IBM WebSphere Business Integration Collaborations
for UCCnet Item Synchronization Version 4.3.2

Solution Development Guide

<|ll

Note!
Before using this information and the product it supports, be sure to read the general information under
[frademarks” on page 49

Seventh Edition (January 2004)

This edition applies to Version 4, Release 3, Modification 2 of the IBM WebSphere Business Integration Collaborations
for UCCnet Item Synchronization (5724-H62)

IBM welcomes your comments. You can send them to the following address:

IBM Canada Ltd. Laboratory
Information Development

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

Include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Solution development guide 1 Processing Message Disposition Notifications

Introduction . . 1 (MDNs) 22
Who should read the Solutlon development gulde 1 Retrieving workhsts frorn UCCnet R /A
How the Solution development guide is organized 1 Customizing the process32

Processing a business object: example workflows Sending information from collaboratlon ob]ects to

(DTD support) L. 4 UCCnet.33
ItemAdd workflow: addlng a new 1tern to UCCnet Receiving data for a collaboratlon ob]ect from
(DTD support).5 UCCnet. 33
ItemPublicationAdd workﬂow maklng a new Checking that item data ex1sts for f1e1ds requlred by
item available to trading partners and processing UCCnet. . . .
thelr responses . . .6 Usmg the PROCESSED GTIN table 34
ItemChange workflow: updatlng item information Using the audit_log table.36
in UCCnet (DTD support).8 Using the trading_partner table.37
ItemPublicationChange workflow: making Using subdiagrams. . . .38
updated item information available to trading AUTHORIZATION_ RESPONSES subdlagram -39
partners and processing their responses 10 CATEGORY_ADD_CHANGE subdiagram . . . 39
ItemDelist workflow: making an item CATALOGUE_ITEM_CONFIRMATION
permanently unavailable to trading partners subdiagram . . U
(DTD support)13 CIN_RESPONSE subdlagram .o . .40
ItemWithdrawal workflow maklng an 1tem DEAD_LETTER_PUB_RECEIPT subdlagram .. 40
temporarily unavailable to all or selected trading INITIAL_ITEM_LOAD_REQUEST subdiagram 40
partners (DTD Support) L. .14 ITEM_ADD_CHANGE subdiagram By |

Processing a business object: example workflows NEW_ITEM_PUBLICATION_REQUEST

(XSD support)15 subdiagram . . .4
ItemAdd workflow: addlng a new 1tem to PUBLICATION COMMAND RESPONSE
UCCnet (XSD support)15 subdiagram . . e A2
CatalogueltemNotification_ Add and RCIR_RESPONSE subdlagam . A
CatalogueltemPublication_Add workflows: RCIR_QUERY_RESPONSE subd1agram)
making a new item available to trading partners SIMPLE_RESPONSE subdiagram43
and processing their responses16 UNKNOWN_MESSAGES subdiagram43
ItemChange workflow: updating item UNKNOWN_RESPONSE subdiagram S i
information in UCCnet (schema support) . . . 18 Sending email R
CatalogueltemNotification_Change and Alerting email recipients of processmg errors . . 44
CatalogueltemPublication_Change workflow: Sending email through UCCnet_processWorklist
making updated item information available to collaboration object subdiagrams45
trading partners and processing their responses . 20 Logging4
ItemDelist workflow: making an item Tracing.47
permanently unavailable to trading partners
(schema support) . . .) Notices and Trademarks 49
ItemWithdrawal workflow: maklng an 1tem Notices.49
temporarily unavailable to all or selected trading Programming 1nterface 1nf0rmat10n50
partners (schema support)23 Trademarks and service marks51

Maps and data handlers25

© Copyright IBM Corp. 2002, 2004 iii

iV Solution Development Guide

Solution development guide

The Item Synchronization for Suppliers solution workflow is composed of business
objects, collaboration objects, connectors, and maps. These basic components work
together to enable supply-side trading partners to automatically add items to,
update or delist items within, or withdraw items from UCCnet® when item
updates are made in their Enterprise Resource Planning (ERP) applications. When
an update is made in a supplier’s ERP system, item data is automatically validated,
reformatted, and sent to the UCCnet standard registry. Suppliers can also
communicate new or updated item information to subscribing trading partners via
UCCnet. Thus, enterprise data is synchronized with item data sent outside the
enterprise.

Introduction

Who should read the Solution development guide

The Solution development guide describes the internal processing of the Item
Synchronization for Suppliers solution. It is intended for programmers who design
and implement workflows using the solution and who might participate in
designing customizations to this solution. It assumes that users are experienced
programmers and that they understand the following concepts and have
experience with the software associated with them:

* Developing collaboration objects, business objects, maps, and other related
components.

* Installing, configuring, and operating the Item Synchronization for Suppliers
solution.

Programmers must also have experience with the operating systems on which their
implementations are installed.

How the Solution development guide is organized

The Solution development guide introduces the mechanics of the Item
Synchronization for Suppliers solution by first presenting sample, high-level,
step-by-step workflows of how the solution handles the following scenarios:

For DTD support:

ItemAdd
Described in the section [“ItemAdd workflow: adding a new item tof
[UCCnet (DTD support)” on page 5]

ItemPublicationAdd

Described in the section [‘ItemPublicationAdd workflow: making a new|
item available to trading partners and processing their responses” on page|
6| (ItemAdd and ItemPublicationAdd workflows normally occur
sequentially.)

ItemChange
Described in the section [‘ItemChange workflow: updating item|
linformation in UCCnet (DTD support)” on page 8

ItemPublicationChange
Described in the section “ItemPublicationChange workflow: making

© Copyright IBM Corp. 2002, 2004 1

2

updated item information available to trading partners and processing
their responses” on page 10, (ItemChange and ItemPublicationChange
workflows normally occur sequentially.)

ItemDelist
Described in the section [‘ItemDelist workflow: making an item|
lpermanently unavailable to trading partners (DTD support)” on page 13/

ItemWithdrawal
Described in the section [‘TtemWithdrawal workflow: making an item|
temporarily unavailable to all or selected trading partners (DTD support)’]

on page 14|

For XSD support:

ItemAdd
Described in the section [‘TtemAdd workflow: adding a new item to|
[UCCnet (XSD support)” on page 15)

CatalogueltemNotification_Add
Used only if UCCnet is not used as the data pool as described in the
section [“CatalogueltemNotification_ Add and|
CatalogueltemPublication_ Add workflows: making a new item available to|
trading partners and processing their responses” on page 16.](ItemAdd and
CatalogueltemNotification_Add workflows normally occur sequentially.)

CatalogueltemPublication_Add

Used only if UCCnet is used as the data pool as described in the section
‘CatalogueltemNotification_Add and CatalogueltemPublication_Add|
workflows: making a new item available to trading partners and|
processing their responses” on page 16| (ItemAdd and
CatalogueltemPublication_Add workflows normally occur sequentially.)

ItemChange
Described in the section [‘ItemChange workflow: updating item|
finformation in UCCnet (schema support)” on page 18]

CatalogueltemNotification_Change
Used only if UCCnet is not used as the data pool as described in the
section [“CatalogueltemNotification_Change and|
CatalogueltemPublication_Change workflow: making updated item|
information available to trading partners and processing their responses”’]
on page 20] (ItemAdd and CatalogueltemNotification_Add workflows
normally occur sequentially.)

CatalogueltemPublication_Change
Used only if UCCnet is used as the data pool as described in the
section”CatalogueltemNotification Change and|
CatalogueltemPublication Change workflow: making updated item|
information available to trading partners and processing their responses’]
on page 20| (ItemAdd and CatalogueltemPublication_Add workflows
normally occur sequentially.)

ItemDelist
Described in the section [“ItemDelist workflow: making an item|
[permanently unavailable to trading partners (schema support)” on page 22)

Solution Development Guide

ItemWithdrawal

Described in the section [‘TtemWithdrawal workflow: making an item|
temporarily unavailable to all or selected trading partners (schemal
support)” on page 23.|

Many steps contain links to detailed conceptual information about the mechanics
of the solution associated with those steps.

Other sections describe in detail how solution processing operates, as follows:

“Checking that item data exists for fields required by UCCnet” on page 34|
details how a UCCnet_ItemSync collaboration object ensures that the business
object to be passed to UCCnet contains data in all of the fields for which
UCCnet requires data.

+ [“Using the PROCESSED_GTIN table” on page 34| describes how the solution
populates and maintains data in the provided PROCESSED_GTIN relational
table, which permits a UCCnet_processWorklist collaboration object to process
incoming INITIAL_ITEM_LOAD_REQUEST commands without the need to
communicate with the back-end ERP system.

* [“Using the audit log table” on page 36| provides information on how the
solution populates and maintains data in the provided audit_log relational table,
used to track events associated with UCCnet activities to support complete
end-to-end accountability.

* [“Using the trading partner table” on page 37|identifies how the solution
maintains data in the provided trading_partner relational table, which maintains
the complete list of trading partners.

+ |“Retrieving worklists from UCCnet” on page 32| describes how the solution
obtains worklists from UCCnet.

* [“Using subdiagrams” on page 38| details the logic behind the subdiagrams
contained in a UCCnet_processWorklist collaboration object.

* [“Sending email” on page 44| describes how solution collaboration objects alert
email recipients of processing errors, and how subdiagrams within a
UCCnet_processWorklist collaboration object process email for different
processing circumstances.

¢ [“Logging” on page 47| describes the capabilities of various collaboration objects
to log errors.

* [“Tracing” on page 47|outlines how problems that might occur in the solution
workflow can be traced and identified.

Planning the configuration

Before you install and configure the Item Synchronization for Suppliers solution,
you must determine how you will connect to UCCnet and what message format
and protocols you will use.

Connectors:

The way you connect to UCCnet determines the connector that you use to
communicate with it. If you exchange messages with UCCnet using an
AS2/EDIINT interface protocol, you can use a TPIConnector, an ISoftConnector, or
you can use WebSphere Business Integration Connect in conjunction with a
JMSConnector. Use the TPI connector if you communicate with UCCnet through
Trading Partner Interchange servers. Use the ISoftConnector if you communicate
with UCCnet through an iSoft Peer-to-Peer Agent. Use the JMS connector if you
communicate with UCCnet through WebSphere Business Integration Connect. If
you exchange messages through the UCCnet Command Line Utility (CLU) or are

Solution development guide 3

testing your installation, you can use either a JTextTPIConnector,
JTextISoftConnector, or JTextfMSConnector.

Since the actual connector you use is dependent on your set up, this
documentation uses “AS2 channel connector” as a general term for any of the
TPIConnector, ISoftConnector, JMSConnector, JTextTPIConnector,
JTextISoftConnector, and JTextfMSConnector.

Messages:

Messages are exchanged with UCCnet in Extensible Markup Language (XML)
documents. The XML document format and the protocol that you select for
communication with UCCnet significantly impact the way that you set up your
solution. The following options are available:
DTD message format
The format of the XML documents exchanged with UCCnet is defined by a
Document Type Definition (DTD). The DTD mode of operation has one
protocol available.
Schema message format
The format of the XML documents exchanged by UCCnet is defined by an
XML Schema Definition (XSD). The XSD mode of operation has two
command protocols available:
CIN operation
The supplier implements its own subscriber data pool.
Catalogue_Item_Notification (CIN) messages are sent from the
supplier directly to trading partners subscribed to the product
categories.
CIP operation
The supplier uses UCCnet as the subscriber data pool.
Catalogue_Item (CI) messages containing additional item
information that is not included in the UCCnet registry data are
sent from the supplier to UCCnet. Catalogue_Item_Publication
messages are then sent to UCCnet to identify the subscribers to
whom UCCnet needs to send CIN messages.

Processing a business object: example workflows (DTD support)

4

The information in the following sections outlines at a high level how the Item
Synchronization for Suppliers solution handles the workflows that support the
DTD-based implementations.

Refer to the Installation guide for detailed information on creating port connections
between collaboration objects and between collaboration objects and connectors.

UCCnet_ItemSync, UCCnet_requestWorklist, UCCnet_processWorklist, and
Notify_by_eMail collaboration objects log error messages if they encounter error
situations during any stage of processing. See the section [“Logging” on page 47] for
detailed information. Tracing can also be enabled for all collaboration objects to
record logical flows and data processed. See the section [“Tracing” on page 47] for
detailed information.

As information moves between collaboration objects, connectors, UCCnet, and
other part of the workflow, its format changes. Sometimes, the information will
exist as an XML message, sometimes it will be contained in a business object. The
conversion from one format to another is usually carried out by maps, which you
configure during installation.

Solution Development Guide

The following workflow descriptions discuss the movement of information in
general terms. Details about how the information format changes as the
information passes between specific points in the workflow is available in the
section [‘Maps and data handlers” on page 25

ltemAdd workflow: adding a new item to UCCnet (DTD
support)

In the ItemAdd workflow, a new item is added to UCCnet. The source of the flow
is the creation of a new item in the source ERP application. This workflow does
not result in notifications being sent to subscribed demand-side trading partners.
Another workflow, detailed in the section [“ItemPublicationAdd workflow: making|
a new item available to trading partners and processing their responses” on page
6,/ accomplishes sending these notifications.

Notes:

1. Mapping of some attributes in the ItemAdd messages requires the use of value
translation tables. The IBM® WebSphere® InterChange Server implements these
tables as cross-reference relationships.

2. If you are using XSD support, refer to the documentation found in f’ItemAddl
[workflow: adding a new item to UCCnet (XSD support)” on page 15|

The following description shows how high-level components of the IBM
WebSphere Business Integration Collaboration for UCCnet Item Synchronization
perform the ItemAdd workflow:

1. A trigger from the ERP source provides the item (for example, an IDOC from
SAP) to the connector specific to that ERP. The connector then converts the
item into an application specific business object, passes it through a map to
convert it into an ItemBasic generic business object, and then passes the
ItemBasic business object to the UCCnet_ItemSync collaboration object with a
Create verb.

2. The UCCnet_ItemSync collaboration object accepts the object and checks the
required fields for information as detailed in the section [’Checking that item|
[data exists for fields required by UCCnet” on page 34/ If all required fields are
complete, the collaboration object continues processing it. Otherwise, the
collaboration object aborts the processing and sends an email, as detailed in
the section [“Alerting email recipients of processing errors” on page 44
Assume that all fields are complete.

3. The UCCnet_ItemSync collaboration object adds an entry for the new item to
the PROCESSED_GTIN table, setting the value for the withdrawn field for
this entry to N. See the section [“Using the PROCESSED_GTIN table” on page
for more information on the PROCESSED_GTIN table.

4. The UCCnet_ItemSync collaboration object adds an entry to the audit_log
table to record the ItemAdd transaction. See the section [“Using the audit_log|
[table” on page 36| for more information about the audit_log table.

5. The UCCnet_ItemSync collaboration objects sends the business object to
UCCnet by way of the AS2 channel connector, the AS2 channel server, and the
IBM WebSphere Business Integration Data Handler for XML. See |”Sendin§|
finformation from collaboration objects to UCCnet” on page 33 for more
details.

6. UCCnet generates and returns a Message Disposition Notification (MDN) to
indicate that it has successfully received the ItemAdd message. See
[“Processing Message Disposition Notifications (MDNs)” on page 32| for
details.

Solution development guide 5

6

7. UCCnet creates a worklist containing the notification response for a successful
Item Add.

8. The supplier sends a worklist request to UCCnet using the
JTextRWLConnector and the UCCnet_requestWorklist collaboration object. See
[‘Retrieving worklists from UCCnet” on page 32| for more information

9. UCCnet replies by sending the worklist containing the notification response
back to the AS2 channel server.

10. The AS2 channel server delivers the worklist to the AS2 channel connector
which transforms it into a UCCnetGBO_envelope business object and delivers
it to the UCCnet _processWorklist collaboration object. See [“Receiving data for|
la collaboration object from UCCnet” on page 33|for details.

11. The UCCnet_processWorklist collaboration object receives the worklist,
identifies it as an ItemAdd notification, and dispatches it to its
ITEM_ADD_CHANGE subdiagram.

As a result of the ItemAdd workflow, UCCnet has recorded the new item
information. Now, the supplier’s demand-side trading partners must be made
aware that the item is available. This ongoing workflow, referred to as the
ItemPublicationAdd workflow, is continued in the section [“ItemPublicationAdd|
workflow: making a new item available to trading partners and processing their|

responses.’ |

ItemPublicationAdd workflow: making a new item available to
trading partners and processing their responses

The information in this section describes how the high-level components of the
IBM WebSphere Business Integration Collaboration for UCCnet Item
Synchronization perform the ItemPublicationAdd workflow. In the
ItemPublicationAdd workflow, a new item that was passed to UCCnet through the
ItemAdd workflow (detailed in the section [“ItemAdd workflow: adding a new]
litem to UCCnet (DTD support)” on page 5) is made available to the supplier’s
demand-side trading partners. The responses to the new item are processed as
well. As a result, the ItemPublicationAdd workflow is described as two subflows:

1. The subflow that makes the new item available to the supplier’'s demand-side
trading partners, described in the section|“ItemPublicationAdd subflow 1:|
[making a new item available to trading partners.”|

2. The subflow that processes the demand-side trading partners” responses to the
new item, described in the section [‘ItemPublicationAdd subflow 2: processing]
[trading partners” responses to a new item” on page 7|

ltemPublicationAdd subflow 1: making a new item available to
trading partners

The following description shows how the ItemPublicationAdd workflow makes a
new item available to a supplier's demand-side trading partners. The source of the
flow is the arrival of a UCCnetGBO_envelope at the ITEM_ADD_CHANGE
subdiagram of the UCCnet_processWorklist collaboration object as a result of the
ItemAdd workflow.

1. The ITEM_ADD_CHANGE subdiagram configures the business object so that
the router map in the AS2 channel connector will select the correct
transformation map to convert the business object into an ItemPublicationAdd
request. See the section ['ITEM_ADD_CHANGE subdiagram” on page 41| for
more information on this subdiagram.

