message file,” on page 171

Business object locales: During execution of a collaboration object, there are two
different locale settings:

e A collaboration inherits its locale, called a collaboration locale, from the
InterChange Server Express instance in which the collaboration is running. The
collaboration locale determines the locale of text messages that the collaboration
uses for logging, tracing, exceptions, and email.

* A collaboration uses a flow locale for its triggering business objects. The flow
locale determines the locale settings of the business objects that are involved
while the collaboration executes.

When a business object is created, it always has a locale associated with its data.
By default, every business object created in a collaboration uses the collaboration
locale. However, a business object often needs to have the locale of the triggering
business object (the flow locale). Because this collaboration locale might be
different from the flow locale, you might need to assign the flow locale to business
objects. shows the method that the collaboration can use to retrieve the
locale associated with the flow.

Table 22. Method to retrieve the collaboration’s flow locale

Collaboration library class Method

BaseCollaboration getLocale()

Your collaboration template must ensure that the locales of the business objects are
well maintained and properly used during the flow of any collaboration scenarios.
Your collaboration can access this locale with the methods shown in [Table 23

Table 23. Methods to access the business object locale

Collaboration library class Method

BusObj getlLocale(), setLocale()

When Process Designer Express creates a new port for a collaboration template, it
creates a new BusObj object for the port with the name portNameBusObj, where
portName is the name of the port. For example, if you create a port named To,
Process Designer Express creates a BusObj object named ToBusObj with code that
looks as follows:

BusObj ToBusObj = new BusObj("Item");

66 Collaboration Development Guide

The constructor of the BusObj class creates a BusObj object with its locale set to the
collaboration locale. If the business object needs to associate its data with the flow
locale, the collaboration template must modify the business object’s locale.

For example, suppose Process Designer Express generates code in to
create BusObj objects for two ports, To and From.

BusObj ToBusObj = new BusObj(triggeringBusObj.getType());
BusObj FromBusObj = new BusObj(triggeringBusObj.getType());

Figure 24. Generated code to create business objects for ports

The following code fragment internationalizes the generated code in by
ensuring that the flow locale is set in these new BusObj objects:

BusObj ToBusObj = new BusObj(triggeringBusObj.getType());
BusObj FromBusObj = new BusObj(triggeringBusObj.getType());

// get flow locale from BaseCollaboration
triggerLocale = getlocale();

// set newly created BusObj objects' locale to flow locale
ToBusObj.setlLocale(triggerLocale);
FromBusObj.setLocale(triggerLocale);

The BusObj () constructor also accepts a locale name as an argument. Therefore, an
alternative way to rewrite the generated code in is to pass the flow locale
directly to the constructor call, as follows:

// get flow Tocale from BaseCollaboration
triggerLocale = getlLocale();

BusObj ToBusObj = new BusObj(triggeringBusObj.getType(), triggerLocale);
BusObj FromBusObj = new BusObj(triggeringBusObj.getType(), triggerLocale);

Note: The copy() and duplicate() methods of the BusObj class automatically handle
assignment of the business object locale. Therefore, if the source business
object has the correct locale, the target business object will have this locale
as well.

Collaboration configuration properties: As discussed in [‘Defining collaboration|
lconfiguration properties (the Properties tab)” on page 79)a collaboration template
can use two types of configuration properties to customize its execution:

 Standard configuration properties are available to all collaborations.

¢ Collaboration-specific configuration properties are unique to the particular
collaboration template in which they are defined.

The names of all collaboration configuration properties must use only characters
defined in the code set associated with the U.S English (en_US) locale. However, the
values of these configuration properties can contain characters from the code set
associated with the collaboration locale.

The collaboration template obtains the values of configuration properties with the
getConfigProperty() or getConfigPropertyArray() method of the
BaseCollaboration class. These methods correctly handle characters from multibyte
code sets. However, to ensure that your collaboration template is internationalized,
its code must correctly handle these configuration-property values once it retrieves
them. The collaboration template must not assume that configuration-property
values contain only single-byte characters.

Chapter 3. Designing a collaboration 67

Other locale-sensitive tasks: An internationalized collaboration must also handle
the following locale-sensitive tasks:

* Sorting or collation of data: the collaboration must use a collation order
appropriate for the language and country of the locale.

* String processing (such as comparison, substrings, and letter case): the
collaboration must ensure that any processing it performs is appropriate for
characters in the locale’s language.

* Formats of dates, numbers, and times: the collaboration must ensure that any
formatting it performs is appropriate for the locale.

Character-encoding design principles

If data transfers from a location that uses one code set to a location that uses a
different code set, some form of character conversion needs to be performed for
the data to retain its meaning. The Java runtime environment within the Java
Virtual Machine (JVM) represents data in Unicode. The Unicode character set is a
universal character set that contains encodings for characters in most known
character code sets (both single-byte and multibyte). There are several encoding
formats of Unicode. The following encodings are used most frequently within the
integration business system:

* Universal multiple octet Coded Character Set: UCS-2
The UCS-2 encoding is the Unicode character set encoded in 2 bytes (octets).
e UCS Transformation Format, 8-bit form: UTF-8

The UTF-8 encoding is designed to address the use of Unicode character data in
UNIX environments. It supports all ASCII code values (0...127) so that they are
never interpreted as anything except a true ASCII code. Each code value is
usually represented as a 1-, 2-, or 3- byte value.

Most components in the WebSphere Business Integration Server Express system,
including InterChange Server Express and its collaboration runtime environment,
are written in Java. Therefore, when data is transferred between a collaboration
and other components within WebSphere Business Integration Server Express, it is
encoded in the Unicode code set and there is no need for character conversion.

68 Collaboration Development Guide

Chapter 4. Building a collaboration template

This chapter describes how to create and modify a collaboration template
definition. You must perform the following tasks:

1. Create the template definition. See [“Creating a collaboration template”| for more
information.

2. Provide information about the template’s properties. See [“Providing template]
[property information” on page 70| for more information.

3. Define a scenario. See ['Defining scenarios” on page 84| for more information.

4. Create an activity diagram for the scenario you defined. See

activity diagram” on page 8§ for general information, and then refer to
Chapter 5, “Using activity diagrams,” on page 93| for detailed instructions.

