
IBM WebSphere Business Integration Connect
Enterprise and Advanced Editions

Integration Overview

Version 4.2.1

Note!
Before using this information and the product it supports, be sure to read the general information under
"Notices and Trademarks," on page 109.

20 February 2004

This edition applies to Version 4, Release 2, Modification 1, of IBM® WebSphere® Business Integration Connect
Enterprise Edition (5724-E87) and Advanced Edition (5724-E75), and to all subsequent releases and modifications until
otherwise indicated in new editions.

IBM welcomes your comments. You can send to the following address:

IBM Burlingame Laboratory
Information Development
577 Airport Blvd., Suite 800
Burlingame, CA 94010
U.S.A

Include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
About this book...5
Who should read this book........................... 5
Related documents 5

Chapter 1. Backend Integration7
Message transport protocols........................ 8

Supported transport protocols 8
HTTP protocol .. 10
File System protocol for Enterprise and
Advanced editions 12
JMS protocol... 14
Setting up integration through the JMS
transport protocol using WebSphere
MQ 5.3.. 15

Message handling 18
Queued delivery 18
Communication error handling 18
Duplicate messages 19

Packaging ... 19
None packaging...................................... 19
Backend Integration packaging 19
Example of Backend Integration
packaging over HTTP............................. 29

Protocol-specific information 30
Web Services (SOAP) 30
cXML .. 31
RosettaNet.. 31

Chapter 2. Integrating with the WebSphere
InterChange Server.................................37

Planning for integration 37
Which transport will you use?................. 37
Which packaging will you use? 38
Is the packaging available for the
business protocol?.................................. 38
What types of business objects are
required for the packaging? 39

Using the HTTP transport protocol............. 40
Overview of sending documents to the
WebSphere InterChange Server 40

Setting up the environment for sending
documents ..43
Overview of sending documents to
Business Integration Connect 52
Setting up the environment for sending
documents ..54
Summary of supported platforms and
versions...55

Using Web Services56
Using the JMS transport protocol58

Overview of sending documents to the
WebSphere InterChange Server.............59
Overview of sending documents to the
Business Integration Connect60
Setting up the environment for sending
and receiving documents62
Creating business objects63

Attachment Data Handler65
Overview ...65
Setting up the environment for the
Attachment Data Handler........................65
Configuring the Attachment Data
Handler ...66
Creating and modifying business
objects...69
Converting messages to business
objects...73
Converting business objects to
messages..74

Chapter 3. Integrating with WebSphere
Data Interchange 77

Introduction...77
Sending documents to WebSphere Data
Interchange ..78
Sending documents to Business
Integration Connect.................................79
Sample scenario used in this chapter79

Configuring your environment for message
exchange ..81
(C) Copyright IBM Corporation 2003, 2004 3

Configure WebSphere MQ
communication 81
Configure WebSphere Data
Interchange... 84
Set up the JMS environment 90
Configure Business Integration
Connect .. 92

Chapter 4. Routing EDI documents .. 105
Overview of EDI routing............................105
Special considerations for AS
packaging ..107

Routing the inbound document107
Routing the outbound document...........107
Setting both IDs in the participant
profile ..107

Notices and Trademarks...................... 109
Notices..109

Programming interface information.......111
Trademarks and service marks111
4 WebSphere Business Integration Connect 4.2.1 Integration Overview

About this book

This document describes the Backend Integration interface, which is the mechanism that
backend applications and IBM(R) WebSphere(R) Business Integration Connect use to
communicate. The document then describes how to integrate WebSphere InterChange
Server and WebSphere Data Interchange with Business Integration Connect using the
Backend Integration interface.

Who should read this book

This book is intended for the person responsible for integrating Business Integration
Connect with backend applications.

Related documents

The complete set of documentation available with this product describes the features and
components of WebSphere Business Integration Connect Enterprise and Advanced
Editions.

You can download this documentation or read it directly online at the following site:

http://www.ibm.com/software/integration/wbiconnect/library/infocenter
© Copyright IBM Corp. 2003, 2004 5

 6
 WebSphere Business Integration Connect 4.2.1 Integration Overview

Chapter 1. Backend Integration

With Business Integration Connect, you exchange business documents with your
Community Participants. The purpose of exchanging these documents is to communicate
information, which typically involves processing data and returning a result. When you
receive data from a Community Participant, processing of that data generally occurs in the
backend system of your enterprise.

This document describes the interface used by backend applications to interact with
Business Integration Connect. Consider the following example--a Community Participant
sends a RosettaNet-formatted purchase order, intended for the Community Manager, to a
particular target on Business Integration Connect. The Community Manager has a backend
application that processes purchase orders and expects to receive the orders in RosettaNet
Service Content (RNSC) format. When the connection between the Community Participant
and Community Manager is established, it is agreed that:

• The document will be translated from RosettaNet to RNSC format

• The document routed to the backend application will have Backend Integration
packaging, meaning that transport-level headers will be added to the document to
convey information needed for the exchange

The backend application can then process the document.

You use the Community Console to establish the connection with your Community
Participants and to specify the packaging that is used between Business Integration
Connect and the backend application. The packaging can be None or Backend Integration.

• None packaging causes Business Integration Connect to send the message to the
backend application without any header data.

• Backend Integration packaging adds additional attributes to the message header and
wraps the message contents if there are attachments. For information on these
attributes, see “Backend Integration packaging” on page 19.

The process for establishing connections is described in the Administrator Guide.

Note that documents exchanged between the Community Participant and Business
Integration Connect can be in a variety of formats, in addition to RosettaNet. Documents
can be in the SOAP, cXML, XML, EDI, or binary formats. The Administrator Guide has a
complete list of the document types supported as well as the transport protocols (for
example, HTTP) that can be used to send the documents.

Documents that can be exchanged between Business Integration Connect and the backend
application of the Community Manager as well as the transport types associated with the
documents are shown in “Supported transport protocols” on page 8.
© Copyright IBM Corp. 2003, 2004 7

The following graphic illustrates how Business Integration Connect uses the
backend integration interface to communicate with the backend application at the
Community Manager. Note that the arrows go in both directions; that is, the
document can originate from the backend application of the Community Manager.

The role of the business protocol and packaging in the flow of documents

Message transport protocols

The Backend Integration interface supports a number of message transport
protocols. They are HTTP, JMS, and File System. See “Supported transport
protocols” for information on which transport protocols are valid for a particular
combination of message content and Backend Integration packaging.

Supported transport protocols

The business protocol and the message transport protocol have a role in
determining whether the messages must have None packaging or Business
Integration packaging or if there is a choice between the two. The following table
shows whether a transport protocol is valid for sending messages from Business
Integration Connect to an application for a particular combination of message
content and integration packaging.
8 WebSphere Business Integration Connect 4.2.1 Integration Overview

For example, while you can send a RosettaNet message with Backend Integration
packaging over HTTP, HTTPS, or JMS protocols, you cannot use the File System
protocol. In addition, RosettaNet messages with None packaging are not
supported.

The following table shows whether a transport protocol is valid for sending
messages from an application to Business Integration Connect for a particular
combination of message content and integration packaging:

All other message content and transport packaging combinations are not
supported.

Supported transport protocols for Business Integration Connect to application

Business protocol and packaging combination HTTP or HTTPS JMS
File

System

RosettaNet (RNSC) with Backend Integration
packaging Yes Yes No

XML with Backend Integration packaging Yes Yes No

XML only (None packaging) Yes Yes Yes

EDI only (None packaging) Yes Yes Yes

cXML only (None packaging) Yes No No

SOAP only (None Packaging) Yes No No

Binary with Backend Integration packaging Yes Yes No

Binary only (None packaging) Yes Yes No

Supported transport protocols for application to Business Integration Connect

Message content and transport packaging combination
HTTP or
HTTPS

JMS
File

Syste
m

RosettaNet (RNSC) with Backend Integration packaging Yes Yes No

XML with Backend Integration packaging Yes Yes No

XML only (None packaging) Yes Yes Yes

EDI only (None packaging) Yes Yes Yes

cXML only (None packaging) Yes No No

SOAP only (None packaging) Yes No No

Binary with Backend Integration packaging Yes Yes No

Binary only (None packaging) No No No
Chapter 1. 9

HTTP protocol

To send messages, Business Integration Connect uses HTTP/S 1.1. To receive
messages from backend applications, Business Integration Connect supports both
HTTP/S version 1.0 and 1.1. The HTTP message can include the integration
packaging attributes depending on what the setting is for the participant
connection.

If the participant connection specifies that the HTTP message includes Backend
Integration packaging, the transport level header of the HTTP message includes
additional attributes containing information about the message, such as the
protocol of the content, the ID of the message, and the sender of the message. For
a complete list of the fields in the header, see “Transport level header content” on
page 19. If the connection specifies None packaging, the HTTP message does not
have these additional attributes, and Business Integration Connect parses the
message to obtain this information.

• EDI, SOAP, and cXML messages must use None packaging.

• RosettaNet messages must use Backend Integration packaging.

• XML messages can use either None or Backend Integration packaging.

• Binary messages received from the backend application must have the
Backend Integration packaging; however, the reverse is not true because
Business Integration Connect supports sending binary messages to the
application using either type of packaging.

Process

The following describes what happens when HTTP or HTTPS messages are sent
between Business Integration Connect and an application for asynchronous
exchanges:

1. The source system (Business Integration Connect or the application) posts an
HTTP message to the target system using a specific URL.

2. The target system receives the message and sends the protocol-level
acknowledgment, HTTP 200 or 202, to signify the change in ownership. The
source system ignores the body of this acknowledgment message. If an error
occurs during this processing, the target system sends an HTTP 500 message
back to the source system.

3. If Business Integration Connect is the target system, it then persists the
message and releases the connection to the source system.

4. The target system can then process the message asynchronously.

When the exchange is synchronous (for example, for a SOAP or cXML document),
a response is returned along with the HTTP 200 message in the same HTTP
connection.
10 WebSphere Business Integration Connect 4.2.1 Integration Overview

Sending and receiving messages using the HTTP protocol

To send a message using the HTTP protocol, a backend application does the
following:

1. Creates the message. The Content-Type header attribute gives the encoding
used for the message.

2. Packages the message according to the packaging set for the connection. For
Backend Integration packaging, the application adds the Business
Integration Connect required protocol header attributes.

3. Posts the message to the URL used by Business Integration Connect to receive
these messages.

4. If the exchange is synchronous, the application waits to receive a response in
the same connection used for the request.

To receive messages using the HTTP protocol, an application does the following:

1. Listens for a message at a particular URL.

2. Processes the message. If the connection has None packaging, the application
must parse the message to determine how to handle it. If the connection has
Backend Integration packaging, the application can use the Backend
Integration attributes to determine how to handle the message.

3. If the exchange is synchronous, the application returns a response in the same
connection used for the request.

To enable HTTP message exchanges, you use the Target Details screen of the
Community Console to set up a target for inbound documents and the Gateway
screen to configure the gateway for outbound messages. See “Configuring targets
in the Administrator Guide for information on setting up targets. For information
on gateways, see “Managing gateway configurations” in the Administrator Guide.
Chapter 1. 11

File System protocol for Enterprise and Advanced
editions

The File System protocol enables Business Integration Connect to send messages
by placing them in a defined directory structure. Business Integration Connect
receives messages by reading them from the directory structure.

The only document types supported by the file system protocol are EDI and XML
documents. The only integration packaging that Business Integration Connect
supports is the None option. That is, the files cannot contain the additional
attributes.

Process

When the application sends a message to Business Integration Connect Enterprise
or Advanced Edition, it must put the message file into a specific directory. The
target of the message determines the directory. When you create a target, Business
Integration Connect creates a Documents directory and its subdirectories for the
target.

<doc_root>
 Documents
 Production
 Test
 <other destination types>

See “Configuring targets” in the Administrator Guide for information on creating
targets.

Business Integration Connect polls the Documents directories and their
subdirectories regularly to detect message files. If it finds a message, Business
Integration Connect persists the message and then deletes the message from the
directory. Business Integration Connect then processes the message normally.

When Business Integration Connect is the source of the message, it places the
message file in the Documents directory defined by the gateway. By defining the
destination directory according to the gateway, each participant connection can
have a different directory. For information on gateways, see “Managing gateway
configurations” in the Administrator Guide. The application should persist the
message and then delete it from the directory before processing it. See “Sending
and receiving messages using the file system protocol” on page 13.
12 WebSphere Business Integration Connect 4.2.1 Integration Overview

Sending and receiving messages using the file system
protocol

To send a message using the file system protocol, an application should do the
following:

1. Create the message file in a temporary directory.

2. Once the file is ready, move the file to the appropriate directory polled by
Business Integration Connect.

To receive messages using the file system protocol, an application should do the
following:

1. Poll the appropriate directory for message files.
Note that temporary files (those with extensions .tmp or .tmp1) should be
ignored. The application must not pick up or delete these temporary files.

2. When there is a message, persist it.

3. Delete the message from the directory.

4. Process the message.
Chapter 1. 13

JMS protocol

The JMS protocol is based on the Java Message Service (JMS) and transfers
messages through transactional, persistent JMS queues provided by, for example,
WebSphere MQ. The queues and JMS properties are set in the Community
Console. See the Administrator Guide for more information.

The JMS Protocol supports the following JMS message types:

• StreamMessage (as a byte array)

• BytesMessage (as a byte array)

• TextMessage

In JMS protocol, the sending system sends a JMS message to the receiving system
using the enqueue operation. The receiving system gets the message from the
queue, persists the message, and then performs the dequeue operation to remove
the message from the queue. From this point forward, the receiving system can
process the message asynchronously.

If the participant connection specifies that the JMS message includes Backend
Integration packaging, the JMS message contains transport level information, such
as the protocol of the content, the ID of the message, and the sender of the message,
as JMS properties within the message. For a complete list of the properties, see
“Transport level header content” on page 19. Note that for compatibility with
WebSphere MQ JMS, the properties in the JMS messages use underscores in the
property names instead of hyphens. For example, in a JMS message, the property
is x_aux_system_msg_id while the equivalent HTTP header field will be x-aux-
system-msg-id. When Business Integration Connect processes a JMS message, it
converts the underscores to hyphens in these properties. If the participant
connection specifies None packaging, the JMS message does not have these
additional attributes.

With the exception of binary messages, Business Integration Connect supports
sending and receiving JMS messages with either type of packaging. Binary
messages received from an application must have the Backend Integration
packaging. The reverse is not true because Business Integration Connect supports
sending binary messages to the application using either type of packaging.

Sending and receiving messages using the JMS protocol

To send a message using the JMS protocol, a backend application does the
following:

1. Creates the message. The content_type header attribute sets the content type
for the message and the content_length header attribute specifies the length
of the message (in bytes).

2. Packages the message according to the packaging set for the connection. For
Backend Integration packaging, the application adds the required JMS
header attributes.

3. Sends the message to the JMS queue used by the application to send
messages to Business Integration Connect.

To receive messages using the JMS protocol, an application does the following:
14 WebSphere Business Integration Connect 4.2.1 Integration Overview

1. Listens for a message on the JMS queue.

2. Processes the message. If the connection has None packaging, the application
must parse the message to determine how to handle it. If the connection has
Backend Integration packaging, the application can use the Backend
Integration attributes to determine how to handle the message.

To enable JMS message exchanges, you use the Target Details screen of the
Community Console to set up a target for inbound documents. You use the
Gateway screen to configure the gateway for outbound messages. See
“Configuring targets” in the Administrator Guide for information on setting up
targets. For information on gateways, see “Managing gateway configurations” in
the Administrator Guide.

Setting up integration through the JMS transport
protocol using WebSphere MQ 5.3

This section describes the steps you perform to set up backend integration through
the JMS transport protocol.

To use the JMS transport protocol to send and receive documents with a backend
application, you:

1. Define a queue manager (if necessary) and create associated queues and
channels.

2. Create a JMS bindings file for WebSphere MQ 5.3

3. Create a JMS target

4. Create a JMS gateway

Creating queues and channels

If you have not already defined a queue manager for Business Integration Connect
and for the backend application, do so now. Then, create the following objects:

• Transmission queue (make sure the usage is set to transmission)

• Remote queue

• Receiver queue

• Sender channel

• Receiver channel

The way you create these objects depends on the platform you are using. Refer to
the WebSphere MQ documentation for instructions on creating these objects.

Creating the JMS bindings file

The WebSphere MQ documentation describes how to create a JMS bindings file.
The following is an overview of that process.
Chapter 1. 15

To create the JMS bindings file:

1. Open a command window and navigate to the folder <MQ Root>\java\bin,
where <MQ Root> is the installation directory of WebSphere MQ.

2. Open the JMSAdmin.config file for edit.

3. Comment out the following line:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.ldap.LdapCtxFactory

4. Remove the comment from the line:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFacto
ry

5. Change the path for the PROVIDER_URL variable to the directory where you
want the JMS bindings file to be placed (for example,
PROVIDER_URL=file:/d:/filesender/config).

This directory must exist and your user account must have write permission
to this folder.

6. Save the file.

7. In the command window, launch JMSAdmin.

8. To create the JMS context, type the following at the InitCtx prompt:

def ctx(<contextname>)

9. Change your active context by typing:

chg ctx(<contextname>)

where <contextname> is the context you created in the previous step.

10. To define the queue connection factory, type:

def qcf(<connection factory name>) qmgr (<queue manager name>) tran(client)
chan(<java channel name>) host (<MQ Host Name>) port (<MQ port>)

11. To define the queues, type the following for each queue:

def q(<queue alias name>) qmgr (<queue manager name>) queue (<queue name>)

12. To exit JMSAdmin, type:

end

The bindings file is created in a subfolder of the folder configured in the
PROVIDER_URL field of the JMSAdmin.config file. The bindings file is created as
“.bindings”. The name of the subfolder is the name you chose for your JMS context.
16 WebSphere Business Integration Connect 4.2.1 Integration Overview

Creating the JMS target

Copy the bindings file created in“Creating the JMS bindings file” on page 15 to the
directory where you want it to reside. If you want to preserve the JMS context,
copy the subfolder (with the same name as the context) and the bindings file to the
directory, so that the full path to the bindings file is /<parent directory>/<context
subdirectory>/.bindings (for example, /mydir/myctx/.bindings).

From the Targets screen of the Community Console, create a target, specifying the
following information:

• Transport: JMS

• JMS Provider URL: The file system path to the directory where the context
subfolder (if there is a context) and the bindings file are located, in the
following form:
file:///<parent directory containing the context subdirectory with the .bindings
file> (for example, file:///mydir).

• JMS Queue Name: The JMS queue alias name you specified when creating
the bindings file, including the context (for example, myctx/myqueue)

• JMS Factory Name: The JMS factory name you specified when creating the
bindings file, including the context (for example, myctx/myfact)

• JNDI Factory Name: com.sun.jndi.fscontext.RefFSContextFactory

Note that the target must be able to access the directory where the subfolder and
bindings file are located.

Creating the JMS gateway

From the Gateways screen of the Community Console, create a gateway,
specifying the following information:

• Transport: JMS

• Target URI: The file system path to the directory where the context subfolder
(if there is a context) and the bindings file are located, in the following form:
file:///<parent directory containing context subdirectory with bindings
file> (for example, file:///mydir)

• JMS Factory Name: The JMS factory name you specified when creating the
bindings file, including the context (for example, myctx/myfact)

• JMS Message Class: StreamMessage, BytesMessage, or TextMessage

• JMS Queue Name: The JMS queue alias name you specified when creating
the bindings file, including the context (for example, myctx/myqueue)

• JNDI Factory Name: com.sun.jndi.fscontext.RefFSContextFactory
Chapter 1. 17

Message handling

This section describes how Business Integration Connect handles various
situations that impact the delivery of messages.

