
IBM WebSphere Business Integration Collaborations for

Product Information Management, Version 1.1.0

IBM WebSphere Business Integration Collaborations for

Retail Message Manager, Version 4.4.0

Solution Development Guide

���

Eighth Edition (July 2004)

This edition applies to Version 4, Release 4, IBM WebSphere Business Integration Collaborations for Retail Message

Manager, Version 4.4.0 (5724-H63) and IBM WebSphere Business Integration Collaboration for Product Information

Management 1.1.0 (5724-H64)

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling

1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

Contents

About this book v

Who should read the Solution Development Guide . v

Definitions and terminology v

How the Solution development guide is organized vii

Chapter 1. Processing a business

object: an example NEW_ITEM workflow 1

Detailed workflow: receiving, filtering, and validating

a business object 1

Detailed workflow: processing a business object with

cascaded GLNs 5

Detailed workflow: completing the WebSphere MQ

Workflow process and merging updated information

into a complete business object 6

Detailed workflow: synchronizing a business object

to a back-end system 8

Chapter 2. Filtering publication

requests before business processing . 13

Filtering based on the presence of attributes

required by UCCnet 13

Filtering based on items belonging to approved

supply-side trading partners 16

Filtering based on items belonging to accepted

categories 16

Complex field filtering based on multiple attributes 17

Filtering to eliminate processing of duplicate items 18

Persisting or deleting an item to or from a local

identifier store 19

Chapter 3. Validating an item before

business processing 21

Validating an item against customized business

policy rules 21

Validating an item by requiring data for specific

attributes 22

Performing simple filtering 23

Performing complex filtering 24

Specifying attribute names 26

Using the RetailUtility external Java class . . . 26

Using the Custom Missing Attribute Logic . . . 28

Using a custom missing data retrieval process to

collect data 28

Chapter 4. Adding customized code to

the ItemValidation collaboration

template 31

Chapter 5. Processing business

objects with cascaded GLNs 33

Using the GLN Cascade Grouping File 33

Chapter 6. Using a business process to

review and approve an item 37

Printing an item before it is sent through the

business review/approval process 37

Mapping an item to the business review/approval

process 37

Using WebSphere MQ Workflow containers . . . 38

Returning data from the business review/approval

process to an ItemCollector collaboration object . . 40

Chapter 7. Merging data into a

complete item 41

Merging static data by using the X_COPY

ATTRIBUTE configuration properties 43

Merging missing data by using the

MISSING_DATA_CHILD_ATTRIBUTE configuration

property 44

Chapter 8. Processing an item after the

business review/approval process

completes 45

Synchronizing an item to a back-end application

other than a file system 46

Synchronizing an item to multiple back-end

applications 46

Chapter 9. Sending responses to

UCCnet 47

Chapter 10. Using identifier, message,

and item stores 51

Persisting or deleting an item to or from a local

identifier store 51

Persisting, retrieving, or deleting an item to or from

a local message store 52

Persisting, retrieving, updating, or deleting an item

to or from a local item store 53

Generating data base keys 54

Chapter 11. Controlling e-mail 55

Alerting email recipients of item status or

processing errors 55

Alerting of Approved item status 56

Alerting of Accepted item status 57

Alerting of Rejected item status 58

Alerting of processing errors 60

Specifying message text, subjects, and recipients in

external files 62

Specifying changing individual or multiple message

recipients 63

Using substitution variables in message and subject

text 63

 iii

Chapter 12. Logging 65

Logging that mail is sent 65

Logging errors 65

Logging item status 65

Chapter 13. Tracing 67

Chapter 14. Handling solution

processing errors 69

Diagnosing error conditions 69

Recovering from error conditions 71

Chapter 15. Handling data from other

data sources 73

Extending the solution to handle a single data

source other than UCCnet 73

Extending the solution to handle multiple data

sources 73

Notices 75

Copyright license 77

Programming interface information 77

Trademarks 77

iv Solution Development Guide

About this book

This book is the Solution Development Guide for the Product Information

Management for Retailers solution.

Who should read the Solution Development Guide

The Solution Development Guide is for programmers who design and implement

workflows using the Product Information Management for Retailers solution and

who might participate in designing customizations to this solution.

The guide assumes that users are experienced programmers and that they

understand the following concepts and have experience with the software

associated with them:

v Developing collaboration objects, business objects, maps, and other related

components

v Installing, configuring, and operating the Product Information Management for

Retailers solution

v Modeling workflows using IBM® WebSphere® MQ Workflow

Programmers must also have experience with the respective operating system on

which their implementation is installed.

Definitions and terminology

Definitions of terminology used in the guide.

Definitions of connector and adapter

The term connector used throughout refers to the runtime portion of an IBM

WebSphere Business Integration Adapter. References to specific connectors are

related to specific adapters, as follows:

 Term Usage

iSoftConnector The runtime portion of an IBM WebSphere

Business Integration Adapter for iSoft.

TPIConnector The runtime portion of an IBM WebSphere

Business Integration Adapter for Trading

Partner Interchange.

JMSConnector The runtime portion of an IBM WebSphere

Business Integration Adapter for Java™[tm]

Message Service (JMS).

JTextConnector The runtime portion of an IBM WebSphere

Business Integration Adapter for JText.

JTextISoftConnector The runtime portion of an adapter based on

the IBM WebSphere Business Integration

Adapter for JText.

JTextTPIConnector The runtime portion of an adapter based on

the IBM WebSphere Business Integration

Adapter for JText.

 v

Term Usage

JTextJMSConnector The runtime portion of an adapter based on

the IBM WebSphere Business Integration

Adapter for JText.

WebSphereMQWorkflowConnector The runtime portion of an IBM WebSphere

Business Integration Adapter for WebSphere

MQ Workflow.

The way you connect to UCCnet determines the connector that you use to

communicate with it.

If you exchange messages with UCCnet using an AS2/EDIINT interface protocol,

you can use a TPIConnector, an ISoftConnector, or you can use WebSphere

Business Integration Connect in conjunction with a JMSConnector.

Use the TPI connector if you communicate with UCCnet through Trading Partner

Interchange servers.

Use the ISoftConnector if you communicate with UCCnet through an iSoft

Peer-to-Peer Agent.

Use the JMS connector if you communicate with UCCnet through WebSphere

Business Integration Connect.

If you exchange messages through the UCCnet Command Line Utility (CLU) or

are testing your installation, you can use either a JTextTPIConnector, a

JTextISoftConnector, or a JTextJMSConnector.

Because the actual connector you use is dependent on your set up, this

documentation uses “AS2 channel connector” as a general term for any of the

TPIConnector, iSoftConnector, JMSConnector, JTextTPIConnector,

JTextISoftConnector, and JTextJMSConnector.

Schema and DTD terminology

The information in the following sections outlines how the Product Information

Management for Retailers solution handles publication information notifications (in

systems supporting the UCCnet DTD) or Catalogue Item Notifications (in systems

supporting the UCCnet XSD). Because the collaboration templates within the

Product Information Management for Retailers solution are schema-based, in

DTD-based systems, the solution maps incoming DTD-based publication

information notifications into XSD-based Catalogue Item Notifications during

processing, and converts outgoing XSD-based Catalogue Item Confirmation

commands into DTD-based Authorization commands at the end of solution

processing. For simplicity, the solution will be discussed throughout using schema

terminology only.

Definitions of NULL and BLANK

The terms NULL and BLANK are defined as true responses when the attributes are

tested using the business object methods isNull() and isBlank(), respectively. The

method isNull() returns true when a value has never been set in an attribute. The

vi Solution Development Guide

method isBlank() returns true when the attribute contains a zero-length string. An

attribute containing a space character is not considered BLANK by the isBlank()

method.

How the Solution development guide is organized

The Solution development guide introduces the mechanics of the solution by first

presenting a sample, high-level, step-by-step workflow. This section is useful for

obtaining an overall, conceptual understanding of solution processing.

XSD and DTD workflow

The guide illustrates how the solution handles the following:

v A Catalogue Item Notification NEW_ITEM in systems supporting the UCCnet

XML Schema Definition. (XSD)

v A PUB_RELEASE_NEW_ITEM in systems supporting the UCCnet Document

Type Definition (DTD).

About this book vii

viii Solution Development Guide

Chapter 1. Processing a business object: an example

NEW_ITEM workflow

The information in the following sections outlines the Product Information

Management for Retailers solution workflow in detail. It describes at a high level

how the solution handles a PUB_RELEASE_NEW_ITEM flow (in systems

supporting the UCCnet DTD) or a Catalogue Item Notification NEW_ITEM flow

(in systems supporting the UCCnet XSD).

Overview

The example workflow follows an item from the point when it is retrieved from

UCCnet, as it is taken through filtering, validation, and WebSphere MQ Workflow

business review/approval processing, and is then synchronized to a back-end

system. In the context of the Product Information Management for Retailers

solution, this back-end system is a file system. Any response to the item is

returned to UCCnet. The workflow is presented in four segments:

v The flow from when an item is received from UCCnet until it is sent to an

ItemDispatcher collaboration object for optional handling of cascaded GLNs. See

“Detailed workflow: receiving, filtering, and validating a business object.”

v The flow from when an item is received by an ItemDispatcher collaboration

object until it is sent to WebSphere MQ Workflow for business review/approval

processing. See “Detailed workflow: processing a business object with cascaded

GLNs” on page 5.

v The flow from when an item enters the WebSphere MQ Workflow business

review/approval process until the updated information within it is merged into

a complete item by an ItemCollector collaboration object. See “Detailed

workflow: completing the WebSphere MQ Workflow process and merging

updated information into a complete business object” on page 6.

v The flow from when an item exits an ItemCollector collaboration object until it is

synchronized to a back-end system. See “Detailed workflow: synchronizing a

business object to a back-end system” on page 8.

If an error occurs, its cause and its location in its overall process flow must be

determined. Processing must then be restarted. See Chapter 14, “Handling solution

processing errors,” on page 69.

Tracing can also be enabled for all collaboration objects to record logical flaws and

data processed. See Chapter 13, “Tracing,” on page 67.

Detailed workflow: receiving, filtering, and validating a business object

The following outlines the solution workflow as an item is received from UCCnet,

passes through preprocessing filtering and validating processes, and is sent to an

ItemDispatcher collaboration object for optional processing of cascaded GLNs.

Workflow

 1. A worklist is requested from UCCnet. The AS2 channel connector receives the

worklist from the AS2 channel server (iSoft Peer-to-Peer Agent, TPI server or

WebSphere Business Integration Connect). This worklist can contain one type

of notification from the following list:

 1

v One or more publication information notifications if you are supporting

UCCnet DTDs

v One or more Catalogue Item Notifications if you are supporting UCCnet

XSDs

v One or more price/pricebracket notifications if you are supporting UCCnet

XSDs

.

 2. The AS2 channel connector sends the worklist to the IBM WebSphere Business

Integration Data Handler for XML, which converts it into an application

specific business object of the form UCCnetxxx_envelope (if iSoft connectivity

is used), UCCnetTPIxxx_envelope (if TPI connectivity is used), or

UCCnetJMSxxx_envelope (if WebSphere Business Connect is used with JMS).

This business object contains the entire UCCnet message, including each

individual data instance and the commands related to it.

Note: In this and the following steps, the variable xxx specifies the XML

definition type used (DTD or XSD).

 3. The business object is converted to a UCCnetGBO_envelope business object by

passing through an input map of the form

UCCnetxxx_envelope_to_UCCnetGBO_envelope (if iSoft connectivity is used),

UCCnetTPIxxx_envelope_to_UCCnetGBO_envelope (if TPI connectivity is

used) or UCCnetJMSxxx_envelope_to_UCCnetGBO_envelope (if WebSphere

Business Connect is used with JMS). The DTD forms of these maps convert

incoming ASBOs containing DTD-based publication information notifications

into UCCnetGBO_envelope GBOs containing XSD-based Catalogue Item

Notifications for ongoing processing by the solution. The AS2 channel

connector checks for subscriptions to the UCCnetGBO_envelope business

object by collaboration objects. Collaboration objects based on the

UCCnetMessageReceive collaboration template subscribe to it. Therefore, a

UCCnetMessageReceive collaboration object is passed the business object

through its FromAS2 port.

 4. The UCCnetMessageReceive collaboration object parses the message,

separating each instance of a Catalogue Item Notification or

price/pricebracket notification. Because this is an example of a Catalogue Item

Notification with a NEW_ITEM command, the UCCnetMessageReceive

collaboration object accommodates persisting the UCCnetGBO_envelope

business object to a local identifier store by first converting it to a

UCCnetGBO_identifier business object and then passing it with a Create verb

to an IdentifierStore collaboration object through its ToIdentifier_Store port.

 5. The IdentifierStore collaboration object receives the business object on its From

port and, through a series of interactions with the IBM WebSphere Business

Integration Data Handler for XML, stores the identifier in the identifier store.

If the item is already found in the identifier store, it is rejected. “Persisting or

deleting an item to or from a local identifier store” on page 19 describes how

a business object is persisted to the identifier store. “Filtering to eliminate

processing of duplicate items” on page 18describes how a

UCCnetMessageReceive collaboration object prevents duplicate items from

being processed.