5. Define additional scenarios as needed, and create the associated activity
diagrams.

6. Create a message file for the template. See|“Creating the message file” on page]
for more information.

7. Compile the collaboration template. See [“Compiling a collaboration template”|
for more information.

8. Optionally, test the collaboration. You can use the Test Connector in the
Integrated Testing Environment to verify that your collaboration works as
planned. See [‘Testing a collaboration” on page 91|for more information.

Creating a collaboration template

Use Process Designer Express to create, edit, and compile a collaboration template.
The following sections describe how to define a new template and provide the
basic information it requires.

You must provide certain information prior to building the template; other types of
information can be supplied at any time during development. The following
information is required for template creation:

Template name See [“Creating the template definition” on page 70|

Ports See |“Defining ports and triggering events (the Ports and Triggering]
[Events tab)” on page 82|

Scenario See [“Defining scenarios” on page 84

definitions

The following information is optional and you can supply it at any time during the
development process:

Support for See [“Adding support for long-lived business processes” on page 72|
long-lived business

processes

Package name See [“Specifying a collaboration package” on page 74|

Minimum See |“Specifying the minimum transaction level” on page 72|
transaction level

Configuration See |“Defining collaboration configuration properties (the Properties|

properties tab)” on page 79|

© Copyright IBM Corp. 2004 69

Template variables See ["Declaring and editing template variables (the Declarations tab)” on|
Ipage 74|
Import statements See [“Importing Java packages” on page 75|

Creating the template definition

To create a new collaboration template, do the following from within System
Manager:
1. Right-click the Collaboration Templates folder for your project, and then click

the Create New Collaboration Template option. Process Designer Express opens
and displays the New Template dialog box, as shown in .

New Template
Project:
I'D Project_1 j

Template Mame:

Description:

0K I Cancel |

Figure 25. New Template dialog box

2. In the Project field, use the drop-down list to select the name of the Integration
Component Library user project the template belongs to.

3. Type the name of the template in the Template Name field. A template name
can include alphabetic characters, numbers, and underscores. Because Process
Designer Express creates a source file (java) and a Java class file (.class) based
on the template name, it is recommended that you follow these Java class
naming conventions:

e Start a collaboration template name with an uppercase letter.

¢ If the name contains multiple words, start each word with an uppercase
letter (for example, CustomerSync).

* Do not embed spaces in the name.
For more information, see Naming IBM WebSphere InterChange Server
Components.

4. If desired, include a brief description of the template in the Description field.

Note: Do not include a hard return (a carriage return) in the template
description.

5. Click OK. Process Designer Express opens and displays the new template and
its top-level tree in its Template Tree pane.

Providing template property information

A collaboration’s Template Definitions window provides the four tabs listed in

for defining a collaboration template’s properties.

70 Collaboration Development Guide

Table 24. Tabs of the Definitions window

Template Definitions tabs

General

Declarations

Properties

Ports and Triggering Events

Description

Enables you to define the following
information for a collaboration template:

* Template description

* Support for Long-lived business
processes (LLBP)

¢ Minimum transaction level

* Package information

Enables you to define template variables
and view system-generated template
variables.

Enables you to specify the name, type,
and value of user-defined collaboration
template properties.

Enables you to define the ports and
triggering events for the collaboration

For more information

"Defining general property|

information (the General tab)” on|

page 71|

“Declaring and editing template]

variables (the Declarations tab)” on|

age 74|

“Defining collaboration|

configuration properties (the|

Properties tab)” on page 79|

“Defining ports and triggering|

events (the Ports and Triggering]|

template.

Events tab)” on page 82|

Defining general property information (the General tab)
The General tab of the Template Definitions window (see displays
general property information for the collaboration template, including that listed in

Table 25. General template definition information

General template property

Description of the
collaboration template

Support for long-lived
business processes
Transaction level (for
transactional collaborations
only)

Collaboration package

Description

This field of a collaboration template is
optional. In it, you can enter text that is
available to all users of the collaboration
template.

Specifies whether the template supports
long-lived business processes.

Sets a minimum transaction level for all
operations in the collaboration.

The Java package in which the collaboration

resides

For more information

None

‘Adding support for long-lived busines

brocesses” on page 72|

‘Specifying the minimum transaction|

level” on page 72|

‘Specifying a collaboration package” onl

page 74|

shows the General tab within the Definitions window.

Chapter 4. Building a collaboration template 71

E= Template Definitions =] B3

General I Declarations | Propetties I Ports and Triggering Events |

Patme:
I sampleHello
Description:
=

[Long Lived Business Process Suppart

Minimum Transaction Level: INQne vI Package: I

Apply | Discard | LClose

Figure 26. General collaboration properties

Adding support for long-lived business processes

Long-lived business process support enables you to deploy a collaboration as a
long-lived business process, and to specify a timeout value for service calls in this
environment. In order to use this functionality, you must do the following:

* Select the Long Lived Business Process Support option on the General tab

* Optionally, create a user-defined collaboration template property to represent the
timeout value for the service call used in long-lived business processing. See
[“Defining collaboration configuration properties (the Properties tab)” on page 79|
for more information.

Specifying the minimum transaction level

When a collaboration is transactional, InterChange Server Express rolls back the
collaboration upon failure of its transaction. The rollback executes template-defined
compensations to reverse the collaboration’s data modifications. For an explanation
of transactional collaborations, see [“Using transactional features” on page 125}

The transaction level determines the mechanisms by which the collaboration’s
scenarios are executed. Collaboration objects execute at one of the transaction

levels described in [Table 26

Table 26. Transaction levels

Transaction
level Effect System behavior
None Collaboration is not If an error occurs during execution of the

transactional. collaboration, the system just sends it to the
log and then terminates execution.

72 Collaboration Development Guide

Table 26. Transaction levels (continued)

Transaction
level

Minimal Effort

Best Effort

Stringent

Effect

Collaboration is
transactional; it has
compensations defined
for its scenario’s
subtransactions.

Does what Minimal
Effort does; in addition
to compensations, data
isolation is used to
ensure correctness.

Does everything that
Best Effort does, but
eliminates the data

isolation window of

System behavior

If an error occurs during execution of that
scenario, InterChange Server Express rolls back
the scenario, executing the compensation for
each subtransactional step.