Queued delivery

Business Integration Connect posts information on all documents that it wants to
send to a particular gateway into a queue. The Delivery Manager system processes
these messages in the order the queue receives them (FIFO) and uses a thread for
each message to send them. Note that if the gateway (for example, URL if the
transport protocol is HTTP or JMS destination if the transport protocol is JMS) has
been configured to be offline (see “Communication error handling”), the messages
remain in the queue until the gateway is enabled (online). If the Delivery Manager
receives an error in a thread, it stops other threads from attempting to deliver their
messages. The Delivery Manager places these messages back into the queue until
it is able to deliver the message that caused the error.

If the number of failed attempts exceeds the maximum number of attempts, the
Document Manager places the message in a failed directory and then attempts to
deliver the next message in the queue unless the gateway is offline.

Communication error handling

When Business Integration Connect is the sender and the application returns an
error (for example, an HTTP Response message that is not a 200 or 202 message
when using the HTTP protocol), Business Integration Connect may then retry to
send the message again depending on how it has been configured for this
particular gateway. Each gateway (URL in the case of HTTP) has the following
options that affect the number of retries and how the messages are sent:

If Business Integration Connect is not configured to retry sending the message or
if all delivery attempts fail, Business Integration Connect signals the problem by
doing any or all of the following actions:

• Presenting the errors in various screens of the Community Console such as
the Document Viewer and RosettaNet Process Viewer

• Sending an e-mail to appropriate people to notify them of the problem so that
they can take appropriate actions, if an e-mail alert for the delivery failed
event has been set up

Gateway configuration options

Configuration Options Description

Retry Count How many document retries to attempt if an error is received

Retry Interval Time interval between retry attempts

Online/Offline Starts and stops delivery attempts

Number of Threads Number of posting threads that will process messages per
gateway
18 WebSphere Business Integration Connect 4.2.1 Integration Overview

• Creating an event document and then sending that document to receiver.

See “Managing gateway configurations” in the Administrator Guide for more
information.

Duplicate messages

All messages sent to or received from Business Integration Connect must have a
Global Unique Identifier (GUID). Business Integration Connect uses the GUID to
detect duplicate messages. When Backend Integration packaging is used, each
message carries its GUID in the transport level header. For the HTTP protocol, for
example, the GUID is carried in the x-aux-system-msg-id field (see “Transport
level header content” on page 19). The sender of the message generates the GUID.
The file system protocol does not support checking for duplicate messages.

If the attempt to send a message results in an error, Business Integration Connect
reuses the message's GUID in each retry. If Business Integration Connect receives
a message that contains a duplicate GUID, it returns a positive acknowledgment
(for example, HTTP 200) but does not process the duplicate message.

Note that Business Integration Connect also checks for duplicate messages at the
RosettaNet process level if RosettaNet is being used.

Packaging

This section describes the two types of packaging: Backend Integration and None.

None packaging

When packaging is set to None, Business Integration Connect does not add a
transport-level header when it sends a message to a backend application and does
not expect one when it receives a message from a backend application.

None packaging is required for EDI, SOAP, and cXML documents.

Backend Integration packaging

When packaging is set to Backend Integration, messages sent to or received from
a backend application must have a transport level header, which contains meta
information about the message, and a payload, which contains the content of the
message. Messages may also have attachments. The header and payload are
mandatory while attachments are optional. This section describes these features of
Backend Integration packaging.

Transport level header content

The transport level header contains information that Business Integration Connect
uses to process and route the message to the correct destination. The transport
level header is bi-directional so that all messages entering and leaving Business
Integration Connect have the mandatory fields and any of the optional fields that
apply.
Chapter 1. 19

The following table lists the transport level header fields:

Transport header values

Header field Description
Required

?

x-aux-sender-id Identifier of the message sender such as a DUNS number.
This is a required field. Yes

x-aux-receiver-id Identifier of the message receiver such as a DUNS
number. This is a required field. Yes

x-aux-protocol

Protocol of the message content. Valid values include
RNSC for RosettaNet service content, XMLEvent, and
Binary.

For Business Integration Connect, the value in this field
has priority over any protocol field in the payload.

Yes

x-aux-protocol-
version Version of the message content protocol. Yes

x-aux-process-type

Process to be performed or what type of message is being
sent. For RosettaNet messages, this is the PIP code such
as 3A4. For event messages, it is XMLEvent and for
Binary messages, it is Binary.

For Business Integration Connect, the value in this field
has priority over any process field in the payload.

Yes

x-aux-process-
version

Version of the process. For RosettaNet messages, this is
the version number of the PIP. Yes

x-aux-create-
datetime

When the message was successfully posted using the
UTC time stamp format (CCYY-MM-DDThh:mm:ssZ)

x-aux-msg-id

Identifier of the payload content. For example, it could be
the identifier of the RNPIPServiceContent instance for a
RosettaNet message or it could be a proprietary
document identifier. This links the message payload with
something in the message sender's system for tracing
purposes.

x-aux-production

Routing of the message. Valid values are:

• Production

• Test

This value is populated for requests in both directions.
Note that when the message is a response to a two-way
PIP initiated by a community participant, Business
Integration Connect uses the GlobalUsageCode in the
request and ignores the value in the transport level
header.

x-aux-system-
msg-id

Global Unique Identifier (GUID) for the message, which
is used for duplicate checking. Yes
20 WebSphere Business Integration Connect 4.2.1 Integration Overview

Note: For JMS protocol messages, the fields use underscores instead of hyphens.
For example, in a JMS message, there is an x_aux_sender_id field instead of an x-
aux-sender-id field.

x-aux-payload-
root-tag

Root tag element of the payload. For example, for 3A4
RosettaNet service content, the value of this field would
be Pip3A4PurchaseOrderRequest. For event notification
messages, the value for this field would be
EventNotification.

x-aux-process-
instance-id

Identifier that links documents in a multiple message
business process to a unique process instance.

For RosettaNet, it must be unique for RosettaNet
processes within the last 30 days. All messages
exchanged as part of a RosettaNet process instance,
including retries, use the same process instance ID.

x-aux-event-
status-code

Status code for the event notification. See the StatusCode
field in “Event message structure” on page 32.

x-aux-third-party-
bus-id

Identifier such as a DUNS number of the party that
delivered the message. This can be different from both
the x-aux-sender-id and the x-aux-receiver-id if a third
party is hosting Business Integration Connect on behalf
of the community owner.

x-aux-transport-
retry-count

Number of unsuccessful attempts at posting this
message prior to this attempt. If a message posts
successfully on the first attempt, the value of this field
will be 0.

content-type The content type of the message.

content-length The length of the message (in bytes).

Transport header values
Chapter 1. 21

RosettaNet to transport level header fields

The following table describes where Business Integration Connect obtains values
for the transport level header fields for RosettaNet messages.

Mapping transport level header fields to RosettaNet content

Header
field

Source of value

x-aux-
sender-id

For RosettaNet 2.0:
<(DeliveryHeader)>
 <messageSenderIdentification>
 <PartnerIdentification>
 <GlobalBusinessIdentifier>

For RosettaNet 1.1:

<ServiceHeader>
 <ProcessControl>
 <TransactionControl>
 <ActionControl> or <SignalControl>
 <PartnerRouter>
 <fromPartner>
 <PartnerDescription>
 <BusinessDescription>
 <GlobalBusinessIdentifier>

x-aux-
receiver-id

For RosettaNet 2.0:
<(DeliveryHeader)>
 <messageReceiverIdentification>
 <PartnerIdentification>
 <GlobalBusinessIdentifier>

For RosettaNet 1.1:

<ServiceHeader>
 <ProcessControl>
 <TransactionControl>
 <ActionControl> or <SignalControl>
 <PartnerRouter>
 <toPartner>
 <PartnerDescription>
 <BusinessDescription>
 <GlobalBusinessIdentifier>

x-aux-
protocol

Set value for RosettaNet:

RNSC

x-aux-
protocol-
version

Set value:

1.0
22 WebSphere Business Integration Connect 4.2.1 Integration Overview

x-aux-
process-
type

For RosettaNet 2.0, the source XPath is:

/ServiceHeader/ProcessControl/pipCode/GlobalProcessIndicatorCode

For RosettaNet 1.1, the source XPath is:

/ServiceHeader/ProcessControl/ProcessIdentity/GlobalProcessIndicatorCode

x-aux-
process-
version

For RosettaNet 2.0, the source XPath is:

/ServiceHeader/ProcessControl/pipVersion/VersionIdentifier

For RosettaNet 1.1, the source XPath is:

/ServiceHeader/ProcessControl/ProcessIdentity/VersionIdentifier

The value of the version identifier of each PIP is in its PIP specification.

x-aux-
payload-
root-tag

Name of the PIP such as Pip3A4PurchaseOrderRequest

x-aux-
process-
instance-id

For processes initiated by the application, the value is the ID of the process
instance.

For processes initiated by a community participant that are not pass-through
workflow, the value is the process ID in the initial RosettaNet request.

For RosettaNet 2.0:

<ServiceHeader>
 <ProcessControl>
 <pipInstanceId>
 <InstanceIdentifier>

For RosettaNet 1.1:

<ServiceHeader>
 <ProcessControl>
 <ProcessIdentity>
 <InstanceIdentifier>

x-aux-msg-
id

<(RNPipServiceContent)>
 <thisDocumentIdentifier>
 <ProprietaryDocumentIdentifier>

x-aux-
production

For RosettaNet 2.0:
<ServiceHeader>
 <ProcessIndicator>
 <GlobalUsageCode>

For RosettaNet 1.1:

<Preamble>
 <GlobalUsageCode>

Mapping transport level header fields to RosettaNet content
Chapter 1. 23

AS2 to transport level header fields

The following table describes where Business Integration Connect obtains values
for the transport level header fields for AS2 messages.

 Note: The values are case-sensitive.

Mapping transport level header fields to AS2 content

Header field Source of value

x-aux-
sender-id

When a community participant sends an AS2 message to Business
Integration Connect Enterprise or Advanced edition, the AS2-From header
field of the AS2 message is set in the x-aux-sender-id field of the backend
integration message that is sent to the Community Manager.

When an AS2 message goes out to a community participant, the x-aux-
sender-id field of the incoming backend integration message is used as the
AS2-From header value of the AS2 message.

x-aux-
receiver-id

When a community participant sends an AS2 message to Business
Integration Connect Enterprise or Advanced edition, the AS2-To header
field of the AS2 message is set in the x-aux-receiver-id field of the backend
integration message that is sent to the Community Manager.

When an AS2 message goes out to a community participant, the x-aux-
receiver-id field of the incoming backend integration message is used as the
AS2-To header value of the AS2 message.

x-aux-
protocol

When a community participant sends an AS2 message to Business
Integration Connect Enterprise or Advanced edition, the ToProtocol of the
participant connection is set in the x-aux-protocol field of the backend
integration message that is sent to the Community Manager.

When an AS2 message goes out to a community participant, the x-aux-
protocol field of the incoming backend integration message is used to
determine the FromProtocol of the participant connection.

x-aux-
protocol-
version

When a community participant sends an AS2 message to Business
Integration Connect Enterprise or Advanced edition, the ToProtocolVersion
of the participant connection is set in the x-aux-protocol-version field of the
backend integration message that is sent to the Community Manager.

When an AS2 message goes out to a community participant, the x-aux-
protocol-version field of the incoming backend integration message is used
as the FromProtocolVersion of the participant connection.

x-aux-
process-type

When a community participant sends an AS2 message to Business
Integration Connect Enterprise or Advanced edition, the ToProcessCode of
the participant connection is used to set in the x-aux-process-type field of
the backend integration message that is sent to the Community Manager.

When an AS2 message goes out to a community participant, the x-aux-
process-type field of the incoming backend integration message is used as
the FromProcessCode of the participant connection.
24 WebSphere Business Integration Connect 4.2.1 Integration Overview

x-aux-
process-
version

When a community participant sends an AS2 message to Business
Integration Connect Enterprise or Advanced edition, the ToProcessVersion
of the participant connection is set in the x-aux-process-version field of the
backend integration message that is sent to the Community Manager.

When an AS2 message goes out to a community participant, the x-aux-
process-version field of the incoming backend integration message is used
as the FromProcessVersion of the participant connection.

x-aux-
payload-
root-tag

When a community participant sends an AS2 message to Business
Integration Connect Enterprise or Advanced edition, for custom XML
protocol only, the Root tag specified in the XPATH is parsed out of the
message and used in the x-aux-payload-root-tag field.

When an AS2 message goes out to a community participant, this field
doesn’t need to be set in the incoming backend integration message.

x-aux-
process-
instance-id

This field is not used for AS2.

x-aux-msg-
id

When a community participant sends an AS2 message to Business
Integration Connect Enterprise or Advanced edition, for custom XML
protocol only, the Doc ID specified in the XPATH is parsed out of the
message and used in the x-aux-payload-root-tag field.

When an AS2 message goes out to a community participant, this field
doesn’t need to be set in the incoming backend integration message.

x-aux-
system-msg-
id

When a community participant sends an AS2 message to Business
Integration Connect Enterprise or Advanced edition, this field is set to the
internally generated unique ID for this message.

When an AS2 message goes out to a community participant, this field
doesn’t need to be set in the incoming backend integration message.

x-aux-
production This field is not used for AS2.

Mapping transport level header fields to AS2 content
Chapter 1. 25

AS1 to transport level header fields

The following table describes where Business Integration Connect obtains values
for the transport level header fields for AS1 messages.

Note: The values are case-sensitive.

Mapping transport level header fields to AS1 content

Header field Source of value

x-aux-
sender-id

When a community participant sends an AS1 message to Business
Integration Connect Enterprise or Advanced edition, the <FromID> in the
"Subject: <ToID>;<FromID>" header field of the AS1 message is set in the x-
aux-sender-id field of the backend integration message that is sent to the
Community Manager.

When an AS1 message goes out to a community participant, the x-aux-
sender-id field of the incoming backend integration message is used as
<FromID> in the "Subject: <ToID>;<FromID>" header value of the AS1
message.

x-aux-
receiver-id

When a community participant sends an AS1 message to Business
Integration Connect Enterprise or Advanced edition, <ToID> in the
"Subject: <ToID>;<FromID>" header field of the AS1 message is set in the x-
aux-receiver-id field of the backend integration message that is sent to the
Community Manager.

When an AS1 message goes out to a community participant, the x-aux-
receiver-id field of the incoming backend integration message is used as
<ToID> in the "Subject: <ToID>;<FromID>" header value of the AS1
message.

x-aux-
protocol

When a community participant sends an AS1 message to Business
Integration Connect Enterprise or Advanced edition, the ToProtocol of the
participant connection is set in the x-aux-protocol field of the backend
integration message that is sent to the Community Manager.

When an AS1 message goes out to a community participant, the x-aux-
protocol field of the incoming backend integration message is used as the
FromProtocol of the participant connection.

x-aux-
protocol-
version

When a community participant sends an AS1 message to WebSphere
Business Integration Connect Enterprise or Advanced edition, the
ToProtocolVersion of the participant connection is set in the x-aux-protocol-
version field of the backend integration message that is sent to the
Community Manager.

When an AS1 message goes out to a community participant, the x-aux-
protocol-version field of the incoming backend integration message is used
as the FromProtocolVersion of the participant connection.

x-aux-
process-type

When a community participant sends an AS1 message to Business
Integration Connect Enterprise or Advanced edition, the ToProcessCode of
the participant connection is set in the x-aux-process-type field of the
backend integration message that is sent to the Community Manager.

When an AS1 message goes out to a community participant, the x-aux-
process-type field of the incoming backend integration message is used as
the FromProcessCode of the participant connection.
26 WebSphere Business Integration Connect 4.2.1 Integration Overview

Payload

For HTTP and JMS protocol messages, the payload of the message is in the body
of the HTTP post or JMS message. For RosettaNet messages, the payload is the
service content from the PIP. Is you are sending EDI over AS2, the payload is the
EDI message. The payload is not wrapped with an XML envelope unless the
message also carries one or more attachments. For information on the XML
envelope and tags used to wrap the attachments, see “Attachments” on page 28.

If the message contains an attachment, the payload must be Base64 encoded in the
XML envelope.

x-aux-
process-
version

When a community participant sends an AS1 message to Business
Integration Connect Enterprise or Advanced edition, the ToProcessVersion
of the participant connection is set in the x-aux-process-version field of the
backend integration message that is sent to the Community Manager.

When an AS1 message goes out to a community participant, the x-aux-
process-version field of the incoming backend integration message is used
as the FromProcessVersion of the participant connection.

x-aux-
payload-
root-tag

When a community participant sends an AS1 message to Business
Integration Connect Enterprise or Advanced edition, for custom XML
protocol only, the Root tag specified in the XPATH is parsed out of the
message and set in the x-aux-payload-root-tag field.

When an AS1 message goes out to a community participant, this field
doesn’t need to be set in the incoming backend integration message.

x-aux-
process-
instance-id

This field is not used for AS1.

x-aux-msg-
id

When a community participant sends an AS1 message to Business
Integration Connect Enterprise or Advanced edition, for custom XML
protocol only, the Doc ID specified in the XPATH is parsed out of the
message and used in the x-aux-payload-root-tag field.

When an AS1 message goes out to a community participant, this field
doesn’t need to be set in the incoming backend integration message.

x-aux-
system-msg-
id

When a community participant sends an AS1 message to Business
Integration Connect Enterprise or Advanced edition, this field is set to the
internally generated unique ID for this message.

When an AS1 message goes out to a community participant, this field
doesn’t need to be set in the incoming backend integration message.

x-aux-
production This field is not used for AS1.

Mapping transport level header fields to AS1 content
Chapter 1. 27

Attachments

If the business message protocol permits them, each message can have one or more
attachments. If the message has attachments, it must have the <transport-
envelope> root tag. Inside this root tag there is a <payload> tag that contains the
message payload and an <attachment> tag for each attachment. The payload and
attachment tags have two attributes:

Content-Type - to identify the MIME type/subtype, such as text/xml or
image/gif. This is a mandatory attribute.

Encoding - to identify the encoding used. Because the attachment and payload
must be Base64 encoded, the only valid value for this attribute is “Base64”.

The following is an example of a message payload that has one XML attachment.
Note that the namespace
(xmlns="http://www.ibm.com/websphere/bcg/2003/v1.0/wbipackaging") is
required.

<?xml version=”1.0” encoding=”utf-8”?>
<transport-envelope
xmlns=”http://www.ibm.com/websphere/bcg/2003/v1.0/wbipackaging”>
 <payload encoding=”base64” contentType=”application/xml”>
 ...base64 encoded XML message...
 </payload>
 <attachment encoding=”base64” Content-Type=”text/xml”>
 ...base64 encoded XML attachment...
 </attachment>
</transport-envelope>

Business Integration Connect provides the Attachment Data Handler to process
attachments exchanged with the WebSphere Integration Server, as described in
“Attachment Data Handler” on page 65.