2. The subdiagram sends the business object to UCCnet by way of the AS2
channel connector, the AS2 channel server, and the IBM WebSphere Business

Solution Development Guide

Integration Data Handler for XML. See|“Sending information from|
[collaboration objects to UCCnet” on page 33| for more details.

3. UCCnet generates and returns a Message Disposition Notification (MDN) to
indicate that it has successfully received the ItemPublicationAdd message. See
[“Processing Message Disposition Notifications (MDNs)” on page 32| for details.

4. UCCnet creates a worklist containing the notification response for a successful
ItemPublicationAdd.

5. The supplier sends a worklist request to UCCnet using the JTextRWLConnector
and the UCCnet_requestWorklist collaboration object. See [‘Retrieving worklists|
[from UCCnet” on page 32| for more information

6. UCCnet replies by sending the worklist containing the notification response
back to the AS2 channel server.

7. The AS2 channel server delivers the worklist to the AS2 channel connector
which transforms it into a UCCnetGBO_envelope business object and delivers it
to the UCCnet_processWorklist collaboration object. See [“Receiving data for a|
[collaboration object from UCCnet” on page 33| for details.

8. The UCCnet_processWorklist collaboration object receives the worklist,
identifies it as a PUB_RELEASE_NEW_ITEM notification, and dispatches it to
its NEW_ITEM_PUBLICATION_REQUEST subdiagram.

As a result of this subflow of the ItemPublicationAdd workflow, a new item is
now available to a supplier’'s demand-side trading partners. The next subflow of
the ItemPublicationAdd workflow alerts them of the item’s existence and processes
their responses.

ItemPublicationAdd subflow 2: processing trading partners’
responses to a new item

At this point in processing, the first subflow of the ItemPublicationAdd workflow
has completed and a UCCnetGBO_envelope business object has arrived in the
NEW_ITEM_PUBLICATION_REQUEST subdiagram of the
UCCnet_processWorklist collaboration object.

The following describes how the ItemPublicationAdd workflow alerts demand-side
trading partners that a new item is available and processes their responses:

1. The NEW_ITEM_PUBLICATION_REQUEST subdiagram verifies that the
GTIN value associated with the item is in the PROCESSED_GTIN table and
that the item is not withdrawn. It then checks the trading_partner table to
verify that there are entries for the trading partner who supplies the new item,
and for the demand-side trading partners who will receive notification. See
the sections [“Using the PROCESSED_GTIN table” on page 34 and |“Using the]
[frading_partner table” on page 37 for more information on these tables

2. The subdiagram then configures the business object so that the router map in
the AS2 channel connector will select the correct transformation map to
convert the business object into an ItemPublicationAdd request.

3. It then sends the business object to UCCnet by way of the AS2 channel
connector, the AS2 channel server, and the IBM WebSphere Business
Integration Data Handler for XML, and logs the notification in the audit_log
table. See|“Sending information from collaboration objects to UCCnet” on|
[page 33|and ["Using the audit_log table” on page 36for more details.

4. UCCnet delivers the ItemPublicationAdd to the demand-side trading partners.
The trading partners can respond with any of the following responses:

Solution development guide 7

AUTHORIZE
The product information has been integrated into the demand-side
trading partner’s legacy environment and the demand-side user is
ready to begin trading.

PEND_PUBLICATION
The demand-side trading partner is unsure about the proper action to
take on the product. The product is being studied, but no action is
possible at this time.

REJECT_PUBLICATION
The demand-side trading partner has no interest in the product.

PRE_AUTHORIZATION
The demand-side trading partner wants to begin the process of
integrating the product into its legacy environment. For example, this
response can indicate that the supplier needs to contact the
demand-side user to begin the process of determining order quantities
and pricing.

DE_AUTHORIZATION

The demand-side trading partner has removed the product from the
assortment and wants no further updates sent for the product.

Note: For this example, assume that the demand-side trading partner
responds with an AUTHORIZE response.

5. UCCnet performs a compliance check on the data.

6. If all the data exists in the appropriate formats, then UCCnet creates a
worklist for the supplier containing the notification response from the
demand-side trading partner.

7. The supplier sends a worklist request to UCCnet using the
JTextRWLConnector and the UCCnet_requestWorklist collaboration object. See
[‘Retrieving worklists from UCCnet” on page 32| for more information

8. UCCnet replies by sending the worklist containing the notification response
back to the AS2 channel server.

9. The AS2 channel server delivers the worklist to the AS2 channel connector
which transforms it into a UCCnetGBO_envelope business object and delivers
it to the UCCnet_processWorklist collaboration object. See [“Receiving data for]
[a collaboration object from UCCnet” on page 33|for details.

10. The UCCnet_processWorklist collaboration object receives the worklist,
identifies it as an AUTHORIZE response, and dispatches it to its
AUTHORIZATION_RESPONSES subdiagram. See the section
[AUTHORIZATION_RESPONSES subdiagram” on page 39|for more
information on this subdiagram.

11. The AUTHORIZATION_RESPONSES subdiagram uses a Notify_by_eMail
collaboration object to send email to a predefined list of recipients. It then logs
the event in the audit_log table. See the sections
“AUTHORIZATION_RESPONSES subdiagram” on page 39)[‘Sending email|
through UCCnet_processWorklist collaboration object subdiagrams” on pa

45, and |“Using the audit_log table” on page 36 for more information.

ltemChange workflow: updating item information in UCCnet
(DTD support)

The ItemChange workflow sends updated information about an existing item to
UCCnet. The source of the flow is a change to the data of an existing item in the

8 Solution Development Guide

ERP source application. Issuing a change does not result in notifications being sent
to subscribed demand-side trading partners. Another workflow, detailed in the
section [“/ItemPublicationChange workflow: making updated item information|

fvailable to trading partners and processing their responses” on page 10,

accomplishes sending these notifications.

Notes:

1.

Mapping of some attributes in the ItemChange messages requires the use of
value translation tables. The IBM WebSphere InterChange Server implements
these tables as cross-reference relationships.

If you are using schema support, refer to the documentation found in

“TtemChange workflow: updating item information in UCCnet (schema]

support)” on page 18]

The following description shows how high-level components of the IBM
WebSphere Business Integration Collaboration for UCCnet Item Synchronization
perform the ItemChange workflow:

1. A trigger from the ERP source provides the item (for example, an IDOC from

SAP) to the connector specific to that ERP. The connector then converts the
item into an application specific business object, passes it through a map to
convert it into an ItemBasic generic business object, and then passes the
ItemBasic business object to the UCCnet_ItemSync collaboration object with an
Update verb.

. The UCCnet_ItemSync collaboration object accepts the object and checks the

required fields for information as detailed in the section [‘Checking that item|
[data exists for fields required by UCCnet” on page 34| If all required fields are
complete, the collaboration object continues processing. Otherwise, the
collaboration object aborts the processing and sends an email, as detailed in
the section [“Alerting email recipients of processing errors” on page 44|
Assume that all fields are complete.

. The UCCnet_ItemSync collaboration object checks that an entry for the item

exists in the PROCESSED_GTIN table.

If the item exists in the table and the value for its withdrawn field is N,
then the collaboration object continues processing.

If the item exists in the table and the value for its withdrawn field is Y,
then the collaboration object changes the withdrawn field value to N,
changes the delete field value to U, changes the business object verb to
UNWITHDRAWN, and continues processing.

If the item does not exist in the table, then the collaboration object changes
the business object verb to Create and adds the item to the
PROCESSED_GTIN table, setting the entry’s withdrawn field to N.

Note: Assume that the item already exists in the table and is not withdrawn.
See the section [“Using the PROCESSED_GTIN table” on page 34| for
more information on the PROCESSED_GTIN table.

. The UCCnet_ItemSync collaboration object adds an entry to the audit_log
_

table to identify the ItemChange transaction processed. See the section
the audit_log table” on page 36|for more information about the audit_log
table.

. The UCCnet_ItemSync collaboration object sends the information in the

business object to UCCnet by way of the AS2 channel connector, AS2 channel
server, and the IBM WebSphere Business Integration Data Handler for XML.
See [“Sending information from collaboration objects to UCCnet” on page 33|
for more details.

Solution development guide 9

10

6. UCCnet generates and returns a Message Disposition Notification (MDN) to
indicate that it has successfully received the ItemChange message. See
[‘Processing Message Disposition Notifications (MDNs)” on page 32| for
details.

7. UCCnet creates a worklist containing the notification response for a
successful ItemChange.

8. The supplier sends a worklist request to UCCnet using the
JTextRWLConnector and the UCCnet_requestWorklist collaboration object. See
[‘Retrieving worklists from UCCnet” on page 32 for more information

9. UCCnet replies by sending the worklist containing the notification response
back to the AS2 channel server.

10. The AS2 channel server delivers the worklist to the AS2 channel connector
which transforms it into a UCCnetGBO_envelope business object and delivers
it to the UCCnet_processWorklist collaboration object. See [“Receiving data for|
la collaboration object from UCCnet” on page 33|for details.

11. The UCCnet_processWorklist collaboration object receives the worklist,
identifies it as an ItemChange notification, and dispatches it to its
ITEM_ADD_CHANGE subdiagram.

As a result of the ItemChange workflow, UCCnet has updated the item
information. Now, the supplier’s demand-side trading partners must be notified
that updated information about the item exists. The workflow that accomplishes
this is described in the section [“ItemPublicationChange workflow: making updated|
litem information available to trading partners and processing their responses.”|

ItemPublicationChange workflow: making updated item
information available to trading partners and processing their
responses

The information in this section describes how the high-level components of the
IBM WebSphere Business Integration Collaboration for UCCnet Item
Synchronization perform the ItemPublicationChange workflow. In the
ItemPublicationChange workflow, updated item information that was passed to
UCCnet through the ItemChange workflow (detailed in the section ['TtemChangé]
workflow: updating item information in UCCnet (DTD support)” on page 8) is
made available to the supplier’s demand-side trading partners. The responses to
this item information must then be processed. As a result, the
ItemPublicationChange workflow is described as two subflows:

¢ The subflow that makes updated item information available to the supplier’s
demand-side trading partners, described in the section [‘ItemPublicationChange|
[subflow 1: making updated item information available to trading partners.”|

* The subflow that processes the demand-side trading partners’ responses to the
updated information, described in the section [“ItemPublicationChange subflow]
2: processing trading partners’ responses to updated item information” on page|

1]

ltemPublicationChange subflow 1: making updated item

information available to trading partners
The following description shows how the ItemPublicationChange workflow makes

updated information available to a supplier’s demand-side trading partners. The
source of the flow is the arrival of a UCCnetGBO_envelope at the
ITEM_ADD_CHANGE subdiagram of the UCCnet_processWorklist collaboration
object as a result of the [temChange workflow.

Solution Development Guide

1. The ITEM_ADD_CHANGE subdiagram configures the business object so that
the router map in the AS2 channel connector will select the correct
transformation map to convert the business object into an
ItemPublicationChange request. See the section ["'ITEM_ADD_CHANGE|
[subdiagram” on page 41| for more information on this subdiagram.

2. The subdiagram sends the business object to UCCnet by way of the AS2
channel connector, the AS2 channel server, and the IBM WebSphere Business
Integration Data Handler for XML. See [“Sending information from|
[collaboration objects to UCCnet” on page 33| for more details.

3. UCCnet receives the message requesting it to publish the item to the listed
trading partners.

4. UCCnet generates and returns a Message Disposition Notification (MDN) to
indicate that it has successfully received the ItemPublicationChange message.
See [“Processing Message Disposition Notifications (MDNs)” on page 32| for
details.

5. UCChnet creates a worklist containing a PUB_RELEASE_DATA_CHANGE
notification for a successful ItemPublicationChange.

6. The supplier sends a worklist request to UCCnet using the JTextRWLConnector
and the UCCnet_requestWorklist collaboration object. See [‘Retrieving worklists|
[from UCCnet” on page 32| for more information

7. UCCnet replies by sending the worklist containing the notification response
back to the AS2 channel server.

8. The AS2 channel server delivers the worklist to the AS2 channel connector
which transforms it into a UCCnetGBO_envelope business object and delivers it
to the UCCnet_processWorklist collaboration object. See [“Receiving data for 4|
[collaboration object from UCCnet” on page 33| for details.

9. The UCCnet_processWorklist collaboration object receives the worklist,
identifies it as a PUB_RELEASE_DATA_CHANGE notification, and dispatches
it to its NEW_ITEM_PUBLICATION_REQUEST subdiagram.

As a result of this subflow of the ItemPublicationAdd workflow, a new item is
now available to a supplier’s demand-side trading partners. The next subflow of
the ItemPublicationAdd workflow alerts them of the item’s existence and processes
their responses.

As a result of this subflow of the ItemPublicationChange workflow, updated item
information is now available to a supplier’s demand-side trading partners. The
next subflow of the ItemPublicationChange workflow alerts them of the updated
information and processes their responses to it.

ItemPublicationChange subflow 2: processing trading partners’
responses to updated item information

At this point in processing, the first subflow of the ItemPublicationChange
workflow has completed and a UCCnetGBO_envelope business object has arrived
in the NEW_ITEM_PUBLICATION_REQUEST subdiagram of the
UCCnet_processWorklist collaboration object.

The following description shows how the ItemPublicationChange workflow alerts
demand-side trading partners that new item information is available and processes
their responses:

1. The NEW_ITEM_PUBLICATION_REQUEST subdiagram verifies that the
GTIN value associated with the item is in the PROCESSED_GTIN table and
that the item is not withdrawn. It then checks the trading_partner table to
verify that there are entries for the trading partner who supplies the new item,

Solution development guide 11

12

and for the demand-side trading partners who will receive notification. See
the sections [“Using the PROCESSED_GTIN table” on page 34| and [“Using the]
[trading_partner table” on page 37 for more information on these tables

. The subdiagram then configures the business object so that the router map in

the AS2 channel connector will select the correct transformation map to
convert the business object into an ItemPublicationChange request.

. It then sends the business object to UCCnet by way of the AS2 channel

connector, the AS2 channel server, and the IBM WebSphere Business
Integration Data Handler for XML, and logs the notification in the audit_log
table. See [“Sending information from collaboration objects to UCCnet” on|
[page 33|and ["Using the audit_log table” on page 36| for more details.

. UCCnet delivers the ItemPublicationAdd to the demand-side trading partners.

The trading partners can respond with any of the following responses:

AUTHORIZE
The product information has been integrated into the demand-side
trading partner’s legacy environment and the demand-side user is
ready to begin trading.

PEND_PUBLICATION
The demand-side trading partner is unsure about the proper action to
take on the product. The product is being studied, but no action is
possible at this time.

REJECT_PUBLICATION
The demand-side trading partner has no interest in the product.

PRE_AUTHORIZATION
The demand-side trading partner wants to begin the process of
integrating the product into its legacy environment. For example, this
response can indicate that the supplier needs to contact the
demand-side user to begin the process of determining order quantities
and pricing.

DE_AUTHORIZATION
The demand-side trading partner has removed the product from the
assortment and wants no further updates sent for the product.

Note: For this example, assume that the demand-side trading partner
responds with an AUTHORIZE response.

. UCCnet performs a compliance check on the data. If all the data exists in the

appropriate formats, then UCCnet creates a worklist for the supplier
containing the notification response from the demand-side trading partner.

. The supplier sends a worklist request to UCCnet using the

JTextRWLConnector and the UCCnet_requestWorklist collaboration object. See
[‘Retrieving worklists from UCCnet” on page 32| for more information.

. UCCnet replies by sending the worklist containing the notification response to

the AS2 channel server.

. The AS2 channel server delivers the worklist to the AS2 channel connector

which transforms it into a UCCnetGBO_envelope business object and delivers
it to the UCCnet_processWorklist collaboration object. See [“Receiving data for|
la collaboration object from UCCnet” on page 33| for details.

. The UCCnet_processWorklist collaboration object receives the worklist,

identifies it as an AUTHORIZE response, and dispatches it to its

Solution Development Guide

AUTHORIZATION_RESPONSES subdiagram. See the section
[AUTHORIZATION_RESPONSES subdiagram” on page 39|for more
information on this subdiagram.

10. The AUTHORIZATION_RESPONSES subdiagram uses a Notify_by_eMail
collaboration object to send email to a predefined list of recipients. It then logs
the event in the audit_log table. See the sections
“AUTHORIZATION_RESPONSES subdiagram” on page 39/[“Sending emaill
through UCCnet_processWorklist collaboration object subdiagrams” on page
45/ and |“Using the audit_log table” on page 36| for more information.

IltemDelist workflow: making an item permanently unavailable
to trading partners (DTD support)

The ItemDelist workflow requests that UCCnet make an item in the repository
permanently unavailable. After an item has been delisted, it cannot be returned to
active trading. (To remove an item from active trading only temporarily, issue an
ItemWithdrawal, as discussed in the section|“ItemWithdrawal workflow: making
an item temporarily unavailable to all or selected trading partners (DTD support)”|
on page 14)) The source of the flow is the delist of an existing item in the ERP
source application. This workflow does not result in notifications being sent to
demand-side trading partners.

Note: If you are using schema support, refer to the documentation found in
“TtemDelist workflow: making an item permanently unavailable to trading]
partners (schema support)” on page 22|

The following description shows how high-level components of the IBM
WebSphere Business Integration Collaboration for UCCnet Item Synchronization
perform the ItemDelist workflow:

1. A trigger from the ERP source provides the item (for example, an IDOC from
SAP) to the connector specific to that ERP. The connector then converts the item
into an application specific business object, passes it through a map to convert
it to an ItemBasic generic business object, and then passes the ItemBasic
business object to the UCCnet_ItemSync collaboration object with a Delist verb.