 6. The UCCnetMessageReceive collaboration object accommodates persisting the

UCCnetGBO_envelope business object to a local message store by first

converting it to a UCCnetGBO_storable business object and then passing it

with a Create verb to a MessageStore collaboration object through its

ToMessage_Store port.

2 Solution Development Guide

7. The MessageStore collaboration object receives the business object on its From

port and, through a series of interactions with the IBM WebSphere Business

Integration Data Handler for XML, stores the message in the message store.

The section “Persisting, retrieving, or deleting an item to or from a local

message store” on page 52 describes in detail how a message is persisted to

the message store.

 8. The UCCnetMessageReceive collaboration object can filter the business object

to ensure that it contains attributes required by UCCnet, that it came from an

approved set of supply-side trading partners, that it belongs to an approved

set of item categories, and that it passes a set of complex filters that are based

on the interaction of multiple attributes. Information in Chapter 2, “Filtering

publication requests before business processing,” on page 13 details how the

collaboration object performs these functions. Based on whether the business

object passes or fails this analysis, the collaboration object directs processing,

as follows:

a. If the business object fails analysis, the collaboration object converts the

UCCnetGBO_envelope business object into a Retail_Item business object

containing the individual Catalogue Item Notification and its data. It

attaches a status to the business object preconfigured in its

FILTER_FAIL_RESPONSE property and sends it to its ToRetail_Response

port to be passed to a UCCnetMessageSend collaboration object for

transmittal to UCCnet.

b. If the business object passes analysis, the collaboration object converts the

UCCnetGBO_envelope business object into a Retail_Item business object

containing the individual Catalogue Item Notification and its data. It

attaches a status of Review to the business object and sets the command

type according to the original message type received from UCCnet. It then

sends this business object to its ToRetail_Processing port to be passed to an

ItemValidation collaboration object.

For the purposes of this example, assume this business object passed analysis.

 9. The ItemValidation collaboration object accepts the Retail_Item business object

on its From port and executes any code added to the template to evaluate it

according to customized business policy rules. The section “Validating an item

against customized business policy rules” on page 21 details how the

collaboration object performs this function. The business policy logic code

must change the business object status to a value of either Review or Rejected,

which directs further processing by the collaboration object, as follows:

a. If the Retail_Item business object status is not set to Rejected by the

business policy logic, the ItemValidation collaboration object continues to

process it.

b. If the Retail_Item business object status is set to Rejected by the business

policy logic, the collaboration object aborts any further processing and

returns the business object to the caller through its From port.

For the purposes of this example, assume that the Retail_Item business

object’s status was not set to Rejected by the business policy logic.

10. The ItemValidation collaboration object checks that those particular attributes

of the business object that the user has specified must contain data are not

NULL or BLANK. See “Definitions and terminology” on page v. Simple or

complex filtering can be used to conditionally specify which attributes must

contain data. The section “Validating an item by requiring data for specific

attributes” on page 22 describes how the collaboration object performs this

function. Based on the results of this check, the collaboration object handles

the Retail_Item business object, as follows:

Chapter 1. Processing a business object: an example NEW_ITEM workflow 3

a. If all required attribute data is present, the ItemValidation collaboration

object continues to process it.

b. If the business object is missing data for any specified Retail_Item

attribute, the collaboration object adds the attribute name to another

Retail_Item business object list attribute, which is specified in the

collaboration object’s CUST_DATA_MISS_ATTR configuration property (by

default, internals.customer_data_missing_attributes) and continues to

process it.
11. The ItemValidation collaboration object executes any customized code the user

has added to the template for the command associated with the business

object. The section Chapter 4, “Adding customized code to the ItemValidation

collaboration template,” on page 31 details how the collaboration object

performs this function.

12. If configured to do so, the ItemValidation collaboration object enables

persistence of the business object to a local item store by sending it with a

Create verb to its LocalItemStore port to be passed to an ItemStore

collaboration object.

13. The ItemStore collaboration object receives the business object on its From

port and, through a series of interactions with the IBM WebSphere Business

Integration Data Handler for XML, stores it in the item store database. The

section “Persisting, retrieving, updating, or deleting an item to or from a local

item store” on page 53 describes how a business object is persisted to the item

store.

14. The ItemValidation collaboration object sets the business object’s status to

Review. It processes the business object according to whether it is missing

data for any specified Retail_Item attribute, as follows:

a. If the object is missing required attribute data, the collaboration object

passes it to its ToMissingData port to trigger a process for obtaining the

missing data. The ToMissingData port can be connected to another

collaboration object or to an asynchronous process for collecting the

missing attribute values. This custom missing data retrieval process is

described in the section “Using a custom missing data retrieval process to

collect data” on page 28.

b. If all required attribute data is present, the collaboration object passes it to

its To port to trigger an ItemDispatcher collaboration object.

For the purposes of this example, to be continued in the section “Detailed

workflow: processing a business object with cascaded GLNs” on page 5,

assume that all required data is present in the business object.

An ItemValidation collaboration object can be configured to initiate notification if

errors are detected during processing. It connects through its Notify port to a

Role_Email collaboration object, which actually controls the email. See Chapter 11,

“Controlling e-mail,” on page 55.

An ItemValidation collaboration object can also log the business object being

processed when an error occurs (in addition to the error) and when item status

values are Review and Rejected. A Role_Email collaboration object can log when

errors occur and each time an email message is sent. See Chapter 12, “Logging,” on

page 65.

4 Solution Development Guide

Detailed workflow: processing a business object with cascaded GLNs

The following outlines the solution workflow as an item is accepted and processed

by an ItemDispatcher collaboration object. Based on whether the item has any

cascaded GLNs within it, one or more items are then sent to a WebSphere MQ

Workflow process for review/approval.

Workflow

 1. An ItemDispatcher collaboration object is triggered by the receipt of a

Retail_Item business object on its From port.

 2. The ItemDispatcher collaboration object examines the item to see if it contains

cascaded GLNs and then directs processing, as follows:

v If no cascaded GLNs exist, the collaboration object sends the item through

its To port to the WebSphere MQ Workflow process, and processing by the

ItemDispatcher collaboration object ends.

v If cascaded GLNs do exist, the collaboration object continues processing the

item.

For the purposes of this example, assume that cascaded GLNs do exist.

 3. The ItemDispatcher collaboration object checks if a filename exists in its

GLN_CASCADE_GROUPING_FILE property and directs processing, as

follows:

v If this property is empty, the collaboration object uses the value of the

GLN_CASCADE_GROUPING_DEFAULT configuration property to guide

on-going processing.

v If a filename exists in this property, the collaboration object verifies that the

file exists and parses correctly. Based on the results of this check, it guides

processing, as follows:

– If the file exists and parses correctly, the collaboration object continues

processing the item.

– If the file does not exist or does not parse correctly, the collaboration

object raises an exception, sends the item to its Notify port with

appropriate error attributes filled in, and processing ends.

For the purposes of this example, assume that a filename and file exist and

that the file parses correctly.

 4. The ItemDispatcher collaboration object checks if the RetailUtility class file

specified in its UTILITY_CLASS property exists. It then directs processing, as

follows:

v If a file exists, the collaboration object continues processing the item.

v If a file does not exist, the collaboration object raises an exception, sends the

item to its Notify port with appropriate error attributes filled in, and

processing ends.

For the purposes of this example, assume that a RetailUtility class file exists.

 5. The ItemDispatcher collaboration object uses the information in the file

specified in its GLN_CASCADE_GROUPING_FILE property to determine

how to group the cascaded GLNs. See “Using the GLN Cascade Grouping

File” on page 33.

 6. For each cascaded GLN identified in Step 5, which will be sent to the

WebSphere MQ Workflow process, the ItemDispatcher collaboration object

creates one copy of the Retail_Item business object. It removes the extra

cascaded GLNs from each copy and sends each to its LocalItemStore port with

a Create verb to an ItemStore collaboration object. The key used for each new

Chapter 1. Processing a business object: an example NEW_ITEM workflow 5

item is the concatenation of the internals.correlationID attribute value of the

original triggering business object and the internals.cascadedGlns.gln attribute

value of the newly created business object.

 7. The ItemStore collaboration object receives each new business object on its

From port and, through a series of interactions with the IBM WebSphere

Business Integration Data Handler for XML, stores each in the item store

database. The section describes in detail how a business object is persisted to

the item store.

 8. The collaboration object creates a new copy of the triggering Retail_Item

business object for each group, removing extra cascaded GLNs that do not

belong in the group from each Retail_Item.

 9. The new Retail_Item business objects are sent through the To port to the

WebSphere MQ Workflow process for approval.

10. The original Retail_Item business object is updated with the number of

cascaded items sent to the WebSphere MQ Workflow process and is then sent

to the LocalItemStore port with an Update verb to an ItemStore collaboration

object.

11. The ItemStore collaboration object receives the business object on its From port

and, through a series of interactions with the IBM WebSphere Business

Integration Data Handler for XML, updates the item store database. See

“Persisting, retrieving, updating, or deleting an item to or from a local item

store” on page 53.

This workflow is continued in “Detailed workflow: completing the WebSphere MQ

Workflow process and merging updated information into a complete business

object.”

An ItemDispatcher collaboration object can be configured to initiate notification if

errors are detected during processing. It connects through its Notify port to a

Role_Email collaboration object, which actually controls the e-mail. See Chapter 11,

“Controlling e-mail,” on page 55.

An ItemDispatcher collaboration object can also log when errors occur. See

Chapter 12, “Logging,” on page 65.

Detailed workflow: completing the WebSphere MQ Workflow process

and merging updated information into a complete business object

The following outlines the solution workflow as a business object passes through

the WebSphere MQ Workflow business review/approval process and is delivered

to an ItemCollector collaboration object, where the new information is merged into

a complete business object.

Also, refer to the Installation guide for detailed information on creating port

connections between collaboration objects and between collaboration objects and

connectors.

Workflow

 1. The WebSphere MQ Workflow business review/approval process begins when

an ItemDispatcher collaboration object passes a Retail_Item to the

WebSphereMQWorkflowConnector over its To port through the

Retail_Item_to_MQWF_Retail_Item map. At this point, the flow becomes

asynchronous. A Retail_Item can contain multiple GLNs.

6 Solution Development Guide

2. The WebSphereMQWorkflowConnector builds a WebSphere MQ Workflow

container and invokes a specific WebSphere MQ Workflow process. “Mapping

an item to the business review/approval process” on page 37 and “Using

WebSphere MQ Workflow containers” on page 38 describe how business

objects are mapped into WebSphere MQ Workflow and how process

definitions and containers are used in the context of the Product Information

Management for Retailers solution.

 3. The approver(s) responsible for approving the item set the item status to

Approved, Rejected, Accepted, or Review through a customized user interface

with WebSphere MQ Workflow. If an item contains multiple GLNs, the

approver must set the status for each GLN in the item.

 4. The WebSphere MQ Workflow process sends the container with the updated

status to the WebSphereMQWorkflowConnector. At this point, the WebSphere

MQ Workflow business review/approval process is complete and the flow

becomes synchronous again.

 5. The WebSphereMQWorkflowConnector maps the container back into a partial

Retail_Item business object by passing it through the

MQWF_Retail_Item_to_Retail_Item map and invokes an ItemCollector

collaboration object. The section “Returning data from the business

review/approval process to an ItemCollector collaboration object” on page 40

describes how updated information in this partial object is returned to the

ItemCollector collaboration object.

 6. The ItemCollector collaboration object accepts the partial Retail_Item business

object on its From port and retrieves the complete copy of the Retail_Item that

was stored by the ItemValidation collaboration object in the item store

database before the review/approval process was started. It retrieves the item

by sending the business object and a Retrieve verb to its local_store port to be

passed to an ItemStore collaboration object. The ItemCollector collaboration

object saves the Retail_Item internals.correlationID value, from the

complete copy retrieved from the item store, for use in later processing.

 7. The ItemStore collaboration object receives the business object on its From

port and, through a series of interactions with the IBM WebSphere Business

Integration Data Handler for XML, retrieves the item from the item store

database and returns it to the ItemCollector collaboration object. The section

“Persisting, retrieving, updating, or deleting an item to or from a local item

store” on page 53 describes in detail how a business object is retrieved from

the item store.

 8. The collaboration object checks if the original Retail_Item retrieved from the

item store database contained cascaded GLNs. Assume for the purposes of

this example flow that cascaded GLNs are present. See Merging data into a

complete item.

 9. The ItemCollector collaboration object loops through the GLNs, processing

each one, as follows:

a. It retrieves the copy of the Retail_Item that was stored by the

ItemDispatcher collaboration object from the item store database by

sending the business object and a Retrieve verb to its local_store port to be

passed to an ItemStore collaboration object. The key used to access the

item is the concatenation of the internals.correlationID attribute value of

the original triggering business object and the internals.cascadedGlns.gln

attribute value for the GLN being processed.

b. The ItemStore collaboration object receives the business object on its From

port and, through a series of interactions with the IBM WebSphere

Business Integration Data Handler for XML, retrieves the item from the

item store database and returns it to the ItemCollector collaboration object.