Schema for Backend Integration Packaging

A W3C XML schema file that describes the Backend Integration XML envelope
structure is included with Business Integration Connect. The file is named:

wbipackaging_v1.0_ns.xsd

and is located in the following directory on the installation medium:

B2BIntegrate\packagingSchemas

You can use any XML editing tool to validate your Backend Integration XML
against this schema file to ensure the document is valid before it is sent to the
Document Manager.
28 WebSphere Business Integration Connect 4.2.1 Integration Overview

Example of Backend Integration packaging over HTTP

The following is an example of a message from Business Integration Connect to an
application using the HTTP transport protocol. Note that the message does not
contain an attachment.

POST /sample/receive HTTP/1.1
Host: sample. COM
Content-Type: application/xml
Content-Length: nnn
x-aux-sender-id: 000000001
x-aux-receiver-id: 000000002
x-aux-third-party-bus-id: 000000003
x-aux-create-datetime: 2002-10-28T23:05:02Z
x-aux-protocol: RNSC
x-aux-protocol-version: 1.0
x-aux-process-type: 3A4
x-aux-process-version: V02.00
x-aux-payload-root-tag: Pip3A4PurchaseOrderRequest
x-aux-msg-id: 1021358129419
x-aux-system-msg-id: 2
x-aux-production: Production
x-aux-process-instance-id: 123456
x-aux-transport-retry-count: 0

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Pip3A4PurchaseOrderRequest SYSTEM
“3A4PurchaseOrderRequestMessageGuideline_v1_2.dtd”>
<Pip3A4PurchaseOrderRequest>
<PurchaseOrder>
 ...
</PurchaseOrder>
 ...
<thisDocumentIdentifier>
<ProprietaryDocumentIdentifier>1021358129419</ProprietaryDocumentI
dentifier>
</thisDocumentIdentifier>
<GlobalDocumentFunctionCode>Request</GlobalDocumentFunctionCode>
</Pip3A4PurchaseOrderRequest>
Chapter 1. 29

Protocol-specific information

This section describes information that is specific to the business protocol.

Web Services (SOAP)

Business Integration Connect can make Web Services provided by the Community
Manager available to Community Participants. You will have to provide your
Community Participant with the public WSDL that Business Integration Connect
generates. It is important to note that the URL on which the Community
Participant invokes the Web service is the Web Service Public URL specified while
uploading the Web Service. Business Integration Connect acts as a proxy. It
receives a SOAP message from the participant and figures out the corresponding
private Web Service. It then invokes the private Web Service (provided by the
Community Manager) using the same SOAP message. The response returned by
the Community Manager is then returned to the participant.

Business Integration Connect can make Web Services provided by Community
Participants available to the Community Manager. It is important to note that the
same Web Service Interface can be provided by multiple partners. Business
Integration Connect makes the Web Service available to the Community Manager
at the Web Service URL specified in the console while uploading the Web Service.
Additionally the Community Manager will have to provide the URL parameter to
identify "To Partner". Refer to the Administrator Guide for more details. Business
Integration Connect acts as a proxy. It receives a SOAP message from the
Community Manager and figures out the corresponding Web service and the "To
Partner". It then invokes the Web Service provided by the partner using the same
SOAP message. The response message returned by the partner is then returned to
the Community Manager.

Refer to the Administrator Guide for more information, including how to set up
your document flow definitions for Web Services.
30 WebSphere Business Integration Connect 4.2.1 Integration Overview

cXML

You can send or receive cXML documents to or from your Community
Participants.

When Business Integration Connect receives a cXML document from a
Community Participant, it validates the document and translates it (if specified)
before sending it to the backend application at the Community Manager. Note that
translation should not be used for synchronous cXML messages. In a synchronous
exchange, the backend application generates a response, which Business
Integration Connect returns to the Community Participant (if appropriate for the
message).

A backend application at the Community Manager that needs to send a cXML
document can do one of two things:

• Generate and send a cXML document, which Business Integration Connect
passes through to the Community Participant

• Generate and send an XML document, which Business Integration Connect
converts to cXML before sending to the Community Participant

Note: If XML document translation is used, for synchronous
request/response transactions with the Community Participant, the
response will be returned asynchronously to the backend application.

Refer to the Administrator Guide for more information, including how to set up
your document flow definitions for cXML.

RosettaNet

Business Integration Connect provides support for RosettaNet 1.1 and 2.0
provided the RosettaNet messages have Backend Integration packaging (that is,
they must have transport level headers.) These messages must use the HTTP or
JMS transport protocol. The transport level header retains meta-information that
is not part of the PIP and enables Business Integration Connect to route the
message appropriately.

For example, say an application wants to send a message to a community
participant using RosettaNet sent on HTTP. The application provides the
RosettaNet service content and adds the transport level header. The header
identifies which community participant will handle the request, what PIP will be
sent, and the version of the PIP along with other information. This information
enables Business Integration Connect to send the correct PIP to the community
participant.

You can find information about setting up RosettaNet support and configuring
PIPS in the Administrator Guide.
Chapter 1. 31

Event notification

Because Business Integration Connect separates the application from the
Community Participant that is the RosettaNet service provider, Business
Integration Connect provides event notification. Event notification enables
Business Integration Connect to, for example, notify the application if Business
Integration Connect is unable to send a PIP to the Participant. The application can
then handle the failure of the service call.

An event notification message is an XML document that carries information about
events that occurred within Business Integration Connect or an application. These
messages have the same structure as any other message that enters or leaves
Business Integration Connect; that is, they have transport level header and
payload. Business Integration Connect can be configured to send or not send event
notification messages as they are optional.

Business Integration Connect can send an event notification message to backend
applications when the following occurs:

• Business Integration Connect delivers a RosettaNet document to a
Community Participant and receives a Receipt Acknowledgment. Event 100
is sent to the backend application.

• Business Integration Connect cancels a PIP by generating an 0A1 message
and delivering it to the Community Participant. Event 800 is sent to the
backend application.

• Business Integration Connect receives a Receipt Acknowledgment exception
or a general exception from a Community Participant. Event 900 is sent to the
backend application.

Business Integration Connect can send 0A1 message to the destination application
as it would do with any other PIP, if it has been configured to send these messages
using Exclusion List Management. See “Managing Exclusion Lists” in the
Administrator Guide.

An application can send a event notification message to Business Integration
Connect to cancel a RosettaNet PIP.

Event message structure

An event notification message has the standard transport level header with the x-
aux-process-type field set to XMLEvent. However, the payload of the message has
a specific structure, as shown in the following schema:

<?xml version="1.0" encoding="UTF-8"?>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.ibm.com/websphere/bcg/2003/v1.0/xmleve
ntnotification"

xmlns:evntf="http://www.ibm.com/websphere/bcg/2003/v1.0/xmleventno
tification"

 elementFormDefault="qualified">

32 WebSphere Business Integration Connect 4.2.1 Integration Overview

 <!-- EventNotification version 1.0 document element -->
 <xsd:element name="EventNotification">
 <xsd:complexType>
 <xsd:all>
 <xsd:element ref="evntf:StatusCode"/>
 <xsd:element ref="evntf:StatusMessage"/>
 <xsd:element ref="evntf:EventMessageID"/>
 <xsd:element ref="evntf:BusinessObjectID"/>
 <xsd:element ref="evntf:GlobalMessageID"/>
 <xsd:element ref="evntf:Timestamp"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>

 <!-- StatusCode element -->
 <xsd:element name="StatusCode">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="100"/>
 <xsd:enumeration value="800"/>
 <xsd:enumeration value="900"/>
 <xsd:enumeration value="901"/>
 <xsd:enumeration value="902"/>
 <xsd:enumeration value="903"/>
 <xsd:enumeration value="904"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

 <!-- StatusMessage element -->
 <xsd:element name="StatusMessage">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string"/>
 </xsd:simpleType>
 </xsd:element>

 <!-- EventMessageID element -->
 <xsd:element name="EventMessageID">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string"/>
 </xsd:simpleType>
 </xsd:element>

 <!-- BusinessObjectID element -->
 <xsd:element name="BusinessObjectID">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string"/>
 </xsd:simpleType>
 </xsd:element>

 <!-- GlobalMessageID element -->
 <xsd:element name="GlobalMessageID">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string"/>
 </xsd:simpleType>
 </xsd:element>

 <!-- Timestamp element -->
 <xsd:element name="Timestamp">
Chapter 1. 33

 <xsd:simpleType>
 <xsd:restriction base="xsd:dateTime"/>
 </xsd:simpleType>
 </xsd:element>
 </xsd:schema>

The following table describes each field within the event payload:

Event notification message example

The following is an example of an event notification message sent using the HTTP
protocol.

POST /builderURL HTTP/1.1
Content-Type: application/xml
Content-length: 250
x-aux-sender-id: 000000001
x-aux-receiver-id: 000000002
x-aux-third-party-bus-id: 000000003
x-aux-create-datetime: 2002-10-28T23:05:02Z
x-aux-protocol: XMLEvent
x-aux-protocol-version: 1.0
x-aux-process-type: XMLEvent
x-aux-process-version: 1.0
x-aux-payload-root-tag: evntf:EventNotification
x-aux-msg-id: 98732

Event notification XML fields

Field Description

StatusCode

Type of message. The valid values are:

• 100 - Business Integration Connect has delivered the
document and received a receipt acknowledgment.

• 800 - The application cancelled the PIP.

• 900 - Business Integration Connect received a receipt
acknowledgment exception, a general exception, or a
0A1Failure PIP from the community participant.

StatusMessage Alpha-numeric description of this event notification message

EventMessageID Alpha-numeric identifier of this particular event notification
message

BusinessObjectID
The x-aux-msg-id in the transport level header of the message
affected by this message notification event. This links the
payload of the original message to this event.

GlobalMessageID The x-aux-system-msg-id in the transport level header of the
message that caused this message notification event

Timestamp

When the event occurred using the UTC time stamp format
(CCYY-MM-DDThh:mm:ssZ). including fractional precision of
seconds (…ss.ssssZ).

The date stamp must conform to the XML schema datatype for
dateTime (w3.org/TR/2001/REC-xmlschema-2-
20010502#dateTime)
34 WebSphere Business Integration Connect 4.2.1 Integration Overview

x-aux-system-msg-id: 12345
x-aux-production: Production
x-aux-process-instance-id: 3456
x-aux-event-status-code: 100
x-aux-transport-retry-count: 0

<?xml version=”1.0” encoding=”UTF-8”?>
<evntf:EventNotification
xmlns:evntf=”http://www.ibm.com/websphere/bcg/2003/v1.0/xmleventno
tification>
 <evntf:StatusCode>100</evntf:StatusCode>
 <evntf:StatusMessage>The message was
delivered</evntf:StatusMessage>
 <evntf:EventMessageID>12345</evntf:EventMessageID>
 <evntf:BusinessObjectID>34234</evntf:BusinessObjectID>
 <evntf:GlobalMessageID>98732</evntf:GlobalMessageID>
 <evntf:Timestamp>2001-01-31T13:20:00Z</evntf:Timestamp>
</evntf:EventNotification>
Chapter 1. 35

36 WebSphere Business Integration Connect 4.2.1 Integration Overview

Chapter 2. Integrating with the WebSphere InterChange
Server

“Backend Integration ” on page 7 described the general process used to integrate Business
Integration Connect with a backend application. This chapter describes a specific
implementation of that process—how to integrate Business Integration Connect with the
WebSphere InterChange Server.

It is assumed that you are familiar with the WebSphere InterChange Server and associated
components, such as collaborations, business objects, adapters, and the Server Access
Interface.

Planning for integration

To set up integration with WebSphere InterChange Server, consider the following items:

Which transport will you use?

Two transport protocols are available to integrate with WebSphere InterChange Server:

• HTTP transport protocol

Note: The exchange of Web Services over HTTP is handled in a separate section
because Web Services are exchanged in a manner that is different from other
documents transmitted over HTTP. See “Using Web Services” on page 56.

• JMS transport protocol

Use the transport protocol that best suits the needs of your business. Consider the
following:

• First and foremost, determine that the transport protocol you are using between the
community participant and WebSphere Business Integration Connect is available
with the integration mechanism used. See “Message transport protocols” on page 8.

• If you require synchronous transactions, you must use the HTTP transport protocol.

• Sending documents (other than SOAP documents) to WebSphere InterChange Server
over the HTTP transport protocol involves the use of a WebSphere Business
Integration Connect-supplied servlet and Wrapper Data Handler. The servlet is used
for receiving documents sent from Business Integration Connect. The servlet uses the
Server Access Interface to invoke collaborations. The Server Access Interface invokes
the collaborations synchronously.

Note: Even though some interactions between Business Integration Connect and
backend applications are asynchronous, the Server Access Interface still invokes the
collaboration synchronously and waits until the collaboration execution has
completed. Refer to the WebSphere InterChange Server documentation for
information on the Server Access Interface.
© Copyright IBM Corp. 2003, 2004 37

• Receiving documents from WebSphere InterChange Server over the HTTP
transport protocol involves the use of a Business Integration Connect-
supplied HTTP protocol handler for the Adapter for XML.

• Sending SOAP documents to and receiving SOAP documents from the
WebSphere InterChange Server over the HTTP transport protocol involves
the use of the Adapter for Web Services.

• Sending documents to and receiving documents from the WebSphere
InterChange Server over the JMS transport protocol involves the use of the
Adapter for JMS. The Adapter for JMS invokes collaborations
asynchronously.

• The Adapter for JMS provides guaranteed delivery from Business Integration
Connect to the WebSphere InterChange Server.

Note that WebSphere InterChange Server provides other types of integration
options, such as file-based integration. Refer to the WebSphere InterChange Server
documentation for details on enabling the exchange of documents through file-
based integration.

Which packaging will you use?

Two types of packaging are available for documents that are sent through the
HTTP transport protocols:

• Backend integration, which means that transport-level headers are added to
the document before it is sent to WebSphere InterChange Server. With
backend integration packaging, you can optionally include attachments. If
attachments are included, they are wrapped in an XML envelope.

• None, which means that no transport-level headers will be added to the
document.

You specify the packaging to be used when you set up your partner connections.
See the Administrator Guide for information on setting up partner connections.

Is the packaging available for the business protocol?

Certain business protocols can use only certain types of packaging. For example, a
RosettaNet document can be processed only when a packaging of Backend
integration has been specified. An EDI document can be processed only when a
packaging of None has been specified. See “Supported transport protocols” on
page 8 for a complete list of which document types can be associated with which
types of packaging.
38 WebSphere Business Integration Connect 4.2.1 Integration Overview

What types of business objects are required for the
packaging?

You define the business objects based on the type of packaging specified for the
partner connection.

The appropriate data handler for the payload type is used to convert the
documents or messages into business objects and to convert business objects into
documents or messages. As mentioned earlier, the Data Handler for XML is used
to convert XML messages into business objects. You can create custom data
handlers for any message formats that do not have a corresponding data handler
provided by WebSphere Business Integration Server.

The business object must be designed according to the requirements of the data
handler and the requirements of the adapter used for integration with Business
Integration Connect. For example, if you are using the Adapter for JMS, refer to the
Adapter for JMS documentation for the required business object structure. If you
are using JMS with the Backend Integration packaging, make sure your business
objects have a dynamic child meta-object. For the HTTP transport protocol,
see“Step 8: Define the business objects” on page 48 for the business object
requirements.

Additionally, make sure the data handlers you are using can ignore child meta-
objects required by your connectivity. Refer to the section on the cw_mo_label
application-specific information in the appropriate data handler documentation.
Before using a data handler (whether it is supplied by WebSphere Business
Integration or whether it is a custom data handler), make sure it provides support
for child meta-objects.

For processing XML messages, make sure you are using the WebSphere Business
Integration Data Handler for XML Version 2.3.1 or higher. For cXML messages,
you must use the Data Handler for XML Version 2.4.1 or higher.

The remainder of this chapter describes the process for sending and receiving
documents over each of the transport protocols and lists the steps you need to take
to prepare to use the transport protocols.

Relationship of packaging to business objects

Packaging Business object

None
The business object corresponds to the payload of the
document.

Backend integration without
attachments

The business object corresponds to the payload of the
document.

Backend integration with
attachments

A data handler is required to process the XML
envelope in which the payload and attachments are
wrapped.
See “Attachment Data Handler” on page 65 for
information on the Business Integration Connect-
supplied data handler you can use to process the
XML envelope.
Chapter 2. 39

Using the HTTP transport protocol

This section describes how to send and receive documents through the use of the
HTTP transport protocol. All document types except SOAP make use of the
Business Integration Connect-supplied servlet, described in the following sections.
If you are exchanging SOAP documents over the HTTP transport protocol, see the
section “Using Web Services” on page 56.

All references to the HTTP transport protocol apply to HTTPS as well.

Overview of sending documents to the WebSphere
InterChange Server

To send a document from Business Integration Connect to the WebSphere
InterChange Server using the HTTP transport protocol, you interact with the
following components, which are provided with Business Integration Connect:

• The WebSphere Business Integration Connect Servlet

• A Wrapper Data Handler

• The Attachment Data Handler (optional)

In addition, the servlet uses the Server Access Interface, and the Wrapper Data
Handler invokes the data handler that is configured for your message. For
example, if the payload is XML, the Wrapper Data Handler can be configured to
call the Data Handler for XML.

The servlet can be used with WebSphere InterChange Server versions 4.1.1, 4.2.0,
and 4.2.1. Note that the servlet cannot be used with WebSphere InterChange
Server version 4.2.2.

The following illustration provides an overview of how the components interact.
Note that the Wrapper Data Handler, the Attachment Data Handler, and the data
handler for the message execute within the WebSphere InterChange Server.
40 WebSphere Business Integration Connect 4.2.1 Integration Overview

Message flow from Business Integration Connect to a collaboration through the HTTP
transport protocol

1. Business Integration Connect invokes the servlet to communicate with
WebSphere InterChange Server. It sends the document to the URL specified
as the target gateway. Each URL corresponds to a collaboration to be
invoked. (See “Step 2: Create the properties file” on page 44 for information.)
Note that the servlet can be used to invoke multiple collaborations.

2. The servlet creates a Java string from the HTTP request message sent by
Business Integration Connect. The HTTP request message contains two parts:

• HTTP transport protocol headers (the standard headers plus the custom
headers that were set by WebSphere Business Integration Connect if
Backend integration packaging was specified for the target gateway)

• The message, which depends on the type of packaging that is used

3. The servlet checks a properties file to determine the collaboration, verb, and
MIME type to use.

4. The servlet sends the Java string, along with the information from the
properties file, to the Server Access Interface.

5. The Server Access Interface invokes the Wrapper Data Handler.
Chapter 2. 41

6. The Wrapper Data Handler extracts the headers and payload from the string
and calls the configured data handler to convert the payload into a request
business object. It then sets the HTTP headers in the child meta-object of this
business object. The Wrapper Data Handler can also be configured to call the
Attachment Data Handler, if the message sent from Business Integration
Connect includes attachments. The actions of the Attachment Data Handler
are described in “Attachment Data Handler” on page 65.

7. The Wrapper Data Handler then creates the top-level business object and sets
the request business object in it.

8. The Wrapper Data Handler returns the top-level business object to the Server
Access Interface.

9. The Server Access Interface invokes the collaboration with the top-level
business object.

The collaboration executes and returns the top-level business object to the
Wrapper Data Handler. Note that:

• When interactions between WebSphere InterChange Server and Business
Integration Connect are asynchronous, the response business object in the
top-level object should not be populated by the collaboration.