InterChange Server Express checks that data is
virtually isolated for the duration of its use in
the transactional collaboration by checking that
the data’s value has not changed since its
previous use. Best-Effort isolation checking
leaves a small window of time during the
isolation check when the data is vulnerable to
changes by other application transactions.
Application locks the data when the isolation is
checked. Supported by applications whose
APIs support an atomic “test and set”
operation.

vulnerability.

A collaboration template developer sets the minimum transaction level for
collaboration objects created from the template. For example, if a collaboration
deals with critical data and you want to ensure it is always rolled back when it
fails, you can set its minimum transaction level to Minimal Effort. If you design a
collaboration for transactional execution, but it can be used successfully without
the transactional features, you can set the minimum transaction level to None.

An administrator can raise the transaction level for a collaboration object if its
connectors support the higher transaction level. However, the transaction level for
a collaboration object cannot be lower than the minimum specified in the template.

— Tip
You can create compensation to permit transactional operation while setting
the minimum transaction level of the collaboration templates to None. If
greater rigor is needed and the connectors in use can support a higher
transaction level, an administrator can raise the transaction level of the
collaboration object at bind time. For more information on compensation, see
[“Defining compensation” on page 113

To assign a minimum transaction level to the collaboration template, do the

following;:

1. Ensure the Template Definitions window is open and the General tab is
displayed.

2. Use the Minimum Transaction Level pull-down menu to select the minimum

transaction level you want to use. If you are editing a collaboration template
that is not transactional, keep the default value of None.

3. Click Apply to save the changes.

Chapter 4. Building a collaboration template 73

Specifying a collaboration package

A package is a group of collaborations that have related functions. All
collaborations that Process Designer Express accesses belong to the package
UserCollaborations or to a subpackage of UserCollaborations. Therefore, the
UserCollaborations package includes:

* Collaborations that are provided with the WebSphere Business Integration Server
Express software

* Collaborations that other collaboration developers have created

You can create subpackages under UserCollaborations to group custom
collaboration templates. For example, if you create several collaboration templates
that deal with office supply management, you can create a subpackage called
OfficeSupplyMgmt. In it, you can put the PaperClipMgmt collaboration and the
Pencillnventory collaboration.

If you specify that a collaboration template is part of a package, Process Designer
Express uses the package name to create a subdirectory in your Integration
Component Library project’s Template\Classes directory. (During deployment, the
ProductDir\collaborations\classes\UserCollaborations directory is created to store
the package information.)

The product installation sets the CLASSPATH environment variable to include all
collaborations under UserCollaborations in the class path. Process Designer Express
places a collaboration template’s .class and .java files in the subdirectory.

To specify a package in which to store the collaboration template:

1. Ensure the Template Definitions window is open, and the General tab is
displayed.

2. In the Package field, enter the name of the package in which to store the
collaboration template.

When you specify the name of an existing package, Process Designer Express
adds the collaboration template to the package. When you specify the name of
a package that does not yet exist, Process Designer Express creates it.

3. Click Apply to save the changes.

You can revise an existing collaboration template definition to add or change a
package name at any time.

Declaring and editing template variables (the Declarations tab)

The Declarations tab of the Template Definitions window displays information
about the template variables of the collaboration template. Template variables are
collaboration variables whose scope is all scenarios in a collaboration; that is, a
template variable is global to all scenarios in a collaboration. (They are comparable
to class variables in the Java programming language.) For example, a collaboration
that involves customer transactions can have a customerID template variable that
identifies the customer across all scenarios. You can create or modify template
variables at any time during development.

shows the Declarations tab within the Template Definitions window.

74 Collaboration Development Guide

E= Template Definitions =] B3

General Declarations |Prc-per1ies I Ports and Triggering Everts I

/¢ Do not modify the section between //{{{ and //}}}
import java.util.*;

import Collaboration.BaseCollaboration;

iwmport Collasboration.CollaborationException;

import Collsboration.ContinuationContext;

import Collsboration.BRequestCallback:

FA0{4 Start of Standard Imports section[generated by CWLD-PD] j

import Collaboration.Buschj; i
i »
Import Comment
1
Type Mame Initial "/aluef Modifier! | Modifier2 | ModifierS | Comment

1

2

3

Updlate |

Apply | Discard | Close |

Figure 27. Declarations tab of the Template Definitions window

Within the Declarations tab, you can do any of the following tasks:

* Specify the code for any import statements.

¢ Type the declaration text for user-defined template variables.

* View system-generated template variables (note that you cannot edit these).

Importing Java packages

You can use the Declarations tab to import specific Java classes into the
collaboration. A Java class imports a package of other classes to gain access to their
functions. For example, a class imports the packages java.math, java.security, and
java.text to use their arithmetic, security, and internationalization functions,
respectively. Because a collaboration template is a class, it can use classes or groups
of classes (called packages) supplied by the Java Development Kit or from
third-party products.

All Java classes, by default, implicitly import the classes in the package java.lang.
In addition, Process Designer Express implicitly imports the classes in the package
java.util for use in all collaboration templates.

The following import statement imports the java.math classes from the JDK. (The
asterisk indicates to import all classes within the specified package.):

java.math.*;

Alternatively, the following statement imports just the package’s BigDecimal class:
java.math.BigDecimal;

You can add import statements to your code at any time during the development
of a collaboration.

Chapter 4. Building a collaboration template 75

To import Java classes:

1. Ensure the Template Definitions window is open and that the Declarations tab
is displayed.

2. Place the cursor in left heading cell of the import table. Right-click and select
Add, as shown in A new row is added to the table.

Note: You can also add a new row by clicking on the last row currently in the
table.

E= Template Definitions H=] B3

eneral Declarations |Propenies I Ports and Triggering Everts I

/¢ Do not modify the section between //{{{ and //}}}
import java.util.*;

import Collsboration.BaseCollaboration;

import Collsboration.CollaborationException;

import Collsboration.ContinuationContext;

import Collsboration.ReguestCallback:

FA0{4 3tart of Standard Imports section[generated by CWLD-PD] j

iwport Collaboration.Busobj: al
| | »
L ; ad Import Comment
— Insert
Delete
e Cut " e Wy o
- Mame nitial Yalue} Modifier! | Modifier2 | Modifierd | Comment
— Copy
— Paste

Update |
Apply I Discard | LClose

Figure 28. Adding an import statement

3. Type the import statement in the Import column. For example:
Java.math.x

4. Optionally, enter a brief description of the import statement in the Comment
column.

5. Click Apply to save the changes.

6. Repeat step El through step EI to add additional import statements. You can have
an unlimited number of import statements in a collaboration template.