Chapter 1. Processing a business object: an example NEW_ITEM workflow 7

c. The ItemCollector collaboration object merges the new data received from

the WebSphere MQ Workflow process into the Retail_Item business object

retrieved from the item store. The section Merging data into a complete

item describes in detail how the ItemCollector collaboration object merges

the data into a complete item.

d. The ItemCollector collaboration object then handles the business object

according to its status value. Assume for the purposes of this example

flow that the status value of the internals.cascadedGlns.item_status

attribute is Approved. In this case, the ItemCollector collaboration object

routes the merged Retail_Item business object to a Process_Reviewed_Item

collaboration object via its To port.
10. The ItemCollector collaboration object calculates how many total cascaded

GLNs have completed processing (i.e., they have Approved, Rejected, or Error

status). If all of the cascaded GLNs from the original message that was sent to

the ItemDispatcher collaboration object have completed processing, it does the

following:

a. Sets the Retail_Item internals.lastCascadedGLN attribute to true

indicating to the UCCnetMessageSend collaboration object that this is the

last of the group of cascaded GLNs contained in the original Retail_Item.

b. Deletes the copy of the Retail_Item that was stored by the ItemValidation

collaboration object from the item store database by sending the business

object and a Delete verb to its local_store port to be passed to an ItemStore

collaboration object. The key used to access the item is the

internals.correlationID attribute value of the original triggering business

object.

c. The ItemStore collaboration object receives the business object on its From

port and, through a series of interactions with the IBM WebSphere

Business Integration Data Handler for XML, deletes the item from the item

store database.

This workflow is continued in “Detailed workflow: synchronizing a business object

to a back-end system.”

An ItemCollector collaboration object can be configured to initiate notification if

errors are detected during processing. It connects through its email port to a

Role_Email collaboration object, which actually controls the e-mail. See Chapter 11,

“Controlling e-mail,” on page 55.

An ItemCollector collaboration object can also log the business object being

processed when an error occurs (in addition to the error). A Role_Email

collaboration object can log when errors occur and each time an e-mail message is

sent. See Chapter 12, “Logging,” on page 65.

Detailed workflow: synchronizing a business object to a back-end

system

The following outlines the solution workflow as a business object passes from an

ItemCollector collaboration object to a Process_Reviewed_Item collaboration object,

which synchronizes the business object to the back-end system and initiates

sending a response to UCCnet through a UCCnetMessageSend collaboration object.

Workflow

 1. An ItemCollector collaboration object sets the Retail_Item

internals.originalCorrelationID attribute to the value obtained from the

8 Solution Development Guide

original Retail_Item internals.correlationID attribute (the one saved by the

ItemValidation collaboration object) and then passes the Retail_Item business

object to a Process_Reviewed_Item collaboration object, which receives it on

its From port. The internals.originalCorrelationID is used by the

UCCnetMessageSend collaboration object to access the original message in the

message store.

 2. If configured to do so, the Process_Reviewed_Item collaboration object enables

deletion of the item from the item store by passing the business object with a

Delete verb to its local_store port to be passed to an ItemStore collaboration

object.

 3. The ItemStore collaboration object receives the business object on its From

port and, through a series of interactions with the IBM WebSphere Business

Integration Data Handler for XML, deletes the item from the item store. The

section “Persisting, retrieving, updating, or deleting an item to or from a local

item store” on page 53 describes in detail how a business object is deleted

from the item store.

 4. The Process_Reviewed_Item collaboration object directs processing according

to the status of the business object. For the purposes of this example, assume

that the status of the business object is Approved. See Processing an item after

the business review/approval process completes. Because, in this example, the

Retail_Item business object status is Approved, the following operations occur:

a. The business object is routed to the JTextConnector via the

Process_Reviewed_Item collaboration object’s Sync port. The

JTextConnector writes the Retail_Item business object to a file system. If

this is successful, the item status is changed to Synchronized; if not, the

item status is changed to Error.

b. The business object is sent to the respond_to port to be passed to a

UCCnetMessageSend collaboration object. Alternatively, the Retail_Item

can be sent to a single application other than the JTextConnector or to

multiple back-end applications. See “Synchronizing an item to a back-end

application other than a file system” on page 46 and “Synchronizing an

item to multiple back-end applications” on page 46.
 5. Optionally, the Process_Reviewed_Item collaboration object rewrites the

Retail_Item to the local item store by sending the business object and a Create

verb to the local_store port to be passed to an ItemStore collaboration object.

 6. The ItemStore collaboration object receives the business object on its From

port and, through a series of interactions with the IBM WebSphere Business

Integration Data Handler for XML, stores the item in the item store. The

section “Persisting, retrieving, updating, or deleting an item to or from a local

item store” on page 53 describes how a business object is persisted to the item

store.

 7. The UCCnetMessageSend collaboration object receives the Retail_Item

business object on its FromRetail port. It then retrieves the layer information

from the local message store by using the Retail_Item

internals.originalCorrelationID and converting the Retail_Item to a

UCCnetGBO_storable business object and passing it with a Retrieve verb to a

MessageStore collaboration object through its ToMessage_Store port. If the

Retail_Item internals.originalCorrelationID attribute is not populated the

Retail_Item internals.correlationID attribute value is used

 8. The MessageStore collaboration object receives the business object on its From

port and, through a series of interactions with the IBM WebSphere Business

Integration Data Handler for XML, retrieves the message from the message

store database and returns it to the UCCnetMessageSend collaboration object.

Chapter 1. Processing a business object: an example NEW_ITEM workflow 9

The section “Persisting, retrieving, or deleting an item to or from a local

message store” on page 52 describes how a message is retrieved from the

message store.

 9. The UCCnetMessageSend collaboration object extracts the Catalogue Item

Notification command from the UCCnetGBO_storable business object and

handles the object according to its original command type, its status value,

and the values of certain properties. For the purposes of this example, assume

that the original Catalogue Item Notification was a NEW_ITEM and the status

is Approved. See Chapter 9, “Sending responses to UCCnet,” on page 47 for

more information. The UCCnetMessageSend collaboration object builds a

Catalogue Item Confirmation command message, composes the

UCCnetGBO_envelope business object by first converting the Retail_Item and

UCCnetGBO_storable business objects into a UCCnetGBO_RI_S business

object, and then passing this object through the map specified in its

TOAS2_RESPONSE_MAP configuration property. The resulting

UCCnetGBO_envelope business object contains all of the information needed

for the UCCnet Catalogue Item Confirmation message.

10. The UCCnetMessageSend collaboration object passes the

UCCnetGBO_envelope business object to the AS2 channel connector on its

ToAS2_Response port. In the connector controller portion of the connector, it

is converted to an application specific business object of the form

UCCnetxxx_envelope (if iSoft connectivity is used), UCCnetTPIxxx_envelope

(if TPI connectivity is used), or UCCnetJMSxxx_envelope (if WebSphere

Business Connect is used with JMS). The UCCnetGBO_envelope business

object is converted by passing through either the

UCCnetGBO_envelope_to_UCCnetxxx_envelope map (if iSoft connectivity is

used), the UCCnetGBO_envelope_to_UCCnetTPIxxx_envelope map (if TPI

connectivity is used), or the

UCCnetGBO_envelope_to_UCCnetJMSxxx_envelope map (if WebSphere

Business Connect is used with JMS). The DTD forms of these maps convert

outgoing UCCnetGBO_envelope GBOs containing XSD-based Catalogue Item

Confirmation commands into ASBOs containing DTD-based Authorization

commands.

Note: The variable xxx specifies the XML definition type used (DTD or XSD).

11. The UCCnetMessageSend collaboration object checks the Retail_Item

internals.lastCascadedGLN attribute to determine if the message store entry

should be deleted. If the attribute is not false the UCCnetMessageSend

collaboration object enables the deletion of the entry from the message store

by using the Retail_Item internals.originalCorrelationID and converting the

Retail_Item to a UCCnetGBO_storable business object and passing it with a

Delete verb to a MessageStore collaboration object through its

ToMessage_Store port. If the Retail_Item internals.originalCorrelationID

attribute is not populated the Retail_Item internals.correlationID attribute

value is used.

12. The MessageStore collaboration object receives the business object on its From

port and, through a series of interactions with the IBM WebSphere Business

Integration Data Handler for XML, deletes the message from the message

store. See “Persisting, retrieving, or deleting an item to or from a local

message store” on page 52.

13. The AS2 channel connector calls the IBM WebSphere Business Integration Data

Handler for XML to produce the XML message.

14. The AS2 channel connector passes this message to the iSoft Peer-to-Peer

Agent, the TPI server or to WebSphere Business Integration Connect.

10 Solution Development Guide

15. An AUTHORIZED authorization command for DTDs or SYNCHRONISED

Catalogue Item Confirmation command for XSDs is sent to UCCnet.

A Process_Reviewed_Item collaboration object can be configured to initiate

notification if an item has a status of Approved, Accepted, or Rejected or if errors

are detected during processing. It connects through its mail port to a Role_Email

collaboration object, which actually controls the e-mail. See Chapter 11,

“Controlling e-mail,” on page 55.

A Process_Reviewed_Item collaboration object can also log the business object

being processed when an error occurs (in addition to the error) and when item

status values are Approved, Accepted, and Rejected. A Role_Email collaboration

object can log when errors occur and each time an e-mail message is sent. See

Chapter 12, “Logging,” on page 65.

Chapter 1. Processing a business object: an example NEW_ITEM workflow 11

12 Solution Development Guide

Chapter 2. Filtering publication requests before business

processing

Details the preprocessing filtering performed by a UCCnetMessageReceive

collaboration object, which ensures that items contain attributes required by

UCCnet, that they are from supply-side trading partners or in categories accepted

by the demand-side trading partner, that duplicate items are not processed, and

that items pass a set of complex filters based on the interaction of multiple

attributes.

Purpose

Catalogue Item Notifications that arrive from UCCnet can be filtered before

business processing occurs to ensure that certain attributes required by UCCnet are

present, that items are from specified supply-side trading partners, that items are

in categories accepted by the demand-side trading partner, or that items pass

complex filters that are based on multiple attributes.

Catalogue Item Notifications with NEW_ITEM, DATA_CHANGE, WITHDRAW,

and DE_LIST commands can also be checked against an existing identifier store to

eliminate processing of duplicate items. All of these filtering operations are

performed by a UCCnetMessageReceive collaboration object.

Filtering based on the presence of attributes required by UCCnet

Enabling a UCCnetMessageReceive collaboration object to filter Catalogue Item

Notifications for the presence of attributes required by UCCnet.

Filter rules

To enable a UCCnetMessageReceive collaboration object to filter Catalogue Item

Notifications for the presence of attributes required by UCCnet, create an external

text file and list those UCCnetGBO_envelope business object attributes that must

be present and not contain NULL or BLANK values. Specify the path and name of

this file in the UCCnetMessageReceive collaboration object’s

REQUIRED_ATTRIBUTE_FILE configuration property.

This external text file can contain one of the following:

v A simple list of the fully qualified attributes in the

UCCnetXSD_envelope_notification child business object of the

UCCnetGBO_envelope business object that must be present (one attribute per

line).

v Complex filters that conditionally specify the list of attributes.

The first line of the file determines whether simple or complex filtering is

performed. If the first line contains a single fully qualified business object attribute

name, simple filtering is performed on the rest of the attributes listed in the file. If

the first line of the file contains a separator of FILTER or FIELDS, complex filtering

is assumed.

 13

To provide complex filtering, the file must contain any number of sections, each

section containing FILTER and FIELDS subsections. Filterless FIELDS subsections

can also be included.

Filter subsections

Each FILTER subsection filters on one or more business object attributes. A FILTER

subsection contains the following parts:

v A fully qualified business object attribute name on a single line.

v On the next single line, a comma-delimited list of valid values for the attribute.

v If filtering on multiple attributes, on the next single line, a value of AND.

v On the next single line, another fully qualified attribute name.

v On the next single line, a comma-delimited list of valid values for that

attribute.Any number

Any number of attributes can be filtered in this way.

Each FILTER subsection must be followed by a FIELDS subsection. A FIELDS

subsection must contain the required attributes for the filter above it, each attribute

on a separate single line. A FIELDS subsection can be followed by a FILTER

subsection, another FIELDS subsection without a filter, or an optional END

separator at the end of the file. If a FIELDS subsection is specified without a

FILTER subsection in front of it, the list of attributes in that FIELDS subsection is

always required.

The UCCnetMessageReceive collaboration object reads through the text file

examining the first line. If the line contains a fully qualified business object

attribute name, the collaboration object checks all attributes named in the specified

file. If any of the listed attributes are missing from the business object or are

present in the business object but missing data, the collaboration object logs the

business object and handles it according to the value specified in its

FILTER_FAIL_RESPONSE configuration property.

If the first line of the file contains a FILTER or FIELDS separator, the collaboration

object reads the file until it finds a FILTER subsection that is satisfied by the

attribute values contained in the business object being processed. The collaboration

object then checks all attributes in the business object against the list of attributes

included in the FIELDS subsection related to the satisfied filter.