• In a synchronous invocation in which a response should be returned in the
same HTTP connection, the collaboration should populate the response
business object.

If the interaction is successful, an HTTP 200 OK acknowledgment is returned to
Business Integration Connect.

Make sure the collaboration port for the collaboration object you will be invoking
is configured as the external port. Refer to the WebSphere InterChange Server
documentation for details on configuring ports.

An overview of the process for sending documents from the WebSphere
InterChange Server to Business Integration Connect is described in “Overview of
sending documents to the Business Integration Connect” on page 60.

The next section describes the tasks you perform to set up the environment so that
you can send documents to the WebSphere InterChange Server.
42 WebSphere Business Integration Connect 4.2.1 Integration Overview

Setting up the environment for sending documents

Because the sending and receiving of documents to and from the WebSphere
InterChange Server involves the use of Business Integration-supplied
components, you have to perform the following setup and configuration tasks.

Note: In this section and throughout this chapter, path names are shown according
to Unix syntax. If you are using Business Integration Connect on a Windows
platform, use Windows syntax for path names.

1. Deploy the servlet in your Web server or application server.

2. Create a properties file that the servlet uses to find information about a
collaboration.

3. Edit the servlet deployment descriptor file to point to the properties file.

4. Add bcgwbiwrapperdh.jar to the classpath variable DATAHANDLER in the
%CROSSWORLDS%/bin/start_server.bat.

5. Add the MIME type for the Wrapper Data Handler. Also add the MIME types
for the data handler for the request.

6. Create a meta-object for the Wrapper Data Handler.

7. Configure the meta-objects for the Wrapper Data Handler and the data
handler for the request message.

8. Define business objects representing the information being sent by the
Business Integration Connect request.

These tasks are described in the sections that follow.

Step 1: Deploy the components

The servlet, Wrapper Data Handler, and the repository file for the Wrapper Data
Handler are available from the following location on the Business Integration
Connect installation medium:

NOTE: If you are expecting to send and receive documents that include
attachments, you can also deploy the Attachment Data Handler and its
associated repository file, as described in “Deploy the Attachment Data
Handler” on page 66.

1. Deploy the servlet and associated files into the Web server according to the
documentation for the Web server.

Location of the components

Component Location

Servlet integration/wbi/wics/http/bcgwbiservlet.war

Wrapper Data Handler integration/wbi/wics/http/bcgwbiwrapperdh.jar

Repository file for Wrapper
Data Handler

integration/wbi/wics/http/MO_DataHandler_WBIWrap
per.in
Chapter 2. 43

2. Make sure the following files (which can be found in the lib directory of the
WebSphere InterChange Server installation directory) are in the
CLASSPATH of the servlet:

• CrossWorlds.jar

• vbjorb.jar

Note: These files must be from the same version of the WebSphere
InterChange Server that you will be invoking.

3. Make sure the following files (which can be found in the
integration/wbi/wics/http/lib/thirdparty directory of the WebSphere
Business Integration Connect installation medium) are in the CLASSPATH of
the servlet:

• mail.jar

• log4j-1.2.8.jar

4. Make the IOR file available to the host on which the servlet is deployed.

5. Update the ICS_IORFILE property in servlet.properties with the location of
the IOR file.

Step 2: Create the properties file

As mentioned in “Overview of sending documents to the WebSphere InterChange
Server” on page 40, the properties file contains information, such as port name and
verb, that the servlet needs to invoke a collaboration. You create this properties
file, specifying general information about the WebSphere InterChange Server.
Then, for any collaboration you want the servlet to invoke, you provide
information about that collaboration.

Contents of the property file

Create a properties file containing the information shown in the following table.

Contents of the properties file

Property Name Example Description

ICS_SERVERNAME Server1

The host name where
the WebSphere
InterChange Server is
running.

ICS_VERSION 4.2.0

The version number of
the WebSphere
InterChange Server.
Possible values are 4.1.1,
4.2.0, and 4.2.1.
44 WebSphere Business Integration Connect 4.2.1 Integration Overview

ICS_IORFILE
c:/myiorlocation/
Server1InterChangeServer.ior

The file name used to
access the WebSphere
InterChange Server
APIs. The example
shows how you would
specify the path on a
Windows(R) system.
Note that the path
should be entered on
one line.

ICS_USERNAME Admin The User ID for
connecting to the server.

ICS_PASSWORD Null The password for
connecting to the server.

ICS_ENCRYPTED_PASSWORD False

An indication of
whether the
ICS_PASSWORD is
encrypted. The servlet
sets this field to true if
the password is
encrypted.

ICS_DISABLEENCRYPTION True

An indication of
whether password
encryption is disabled
(true) or enabled (false).
Set this field to false if
you want to allow
passwords to be
encrypted.

The following properties are specified for each collaboration.

WBIC_SERVLET_COUNT 1

The number of URLS
configured in this file.
If it is set to 1, the servlet
will process the URL
and properties for
WBIC_URL_1. If it is set
for 2, the servlet will
process the URL and
properties for
WBIC_URL_1 and
WBIC_URL_2.

WBIC_URL_1 PurchaseOrder The name of the relative
URL.

WBIC_URL_1_COLLAB PurchaseOrderCollab The name of the
collaboration.

WBIC_URL_1_PORT From The port name of the
collaboration.

Contents of the properties file
Chapter 2. 45

How the relative URL is used to look up the collaboration

The servlet uses the relative URL to look up the collaboration to execute.

For example, if you deployed the servlet on
http://www.yourcompany.com/here, and you used the sample values shown in
the previous table, the servlet would invoke the collaboration
PurchaseOrderCollab (if it receives requests on
http://www.yourcompany.com/here) on
http://www.yourcompany.com/here/PurchaseOrder.

The WBIC_URL_1_WRAPPER_MIME property specifies the MIME type for the
Wrapper Data Handler. If you specify more than one MIME type, you need
multiple meta-objects. See “Step 6: Create the child meta-object” on page 47 for
information.

Sample properties file

An example of a properties file follows:
Example properties file
 ICS_SERVERNAME=Server1
 ICS_VERSION=4.2
 ICS_IORFILE=C:/myiorlocation/Server1InterChangeServer.ior
 ICS_USERNAME=admin
 ICS_PASSWORD=null
 ICS_ENCRYPTED_PASSWORD=false
 ICS_DISABLEENCRYPTION=true
 WBIC_SERVLET_COUNT=1
 WBIC_URL_1=PurchaseOrder
 WBIC_URL_1_COLLAB=PurchaseOrderCollab
 WBIC_URL_1_CHARENCODE=UTF-8
 WBIC_URL_1_PORT=From
 WBIC_URL_1_VERB=Create

 WBIC_URL_1_WRAPPER_MIME=wbic_wrapper

Step 3: Specify the location of the servlet log file

Specify logging properties in the servlet property file. Specify the location of the
servlet log file in the properties file by adding the following statement:

log4jappender.RollingFile.File=<log file location>

WBIC_URL_1_VERB Create The verb subscribed to
by the collaboration.

WBIC_URL_1_WRAPPER_MIME wbic_wrapper

The Wrapper Data
Handler MIME type.
Note that the example is
in lowercase.

WBIC_URL_1_CHARENCODE UTF-8

The character encoding
to use for the HTTP
requests. Specify valid
Java character encoding.

Contents of the properties file
46 WebSphere Business Integration Connect 4.2.1 Integration Overview

A sample Log4J Debug Properties file including an example of this statement
follows:

#Log4J Debug Properties

#Possible Categories - debug/info/warn/error/fatal
#Default Category "error". Output to: stdout and RollingFile
log4j.rootCategory=debug,RollingFile
log4j.appender.RollingFile=org.apache.log4j.RollingFileAppender
#Log File Name
log4j.appender.RollingFile.File=D:_DEV\\servlet.log
log4j.appender.RollingFile.MaxFileSize=1000KB
#Number of backup files to keep
log4j.appender.RollingFile.MaxBackupIndex=10
log4j.appender.RollingFile.layout=org.apache.log4j.PatternLayout
log4j.appender.RollingFile.layout.ConversionPattern=%d{yyyy-MM-dd
HH:mm:SS} %-5p [%c{1}] - %m%n

Step 4: Edit the deployment descriptor

To provide an initialization parameter for the servlet, you edit the deployment
descriptor for the servlet (web.xml). This file contains a parameter named
WBIC_FILENAME, which points to the absolute location of the properties file.
Edit the value of this parameter to point to the properties file.

Step 5: Specify the location of the Wrapper Data Handler

The WebSphere InterChange Server needs to know the location of the Wrapper
Data Handler, so that it can load it. To specify the location:

1. Edit the start_server.bat file, which is located in the WebSphere InterChange
Server installation directory.

2. Add bcgwbiwrapperdh.jar to the CLASSPATH.

3. If you have installed the optional Attachment Data Handler, see “Specify the
location of the Attachment Data Handler” on page 66.

Step 6: Create the child meta-object

Create a child meta-object that includes the MIME types for the request business
object. The child meta-object structure is as follows:

Child meta-object attributes

Attribute Description

ClassName

The class name (required), which points to the data handler
class
(com.ibm.bcg.integration.wbi.datahandlers.WBICWrapperData
Handler)
Chapter 2. 47

Step 7: Edit the MO_Server_DataHandler

The Server Access Interface uses the MO_Server_DataHandler meta-object to
identify the data handlers it can use. You add a reference to this meta-object for
each Wrapper Data Handler you will use. In other words, if you will be using more
than one MIME type, you will need a Wrapper Data Handler reference for each
MIME type.

Define a new attribute for each MIME type in the MO_Server_DataHandler meta-
object and provide the associated child meta-object for that MIME type

For example, if the MIME type is wbic_wrapper and the associated child meta-
object is MO_DataHandler_WBICWrapper, you add the following to the
MO_Server_DataHandler meta-object:

 name=wbic_wrapper
 type=MO_DataHandler_WBICWrapper

Repeat this process for each MIME type.

NOTE: If you are using the Attachment Data Handler to process attachments, you
must modify the MO_Server_DataHandler, as described in “Configuring
the Attachment Data Handler” on page 66.

Refer to the Data Handler Guide for more information.

Step 8: Define the business objects

You create business object definitions to represent the information being sent from
Business Integration Connect to the WebSphere InterChange Server. You must
create definitions for:

• A top-level business object

• A request business object

TopBOPrefix

The prefix is used to determine the name of the top-level object.
If the request business object returned by the data handler
configured for the request does not have the business-object-
level wbic_mainboname application-specific information, the
name of the top-level object is obtained by adding the
TopBOPrefix to the name of the request business object.

wbic_request_mime

The MIME type of the data handler that the Wrapper Data
Handler will invoke to process the payload of the request
message. Make sure that this data handler has been configured
so that it can be invoked by the Server Access Interface. Refer to
the data handler documentation.

wbic_response_mime

The MIME type of the data handler that the Wrapper Data
Handler will invoke to process the payload of the response
message. The wbic_response_mime does not have to be set if
Business Integration Connect is not expecting a response. The
wbic_response_mime does not have to be set if Business
Integration Connect is not expecting a response.

Child meta-object attributes

Attribute Description
48 WebSphere Business Integration Connect 4.2.1 Integration Overview

• A response business object

Note: If you are defining business objects for cXML documents, see “Creating
business objects for cXML” on page 52.

Top-level business object

The top-level business object has the following structure:

When you create the top-level business object definition, note the following:

• The first three attributes (URL, MimeType, and BOPrefix) are not used by the
Wrapper Data Handler.

• Request and Response are child business objects that correspond to request
messages and to response messages (if you are expecting a response).

Note that the same business-object structure is used by the HTTP protocol handler
and the Adapter for XML. Refer to the Adapter for XML documentation for more
specific information.

If you are using the Attachment Data Handler to process attachments, you must
modify your request business object, as described in “Creating and modifying
business objects” on page 69.

Request business object

The following is an example of a Request business object containing the DynMO
child object:

The request business object has the following business-object level application-
specific attributes:

• wbic_mainboname, which gives the name of the top-level object.

• cw_mo_conn, which specifies the dynamic meta-object that contains an
attribute representing HTTPProperties (containing the HTTP headers
required when the packaging specified is Backend integration). The dynamic
meta-object is described in more detail in “Dynamic meta-object” on page 50.

The following illustration shows how the business objects and meta-object are
related:

URL

MimeType

BOPrefix

 Response

 Request

XMLDeclaration

DocType

 ROOT

 DynMO
Chapter 2. 49

Relationship of the top-level business object, request business object, and dynamic child
meta-object

Dynamic meta-object

As shown in the previous illustration, the dynamic meta-object contains the
HTTPProperties business object. If you are using Backend Integration packaging,
the HTTPProperties business object contains HTTP headers required by the
packaging. It can also contain the Content-Type attribute, which specifies the
content-type header to set in the request message.

The attributes of the HTTPProperties business object have attribute-level "name"
application-specific information. This information specifies the name of the related
protocol header. For example, the x-aux-sender-id attribute has the application-
specific information set to name=x-aux-sender-id. The following table shows you
the application-specific information for each attribute.
50 WebSphere Business Integration Connect 4.2.1 Integration Overview

Note that this is not an exhaustive list of the headers required for backend
integration. For a complete list and description of the headers, see “Transport level
header content” on page 19.

Response business object

If the exchange between Business Integration Connect and WebSphere
InterChange Server is asynchronous, Business Integration Connect does not expect
a response, so it is not necessary to create a response business object.

If the exchange is synchronous and a business response is expected, the attribute
corresponding to the response in the Top-level object should have the attribute-
level application-specific information wbic_type, which should be specified as
wbic_type=reply.

Additionally the wbic_response_mime business-object level application-specific
information can be specified. This application-specific information is optional. It
specifies the MIME type for the data handler to be used for the response Business
Object. If this is not specified, the Wrapper Data Handler uses the
wbic_response_mime child meta-object attribute to determine the data handler to
use for the response.

Note that the response business object does not include the DynMO attribute.

Application-specific information for the HTTPProperties attributes

Name Application-specific information

x-aux-sender-id name=x-aux-sender-id;

x-aux-receiver-id name=x-aux-receiver-id;

x-aux-protocol name=x-aux-protocol;

x-aux-protocol-version name=x-aux-protocol-version;

x-aux-process-type name=x-aux-process-type;

x-aux-process-version name=x-aux-process-version;

x-aux-create-datetime name=x-aux-create-datetime;

x-aux-msg-id name=x-aux-msg-id;

x-aux-production name=x-aux-production;

x-aux-system-msg name-x-aux-system-msg;

x-aux-payload-root-tag name=x-aux-payload-root-tag;

x-aux-process-instance-id name=x-aux-process-instance-id;

x-aux-event-status-code name=x-aux-event-status-code;

x-aux-third-party-bus-id name=x-aux-third-party-bus-id;

x-aux-transport-retry-count name=x-aux-transport-retry-count;

Content-Type name=Content-Type;
Chapter 2. 51

Creating business objects for cXML

For cXML documents, you can use the XML Object Discovery Agent (ODA) to
create the business objects. The XML ODA can consume the cXML DTD. Note,
however, that the XML ODA does not support ENTITY. Therefore, before running
the cXML DTD with the XML ODA, you need to remove ENTITY from the DTD.

When generating business objects using the XML ODA, you can select the cXML
tag as your root element. This might result in a large business object, capturing the
entire cXML DTD, however. If you want to create a smaller business object, you
can select a different tag as your root element, which will require that you write a
custom name handler for the Data Handler for XML. The data handler will invoke
this name handler for the top-level business object name resolution. Refer to the
Data Handler for XML documentation for information on writing custom name
handlers.

Overview of sending documents to Business Integration
Connect

To send a document from the WebSphere InterChange Server using the HTTP
transport protocol, you use either the HTTP or HTTPS protocol handler, which is
supplied by Business Integration Connect.

You also use the Adapter for XML. Note the following about the Adapter for XML:

• The adapter is not shipped with Business Integration Connect. It is part of the
WebSphere Business Integration Adapters.

• You must use the Adapter for XML version 3.1.x or higher.

• Refer to the adapter documentation to make sure that the level of the adapter
is compatible with the version of WebSphere InterChange Server you are
using.

• Only the request processing function of the Adapter for XML is used when
WebSphere InterChange Server sends a document to Business Integration
Connect. The event notification feature of the adapter is not used.

You also use a data handler that has been configured for the payload of the
associated business object.

The following illustration provides an overview of how the components interact.
Note that all references to the HTTP protocol handler apply to the HTTPS protocol
handler as well.
52 WebSphere Business Integration Connect 4.2.1 Integration Overview

Message flow from a collaboration to Business Integration Connect through the HTTP
transport protocol

1. The collaboration makes a service call to the Adapter for XML, sending it a
top-level business object that includes request and respond child objects. The
request child object contains application-specific information pointing to a
dynamic meta-object used to contain the custom HTTP headers expected by
Business Integration Connect.

2. The Adapter for XML invokes the HTTP protocol handler.

3. The HTTP protocol handler reads the MIME type and URL from the top-level
business object to determine the data handler to use and the address of the
recipient.

4. From the top-level business object, the HTTP protocol handler obtains the
first populated business object. This is the request business object.

5. The HTTP protocol handler calls the data handler to convert the business
object to an HTTP stream. If the Attachment Data Handler is being used, the
process described in “Converting messages to business objects” on page 73 is
performed.
Chapter 2. 53

6. The HTTP protocol handler determines, from the request business object, the
dynamic meta-object.

7. The HTTP protocol handler searches for the business object cw_mo_conn,
which provides the attribute corresponding to the dynamic meta-object. (In
the dynamic meta-object, the protocol handler expects an HTTPProperties
attribute, which is a child business object.)

8. If the HTTPProperties attribute is populated, the HTTP protocol handler sets
the user-defined headers in the request message. You can also specify the
content-type standard HTTP header. If you are using Backend Integration
packaging, you need to specify the headers required by Business Integration
Connect. See “Transport level header content” on page 19.

9. The HTTP protocol handler invokes Business Integration Connect with the
stream returned by the data handler and the protocol headers. Business
Integration Connect responds with an HTTP 200 OK.

In the case of a synchronous invocation in which the ReturnBusObjResponse
property of the Adapter for XML is set to true, the protocol handler converts
the response message into a response business object and returns it to the
Adapter for XML. The adapter sets the business object in the top-level
business object. The top-level business object is then returned to the
collaboration.

Setting up the environment for sending documents

Because the sending and receiving of documents to and from the WebSphere
InterChange Server involves the use of Business Integration-supplied
components, you have to perform the following setup and configuration tasks.

1. Deploy the HTTP protocol handler

2. Specify the location of the HTTP protocol handler

3. Configure the Adapter for XML

4. Define the business objects

These tasks are described in the sections that follow.

Step 1: Deploy the HTTP Protocol Handler

The protocol handler is available from the following location on the Business
Integration Connect installation medium:

integration/wbi/wics/http/lib/bcgwbiprotocol.jar

Deploy the HTTP protocol handler to the Adapter for XML.