2. The UCCnet_ItemSync collaboration object accepts the object and checks the
required fields for information as detailed in the section [“Checking that item|
[data exists for fields required by UCCnet” on page 34.If all required fields are
complete, the collaboration object continues processing it. Otherwise, the
collaboration object aborts the processing and sends an email, as detailed in the
section [“Alerting email recipients of processing errors” on page 44| Assume that
all fields are complete.

3. The UCCnet_ItemSync collaboration object removes the item from the
PROCESSED_GTIN table. See the section [“Using the PROCESSED_GTIN table”]
for more information on the PROCESSED_GTIN table.

4. The UCCnet_ItemSync collaboration object adds an entry to the audit_log table
to identify the ItemDelist transaction processed. See the section

[audit_log table” on page 36| for more information about the audit_log table.

5. The UCCnet_ItemSync collaboration objects sends the business object to
UCCnet by way of the AS2 channel connector, the AS2 channel server, and the
IBM WebSphere Business Integration Data Handler for XML. See |”Sendina
[information from collaboration objects to UCCnet” on page 33| for more details.

6. UCCnet generates and returns a Message Disposition Notification (MDN) to
indicate that it has successfully received the ItemDelist message. See
[“Processing Message Disposition Notifications (MDNs)” on page 32| for details.

Solution development guide 13

14

As a result of the ItemDelist workflow, the item has been permanently delisted in
UCCnet and removed from the PROCESSED_GTIN table.

ltemWithdrawal workflow: making an item temporarily
unavailable to all or selected trading partners (DTD support)

The ItemWithdrawal workflow requests that UCCnet make an item temporarily
unavailable to all or selected trading partners. For example, an item can be
temporarily removed if it is out of season or not in production. It can also be made
available to only a specific set of demand-side trading partners as a special order
item. (To remove an item from active trading permanently, issue an ItemDelist, as
discussed in the section [“TtemDelist workflow: making an item permanently]|
lunavailable to trading partners (DTD support)” on page 13)) The source of the flow
is the withdrawal of an existing item in the ERP source application. This workflow
does not result in notifications being sent to demand-side trading partners.

Note: If you are using schema support, refer to the documentation found in
“TtemWithdrawal workflow: making an item temporarily unavailable to all|
or selected trading partners (schema support)” on page 23|

The following description shows how high-level components of the IBM
WebSphere Business Integration Collaboration for UCCnet Item Synchronization
perform the ItemWithdrawal workflow:

1. A trigger from the ERP source provides the item (for example, an IDOC from
SAP) to the connector specific to that ERP. The connector then converts the item
into an application specific business object, passes it through a map to convert
it to an ItemBasic generic business object, and then passes the ItemBasic
business object to the UCCnet_ItemSync collaboration object with a Withdraw
verb.

2. The UCCnet_ItemSync collaboration object accepts the object and checks the
required fields for information as detailed in the section [‘Checking that item|
[data exists for fields required by UCCnet” on page 34.1If all required fields are
complete, the collaboration object continues processing it. Otherwise, the
collaboration object aborts the processing and sends an email, as detailed in the
section [“Alerting email recipients of processing errors” on page 44| Assume that
all fields are complete.

3. The UCCnet_ItemSync collaboration object locates the item in the
PROCESSED_GTIN table and sets the value for the withdrawn field to Y. This
setting prevents an INITIAL_ITEM_LOAD_REQUEST from causing the

publication of the item. See the section [“Using the PROCESSED_GTIN table”|
for more information on the PROCESSED_GTIN table.
4. The UCCnet_ItemSync collaboration object adds an entry to the audit_log table
ﬁ

to identify the ItemWithdrawal transaction processed. See the section
[the audit_log table” on page 36| for more information about the audit_log table.

5. The UCCnet_ItemSync collaboration objects sends the business object to
UCCnet by way of the AS2 channel connector, the AS2 channel server, and the
IBM WebSphere Business Integration Data Handler for XML. Seel”Sendina
[information from collaboration objects to UCCnet” on page 33| for more details.

6. UCCnet generates and returns a Message Disposition Notification (MDN) to
indicate that it has successfully received the ItemWithdrawal message. See
[“Processing Message Disposition Notifications (MDNs)” on page 32| for details.

As a result of the ItemWithdrawal workflow, the item has been temporarily
withdrawn from UCCnet and has been indicated as withdrawn in the
PROCESSED_GTIN table.

Solution Development Guide

Processing a business object: example workflows (XSD support)

ltemAdd workflow: adding a new item to UCCnet (XSD
support)

In the ItemAdd workflow, a new item is added to UCCnet. The source of the flow
is the creation of a new item in the source ERP application. This workflow does
not result in notifications being sent to subscribed demand-side trading partners.
Other workflows, detailed in the section [“CatalogueltemNotification Add and|
CatalogueltemPublication_Add workflows: making a new item available to trading|

artners and processing their responses” on page 16, accomplish sending these
notifications.

Notes:

1. Mapping of some attributes in the ItemAdd messages requires the use of value
translation tables. The IBM WebSphere InterChange Server implements these
tables as cross-reference relationships.

2. If you are using DTD support, refer to the documentation found inl“ItemAdd|
[workflow: adding a new item to UCCnet (DTD support)” on page 5]

The following description shows how high-level components of the IBM
WebSphere Business Integration Collaboration for UCCnet Item Synchronization
perform the ItemAdd workflow:

1. A trigger from the ERP source provides the item (for example, an IDOC from
SAP) to the connector specific to that ERP. The connector converts the item into
an application specific business object, passes it through a map to convert it to
an ItemBasic generic business object, and then passes the ItemBasic business
object to the UCCnet_ItemSync collaboration object with a Create verb.

2. The UCCnet_ItemSync collaboration object accepts the object and checks the
required fields for information as detailed in the section [“Checking that item|
[data exists for fields required by UCCnet” on page 34} If all required fields are
complete, the collaboration object continues processing it. Otherwise, the
collaboration object aborts the processing and sends an email, as detailed in the
section [“Alerting email recipients of processing errors” on page 44| Assume that
all fields are complete.

3. The UCCnet_ItemSync collaboration object adds an entry for the new item to
the PROCESSED_GTIN table, setting the value for the withdrawn field for this
entry to N. See the section [“Using the PROCESSED_GTIN table” on page 34| for
more information on the PROCESSED_GTIN table.

4. The UCCnet_ItemSync collaboration object adds an entry to the audit_log table
to record the ItemAdd transaction. See the section [‘Using the audit_log table”|
for more information about the audit_log table.

5. The UCCnet_ItemSync collaboration objects sends the business object to the
ItemCommandRouter collaboration object.

6. The ItemCommandRouter sends the ItemBasic business object containing the
RCIR_ADD command to UCCnet by way of the AS2 channel connector and the
AS2 channel server. See [“Sending information from collaboration objects td
[UCCnet” on page 33|for more details.

7. UCCnet sends an RCIR_ADD_RESPONSE notification to the AS2 channel
server indicating a successful item add.

8. The AS2 channel server delivers the worklist to the AS2 channel connector
which transforms it into a UCCnetGBO_envelope business object and delivers it

Solution development guide 15

to the UCCnet_processWorklist collaboration object. See [Sending information|
[from collaboration objects to UCCnet” on page 33| for more details.

9. The UCCnet_processWorklist collaboration object receives the business object
on its From port, identifies it as an RCIR_RESPONSE notification, and
dispatches it to its RCIR_RESPONSE subdiagram.

As a result of the ItemAdd workflow, UCCnet has been updated with the new
item information. Now, the supplier’s demand-side trading partners must be made
aware that the item is available. The workflow that accomplishes this is described
in the section [“CatalogueltemNotification_ Add and CatalogueItemPublication_Addl
workflows: making a new item available to trading partners and processing their|

resEonses.’]

CatalogueltemNotification_Add and
CatalogueltemPublication_Add workflows: making a new item
available to trading partners and processing their responses

The information in this section describes how the high-level components of the
IBM WebSphere Business Integration Collaboration for UCCnet Item
Synchronization perform the CatalogueltemNotification_Add and
CatalogueltemPublication_Add workflows. In these workflows, a new item that
was passed to UCCnet through the ItemAdd workflow (detailed in the section
[‘TtemAdd workflow: adding a new item to UCCnet (XSD support)” on page 15) is
made available to the supplier’s demand-side trading partners. The demand-side
trading partners’ responses to the new item are processed as well.

When this workflow begins, the ItemAdd workflow has completed and a
UCCnetGBO_envelope business object has arrived in the RCIR_RESPONSE
subdiagram of the UCCnet_processWorklist collaboration object.

1. The RCIR_RESPONSE subdiagram receives the business object and logs the

notification in the audit_log table. See the section|“Using the audit_log table”]
for more information on the audit_log table.

2. The subdiagram creates an empty ItemBasic business object and sends it out
the DestinationAppRetrieve port with a retrieve verb.

3. A completed ItemBasic object is returned on the same port with a Create verb.
This ItemBasic business object is the same one that initiated the RCIR
command, which was sent to UCCnet in the ItemAdd workflow.

When using a supplier-implemented data source pool (CIN operation):

a. The subdiagram sends the ItemBasic business object out the
RCIR_RESPONSE port to the CIN_CIP_Dispatcher collaboration object.

b. The CIN_CIP_Dispatcher collaboration object receives the ItemBasic
business object on its From port and maps it to a
CatalogueltemNotification_ADD UCCnetGBO_envelope business object.

c. It uses the category code from the business object to retrieve the GLNs of
any trading partners that subscribe to the category. The GLN information
is taken from the GLN subscription file determined by the
DISPATCHER_GLN_FILE property.

d. For each GLN found in the subscription file, the collaboration object sends
a CatalogueltemNotification_ADD (CIN_ADD) notification to the AS2
channel connector for delivery to UCCnet. See [“Sending information from|
fcollaboration objects to UCCnet” on page 33| for more details.

16 Solution Development Guide

e.

UCCnet receives the CIN_ADD notifications as XML messages and
forwards them to the demand-side trading partners.

When using UCCnet as the data source pool (CIP operation):

a.

—h

J-

k.

The subdiagram sends the ItemBasic business object out the
RCIR_RESPONSE port to a second instance of the AS2 channel connector
where it is mapped to a PublicationCommand Catalogueltem ADD and
sent to UCCnet by way of the AS2 channel server. See |”Sendina
finformation from collaboration objects to UCCnet” on page 33| for more
details.

UCCnet receives the CI_ADD request and returns a Catalogueltem
response notification to the AS2 channel server.

The AS2 channel server delivers the response to the AS2 channel connector
which transforms it into a UCCnetGBO_envelope business object and
delivers it to the UCCnet_processWorklist collaboration object. See
[“Receiving data for a collaboration object from UCCnet” on page 33| for
details.

The UCCnet_processWorklist collaboration object, identifies the returned
business object as a CI response notification, and sends it to the
PUBLICATION_COMMAND_RESPONSE subdiagram of the
UCCnet_processWorklist collaboration object.

The subdiagram creates an empty ItemBasic business object and sends it to
the DestinationAppRetrieve port with a retrieve verb. An ItemBasic
business object with a Create verb is returned on the same port. This
ItemBasic business object is the same one that initiated the RCIR
command, which was sent to UCCnet in the ItemAdd workflow.

The subdiagram sends the business object to the CIN_CIP_Dispatcher
collaboration object.

The CIN_CIP_Dispatcher collaboration object receives the ItemBasic
business object on its From port and maps it to a
CatalogueltemPublication_ ADD UCCnetGBO_envelope business object.

It uses the category code from the business object to retrieve the GLNs of
any trading partners that subscribe to the category from the GLN
subscription file, defined by the DISPATCHER_GLN_FILE property.

For each GLN that the CIN_CIP_Dispatcher collaboration object finds in the
subscription file, it sends a CatalogueltemPublication_ADD (CIP_ADD)
notification to the AS2 channel connector for delivery to UCCnet. See
[“Sending information from collaboration objects to UCCnet” on page 33 for
more details.

UCCnet sends out a CatalogueltemNotification to each subscribing
demand-side trading partner for whom a CIP was received.

UCCnet returns a CatalogueltemPublication response to the AS2 channel
server.

The AS2 channel server delivers the response to the AS2 channel connector
which transforms it into a UCCnetGBO_envelope business object and
delivers it to the UCCnet_processWorklist collaboration object. See
[“Receiving data for a collaboration object from UCCnet” on page 33 for
details.

m. The UCCnet_processWorklist collaboration object receives the business

object, identifies it as a CIP response notification, and sends it to the
PUBLICATION_COMMAND_RESPONSE subdiagram of the
UCCnet_processWorklist collaboration object.

Solution development guide 17

18

n. The PUBLICATION_COMMAND_RESPONSE subdiagram sends the
business object to a Notify_by_eMail collaboration object with a Create
verb to send a notification email to the supplier. See
["PUBLICATION_COMMAND_RESPONSE subdiagram” on page 42| for
more information on this subdiagram.

5. At this point, the trading partners can respond to UCCnet with any of the
following Catalogue Item Confirmation responses:

REVIEW
The retailer is reviewing the item.

REJECTED
The retailer has rejected the item. No additional information is
requested at this time.

ACCEPTED
The retailer has accepted the item, but has not yet synchronized it.
This state is similar to the DTD-based PRE-AUTHORIZATION state.

SYNCHRONISED
The retailer has accepted the item and synchronized it. This state is
similar to a DTD-based AUTHORIZE state.

The rest of this example assumes that a demand-side trading partner has
responded with a SYNCHRONISED response.

6. UCCnet performs a compliance check on the data. If all the data exists in the
appropriate format UCCnet creates a worklist for the supplier containing this
notification response from the demand-side trading partner.

7. The supplier sends a worklist request to UCCnet using the
JTextRWLConnector and the UCCnet_requestWorklist collaboration object. See
[‘Retrieving worklists from UCCnet” on page 32| for more information

8. UCCnet replies by sending the worklist containing the notification response
back to the AS2 channel server.

9. The AS2 channel server delivers the worklist to the AS2 channel connector
which transforms it into a UCCnetGBO_envelope business object and delivers
it to the UCCnet_processWorklist collaboration object. See [“Receiving data for]
[a collaboration object from UCCnet” on page 33|for details.

10. The UCCnet_processWorklist collaboration object receives the response,
identifies it as a CATALOGUE_ITEM_CONFIRMATION response, and
dispatches it to its CATALOGUE_ITEM_CONFIRMATION subdiagram.

11. The CATALOGUE_ITEM_CONFIRMATION subdiagram uses a
Notify_by_eMail collaboration object to send email to a predefined list of
recipients. It then logs the event in the audit log table. See the sections
“CATALOGUE ITEM_CONFIRMATION subdiagram” on page 40)|“Sendin:
email through UCCnet processWorklist collaboration object subdiagrams” O%I
page 45) and [“Using the audit_log table” on page 36| for more information.

ltemChange workflow: updating item information in UCCnet
(schema support)

The ItemChange workflow sends updated information about an existing item to
UCCnet. The source of the flow is a change to the data of an existing item in the
ERP source application. Issuing a change does not result in notifications being sent
to subscribed demand-side trading partners. Other workflows, detailed in the
section “CatalogueltemNotification_Change and CatalogueltemPublication_Change

Solution Development Guide

workflow: making updated item information available to trading partners and

[processing their responses” on page 20} accomplish sending these notifications.

Notes:

1.

Mapping of some attributes in the ItemChange messages requires the use of
value translation tables. The IBM WebSphere InterChange Server implements
these tables as cross-reference relationships.

If you are not using schema support, refer to the documentation found in
“ItemChange workflow: updating item information in UCCnet (DTD support)”|

on page 8.|

The following description shows how high-level components of the IBM
WebSphere Business Integration Collaboration for UCCnet Item Synchronization
perform the ItemChange workflow:

1.

A trigger from the ERP source provides the item (for example, an IDOC from
SAP) to the connector specific to that ERP. The connector converts the item into
an application specific business object (ASBO), passes it through a map to
convert it to an ItemBasic generic business object (GBO), and then passes this
ItemBasic business object to the UCCnet_ItemSynch collaboration object with an
Update verb.

The UCCnet_ItemSync collaboration object accepts the object and checks the
required fields for information as detailed in the section [“Checking that item|
[data exists for fields required by UCCnet” on page 34} If all required fields are
complete, the collaboration object continues processing it. Otherwise, the
collaboration object aborts the processing and sends an email, as detailed in the
section [“Alerting email recipients of processing errors” on page 44| Assume that
all fields are complete.

The UCCnet_ItemSync collaboration object checks that an entry for the item
exists in the PROCESSED_GTIN table.

If the item exists in the table and the value for its withdrawn field is N, then
the collaboration object continues processing.

If the item exists in the table and the value for its withdrawn field is Y, then
the collaboration object changes the withdrawn field value to N, changes the
delete field value to U, changes the business object verb to Unwithdrawn,
and continues processing.

If the item does not exist in the table, then the collaboration object changes
the business object verb to Create and adds the item to the
PROCESSED_GTIN table, setting the entry’s withdrawn field to N.

Note: Assume that the item already exists in the table and is not withdrawn.
See the section ["Using the PROCESSED_GTIN table” on page 34| for
more information on the PROCESSED_GTIN table.

The UCCnet_ItemSync collaboration object adds an entry to the audit_log table
to identify the ItemChange transaction processed. See the section

[audit_log table” on page 36| for more information about the audit_log table.

The UCCnet_ItemSync collaboration object sends the business to the
ItemCommandRouter collaboration object.

The ItemCommandRouter collaboration sends the ItemBasic business object
containing the RCIR_CHANGE command to UCCnet by way of the AS2
channel connector and the AS2 channel server. See [‘Sending information from|
[collaboration objects to UCCnet” on page 33| for more details.

UCCnet sends an RCIR_CHANGE_RESPONSE notification to the AS2 channel
server indicating a successful item change.