If any of the attributes in the FIELDS subsection are missing from the business

object or are present in the business object but missing data, the collaboration

object logs the business object and handles it according to the value specified in its

FILTER_FAIL_RESPONSE configuration property.

If no file is specified in the REQUIRED_ATTRIBUTE_FILE property, or if no

attributes are indicated within the file, all items are accepted for further processing

by the collaboration object.

The following file is an example that demonstrates complex filtering.

FILTER

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.informationProviderOfTradeItem.informationProvider.gln

00011112222333

AND

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemUnitDescriptor

14 Solution Development Guide

CASE,PALLET

FIELDS

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.tradingPartnerNeutralTradeItemInformation. \

tradeItemMeasurements.netWeight

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.tradingPartnerNeutralTradeItemInformation. \

tradeItemMeasurements.grossWeight

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.tradingPartnerNeutralTradeItemInformation. \

tradeItemMeasurements.height

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.tradingPartnerNeutralTradeItemInformation. \

tradeItemMeasurements.width

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.tradingPartnerNeutralTradeItemInformation. \

tradeItemMeasurements.depth

FILTER

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.informationProviderOfTradeItem.informationProvider.gln

00011112222333

AND

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemUnitDescriptor

BASE_UNIT_OR_EACH

FIELDS

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.tradingPartnerNeutralTradeItemInformation. \

tradeItemMeasurements.netWeight

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.tradingPartnerNeutralTradeItemInformation. \

tradeItemMeasurements.grossWeight

END

The collaboration object checks if the business object being processed has a gln

attribute value of 00011112222333 and a tradeItemUnitDescriptor attribute value of

CASE or PALLET. If it does not, the collaboration proceeds to the next FILTER. If it

does, the collaboration object then checks if the business object being processed

contains the attributes netWeight, grossWeight, height, width, and depth, and that

these attributes are not NULL or BLANK. If the business object passes this filter,

collaboration object processing continues. If any of the attributes in the FIELDS

subsection are missing from the business object or are present in the business

object but missing data, the collaboration object logs the business object and

handles it according to the value specified in its FILTER_FAIL_RESPONSE

configuration property.

The collaboration object then proceeds to the next FILTER subsection. It checks if

the business object has a gln value of 00011112222333 and a

tradeItemUnitDescriptor attribute value of BASE_UNIT_OR_EACH. If it does, the

collaboration object then checks if the business object being processed contains the

attributes netWeight and grossWeight, and that these attributes are not NULL or

BLANK. If the business object passes this filter, collaboration object processing

continues. If any of the attributes in the FIELDS subsection are missing from the

business object or are present in the business object but missing data, the

collaboration object logs the business object and handles it according to the value

specified in its FILTER_FAIL_RESPONSE configuration property.

Chapter 2. Filtering publication requests before business processing 15

Filtering based on items belonging to approved supply-side trading

partners

Enabling a UCCnetMessageReceive collaboration object to filter Catalogue Item

Notifications to ensure that they come from supply-side trading partners approved

by the demand-side trading partner.

Filter rules

To enable a UCCnetMessageReceive collaboration object to filter Catalogue Item

Notifications to ensure that they come from supply-side trading partners approved

by the demand-side trading partner, create an external text file and list those

trading partners from whom items are accepted. Specify the path and name of this

file in the UCCnetMessageReceive collaboration object’s VENDOR_FILE

configuration property.

Each entry in this file must have the following structure and be followed by a line

return:

vendorGLN,other_data,other_data,...

In this structure, vendorGLN is the GLN (assigned by UCCnet) of an accepted

supply-side trading partner. This value is found in the

entityIdentification.globalLocationNumber.gln field of the

UCCnetXSD_envelope_notification child business object of the

UCCnetGBO_envelope business object. The variables called other_data are other

data entries that can be linked to the vendor GLN. The vendor GLN must be the

first entry in the line. Any number of associated attributes can be appended to the

line as long as they are separated by commas (,). Do not place a comma before the

vendor GLN. The following is an example of a valid entry:

00011112222333,TestVendor,(111)111-1111,contact@TestVendor.com

The collaboration object checks the entityIdentification.globalLocationNumber.gln

field of the UCCnetXSD_envelope_notification child business object. If the

supply-side trading partner specified in this business object attribute is also listed

in the file specified by the collaboration object‘s VENDOR_FILE property, the

collaboration object processes the business object normally. If the supply-side

trading partner specified in the business object attribute is not listed in this file, the

collaboration object logs it and handles it according to the value specified in its

FILTER_FAIL_RESPONSE configuration property. If no file is specified in the

VENDOR_FILE property, all items are accepted for further processing by the

collaboration object.

Filtering based on items belonging to accepted categories

Enabling a UCCnetMessageReceive collaboration object to filter Catalogue Item

Notifications to ensure that they belong to categories accepted by the demand-side

trading partner.

Purpose

To enable a UCCnetMessageReceive collaboration object to filter Catalogue Item

Notifications to ensure that they belong to categories accepted by the demand-side

trading partner, create an external text file and list those categories from which

16 Solution Development Guide

items are accepted. Specify the path and name of this file in the

UCCnetMessageReceive collaboration object’s CATEGORY_FILE configuration

property.

Each line of this file must contain only one category value. Each entry can include

embedded special characters, such as periods (.) and commas (,), as long as the

characters are valid within the category. Do not place characters in the line other

than those specified in the category. The following is an example of a valid entry:

0001.0001.001

The collaboration object checks the

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem.

tradeItemInformation.classificationCategoryCode.additionalClassification.

additionalClassificationCategoryCode field of the

UCCnetXSD_envelope_notification child business object of the

UCCnetGBO_envelope business object. If the value specified in this business object

attribute is also listed in the file specified in the collaboration object’s

CATEGORY_FILE property, the collaboration object processes it normally. If the

value listed in the business object attribute is not from a category listed in this file,

the collaboration object handles it according to the value specified in its

FILTER_FAIL_RESPONSE configuration property. If no file is specified in the

CATEGORY_FILE property, all items are accepted for further processing by the

collaboration object.

Complex field filtering based on multiple attributes

Enable a UCCnetMessageReceive collaboration object to filter Catalogue Item

Notifications based on a complex set of field criteria.

Filter rules

To enable a UCCnetMessageReceive collaboration object to filter Catalogue Item

Notifications based on a complex set of field criteria, create an external text file

that includes the complex filtering information. Specify the path and name of the

file in the UCCnetMessageReceive collaboration object’s COMPLEX_FILTER_FILE

configuration property. This file can contain any number of sections on which the

collaboration will filter, each section containing a fully qualified business object

attribute and a comma-delimited list of valid values for the attribute. The

collaboration object can search on multiple attribute name/value pairs combined

with an AND separator, or on mutually exclusive groups of attribute name/value

pairs separated by a NEXT separator. A file must be composed as follows:

v The first line contains a fully qualified attribute name on a single line.

v On the next single line, a comma-delimited list of valid values for the attribute.

v On the next single line, one of the following values:

– AND - A value of AND is followed by another fully qualified attribute name

on a single line followed by a comma-delimited list of valid values for it on

the following single line. Any number of attributes can be checked together in

this way.

– NEXT - A value of NEXT is followed by another set of attributes and values

combined with an AND separator.

– END - A value of END signifies the end of the list of complex filters.

Chapter 2. Filtering publication requests before business processing 17

Processing

The UCCnetMessageReceive collaboration object reads through the Complex Filter

File until it finds an attribute name/value pair that is satisfied by the attribute

name/value contained in the business object being processed. If the business object

passes complex filtering, the collaboration object processes it normally. If the

business object does not pass complex filtering, the collaboration handles it

according to the value specified in the FILTER_FAIL_RESPONSE configuration

property. If no file is specified in the COMPLEX_FILTER_FILE property, all items

are accepted for further processing by the collaboration object. If an item satisfies

the conditions of multiple filters, only the first filter in the file is ever considered.

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.informationProviderOfTradeItem.informationProvider.gln

00011112222333

AND

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.classificationCategoryCode.additionalClassification[0]. \

additionalClassificationCategoryCode

0001.001.001

NEXT

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.informationProviderOfTradeItem.informationProvider.gln

00011112222334

AND

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.classificationCategoryCode.additionalClassification[0]. \

additionalClassificationCategoryCode

0001.001.005

END

The collaboration object checks if the business object being processed has a gln

attribute value of 00011112222333 and an additionalClassificationCategoryCode

attribute value of 0001.001.001. If it does, the business object is accepted and

collaboration object processing continues.

If these first filter conditions were not satisfied, the collaboration object now

proceeds to the attribute name/value following the NEXT separator. It checks if

the business object has a gln value of 00011112222334 and an

additionalClassificationCategoryCode attribute value of 0001.001.005. If it does, the

business object is accepted and collaboration object processing continues. If it does

not, the collaboration ends processing.

Filtering to eliminate processing of duplicate items

A UCCnetMessageReceive collaboration object filters Catalogue Item Notifications

with NEW_ITEM, DATA_CHANGE, WITHDRAW, or DE_LIST commands to

ensure that they are not duplicate items.

Process flow

During normal item processing, a UCCnetMessageReceive collaboration object

enables persistence of the UCCnetGBO_envelope business object to a local

identifier store by converting it to a UCCnetGBO_identifier business object and

passing it to its ToIdentifier_Store port. This port is connected to an IdentifierStore

collaboration object. The IdentifierStore collaboration object performs the actual

storage operation. See “Persisting or deleting an item to or from a local identifier

store” on page 19.

18 Solution Development Guide

Before sending the object to this port, the collaboration object checks the value of

its FILTER_DUPLICATE configuration property. If the value is true (which is the

default value), the collaboration object checks if an item with identical key attribute

values exists in the identifier store.

If you are processing DTDs the keys are the gtin, version, and topic attributes.

If you are processing XSDs, the keys are the gtin, topic, dataRecipientGLN,

dataSourceGLN, targetMarket and uniqueCreatorID attributes.

If an identical item does exist, the second entry with identical information is

logged as a duplicate and further processing of it ends. If an identical item does

not exist, the item is added to the local identifier store and processed normally.

Persisting or deleting an item to or from a local identifier

store

Various collaboration objects used in the Product Information Management for

Retailers solution can initiate the storage or deletion of a business object to or from

an identifier store.

Description

Various collaboration objects used in the Product Information Management for

Retailers solution can initiate the storage or deletion of a business object to or from

an identifier store, as follows:

v For a Catalogue Item Notification with a NEW_ITEM, DATA_CHANGE,

WITHDRAW, or DE_LIST command, a UCCnetMessageReceive collaboration

object initiates persisting the UCCnetGBO_envelope business object by sending it

with a Create verb to its ToIdentifier_Store port.

v When error conditions are encountered, a UCCnetMessageSend collaboration

object initiates deleting the UCCnetGBO_envelope business object by sending it

with a Delete verb to its ToIdentifier_Store port.

In either case, before sending the UCCnetGBO_envelope business object to the

port, the collaboration object first converts it to a UCCnetGBO_identifier business

object by passing it through the map specified in its TOIDENTIFIER_STORE_MAP

property. The ToIdentifier_Store port can then be bound to a persistence

mechanism. In the context of the Product Information Management for Retailers

solution, this mechanism is an IdentifierStore collaboration object.

The IdentifierStore collaboration object receives the business object on its From port

and, through a series of interactions with the IBM WebSphere Business Integration

Data Handler for XML (which are detailed per command in IdentifierStore

collaboration template), stores or deletes the identifier. The key to this record in the

identifier store is made up of the attributes gtin, version, and topic of the

UCCnetGBO_identifier business object for DTD processing, and the attributes gtin,

topic, dataRecipientGLN, dataSourceGLN, targetMarket, and uniqueCreatorID of

the UCCnetGBO_identifier business object for XSD processing. The

UCCnetMessageReceive collaboration object can also check if a duplicate item

already exists in the identifier store to prevent processing of duplicate items. See

the section for more information on this feature.

In either case, before sending the UCCnetGBO_envelope business object to the

port, the collaboration object first converts it to a UCCnetGBO_identifier business

object by passing it through the map specified in its TOIDENTIFIER_STORE_MAP

Chapter 2. Filtering publication requests before business processing 19

property. The ToIdentifier_Store port can then be bound to a persistence

mechanism. In the context of the Product Information Management for Retailers

solution, this mechanism is an IdentifierStore collaboration object.

The IdentifierStore collaboration object receives the business object on its From port

and, through a series of interactions with the IBM WebSphere Business Integration

Data Handler for XML (which are detailed per command in the IdentifierStore

collaboration template), stores or deletes the identifier. The key to this record in the

identifier store is made up of the attributes gtin, version, and topic of the

UCCnetGBO_identifier business object for DTD processing, and the attributes gtin,

topic, dataRecipientGLN, dataSourceGLN, targetMarket, and uniqueCreatorID of

the UCCnetGBO_identifier business object for XSD processing. The

UCCnetMessageReceive collaboration object can also check if a duplicate item

already exists in the identifier store to prevent processing of duplicate items. See

the section for more information on this feature.