Step 2: Specify the location of the HTTP Protocol Handler

The Adapter for XML needs to know the location of the HTTP protocol handler, so
that it can load it. To specify the location of the HTTP protocol handler:

1. Edit the start_xml.bat file.

2. Add bcgwbiprotocol.jar to the CLASSPATH.
54 WebSphere Business Integration Connect 4.2.1 Integration Overview

Step 3: Configure the Adapter for XML

Specify connector properties for the Adapter for XML by setting:

JavaProtocolHandlerPkgs=com.ibm.bcg.integration.wbi.utils.protcolhandlers
ReturnBusObjResponse=False

NOTE: If Business Integration Connect supports synchronous interactions for the
packaging and business protocol used by the Community Manager, you
might want to set the ReturnBusObjResponse to True and provide the
response business object in your top-level business object.

Step 4: Define the business objects

The business objects required are the same as those described in the earlier section
“Step 8: Define the business objects” on page 48. Refer to the Adapter for XML
documentation for information on the business objects.

Summary of supported platforms and versions

The following table summarizes the supported platforms and versions of the
components used to send and receive documents through the HTTP transport
protocol:

Platforms and versions of the components

Component Platforms and versions

WebSphere Business Integration Connect
Servlet

This servlet can connect to WebSphere
InterChange Server versions 4.1.1, 4.2.0, and
4.2.1.

The servlet can be deployed on the
platforms on which WebSphere
InterChange Server is supported.
Additionally you need to make sure that the
Server Access Interface is supported on that
platform. Refer to the WebSphere
InterChange Server documentation for a list
of the platforms on which the InterChange
Server version you are using is supported.

HTTP Protocol Handler for Adapter for
XML

The HTTP Protocol Handler can be plugged
into the Adapter for XML version 3.1.x or
higher.

For a list of supported Interchange Server
versions and platforms, refer to the
documentation for the version of the
Adapter for XML you are using.
Chapter 2. 55

Using Web Services

The previous section described how you use Business Integration Connect-
supplied components to exchange documents with the InterChange Server over
HTTP/S. To send these documents, you use the servlet and Wrapper Data
Handler, and to receive documents, you use the HTTP Protocol Handler.

SOAP documents, however, differ from other types of documents exchanged over
HTTP/S. They use the standard Adapter for Web Services, which calls the SOAP
data handler to transform SOAP messages into business objects and to transform
business objects into SOAP messages.

Refer to the Adapter for Web Services documentation for information on the
business-object structure and on the WSDL Object Discovery Agent (ODA), a
design-time tool you can use to generate SOAP business objects that include
information about the target web services.

Note the following about the Adapter for Web Services:

• Make sure you are using the Adapter for Web Services 3.1.0 (or higher)

• Refer to the adapter documentation to make sure that the level of the adapter
is compatible with the version of WebSphere InterChange Server you are
using.

As described in the Administrator Guide, you must have set up a target to receive
Web service invocations from a backend application (the Web services target) as
well as a target to receive Web service invocations from a Community Participant
(the external Web services target).

Overview of how a Community Participant invokes a
Web Service provided by the Community Manager

The following steps occur when a Community Participant sends a request for a
collaboration that is exposed as a Web service.

1. The Community Participant sends a SOAP request message to the
destination specified in the WSDL document generated for the collaboration.
Note that the endpoint specified in the WSDL is the Web services target
(URL) of Business Integration Connect instead of the actual endpoint.

2. Business Integration Connect receives and routes the message to the Adapter
for Web services.

3. The adapter sends the SOAP message to the SOAP data handler to convert
the SOAP message to a business object. The adapter invokes the collaboration
exposed as a web service.

4. If this is a request/response operation, the collaboration returns a SOAP
Response (or Fault) business object.
56 WebSphere Business Integration Connect 4.2.1 Integration Overview

5. If the collaboration returned a SOAP Response (or Fault) business object, the
adapter calls the SOAP data handler to convert the SOAP Response (or Fault)
business object to a SOAP response message. The adapter returns the
response to Business Integration Connect. If the collaboration did not return
a SOAP response (or Fault) business object, the Adapter for Web Services
returns the appropriate HTTP response status code.

6. Business Integration Connect routes the response to the Web service.

Overview of how the Community Manager invokes a
Web Service provided by a Community Participant

The Public WSDL provided by Business Integration Connect can be used for
creating business objects using WSDL ODA. It is important to note that when the
Web service is provided by a Community Participant for use by the Community
Manager, the public URL used by the Community Manager to invoke the Web
service should contain the query string '?to=<Community Participant Web Service
Provider's business ID>' (for example,
http://WBIChost/bcgreceiver/Receiver?to=123456789). This tells Business
Integration Connect that the provider of the Web service is the participant with
business ID '123456789'. The WSDL ODA will not add the query string in the
default value of the URL attribute of the Web Service top-level business object.

The following steps occur when a collaboration sends a request (to the Adapter for
Web Services) to invoke a Web Service of a Community Participant:

1. The collaboration sends a service call request to the adapter, which calls the
SOAP data handler to convert the business object to a SOAP request message.

2. The adapter invokes the web service by sending the SOAP message to the
external Web services target (URL) on Business Integration Connect.

3. Business Integration Connect acts as a proxy, sending the SOAP message to
the endpoint corresponding to the destination (Community Participant) Web
service. This invokes the Web service.

4. The invoked web service receives the SOAP request message and performs
the requested processing.

5. The invoked Web service sends a SOAP response (or fault) message. In the
case of a one-way operation, the appropriate HTTP status code is returned.

6. If this is a request/response Web Service, Business Integration Connect
routes the SOAP response (or fault) message to the adapter, which calls the
data handler to convert it to a response or fault business object. The connector
returns the SOAP response or fault business object to the collaboration.

Chapter 2. 57

Using the JMS transport protocol

This section describes how to send and receive documents through the use of the
JMS transport protocol.

To send or receive a document using the JMS transport protocol, you use the
Adapter for JMS. If you are expecting to receive attachments, you can also use the
Business Integration-supplied Attachment Data Handler.

Note the following about the Adapter for JMS:

• Make sure you are using the Adapter for JMS Version 2.3.1 (or higher), which
provides support for custom header properties.

• Refer to the adapter documentation to make sure that the level of the adapter
is compatible with the version of WebSphere InterChange Server you are
using.

The Adapter for JMS supports JMS Text messages only.

Note: If you intend to use JMS Byte messages, use the Adapter for JMS Version
2.5.0.

The section “Setting up integration through the JMS transport protocol using
WebSphere MQ 5.3” on page 15 describes the steps you follow to set up your JMS
environment, including setting up queues and channels. When the Adapter for
JMS receives a message from a backend application, it places the message in its
remote queue to be sent, through the send channel, to the receiver queue of
Business Integration Connect.

After the queues and channels are established, you must also define a target and a
gateway for the exchange.

You must configure the target to read from the same queue in which the Adapter
for JMS writes the message. The target listens for any incoming messages in this
queue and retrieves them.

Similarly, when Business Integration Connect sends a message to a backend
application, it puts the message in the queue on which the Adapter for JMS is
polling.

You must configure a gateway in Business Integration Connect to write to the
queue on which the Adapter polls for messages.
58 WebSphere Business Integration Connect 4.2.1 Integration Overview

Overview of sending documents to the WebSphere
InterChange Server

The following illustration provides an overview of how documents are sent to
WebSphere InterChange Server.

Message flow from Business Integration Connect to a collaboration through the JMS
transport protocol

1. Business Integration Connect posts a message to the JMS outbound queue.
(Remember that you must have configured a gateway to write the message
to the queue on which the Adapter for JMS is polling. See the Administrator
Guide for details on configuring a gateway.) The message contains custom
properties provided by Business Integration Connect (if the packaging of
Backend Integration was selected when the connection was established) in
addition to the message. The JMS message header, JMSType, is set with the
content type of the payload.

2. As soon as the Adapter for JMS sees a message on one of its input queues, it
retrieves the message. For detailed processing of the Adapter for JMS, see the
Adapter for JMS documentation.

3. The Adapter for JMS moves the message to its in-progress queue.
Chapter 2. 59

4. The Adapter for JMS extracts the body of the JMS message and invokes a data
handler with the body of the message.

If you have installed the Attachment Data Handler and defined business
objects used by the Attachment Data Handler, the Adapter for JMS creates an
instance of the Attachment Data Handler. The process is described in
“Attachment Data Handler” on page 65.

5. The data handler returns the business object. If the Attachment Data Handler
was used, the business object contains the payload as well as the attachments.

6. If the Adapter for JMS finds a child dynamic meta-object (specified using
cw_mo_conn in the business-object level application specific information),
the adapter populates the user-defined JMS headers present in the business
object with the headers present in the JMS message.

7. The Adapter for JMS delivers the business object to the InterChange Server
as part of a subscription delivery.

Note that, when Backend Integration packaging has been specified and the
document contains attachments, the configured data handler is responsible for
handling the payload and attachments.

Overview of sending documents to the Business
Integration Connect

The following illustration provides an overview of how documents are sent from
the WebSphere InterChange Server to Business Integration Connect:
60 WebSphere Business Integration Connect 4.2.1 Integration Overview

Message flow from a collaboration to Business Integration Connect through the JMS
transport protocol

1. The collaboration makes a service call to the Adapter for JMS.

2. The Adapter for JMS uses a data handler to convert the business object sent
by the collaboration into a JMS message.

If the Attachment Data Handler is used, the Adapter for JMS creates an
instance of the Attachment Data Handler and passes the business object to
the Attachment Data Handler. This process is described in “Attachment Data
Handler” on page 65.

3. The data handler converts the business object to a string and returns it to the
Adapter for JMS. The Adapter for JMS then processes the dynamic meta-
object for custom JMS properties. If you are using Backend Integration
packaging, you can specify JMS properties in the dynamic meta-object. The
dynamic meta-object has an attribute called JMSProperties, which is of type
child business object. This child business object contains the custom header
properties. Refer to the Adapter for JMS documentation for information on
the structure of this business object.
Chapter 2. 61

4. The Adapter for JMS creates a JMS message, using the string returned by the
data handler. It then sets custom properties as defined in the dynamic meta-
object.

5. The Adapter for JMS sends the message to a queue. The queue can be
specified in the static meta-object or the dynamic meta-object. Refer to the
Adapter for JMS documentation for information on specifying queues.

6. Business Integration Connect receives the message from the queue.

Note: You must have configured a target for this queue.

The Adapter for JMS can write only JMS text messages.

Business Integration Connect supports only asynchronous interaction with
backend applications over JMS. Therefore, you might not want to wait for the
response. The response from the community participant or Business Integration
Connect can come on a different queue. You can configure the Adapter for JMS to
poll that queue. The response that comes on the queue can be delivered to the
InterChange Server as part of the event delivery.

The next section describes the tasks you perform to set up the environment so that
you can send documents to the WebSphere InterChange Server.

Setting up the environment for sending and receiving
documents

The sending and receiving of documents to and from the WebSphere InterChange
Server involves the use of the Adapter for JMS.

The section “Setting up integration through the JMS transport protocol using
WebSphere MQ 5.3” on page 15 provides the general steps you perform before
exchanging messages through the JMS transport protocol. The steps are
summarized in this section.

To use the JMS transport protocol, you must create a JMS bindings file and
configure a gateway and a target for JMS before sending or receiving documents
from the WebSphere InterChange Server. See “Creating the JMS bindings file” on
page 15.

Before Business Integration Connect can send messages to the Adapter for JMS,
you must perform the following steps:

• You must configure a gateway in Business Integration Connect to write to the
queue. “Creating the JMS gateway” on page 17 provides an overview of the
steps for creating the gateway. A complete description can be found in the
Administrator Guide. Note that the Adapter for JMS supports JMS text
messages only. The gateway should therefore be configured to write only
JMS text messages.

• You must configure the Adapter for JMS to poll on the same queue.

The adapter can poll multiple queues.

Before Business Integration Connect can receive messages from the Adapter for
JMS, you must perform the following steps:
62 WebSphere Business Integration Connect 4.2.1 Integration Overview

• You must configure a target in Business Integration Connect for JMS.
“Creating the JMS target” on page 17 provides an overview of the steps for
creating the target. A complete description can be found in the Administrator
Guide.

• You must make sure that the static or dynamic meta-objects are configured
so that they can write to the queue on which the Business Integration Connect
target is listening.

Creating business objects

The Adapter for JMS documentation provides information about the required
business object structure. Refer to that information when defining your business
objects.

In addition, if you are using the Attachment Data Handler, see “Attachment Data
Handler” on page 65 for modifications you must make to the business object and
for information on additional business objects that are required to handle
attachments.

If you are using JMS with the Backend Integration packaging, make sure your
business objects have a dynamic child meta-object and that you specify the
cw_mo_conn application-specific information to point to that dynamic child meta-
object.

1. Modify your business object to include the following application-specific
attributes:

cw_mo_conn=JMSDynMO

The new attribute,JMSDynMo,contains the JMSProperties business object.
If you are using Backend Integration packaging, the JMSProperties business
object contains JMS properties required by the packaging. It can also contain
the content-type attribute, which specifies the content-type header to set in
the request message, and the content-length attribute, which specifies the
length of the message, in bytes. The following illustration shows how the
business objects and meta-object are related:

Relationship of the request business object to the dynamic child meta-object
Chapter 2. 63

2. Create the JMSProperties business object.

The attributes of the JMSProperties business object have attribute-level
"name" application-specific information. This information specifies the name
of the related protocol header. For example, the x_aux_sender_id attribute
has the application-specific information set to name=x_aux_sender_id. The
following table shows you the application-specific information for each
attribute.

Note that this is not an exhaustive list of the headers required for backend
integration. For a complete list and description of the headers, see “Transport
level header content” on page 19.

Application-specific information for the JMSProperties attributes

Name Application-specific information

x_aux_sender_id name=x_aux_sender_id;type=string

x_aux_receiver_id name=x_aux_receiver_id;type=string

x_aux_protocol name=x_aux_protocol;type=string

x_aux_protocol_version name=x_aux_protocol_version;type=string

x_aux_process_type name=x_aux_process_type;type=string

x_aux_process_version name=x_aux_process_version;type=string

x_aux_create_datetime name=x_aux_create_datetime;type=string

x_aux_msg_id name=x_aux_msg_id;type=string

x_aux_production name=x_aux_production;type=string

x_aux_system_msg name_x_aux_system_msg;type=string

x_aux_payload_root_tag name=x_aux_payload_root_tag;type=string

x_aux_process_instance_id name=x_aux_process_instance_id;type=string

x_aux_event_status_code name=x_aux_event_status_code;type=string

x_aux_third_party_bus_id name=x_aux_third_party_bus_id;type=string

x_aux_transport_retry_count name=x_aux_transport_retry_count;type=string

content_type name=content_type;type=string

content_length name=content_length;type=string
64 WebSphere Business Integration Connect 4.2.1 Integration Overview

Attachment Data Handler

This section describes how the Attachment Data Handler processes messages and
business objects that are sent from Business Integration Connect to the
InterChange Server and from the InterChange Server to Business Integration
Connection.

It also describes how to modify the default data handler meta-object and modify
your business objects to support the use of the Attachment Data Handler.

Overview

As described in “Attachments” on page 28, messages that contain attachments are
sent by Business Integration Connect to an adapter or the Server Access Interface
enclosed in an XML wrapper. The messages and attachments are contained in a
defined structure (a transport envelope). The content type of the payload is
specified in the <payload> XML tag, just as the content type for each attachment is
specified in the <attachment> XML tag.

When the adapter or Server Access Interface calls the Attachment Data Handler to
processes the message, the Attachment Data Handler extracts the payload and
attachments and then looks up the content type in its child meta-object to
determine whether a content-type map exists for that type. For example, if the
content type of the payload is application/xml, the Attachment Data Handler
looks for a content-type map that matches application/xml. If it finds such a map,
it uses the information in the map to determine which data handler to call.

The content-type map can also specify the character set for encoding as well as
whether an attachment should be converted to a business object. See “Attributes”
on page 66 for a description of the child meta-object attributes and “Example” on
page 68 for an example of a meta-object.

When the Attachment Data Handler processes the payload and attachments, it
sends the resulting business object back to the adapter or Server Access Interface
that invoked it. (In the case of the Server Access Interface, it is actually the Wrapper
Data Handler that calls the Attachment Data Handler.)

Similarly, when an adapter or the HTTP Transport Protocol calls the Attachment
Data Handler to process a business object with attachments, the Attachment Data
Handler calls the appropriate data handlers to convert the payload and
attachments. It then produces an XML-wrapped message that is sent to Business
Integration Connect.

These processes are described in detail in “Converting messages to business
objects” on page 73 and “Converting business objects to messages” on page 74.

Setting up the environment for the Attachment Data
Handler

To use the Business Integration Connect-supplied Attachment Data Handler, you
must deploy it and specify its location, as described in the following sections.
Chapter 2. 65

Deploy the Attachment Data Handler

The Attachment Data Handler and associated repository file are located on the
installation medium in the following directories:

Deploy the files into the Web server according to the documentation for the Web
server.

Specify the location of the Attachment Data Handler

The WebSphere InterChange Server needs to know the location of the Attachment
Data Handler, so that it can load it. To specify the location of the Attachment Data
Handler:

1. Edit the start_server.bat file, which is located in the WebSphere InterChange
Server installation directory.

2. Add bcgwbiattachmentdh.jar to the CLASSPATH.

Configuring the Attachment Data Handler

Configuring the Attachment Data Handler consists of creating a child meta-object
for the data handler, editing the top-level data-handler meta-object to include the
new child meta-object, and setting up the other business objects required by the
data handler.

Create the child meta-object

The child meta-object provides the class name and configuration properties that
are needed by the Attachment Data Handler. Create a child meta-object that
includes MIME types for the payload and for the types of attachments you expect
to receive.

Attributes

The attributes of the child meta-object are shown in the following table. An
example of a child meta-object for the Attachment Data Handler is shown in
“Example” on page 68. Note that the sample business objects shown in this chapter
do not include the standard attributes (such as ObjectEventId) required by the
WebSphere InterChange Server but not used by the Attachment Data Handler.

 Location of the components

Component Location

Attachment
Data Handler integration/wbi/wics/attachment/bcgwbiattachmentdh.jar

Repository file integration/wbi/wics/attachment/MO_DataHandler_DefaultAttachment
Config.in
66 WebSphere Business Integration Connect 4.2.1 Integration Overview

Child meta-object attributes

Attribute Name Description

ClassName The class name (required), which points to the data handler
class (com.ibm.bcg.DataHandlers.AttachmentDataHandler).

ContentTypeMap_x

The content-type map for the payload and each type of
attachment you expect to receive, which determines the data
handler to call. The ContentTypeMap_x attribute can be
defined for both the payload and the attachments because,
when a message is received in an XML wrapper, the payload
might have a content type of application/xml that should be
mapped to the MIME type text/xml.

Note that you must order the ContentTypeMap_x attributes in
sequence. For example, if you have three content type maps,
they must be named ContentType_1, ContentType_2, and
ContentType_3.

The four values you can set in the ContentTypeMap_x attribute
are described in the following list. Two samples of their use are
shown in “Example” on page 68.

• ContentType - Required

The actual content type (for example, text/xml).

• MimeType - Optional

The MIME type used to instantiate a data handler to convert
the payload or attachment to a business object. If you do not
specify MimeType, the value of ContentType is used.

• CharSet - Optional

The character set (for example, UTF-8) used to convert bytes
to a string or a string to bytes. If you do not specify CharSet,
for inbound data, the data bytes that result from decoding the
message from base64 are used for the conversion to the
business object. For outbound data, calls are made to the
method of the child data handler that returns bytes (and not
a string).