Solution development guide 19

20

8. The AS2 channel server delivers the response to the AS2 channel connector,
which transforms it into a UCCnetGBO_envelope business object and delivers it
to the UCCnet_processWorklist collaboration object. See [“Receiving data for af
[collaboration object from UCCnet” on page 33| for details.

9. The UCCnet_processWorklist collaboration object receives the business object,
identifies it as a RCIR_CHANGE_RESPONSE notification, and dispatches it to
its RCIR_RESPONSE subdiagram.

As a result of the ItemChange workflow, UCCnet has been updated with the new
item information. Now, the supplier’s demand-side trading partners must be
notified that the item information is available. The workflows that accomplish this
are detailed in the sectionl”CatalogueltemNotification_Change and|
CatalogueltemPublication_Change workflow: making updated item informationl
available to trading partners and processing their responses.”|

CatalogueltemNotification_Change and
CatalogueltemPublication_Change workflow: making updated
item information available to trading partners and processing
their responses

The information in this section describes how the high-level components of the
IBM WebSphere Business Integration Collaboration for UCCnet Item
Synchronization perform the CatalogueltemNotification_Change and
CatalogueltemPublication_Change workflows. In these workflows, updated item
information that was passed to UCCnet through the ItemChange workflow
(detailed in the section [“ItemChange workflow: updating item information in|
[UCCnet (schema support)” on page 18) is made available to the supplier’s
demand-side trading partners. The demand-side trading partners’ responses to this
item information must then be processed.

When this workflow begins, the ItemChange workflow has completed and a
UCCnetGBO_envelope business object has arrived in the RCIR_RESPONSE
subdiagram of the UCCnet_processWorklist collaboration object.

1. The RCIR_RESPONSE subdiagram receives the business object and logs the
notification in the audit_log table. See the section|“Using the audit_log table”|
for more information on the audit_log table.

2. The subdiagram creates an empty ItemBasic business object and sends it out
the DestinationAppRetrieve port with a retrieve verb.

3. A completed ItemBasic object is returned on the same port with an Update
verb. This ItemBasic business object is the same as the one that initiated the
corresponding RCIR command which was sent to UCCnet.

When using a supplier-implemented data source pool (CIN operation):

a. The subdiagram sends the ItemBasic business object out the
RCIR_RESPONSE port to the CIN_CIP_Dispatcher collaboration object.

b. The CIN_CIP_Dispatcher collaboration object receives the ItemBasic
business object on its From port and maps it to a
CatalogueltemNotification_ CHANGE UCCnetGBO_envelope business
object.

c. It uses the category code from the business object to retrieve the GLNs of
any trading partners that subscribe to the category. The GLN information
is taken from the GLN subscription file determined by the
DISPATCHER_GLN_FILE property.

Solution Development Guide

d. For each GLN found in the subscription file, the collaboration object sends
a CatalogueltemNotification_ CHANGE (CIN_CHANGE) notification to the
AS2 channel connector for delivery to UCCnet. See [“Sending information|
[from collaboration objects to UCCnet” on page 33| for more details.

e. UCCnet receives the CIN_CHANGE notifications as XML messages and
forwards them to the demand-side trading partners.

When using UCCnet as the data source pool (CIP operation):

a. The subdiagram sends the ItemBasic business object out the
RCIR_RESPONSE port to a second instance of the AS2 channel connector
where it is mapped to a PublicationCommand Catalogueltem_CHANGE
and sent to UCCnet by way of the AS2 channel server. See f’Sendingl
finformation from collaboration objects to UCCnet” on page 33| for more
details.

b. UCCnet receives the CI_Change request and returns a Catalogueltem
response notification to the AS2 channel server.

c. The AS2 channel server delivers the worklist to the AS2 channel connector,
which transforms it into a UCCnetGBO_envelope business object and
delivers it to the UCCnet_processWorklist collaboration object. See
[“Receiving data for a collaboration object from UCCnet” on page 33| for
details.

d. The UCCnet_processWorklist collaboration object, identifies the returned
business object as a CI response notification, and sends it to the
PUBLICATION_COMMAND_RESPONSE subdiagram of the
UCCnet_processWorklist collaboration object.

e. The subdiagram creates an empty ItemBasic business object and sends it to
the DestinationAppRetrieve port with a Retrieve verb. An ItemBasic
business object with an Update verb is returned on the same port. This
ItemBasic business object is the same one that initiated the RCIR
command, which was sent to UCCnet in the ItemChange workflow.

—h

The subdiagram sends the business object to a Notify_by_eMail
collaboration object in order to initiate the sending of a notification email to
the suppliers.

g. The list of demand-side trading partners to receive a notification is
determined by UCCnet based on the CatalogueltemPublication (CIP)
requests sent to UCCnet when the catalogue item was originally added.
UCCnet sends out a CatalogueltemNotification to each subscribing
demand-side trading partner for whom a CIP was previously received.

. At this point, the trading partners can respond with any of the following
Catalogue Item Confirmation responses:

REVIEW
The retailer is reviewing the item.

REJECTED
The retailer has rejected the item. No additional information is
requested at this time.

ACCEPTED
The retailer has accepted the item, but has not yet synchronized it.
This state is similar to the DTD-based PRE-AUTHORIZATION state.

SYNCHRONISED
The retailer has accepted the item and synchronized it. This state is
similar to a DTD-based AUTHORIZE state.

Solution development guide 21

22

The rest of this example assumes that a demand-side trading partner has
responded with a SYNCHRONISED response.

6. UCCnet performs a compliance check on the data. If all the data exists in the
appropriate format, then UCCnet creates a worklist for the supplier containing
the SYNCHRONISED notification response from the demand-side trading
partner.

7. The supplier sends a worklist request to UCCnet using the
JTextRWLConnector and the UCCnet_requestWorklist collaboration object. See
[‘Retrieving worklists from UCCnet” on page 32 for more information

8. UCCnet replies by sending the worklist containing the notification response
back to the AS2 channel server.

9. The AS2 channel server delivers the worklist to the AS2 channel connector
which transforms it into a UCCnetGBO_envelope business object and delivers
it to the UCCnet_processWorklist collaboration object. See [“Receiving data for|
la collaboration object from UCCnet” on page 33|for details.

10. The UCCnet_processWorklist collaboration object receives the worklist,
identifies it as a CATALOGUE_ITEM_CONFIRMATION response, and
dispatches it to its CATALOGUE_ITEM_CONFIRMATION subdiagram.

11. The CATALOGUE_ITEM_CONFIRMATION subdiagram uses a
Notify_by_eMail collaboration object to send email to a predefined list of
recipients. It then logs the event in the audit_log table. See the sections
“CATALOGUE_ITEM_CONFIRMATION subdiagram” on page 40 |[“Sending]
email through UCCnet_processWorklist collaboration object subdiagrams” on|
page 45 and [Using the audit_log table” on page 36| for more information.

ItemDelist workflow: making an item permanently unavailable
to trading partners (schema support)

The ItemDelist workflow requests that UCCnet make an item in the repository
permanently unavailable. After an item has been delisted, it cannot be returned to
active trading. (To remove an item from active trading only temporarily, issue an
ItemWithdrawal, as discussed in the section [‘ItemWithdrawal workflow: making|

an item temporarily unavailable to all or selected trading partners (schemal

support)” on page 23.) The source of the flow is the delist of an existing item in

the ERP source application. This workflow does not result in notifications being
sent to demand-side trading partners.

Note: If you are not using schema support, refer to the documentation found in
“ItemDelist workflow: making an item permanently unavailable to trading]
partners (DTD support)” on page 13|

The following description shows how high-level components of the IBM
WebSphere Business Integration Collaboration for UCCnet Item Synchronization
perform the ItemDelist workflow:

1. A trigger from the ERP source provides the item (for example, an IDOC from
SAP) to the connector specific to that ERP. The connector converts the item into
an application specific business object, and passes it through a map to convert
it to an ItemBasic generic business object, and then passes the ItemBasic
business object to the UCCnet_ItemSync collaboration object with a Delist verb.

2. The UCCnet_ItemSync collaboration object accepts the object and checks the
required fields for information as detailed in the section [Checking that item|
[data exists for fields required by UCCnet” on page 34.1f all required fields are
complete, the collaboration object continues processing it. Otherwise, the

Solution Development Guide

collaboration object aborts the processing and sends an email, as detailed in the
section [“Alerting email recipients of processing errors” on page 44| Assume that
all fields are complete.

3. The UCCnet_ItemSync collaboration object removes the item from the
PROCESSED_GTIN table. See the section [“Using the PROCESSED_GTIN table”]
for more information on the PROCESSED_GTIN table.

4. The UCCnet_ItemSync collaboration object adds an entry to the audit_log table
to identify the ItemDelist transaction processed. See the section

[audit_log table” on page 36| for more information about the audit_log table.

5. The UCCnet_ItemSync collaboration object sends the ItemBasic business object
to the ItemCommandRouter collaboration object.

6. The ItemCommandRouter determines that the received business object is a
delist.

When using a supplier-implemented data source pool (CIN operation):

a. The ItemCommandRouter sends the ItemBasic business object out the
ToCIN_CI port to a CIN_CIP_Dispatcher collaboration object.

b. The CIN_CIP_Dispatcher collaboration object receives the ItemBasic
business object on its From port and maps it to a
CatalogueltemNotification_DELIST UCCnetGBO_envelope business object.

C. It uses the category code from the business object to retrieve the GLNs of
any trading partners that subscribe to the category. The GLN information is
taken from the GLN subscription file determined by the
CIN_DISPATCHER_GLN_FILE property.

d. For each GLN found in the subscription file, the collaboration object sends a
CatalogueltemNotification_DELIST (CIN_DELIST) notification to the AS2
channel connector to be delivered to UCCnet. See [“Sending information|
[from collaboration objects to UCCnet” on page 33| for more details.

e. UCCnet generates an MDN to indicate successful receipt of the
CatalogueltemNotification_ DELIST message. See [“Processing Message]
[Disposition Notifications (MDNs)” on page 32| for details.

When using UCCnet as the data source pool (CIP operation):

a. The ItemCommandRouter sends the ItemBasic business object out the
ToCIN_CI port to the Notify_by_eMail collaboration object.

b. The Notify_by_eMail collaboration object sends a note to the supplier,
indicating that CI_DELIST is unsupported.

As a result of the ItemDelist workflow, the item has been permanently delisted in
UCCnet and removed from the PROCESSED_GTIN table.

ltemWithdrawal workflow: making an item temporarily
unavailable to all or selected trading partners (schema
support)

The ItemWithdrawal workflow requests that UCCnet make an item temporarily
unavailable to all or selected trading partners. An item might be temporarily
removed, for instance, if it is out of season or not in production. It might also be
made available only to a specific set of demand-side trading partners as a special
order item. (To remove an item from active trading permanently, issue an
ItemDelist, as discussed in the section [“ItemDelist workflow: making an item|
permanently unavailable to trading partners (schema support)” on page 22)) The

Solution development guide 23

24

source of the flow is the withdrawal of an existing item in the ERP source
application. This workflow does not result in notifications being sent to
demand-side trading partners.

Note: If you are not using schema support, refer to the documentation found in
“TtemWithdrawal workflow: making an item temporarily unavailable to al]]
or selected trading partners (DTD support)” on page 14|

The following description shows how high-level components of the IBM
WebSphere Business Integration Collaboration for UCCnet Item Synchronization
perform the ItemWithdrawal workflow:

1. A trigger from the ERP source provides the item (for example, an IDOC from
SAP) to the connector specific to that ERP. The connector converts item into an
application specific business object, and passes it through a map to convert it to
an ItemBasic generic business object, and then passes the ItemBasic business
object to the UCCnet_ItemSync collaboration object with a Withdraw verb.

2. The UCCnet_ItemSync collaboration object accepts the object and checks the
required fields for information as detailed in the section [“Checking that item|
[data exists for fields required by UCCnet” on page 34.If all required fields are
complete, the collaboration object continues processing it. Otherwise, the
collaboration object aborts the processing and sends an email, as detailed in the
section [“Alerting email recipients of processing errors” on page 44| Assume that
all fields are complete.

3. The UCCnet_ItemSync collaboration object changes the Withdrawn column in
the PROCESSED_GTIN table to a value of Y. See the section
[PROCESSED_GTIN table” on page 34| for more information on the
PROCESSED_GTIN table.

4. The UCCnet_ItemSync collaboration object adds an entry to the audit_log table
to identify the ItemWithdawal transaction processed. See the section

[audit_log table” on page 36| for more information about the audit_log table.

5. The UCCnet_ItemSync collaboration object sends the ItemBasic business object
to the ItemCommandRouter collaboration object.

6. The ItemCommandRouter collaboration object determines from the business
object’s verb and the DeleteFlag value that the item is being withdrawn.

When using a supplier-implemented data source pool (CIN operation):

a. The ItemCommandRouter sends the ItemBasic business object out the
ToCIN_CI port to a CIN_CIP_Dispatcher collaboration object.

b. The CIN_CIP_Dispatcher collaboration object receives the ItemBasic
business object on its From port and maps it to a
CatalogueltemNotification_. WITHDRAW UCCnetGBO_envelope business
object.

c. It uses the category code from the business object to retrieve the GLNs of
any trading partners that subscribe to the category. The GLN information is
taken from the GLN subscription file determined by the
CIN_DISPATCHER_GLN_FILE property.

d. For each GLN found in the subscription file, the collaboration object sends a
CatalogueltemNotification WITHDRAW (CIN_WITHDRAW) notification to
the AS2 channel connector to be delivered to UCCnet. See [“Sendin
[information from collaboration objects to UCCnet” on page 33[for more
details.

Solution Development Guide

e. UCCnet generates an MDN to indicate successful receipt of the
CatalogueltemNotification WITHDRAW message. See [“Processing Message|
[Disposition Notifications (MDNs)” on page 32| for details.

When using UCCnet as the data source pool (CIP operation):

a. The ItemCommandRouter sends the ItemBasic business object out the
ToCIN_CI port to a Notify_by_eMail collaboration object.

b. The Notify_by_eMail collaboration object receives the business object and
sends a note to the supplier saying that the CI_WITHDRAW is
unsupported.

As a result of the ItemWithdrawal workflow, the item has been temporarily
withdrawn from UCCnet and has been indicated as withdrawn in the
PROCESSED_GTIN table.

Maps and data handlers

As the data flows through the workflows, the form of the information changes.
Sometimes it is stored in a generic business object, sometimes in an application
specific business object, and sometimes, the data is contained in an XML message.
As part of the processing, data passes through a variety of transformations.
Normally, these transformations are done to prepare the data for the next step in
the workflow, whether it be a collaboration object, a connector, or the AS2 channel
server.

The following tables detail how the format of the information changes as it moves
between the connectors, collaboration objects, and other parts that make up a
workflow. The Transform initiator and Time initiated columns indicate the
connector or collaboration object that initiated the data transform, and the point in
the workflow that it does this. The Input and Output columns respectively
indicate the format of the data before and after the transformation takes place. The
Transformer column indicates the map or data handler used to carry out the
transformation.

Solution development guide 25

dewr adoaaua™
0g93RuUDDN 03 2dopPAu™qLAIRUDIN

0go adopaua~ognipuddN

04sV 2dopPaus~qraeuddN

ISIPHIOM B UINjax
03 JouDD 10y 3sanbax Junenug

J9[[OIIU0D T0IDIUUOY TAMMIXAL(

TINX 10§ Io[pueH
ereq uonerdajuy ssaursng aroydggap INGI

04sV 2dopPaus~qraiPuddN

JeurIoy JpudD(Ut afessouwr TINX

ISIPIOM © UINjax
03 JouDD 10y 3sanbax Junenug

Juade 10)00UU0) TAMMIXIL(

dew o1sequuajFegm))

0dsv dvs

OgD odrsequuoi]

uogeordde gvs
0] UOTJeULIOJUT W) SUrpuag

(smopprom d[durexa ay} ur 10J09UU0d
oyyads J¥H) IA[[OIU0D I0}AUU0)) JVS

dew o1sequiaiiMDFeS

OgD odrsequuoif

0dsv dvs

uonedrdde Jvg woiy
UOTJRULIOFUT WD) SUTATOISY

(smoprom d[durexa ay ur 10J09UU0d
oyads JH) ID[[OIFUOD I0)IIUU0D JVS

TINX 10§ Id[pueLieie(
uoneidayuy ssaursng a1oydgqop NI

JeurLIoy JPudD() Ul a8essour TINX

04sV 2dopaue~qraeuddN

J2UDD 0} uoreULIONUT SUTPUIS

juade 10309UU0D) 3JOST

TINX 10§ I[pueLieie(
uoneidajuy ssaursng a1oydgqap NGI

0gSy 2dofpaus~q1aPuddN

JeuLIoy JPuDD() UT a8essour TINX

PUDON
WOIJ UOTJRULIOJUT SUTATIIY]

juade 10309UU0D) 3JOST

dewr adoppaus™
0gORuUDDN 03 2doPAus"qraRudIN

0go adopaua—ogoieuddN

04dsy adofpaus~qraPuddN

PUDDN
WOIJ UOTRULIOJUT SUTATOOY]

I9[[OIFUOD T03OIUU0Y) 3JOST

puewrwo)ysiqnd adoppaus” (1 IRUDDN "
0y uopeoynou adoPaus”OgoIUDDIN -
adoppaus~qreuddN”
oy adopaus~OgniPuddN .
:S[red 31 Jeyy sdewr uoneurIOjSuRI)
oy pue dew adopaus™ (L IRUDDN 01
adoppaus~Ogoreud N~ dejIeinoy