If the imported classes are in a third-party package rather than in the JDK, you
must edit the ProductDir\bin\cwtools.cfg file [codeGeneration] section to reflect
the package path before you compile your template.

Before you deploy a collaboration that uses classes imported from a third-party
package, you must update the JCLASSES variable in the system on which the
collaboration is deployed. If the imported classes are in a third-party package
rather than in the JDK, you must add them to the path of the imported classes in
the JCLASSES variable. IBM recommends that you use some mechanism to
differentiate those classes in JCLASSES that are standard from those that are

76 Collaboration Development Guide

custom. For example, you can create a new variable to hold only those custom
classes and append this new variable to JCLASSES, as follows:

1. Place the CwMacroUgtils jar file in its own directory. For example, create a
\dependencies directory below the product directory and place the jar file in it.

2. Edit the file used to start ICS (by default, ProductDir\bin\start_server.bat or
ProductDir /bin/ CWSharedEnv.sh) to include the new path for the
CWDMacroUtils jar file. Add the following entry to the file:

set DEPENDENCIES=ProductDir/dependencies/CwMacroUtils.jar

where ProductDir is the location in which Business Integration Express is
installed.

3. Add the new DEPENDENCIES variable to the JCLASSES entry as follows,
depending on your operating system.
On a UNIX system, use the following syntax, where ExistingJarFiles represents
the jar files already included in JCLASSES:
set JCLASSES = $JCLASSES:ExistingJarFiles:$DEPENDENCIES

On a Windows system, use the following syntax, where ExistingJarFiles
represents the jar files already included in JCLASSES:

set JCLASSES = ExistingJarFiles ;%DEPENDENCIES%

4. In each collaboration that uses the classes, include the PackageName.ClassName
specified in the CwMacroUtils jar file.

5. Restart ICS to make the methods available to the collaborations.

When importing a custom class, you can get an error message indicating that the
Business Integration Express software was unable to find the custom class. If this
occurs, check the following;:

* Ensure that the custom class is part of a package. It is good programming
practice for custom classes to be placed in a package. Make sure that the custom
class code includes a correct package statement and that it is placed at the
beginning of the source file, prior to any class or interface declarations.

* Verify that the import statement is correct in the collaboration template. The
import statement must reference the correct package name; it can further specify
the name of the custom class or it can reference all classes in the package. For
example, if your package name is COM.acme.graphics and the custom class is
Rectangle, you can import the entire package:

COM.acme.graphics.x*;
Or, you can import just the Rectangle custom class:
COM.acme.graphics.Rectangle;

* Be sure that you have updated the CLASSPATH environment variable to include
the path to the package containing the custom class, or to the custom class itself
if it is not in a package.

For example, when importing a custom class, you can create a folder called
ProductDir\lib\com\crossworlds\package, where ProductDir is the location in which
Business Integration Express is installed and package is the name of your package.
Then, place your custom class file under the folder you just created. Finally, in the
CLASSPATH variable in the start_server.bat file, include the path ProductDir\lib.

Declaring template variables
You can also use the Declarations tab to declare your own template variables that
are used by the collaboration.

Chapter 4. Building a collaboration template 77

To use a variable, you must first declare it by specifying its type and name. A
variable in a collaboration template can be one of the following data types:

* A basic, or primitive, data type, such as a byte, short, int, long, float, double,
char, or boolean

* A Java class, such as String or Integer

* A Business Integration Express-defined class, such as BusObj, BusObjArray, or
CollaborationException

* A class that you define, if you are an advanced user

Note: LongText and Date are product-specific designations for special-purpose
strings in business object attributes. Use the String data type in your code to
represent a variable for a business object attribute whose type is LongText or
Date.

To declare template variables, do the following:

1. Ensure the Template Definitions window is open and the Declarations tab is
displayed.

2. Place the cursor in left heading cell of the variable table. Right-click and select
Add. A new row is added to the table.

Note: You can also add a new row by clicking on the last row currently in the
table.

3. Use the drop-down menu in the Type column to specify the type of variable
you want to declare.
4. Specify the variable’s name in the Name column.

5. Specify the variable’s initial value in the Initial Value column.

Note: String values must be entered in quotation marks (for example, the
string Yes must be entered as "Yes").

6. Specify any modifiers you want to apply to the variable (for example, public,

private, protected) in the Modifierl, Modifier2, and Modifier3 columns. Note
that you do not have to specify a modifier in all three columns.

Note: Do not use the modifier Static when defining template variables.

7. Click Update to add the new variable to the list of declarations at the top of the
tab, and then click Apply to save the changes.

You can declare variables whose values remain persistent across multiple
invocations of a collaboration. Suppose you want to keep a counter of an action
within the collaboration, and you want this counter to be incremented with each
separate run of the collaboration. Use the variable table in the Declarations tab to
create a integer variable named ctr that is public.

Later, within the collaboration code itself, increment the counter:
ctr = ctr+l;

The ctr variable increases with each collaboration execution.
Special considerations for template variables used with long-lived business
processes: If a collaboration is to be deployed as a long-lived business process,

ensure that all variables you want to persist are defined as global template
variables or global port variables.

78 Collaboration Development Guide

In addition, ensure that those variables are of one of the following types:

* Java serializable data types, including byte, short, int, long, float, double, char,
boolean, string, Integer, or any user-defined data type that implements the Java
Serializable or Externalizable interface

* Business Integration Express BusObj data type
* Business Integration Express BusObjArray data type

Variables of other types do not persist in a long-lived business process.

System-generated variables
Process Designer Express automatically declares the following collaboration
variables:

e Two collaboration variables that are available in all collaborations:
triggeringBusObj and currentException.

* One variable for each port.

lists and describes these system-generated variables.