• ConvertAttachment - Optional

An indicator of whether the attachment should be converted
to a business object. The default is False.

Payload
DataHandlerMimeType

MIME type used to create an instance of a data handler to
process a payload that does not have associated attachments.
Chapter 2. 67

Example

The following sample shows an example of the attributes and values described in
the previous section:

[BusinessObjectDefinition]
Name = MO_DataHandler_DefaultAttachmentConfig
Version = 3.0.0

[Attribute]
Name = ClassName
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
DefaultValue = com.ibm.bcg.DataHandlers.AttachmentDataHandler
IsRequiredServerBound = false
[End]

[Attribute]
Name = ContentTypeMap_1
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
DefaultValue = ContentType=application/xml;MimeType=text/xml;

 CharSet=UTF-8;ConvertAttachment=true
IsRequiredServerBound = false
[End]

[Attribute]
Name = ContentTypeMap_2
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
DefaultValue = ContentType=text/xml;MimeType=text/xml;CharSet=UTF-8
IsRequiredServerBound = false
[End]

[Attribute]
Name = PayloadDataHandlerMimeType
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
DefaultValue = text/xml
IsRequiredServerBound = false
[End]
68 WebSphere Business Integration Connect 4.2.1 Integration Overview

Update the top-level data-handler meta-object

A WebSphere Business Integration Adapter (such as the Adapter for JMS) uses the
MO_DataHandler_Default meta-object to identify the data handlers it can use. The
Server Access Interface uses the MO_Server_DataHandler for the same purpose.
Add a reference to the Attachment Data Handler in one of these meta-objects.

For example, if the MIME type is wbic_attachment and the associated child meta-
object is MO_DataHandler_DefaultAttachmentConfig, add the following to the
MO_DataHandler_Default meta-object or the data handler configuration meta-
object:

 name=wbic_attachment
 type=MO_DataHandler_DefaultAttachmentConfig

Creating and modifying business objects

This section describes business objects that you will create or modify to handle
attachments. A brief overview of these business objects is provided, and then the
steps for creating and modifying the objects are listed.

Description of the business objects

If you are dealing with attachments, you modify your payload business object to
include attributes for attachments.

In any document flow, there is one payload and, optionally, multiple attachments.
All the attachments are contained in the Attachment Container business object. If
there are attachments, the payload business object has an attribute corresponding
to the Attachment Container business object:

Each attribute in the Attachment Container business object represents an
attachment, if determined by the attribute-level application-specific information
wbic_type=Attachment of that attribute. The Attachment Container business
object can optionally have an attribute corresponding to the Default Attachment
business object.

Payload Business Object example

Application-specific information

cw_mo_bcg_attachment=attachments

Attributes

Payload <payloadBO type>

attachments AttachmentContainerBO
Chapter 2. 69

Each attachment attribute in the Attachment Container business object should be
of type Attachment Business Object. The Attachment business object can contain a
Content Type Encoding business object.

Steps for creating and modifying the business objects

This section describes how to create or modify the business objects described in the
previous section.

1. Create the Content Type Encoding business object.

This business object stores the content type and encoding of the associated
payload or attachment. The following is an example of creating the Content
Type Encoding business object. Note that "ContentTypeEncoding" is just an
example of a name that can be assigned to this business object. The name can
be anything. The application-specific information of the attachment business
object determines if this is a Content Type Encoding business object type.

[BusinessObjectDefinition]
Name = ContentTypeEncodingBO
Version = 3.0.0

[Attribute]
Name = contentType
Type = String
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false

Attachment Container Business Object example

Application-specific information

cw_mo_bcg_default_attribute=defaultAattachment

Attributes

defaultAttachment Default_Attachment_BO

attachmentOne AttachmentBO wbic_type=Attachment

attachmentTwo AttachmentBO wbic_type=Attachment

Attachment Business Object example

Application-specific information

cw_mo_bcg_content_info=contentTypeEncoding

Attributes

attachment

contentTypeEncoding contentTypeEncodingBO
70 WebSphere Business Integration Connect 4.2.1 Integration Overview

[End]

[Attribute]
Name = encoding
Type = String
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

2. Define the structure of the Default Attachment business object. This business
object has the following business-object level application-specific
information:

cw_mo_bcg_content_info=contentTypeEncoding

An example of the business object follows:

[BusinessObjectDefinition]
Name = Default_Attachment_BO
Version = 3.0.0
AppSpecificInfo =
cw_mo_bcg_content_info=contentTypeEncoding

[Attribute]
Name = attachment
Type = String
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = contentTypeEncoding
Type = ContentTypeEncodingBO
ContainedObjectVersion = 3.0.0
Relationship = Containment
Cardinality = 1
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
Chapter 2. 71

3. Add Content Type Encoding attributes to the Attachment Business Object.
Modify the business object to be used as an attachment by adding the
business-object-level application-specific information
cw_mo_bcg_content_info. The value of this application-specific information
gives the name of the attribute, which is of type Content Type Encoding
Business Object.

 cw_mo_bcg_content_info=contentTypeEncoding

4. Define the Attachment Container business object. If you are using default
attachment processing, add the Default Attachment Business Object as a
child of the Attachment Container Business Object. If you are adding the
Default Attachment Business Object, you need to add the business-object-
level application-specific information cw_mo_bcg_default_attribute in the
Attachment Container Business Object. The value of this application-specific
information gives the name of the attribute that is of type Default Attachment
Business Object. There can be only one such attribute in the Attachment
Container Business Object. This attribute can have multiple cardinality.

Add all of your Attachment Business Objects as children of the Attachment
Container Business Object. All the attributes corresponding to type
Attachment Business Object should have the attribute-level application-
specific information wbic_type = Attachment. Note that these attributes can
have multiple cardinality.

An example of the business object follows:

[BusinessObjectDefinition]
Name = AttachmentContainerBO
Version = 3.0.0
AppSpecificInfo =
cw_mo_bcg_default_attribute=defaultAttachment

[Attribute]
Name = defaultAttachment
Type = Default_Attachment_BO
ContainedObjectVersion = 3.0.0
Relationship = Containment
Cardinality = N
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]
Name = attachmentOne
Type = <attachment-type BO>
ContainedObjectVersion = 3.0.0
Relationship = Containment
Cardinality = N
MaxLength = 255
72 WebSphere Business Integration Connect 4.2.1 Integration Overview

IsKey = false
IsForeignKey = false
IsRequired = false
AppSpecificInfo = wbic_type=Attachment
IsRequiredServerBound = false
[End]

5. Modify the payload business object by adding the cw_mo_bcg_content_info
and cw_mo_bcg_attachment attribute-level application-specific information.

• The value of the cw_mo_bcg_content_info application-specific
information gives the name of the attribute in the payload business
object that is of type Content Type Encoding Business Object.

• The value of cw_mo_bcg_attachment attribute gives the name of the
attribute in the payload business object that is of type Attachment
Container Business Object.

6. Add the AttachmentContainer business object as a child of the payload
business object.

Converting messages to business objects

A WebSphere Business Integration adapter (for example, the Adapter for JMS) or
the Wrapper Data Handler can be configured to call the Attachment Data Handler
to handle the payload and attachments of an XML-wrapped message.

The Attachment Data Handler does the following:

1. Loads the content-type maps defined in its configuration meta-object.

2. Checks the message to see whether it is included in an XML Wrapper.

If the Attachment Data Handler does not detect the wrapper, it uses the
PayloadDataHandlerMimeType configuration property defined in the meta-
object to create an instance of a data handler for the message payload. It then
returns the resulting business object to the adapter or to the Wrapper Data
Handler.

If the Attachment Data Handler does detect the wrapper, it does the
following:

a. Extracts the payload and attachments from the wrapper and decodes the
payload data

b. Uses the MIME type specified in the ContentTypeMap_x for the payload
to create an instance of a data handler to process the payload data, and
receives the resulting business object

c. Examines the payload business object and retrieves the attribute name
for cw_mo_bcg_content_info and its type, creates an instance of the
Content Type Encoding Business object, and sets the values for the
content type and encoding

d. Examines the payload business object, retrieves the attribute name for
cw_mo_bcg_attachment and its type, and creates an instance of the
Attachment Container Business Object.
Chapter 2. 73

e. Examines the attachment container business object, and, using the
business object level attribute cw_mo_bcg_default_attribute, retrieves
the attribute name for the Default Attachment Business Object and its
type

f. Gets the content type and character-set encoding for the attachment and
checks to see whether there is a corresponding entry in the content-type
map.

• If no corresponding content-type map is found, the Attachment
Data Handler creates an instance of the Default Attachment
Business Object, sets the values for the content type and encoding
within the contentTypeEncoding attribute, and sets the base64-
encoded attachment data (as a string) in the attachment attribute.

The Attachment Data Handler then populates the
defaultAttachment object of the Attachment Container business
object.

• If a content-type map is found, the Attachment Data Handler
checks to see whether the attachment needs to be converted to a
business object. If it does, the Attachment Data Handler decodes
the payload data and creates an instance of a data handler to
process the payload data. The data handler processes the decoded
bytes and returns a business object.

If the attribute for the Content Type Encoding Business Object is
not found, the attachment is not processed.

3. The Attachment Data Handler sets the resulting attachment business object
in the Attachment Container business object, and returns the business object
to the adapter or Wrapper Data Handler.

Converting business objects to messages

A WebSphere Business Integration adapter (for example, the Adapter for JMS or
the Adapter for XML) can be configured to call the Attachment Data Handler to
convert a business object sent by the collaboration into a JMS message or HTTP
stream.

 The Attachment Data Handler then does the following:

1. Loads the content-type maps defined in its configuration meta-object.

2. Checks the business object to determine whether it contains attachments.

If it does not contain attachments, the Attachment Data Handler uses the
PayloadDataHandlerMimeType (which is defined in
MO_DataHandler_DefaultAttachmentConfig) to create an instance of that
data handler, passes the business object to the data handler, and receives the
resulting string.

If it does contain attachments, the Attachment Data Handler:
74 WebSphere Business Integration Connect 4.2.1 Integration Overview

a. Gets the content type for the payload from the attribute for the Content-
Type EncodingBO. If the Content Type Encoding Business Object is not
found for the payload, the default data handler MIME type is used for
the conversion of the payload.

b. Gets the character set encoding, checks to see if there is an entry for the
content type in the content-type map, and creates an instance of a data
handler. From the string that is returned by the data handler, the
Attachment Data Handler encodes the bytes using Base64 and stores the
result.

c. Checks to see whether the attachment is of type Default Attachment
Business Object. If it is, the Attachment Data Handler retrieves the
attribute for the business object, extracts the Base64-encoded data, and
stores the result.

If the attachment is not of type Default Attachment Business Object, the
Attachment Data Handler:

1. Retrieves the attribute for the business object and gets the content
type and encoding for the attachment

2. Gets the character-set encoding from the content type and checks to
see whether there is a corresponding content type in the content-
type map.

3. Uses the MIME type to create an instance of a data handler for the
MIME type, passes the attachment business object to the data
handler, and gets the bytes from the string that is returned (using
the character set, if one was present)

4. Encodes the bytes using Base64, and stores the results.

If the business object contains attachments, the Attachment Data Handler wraps
the payload and attachment data in the XML Wrapper.
Chapter 2. 75

76 WebSphere Business Integration Connect 4.2.1 Integration Overview

Chapter 3. Integrating with WebSphere Data Interchange

“Backend Integration ” on page 7 described the general process used to integrate Business
Integration Connect with a backend application. This chapter describes a specific
implementation of that process—how to integrate Business Integration Connect with the
WebSphere Data Interchange.

This chapter provides an explanation of the process by which documents are exchanged
and then lists the steps for setting up a sample environment for such exchanges. The
scenario used throughout this chapter is similar to the one presented in the Integrating
WebSphere Data Interchange V3.2 with WebSphere Business Integration Connect V4.2 tutorial,
which is available on the following Web site:

www.ibm.com/developerworks/websphere/

The tutorial provides additional scripts (in the section on configuring WebSphere MQ) as
well as sample transformation maps. By following the tutorial, you can set up the
environment described in this chapter.

It is assumed that you are familiar with using WebSphere Data Interchange. See the
WebSphere Data Interchange documentation for additional information as you read this
chapter.

Introduction

WebSphere Data Interchange integrates electronic data interchange (EDI) into the
WebSphere business process, messaging, and Internet-based B2B capabilities.

You exchange documents and messages between Business Integration Connect and
WebSphere Data Interchange through the JMS transport protocol. You must specify a
packaging of None when sending a document to WebSphere Data Interchange.

Note that WebSphere Data Interchange provides other types of integration options, such
as file-based integration. Refer to the WebSphere Data Interchange documentation for
details on enabling the exchange of documents through file-based integration.
© Copyright IBM Corp. 2003, 2004 77

Sending documents to WebSphere Data Interchange

This section describes the process by which an EDI document is sent from Business
Integration Connect to WebSphere Data Interchange:

1. An EDI document is sent from a Community Participant to Business
Integration Connect. The document is sent through the AS2 over HTTP
transport protocol. Business Integration Connect strips off the AS2 packaging
from the EDI document.

2. Business Integration Connect places the EDI document on a queue.

Note: WebSphere Business Integration Connect determines the protocol used
in the document by examining the first three characters of the EDI document.
It then determines, from the protocol type, the sender and receiver
information. See “Overview of EDI routing” on page 105 for details.

3. WebSphere Data Interchange reads the message from the queue. It performs
the tasks of deenveloping, validating, and translating the EDI document.

Note: WebSphere Data Interchange must be configured for user profiles and
the desired mappings.

4. WebSphere Data Interchange distributes the document to a back-end
application, or it uses the Adapter for MQ to interact with the WebSphere
InterChange Server to create a business object and invoke a collaboration
within the WebSphere InterChange Server.

In the illustration, a Community Participant sends an AS2 document to Business
Integration Connect, which, in turn, sends it to the EDI_IN queue on the
WebSphere Data Interchange side. Note that the remote queue, transmission
queue, receiver queue (in the example, EDI_IN), and the sender and receiver
channels must be set up so that the message sent to Business Integration Connect
is transmitted to the EDI_IN queue. The WebSphere Data Interchange server picks
up the EDI document, searches for the user profiles, mappings, and so on, converts
the document to XML, and puts it in the XML_OUT queue.
78 WebSphere Business Integration Connect 4.2.1 Integration Overview

Sending documents to Business Integration Connect

This section describes the process by which an EDI document is sent from
WebSphere Data Interchange to Business Integration Connect:

1. WebSphere Data Interchange places the EDI document on a queue.

2. Business Integration Connect reads the message from the queue.

Note: Business Integration Connect determines how to route the document
as described in “Overview of EDI routing” on page 105.

3. Business Integration Connect routes the document to the Community
Participant.

In the above illustration, an EDI document is placed into the XML_IN queue for
WebSphere Data Interchange to translate. It is assumed that the user profiles,
mappings, and so on, are already performed. Upon receiving a valid XML
document, WebSphere Data Interchange converts it into EDI format and places the
output in the EDI_OUT queue (a remote queue). It is assumed that the
transmission queue, sender and receiver channels, and receiver queue on the
Business Integration Connect side are set up. Upon receiving the document,
Business Integration Connect routes it to the Community Participant.

Sample scenario used in this chapter

Throughout this chapter, you will see the steps you would take to set up the
exchange of EDI documents between two trading partners. The EDI documents are
sent over the internet, and AS2 (over HTTP) is used as the communication
protocol.

The trading partners involved in the sample are partnerOne and partnerTwo. The
following figure illustrates the configurations of the two partners:
Chapter 3. 79

The following software is used to implement this sample scenario. Refer to the
Business Integration Connect Installation Guide and to the WebSphere Data
Interchange documentation for a complete list of software prerequisites.

• On Machine A (Partner One):

• Operating System: Microsoft Windows 2000 Professional

• WebSphere Data Interchange Server V3.2 with Fix Pack 7 (or higher)

• WebSphere Data Interchange Client V3.2 with CSD 07 (or higher)

• WebSphere MQ V5.3 with CSD 04

• IBM DB2 V7.2 with Fix Pack 10

• On Machine B (Partner One):

• Operating System: Red Hat Linux Advanced Server v2.1

• WebSphere Business Integration Connect Enterprise Edition v4.2.0 (or
higher)

• WebSphere MQ V5.3 with CSD 04

• IBM DB2 V8.1 with Fix Pack 2

• On Machine C (Partner Two):

• Operating System: Windows 2000 Professional

• WebSphere Business Integration Connect Express v4.2.0 (or higher)

In this example, partnerOne is operating two machines. Machine A has both
WebSphere MQ and WebSphere Data Interchange Server installed. Machine B has
WebSphere MQ as well as WebSphere Business Integration Connect Enterprise
Edition installed. Machine B supports the communications between the two
trading partners.
80 WebSphere Business Integration Connect 4.2.1 Integration Overview

WebSphere Data Interchange supports integration with WebSphere MQ, enabling
interoperation with a wide range of enterprise applications and business process
engines. WebSphere Business Integration Connect employs WebSphere MQ as a
JMS provider. As such, integration between WebSphere Data Interchange and
WebSphere Business Integration Connect is through MQ messages destined for
JMS API clients.

WebSphere Business Integration Connect is used to communicate EDI transactions
over the Internet using the AS2 protocol.

Note that, in this example, partnerTwo is using WebSphere Business Integration
Connect - Express to accept transactions via AS2 and has its own WebSphere Data
Interchange environment for handling translations and acknowledgments.

Throughout this chapter, you will see the details about configuring the machines
used in this sample scenario. The flow of messages is bi-directional, and so both
send and receive artifacts are included.

Configuring your environment for message exchange

The sections that follow list the setup and configuration tasks you perform to
enable communication between WebSphere Data Interchange and Business
Integration Connect.

Configure WebSphere MQ communication

The first step in setting up the environment is to configure WebSphere MQ
communication.

Overview

Intercommunication means sending messages from one queue manager to
another. The first step is to define a queue manager (and associated objects) for the
WebSphere Data Interchange system and the Business Integration Connect
system. If you will be sending messages in both directions, you set up a source
queue manager and a target queue manager on both systems. On the source queue
manager, you define a sender channel, a remote queue definition, and a
transmission queue. On the target queue manager, you define a receiver channel
and a target queue.

Refer to the WebSphere MQ documentation for additional details on defining
queue managers.
Chapter 3. 81

Example

This section shows you the values you would use to set up the queue managers
and associated objects needed for the sample scenario. In the scenario, WebSphere
MQ V5.3 is installed on both Machine A and Machine B. The first step, then, is to
create a queue manager on both Machine A and Machine B for use with
WebSphere Data Interchange and WebSphere Business Integration Connect
Enterprise Edition respectively.

Note: Your WebSphere Data Interchange queue manager should be configured to
trigger the WebSphere Data Interchange Server using the WDI Adapter
application.

• On Machine A, you would use the queue manager defined for use with
WebSphere Data Interchange. For the remainder of this chapter, this queue
manager is referred to as WDI32_QM.