20 Solution Development Guide

Chapter 3. Validating an item before business processing

Describes the item validation processes provided by an ItemValidation

collaboration object, which include validating a Retail_Item business object against

customized business policy rules and evaluating an accepted business object

against a customized list of required attribute data. It also details how to use a

custom missing data retrieval process to obtain required attribute data.

Purpose

A Retail_Item business object created from an Catalogue Item Notification can be

subjected to validation processes provided by code in the ItemValidation

collaboration template. Use a collaboration object based on the ItemValidation

collaboration template:

v To accept or reject a Retail_Item business object based on customized business

policy rules

v To evaluate an accepted business object based on a customized list of required

attribute data.

v To direct the business object to the appropriate port based on the results of the

evaluation.

After an item completes validation successfully, the collaboration object changes its

status to Review and sends the item to its To port. This port is connected to an

ItemDispatcher collaboration object.

Validating an item against customized business policy rules

To accept or reject an item based on existing business policies, insert customized

code into the ItemValidation collaboration template’s Business Policy Processing

subdiagram.

Purpose

Enable the logic in this subdiagram to execute for specific commands attached to a

Retail_Item by specifying those commands in an ItemValidation collaboration

object’s BUSINESS_POLICY_CMDS configuration property.

The pre-existing subdiagram logic examines the value for the Retail_Item business

object’s attribute named in the ItemValidation collaboration object’s

ITEM_COMMAND_ATTRIBUTE configuration property against the values

specified in its BUSINESS_POLICY_CMDS configuration property. If the value for

the attribute in the ITEM_COMMAND_ATTRIBUTE property is specified in the

BUSINESS_POLICY_CMDS property, the ItemValidation collaboration object

executes the customized code in the Business Policy Processing subdiagram.

The rules in the customized code must specify whether the Retail_Item is accepted

or rejected for subsequent processing by changing the value of its attribute named

in the ItemValidation collaboration object’s ITEM_STATUS_ATTRIBUTE

configuration property. If the item is accepted, the code must change the value of

the business object attribute to Review; if the item is rejected, it must change the

value to Rejected. The pre-existing subdiagram logic uses this attribute value to

determine whether to return the item to the caller or to continue processing it. If

 21

the item is rejected, the business policy subdiagram raises an exception to abort the

item processing and returns it to the main scenario, where the item rejection

processing is handled.

Validating an item by requiring data for specific attributes

Identifying certain Retail_Item business object attributes for which data must exist.

A standard message from UCCnet might not contain all of the data required by an

implementation. In this case, certain Retail_Item business object attributes must be

identified for which data must exist (the attributes must not be NULL or BLANK)

before an item is accepted for processing. Pre-existing code in the ItemValidation

template’s File Missing Attribute Logic subdiagram enables this type of item

validation.

To use this type of validation, do the following:

1. Create a text file that contains one of the following:

v A simple list of the fully qualified attributes in the Retail_Item business

object that must be present (one attribute per line).

v Complex filters that conditionally specify the list of attributes.

The first line of the file determines whether simple or complex filtering is

performed. If the first line contains a single fully qualified business object

attribute name, simple filtering is performed on the rest of the attributes listed

in the file. If the first line of the file contains a separator of FILTER or FIELDS,

complex filtering is assumed. See “Performing simple filtering” on page 23 and

“Performing complex filtering” on page 24.

2. Specify the fully qualified name of this text file in the

REQUIRED_ATTRIBUTE_FILE configuration property.

3. Enable the logic in the File Missing Attribute Logic subdiagram to execute for

specific commands attached to a Retail_Item by specifying those commands in

the REQUIRED_ATTRIBUTE_CMDS configuration property. Pre-existing logic

examines the value of the Retail_Item business object’s attribute, named in the

configuration property ITEM_COMMAND_ATTRIBUTE, against the values

specified in the REQUIRED_ATTRIBUTE_CMDS configuration property. If the

value of the attribute named in the ITEM_COMMAND_ATTRIBUTE property

is specified in the REQUIRED_ATTRIBUTE_CMDS property, the ItemValidation

collaboration object executes the code.

4. Because the data collection process can be asynchronous or the tool used to

perform it (such as a WebSphere MQ Workflow container) might be limited in

size and not able to persist all of the attributes of a Retail_Item business object,

save a complete copy of the Retail_Item business object in an item store before

it is passed to the ToMissingData port for processing. This can be accomplished

by setting the value of the ItemValidation collaboration object’s

RETAIN_ITEM_IN_LOCAL_STORE property to true. The collaboration object

then calls an ItemStore collaboration object, which actually performs the storage

operation.

Note: The value of the ItemValidation collaboration object’s

RETAIN_ITEM_IN_LOCAL_STORE property must be set to true for the

Product Information Management for Retailers solution to operate

properly.

22 Solution Development Guide

Performing simple filtering

A description and examples of simple filtering.

Description

For simple filtering, the text file specified in the REQUIRED_ATTRIBUTE_FILE

property must contain a list of the fully qualified attributes in the Retail_Item

business object that must be present and not NULL or BLANK. It is composed, as

follows:

v A fully qualified business object attribute name on a single line.

v On the next single line, another fully qualified attribute name.

Any number of attributes can be included in this way. The File Missing Attribute

logic reads the attribute names from this file and employs an external Java(TM)

class called RetailUtility in the Java package com.ibm.wbi.retail.utils to determine if

the required attributes listed in the file contain data in the Retail_Item business

object being processed. It then adds the names of any required attributes missing

data to a Retail_Item business object attribute named in the configuration property

CUST_DATA_MISS_ATTR. This attribute consists of a multiple cardinality array of

Retail_Missing_Attributes business objects. If there are any names in this missing

attribute child business object array, the ItemValidation collaboration object passes

the Retail_Item business object to the ToMissingData port to start a process for

obtaining the missing data.

Examples

The following examples show how the missing attribute list is populated:

v The attribute customer_data.vendorAddress is included in the required attribute

file. The Retail_Item business object that triggers the ItemValidation collaboration

object does not contain an instance of the customer_data child business object

attribute. Therefore, the missing attribute code does not include

customer_data.vendorAddress in the missing attribute list.

v The attribute customer_data.vendorAddress is included in the required attribute

file. The Retail_Item business object that triggers the ItemValidation collaboration

object does contain an instance of the customer_data child business object

attribute. The vendorAddress attribute is NULL. Therefore, the missing attribute

code includes customer_data.vendorAddress in the missing attribute list.

v The attribute

item.catalogueItem.catalogueItemChildItemLink[].catalogueItem.tradeItem.

tradeItemIdentification.gtin is included in the required attribute file. The

Retail_Item business object that triggers the ItemValidation collaboration object

contains two instances of the catalogueItemChildItemLink business object

attribute, each of which contains an instance of the

catalogueItem.tradeItem.tradeItemIdentification child business object. In each

instance, the gtin attribute is NULL. Therefore, the missing attribute code adds

the following entries to the missing attribute list:

item.catalogueItem.catalogueItemChildItemLink[0].catalogueItem.tradeItem. \

tradeItemIdentification.gtin

item.catalogueItem.catalogueItemChildItemLink[1].catalogueItem.tradeItem. \

tradeItemIdentification.gtin

The missing attribute code includes specific references to all required attributes

that exist, but are NULL or BLANK.

Chapter 3. Validating an item before business processing 23

v The attribute

item.catalogueItem.catalogueItemChildItemLink[].catalogueItem.tradeItem.

tradeItemIdentification.gtin is included in the required attribute file. The

Retail_Item business object that triggers the ItemValidation collaboration object

contains no instances of the catalogueItemChildItemLink business object

attribute. Therefore, the missing attribute code includes no references to the

item.catalogueItem.catalogueItemChildItemLink[].catalogueItem.tradeItem.

tradeItemIdentification.gtin attribute in the missing attribute list.

Performing complex filtering

A description and examples of complex filtering.

Description of complex filtering

For complex filtering, the text file specified in the REQUIRED_ATTRIBUTE_FILE

property must contain the fully qualified attributes in the Retail_Item business

object that must be present and not NULL or BLANK, conditionally specified by

complex filters.

The first line of the file must contain a separator of FILTER or FIELDS. The file can

contain any number of sections, each section containing FILTER and FIELDS

subsections. Filterless FIELDS subsections can also be included.

Each FILTER subsection filters on one or more business object attributes. A FILTER

subsection contains the following:

v A fully qualified business object attribute name on a single line.

v On the next single line, a comma-delimited list of valid values for the attribute.

v If filtering on multiple attributes, on the next single line, a value of AND.

v On the next single line, another fully qualified attribute name.

v On the next single line, a comma-delimited list of valid values for that attribute.

Any number of attributes can be filtered in this way.

Each FILTER subsection must be followed by a FIELDS subsection. A FIELDS

subsection must contain the required attributes for the filter above it, each attribute

on a separate single line. A FIELDS subsection can be followed by a FILTER

subsection, another FIELDS subsection without a filter, or an optional END

separator at the end of the file. If a FIELDS subsection is specified without a

FILTER subsection in front of it, the list of attributes in that FIELDS subsection is

always required.

The collaboration object reads the file until it finds a FILTER subsection that is

satisfied by the attribute values contained in the business object being processed.

The File Missing Attribute logic employs an external Java class called RetailUtility

in the Java package com.ibm.wbi.retail.utils to determine if the required attributes

listed in the FIELDS subsection of the satisfied filter contain data in the Retail_Item

business object being processed. See “Using the RetailUtility external Java class” on

page 26.

If any of the attributes in the FIELDS subsection are missing from the business

object or are present in the business object but missing data, the collaboration

object adds their names to a Retail_Item business object attribute named in the

configuration property CUST_DATA_MISS_ATTR. This attribute consists of a

multiple cardinality array of Retail_Missing_Attributes business objects. If there are

24 Solution Development Guide

any names in this missing attribute child business object array, the ItemValidation

collaboration object passes the Retail_Item business object to the ToMissingData

port to start a process for obtaining the missing data.

If no file is specified in the REQUIRED_ATTRIBUTE_FILE property, or if no

attributes are indicated within the file, all items are accepted for further processing

by the collaboration object.

Example

An example file that demonstrates complex filtering and its interpretation follow:

FILTER

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.informationProviderOfTradeItem.informationProvider.gln

00011112222333

AND

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemUnitDescriptor

CASE,PALLET

FIELDS

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.tradingPartnerNeutralTradeItemInformation. \

tradeItemMeasurements.netWeight

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.tradingPartnerNeutralTradeItemInformation. \

tradeItemMeasurements.grossWeight

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.tradingPartnerNeutralTradeItemInformation. \

tradeItemMeasurements.height

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.tradingPartnerNeutralTradeItemInformation. \

tradeItemMeasurements.width

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.tradingPartnerNeutralTradeItemInformation. \

tradeItemMeasurements.depth

FILTER

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.informationProviderOfTradeItem.informationProvider.gln

00011112222333

AND

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemUnitDescriptor

BASE_UNIT_OR_EACH

FIELDS

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.tradingPartnerNeutralTradeItemInformation. \

tradeItemMeasurements.netWeight

notificationDetail.catalogueItemNotification.catalogueItem.tradeItem. \

tradeItemInformation.tradingPartnerNeutralTradeItemInformation. \

tradeItemMeasurements.grossWeight

END

The collaboration object checks if the business object being processed has a gln

attribute value of 00011112222333 and a tradeItemUnitDescriptor attribute value of

CASE or PALLET. If it doesn‘t, the collaboration proceeds to the next FILTER. If it

does, the collaboration object then checks if the business object being processed

contains the attributes netWeight, grossWeight, height, width, and depth, and that

these attributes are not NULL or BLANK. If any of the attributes in the FIELDS

subsection are missing from the business object or are present in the business

object but missing data, the collaboration object adds their names to a Retail_Item

business object attribute named in the configuration property

CUST_DATA_MISS_ATTR and handles the business object as described above.

Chapter 3. Validating an item before business processing 25

The collaboration object then proceeds to the next FILTER subsection. It checks if

the business object has a gln value of 00011112222333 and a

tradeItemUnitDescriptor attribute value of BASE_UNIT_OR_EACH. If it does, the

collaboration object then checks if the business object being processed contains the

attributes netWeight and grossWeight, and that these attributes are not NULL or

BLANK. If any of the attributes in the FIELDS subsection are missing from the

business object or are present in the business object but missing data, the

collaboration object again adds their names to the Retail_Item business object

attribute named in the configuration property CUST_DATA_MISS_ATTR and

handles the business object as described above.

Specifying attribute names

Describes the rules for specifying attribute names.

Description

Each child in a hierarchical business object structure described by the attribute

name is separated by periods. Any multiple-cardinality child business objects

(BusObjArray) in the structure are represented in the element by appending front-

and end-bracket symbols ([]) to the name of the child attribute. Single-cardinality

child business objects must not contain brackets ([]) in the attribute name. The

brackets ([]) characters are required to tell the code that parses through the child

business objects in the attribute whether the object is a single business object

(BusObj) or a business object array (BusObjArray).