0gSy adofpausq1audDN

0go adofpaus~ogn1puddN

12UDDN 0} uoreuLIojul SUIPUSg

I9[[OIJUOD 103OIUUOY) 3JOST

IBYIUAP[IUAWINO0P~ pueurmo)ysiqnd -
adoppaus” L IPUDD N 0 dISeguIdIIMD) «

W)~ puewo)juswndop - adofpaus™
ALIPUDDN 0 DISLGURIMD
:S[Ted 31
jey) sdew uorjeuroysuen) ay) pue dewr adopaus™
AL@PUDDN 01 dIsegqua M)~ deNIeInoy

(0gsV) 19lqo ssaursnq oynads
uonedrjdde adopaus~qIRUDDN

(OgD) 193[qo ssaursnq drpudd dIsequid)|

JoUDD 0} uoreuLIoyur Surpuag

IS][OTU0D I0}02UU0)) }JOST

IouLroysuelr],

mdinp

mdug

pajerjrur dury,

JI0jerjTUl ULIOJSUeI],

“uabe 10103UU0D YOSIXL[PUR J3||0J1U0D J0123UU0D JOSIXaL[8yl 1o} ajgeoljdde osfe
sI uaBe 10108UU0D 110S! pUR 19]|0AUOD J0108UUO0D YOS Byl J0} Uoiewloju] ‘'sabueyo asay) ysijdwoooe 0] Pasn ale SIaWIojsuel] Teym Sa1eolpul 0S[e 1| "MOJINIOM € JO
sued usamiaqg sanow 1 e safueyd uonewWIojUI JO TeW IO} 8yl MOY Ssa1edipul ajgel Buimojjol ayl AlAnoauuod 1yog| Buisn uwoddng @1 Jo) pasn siawiojsuel] T a|qeL

Solution Development Guide

26

dew adopaus™
0go1uDDN 03 2doPAUS™(LAIdLIPUDDN

049 adopausa~OgoieuddN

04sV adopaus™qIdIdIRuODN

JSIPIOM B UINjax
03 1ouDD 10§ 3sanbar Sunenmuy

I9[[OIJU0D 103OUUO) TMIIXL[

TINX 0] Ie[pueH
eye(] uoneidajuy ssaursng a1aydggapm INGI

04sV adopaus™qIdIdIRuODN

jeurIoy 3puDD) ur agessauwr TIAX

JSIPIIOM © UINjaI
03 19uDD 10§ 3sanbar Sunenuy

Juade 10)0aUU0) TAMIXL(

dew disequiajpegmD)

0dsv dvs

0OgD drsequial]

uonedrdde Jyg
0} UOIRULIOJUT W) SUIpUdg

(smorpjrom drdurexs ayy ur 10309UU0d
oyDads) IB[[OIIU0D I0108UU0)) JVS

dewr orsequiayimDFeS

0OgD drsequial]

OdSV dvs

uonedrjdde Jyg woy
UOTJRULIOFUT W)l SUTATISY

(smoppprom adurexa ayj Ul 10309UU0d
oy1ads JYH) I9[[OIUOD I0JIUUOD VS

TINX 10§ IS[puepeiec]
uonjeidajuy ssoursng aroydggap NGL

JeunIoy 3puDD) ur agessaur TIX

04dsV adopaus™q1ard1euddnN

32UDDN 0} uoneWIOjUl SUIpUdg

juage 1030UU0)) [J1,

TINX 10} I9[pueHeieq
uonjeidajuy ssoursng a1oydggap AL

04gsv 2dopaus™qrdrd1PuddN

jeurIoy 3puDD) ur agessauwr TIAX

PUDDN
WOILJ UOTJRWLIOJUT SUTATSIY

juage 10309UU0)) [J1,

dew adopaua™
0g91uDDN 03 2dopPAus~qLAIdIPUDDN

0go adopaua~pgniuddN

04gsy 2dopaus™qrdld1PuddN

PUDON
WOIJ UOTJRWLIOJUT SUTATDIY

I9[[OIU0D 10309UU0)) [,

puewo)ystqnd ™~ adopaus”qIAldIRUDDN ™
0y uopedynou adopausTOgoHIPUDDN .
adopaus”qIAIdIRUIDN ™
0y adofeaus—OgOPRUDDN .
:s[Ted 31 Jeyy sdewr uonjewIojsUeRI}
oy pue dewr adopaus”qIAILIRUDDN
0y adopeaua—Ogoeud DN~ dejAemoy

04dsv 2dopaus™qrdard1PuddnN

0499 adopaus~ogneuddN

12UDDN 0} uoneuULIONUT SUTPUIS

I9[[OIFUOD I03OIUU0Y) 3JOST

IBYHUSPTIUSWNOOP ™

puewrwo)yysiqnd adofeaus™
ALAIdIRUDDN 0F dISsequiai[m) o

wWa)I~ pueuIuo)JuaWNdop adofoAus™
ALAIJIPUDDN 03 dISequIiMD
:S[Ted 31
ey sdewr uoneurrojsuern ayy pue deuwr adofpAus™
ALAIdIIPUDDN oY dtsequaim) dejAzamoy

(0gsV) 19alqo ssaursnq oyads
uoneordde adofpausq1AILIRUDDN

(OgD) 193[qo ssaursnq drpuad drsequrd)|

1PUDDN 03 uonewLIojul Surpuag

IS[OIFUOD 1030UU0)) [,

IouLroysuelr],

mdino

mdug

parenur dwiry,

10}eT}IUT ULIOJSUeI],

“Juabe 10109UU0D |d1IXSL[PU. J19]|0AU0D J0103UU0D |dLIXSLL 8yl Jo) ajqealdde osfe
s1 uabe 10103UU0D |1 pUB J3]|0U0D J0103UU0D |dL Y1 Jo) uonewlolu| "sabueys asayl ysijdwoode 0] pasn ale SISWIojSue) JTeyMm Sa1edIpul OS[e 1| "MO|I}IOM € JO
sued usamiag saAoW I Se sabueyd UoNBWIOIUI JO YeWwIo) 8y Moy Ssaredipul ajgel Buimojjol ayl "AlANOsuu09 |41 Buisn 1oddng @1q@ Jol pasn siswlojsuel] ‘Z ajgelL

27

Solution development guide

dew adojpausa-OgoiouddN~
oy adoppaua”q LASINfIRUDDN

0go adopaus~OgnieuddN

0dsV adopaus™qrasWieruddN

JSIPIOM B UINjax
03 19uDD 1oy 3sanbar Sunenuy

I9[[OIJUOD 103DUUO) TMYIXL[

TINX 10} Ie[pueH
eye(] uoneidajuy ssaursng a1aydggapm INGI

04sV 2dopaus™qraswieruddN

jeurIoy 3puDD Ut agessauwr TIAX

JSIPIOM B UIN}ax
03 19uDD 10y 3sanbar Sunenuy

Juade 10)0aUu0) TAMIXL(

dewr orsequuayyegMD)

0dsv dvs

OgD oisequiai]

uonedrdde Jvg
0} uoIeULIOJUT W} SUIpUdg

(smorppjrom adurexa ayj ur 10309UU0d
oy1ads) I9[[0IFU0D I0JOAUUOD) VS

dewr orsequiayimDFeS

OgD orsequai]

0dsv dvs

uonedrjdde Jyg woiy
UOIRULIOJUT W) SUTATOOdY

(smorpprom adurexa ayj ur 10309UU0d
oy1ads JYH) I9[[OIUO0D I0}O3UU0D JVS

TINX 10} To[pueHeleq
uonjeidajuy ssoursng aroydggap AL

jewrIoy 3puDD ur agessauwr TIAX

04sV 2dopaus™qrasWieuddN

JoUDD(0} uoreuLIoyur Surpusg

juade 10308uu0)) SN[

TINX 10§ Io[pueHeieq
uonjeidajuy ssoursng aroydggap NGL

04sV 2dopaus™qrasWieuddN

jeurIoy 3puDD) ur agessauwr TIAX

PUDDN
WOIJ UOTJRWLIOJUT SUTAISIY

juade 1030uu0)) SN[

dew adopaus~pgopPuddN”
0y adopeaus (I ASIN[PUDDN

0495 adopaus”ogoeuddn

04dsv 2dopaus™qIasBEudIN

PUDON
WOIJ UOTJRWLIOJUT SUTAISIY

IS[OIIU0D 10309UU0)) SN[

puewwo)ystiqnd “adofpaus”qLASN(RUDDN ™
0y uonedynou adoPAuR”OgOHIPUDDN .

adopaue™@IasWpRUDDN”
0y adofeaus~OgoPRUDDN .
:s[red 31 Jey) sdewr uorjewIojsuer)

Ay pue dewr adopeaua”qIASN(RUDDN ™
0y adopeaus~Ogneud DN~ dejaemoy

04gsv 2dopaus™graswfeuddN

0go adopaua—pgoipuddN

12UDDN 0} uoneuULIONUT SUTPUIS

I9[[OIIU0D 10309UU0)) SN[

IOYHUSPJIULSWNIOP

puewrwoyysiqnd -adofoaus™
ALASA[FPUDDN 03 dIsequuiaym) «

WRYT PUBWIWOD)PUIWNIOP
adoppaus (I ASIA[RUDDN 03 dIsequuiaiim))
:s[1ed 31 yeyy sdewr uonewIojSURT)

ayy pue dew adofpaus” IASN[RUDDN™
0y dIsegua M)~ deAlIaINoYy|

uonedrjdde adofpaus~ LASA[RUDDN

(0gsV) 19lqo ssaursnq oynads

(OgD) 193[qo ssaursnq drpudd dIsequid)|

JoUDD 0} uoreuLIoyur Surpuag

IS[[OIIU0D 10329UU0)) SN[

IouLroysuelr],

mdinp

mdug

pajerjrur dury,

JI0jerjTUl ULIOJSUeI],

“Juabe 10198UU0D SINCIXSLL PUe J9||01U0D J0103UU0D SINCIXaLL 8yl Jo) a|gealjdde osje si uabe J0198uu0) SIAC pue
13]|011U0D J0103UUOD SIAC 8y) Joj uonewlojul 'sabueyd asay ysijdwooor 0] Pasn aie SISWIOISURIL TeyMm Sa1edipul OS[e 1| "MOJIOM B o sued Usamiag SSAoW 1l se
safueyd uonewIolUl JO YeWIo) 8y MOy Saredipul ajgel Buimojjo) 8yl "198uuo) uoneiBaiul ssauisng alaydsgapn Buisn 1oddns @1@ Jol pasn siswlojsuel] ‘€ ajgel

Solution Development Guide

28

dewr uonedrjgn Juajendorejes”

puewrwoHuonedqnd Aus~

OgDIUDDN 03 dIsequIaIMD
uonjerado gD

dewr wayengoreyes™

puewwo)Ajouadopaus™

OgDIvUDD N 03 dIsequIRIIMD
uongerado NID

0go adofpaus~OgnipuddN

OgD oisequiai]

PUDDN
03 sysanbar J1D 10 NID Surpuag

19lqo
uoneroqe[[od raydyedsiq J1D NID

dewr
adoppaus™ OgoIeudHN 03 adoPAaus T (SXIBUDDN

049 adopausa~OgoIeuddN

0gsV adoppaua~asxieudIN

JSIPIOM B UINnjax
03 19uDD 1oy 3sanbar Sunenuy

IS[[OIIUOD 10329UU0D) TAMMIXIL[

TINX 10} Ie[pueH
ere(] uoneidajuy ssaursng a1aydsggqap INGI

04sV adoppaua~asxiaudIN

jeurIoy 3puDD) Ut agessauwr TIX

JSIPIOM B UINjax
03 19uDD 10y 3sanbar Sunenmuy

juade 10J09UU0)) 103OUUO) TAMMIXAL[

dewr orsequuayyegMD)

0dsv dvs

0OgD oisequai]

uonedrdde Jyg
0} uoIRULIOJUT W} SUIpUdg

(smorpprom adurexa ayj ur 10309UU0d
oy1ads) I9[[OIFUOD I0JOAUUOD) VS

dew orsequiayimDFeS

OgD orsequai]

0dsv dvs

uonedrjdde Jyg woiy
UOHRULIOJUT W) SUTATOODY

(smorpprom adurexa ayj ur 10309UU0d
oy1ads JYH) I9[[OIUOD I0}OUUOD JVS

TINX 10} Io[pueHeleq
uonjeidajuy ssoursng aroydggap NGL

0gsV adoppaua~asxiauddN

jeurIoy 3puDD) ur agessauwr TIX

PUDDN
WOIJ UOTJRWLIOJUT SUTAISIY

Juade 10308UU0)) PJOGT

TINX 10§ Io[pueHeieq
uonjeidajuy ssoursng axoydggap NGL

jeurIoy 3puDD ur agessauwr X

04sv adopaus~gsxieuddn

JoUDD 03 uoreuLIojur Surpuag

Juade 10300UU0)) PJOGT

dew
adopaaus™ gxIauDDN 03 adopaus”OgoIUDDN 0gSy adoppaus~gsgxiauddN 0go adopaus~OgneuddN | PUDDN 03 uonewIojur SUrpusg IS[[OIU0D I0}03UU0)) }JOST
dew PUDDN

adopaaus™ OgoeudDN 03 adofpaus (SXIRUDDN

095 adopaus™0gnLPuddN

04sV adopaus~gsxieuddn

WOIJ UOTJRWLIOJUT SUTATSIY

IS[OTU0D I0}02UU0)) }JOST

dew wayeonSoreyes™

puewrwoyuonediqnd-adofpaus™

ASXIUDD 0¥ dIsequIaImD
Apuo vonerado g1

04sV 2dopaua™asxiauddN

OgD odrsequuai]

SMO[JIOM UOT}EITJONWDI]
pue uoTedI[qN JUId)] Ul
JouDD 03 uoneuLIojur SuUTpPuag

(9dueysur
PU023s) IS[[OIIU0D J0JDIUU0D) JJOST

dewr a3ueydppyweir q1o”

puewwo)193s13a1 adopaus ™

ASXIPUDD N 0Y dISegUIDIIMD)
uonerado J1D

dew a8ueyHppyua)—

puewrwo)19)s13a1 adopaus ™

ASXIRUDD 0F dIsequiaImD
uonjerdado NID

(0gsV) 199alqo ssaursnq oyads
uoneordde adopaua~ggxiaudDdN

(OgD) 193[qo ssaursnq drpuad drsequrd)|

SMO[PIOM

a8uryDHwa)] pue ppywe)[ur
1PUDDN 03 uonewLIojul Surpuag

IS[OTU0D I0J03UU0)) }JOST

IouLroysuelr],

mdino

mdug

parenur dwiry,

10}eT}IUT ULIOJSUeI],

“uabe 10103UU0D YOSIXSL[PUR J3||0J1U0D J0123UU0D JOSIXaLL 8yl 1o} ajgeoljdde osfe
sI juaBe 10108UU0D 1OS! pUR 19]|0AUOD J0193UUO0D YOS! Byl J0} Uonewloju] ‘'sabueyo asay) ysijdwoooe 0] Pasn ale SIaWIoisuel] Teym Sa1eolpul 0Se 1| "MOJIYIOM € JO
sued Usamiag sanow I Se safueyd UoRWIOIUI JO TeWIO0) SY1 MOY Saredipul ajgel Buimojjol ayl AlAnosuu09 110S! Buisn Loddns @SX J0) pasn siawiojsuel] ¢ a|qeL

29

Solution development guide

dewr uonyedsrjqn Juayengoreyes™

puewrwoHuonedqnd Aus~

OgDIvUDDN 03 dIsequuaIMD
uonerado J1D

dewr urayrongorees™
puewrwo)Ajouadofpaus™

OgDIvUDD N 03 dIsequIRIIMD
uongerado NID

0go adofpaus~gnpuddN

0OgD drseqguiai]

P_UDDN
03 sysanbar g1 10 NID Surpuag

10°lqo
uoneIoqe[od 1ypyedsiq 1D NID

dew adopaus™
0gD1RuDDN 03 2doPAUS™(SXIdIRUDIN

0go adofpaus~ognipuddN

084SV 2dopaua™asXIdI1uDIN

JSIPIOM B UINjax
03 19uDD 1oy 3sanbar Sunenmuy

IS[OIIUOD 1032AUU0D) TAMMIXIL[

TINX 10} Io[pueH
eye(] uoneidayuy ssaursng araydsgqapm NI

084SV 2dopaus™asXIdIIuDIN

jeurIoj 3puDDN ur agessauwr TINX

JSIP[IOM B UInjax
03 19uDD 10§ 3sanbar Sunenmuy

juade 10J09UU0)) J03OUUO) TAMMIXAL[

dewr orsequuayyegMD)

0dsv dvs

0OgD oisequiai]

uonedrdde Jvg
0} oI eULIOJUT W} SUIPUdg

(smorppjrom adurexa ayj ur 10309UU0d
oy1ads) I9[[0IIU0D I0JOAUUOD) VS

dewr orsequiayimDFeS

04D oisequiai]

0dsv dvs

uonedrjdde Jyg woiy
UOIRULIOJUT W) SUTATOOdY]

(smorpjrom adurexa ayj ur 10309UU0d
oy1ads JYH) I9[[OIUO0D I0}O3UU0D JVS

TINX 10} Io[pueHele
uonjeidajuy ssaursng aroydggap NI

04SV 2dopaua™asXIdI1uDIN

jeurIoy 3puDD ur agessauwr TIAX

PUDON
WOIJ UOTJRWLIOJUT SUTAISIY

juade 10)09uu0)) 1L

TINX 10} Io[pueHeleq
uonjeidajuy ssaursng araydggap AL

jeurIoy 3puDD ut agessauwr TINX

04SV 2dopaua™asXId.I1RuDIN

JoUDD 0} uoreuLIoyur SuUIpudg

juade 10)09uu0)) 1L

dew adopaus™
AsX1d13pudDN 0y "2doPAus~OgOPUDIN

04SV 2dopausa™asXId.I1PudIN

045 adoppausa~OgoIeuddN

JoUDDN 0} uoreuLIojur Surpuag

JIS[OIFUOD I03DUU0))],

dew adopaus™
0gD1PRuDDN 01 2doPAu™(SXIdIPUDIN

045 adopausa~OgoieuddN

084SV 2dopausa™asXIdI1RuUDIN

PUDDN
WOIJ UOTJRWLIOJUT SUTAISIY

JIS[OIFUOD I03DUU0))],

dew wayenSoreyes™
pueuwrwoyuonediqnd-adofpaus™

ASXId1IdUDD 03 dlsequiamd
Aquo uonerado J1d

04sv 2dopaus™gsxIdIPudDN

OgD odrsequuai]