• On Machine B, you would use the queue manager created during the initial
installation and configuration of WebSphere Business Integration Connect
Enterprise Edition. For the remainder of this chapter, this queue manager is
referred to as WBIC42_QM

To send messages from one queue manager to another using WebSphere MQ, you
define the following objects:

• On the source queue manager:

• Sender channel

• Remote queue definition

• Transmission queue

• On the target queue manager:

• Receiver channel

• Target queue

In the sample scenario, both Machine A and Machine B act as sender and receiver.
Therefore, you would have to define a number of objects on each machine.
82 WebSphere Business Integration Connect 4.2.1 Integration Overview

Table 1 below lists the objects you would create to set Machine A and Machine B
as sender and receiver:

The following figure is a graphical illustration of the message flow between
Machine A and Machine B, indicating the role of the WebSphere MQ objects listed
above.

You could use several different methods to define these objects, depending on
your WebSphere MQ platform. For example, you could use WebSphere MQ
Explorer on Windows to define the objects.

Table 1: WebSphere MQ Objects to create

Machine A Machine B

Queue Manager WDI32_QM WBIC42_QM

Sender Channel TO.WBIC42 TO.WDI32

Receiver Channel TO.WDI32 TO.WBIC42

Remote Queue EDI_OUT_A EDI_OUT_B

Transmission Queue XMITQ_A XMITQ_B

Local Queue EDI_IN_A EDI_IN_B

Local Queue XML_IN_A XML_IN_B

Local Queue XML_OUT_A XML_OUT_B
Chapter 3. 83

Configure WebSphere Data Interchange

For WebSphere Data Interchange to receive messages from the WebSphere MQ
queue and write EDI messages to a queue, you must configure profiles in the
WebSphere Data Interchange Client.

Overview of the profiles

Using WebSphere Data Interchange Client, you would create the following
profiles, which are described in the sections that follow:

• MQ Series queue profile

• Network profile

• Mailbox profile

• Service profile

MQSeries queue profile

An MQSeries Queue profile contains information about a WebSphere MQ message
queue.

The properties to configure for each profile are:

• Queue Profile ID, which is the unique identifier to name the profile (logical
name).

• Full Queue Name, which is the actual name of the WebSphere MQ queue.

• Queue Manager Name, which is the actual name of the WebSphere MQ
queue manager.

• Description, which is any string to identify the purpose of the profile.

• Maximum Length, which is the largest possible message for the queue as
configured in WebSphere MQ.

• Destructive Reads, which, if selected, cause WebSphere Data Interchange to
remove the message from the WebSphere MQ queue when reading.

• Syncpoint Control, which, when checked, means that the reading and writing
of queue messages is under syncpoint control. If syncpoint control is in effect,
modifications to a message queue do not take place until WebSphere Data
Interchange issues a syncpoint.
84 WebSphere Business Integration Connect 4.2.1 Integration Overview

Network profile

Network profiles define for WebSphere Data Interchange the characteristics of the
networks you use for communications with trading partners. For this scenario, you
would create and configure a Network Profile that communicates with the
WebSphere MQ queues created earlier.

The properties to configure for the Network Profile are:

• Network ID, which is a unique identifier to name the profile

• Communication Routine, which is the name of the program that builds
network commands and invokes the network program to process the
commands

• Network Program, which is the program invoked by the communication
routine to process requests

• Network Parameters, which are parameters required by the network
program

Mailbox profile

Mailbox profiles contain the information that WebSphere Data Interchange needs
to identify the individuals and groups in your organization that receive
documents to be translated.

The properties to configure for each Mailbox Profile are:

• Mailbox ID, which is a unique identifier to name the profile

• Network ID, which is the network ID of the network profile created earlier

Service profile

The purpose of Service Profiles is to allow you to enter a utility command and
define all the files that will be used during execution of that command.
Chapter 3. 85

Example

In the sample scenario, WebSphere Data Interchange will receive XML messages
from the WebSphere MQ queue XML_IN_A and will write the result of translation
to WebSphere MQ queue EDI_OUT_A. WebSphere Data Interchange will also
receive EDI from WebSphere Business Integration Connect Enterprise Edition on
the WebSphere MQ queue EDI_IN_A and will write the result of translation to
XML_OUT_A.

Configure MQSeries Queue profiles

Because you’re working with the WebSphere MQ queues, you require an
MQSeries Queue profile in WebSphere Data Interchange for each queue.

In all, you would create four MQSeries Queue profiles, one for each WebSphere
MQ queue used in the message flow. From the setup area of WebSphere Data
Interchange Client, you would:

1. Create an MQSeries Queue profile for XML_IN_A and EDI_OU_A. The
actual parameters specified in each MQSeries Queue profile created are listed
in Table 2 below. The queues represented here are used with XML-to-EDI
translation.

Note: The Queue Profile ID is restricted to eight characters only (hence the
name EDI_OU_A). All references to the WebSphere MQ queue EDI_OUT_A
in WebSphere Data Interchange use EDI_OU_A.

2. Create an MQSeries Queue profile for EDI_IN_A and XML_OUT_A. Table 3
below defines the properties of each queue used in EDI-to-XML translation.

Table 2: MQSeries Queue profiles for XML_IN_A and EDI_OU_A

XML_IN_A EDI_OU_A

Queue Profile ID XML_IN_A EDI_OU_A

Full Queue Name XML_IN_A EDI_OUT_A

Queue Manager Name WDI32_QM WDI32_QM

Destructive Reads Checked Checked

Syncpoint Control Checked Checked

Table 3: MQSeries Queue profiles for EDI_IN_A and XML_OU_A

EDI_IN_A XML_OU_A

Queue Profile ID EDI_IN_A XML_OU_A

Full Queue Name EDI_IN_A XML_OUT_A

Queue Manager Name WDI32_QM WDI32_QM

Destructive Reads Checked Checked

Syncpoint Control Checked Checked
86 WebSphere Business Integration Connect 4.2.1 Integration Overview

Configure Network Profiles

For this scenario, you would create and configure a Network Profile that
communicates with the WebSphere MQ queues created earlier. You would:

1. Create a new Network Profile called WBIC_IN. This network profile is used
in the XML-to-EDI scenario. The actual parameters specified for WBIC are
listed in Table 4 below:

2. Create a second Network Profile called WBIC_OUT. This network profile is
used in the translation of EDI received from WebSphere Business Integration
Connect Enterprise Edition. A second Network Profile is required, because
WebSphere Business Integration Connect Enterprise Edition places messages
on the WebSphere MQ queues that include RFH2 headers. The properties of
WBIC_OUT are listed in Table 5 below:

Table 4: Network Profile for WBIC_IN

Network ID WBIC_IN

Communication Routine VANIMQ

Network Program EDIMQSR

Network Parameters SENDMQ=EDI_OU_A RECEIVEMQ=XML_IN_A

Table 5: Network Profile for WBIC_OUT

Network ID WBIC_OUT

Communication Routine VANIMQ

Network Program EDIRFH2

Network Parameters SENDMQ=XML_OU_A RECEIVEMQ=EDI_IN_A
Chapter 3. 87

Configure Mailbox Profiles

You create mailbox profiles for each of the WebSphere MQ queues, to identify the
individuals and groups in the organization. You would:

1. Create a Mailbox Profile for each WebSphere MQ queue used. The actual
parameters used in each of the Mailbox Profiles are shown in Table 6:

2. Create a second pair of mailboxes. The properties for each are shown in Table
7 below:

Configure Service Profile

You use the Service Profile to be able to enter a utility command and define all the
files that will be used during execution of that command. For the sample scenario,
you would:

1. Create a new Service Profile for XML_IN_A. The properties to be defined
under the General tab are as follows:

• Continue Command Chaining: On Success

• PERFORM Command:
PERFORM TRANSFORM WHERE INFILE(XML_IN_A) SYNTAX(X)
OUTTYPE(MQ)OUTFILE(EDI_OU_A)

Common Files properties are defined in Table 8:

Table 6: Mailbox Profiles for XML_IN_A and EDI_OU_A

XML_IN_A EDI_OU_A

Mailbox ID XML_IN_A EDI_OU_A

Network ID WBIC_IN WBIC_IN

Receive File XML_IN_A EDI_OU_A

Table 7: Mailbox Profiles for EDI_IN_A and XML_OU_A

EDI_IN_A XML_OU_A

Mailbox ID EDI_IN_A XML_OU_A

Network ID WBIC_OUT WBIC_OUT

Receive File EDI_IN_A XML_OU_A

Table 8: Common Files for XML_IN_A

Tracking File ..\trk\xml_in.trk

Exception File ..\xex\xml_in.xex

Work File ..\wrk\xml_in.wrk

Report File ..\rpt\xml_in.rpt

Query File ..\qry\xml_in.qry
88 WebSphere Business Integration Connect 4.2.1 Integration Overview

2. Enter the following in the Output Files tab:

• Name in Command: EDI_OU_A

• System File Name: ..\edi\edi_out.txt

Note: EDI_OU_A is used rather than EDI_OUT _A because of character
length restrictions.

3. Create a second Service Profile for EDI_IN_A. The properties to be defined
under the General tab are as follows:

• Continue Command Chaining: On Success

• PERFORM Command:
PERFORM TRANSFORM WHERE INFILE(EDI_IN_A) SYNTAX(E)
OUTTYPE(MQ) OUTFILE(XML_OU_A)

The Common Files properties are as shown in Table 9:

4. Enter the following details under the Output Files tab:

• Name in Command: XML_OU_A

• System File Name: ..\xml\xml_out.txt

Note: XML_OU_A is used rather than XML_OUT _A because of character
length restrictions. This restriction was eliminated with CSD10 of the
WebSphere Interchange Server.

Import and compile data transformation maps

After you create the profiles, as described in the previous sections, you can import
any maps you need to transform your data. You then compile the transformation
maps and set a rule for each.

You use the WebSphere Data Interchange Client to perform these tasks. See the
WebSphere Data Interchange documentation for information.

Table 9: Common files for EDI_IN_A

Tracking File ..\trk\edi_in.trk

Exception File ..\xex\edi_in.xex

Work File ..\wrk\edi_in.wrk

Report File ..\rpt\edi_in.rpt

Query File ..\qry\edi_in.qry
Chapter 3. 89

Set up the JMS environment

As mentioned earlier in this chapter, WebSphere Business Integration Connect
Enterprise Edition uses the WebSphere MQ implementation of the Java Message
Service for integration with WebSphere Data Interchange. This section outlines the
steps involved in creating a JMS environment on Machine B.

WebSphere MQ classes for Java and WebSphere MQ classes for Java Message
Service (JMS) are built in to WebSphere MQ for Windows V5.3.

Configure JMSAdmin

Use the JMSAdmin tool available in WebSphere MQ V5.3 to create the JMS objects
in JNDI.

The JMSAdmin tool by default uses a configuration file called JMSAdmin.config
that resides in the bin directory of WebSphere MQ Java (/opt/mqm/java/bin).

1. To use a file-based JNDI provider, you would make sure the
JMSAdmin.config file contains the lines shown below:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
PROVIDER_URL=file:/opt/mqm/java/JNDI

2. Create the JNDI directory under /opt/mqm/java if it doesn't exist already.

Note: It is possible to use LDAP or WebSphere Application Server as a JNDI
provider too.

Before invoking the JMSAdmin tool, you would ensure your CLASSPATH
contains the following entries:

/opt/mqm/java/lib/jms.jar
/opt/mqm/java/lib/com.ibm.mq.jar
/opt/mqm/java/lib/com.ibm.mqjms.jar
/opt/mqm/java/lib/jta.jar
/opt/mqm/java/lib/connector.jar
/opt/mqm/java/lib/jndi.jar
/opt/mqm/java/lib/providerutil.jar
/opt/mqm/java/lib/fscontext.jar

Note: The above entries, which relate to Linux, assume you are using file-based
JNDI.
90 WebSphere Business Integration Connect 4.2.1 Integration Overview

Creating the JMS objects

To create the required JMS objects, you use the JMSAdmin tool. For the sample
scenario, you would:

1. Define a new context :

DEF CTX(WdiJms)

2. Change to the new context:

CHG CTX(WdiJms)

3. Define a queue connecton factory:

DEF QCF(WBIC42_QM_QCF)TRAN(CLIENT)HOST(IP_MACHINE_B)
PORT(9999)CHAN(java.channel)QMANAGER(WBIC42_QM)

4. Define the EDI_IN_B queue:

DEF Q(EDI_IN_B)QMANAGER(WBIC42_QM)QUEUE(EDI_IN_B)

5. Define the EDI_OUT_B queue:

DEF Q(EDI_OUT_B)QMANAGER(WBIC42_QM)QUEUE(EDI_OUT_B)

6. End the JMSAdmin session

END
Chapter 3. 91

Configure Business Integration Connect

WebSphere Business Integration Connect is the communication layer between
disparate Community Participants and internal processes. When setting up
Business Integration Connect to work with EDI documents, you can configure it to:

• Send and receive EDI to and from WebSphere Data Interchange

• Communicate EDI transactions with external trading partners using AS2

Overview

The Administrator Guide provides complete information on configuring
WebSphere Business Integration Connect Enterprise and Advanced editions. The
following overview summarizes the steps you take to configure Business
Integration Connect. “Example of configuring Business Integration Connect
Enterprise Edition” on page 94 provides an example of a setup for the sample
scenario described throughout this chapter.

To configure Business Integration Connect, you set up:

1. Participants

A participant profile identifies companies to the system. You create
participants in the WebSphere Business Integration Connect Enterprise
Edition Community Console.

2. B2B Capabilities

You define the B2B capabilities for each participant in WebSphere Business
Integration Connect Enterprise Edition through the Community Console.
After you define the B2B capabilities for participants, you can define a valid
Document Flow Definition used to support specific business collaboration
types between the participants.

3. Gateways

A gateway in Business Integration Connect defines a network point that acts
as the entrance to another network. The gateway contains the information
that tells WebSphere Business Integration Connect how to deliver documents
to the Enterprise Application Integration (EAI) layer.

4. Document Flow Definitions

A Document Flow Definition is a collection of “meta-information” that
defines the document processing capabilities of the Participant. For the
system to process a business document, two or more Document Flow
Definitions must be linked to create an interaction.
92 WebSphere Business Integration Connect 4.2.1 Integration Overview

5. Participant Connections

Participant connections are the mechanism that enables the system to process
and route documents between the Community Manager and its various
Participants. Connections contain the information necessary for the proper
exchange of each document flow.

6. Targets

The Target List screen provides location information that enables the
Document Manager to fetch documents from the appropriate system location
based on the transport type of the incoming document.

You can create separate target configurations based on transport type. The
Document Manager can then poll the document repository locations of
multiple Web, FTP, and POP mail servers--including internal directories and
JMS queues--for incoming documents.

After the Document Manage retrieves a document from the location based on
a pre-defined target, the routing infrastructure can process the document
based on channel configuration.

The remainder of this chapter provides you with the steps for configuring Business
Integration Connect for the sample scenario. It also provides you with the steps
you would use to configure the Community Participant’s environment (in this
case, a WebSphere Business Integration Connect - Express system).
Chapter 3. 93

Example of configuring Business Integration Connect
Enterprise Edition

This section provides you with an example of configuring the WebSphere Business
Integration Connect Enterprise Edition that is described in the sample scenario.

Create a Participant for Partner One

You would first create a participant profile to represent Machine A and Machine
B, which are the two systems owned by Partner One.

To create a new participant profile, you would:

1. Open the WebSphere Business Integration Connect Community Console.

2. Log in as the Hub Operator.

3. Verify that Profiles is already selected from the Account Admin menu.

4. Click Create and enter the details as listed in Table 10 below:

Note: To create the Business ID Type and Business ID Identifier, you first
click on the New button below Business ID. The Business ID must be unique.
Similarly, to create details relating to the IP Address, you click on the New
button below the IP Address header.

IP_MACHINE_A refers to the internet protocol (IP) address of Machine A.

5. Click Save.

The Business ID Identifier as defined above is used by WebSphere Business
Integration Connect Enterprise Edition as a means of identifying the sender or
receiver of a document. When an ANSI X12 EDI transaction is received, the
Interchange Sender and Receiver data is read to determine the source and target of
the transaction.

Table 10: Partner One's properties

Participant Login Name partnerOne

Participant Name Partner One

Participant Type Community Manager

Status Enabled

Vendor Type Other

Web Site http://IP_MACHINE_A

Business ID Type Freeform

Business ID Identifier 123456789

IP Address Gateway Type Production

IP Address IP_MACHINE_A
94 WebSphere Business Integration Connect 4.2.1 Integration Overview

You would need to make a note of the Administrator’s Password. When you
logged on to the Community Console as Partner One, you would be asked to enter
the password and then to change it.

Create a participant for Partner Two

You would next create a Community Participant to represent partnerTwo. To
create the participant, you would:

1. Click Account Admin on the main menu and Profiles on the horizontal
navigation bar.

2. Click Create.

3. Enter the values listed in table Table 11 below:

Note: IP_MACHINE_C refers to the IP address of Machine C.

4. Click Save.

Again, you would make a note of the Administrator’s Password, which would be
required when you logged on to the Community Console as Partner Two.

Set the B2B capabilities for Partner One

To define the B2B Capabilities for Partner One, you would:

1. Click Account Admin on the main menu and Profiles on the horizontal
navigation bar.

2. Click Search to reveal a list of all participants defined in the system.

3. Click the icon next to Partner One, and then click B2B Capabilities.

B2B Capabilities are set to active by clicking on the icon. For the purposes of
this sample, only the B2B Capabilities required to implement the scenario will be
configured.

Table 11: Partner Two's properties

Participant Login Name partnerTwo

Participant Name Partner Two

Participant Type Community Participant

Status Enabled

Vendor Type Other

Web Site http://IP_MACHINE_C

Business ID Type Freeform

Business ID Identifier 987654321

IP Address Gateway Type Production

IP Address IP_MACHINE_C
Chapter 3. 95

To set the source and target packaging for Partner One to None, you would:

1. Click the icon underneath Set Source for Package: None to enable it.
Repeat this step for Set Target.

2. Click the icon to drill down.

3. Click the icon for Protocol: EDI-X12 (ALL) for both source and target.

4. Click .

5. Click the icon for Document Flow: All for both source and target.

Set the B2B capabilities for Partner Two

To define the B2B capabilities for Partner Two, you would

1. Click Account Admin on the main menu and Profiles on the horizontal
navigation bar.

2. Click Search to reveal a list of all participants defined in the system.

3. Click the icon next to Partner Two, and then click B2B Capabilities.

To set the source and target packaging for Partner Two to AS, you would:

1. Click the icon underneath Set Source for Package: AS to enable it.
Repeat this step for Set Target.

2. Click the icon to drill down.

3. Click the icon for Protocol: EDI-X12 (ALL) for both source and target.

4. Click .

5. Click the icon for Document Flow: All for both source and target.

Next, you would update the AS definition for Partner Two, to ensure that Message
Disposition Notifications (MDNs) for AS2 sent to Partner Two are returned to the
correct address. You would:

1. Click on the Edit icon ().

2. Enter an AS MDN E-mail address.

This is the address used to receive MDNs for AS1.

3. Enter an AS MDN HTTP URL:

http://IP_MACHINE_B:PORT/bcgreceiver/submit

Note that the URL defined for AS2 uses the same parameters that will be
defined for the AS2 Target later in this chapter.
96 WebSphere Business Integration Connect 4.2.1 Integration Overview

Create a Gateway for Partner One

Partner Two sends EDI to Partner One using AS2. Partner One's gateway is used
to send the EDI received via AS2 to a JMS queue and ultimately to WebSphere Data
Interchange for translation.