Table 27. System-generated variables

Variable Description

triggeringBusObj The triggeringBusObj variable contains the flow trigger
(triggering event or triggering access call) for a scenario. The
flow trigger is a business object and a verb. A triggering event
represents an application event and its data. The arrival of the
flow trigger starts the execution of a scenario. This variable is a
template variable; that is, its scope is the entire collaboration.

currentException The currentException variable contains an exception object raised
by the immediately preceding action, subactivity, or iterator.
Process Designer Express implicitly declares currentException,
whose scope is the action that immediately follows the raising of
an exception. A scenario must check the value of
currentException on the transition link or code fragment that
immediately follows the activity that generated the exception.

Port Variables Process Designer Express declares a template variable for the
business object associated with each port in the collaboration.
These generated declarations are visible under the Declarations
tab of the Template Definitions window. The name of each port
variable is the name of the port with BusObj appended. For
example, if the port name is Sourcelnvoice, the variable name is
SourcelnvoiceBusObj. The declaration also instantiates a BusObj
of the same type for which the port is defined. It initially sets the
attributes of the business object to null. You can use these port
variables to handle the triggering event. For more information on
this, refer to [“Copying the triggering event” on page 187

Defining collaboration configuration properties (the Properties

Collaboration templates have two types of configuration properties:

e Standard properties provide information that all collaborations need, such as
tracing level and an email address for message notifications. All collaborations
have the same standard configuration properties, which are defined by
InterChange Server Express.

Chapter 4. Building a collaboration template 79

¢ Collaboration-specific properties are optional; they are defined by a collaboration
developer. The collaboration uses the value of the property to determine an
aspect of its behavior. Properties can be any of the following types:

— Date

— Double
— Float

- Integer
— Boolean
— String
— Time

- URL

An administrator works with both types of properties when configuring a
collaboration.

As a collaboration developer, you decide whether a collaboration needs
collaboration-specific configuration properties. If it does, you define their names
and default values. These configuration properties enable a collaboration user to
specify data that influences how the collaboration behaves.

provides some examples of the types of properties you can create.

Table 28. Examples of collaboration-specific configuration properties

Type of property Example

A value that the collaboration A collaboration can request an application to generate

uses to set the value of an invoices for customers. The collaboration can set the value of
attribute. a Rate attribute in an Invoice business object. If the

collaboration has a property called BILLING_RATE, an
administrator can raise or lower the rate based on the
current business practice.

Value of true or false, which Business Integration Express collaborations that synchronize

determines whether the changes to entities across applications generally have a
collaboration takes a property called CONVERT_CREATE. When the collaboration
particular execution path. receives an Update event, it checks the destination

application for the entity to be updated. If the entity does
not exist, the collaboration checks the value of the
CONVERT_CREATE property. If the property is set to true,
the collaboration converts the Update request to a Create
request.

The use of collaboration-specific configuration properties is optional, and you can
use an unlimited number of them in a template. You can add these properties at
any time during development. If you know at the outset the properties that the
collaboration needs, you can create them before modeling scenarios. However,
when you are in the midst of scenario modeling, you can define additional
properties to support the collaboration’s logic.

To create a collaboration-specific configuration property for the collaboration
template:

1. Ensure the Template Definitions window is open and that the Properties tab is
displayed.

80 Collaboration Development Guide

ioix

General | Declarations Properties | Ports and Triggering Everts |

— General

L TIMEOUT v ALUE Property Type: firteger

Description:

Specifies timeout value [in seconds).

5
=
« of

— Walle
hax Length: I Max Multtiple Yalues: I _|:[

Walue IzDefault'al

1 |60 r

add | Deite |
add | [Dekte] Edit | Updatel Discardl

Kl

Apply | Dizcard I LCloge I

| _>I7‘

Figure 29. Adding collaboration-specific properties

2.

3.

N oM

Click the Add button to create a configuration property. The Name dialog box
opens.

Type the property’s name in the Name field, and then click OK.

Note: By convention, configuration property names are uppercase and use
underscores to separate words. IBM recommends that configuration
property names clearly communicate the purpose or function of the
property, because administrators need to read and understand each
property.

Use the Property Type drop-down menu to select the property’s type.

If desired, provide a description of the new property in the Description field.

If the property type is a string, specify a value in the Max Length field.

Optionally, use the Max Multiple Values field to specify the maximum number
of multiple values accepted for the property. Note that the number you
specify in this field also limits the number of default values the property can
have. For example, if you set Max Multiple Values to 2, you can have only
two default values for the property, regardless of how many possible values
are associated with the property. If you do not specify a value in this field, the
default is 1.

Note: The Max Multiple Values attribute of a collaboration-specific property is
not often used. Most collaboration-specific properties accept only a
single value.

Click Add in the Value pane. A new row is added to the table, and the

Property Value dialog box opens.

Enter a value in the Value field, or specify a range of values in the Range

From field, and then click OK. The dialog box closes and the Value column is

populated with the information.

Chapter 4. Building a collaboration template 81

10. If the value is a default value, click the checkbox in the IsDefaultValue
column.

11. Repeat step through step [10| for each value you want to add to

the property definition.
12. Click Update.

13. Repeat step EI through step [12| to add as many configuration properties as you
need.

14. When you are finished adding configuration properties, click Apply to save
the changes.

To delete a collaboration-specific configuration property, select the name of the
property from the list in the left pane of the tab, then click Delete.

Adding properties to support long-lived business processes

If you want to support long-lived business processes (LLBP) with dynamic service
call timeout values, you can use either a Java variable or a collaboration-specific
property. If you want to use a collaboration-specific property, you must create it
when defining the collaboration template. The use of collaboration-specific
properties enables the timeout value to be set during runtime, rather than using a
static value provided during the initial creation of the service call. Use an integer
data type when creating properties for dynamic timeout values.

For example, if you plan to have a service call from the To port that sends a
business object with a create request, you can define a collaboration property
called CreateTimeout. When you define the service call, use the CreateTimeout
property to specify the point at which that service call times out. For details on
creating service calls, see [“Service calls” on page 108]

Note that you can also used a fixed timeout value that is specified during the
creation and definition of a service call; in this situation, no collaboration property
is needed. See|“Defining the service call type” on page 112

Defining ports and triggering events (the Ports and Triggering

Events tab)

The Ports and Triggering Events tab of the Template Definitions window displays
information about the following:

* The ports for the collaboration

In a collaboration template, a port is a variable that represents a business object
that the collaboration object receives or produces at runtime.