SMO[JIOM UOT}RITJON W}]
pue uonedIqn U}y Ut
JPUDD 03 uoreuLIoyur Jurpuag

(9dueysur
PU0I9s) ID[[OIFUOD 10309UU0D) [JL,

dewr a3ueydppyuweidrd
puewwo)1a3s13a1 adopaus

ASXIdIIvUDD N 03 dIsequuaIm)
uonerado J1D

dewr a8ueydppyua—
puewrwo)19)s13a1 adopaus”

ASXIdIIPUDDN 03 dIsequiaimd
uoyjerado NID

(0gsV) 19lqo ssaursnq oynads
uonedrjdde adopAus~SXIIIIRUDDN

(OgD) 193[qo ssaursnq drpudd dIsequid)|

SMO[JIOM

a8uryDHwa)] pue ppywe)[ur
JoUDD 0} uoreuLIoyur Surpuag

JIS[OIFUOD I03DUU0)) [J],

IouLroysuelr],

mdinp

mdug

pajerjrur dury,

JI0jerjTUl ULIOJSUeI],

“Juabe 10199UU0D |dLIXSLL PUR 19]|0AU0d J0103UU0D [dLIXSLL 8yl Jo} ajqealdde osfe
1 uabe 10193UU0D |41 pUB J3]|0U0D J0103UU0D |dL Y1 Jo) uonewlolu| ‘sabueyd asay) ysijdwoode 0] pasn ale SIsWIojsuel) JTeym Sa1edipul 0S[e 1| ‘MO|IXIOM € JO
sued usamiag senoWw I e safiueyd uonewWIoUI JO Tewlo) 8yl Moy Ssaredipul ajgel Buimojjol syl AlANOBUU0D |41 Buisn uoddns aSx Joj pasn siswiojsuel] ‘G a|qel

Solution Development Guide

30

dewr uonedrjgn Juajendorejes”

pueurwoyuonedqnd AU

~OgDIvUDDN 0y dIsequIDIIMD
uonjerado gD

dewr wayengoreyes™

puewwo)Ajouadopaus

~OgOHIRUDDN0F dIseguIR M)
uongerado NID

0go adofpaus~OgnipuddN

OgD oisequiai]

PUDDN
03 sysanbar J1D 10 NID Surpuag

19lqo
uoneroqe[[od raydyedsiq J1D NID

dew adopaus™
0gOPUDDN 01 2dopPAuASXSIN[RUDIN

049 adopausa~OgoIeuddN

04SV 2dopaua~asxSWRUDIN

JSIPIOM B UINnjax
03 19uDD 1oy 3sanbar Sunenuy

IS[[OIIUOD 10329UU0D) TAMMIXIL[

TINX 10} Ie[pueH
ere(] uoneidajuy ssaursng a1aydsggqap INGI

04SY 2doppaua™asXSN1RUDIN

jeurIoy 3puDD) Ut agessauwr TIX

JSIPIOM B UINjax
03 19uDD 10y 3sanbar Sunenmuy

juade 10J09UU0)) 103OUUO) TAMMIXAL[

dewr orsequuayyegMD)

0dsv dvs

0OgD oisequai]

uonedrdde Jyg
0} uoIRULIOJUT W} SUIpUdg

(smorpprom adurexa ayj ur 10309UU0d
oy1ads) I9[[OIFUOD I0JOAUUOD) VS

dew orsequiayimDFeS

OgD orsequai]

0dsv dvs

uonedrjdde Jyg woiy
UOHRULIOJUT W) SUTATOODY

(smorpprom adurexa ayj ur 10309UU0d
oy1ads JYH) I9[[OIUOD I0}OUUOD JVS

TINX 10} Io[pueHeleq
uonjeidajuy ssoursng aroydggap NGL

04SV 2dopaua~asXSWRUDIN

jeurIoy 3puDD) ur agessauwr TIX

PUDDN
WOIJ UOTJRWLIOJUT SUTAISIY

juade 10p0suu0)) SN[

TINX 10§ Io[pueHeieq
uonjeidajuy ssoursng axoydggap NGL

jeurIoy 3puDD ur agessauwr X

04SV 2dopaua™asxSWRUDIN

JoUDD 03 uoreuLIojur Surpuag

jua8e 1039uU0)) SN[

deur adopaaua™
ASXSI[RUDDN 01 2dofpaus~0gnieuddN

04SY 2dopaua™asXSW[1RUDIN

0495 adopaus~ogoreuddn

32UDDN 0} UoneWIOjUL SUIpUdSg

ID[[OIIU0D 10329UU0)) SIA/[

deur adopaaua™
0g9PuDDN 03 adopaua”aSXSIPUDIN

095 adopaus™0gnLPuddN

04SV adopaus”aSXSIN[IRUODN

PUDDON
WOIJ UOTJRWLIOJUT SUTATSIY

IS[OIIUOD I03DUU0)) [,

dewr weyanSoreyes™

puewrwoyuonediqnd-adofpaus™

ASXSIN[UDDN 03 disequiiimD
Auo uonerado g1

0gsvy 2dopaus~gsxsfEuddN

OgD odrsequuai]

SMO[JIOM UOT}EITJONWDI]
pue uoTedI[qN JUId)] Ul
JouDD 03 uoneuLIojur SuUTpPuag

(9dueysur
PUO0I3S) ID[OJUOD 10309UU0)) SN[

dewr a3ueydppyweir q1o”

puewwo)193s13a1 adopaus ™

ASXSIN[1PUDDN 0y dIsequiaiIm)
uonerado J1D

dew a8ueyHppyua)—

puewrwo)19)s13a1 adopaus ™

ASXSIN[3UDDN 03 dIseguiaim)
uonjerdado NID

(0gsV) 19alqo ssaursnq oyads
uoneoridde adopeaua~qSXSA[PUDDN

(OgD) 193[qo ssaursnq drpuad drsequrd)|

SMO[PIOM

a8uryDHwa)] pue ppywe)[ur
1PUDDN 03 uonewLIojul Surpuag

I9[[OIIU0D 10309UU0)) SN[

IouLroysuelr],

mdino

mdug

parenur dwiry,

10}eT}IUT ULIOJSUeI],

“Juabe 10198UU0D SINCIXSLL PUe J9||01U0d J0103UU0D SINCIXaLL 8yl Jo) ajgealjdde osje si uabe J0198Uu0D SIAC pue
13][011U0D J0103UUOYD SIAC 8y) Joj uonewlolu 'sabueyd asay ysijdwosoe 0] Pasn aie SISWIOISURIL TeyM Sa1edipul OS[e 1| "MOJIOM B o suied Usamiag SSAoW 1l se
safueyd uoneWIOlUI JO TRWIO) BY1 MOY Saledlpul ajgel Buimojol 8yl 1198uuo) uoneiBaiu| sssuisng alaydsgapn Buisn oddns @SX Jo) pasn siawiolsuel] 9 a|qel

31

Solution development guide

Processing Message Disposition Notifications (MDNSs)

In many of the workflows, UCCnet generates a Message Disposition Notification to
indicate that it has received a message from the supplier. The typical processing of
this MDN is as follows:

1. The AS2 channel server delivers the MDN to the UCCnet_processWorklist
collaboration object by way of the IBM WebSphere Business Integration Data
Handler for XML and the AS2 channel connector. See [“Receiving data for a
[collaboration object from UCCnet” on page 33| for details.

2. The UCCnet_processWorklist collaboration object receives the MDN inside a
generic business object and dispatches it to the SIMPLE_RESPONSE
subdiagram for further processing.

3. The SIMPLE_RESPONSE subdiagram uses a Notify_by_eMail collaboration
object to send email to a predefined list of recipients. See the sections
“SIMPLE_RESPONSE subdiagram” on page 43| and [“Sending email through|
UCCnet_processWorklist collaboration object subdiagrams” on page 45| for
more information.

Retrieving worklists from UCCnet

In many of the workflows, UCCnet generates, but does not automatically return, a
worklist containing a response to a message received from the supplier. In these
cases, the supplier must request the worklist from UCCnet.

Retrieval of a worklist from UCCnet happens as follows:

1. The supplier uses a time-triggered process to move a worklist query command
to the event directory of the JTextRWLConnector: This movement process is not
a part of the solution, and must be customized by the supplier.

2. The JTextRWLConnector polls its event directory for new query commands at
user-defined time intervals.

3. When the JTextRWBConnector finds a query command in the event directory, it
sends it to the IBM WebSphere Business Integration Data Handler for XML,
which converts it to an application specific business object (ASBO).

4. The JTextRWLConnector passes the business object through a map to convert it
to a UCCnetGBO_envelope GBO and then passes it to a
UCCnet_requestWorklist collaboration object.

5. The UCCnet_requestWorklist collaboration object, in turn sends the business
object to the AS2 channel connector for delivery to UCCnet. See ['Sending]
[information from collaboration objects to UCCnet” on page 33| for details.

Customizing the process

The DTD_URL and SET_UNIQUE_IDS properties of the UCCnet_requestWorklist
collaboration object affect the outgoing XML message in systems using the DTD
XML definition type. The DocType line in the XML is set according to the value of
the DTD_URL property. If outgoing messages are required to have unique message
IDs, the SET_UNIQUE_IDS property must be set to ALL

Both the worklist request XML and the polling interval can be changed. For
example, the worklist query command XML message tailored for Authorization
Notifications (query type="NOTIFICATION" with
name="AUTHORIZATION_INFORMATION" and status="UNREAD") can be used
to request the worklist authorization notification contents. A similar request can be
constructed to read any dead letter notifications. As an alternative, all notifications

32 Solution Development Guide

can be requested. The polling interval is set in the PollFrequency attribute of the
JTextRWLConnector and is in milliseconds.

The UCCnet_requestWorklist collaboration supports the notification
type="PUBLICATION_INFORMATION" for the topics PEND_PUBLICATION,
PRE_AUTHORIZATION, AUTHORIZATION, REJECT_PUBLICATION,
DE_AUTHORIZATION, and in the notifications for
NEW_ITEM_PUBLICATION_REQUEST and ITEM_INFORMATION (ITEM_ADD,
ITEM_CHANGE).

Sending information from collaboration objects to UCCnet

Sending messages from a collaboration object to UCCnet:

In many of the workflows, a collaboration object needs to send information to
UCCnet. The following set of events accomplishes this action:

1. The collaboration object sends a generic business object (GBO) to the AS2
channel connector.

2. The connector controller calls the associated map configured for this GBO to
convert it into an application specific business object (ASBO).

3. The connector controller passes the ASBO to the connector agent.

4. The connector agent calls the IBM WebSphere Business Integration Data
Handler for XML which converts the ASBO into a UCCnet formatted XML
message.

5. The AS2 channel connector agent then passes the XML message to the AS2
channel server, which creates the digest, encrypts, and transmits the message to
UCCnet.

Receiving data for a collaboration object from UCCnet

Receiving messages back from UCCnet:

In many of the workflows, UCCnet will send a message to the AS2 channel server
to be passed on to a collaboration object. The following set of events accomplishes
this action:

1. UCCnet sends an XML message to the AS2 channel server.

2. The AS2 channel connector agent retrieves the message from the AS2 channel
server.

3. The connector agent calls the IBM WebSphere Business Integration Data
Handler for XML to convert the message into an application specific business
object (ASBO).

4. The connector agent passes the ASBO to the connector controller.

5. The connector controller calls the associated map configured for this ASBO to
convert it into a generic business object (GBO).

6. The AS2 channel connector then passes the GBO to all collaboration objects that
subscribe to the GBO.

Solution development guide 33

Checking that item data exists for fields required by UCCnet

UCCnet requires its community of trading partners to provide standardized item
data in particular formats to its registry. As a result, UCCnet requires requests for
ItemAdd, ItemChange, ItemDelist, and ItemWithdrawal publications to have data
provided for certain fields. If the data for the required fields is not present,
UCCnet does not process the publications. Data might be missing if the ERP does
not require information for these same fields and the ERP user is not aware of the
UCCnet requirements.

To help ensure that [temAdd, [temChange, ItemDelist, and ItemWithdrawal
publications are accepted by UCCnet, when a UCCnet_ItemSync collaboration
object accepts an ItemBasic business object, it checks that the following fields that
are required by UCCnet to have data contain information (i.e., are not NULL):
* For ItemAdd and ItemChange publications:

- gtin

— dimension

— height

— volume

— productHierarchy

— barCodeld

— unitOfWgt (if either the grossWeight or netWeight fields contain values)
* For ItemDelist and ItemWithdrawal publications:

- gtin

Note: The UCCnet_ItemSync collaboration object checks only that the required
fields are not NULL. It does not verify that the information within them is
in the correct format for UCCnet.

If all required fields are complete, the UCCnet_ItemSync collaboration object
continues processing it. If all required fields are not complete, the collaboration
object aborts processing and sends an email requesting the missing information to
an email address provided in the UCCnet_ItemSync collaboration object’s
SEND_MAIL_TO configuration property. See the section [“Alerting email recipients
fof processing errors” on page 44| for more information on how email is handled
within the solution.

Using the PROCESSED_GTIN table

34

The PROCESSED_GTIN table is a relational table provided with the Item
Synchronization for Suppliers solution. It maintains the complete list of the
supplier’s items that exist in the UCCnet repository by using each item’s tracking
ID, or GTIN, as the primary key. This table permits a UCCnet_processWorklist
collaboration object to process incoming INITIAL_ITEM_LOAD_REQUEST
commands without the need to communicate with the back-end ERP system. See
the section [“INITIAL_ITEM_LOAD_REQUEST subdiagram” on page 4(| for more
information on this subdiagram.

The UCCnet_ItemSync and UCCnet_processWorklist collaboration objects both
interact with this table. A UCCnet_ItemSync collaboration object updates the table
each time it processes an ItemBasic business object. The collaboration object
performs this processing only if all of the fields for which UCCnet requires data
are complete (see the section “Checking that item data exists for fields required by

Solution Development Guide

[UCCnet” on page 34| for more information). The type of processing the
collaboration object performs depends on the verb attached to the ItemBasic
business object, as follows:

* If the ItemBasic business object has a Create verb, the UCCnet_ItemSync
collaboration object checks if the item exists in the PROCESSED_GTIN table and
processes it, as follows:

— If the item does not already exist in the PROCESSED_GTIN table, the
collaboration object adds an entry for it to the table, and sets the value for the
withdrawn field for this entry to N.

— If the item already exists in the table, the collaboration object changes its verb
to Update.

e If the ItemBasic business object has an Update verb, the UCCnet_ItemSync
collaboration object checks if the item exists in the PROCESSED_GTIN table and
processes it, as follows:

— If the item exists in the table and the value for its withdrawn field is set to N,
the collaboration object continues processing it.

— If the item exists in the table and the value for its withdrawn field is set to Y,
the collaboration object does the following:

Changes the value of the entry’s withdrawn field to N.
- Changes the value of the entry’s delete field to U.

- Changes the business object verb to UNWITHDRAWN.
- Continues processing it.

— If the item does not exist in the table, the collaboration object changes the
business object’s verb to Create and adds it to the PROCESSED_GTIN table,
setting the entry’s withdrawn field to N.

* If the ItemBasic business object has a Delist verb, the UCCnet_ItemSync
collaboration object removes the item from the PROCESSED_GTIN table.

¢ If the ItemBasic business object has a Withdraw verb, the UCCnet_ItemSync
collaboration object locates the item in the PROCESSED_GTIN table and sets the
value for the entry’s withdrawn field to Y. This action prevents the publication
of the item in response to an incoming INITIAL_ITEM_LOAD_REQUEST.

The UCCnet_processWorklist collaboration object reads this table during

processing, as follows:

e Its NEW_ITEM_PUBLICATION_REQUEST subdiagram verifies that specific
items are in the table.

* Its INITIAL_ITEM_LOAD_REQUEST subdiagram generates publication
messages for all items in the table with a withdrawn value of N.

The UCCnet_ItemSync collaboration object connects to the database through its
GtinDB_USER, GtinDB_PASSWORD, JDBC_DRIVER, and JDBC_URL configuration
properties; the UCCnet_processWorklist collaboration object, through its DB_USER,
DB_PASSWORD, JDBC_DRIVER, and JDBC_URL configuration properties. See
ICollaboration for UCCnet Item Synchronization| for detailed information on these
properties.

Connection information for the PROCESSED_GTIN table is configured as part of
the UCCnet_ItemSync collaboration object setup. After the relationships have been
deployed, the table itself is created by running the supplied
InitializeRelationshipTables.sql file for the database type (i.e., DB2®, Oracle, or
Microsoft® SQL Server). See the [[nstallation guide| for installation instructions.

Solution development guide 35

Using the audit_log table

36

The audit_log table is provided with the Item Synchronization for Suppliers
solution. It is used to track the events associated with UCCnet activities to support
complete end-to-end auditing. This audit support provides irrefutable
documentation that transmissions have occurred between trading partners. It also
provides a profile of which trading partners are participating in the trading
community and with which products that participation is associated.

The audit service is composed of four components:

* The audit_log table receives log entries from each participant component in the
solution. The following table lists the fields that can appear in an audit_log
entry. An example value is given for each field.