Some example file entries corresponding to Retail_Item business object attributes

include the following:

customer_data.vendorAddress

item.catalogueItem.catalogueItemChildItemLink[].catalogueItem.tradeItem. \

tradeItemIdentification.gtin

Notice that because the catalogueItemChildItemLink business object is a

multiple-cardinality business object array, the [] characters are appended to its

name in the fully qualified attribute.

Note: If an attribute is part of a hierarchy of parent and child business objects, and

any of the attribute’s parent business objects does not exist in the

Retail_Item, then the missing attribute code does not include the attribute in

the missing attribute list. Also, the Retail_Item business object must contain

an instance of its customer_data child business object for the data check

code to successfully check the customer_data child business object attributes.

The ItemValidation collaboration object always converts mixed-case Strings to

lowercase characters by using the command toLowerCase() before testing their

values against known values, with the exception that attributes that are used by

Java to reference a business object remain in mixed-case characters. An example is

an attribute name that is inserted in the multiple cardinality array of

Retail_Missing_Attributes business objects in the

internals.customer_data_missing_attributes attribute.

Using the RetailUtility external Java class

Describes how to use the external RetailUtility Java class to check that required

attributes exist.

26 Solution Development Guide

Description

A collaboration object based on the ItemValidation collaboration template checks

that required attributes exist and contain data by using an external Java class

called RetailUtility, located in the Java package com.ibm.wbi.retail.utils. It

recursively parses each fully qualified attribute string to determine if the value of

the attribute is NULL or BLANK.

Methods in the class

The class contains the following methods:

public boolean checkRequiredAttribute(BusObj busObj, Vector attrs, Vector err) \

throws Exception

This method, checkRequiredAttribute, takes as input the Retail_Item business

object and two Vectors. The first Vector contains the list of fully qualified attribute

names to be checked for NULL or BLANK values. On return, the second Vector

contains the list of missing attributes (those containing NULL or BLANK values).

The method returns true if no attribute data is missing; it returns false if any

required attribute data is missing.

public boolean checkRequiredAttribute(BusObj busObj, String attr, Vector err) \

throws Exception

This method, also named checkRequiredAttribute, operates the same as the

previous method, except it takes as input a single fully qualified attribute name.

public boolean checkComplexFilters(BusObj busObj, Vector complexFilters) \

throws Exception

checkComplexFilters, takes as input the Retail_Item business object and one Vector.

The Vector contains HashMaps of complexFilters to be checked. If any of the

complex filters evaluate to true, then true is returned. If none of them evaluate to

true, then false is returned.

public boolean checkComplexFilter(BusObj busObj, HashMap complexFilter) \

throws Exception

This method, checkComplexFilter, operates the same as the previous method,

except that it takes as input a HashMap of a single complex filter.

Runtime behavior

At runtime, if the collaboration object’s missing attribute data check logic is

enabled (the value of the Retail_Item business object’s attribute named in the

configuration property ITEM_COMMAND_ATTRIBUTE exists in the

REQUIRED_ATTRIBUTE_CMDS property), and the required attribute Vector

contains elements, this class must be added to a directory or to a jar file contained

in one of the following:

v On Windows(R) 2000 systems, the ICS CLASSPATH, which is set up during the

start_server.bat file prior to starting the ICS

v On AIX(R) and Solaris(TM) systems, the CWCLASSES path, which is set up

during the CWSharedEnv.sh file prior to starting the ICS.

Access to this external Java class via the ICS CLASSPATH or CWCLASSES path is

also required in order to successfully compile the ItemValidation collaboration

template.

Chapter 3. Validating an item before business processing 27

Using the Custom Missing Attribute Logic

Describes customized code for user-defined methods for identifying the required

attributes of the Retail_Item business object that are missing data.

Description

The ItemValidation collaboration template also contains a subdiagram called

Custom Missing Attribute Logic. This subdiagram holds customized code for

user-defined methods for identifying the required attributes of the Retail_Item

business object that are are missing data. This code can be executed instead of, or

in addition to, the code in the File Missing Attribute Logic subdiagram. Before

customization, the Custom Missing Attribute Logic subdiagram contains examples

of the following methods to enhance the algorithm for identifying required

attributes of the Retail_Item business object that are missing data.

Note: These examples do not execute as long as the TEST configuration property

is set to false. These examples should not be executed as part of production

code.

v Add fully qualified attribute names to the Required Attribute Vector, which is

processed later in the algorithm.

v Add fully qualified attribute names to the Missing Attribute Vector, which is

processed later in the algorithm.

v Modify the name of the file that is normally set from the

REQUIRED_ATTRIBUTE_FILE configuration property.

v Create and add instances of Retail_Missing_Attributes business objects directly

to the attribute named in the CUST_DATA_MISS_ATTR configuration property

(by default, internals.customer_data_missing_attributes).

Using a custom missing data retrieval process to collect data

Describes collecting missing data.

Description

The custom process used to collect missing data can be another collaboration

object, a user interface, a WebSphere MQ Workflow process, or even an email

function. Regardless of the method used, it must set each missing attribute value it

acquires into the internals.customer_data_missing_attributes.attributeValue

attribute of the Retail_Item business object. In the context of the Product

Information Management for Retailers solution, it must then call an ItemCollector

collaboration object, which assembles the complete Retail_Item business object by

merging the values of each missing

attribute,internals.customer_data_missing_attributes.attributeValue, into its

proper place in a previously stored, complete Retail_Item business object retrieved

from the item store. See Merging data into a complete item for information about

how the ItemCollector collaboration object merges missing information.

Note: If the custom missing data retrieval process is not asynchronous, or can

persist a complete Retail_Item business object, an ItemCollector collaboration

object does not have to be used. The custom process can reuse code in the

ItemCollector collaboration template to merge the collected data into the

Retail_Item business object and then pass the merged Retail_Item business

object to a Process_Reviewed_Item collaboration object. The

DELETE_FROM_LOCAL_STORE property of the Process_Reviewed_Item

collaboration object would need to be set to false. It is recommended that

28 Solution Development Guide

the custom missing data retrieval process not be connected to an

ItemValidation collaboration object because of error flows. If an error occurs,

the Process_Reviewed_Item collaboration object calls a UCCnetMessageSend

collaboration object to send a response back to the original sender (UCCnet

in the context of the Product Information Management for Retailers

solution).

Chapter 3. Validating an item before business processing 29

30 Solution Development Guide

Chapter 4. Adding customized code to the ItemValidation

collaboration template

Iinformation on how to add custom logic to the ItemValidation collaboration

template.

Description

The ItemValidation collaboration template contains a subdiagram called Message

Type Processing that can be customized to contain any desired logic. After

including code in this subdiagram, enable it to execute for specific commands

attached to a Retail_Item by specifying those commands in the ItemValidation

collaboration object’s MESSAGE_TYPE_PROCESSING_CMDS configuration

property.

The subdiagram logic examines the value for the Retail_Item business object’s

attribute named in the ItemValidation collaboration object’s

ITEM_COMMAND_ATTRIBUTE configuration property against the values

specified in its MESSAGE_TYPE_PROCESSING_CMDS configuration property. If

the value for the attribute in the ITEM_COMMAND_ATTRIBUTE property is

specified in the MESSAGE_TYPE_PROCESSING_CMDS property, the

ItemValidation collaboration object executes the customized code in the Message

Type Processing subdiagram.

Note: The code contained in the Message Type Processing subdiagram does not

replace the code in the File Missing Attribute Logic or Custom Missing

Attribute Logic subdiagrams.

 31

32 Solution Development Guide

Chapter 5. Processing business objects with cascaded GLNs

Explains how the solution handles items containing cascaded GLNs.

Description

The ItemDispatcher collaboration template is used to control how approval

requests generated by an ItemValidation collaboration object are sent to a

WebSphere MQ Workflow process. If a Retail_Item business object that requires

approval contains cascaded GLNs, the ItemDispatcher collaboration object breaks

up the request for approval into multiple smaller messages, each containing one or

more of the individual GLNs.

Example

For example, assume that you are working with a single object that has a cascaded

GLN containing six individual GLNs:

 GLNs 1, 2, and 3 are the responsibility of approver A.

 GLNs 4 and 5 are the responsibility of approver B.

 GLN 6 can be ignored.

You can use the ItemDispatcher collaboration to create one copy of the Retail_Item

business object that contains only GLNs 1, 2, and 3, and a second copy that

contains only GLNs 4 and 5. GLN 6 is disregarded. These two copies can then be

directed to the correct approvers through WebSphere MQ Workflow. How the

collaboration object handles any particular GLN is determined by a user-defined

configuration file. Items without cascaded GLNs are passed through the

collaboration object without processing.

Note: You can implement the Product Information Management for Retailers

solution without using an ItemDispatcher collaboration object. However, you

must use the ItemDispatcher collaboration object if cascaded GLNs will be

received.

Using the GLN Cascade Grouping File

The GLN Cascade Grouping File is a user-created text file, which provides

information the ItemDispatcher collaboration object needs to determine how to

group the GLNs for a given item in messages sent to WebSphere MQ Workflow for

approval.

Description

The GLN Cascade Grouping File can contain any number of sections, each section

containing FILTER and GLN_GROUPS subsections. A final optional “filterless”

subsection, containing only a GLN_GROUPS subsection, can also be included.

Each FILTER subsection filters on one or more Retail_Item business object

attributes. A FILTER subsection contains the following:

v A fully qualified Retail_Item attribute on a single line.

v On the next single line, a comma-delimited list of valid values for the attribute.

v If filtering on multiple attributes, on the next single line, a value of AND.

 33

v On the next single line, another fully qualified Retail_Item attribute.

v On the next single line, a comma-delimited list of valid values for that attribute.

Any number of attributes can be filtered in this way.

Each FILTER subsection must be followed by a GLN_GROUPS subsection. A

GLN_GROUPS subsection must contain at least one comma-delimited list of

cascaded GLN values grouped together on a single line. Additional groups of

cascaded GLNs can be defined simply by adding more lines of comma-delimited

GLN lists to this subsection. A GLN_GROUPS subsection can be followed by a

FILTER subsection, another GLN_GROUPS subsection without a filter, or an

optional END separator at the end of the file.

The ItemDispatcher collaboration object reads through the GLN Cascade Grouping

File specified in the GLN_CASCADE_GROUPING_FILE configuration property

until it finds a FILTER subsection that is satisfied by the attribute values contained

in the Retail_Item being processed. The collaboration object then groups the GLNs

according to the GLN_GROUPS subsection associated with the satisfied FILTER

subsection. If an item satisfies the conditions of multiple filters, only the first filter

in the file is ever considered.

Example

FILTER

internals.fromGln

0001000000001,0001000000002

AND

item.catalogueItem.tradeItem.tradeItemInformation.classificationCategoryCode. \

additionalClassification[].additionalClassificationCategoryCode

0001.001.001,0001.001.002,0001.001.003

GLN_GROUPS

0005000000001,0005000000002,0005000000003

0005000000004,0005000000005,0005000000006

FILTER

internals.fromGln

0001000000005

GLN_GROUPS

0005000000001,0005000000002

0005000000003,0005000000004

0005000000005,0005000000006

GLN_GROUPS

0005000000001

0005000000002

0005000000003

0005000000004

0005000000005

0005000000006

If the Retail_Item business object being processed has a fromGln attribute value of

0001000000001 or 0001000000002 and one of the following

additionalClassificationCategoryCode attribute values:

 0001.001.001

 0001.001.002

 0001.001.002

then the GLNs are grouped as follows:

Group 1

Contains GLNs 0005000000001, 0005000000002, and 0005000000003, if they

exist.

34 Solution Development Guide

Group 2

Contains GLNs 0005000000004, 0005000000005, and 0005000000006, if they

exist.

Any GLNs that are not in the GLN_GROUPS subsection are disregarded. Each

group of GLNs is sent separately to WebSphere MQ Workflow for approval, so a

maximum of two messages are sent.

If the first filter conditions were not satisfied, the collaboration object now checks

to see if the Retail_Item business object has a fromGln value of 0001000000005. If it

does, then the GLNs are grouped as follows:

Group 1

Contains GLNs 0005000000001 and 0005000000002, if they exist.

Group 2

Contains GLNs 0005000000003 and 0005000000004, if they exist.

Group 3

Contains GLNs 0005000000005 and 0005000000006, if they exist.

Any GLNs that are not in the GLN_GROUPS subsection are disregarded. Each

group of GLNs is sent separately to WebSphere MQ Workflow for approval, so a

maximum of three messages are sent.

If none of the preceding filters has been satisfied, the filterless GLN_GROUPS

subsection is assumed to apply. Each of the six listed GLNs will be sent to

WebSphere MQ Workflow in its own message. Unlisted GLNs are disregarded, so a

maximum of six messages are sent.

If no FILTER subsection is satisfied and there is no filterless GLN_GROUPS

subsection, then the behavior is determined by the value of the

GLN_CASCADE_GROUPING_DEFAULT property.