* The triggering event for the collaboration

A business object represents the triggering event or action. When a collaboration
receives a business object from a connector, it usually responds with an action.
These received business objects are referred to as triggers or triggering events.

Note: The general term for a business object that a collaboration receives is a
flow trigger. When a collaboration receives a business object from a
connector, this flow trigger is a triggering event. When a collaboration
receives a business object from an access client, this business object is
referred to as a triggering access call. A port whose business object is
associated with a triggering access call is defined in the same manner as
one associated with a triggering event.

For detailed information on using the Ports and Triegering Events tab to define
a triggering event, see|“Assigning triggering events to scenarios” on page 85)

82 Collaboration Development Guide

When a collaboration completes an operation, it usually sends a business object
to the connector that initiated the action. Thus, InterChange Server Express often
refers to ports in terms of triggering or sending events.

Note: If you add, modify, or delete a business object to or from the repository

— Important

using Business Object Designer or System Manager, InterChange Server
Express dynamically updates the list of business object definitions displayed
in Process Designer Express. You do not have to restart InterChange Server
Express or Process Designer Express to see the results of dynamic changes in
the business-object field of the Ports and Triggering Events table of the
Template Definitions window.

IBM recommends use of this dynamic update feature only in a development
environment. Possible complications can result from updating a business
object. Dynamic update can impact other functionality in the system,
including how to process any events that use the old business object
definition and how to resubmit unresolved flows that were originally
submitted on the old business object definition. These and other scenarios can
cause a mismatch between the business object definitions being processed and
the business object definitions in memory. Therefore, in the production
system, IBM recommends that you perform updates to business object
definitions only when no events are being processed on the system.

For more discussion of collaboration ports, refer to the System Implementation Guide.

Creating a port
To create a port, do the following:

1.

4.

5.

Ensure the Template Definitions window is open and the Ports and Triggering
Events tab is displayed.

At the top of the window is a table that contains port names, business object
types, and verbs. The table is empty if you have not yet created a port for this
collaboration template.

Click Add Port to add a new port to the Ports table.
Enter the port name in the Port column of the table.
Follow these guidelines for defining a name for a port:

* Begin the name with an alphabetic character and use only alphanumeric
characters and the underscore symbol in the name.

* Although port names are not case-sensitive, you must always refer to the
port name using the case in which you defined it.

* In general, it is useful to assign port names that help you remember the
port’s purpose. You use the port names throughout the development process,
self-explanatory port names make the development effort easier.

* Collaboration developers often create a port name by combining the business
object type and its role designation, such as “In” and “Out” or “Source” and
“Destination.” For example, you can call a port SourceCase to indicate that it
is the port to the source application and that it is configured for Case
business objects.

Select the port’s type from the drop-down list in the BO Type column. This is
the type of business object definition that this port supports.

Click Apply to save changes.

Chapter 4. Building a collaboration template 83

Note: In some cases, not all ports in a collaboration object are needed; in this
situation you must configure the collaboration logic to prevent the execution
of service calls to the unused port or ports.

Because InterChange Server Express requires that all collaboration ports be
bound, you must also bind the unused port or ports to a Port connector. A
Port connector is a generic connector definition that is used to close an
unused port. Note that the Port connector must be used in conjunction with
the correct collaboration logic; any service call sent to a port bound to a Port
connector blocks the collaboration thread.

Changing a port nhame
To change the name of a port, you must delete and re-create the port using the
new name; you cannot simply edit its name. Do the following to rename a port:

1. Select the port in the table on the Ports and Triggering Events tab.
2. Click Delete Port.

3. Follow the instructions in [“Creating a port” on page 83|to create a port with
the new name.

summarizes what happens when you delete and re-create a port.

Table 29. Result of changing a port name

What Process Designer Express does What you must do

The system-generated template variable that If you have code that uses the variable

uses the port name changes. declared with the old port name, change the
variable name in the code. Find all action
nodes and service calls in which the variable
declared with the old port name appears.
The compiler catches any remaining incorrect

names.
The assignment of flow triggers (triggering Reassign the flow triggers. See |”Compiling al
events or triggering access calls) is deleted. |collaboration template” on page 89|

Defining scenarios

A scenario is the collaboration template code that handles a particular incoming
business object or set of business object. This business object can represent an event
(from a connector) or an access call (from an access client). You can think of a
scenario as an event-handling method of your collaboration template class. Activity
diagrams contain the code specifying how to handle the event.

About scenarios

You use scenarios to partition the business problem that a collaboration solves. You
can group all the logic of the collaboration into a single scenario or you can create
several scenarios, each dealing with one aspect of the problem. Grouping all
collaboration logic into a single scenario is analogous to a program that contains all
of its logic in a main() function, while using multiple scenarios is analogous to a
program that is structured into separate functions.

You typically name scenarios according to the function they perform. When a
collaboration contains multiple scenarios, each of which handles one type of
business object, consider naming each scenario according to the business object
that it handles. For example, if the collaboration handles one type of business
object with different possible verbs, you can develop Create, Update, and Delete

84 Collaboration Development Guide

scenarios. If the collaboration handles different types of business objects, you can
develop a scenario for each business object definition.

A scenario handles only one triggering flow (triggering event or triggering access
call) with each execution. However, the same scenario can potentially handle a set
of possible triggering flows. For example, the same scenario can handle a Create,

Update, or Delete flow.

In general, when identical logic handles different types of business object, it is
more efficient to use a single scenario for those business objects. This eliminates
the need to test and debug multiple pieces of code.

Note: A scenario cannot pass control to another scenario in the same collaboration.
If your preliminary plans for partitioning the collaboration logic indicate
that one scenario must call another, put all of the collaboration logic into the
same scenario. Within the scenario, design is very flexible. Alternatively, you
can create a collaboration group, dividing the logic among collaborations in
the group.

Creating a scenario
Perform the following steps to create a new scenario:

1. From within Process Designer Express, click Template —> New Scenario. The
Create Scenario dialog box is displayed.

2. Type the scenario’s name in the Scenario Name field.
The name is a string that can contain alphanumeric characters and underscores.
If the scenario handles events with a particular verb, it can be useful to include
the verb in the scenario name.

3. Optionally, enter a description in the Description field.

4. Click OK. In the template tree view, the name of the new scenario displays in
the scenario tree. In addition, the diagram editor opens in the main window.