To create a new gateway for Partner One, you would:

1. Click Account Admin from the main menu and Profiles from the horizontal
navigation bar.

2. Click Search.

3. Select Partner One by clicking the icon, and then select Gateways.

4. Click Create to create a new gateway for Partner One.

5. Enter the values for this new gateway are shown in Table 12 below:

6. Click Save.

To make JMStoPartnerOne the default gateway for Partner One, you would:

1. Click View Default Gateways.

2. From the Production list, select JMS2toPartnerOne.

3. Click Save.

Note: A JMS Gateway can be defined only for the Community Manager (Partner
One, in the sample scenario).

Table 12: JMS Gateway properties for Partner One

Gateway Name JMStoPartnerOne

Transport JMS

Target URI file:///opt/mqm/java/JNDI/WdiJms

JMS Factory Name WBIC42_QM_QCF

JMS Message Class TextMessage

JMS Message Type TextMessage

JMS Queue Name EDI_OUT_B

JMS JNDI Factory Name com.sun.jndi.fscontext.RefFSContextFactory
Chapter 3. 97

Create a Gateway for Partner Two

Partner One sends EDI to WebSphere Business Integration Connect Enterprise
Edition over a JMS queue. Partner Two's gateway is used to send the received EDI
to Partner Two via AS2.

To create a new gateway for Partner Two, you would:

1. Click Account Admin from the main menu and Profiles from the horizontal
navigation bar.

2. Click Search.

3. Select Partner Two by clicking the icon, and then select Gateways.

4. Click Create to create a new gateway for Partner Two.

5. Enter the values for this gateway as shown in Table 13:

6. Click Save.

Note: The User Name and Password as entered above refer to the Inbound
Participant Mapping Method for HTTP as defined in WebSphere Business
Integration Connect - Express.

An example of setting these properties in WebSphere Business Integration
Connect - Express in shown in “Example of configuring WebSphere Business
Integration Connect - Express” on page 102.

Notice that AS2toPartnerTwo is displayed as Online with a Status of
Enabled.

To make AS2toPartnerTwo the default gateway for PartnerTwo, you would:

1. Click View Default Gateways.

2. From the Production list, select AS2toPartnerTwo.

3. Click Save.

Table 13: Properties for Partner Two Gateway

Gateway Name AS2toPartnerTwo

Transport HTTP/1.1

Target URI http://IP_MACHINE_C/input/AS2

User Name partnerOne

Password partnerOne
98 WebSphere Business Integration Connect 4.2.1 Integration Overview

Configure a Document Flow Definition and Interaction

To create a Document Flow Definition and Valid Interaction between Partner One
and Partner Two, you would:

1. Click Hub Admin from the main menu and Document Flow Definition
from the horizontal navigation bar.

2. Click Manage Interactions and then Create a Valid Interaction.

3. From the Source column, select:

a. Package: None

b. Protocol: EDI-X12

c. Document Flow: All

4. From the Target column, select:

a. Package: AS

b. Protocol: EDI-X12

c. Document Flow: ALL

5. Set the Action as Pass Through.

6. Click Save.

7. Click Create a Valid Interaction again.

8. From the Source column, select:

a. Package: AS

b. Protocol: EDI-X12

c. Document Flow: ALL

9. From the Target column select:

a. Package: None

b. Protocol: EDI-X12

c. Document Flow: All

10. Set the Action as Pass Through.

11. Click Save.
Chapter 3. 99

Create Participant Connections

To create a participant connection between Partner One and Partner Two, you
would:

1. Click Account Admin from the main menu and Participant Connections
from the horizontal navigation bar.

2. From the Source list, select Partner One.

3. From the Target list, select Partner Two.

4. Click Search.

5. Activate the Participant Connection that's displayed below by clicking on the
Activate button. This should display the following B2B Capabilities:

To create a participant connection where Partner Two is the source and Partner
One is the target, you would:

1. Click Account Admin from the main menu and Participant Connections
from the horizontal navigation bar.

2. From the Source list, select Partner Two.

3. From the Target list, select Partner One.

4. Click Search.

5. Activate the connection with the following details:

Table 14: Activate participant connection

Source Target

Package None (N/A) AS (N/A)

Protocol EDI-X12 (ALL) EDI-X12 (ALL)

Document Flow ALL (ALL) ALL (ALL)

Table 15: Activate participant connection

Source Target

Package AS (N/A) None (N/A)

Protocol EDI-X12 (ALL) EDI-X12 (ALL)

Document Flow ALL (ALL) ALL (ALL)
100 WebSphere Business Integration Connect 4.2.1 Integration Overview

Create and configure targets

To receive an EDI transaction from WebSphere Data Interchange, you would
create a new JMS target by doing the following:

1. Click Hub Admin from the top-level menu.

2. Click Targets from the second-level menu, and then click Create.

3. Assign the properties from Table 16 below:

A second target is required for the receipt of EDI from Partner Two via AS2. You
would:

1. Click Hub Admin from the top level menu.

2. Click Targets from the second level menu, and then click Create.

3. Assign the properties from Table 17 below:

Note: The URI for receipt of HTTP/S must always begin with /bcgreceiver

4. Click Save.

This completes the steps for configuring Business Integration Connect Enterprise
Edition for the sample scenario. In the next section, you will see the steps for
configuring the Community Participant (in this case, WebSphere Business
Integration Connect - Express) for the sample scenario.

Table 16: WdiJmsListener

Target Name WdiJmsListener

Transport JMS

Gateway Type Production

JMS Provider URL file:///opt/mqm/java/JNDI/WdiJms

JMS Queue Name EDI_IN_B

JMS Factory Name WBIC42_QM_QCF

JNDI Factory Name com.sun.jndi.fscontext.RefFSContextFactory

Table 17: Target properties for receipt of AS2

Target Name WbicAS2Listener

Transport HTTP/S

Gateway Type Production

URI /bcgreceiver/submit
Chapter 3. 101

Example of configuring WebSphere Business Integration
Connect - Express

In the sample scenario presented in this chapter, partnerTwo is using WebSphere
Business Integration Connect - Express to send and receive EDI using HTTP AS2.

To successfully receive EDI via HTTP AS2, you would first create a profile for
Partner Two in WebSphere Business Integration Connect - Express.

Configure My Profile

To create a profile for Partner Two, you would:

1. Click on Configuration from the main menu.

2. Click My Profile from the horizontal navigation bar.

3. Enter the details as outlined in Table 18 below:

Note: IP_MACHINE_C is the internet protocol (IP) address of the machine
on which WebSphere Business Integration Connect - Express is running, and
port 80 is the port assigned for use by WebSphere Business Integration
Connect - Express during installation.

4. Click Save.

Create and configure a Participant for Partner One.

Partner One must be identified as a participant to WebSphere Business Integration
Connect - Express. To create Partner One as a participant, you would:

1. Click Configuration from the main menu.

2. Click Participants from the horizontal navigation bar.

3. Click the Create Participants button.

4. Assign the following values:

a. Participant Name: partnerOne

b. AS2 Participant ID: 123456789

5. Click Save.

From the Manage Participants view, you can see the details for partnerOne.

Table 18: My Profile

Receipt Address Unsecure Domain IP_MACHINE_C

Receipt Address Unsecure Port 80

AS2 Sender ID 987654321

Business ID Type DUNS

Business Identifier 987654321
102 WebSphere Business Integration Connect 4.2.1 Integration Overview

Next, you would configure partnerOne for AS2 and HTTP. This identifies the
parameters required by WebSphere Business Integration Connect - Express for
both sending and receiving HTTP and AS2 to partnerOne.

To configure partnerOne for HTTP and AS2, you would:

1. Click Configuration from the main menu.

2. Click AS2 from the horizontal navigation bar.

3. Select partnerOne from the Selected Participant list and click Edit.

4. Define the Outbound Destination Address of partnerOne as:

http://IP_MACHINE_B:7080/bcgreceiver/submit

Where IP_MACHINE_B is the IP address of Machine B.

5. Click Save.

6. Click HTTP from the horizontal navigation bar. (partnerOne should still be
displayed as the Selected Participant.)

7. Click Edit.

8. Set the Inbound User Name and Password:

User Name: partnerOne

Password: partnerOne

Remember these were referenced earlier in the sample step of creating the
default gateway for Partner Two in WebSphere Business Integration Connect
Enterprise Edition on Machine B.

9. Set the Outbound Destination Address to:

http://IP_MACHINE_B:7080/bcgreceiver/submit

10. Click Save.

Note: After making these changes in WebSphere Business Integration Connect -
Express, log out of the console and stop the gateway. Restart the gateway and
console for all changes to take effect.
Chapter 3. 103

Summary
This chapter described the process by which Business Integration Connect
interacts with WebSphere Data Interchange. It also provided you with procedures
to set up the sample scenario described in “Sample scenario used in this chapter”
on page 79.

As mentioned at the beginning of this chapter, you can follow the Integrating
WebSphere Data Interchange V3.2 with WebSphere Business Integration Connect V4.2
tutorial to actually create a sample configuration. The tutorial provides sample
scripts and maps to help you configure the environment and then shows you how
to test a sample exchange. To access the tutorial, go to:

 www.ibm.com/developerworks/websphere/

and search on the title of the tutorial.
104 WebSphere Business Integration Connect 4.2.1 Integration Overview

Chapter 4. Routing EDI documents

This section describes the process by which Business Integration Connect determines the
routing information for EDI documents it sends and receives. It describes:

• The general flow of this processing (see “Overview of EDI routing”)

• Additional processing required when AS packaging has been specified (see “Special
considerations for AS packaging ” on page 107)

You can find additional information on how file-based integration can be used when
routing EDI documents in “File System protocol for Enterprise and Advanced editions” on
page 12.

Overview of EDI routing

An EDI document contains information, within the document, about the sender and the
recipient of the document. Business Integration Connect uses this information when it
routes the EDI document. The general flow is as follows:

1. Business Integration Connect determines the protocol used by examining the first
three characters of the document. The following table shows the document-type
protocol associated with each code.

EDI codes and associated document types and protocols

Code Document Type
Document Type

Protocol
Outbound as Content

Type:

ISA X12 EDI-X12 application/EDI-X12

GS X12 EDI-X12 application/EDI-X12

UNB Edifact EDI-EDIFACT application/EDIFACT

UNA Edifact EDI-EDIFACT application/EDIFACT

ICS ICS EDI-X12 application/EDI-X12

STX UNTDI EDI-Consent application/edi-consent

BG UCS EDI-Consent application/edi-consent
© Copyright IBM Corp. 2003, 2004 105

2. Business Integration Connect extracts, from the EDI document, the sender
information, based on the element and position for that particular document
type, as described in the following table:

3. Business Integration Connect determines the sender ID from the sender ID
and qualifier of the EDI document.
Note that some EDI envelopes (for example, GS) do not have the notion of
qualifiers. In this case, Business Integration Connect uses only the ID.

4. Business Integration Connect concatenates the qualifier and ID with a dash
(-) character to look up the sender ID from the Business Integration Connect
profile repository. For example, if, in the EDI message for the sender, the
qualifier is AB and the identifier is 1234567, Business Integration Connect
expects to find a community participant with an identifier of AB-1234567 in
the profile repository. If Business Integration Connect cannot find this ID, the
EDI document is not routed.

5. To look up the receiving partner, Business Integration Connect determines
the receiver qualifier and ID from the EDI message.

6. Business Integration Connect concatenates the qualifier and ID with a dash
 (-) character to look up the receiver ID in the profile repository.

7. Business Integration Connect routes the document to the intended recipient.

EDI codes and the location of the sender and receiver information

Code From Qualifier From ID To Qualifier To ID

ISA Element 105 at
position 5

Element 107 at
position 6

Element 105 at
position 7

Element 106 at
position 8

GS N/A Element 142 at
position 2 N/A Element 124 at

position 3

UNB

UNA

Sub-element 0007
at position 2 of
composite element
S002 at position 20
(2nd composite) of
the UNB segment

Sub-element 0004 at
position 2 of
composite element
S002 at position 20
(2nd composite) of
the UNB segment

Sub-element 0007
at position 2 of
composite
element S003 at
position 30 (3rd
composite) of the
UNB segment

Sub-element 0010
at position 1 of
composite element
S003 at position 30
(3rd composite) of
the UNB segment

ICS Element X05 at
position 4

Element X06 at
position 5

Element X05 at
position 6

Element X08 at
position 7

STX Element FROM1 at
position 3

Element FROM2 at
position 3

Element UNT1 at
position 4

Element UNT2 at
position 4

BG N/A Element BG03 at
position 3 N/A Element BG04 at

position 4

UCS N/A Element 142 at
position 3 N/A Element 124 at

position 4
106 WebSphere Business Integration Connect 4.2.1 Integration Overview

Special considerations for AS packaging

When the packaging of the document is specified as AS, Business Integration
Connect performs some additional processing.

Routing the inbound document

When an EDI document is received from a community participant:

1. Business Integration Connect first checks the AS1 or AS2 header information.
Specifically, it checks the sender and receiver information to determine
whether it matches IDs for valid community participants.

• For AS1, it uses the Subject header field, which is in the form
"<ToID>;<FromID>.

• For AS2, it uses the AS2-From and AS2-To header fields.

If the values in the header fields do not match valid IDs, Business Integration
Connect does not route the document.

2. Business Integration Connect then performs the steps described in
“Overview of EDI routing” on page 105.

Routing the outbound document

When an EDI document is received from a backend application, Business
Integration Connect determines whether an AS BusinessID attribute has been
specified for both the source packaging (None) and the target packaging (AS):

• If the AS BusinessId attribute has been specified, Business Integration
Connect uses this information to generate the From and To IDs in the AS1 or
AS2 header.

• If the attribute has not been specified, Business Integration Connect
determines the protocol of the document, extracts the sender and receiver
information and concatenates the result (as described in “Overview of EDI
routing” on page 105) and then populates the header information.

Setting both IDs in the participant profile

Because Business Integration Connect uses both the AS1 or AS2 header
information as well as the information derived from the EDI document, the IDs for
the same participant could be in different forms. For example, the AS header
information for the sender could be 123456789 while the information derived from
the EDI document could be AB-12345678.

Make sure that you have listed both IDs in the profile for the community
participant. Refer to the Administrator Guide for information.
Chapter 4. 107

108 WebSphere Business Integration Connect 4.2.1 Integration Overview

Notices and Trademarks

Notices

IBM may not offer the products, services, or features discussed in this document in all
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at
those Web sites are not part of the materials for this IBM product and use of those Web sites
is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:
© Copyright IBM Corp. 2003, 2004 109

IBM Burlingame Laboratory Director
IBM Burlingame Laboratory
577 Airport Blvd., Suite 800
Burlingame, CA 94010
U.S.A

Such information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it
are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurement may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific
environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has not
tested those products and cannot confirm the accuracy of performance, compatibility or
any other claims related to non-IBM products. Questions on the capabilities of non-IBM
products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples may include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for
the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for which
the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. You may copy, modify, and distribute these sample programs
in any form without payment to IBM for the purposes of developing, using, marketing, or
distributing application programs conforming to IBM's application programming
interfaces.
 110 WebSphere Business Integration Connect 4.2.1 Integration Overview

Programming interface information

Programming interface information is intended to help you create application software
using this program.

General-use programming interfaces allow you to write application software that obtain
the services of this program's tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help you
debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks of International Business Machines Corporation in the
United States, other countries, or both:

IBM
the IBM logo
CrossWorlds
DB2
DB2 Universal Database
MQSeries
Tivoli
WebSphere

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Intel and Xeon are trademarks or registered trademarks of Intel Corporation in the United
States, other countries, or both.

Solaris, Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product or service names may be trademarks or service marks of others.
 111

 112 WebSphere Business Integration Connect 4.2.1 Integration Overview

	About this book
	Who should read this book
	Related documents

	Chapter 1. Backend Integration
	Message transport protocols
	Supported transport protocols
	HTTP protocol
	Process
	Sending and receiving messages using the HTTP protocol

	File System protocol for Enterprise and Advanced editions
	Process
	Sending and receiving messages using the file system protocol

	JMS protocol
	Sending and receiving messages using the JMS protocol

	Setting up integration through the JMS transport protocol using WebSphere MQ 5.3
	Creating queues and channels
	Creating the JMS bindings file
	Creating the JMS target
	Creating the JMS gateway

	Message handling
	Queued delivery
	Communication error handling
	Duplicate messages

	Packaging
	None packaging
	Backend Integration packaging
	Transport level header content
	RosettaNet to transport level header fields
	AS2 to transport level header fields
	AS1 to transport level header fields
	Payload
	Attachments
	Schema for Backend Integration Packaging

	Example of Backend Integration packaging over HTTP

	Protocol-specific information
	Web Services (SOAP)
	cXML
	RosettaNet
	Event notification

	Chapter 2. Integrating with the WebSphere InterChange Server
	Planning for integration
	Which transport will you use?
	Which packaging will you use?
	Is the packaging available for the business protocol?
	What types of business objects are required for the packaging?

	Using the HTTP transport protocol
	Overview of sending documents to the WebSphere InterChange Server
	Setting up the environment for sending documents
	Step 1: Deploy the components
	Step 2: Create the properties file
	Step 3: Specify the location of the servlet log file
	Step 4: Edit the deployment descriptor
	Step 5: Specify the location of the Wrapper Data Handler
	Step 6: Create the child meta-object
	Step 7: Edit the MO_Server_DataHandler
	Step 8: Define the business objects

	Overview of sending documents to Business Integration Connect
	Setting up the environment for sending documents
	Step 1: Deploy the HTTP Protocol Handler
	Step 2: Specify the location of the HTTP Protocol Handler
	Step 3: Configure the Adapter for XML
	Step 4: Define the business objects

	Summary of supported platforms and versions

	Using Web Services
	Using the JMS transport protocol
	Overview of sending documents to the WebSphere InterChange Server
	Overview of sending documents to the Business Integration Connect
	Setting up the environment for sending and receiving documents
	Creating business objects

	Attachment Data Handler
	Overview
	Setting up the environment for the Attachment Data Handler
	Deploy the Attachment Data Handler
	Specify the location of the Attachment Data Handler

	Configuring the Attachment Data Handler
	Create the child meta-object
	Update the top-level data-handler meta-object

	Creating and modifying business objects
	Description of the business objects
	Steps for creating and modifying the business objects

	Converting messages to business objects
	Converting business objects to messages

	Chapter 3. Integrating with WebSphere Data Interchange
	Introduction
	Sending documents to WebSphere Data Interchange
	Sending documents to Business Integration Connect
	Sample scenario used in this chapter

	Configuring your environment for message exchange
	Configure WebSphere MQ communication
	Overview
	Example

	Configure WebSphere Data Interchange
	Overview of the profiles
	Example
	Import and compile data transformation maps

	Set up the JMS environment
	Configure JMSAdmin
	Creating the JMS objects

	Configure Business Integration Connect
	Overview
	Example of configuring Business Integration Connect Enterprise Edition
	Example of configuring WebSphere Business Integration Connect - Express

	Chapter 4. Routing EDI documents
	Overview of EDI routing
	Special considerations for AS packaging
	Routing the inbound document
	Routing the outbound document
	Setting both IDs in the participant profile

	Notices and Trademarks
	Notices
	Programming interface information

	Trademarks and service marks