Chapter 5. Processing business objects with cascaded GLNs 35

36 Solution Development Guide

Chapter 6. Using a business process to review and approve

an item

Describes operations related to utilizing WebSphere MQ Workflow as a custom

business review/approval process. The business review/approval process is used

by the demand-side trading partner to review an item to determine whether to

approve it or reject it.

Description

The business review/approval process is a custom application used by the

demand-side trading partner to review an item to determine whether to accept it.

In the context of the Product Information Management for Retailers solution, a

WebSphere MQ Workflow process represents it. The process can also be a general

user interface or an automated process, such as another collaboration object, that

examines specific item attributes and makes a decision based on that data. The

following sections describe operations related to using WebSphere MQ Workflow

as the business review/approval process

Printing an item before it is sent through the business review/approval

process

How to print a hard copy of an item before it is sent through the business

review/approval process

To produce a hard copy of an item that arrives from UCCnet, do these steps:

1. Create a second UCCnetMessageReceive collaboration object.

2. Connect its FromAS2 port to an AS2 channel connector

3. Connect its ToRetail_Processing port to a JTextConnector

4. Connect its ToRetail_Response, ToMessage_Store, and ToIdentifier_Store ports

to the PortConnector.

This second UCCnetMessageReceive collaboration object sends the item to the

JTextConnector, which writes it to a file system. From the file system, the file can

be printed by using any local print function.

Mapping an item to the business review/approval process

Describes the start of the business review/approval process

Description

In the context of the Product Information Management for Retailers solution, the

business review/approval process begins when an ItemDispatcher collaboration

object passes the Retail_Item business object to the

WebSphereMQWorkflowConnector over its To port. The

WebSphereMQWorkflowConnector maps the Retail_Item business object into a

WebSphere MQ Workflow container by passing it through the

Retail_Item_to_MQWF_Retail_Item map. Examine this map in the Map Designer

 37

tool to view how the Retail_Item business object is mapped into the

MQWF_Retail_Item application specific business object. At this point, the flow

becomes asynchronous.

Note: The case of a business object’s String attributes is normally not important.

Product Information Management for Retailers solution collaboration objects

always convert mixed-case Strings to lowercase characters by using the

command toLowerCase() before testing their values against known values.

An exception is that attributes that are used by Java to reference a business

object remain in mixed-case characters. An example is an attribute name that

is inserted in the multiple cardinality array of Retail_Missing_Attributes

business objects in the internals.customer_data_missing_attributes

attribute.

The Retail_Item_to_MQWF_Retail_Item map also invokes a specific WebSphere

MQ Workflow process definition based on the command identified in

theinternals.item_command attribute of the Retail_Item business object. There are

three WebSphere MQ Workflow process definitions in the Product Information

Management for Retailers solution, which are located in the Retail.fdl file:

v Retail_ItemCreate

v Retail_ItemUpdate

v Retail_ItemDelete

These process definitions are determined by the relationship definitions contained

in the CMDTOWPN file for the mapping of the internals.item_command attribute to

ProcessTemplateName. They allow users to select a container attribute to be

modified.

A customized solution might require a different set of WebSphere MQ Workflow

processes. In this case, modify the process definitions by loading them into

WebSphere MQ Workflow Buildtime. Alternatively, provide your own process

definitions to match the item commands that are specified in the

Retail_Item_to_MQWF_Retail_Item map. Customize the map’s custom move code

to enable different WebSphere MQ Workflow process definition routings. The

custom move code includes examples of how to generate definition names by

either using a relationship or by hard coding them. The name of the WebSphere

MQ Queue Manager might have to be changed to match a particular

implementation.

Using WebSphere MQ Workflow containers

A WebSphere MQ Workflow container must contain the item data that is needed to

make the business process decision.

Purpose

It must also contain certain internal attributes from the Retail_Item business object

so they can be returned to succeeding collaboration objects that require them. The

following list includes those attributes that must be mapped into the WebSphere

MQ Workflow container:

internals.item_status

This attribute holds the item status value when there are no cascaded

GLNs in the internals.cascadedGlns child business object. The

approver(s) responsible for approving items must set the value of this

attribute to Approved, Rejected, Accepted, or Review through a customized

38 Solution Development Guide

user interface with WebSphere MQ Workflow, so that the succeeding

collaboration objects can determine the processing path for the item. If the

status remains Review, the item is routed back to the ItemValidation

collaboration object and then back into business review/approval

processing.

internals.cascadedGlns

This attribute is an N-cardinality child business object that holds the

cascaded GLNs and the status for each GLN. When cascaded GLNs are

present in the internals.Glns child business object, the approvers

responsible for approving items must set the value of the

internals.cascadedGlns.item_status attribute for each cascaded GLN to

Approved, Rejected, Accepted, or Review through a customized user

interface with WebSphere MQ Workflow, so that the succeeding

collaboration objects can determine the processing path for the item. If the

status remains Review, the item is routed back to the ItemValidation

collaboration object and eventually back into business review/approval

processing.

Note: If you are using DTD XML definitions, all GLNs, whether cascaded

or not, are carried to the WebSphere MQ Workflow in this attribute.

internals.item_command

This attribute holds the item command value.

internals.correlationID

This attribute holds the identifying key used to retrieve the item from the

local item store. Even if a local item store is not used, the value for this

attribute must be returned since it is used by the UCCnetMessageReceive

and UCCnetMessageSend collaboration objects.

internals.fromGln

This attribute holds the GLN of the supplier publishing the Retail_Item.

internals.toGln

This attribute holds the top-level retailer GLN to which the item is being

published.

Other useful data to map

Other useful data to map into the WebSphere MQ Workflow container includes the

following attributes:

internals.date_processed

This attribute holds the date that the item is processed by the approvers.

internals.time_processed

This attribute holds the time that the item is processed by the approvers.

internals.responder_name

This attribute holds the name of the approver or a list of approvers.

If the WebSphere MQ Workflow business process needs additional data from the

Retail_Item business object that is not mapped into the container, a customized

program that reads the local item store must be developed. For example, a

collaboration template could be developed that invokes an ItemStore collaboration

object to read the store. The custom collaboration object could pass the Retail_Item

business object internals.correlationID attribute to the ItemStore collaboration

object as the key to the item in the store. See “Persisting, retrieving, updating, or

deleting an item to or from a local item store” on page 53.

Chapter 6. Using a business process to review and approve an item 39

Returning data from the business review/approval process to an

ItemCollector collaboration object

When the business review/approval process completes, the WebSphere MQ

Workflow process sends the container with the updated status to the

WebSphereMQWorkflowConnector.

Purpose

At this point, the flow becomes synchronous again. The

WebSphereMQWorkflowConnector maps the WebSphere MQ Workflow container

back into a partial Retail_Item business object by passing it through the

MQWF_Retail_Item_to_Retail_Item map and then invokes an ItemCollector

collaboration object. Values for the following attributes must be mapped back into

the Retail_Item business object from the WebSphere MQ Workflow container:

v internals.item_status

v internals.item_command

v internals.correlationID

v internals.cascadedGlns[].gln

v internals.cascadedGlns[].item_status

The data mapped back into the Retail_Item from the WebSphere MQ Workflow

container must also be matched with configuration property settings for the

ItemCollector collaboration object, which determine which updated attribute values

to copy back into a complete Retail_Item business object. See “Merging static data

by using the X_COPY ATTRIBUTE configuration properties” on page 43.

40 Solution Development Guide

Chapter 7. Merging data into a complete item

Describes the operation of the an ItemCollector collaboration object, which builds a

complete business object by merging partial business objects containing updated

information into a complete copy of the business object retrieved from a local item

store.

Description

The Retail_Item business object passed to an ItemCollector collaboration object

might not be complete. The updated data contained in this incomplete item must

be merged into the complete Retail_Item business object that was saved in the local

item store before the item was sent to business review/approval or missing data

retrieval processing. The ItemCollector collaboration object retrieves the copy of the

Retail_Item that was stored by the ItemValidation collaboration object from the

local item store. It retrieves the item by sending the business object and a Retrieve

verb to its local_store port to be passed to an ItemStore collaboration object, which

actually retrieves the item and returns it to the ItemCollector collaboration object.

See Persisting, retrieving, updating, or deleting an item to or from a local item

store.

The ItemCollector collaboration object obtains the internals.correlationID value

from the orginal Retail_Item saved in the local item store and copies it to the

Retail_Item returned from the approval process. The value is copied into the

internals.originalCorrelationID attribute of the Retail_Item. This value can be

used by the Message Manager collaborations to access a corresponding message

store database entry.

The collaboration object checks if the original Retail_Item retrieved from the item

store database contains cascaded GLNs. It then directs processing, as follows:

v If the Retail_Item does not contain cascaded GLNs, the collaboration object

merges the new data received from the WebSphere MQ Workflow process into

the Retail_Item business object that was read from the item store. See “Merging

static data by using the X_COPY ATTRIBUTE configuration properties” on page

43 and “Merging missing data by using the

MISSING_DATA_CHILD_ATTRIBUTE configuration property” on page 44.

Note: If the business object had not had all required data present, causing the

ItemValidation collaboration object to invoke a custom missing data

retrieval process, it is at this point that this retrieval process would call an

instance of an ItemCollector collaboration object to merge the retrieved

data into the complete Retail_Item business object.
The internals.lastCascadedGLN attribute of the merged Retail_Item business

object is set to true indicating there are no other cascaded GLN Retail_Items to

be processed and the Retail_Item is routed to a Process_Reviewed_Item

collaboration object via the ItemCollector collaboration object’s To port.

v If the Retail_Item does contain cascaded GLNs, the collaboration object does the

following:

1. It loops through the GLNs, processing each one, as follows:

a. It retrieves the copy of the Retail_Item that was stored by the

ItemDispatcher collaboration object from the item store database by

sending the business object and a Retrieve verb to its local_store port to be

 41

passed to an ItemStore collaboration object. The key used to access the

item is the concatenation of the internals.correlationID attribute value

of the original triggering business object and the

internals.cascadedGlns.gln attribute value for the GLN being processed.

The copy is returned to the ItemCollector collaboration object on its

local_store port.

b. The ItemCollector collaboration object merges the new data received from

the WebSphere MQ Workflow process into the Retail_Item business object

retrieved from the item store. See “Merging static data by using the

X_COPY ATTRIBUTE configuration properties” on page 43 and “Merging

missing data by using the MISSING_DATA_CHILD_ATTRIBUTE

configuration property” on page 44.

Note: If the business object had not had all required data present,

causing the ItemValidation collaboration object to invoke a custom

missing data retrieval process, it is at this point that this retrieval

process would call an instance of an ItemCollector collaboration

object to merge the retrieved data into the complete Retail_Item

business object.

c. The ItemCollector collaboration object then handles the business object

according to its status value, as follows:

– If the status value of the internals.cascadedGlns.item_status

attribute is either Approved or Rejected, the merged Retail_Item

business object is routed to a Process_Reviewed_Item collaboration

object via the ItemCollector collaboration object’s To port. The

ItemCollector collaboration object uses the original count of cascaded

GLNs retrieved from the original Retail_Item from the item store to

determine if the Approved or Rejected Retail_Item is the last item for

the group of cascaded GLNs. If it is the last the

internals.lastCascadedGLN attribute of the Retail_Item is set to true. If

it is not the last item the attribute is set to false.

– If the status value of the internals.cascadedGlns.item_status

attribute is Review or Accepted, the internals.cascadedGlns child

business object is added to an array, as follows:

- If the status is Review, it is added to an array of review cascaded

GLNs.

- If the status is Accepted, it is added to an array of accepted cascaded

GLNs.

Note: If the cascaded GLN is not the first GLN in the respective array,

the ItemCollector collaboration object deletes the copy of the

Retail_Item that was stored by the ItemDispatcher collaboration

object from the item store database by sending the business

object and a Delete verb to its local_store port to be passed to an

ItemStore collaboration object, which performs the deletion. The

key used to access the item is the concatenation of the

internals.correlationID attribute value of the original

triggering business object and the internals.cascadedGlns.gln

attribute value of the newly created business object.
2. After all of the cascaded GLNs are processed, all the GLNs with a status of

Review are sent as a group by copying the array of review cascaded GLNs

into the internals.cascadedGlns attribute, to a Process_Reviewed_Item

collaboration object via the ItemCollector collaboration object’s To port.

Similarly, all GLNs with a status of Accepted are sent as a group by copying

42 Solution Development Guide

the array of accepted cascaded GLNs into the internals.cascadedGlns

attribute, to a Process_Reviewed_Item collaboration object via the

ItemCollector collaboration object’s To port.

3. The ItemCollector collaboration object calculates how many total cascaded

GLNs have completed processing (that is, they have Approved, Rejected, or

Error status). If all of the cascaded GLNs from the original message that was

sent to the ItemDispatcher collaboration object have completed processing, it

does the following:

a. Sets the internals.lastCascadedGLN attribute of the Retail_Item to true.

b. Deletes the copy of the Retail_Item that was stored by the ItemValidation

collaboration object from the item store database by sending the business

object and a Delete verb to its local_store port to be passed to an

ItemStore collaboration object, which performs the deletion. The key used

to access the item is the internals.correlationID attribute value of the

original triggering business object.