5. You must assign at least one flow trigger to a scenario. Failure to assign the
flow trigger causes a runtime error. For instructions on assigning triggering
events to iour new scenario definition, see [’Assigning trigeering events to

scenarios.”

Assigning triggering events to scenarios

You assign a triggering event to a scenario in the Ports and Triggering Events table
of the Ports and Triggering Events tab. For each scenario that you create, you must
assign its triggering event. The triggering event is represented by a business object
and a verb.

Note: The general term for the incoming business object and verb that a scenario
receives is a “flow trigger”. If the flow trigger originates from a connector, it
is called a triggering event. If the flow trigger originates from an access
client, it is a triggering access method. The Ports and Triggering Events tab
enables you to assign a flow trigger to a scenario, regardless of whether it is
a triggering event or a triggering access method. This section uses the terms
“triggering event” and “event” because flow triggers received from
connectors are by far the most common.

A collaboration’s port definitions specify the types of business objects that the

collaboration can send and receive. After defining the collaboration’s ports and
scenarios, you must specify:

Chapter 4. Building a collaboration template 85

* The port or ports through which triggering events enter and exit

In the Ports and Triggering Events tab, choose the row in the table that
corresponds to the port name through which the triggering event enters and the
business object name that represents the event.

* The object that triggers the collaboration’s execution
The flow trigger is represented by the port business object and a verb
(business-object.verb combinations). In the row of the port and business object for
which you are defining flow triggers, you specify the flow trigger by choosing
its verb.

* The scenario that handles each flow trigger

illustrates these associations in a collaboration template whose port,
From, supports business object type Widget. The Create scenario handles triggering
event Widget.Create and the Delete scenario handles triggering event
Widget.Delete.

Collaboration Object

Create Delete
Scenario Scenario
T

Supported
Business
Object
Definition:
Widget

Widg et.Delete

U
Widg et.Create

i

Figure 30. Relationship of port, triggering event, and scenario

Specify the scenario for each flow trigger as follows:

1. Ensure the Template Definitions window is open and that the Ports and
Triggering Events tab is displayed.

2. In the Ports and Triggering Events table, locate the row that represents the port
from which the flow trigger arrives, and the business object that represents the
flow trigger.

3. In that row, click the drop-down list in the Create column. The list contains all
of the scenarios defined for the template; select the scenario you want.

4. Repeat step IZl and step El for each port, business object, and verb whose flow
trigger you want to assign.

5. After you have finished assigning triggering events, click Apply to save the
assignments.

Defining scenario variables

After the scenario has been created, you can add scenario-specific variables in the
Scenario Definitions dialog box (see [Figure 31 on page 87).

86 Collaboration Development Guide

Scenario Definitions: ReceiveAndReply

Description:

Scenario Variables:

fEEE)

A0 3tart of Tabular wariables section[generated hy CULD-
/4 Do not modify the section betuween f/{{{ and S/}

4 | ©
Type Mame Initial %&lue| Modifier! | Modifier2 | Modifiers | Comment
Update |
Apply | Dizcard | Cloge

Figure 31. Scenario Definitions dialog box

Scenario variables are collaboration variables whose scope is all actions and links in
a single scenario. (They are comparable to class variables in the Java programming
language.) You can set scenario variables at any time during the collaboration
template development process.

To add variables to the scenario definition, do the following:

1.

Open the Scenario Definitions dialog box by doing one of the following;:

Right-click the left heading cell of the variable table, and then click Add from

Select a scenario in the template tree view and click Template —> Open
Scenario Definition.

Select a scenario in the template tree view and right-click to bring up the

context menu. From the context menu, click Open Scenario Definition.

From an activity diagram in the diagram editor, right-click to bring up the

context menu. From the context menu, click Open Scenario Definition.

the context menu. A new row appears in the table.

Note: You can also add a new row by clicking on the last row currently in the

table.

Use the drop-down list in the Type column to specify the type of variable you
want to declare.

Specify the variable’s name in the Name column.

Specify the variable’s initial value in the Initial Value column.

Note: String values must be entered in quotation marks (for example, the
string Yes must be entered as "Yes").

Chapter 4. Building a collaboration template

87

6. Specify any modifiers you want to apply to the variable (for example, transient,
private, protected) in the Modifierl, Modifier2, and Modifier3 columns. Note
that you do not have to specify a modifier in all three columns.

Note: Do not include the keywords pubTlic and static in the declaration of a
scenario variable.

7. Click Update to add the new variable to the list of declarations at the top of the
tab, and then click Apply to save the changes.

Special considerations for scenario variables in a long-lived
business processes

Scenario variables do not persist automatically as part of the event flow context of
a long-lived business process. If you want to use scenario variables within a
long-lived business process collaboration, you must manually set the variable to
null before the service call, and then re-initialize the variable after the service call
completes. These tasks are done in the action node that makes the service call.

In the following example, a scenario variable called poolName is set to null in the
action node before the service call takes place:

String poolName;
poolName = null;

After the service call completes, poolName is re-initialized in the action node, as
follows:

poolName = getConfigProperty("Pool A");

Deleting a scenario

You can use Process Designer Express to delete scenarios. Deletion of scenarios
cannot be undone.

To delete a scenario definition, do the following:
1. From the template tree view, select the scenario you want to delete.

2. Click Template —> Delete Scenario. A dialog box appears to confirm the
deletion.

3. Click Yes to delete the scenario.

Creating an activity diagram

Each scenario must have an activity diagram. An activity diagram uses Unified
Modified Language (UML) to model the business process of the collaboration.
UML represents the steps and decisions of the business process. You create an
activity diagram in the diagram editor of Process Designer Express.

For detailed instructions on creating an activity diagram, see [Chapter 5, “Using|
lactivity diagrams,” on page 93

Creating the message file

Part of the process of creating a collaboration template is defining its messages.
The collaboration runtime environment uses the contents of the message file as the
text for logging, tracing, and exception messages.

Process Designer Express provides the Template Messages view to facilitate
message creation. The message text specified is stored as part of the collaboration

88 Collaboration Development Guide

template. When you compile and deploy the template, Process Designer Express
extracts the message content and creates or updates the message file for runtime
use.