Table 7. Audit_log table fields

Field Example value

LOG_SEQ_NO 1

LOG_SOURCE_NAME UCCnet2

GLN_CODE NA

SOURCE_SYSTEM

PRODUCT_ID 2050000000454

VERB_NAME Create

TRANS_ID SAPConnector_1015606877187_1

TRANS_TYPE UCCnet_processWorklist

TRANS_STATUS ITEM_ADD_CHANGE

MSG_FILEPATH_TEXT CA\IBM\WebSphereICS\UCCnet-
1051628537493.bo

LOG_DTTM May 5, 2003 1:44:56 PM

* Alogging framework that is utilized by IBM WebSphere Business Integration
Collaborations and Adapters to log critical events to the audit_log table.

* An audit log merge process that periodically sweeps the TPI server log for new
entries, which are added to the unified audit_log table. The iSoft Peer-to-Peer
Agent logs are not swept for new entries.

* A report generation facility to support data analysis and visualization.

UCCnet_ItemSync and UCCnet_processWorklist collaboration objects impact the
audit_log table. Any time an item is added to, updated or delisted within, or
withdrawn from the ERP, and an ItemBasic business object is subsequently passed
to a UCCnet_ItemSync collaboration object, the collaboration object records an
entry in the audit_log table detailing the event. The following subdiagrams of the
UCCnet_processWorklist collaboration object also record entries in the audit_log
table during processing;:

* AUTHORIZATION_RESPONSES

* CATALOGUE_ITEM_CONFIRMATION
e INITIAL_ITEM_LOAD_REQUEST

e ITEM_ADD_CHANGE
 NEW_ITEM_PUBLICATION_REQUEST
* RCIR_RESPONSE

Solution Development Guide

The following sections have more information on how these subdiagrams operate:
« |”AUTHORIZATION_RESPONSES subdiagram” on page 39|

* |"CATALOGUE_ITEM_CONFIRMATION subdiagram” on page 40|

* |“INITIAL_ITEM_LOAD_REQUEST subdiagram” on page 40|

* |"ITEM_ADD_CHANGE subdiagram” on page 41|

« ["'NEW_ITEM_PUBLICATION_REQUEST subdiagram” on page 41|

+ |"RCIR_RESPONSE subdiagam” on page 42|

Each audit entry is associated with the value listed for the collaboration object’s
SUPPLIER_NAME attribute.

Connection from the UCCnet_ItemSync and UCCnet_processWorklist collaboration
objects to the audit_log table is provided by the IBM JDBC Driver for DB2, Oracle,
or Microsoft SQL Server. Table creation is performed via running the supplied
audit_log.sql file for the database type (i.e., DB2, Oracle, or Microsoft SQL Server).
See the [Installation guide for installation instructions.

Using the trading_partner table

The trading_partner table, or GLN table, is a relational table provided with the
Item Synchronization for Suppliers solution. It maintains the complete list of
trading partners by using the Global Location Number (GLN) of each as the key.

The NEW_ITEM_PUBLICATION_REQUEST subdiagram of a
UCCnet_processWorklist collaboration object checks that a new item or updated
item information to be published is supplied by a trading partner from this table.
It also verifies that the demand-side trading partners to whom notification will be
sent are in the table. The INITIAL_ITEM_LOAD_REQUEST subdiagram of a
UCCnet_processWorklist collaboration object checks the trading_partner table to
verify that the demand-side trading partner requesting the
INITIAL_ITEM_LOAD_REQUEST exists. The ITEM_ADD_CHANGE subdiagram
of a UCCnet_processWorklist collaboration object utilizes maps that read from the
trading_partner table.

Connection information for the trading_partner table is configured as part of the
UCCnet_processWorklist collaboration object.

The table itself is created when the TPTable relationship is deployed (and the
schema is created). The InitializeRelationshipTables scripts
(InitializeRelationshipTables.sql and InitializeRelationshipTablesForXSD.sql) make
alterations to the table then make alteration to the table. These changed include the
addition of the following columns to the table:

The following columns are added to the table via running the supplied
InitializeRelationshipTables.sql file for the database type (i.e., DB2, Oracle, or
Microsoft SQL Server):

* gln_code

e trading_partner_name
. trading_partner_contact
* trading_partner_group
e trading_partner_type

* initial load_flag

Solution development guide 37

After the columns are created, you must manually populate it with the correct
information. See the [Installation guide|for installation instructions.

Using subdiagrams

38

All messages initiated from UCCnet are in UCCnet XML format. Since the UCCnet
XML format’s top-level tag (<envelope>) is the same for all messages, a component
is needed to distinguish among the various notification and response XML
messages and return different business objects for them. An object based on the
UCCnet_processWorklist collaboration template performs this task.

A UCCnet_processWorklist collaboration object is instantiated when the AS2
channel connector forwards a UCCnetGBO_envelope business object to it. See
[“Receiving data for a collaboration object from UCCnet” on page 33|for details of
how this business object is created.

The UCCnet_processWorklist collaboration object parses the UCCnetGBO_envelope
business object, creating a separate UCCnetGBO_envelope business object for each
notification or response. The collaboration object routes each business object
representing a single notification to the appropriate subdiagram. Each subdiagram
handles a particular set of notification or response messages, as follows:

* AUTHORIZATION_RESPONSES subdiagram — Handles notifications for the
topics AUTHORIZE, DE_AUTHORIZATION, PEND_PUBLICATION,
PRE_AUTHORIZATION, and REJECT_PUBLICATION. See the section
[“AUTHORIZATION_RESPONSES subdiagram” on page 39| for more information
on this subdiagram.

* CATALOGUE_ITEM_CONFIRMATION — Handles the process of the
CATALOGUE_ITEM_CONFIRMATION responses, received by the
UCCnet_processWorklist collaboration object. See
[“CATALOGUE_ITEM_CONFIRMATION subdiagram” on page 40| for more
information.

* CATEGORY_ADD_CHANGE subdiagram — Handles notifications for the
CATEGORY_ADD and CATEGORY_CHANGE topics. See the section
[“CATEGORY_ADD_CHANGE subdiagram” on page 39 for more information on
this subdiagram.

* CIN_RESPONSE subdiagram — Handles incoming messages that are recognized
as CIN_RESPONSE messages. See the section |[“CIN_RESPONSE subdiagram” on|
for more information on this subdiagram.

* DEAD_LETTER_PUB_RECEIPT subdiagram — Handles notifications associated
with the single notification topic DEAD_LETTER_PUB_RECEIPT. See the section
[‘'DEAD_LETTER_PUB_RECEIPT subdiagram” on page 40| for more information
on this subdiagram.

* INITIAL_ITEM_LOAD_REQUEST subdiagram — Handles notifications
associated with the single notification topic INITTAL ITEM LOAD REQUEST.
See the section ["INITIAL_ITEM_LOAD_REQUEST subdiagram” on page 40| for
more information on this subdiagram.

* ITEM_ADD_CHANGE subdiagram — Handles notifications for the ITEM_ADD
and ITEM_CHANGE topics. See the section ['ITEM_ADD_CHANGE]
|subdiagram” on page 41| for more information on this subdiagram.

* NEW_ITEM_PUBLICATION_REQUEST subdiagram — Handles notifications
associated with the single notification topic
NEW_ITEM_PUBLICATION_REQUEST. See the section
[“NEW_ITEM_PUBLICATION _REQUEST subdiagram” on page 41| for more
information on this subdiagram.

Solution Development Guide

* PUBLICATION_COMMAND_RESPONSE subdiagram — Handles incoming
messages that are recognized as CI_RESPONSE or CIP_RESPONSE messages.
See the section ['PUBLICATION_COMMAND_RESPONSE subdiagram” on page|
for more information on this subdiagram

* RCIR_RESPONSE — Handles notifications for the ADD and CHANGE topics.
See the section ['RCIR_RESPONSE subdiagam” on page 42| for more information.

* RCIR_QUERY_RESPOINSE — Handles incoming messages that are recognized
as RCIR_ QUERY RESPONSE messages. See the section
[“RCIR_QUERY_RESPONSE subdiagram” on page 43 for more information.

* SIMPLE_RESPONSE subdiagram — Handles immediate responses to commands
such as MDNs from UCCnet. See the section [“SIMPLE_RESPONSE subdiagram’|
for more information on this subdiagram.

* UNKNOWN_MESSAGES subdiagram — Handles incoming messages not
recognized as supported. See the section |”UNKNOWN_MESSAGES|
[subdiagram” on page 43| for more information on this subdiagram.

* UNKNOWN_RESPONSE subdiagram — Handles incoming messages that are
recognized as notification messages, but are not supported. See the section
[“UNKNOWN_RESPONSE subdiagram” on page 44| for more information on this
subdiagram.

AUTHORIZATION_RESPONSES subdiagram

This subdiagram handles notifications for the following topics: AUTHORIZE,
DE_AUTHORIZATION, PEND_PUBLICATION, PRE_AUTHORIZATION, and
REJECT_PUBLICATION. UCCnet generates these notifications as a result of
authorization actions taken by demand-side trading partners, which are forwarded
to UCCnet. Typically they are issued in response to an ItemPublicationAdd issued
by the supply-side trading partner, but they can be issued at anytime. The
subdiagram logic does the following:

1. Instantiates a collaboration object based on the Notify_by_eMail collaboration
template, which sends an email to selected recipients. The email message,
subject, and recipients are configured in this collaboration object’s
EMAIL_MESSAGE, EMAIL_SUBJECT, and EMAIL_NOTIFICATION_RCPTS
configuration properties, respectively. See the section [’Sending email through|
[UCCnet_processWorklist collaboration object subdiagrams” on page 45| for
more information.

2. Logs the event in the audit_log table. See [“Using the audit_log table” on page]
for more information on the audit_log table.

CATEGORY_ADD_CHANGE subdiagram

This subdiagram handles notifications for the CATEGORY_ADD and
CATEGORY_CHANGE topics. These notifications are sent by UCCnet when a
request is made by the supply-side trading partner to add or change a category to
better classify or organize the items in its available inventory. The subdiagram
logic sends an email containing the category maintenance information to selected
recipients by instantiating a collaboration object based on the Notify_by_eMail
collaboration template.. The email message, subject, and recipients are configured
in this collaboration object’s EMAIL_MESSAGE, EMAIL_SUBJECT, and
EMAIL_NOTIFICATION RCPTS configuration properties, respectively. See the
section [“Sending email through UCCnet_processWorklist collaboration object|
lsubdiagrams” on page 45 for more information. There is no follow-on flow.

Solution development guide 39

40

CATALOGUE_ITEM_CONFIRMATION subdiagram

This subdiagram handles the process of the
CATALOGUE_ITEM_CONFIRMATION responses, received by the
UCCnet_processWorklist collaboration object. UCCnet generates these responses as
a result of the authorization actions taken by demand-side trading partners. The
responses can have one of the following states:

* SYNCHRONISED
e ACCEPTED

* REVIEW

* REJECTED

The responses are normally generated in answer to a request generated by the
supply-side trading partner as part of the CatalogueltemNotification_Change and
CatalogueltemNotification_Add workflows. However, the responses can be issued
at any time. This subdiagram carries out the following logic:

* It instantiates a collaboration object based on the Notify_by_eMail collaboration
template. This collaboration object sends an email to a set of defined recipients.
The message, subject, and recipient list are defined by the collaboration object’s
EMAIL_MESSAGE, EMAIL_SUBJECT, and EMAIL_NOTIFICATION_RCPTS
configuration properties, respectively. See the section [“Sending email through|
[UCCnet_processWorklist collaboration object subdiagrams” on page 45| for more
information.

* It logs the event in the audit_log table. See the section [“Using the audit_log|
[table” on page 36 for more information.

CIN_RESPONSE subdiagram

This subdiagram handles incoming CIN_Response messages. The subdiagram logic
instantiates a collaboration object based on the Notify_by_eMail collaboration
template, which sends an email to selected recipients. The email message, subject,
and recipients are configured in this collaboration object’'s EMAIL_MESSAGE,
EMAIL_SUBJECT, and EMAIL_NOTIFICATION_RCPTS configuration properties,
respectively. See the section [‘Sending email through UCCnet_processWorklist|
fcollaboration object subdiagrams” on page 45| for more information.

DEAD _LETTER_PUB_RECEIPT subdiagram

This subdiagram handles notifications for the DEAD_LETTER_PUB_RECEIPT
topic. These notifications result from a supplier request for which a target
demand-side trading partner has not subscribed. The subdiagram logic instantiates
a collaboration object based on the Notify_by_eMail collaboration template, which
sends an email to selected recipients. The email message, subject, and recipients are
configured in this collaboration object’'s EMAIL_MESSAGE, EMAIL_SUBJECT, and
EMAIL_NOTIFICATION RCPTS configuration properties, respectively. See the
section [“Sending email through UCCnet_processWorklist collaboration object|
lsubdiagrams” on page 45| for more information.

INITIAL_ITEM_LOAD_REQUEST subdiagram

This subdiagram handles notifications associated with the single notification topic
INITIAL_ITEM_LOAD_REQUEST. This notification is generated as a result of a
demand-side trading partner requesting through UCCnet to initiate synchronizing
all the items currently traded with a given supply-side trading partner. The
demand-side partner’s request produces a notification in the worklist of the
supply-side trading partner.

Solution Development Guide

The logic in this subdiagram does the following:

1. Writes a record to the audit_log table indicating receipt of the
INITIAL_ITEM_LOAD_REQUEST. See the section[“Using the audit_log table”]

for more information on the audit_log table.

2. Checks the trading_partner table to verify that the GLN requesting the
INITIAL_ITEM LOAD_REQUEST exists. See the section
[trading_partner table” on page 37| for more information on the trading_partner
table.

3. Sends the business object to UCCnet over the INITIAL_ITEM_LOAD_REQUEST
port via the AS2 channel connector.

The follow-up workflow is that of an ItemPublicationAdd subflow 1 targeted to
the trading partner who initiated the flow, as detailed in the section
“ItemPublicationAdd subflow 1: making a new item available to trading partners’]
on page 6.| The PROCESSED_GTIN table provides the list of GTINs for the
ItemPublicationAdd, and the incoming message provides the trading partner’s
GLN. There are no external business process steps for this flow.

ITEM_ADD_CHANGE subdiagram

This subdiagram handles notifications for the ITEM_ADD and ITEM_CHANGE
topics. These notifications are sent by UCCnet to indicate completion of a
particular item synchronization request, such as one initiated by an ItemAdd or
ItemChange workflow. The subdiagram logic does the following:

1. Receives the UCCnetGBO_envelope business object.
2. Configures it so that the correct maps will be used by the AS2 channel
connector.

3. Sends the UCCnetGBO_envelope over the ITEM_ADD_CHANGE port to the
AS2 channel connector where it is mapped to an ItemPublicationAdd or
ItemPublicationChange request.

4. Logs the notification in the audit_log table. See the section [“Using the audit_log]
[table” on page 36 for more information on the audit_log table.

The follow-up workflow is that of the first subflow of either the
ItemPublicationAdd or ItemPublicationChange workflow, as detailed in the
sections [“ItemPublicationAdd subflow 1: making a new item available to trading]
partners” on page 6 and [“ItemPublicationChange subflow 1: making updated item|
information available to trading partners” on page 10

NEW_ITEM_PUBLICATION_REQUEST subdiagram

This subdiagram handles notifications associated with the single notification topic
NEW_ITEM_PUBLICATION_REQUEST. This notification is generated as a result of
the following:

* A new item being added to the source ERP.
* Item data being updated in the source ERP.

¢ A demand-side trading partner requesting through UCCnet that a supply-side
trading partner publish a specific item (GTIN) or items to it so it can
synchronize them. The demand-side partner’s request produces a notification in
the worklist of the supply-side trading partner. This notification has the
type="NEW_ITEM_PUBLICATION_REQUEST".

The logic in this subdiagram does the following:

Solution development guide 41

1. Verifies that the GTIN value associated with the item is in the
PROCESSED_GTIN table and that the item is not withdrawn. See the section
[“Using the PROCESSED_GTIN table” on page 34| for more information on the
PROCESSED_GTIN table.

2. Checks that the new item or new item information to be published is supplied
by a trading partner listed in the trading_partner table and verifies that the
demand-side trading partners to whom notification will be sent are also in this
table. See the section [“Using the trading_partner table” on page 37 for more
information on the trading_partner table.

3. Configures the business object so that the correct maps will be used by the AS2
channel connector.

4. Logs the notification in the audit_log table. See the section|“Using the audit_log|
[table” on page 36| for more information on the audit_log table.

The follow-up workflow is that of the second subflow of either the
ItemPublicationAdd or ItemPublicationChange workflow, as detailed in the
sections [“ItemPublicationAdd subflow 2: processing trading partners’ responses to|
a new item” on page 7 and |[“ItemPublicationChange subflow 2: processing trading|
partners’ responses to updated item information” on page 11.

PUBLICATION_COMMAND_RESPONSE subdiagram

This subdiagram handles incoming CI response and CIP response messages as
follows:

1. It writes a record to the audit_log table indicating receipt of the CI or CIP
response message.See the section |[“Using the audit_log table” on page 36| for
more information on the audit_log table. .

2. If the received message is a CIP_RESPONSE, then it sends the
UCCnetGBO_envelope through the CIP_RESPONSE port to the a
Notify_by_eMail collaboration object to notify the supplier, and then exits.

3. Otherwise, it creates an empty ItemBasic business object and sends it to the
DestinationAppRetrieve port with a retrieve verb. This actions retrieves the
ItemBasic business that initiated the corresponding RCIR command originally
sent to UCCnet.

4. If the retrieved ItemBasic business object indicates a CHANGE, the subdiagram
sends a UCCnetGBO_envelope business object through CI_RESPONSE port to a
Notify_by_eMail collaboration object to notify the supplier, and then exits.

5. If the retrieved ItemBasic BO indicates an ADD, the subdiagram sends the
business object out the PUBLICATION_CMD_RESPONSE port to an instance of
the CIN_CIP_Dispatcher collaboration object to initiate sending of CIPs.

RCIR_RESPONSE subdiagam

This subdiagram handles notifications for the ADD and CHANGE topics. These
notifications are sent by UCCnet when a request in made by the supply-side
trading partner to add or change an item.

The subdiagram logic first records the occurrence of the RCIR_RESPONSE message
in the audit_log. Then, it builds a skeleton ItemBasic business object, defining only
the UPCEANCODE and ITEM_DOMAIN attributes. It next sends this ItemBasic
business object out through the DestinationAppRetrieve port so that the user can
respond with a completed ItemBasic business object. In a production environment,
an additional process is required to retrieve the fully defined ItemBasic business
object using the UPCEANCODE and ITEM_DOMALIN fields, and to return it to the
DestinationAppRetrieve port.

42 Solution Development Guide

Once the fully defined ItemBasic business object has been returned:

For CIN operation
The RCIR_RESPONSE subdiagram sends it out through the
RCIR_RESPONSE port to the CIN_CIP_Dispatcher collaboration object.
This action triggers the CIN_CIP_Dispatcher collaboration object to
generate CATALOGUE_ITEM_NOTIFICATION messages and send one to
each subscribed demand-side trading partner.

Note: CATALOGUE_ITEM_NOTIFICATION is a general term. The
workflow explanations refer to either a
CatalogueltemNotificaton_ADD message, or a

CatalogueltemNotification_ CHANGE as specific instances of a
CATALOGUE_ITEM_NOTIFICATON message.

For CIP operation
The RCIR_RESPONSE subdiagram sends it out through the
RCIR_RESPONSE port to an AS2 channel connector, which maps it to a
Catalogue Item message and sends it to UCCnet.

The follow-up workflow is the CatalogueltemNotification_Add or
CatalogueltemNotification_Change workflow, as detailed in the sections
“CatalogueltemNotification_Add and CatalogueltemPublication_Add workflows:
making a new item available to trading partners and processing their responses”|
on page 16/ and |“CatalogueltemNotification_Change and|
CatalogueltemPublication_Change workflow: making updated item information|
available to trading partners and processing their responses” on page 20.| Ensure
that the schema delist and withdrawal workflows do not use this subdiagram.

RCIR_QUERY_RESPONSE subdiagram

This subdiagram handles incoming RCIR Query response messages. The
subdiagram logic instantiates a collaboration object based on the Notify_by_eMail
collaboration template, which sends an email to selected recipients with the
contents of the received message. The email message, subject, and recipients are
configured in this collaboration object’'s EMAIL_MESSAGE, EMAIL_SUBJECT, and
EMAIL_NOTIFICATION_RCPTS configuration properties, respectively. See the
section [’Sending email through UCCnet_processWorklist collaboration object|
lsubdiagrams” on page 45/ for more information.

SIMPLE_RESPONSE subdiagram

This subdiagram handles immediate responses to commands such as MDNs from
UCCnet. The subdiagram logic instantiates a collaboration object based on the
Notify_by_eMail collaboration template, which sends an email to selected
recipients. The email message, subject, and recipients are configured in this
collaboration object’'s EMAIL_MESSAGE, EMAIL_SUBJECT, and
EMAIL_NOTIFICATION RCPTS configuration properties, respectively. See the
section [“Sending email through UCCnet_processWorklist collaboration object|
lsubdiagrams” on page 45| for more information.

UNKNOWN_MESSAGES subdiagram

This subdiagram handles incoming messages not recognized as supported. The
subdiagram logic instantiates a collaboration object based on the Notify_by_eMail
collaboration template called, which sends an email to selected recipients. The
email message, subject, and recipients are configured in this collaboration object’s
EMAIL_MESSAGE, EMAIL_SUBJECT, and EMAIL_NOTIFICATION_RCPTS

Solution development guide 43

configuration properties, respectively. See the section [“Sending email through|
[UCCnet_processWorklist collaboration object subdiagrams” on page 45| for more
information.

UNKNOWN_RESPONSE subdiagram

This subdiagram handles incoming messages that are recognized as notification
messages, but are not supported. The subdiagram logic instantiates a collaboration
object based on the Notify_by_eMail collaboration template, which sends an email
to selected recipients. The email message, subject, and recipients are configured in
this collaboration object’s EMAIL_MESSAGE, EMAIL_SUBJECT, and
EMAIL_NOTIFICATION_RCPTS configuration properties, respectively. See the
section [“Sending email through UCCnet_processWorklist collaboration object|
lsubdiagrams” on page 45| for more information.

Sending email

UCCnet_ItemSync and UCCnet_processWorklist collaboration objects can be
configured to send email to alert when processing errors occur. A
UCCnet_processWorklist collaboration object can also instantiate collaboration
objects based on the Notify_by_eMail collaboration template to respond by email
to configured recipients when specific processing circumstances occur.

For more information on these topics, see the following sections:

+ |“Alerting email recipients of processing errors”|

* [“Sending email through UCCnet_processWorklist collaboration object]
subdiagrams” on page 45|

Alerting email recipients of processing errors

UCCnet_ItemSync and UCCnet_processWorklist collaboration objects can be
configured to send email to alert recipients when processing errors occur.

UCCnet_ItemSync collaboration object
This collaboration object uses two configuration properties to control
whether email is sent and to identify the mail recipients.

* SEND_EMAIL — This property controls whether email is sent to the
email address specified in the SEND_EMAIL_TO configuration property.
Set the property value to all to send email or to none to not send email.
If the value is left empty, no email is sent even if recipients exist in the
SEND_EMAIL_TO property.

¢ SEND_EMAIL_TO — This property defines the email addresses to
which error messages are sent. Multiple addresses can be provided in a
comma-delimited list. This property must be configured by the user.

UCCnet_processWorklist collaboration object
This collaboration object uses one configuration property to control
whether email is sent and to identify the mail recipients. The
SEND_EMAIL_TO property defines the email addresses to which error
messages are sent. Multiple addresses can be provided in a
comma-delimited list. If a value exists for this property, the collaboration
object sends email. If the property is left blank, the object does not send
email. This property must be configured by the user.

44 Solution Development Guide

Sending email through UCCnet_processWorklist collaboration
object subdiagrams

A UCCnet_processWorklist collaboration object contains several subdiagrams that
respond to specific types of workflow processing. The following subdiagrams
include functionality that sends an email to a set of configured addresses by
instantiating a collaboration object based on the Notify_by_eMail collaboration
template:

* CATEGORY_ADD_CHANGE subdiagram

* AUTHORIZATION_RESPONSES subdiagram

¢ DEAD_LETTER_PUB_RECEIPT subdiagram

* CATALOGUE_ITEM_CONFIRMATION subdiagram
* SIMPLE_RESPONSE subdiagram

* UNKNOWN_MESSAGES subdiagram

* UNKNOWN_RESPONSE subdiagram

Each of these subdiagrams instantiates an object based on the Notify_by_eMail
collaboration template, which can be configured to contain the email message,
subject, and recipients specific to its processing situation through its
EMAIL_MESSAGE, EMAIL_SUBJECT, and EMAIL_NOTIFICATION_RCPTS
configuration properties, respectively. These properties can also contain the names
of files, which permits messages, subjects, and recipients to be shared among
multiple collaboration objects. Also, more than one recipient can be specified to
receive email through use of a comma-delimited list. Plus, email message and
subject text can be constants that contain variables. The Notify_by_eMail
collaboration object substitutes data from the business object into these variables
dynamically. See the following sections for more information on these features:

* |“Specifying message text, subjects, and recipients in external files”]

* |“Specifying changing individual or multiple message recipients” on page 46|

* [“Using substitution variables in message and subject text” on page 46|

The value of the AUTO_RESPOND property of the UCCnet_processWorklist
collaboration object determines whether email is sent. The value of this
collaboration object’'s DTD_URL property sets the DTD line in the XML in any
outgoing XML message.

Specifying message text, subjects, and recipients in external
files

A Notify_by_eMail collaboration object allows the contents of its properties that
specify email message text, subject text, and recipients to contain the names of
files. These files contain the actual email message text, subject text, and addresses,
and can be easily modified without modifying the using collaboration objects. This
feature permits messages, subjects, and recipients to be shared among multiple
collaboration objects. A solution’s messages, subjects, and recipients can all be
contained in one easily modifiable directory.

A Notify_by_eMail collaboration object uses the following configuration properties
to identify the email message text, subject text, and recipients:

EMAIL_MESSAGE
Identifies the message text.

EMAIL_SUBJECT
Identifies the subject text.

Solution development guide 45

46

EMAIL_NOTIFICATION_RCPTS
Identifies the recipient or list of recipients.

The collaboration object distinguishes whether the content of a property is an
actual value or filename based on whether the value is prefixed by the character @.
If the value of the property is prefixed with the character @, the Notify_by_eMail
collaboration object interprets the rest of the value as a filename. The collaboration
object reads the value of the file into a String variable in preparation for further
processing. Files must be identified by their fully qualified names.

For instance, if the filename containing the email recipients is
c:\Email_Files\CategoryManagerRole.txt, set the value of the
EMAIL_NOTIFICATION_RCPTS property, as follows:

@c:\Email_Files\CategoryManagerRole.txt

If the value of a property does not start with the character @, the Notify_by_eMail
collaboration object obtains the email value directly from the attribute.

Specifying changing individual or multiple message recipients

A Notify_by_eMail collaboration object allows all email messages to be routed to
an administrator or to a specific role in an organization (like a Category Manager),
without the need to maintain the email recipient’s fully qualified email address in
every collaboration object that might send email. By placing the email address in
an external file, if the address changes, the file can be modified without having to
reconfigure the using collaboration objects. More than one recipient can be
specified to receive the email through use of a comma-delimited list. The
comma-delimited list can be specified in the business object attribute or in the
external file pointed to by the attribute.

Using substitution variables in message and subject text
Email message and subject text can be constants that contain variables. A

collaboration object based on the Notify_by_eMail template substitutes data from
the business object into these variables dynamically. Variables to be substituted
must be enclosed in the prefix characters ${ and the suffix character }. As a result,
the substitution variables in the email message and subject text must appear as:

${variable_name}

Note: These characters might have to be changed to meet National Language
requirements.

The supported values for variable_name, along with the values that the
collaboration object actually inserts in the text, are as follows:

getRoot
Substitutes the entire triggering business object.

getDate
Substitutes the current date and time.

getName
Substitutes the name of the triggering business object.

getVerb
Substitutes the verb of the triggering business object.

Any attribute name
Substitutes the value of the named attribute from the triggering business
object.

Solution Development Guide

If the value for variable_name does not match one of the specific values above, the
collaboration object interprets it as the name of a business object attribute. For
instance, in the following sample message:

UCCnet_processWorklist AUTHORIZATION_RESPONSES.mail: \
Date: ${getDate}

BusinessObject: ${getName}.${getVerb}

Topic:

${RO0T.body[0] .response.acknowledge.acknowledgement. \
subdocumentValid[0] .subdocumentValid[0] resultList[0]. \
notification.topic}

GLN:

${RO0T.body[0] .response.acknowledge.acknowledgement. \
subdocumentValid[0] .subdocumentValid[0].resultList[0]. \
notification.notificationDetail.transactionInformation.
entityIdentification.globallLocationNumber.gin}

GTIN:

${TLO.body.body Wrapperl[0].response.acknowledge.
acknowledgement.subdocumentValid[0].subdocumentValid[0].
resultlist.resultList_Wrapperl[0].notification.
notificationDetail.authorizationNotification.publication.
item.itemInformation.globalTradeltemNumber.gtin}

—

${getRoot}

the following variables are filled in automatically during the generation of the
message, as follows:

e ${getDate}, with the current date and time.
* ${getName}, with the name of the triggering business object.
* ${getVerb}, with the verb of the triggering business object.

* All variables beginning with ${R00T.body[0]. . .}, with the values for those
attributes.

* ${getRoot} with the entire triggering business object.

Logging

If UCCnet_ItemSync, UCCnet_requestWorklist, UCCnet_processWorklist, and
Notify_by_eMail collaboration objects encounter error situations during any stage
of processing, they do the following:

* Log the error in the configured log destination.
* Return the object to the calling collaboration object through the From port.

Note: For error logging to occur, tracing must be enabled. Also, use separate files
for tracing and logging. Use logging files to maintain persistent records of
processed data. Use tracing files to diagnose problems and to show the flow
of an item through the Item Synchronization for Suppliers solution. The Log
Viewer tool has log and trace file filters that enable users to view the log or
trace records for a particular business object or collaboration object.

Tracing

All collaboration objects based on collaboration templates included in the Item
Synchronization for Suppliers solution provide tracing capabilities to record logical
flows and data processed. Users can enable tracing for a particular collaboration
object by selecting the collaboration object in the System Manager, displaying its
properties, and, on the Collaboration General Properties tab, selecting a trace level
greater than 0 from the System trace level field.

Solution development guide 47

Enable tracing for one or more collaboration objects when a reproducible problem
occurs. If a problem occurs only once during processing, leave the tracing function
enabled continually so that the first occurrence of the failure is captured. However,
leaving the tracing function enabled continually can degrade performance. Clear
the trace file periodically to simplify viewing and filtering it.

Note: Use separate files for tracing and logging. Use tracing files to diagnose
problems and to show the flow of an item through the Item Synchronization
for Suppliers solution. Use logging files to maintain persistent records of
processed data. The Log Viewer tool has trace and log file filters that enable
users to view the trace or log records for a particular business object or
collaboration object.

48 Solution Development Guide

Notices and Trademarks

Proprietary Information
US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 2002, 2004 49

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Burlingame Laboratory Director
IBM Burlingame Laboratory

577 Airport Blvd., Suite 800
Burlingame, CA 94010

US.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not necessarily tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE

This information may contain sample application programs in source language,
which illustrates programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

Programming interface information

Programming interface information, if provided, is intended to help you create
application software using this program.

50 Solution Development Guide

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States or other countries, or both:

IBM

the IBM logo
AIX

AS/400e
CrossWorlds
DB2

DB2 Universal Database
iSeries

Lotus

Lotus Notes
MQIntegrator
MQSeries
0S/400
Tivoli
WebSphere

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel
Corporation in the United States, other countries, or both.

Solaris, Java, and all Java-based trademarks are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

UCC and UCCnet are trademarks of Uniform Code Council, Inc., UCCnet, Inc. or
both, in the United States, other countries, or both.

UCCnet Messaging is a product and/or trademark of UCCnet and is used with
permission.

Other company, product, or service names may be trademarks or service marks of
others.

IBM WebSphere InterChange Server Version 4.2.2

IBM WebSphere Business Integration Toolset Version 4.2.2

IBM WebSphere Business Integration Adapters Version 2.4 J AVA
COMPATIBLE ®

Notices and Trademarks 51

52 Solution Development Guide

	Contents
	Solution development guide
	Introduction
	Who should read the Solution development guide
	How the Solution development guide is organized
	Planning the configuration

	Processing a business object: example workflows (DTD support)
	ItemAdd workflow: adding a new item to UCCnet (DTD support)
	ItemPublicationAdd workflow: making a new item available to trading partners and processing their responses
	ItemPublicationAdd subflow 1: making a new item available to trading partners
	ItemPublicationAdd subflow 2: processing trading partners' responses to a new item

	ItemChange workflow: updating item information in UCCnet (DTD support)
	ItemPublicationChange workflow: making updated item information available to trading partners and processing their responses
	ItemPublicationChange subflow 1: making updated item information available to trading partners
	ItemPublicationChange subflow 2: processing trading partners' responses to updated item information

	ItemDelist workflow: making an item permanently unavailable to trading partners (DTD support)
	ItemWithdrawal workflow: making an item temporarily unavailable to all or selected trading partners (DTD support)

	Processing a business object: example workflows (XSD support)
	ItemAdd workflow: adding a new item to UCCnet (XSD support)
	CatalogueItemNotification_Add and CatalogueItemPublication_Add workflows: making a new item available to trading partners and processing their responses
	ItemChange workflow: updating item information in UCCnet (schema support)
	CatalogueItemNotification_Change and CatalogueItemPublication_Change workflow: making updated item information available to trading partners and processing their responses
	ItemDelist workflow: making an item permanently unavailable to trading partners (schema support)
	ItemWithdrawal workflow: making an item temporarily unavailable to all or selected trading partners (schema support)

	Maps and data handlers
	Processing Message Disposition Notifications (MDNs)
	Retrieving worklists from UCCnet
	Customizing the process

	Sending information from collaboration objects to UCCnet
	Receiving data for a collaboration object from UCCnet
	Checking that item data exists for fields required by UCCnet
	Using the PROCESSED_GTIN table
	Using the audit_log table
	Using the trading_partner table
	Using subdiagrams
	AUTHORIZATION_RESPONSES subdiagram
	CATEGORY_ADD_CHANGE subdiagram
	CATALOGUE_ITEM_CONFIRMATION subdiagram
	CIN_RESPONSE subdiagram
	DEAD_LETTER_PUB_RECEIPT subdiagram
	INITIAL_ITEM_LOAD_REQUEST subdiagram
	ITEM_ADD_CHANGE subdiagram
	NEW_ITEM_PUBLICATION_REQUEST subdiagram
	PUBLICATION_COMMAND_RESPONSE subdiagram
	RCIR_RESPONSE subdiagam
	RCIR_QUERY_RESPONSE subdiagram
	SIMPLE_RESPONSE subdiagram
	UNKNOWN_MESSAGES subdiagram
	UNKNOWN_RESPONSE subdiagram

	Sending email
	Alerting email recipients of processing errors
	Sending email through UCCnet_processWorklist collaboration object subdiagrams
	Specifying message text, subjects, and recipients in external files
	Specifying changing individual or multiple message recipients
	Using substitution variables in message and subject text

	Logging
	Tracing

	Notices and Trademarks
	Notices
	Programming interface information

	Trademarks and service marks