For detailed instructions on creating a message file, see [Chapter 9, “Creating a
Imessage file,” on page 171

Compiling a collaboration template

The final task required to build a collaboration template is compiling the template.
After you define the template properties, scenarios, activity diagrams, and message
file, you must compile the collaboration template. The following files are created
during compilation:

* Java source file (CollaborationName.java)

» Executable file (CollaborationName.class)

* Message text file (CollaborationName.txt)

After the template is compiled in Process Designer Express, these files are created
in your Integration Component Library user project in System Manager. (For exact
locations, see [“Compiling a collaboration template” on page 6.)

Process Designer Express offers two ways to compile collaboration templates:

+ |[“Compiling a single template”|

+ |[“Compiling multiple collaboration templates”]

Compiling a single template
There are several ways to initiate compilation of a single collaboration template:
¢ From within Process Designer Express, click File —> Compile.

* Select the template’s name in the template tree view and right-click to bring up
the context menu, and then click Compile Template.

* Use the Ctr1+F7 keyboard shortcut.

If the Compile Output window is not already open, Process Designer Express
opens it at the bottom of the main window to display compilation messages.

If an error occurs during compilation, do the following;:
1. Trace the error by double-clicking the error message in the output window.

The activity diagram whose code generated the compilation error appears, with
the faulty node selected.

2. Fix the problem and recompile. Repeat this process until you get the message:
Code Generator: Code generation succeeded.

Compiling multiple collaboration templates

The Process Designer Express File menu includes a Compile All menu option that
enables you to compile all (or a subset) of the collaboration templates in your
Integration Component Library user project. Perform the following steps to
compile multiple templates:

1. If you have a template open in Process Designer Express, close it now.

2. Click File —> Compile All. The Compile All Templates dialog box opens. It
displays a grid of all templates in the user project. By default, all templates are
selected for compilation.

Chapter 4. Building a collaboration template 89

3. Clear the checkboxes next to any templates you do not want to compile.
4. Click Continue.

5. When you are prompted to confirm the compilation, click Yes.

Converting templates

Process Designer Express provides the following conversion functionality:

* Import—Process Designer Express can import Business Process Execution
Language (BPEL) and Unified Modeling Language (UML in XMI 1.1) files for
use as a collaboration template. See [“Importing files.”|

* Export—Process Designer Express can export your collaboration template to
BPEL or UML (in XMI 1.1) format. See [“Exporting a collaboration template.”|

Importing files
Process Designer Express can import BPEL and UML (in XMI 1.1) files for use in a

collaboration template. Use the information in these files to create a new template
definition.

Perform the following tasks to create a new collaboration template based on
existing BPEL or UML (in XMI 1.1) files:

1. Ensure Process Designer Express is open.

Click File —> Import. The Process Designer Express Importer opens.
Select the file type you want to import, and then click Next.

Select the location of the BPEL or UML source file or files.

Select the file or files you want to import.

A

Note: If you are planning to use BPEL files, you must import all three of the
bpel, .wsdl, and .bpelGUILxml files. Use the Ctrl key to select all three
files for import.

6. Click Next to begin the import process. After the import is complete, the New
Template dialog box opens.

7. Select the name of the user project the template belongs to in the Project field.

8. Type the name of the template you are creating in the Template Name field. A
template name can include alphabetic characters, numbers, and underscores.

9. Click OK. Process Designer Express creates the new collaboration template and
populates it with all of the information contained in the source BPEL or UML
files.

Exporting a collaboration template

You can export your collaboration template into BPEL or UML (in XMI 1.1) format
for use in other applications. When a Business Integration Express collaboration
template is exported to BPEL format, the following files are created:

* *Dbpel—This file contains the main template information.
e *wsdl—This file contains information about the external interface.

e *bpelGULxml—This file contains information about the graphical representation
of activity diagrams. It is used in situations where BPEL files are imported back
into InterChange Server Express.

When a collaboration template is exported to UML (in XMI 1.1), a *.xmi file is
created.

90 Collaboration Development Guide

Perform the following steps to export a Business Integration Express collaboration
template:

1. Ensure that Process Designer Express is open and that your collaboration
template has been saved and has compiled without error.

2. Click File —> Export. The Process Designer Express Exporter opens.

3. Select the format to which you want to export your template, and then click
Next.

4. Select the location in which you want to save the exported template file or files.

5. In the File Name field, specify the name for the exported template file. If you
are exporting to BPEL, do not specify a file extension in the File Name field.

6. Click Next to begin the export process. The Process Designer Express Exporter
dialog shows the progress of the conversion.

7. Click Close when the export process has finished.

Deleting a collaboration template

— Important
Do not delete a collaboration template that has collaboration objects
associated with it, unless you plan to delete those collaboration objects.
Deleting a collaboration template renders all objects built from that template
unusable. (For instructions on deleting collaboration objects, and then
deleting the collaboration template in System Manager, see the Implementation
Guide for WebSphere InterChange Server.)

Use Process Designer Express to delete a collaboration template that does not have
a collaboration object built from it. To delete a template, do the following:

1. Open Process Designer Express and ensure that System Manager is running.

2. Click File —> Delete. Process Designer Express displays the Delete Template
from Project ‘ProjectName’ dialog box.

3. From the Project drop-down list, select the name of the project that contains the
template you want to delete.

4. From the list of collaboration templates, select the name of the template you
want to delete, and then click OK.

5. The tool prompts you to confirm the deletion. Click Yes.

Testing a collaboration

After you have built and successfully compiled a collaboration template, you can
test its design. To verify that your collaboration works as planned, you must create
a collaboration object and use the Test Connector tool to test the collaboration
object’s functionality.

The Test Connector, which is part of the Business Integration Express Testing
Environment, simulates an actual connector. Use the Test Connector to send events
and responses to collaborations. It enables you to set up business objects and
triggering events that test the functionality of a collaboration.

If the collaboration you are testing has a port to one connector, then you open one
instance of the Test Connector. If the collaboration uses an incoming port from one
connector and another port to a different connector, then you open two instances
of the Test Connector, one for each connector.

Chapter 4. Building a collaboration template 91

From the Test Connector menus, you designate the configuration file and the
definition of the connector to be emulated. You set up values for the selected
business objects, then send and receive the business object.

For detailed information on using the Integrated Testing Environment and Test
Connector, see the Implementation Guide for WebSphere InterChange Serve