Merging static data by using the X_COPY ATTRIBUTE configuration

properties

An ItemCollector collaboration template can be configured with properties that

indicate which attributes to copy from a triggering business object

Description

An ItemCollector collaboration template can be configured with properties that

indicate which attributes to copy from a triggering business object received on the

From port into the complete item previously stored in the item store. These

configuration properties are of the form X_COPY_ATTRIBUTE (where X is an

integer, such as in 1_COPY_ATTRIBUTE). Four properties with default values are

supplied with the collaboration template:

v 1_COPY_ATTRIBUTE

v 2_COPY_ATTRIBUTE

v 3_COPY_ATTRIBUTE

v 4_COPY_ATTRIBUTE

Any number of configuration properties of the form X_COPY_ATTRIBUTE can be

created to copy any number of attributes.

For each of the attributes identified in these properties, the collaboration object first

verifies that the attribute exists in the Retail_Item business object and, if it does,

copies the updated attribute value from the Retail_Item business object received on

the From port to the Retail_Item retrieved from the local item store. If the attribute

does not exist in the Retail_Item business object, the collaboration object generates

an informational message in the log and continues processing.

When using an unmodified Retail_Item business object, at a minimum, set

1_COPY_ATTRIBUTE equal to the value internals.item_status, so that the status

of the item is copied. Remove any properties of the form X_COPY_ATTRIBUTE

that are not used. A blank for the property value, or an invalid attribute name,

cause a warning message to be logged by the collaboration object.

Chapter 7. Merging data into a complete item 43

Merging missing data by using the MISSING_DATA_CHILD_ATTRIBUTE

configuration property

An ItemCollector collaboration object checks if the attribute specified in its

property contains a list of missing attributes.

Description

Within a triggering Retail_Item business object, an ItemCollector collaboration

object checks if the attribute specified in its property

MISSING_DATA_CHILD_ATTRIBUTE (by default, the

internals.customer_data_missing_attributes child business object) contains a list

of missing attributes.

Note: It is assumed that previous processing, such as that performed by an

ItemValidation collaboration object, identified which attribute names were

required and missing from the item and that previous processing (such as a

custom collaboration object) collected the values for those missing attributes

and set the values in the Retail_Missing_Attributes child business object of

the Retail_Item business object. See “Validating an item by requiring data for

specific attributes” on page 22 and “Using a custom missing data retrieval

process to collect data” on page 28.

Each Retail_Missing_Attributes business object contains two attributes. The first

attribute contains the name of a Retail_Item attribute that was determined during

previous processing to be required and missing its data. The second attribute

contains the value of the Retail_Item attribute that was obtained through a custom

missing data retrieval process prior to the ItemCollector collaboration object being

invoked.

The ItemCollector collaboration object needs to reference each of the two elements

of the Retail_Missing_Attributes child business object. This is accomplished by

using two configuration properties, MISSING_DATA_NAME_ATTRIBUTE and

MISSING_DATA_VALUE_ATTRIBUTE:

MISSING_DATA_NAME_ATTRIBUTE

This property holds the attribute name as defined in the

Retail_Missing_Attributes child business object. By default, this value is

attribute_name. If this default value is changed, the change must be

reflected in the value of the MISSING_DATA_NAME_ATTRIBUTE as well.

MISSING_DATA_VALUE_ATTRIBUTE

This property holds the attribute value as defined in the

Retail_Missing_Attributes child business object. By default, this value is

attributeValue. If this default value is changed, the change must be

reflected in the value of the MISSING_DATA_NAME_ATTRIBUTE as well.

For each Retail_Missing_Attributes instance in the missing attribute array, the

collaboration object first verifies that the attribute is a valid Retail_Item attribute. If

so, the attribute’s value is copied from the Retail_Missing_Attributes instance to its

correct position in the Retail_Item business object obtained from the local item

store. If the attribute is not valid for the Retail_Item, the collaboration object

generates an informational message in the log and continues processing.

44 Solution Development Guide

Chapter 8. Processing an item after the business

review/approval process completes

Details how a Process_Reviewed_Item collaboration object synchronizes an item to

a back-end file system and calls a UCCnetMessageSend collaboration object to send

a response to UCCnet. It also suggests ways of synchronizing an item to a

customized back-end application other than a file system or to multiple back-end

applications.

Description

After the ItemCollector collaboration object merges data into a complete

Retail_Item business object, it passes this Retail_Item to a Process_Reviewed_Item

collaboration object. The Process_Reviewed_Item collaboration object receives this

object on its From port. It then performs several tasks, as follows:

1. If the collaboration object’s DELETE_FROM_LOCAL_STORE configuration

property is set to true, it calls an ItemStore collaboration object to delete the

item from the item store.

2. It examines the status of the item and directs processing, as follows:

v If the item status is Approved, the collaboration object routes the Retail_Item

business object to the JTextConnector via its Sync port. The JTextConnector

writes the Retail_Item business object to a file system. If this is successful, the

item status is changed to Synchronised; if not, the item status is changed to

Error. The item is also sent to the respond_to port to be passed to a

UCCnetMessageSend collaboration object. Alternatively, the Retail_Item can

be sent to a single application other than the JTextConnector or to multiple

back-end applications.

v If the item status is Rejected, the collaboration object routes the Retail_Item

to the JTextConnector via its Sync port. The JTextConnector writes the

Retail_Item business object to a file system. If this is not successful, the item

status is changed to Error. The item is then sent to the respond_to port to be

passed to a UCCnetMessageSend collaboration object. See “Synchronizing an

item to a back-end application other than a file system” on page 46 and

“Synchronizing an item to multiple back-end applications” on page 46.

v If the item status is Accepted or Review, the collaboration object routes the

Retail_Item business object back to a ItemValidation collaboration object via

its reprocess port. The Process_Reviewed_Item collaboration object then waits

for a response. When the item is returned on the reprocess port from the

ItemValidation collaboration object, the Process_Reviewed_Item collaboration

object processes it, as follows:

– If the status of the returned item is Review or reprocess, it indicates that

the item was successfully processed by the ItemValidation collaboration

object and sent to the WebSphere MQ Workflow business review/approval

process by the ItemDispatcher collaboration object. If the original status

for the item when it was received on the From port was Accepted, the

item with Accepted status is sent to the respond_to port to be passed to a

UCCnetMessageSend collaboration object. Otherwise, the item is not sent

to the respond_to port. At this point, processing performed by the

Process_Reviewed_Item collaboration object ends. When the WebSphere

MQ Workflow process triggered by the ItemDispatcher collaboration

 45

object completes, the Retail_Item will again be sent to a

Process_Reviewed_Item collaboration object’s From port.

– If the status of the returned item is Rejected or Error, the collaboration

object sends the Retail_Item to the respond_to port to be passed to a

UCCnetMessageSend collaboration object.
3. Optionally, the collaboration object calls an ItemStore collaboration object to

rewrite the Retail_Item to the local item store for back-up or future validation

purposes. See “Persisting, retrieving, updating, or deleting an item to or from a

local item store” on page 53.

Synchronizing an item to a back-end application other than a file

system

Describes synchronizing an item to a back-end application that is not a file system

Description

In the context of the Product Information Management for Retailers solution, a

Process_Reviewed_Item collaboration object’s Sync port is connected to the

JTextConnector, which writes the item to a file system. By setting the

JTextConnector’s BOPrefix property, the filename can be prefixed to match the

requirements of any back-end application. Also, the Sync port can be attached to

any other connector that supports a different back-end application, such as a

legacy system. IBM WebSphere technology adapters can provide interfaces to

different types of back-end systems such as databases or queue interfaces.

Synchronizing an item to multiple back-end applications

Describes synchronizing to more than one back-end application.

Description

Synchronize a Retail_Item business object to more than one back-end application

by doing one of the following:

v Modify the Process_Reviewed_Item collaboration template to include several

Sync ports or write another custom collaboration template and attach a

collaboration object based on it to a Process_Reviewed_Item collaboration

object’s Sync port. A collaboration object based on this custom collaboration

template can pass the Retail_Item business object to multiple output ports (i.e.,

each back-end application’s connector).

v Connect a Process_Reviewed_Item collaboration object’s Sync port to a

collaboration object based on the ItemSync collaboration template. The

Retail_Item business object must be added to the list of supported business

objects for a collaboration object based on this template. The advantage of using

an ItemSync collaboration object is that it provides the base capabilities to do the

following:

– Convert a Create verb to an Update verb if the item currently exists in the

back-end application.

– Convert an Update verb to a Create verb if the item does not exist in the

back-end application (a Process_Reviewed_Item collaboration object provides

only the Create verb).

– Filter the item based on its contents and not synchronize it to the back-end

application.

46 Solution Development Guide

Chapter 9. Sending responses to UCCnet

Explains how a UCCnetMessageSend collaboration object sends response messages

to UCCnet based on an item’s command type, status value, and the values of

particular collaboration object properties.

Description

Response messages must be returned to UCCnet for each NEW_ITEM,

DATA_CHANGE, or NEW_ITEM with reload request. In the Product Information

Management for Retailers solution, a Process_Reviewed_Item collaboration object

is connected through its respond_to port to a UCCnetMessageSend collaboration

object, which builds and sends appropriate responses to UCCnet. Response

messages must be returned to UCCnet for each NEW_ITEM, DATA_CHANGE, or

NEW_ITEM with reload request. Process_Reviewed_Item collaboration objects pass

Retail_Item business objects to UCCnetMessageSend collaboration objects when

they have been assigned Synchronised, Rejected, Accepted, or Error status.

UCCnetMessageReceive collaboration objects may also pass Retail_Item business

objects with Review or Error status to UCCnetMessageSend collaboration objects

for the purpose of sending a response to UCCnet.

When a triggering Retail_Item business object is received, a UCCnetMessageSend

collaboration object first retrieves the layer information from the local message

store by converting the Retail_Item to a UCCnetGBO_storable business object and

passing it to its ToMessage_Store port. This port is bound to the appropriate

persistence mechanism, such as a MessageStore collaboration object, which

performs the retrieval. The UCCnetMessageSend collaboration object uses the

Retail_Item internals.originalCorrelationID attribute, if it is populated, to access

the proper entry in the message store. If this attribute does not contain a value, the

collaboration object uses the Retail_Item internals.correlationID attribute value.

It then extracts the Catalogue Item Notification command and handles the object

according to its original command type, its status value, and the values of certain

properties, as follows:

v If the original command to the demand-side trading partner was a DE_LIST,

WITHDRAW, or CORRECTION, the collaboration object stops processing.

v If the original command to the demand-side trading partner was a NEW_ITEM,

DATA_CHANGE, or NEW_ITEM with reload, the UCCnetMessageSend

collaboration object does the following:

1. Checks the value of the internals.item_status attribute of the Retail_Item:

– If the status of the Retail_Item is Synchronised, the collaboration object

builds a Catalogue Item Confirmation message with a state of

Synchronised.

– If the status is Rejected and the collaboration object’s SEND_REJECT

property is set to true, it builds a Catalogue Item Confirmation message

with a state of Rejected.

– If the status is Review and the collaboration object’s SEND_REVIEW

property is set to true, it builds a Catalogue Item Confirmation message

with a state of Review.

 47

Note: A UCCnetMessageReceive collaboration object can initiate sending a

Catalogue Item Confirmation message with a state of Review when

an item is first received and sent to the business review/approval

process. Since this process can be long-running, it might be

necessary to send the Catalogue Item Confirmation message with a

state of Review back to originator of the request. Normally, UCCnet

does not want Catalogue Item Confirmation messages with a state

of Review to be sent, so it is recommended that the SEND_REVIEW

property be set to false.

– If the status is Accepted and the collaboration object’s SEND_ACCEPT

property is set to true, it builds a Catalogue Item Confirmation message

with a state of Accepted.
2. Composes a UCCnetGBO_envelope business object by first converting the

Retail_Item and UCCnetGBO_storable business objects into a

UCCnetGBO_RI_S business object and then passing this object through the

map specified in its TOAS2_RESPONSE_MAP configuration property. The

resulting UCCnetGBO_envelope business object contains all of the

information needed for the UCCnet Catalogue Item Confirmation message.

3. Passes the UCCnetGBO_envelope business object to the AS2 channel

connector on its ToAS2_Response port. In the connector controller portion of

the connector, it is converted to an application specific business object of the

form:

 UCCnetxxx_envelope if iSoft connectivity is used.

 UCCnetTPIxxx_envelope if TPI connectivity is used.

 UCCnetJMSxxx_envelope if WebSphere Business Connect is used with

JMS.

The UCCnetGBO_envelope business object is converted by passing through:

 UCCnetGBO_envelope_to_UCCnetxxx_envelope map if iSoft connectivity

is used

 UCCnetGBO_envelope_to_UCCnetTPIxxx_envelope map if TPI

connectivity is used

 UCCnetGBO_envelope_to_UCCnetJMSxxx_envelope map if WebSphere

Business Connect is used with JMS

The DTD forms of these maps convert the outgoing UCCnetGBO_envelope

GBO containing an XSD-based Catalogue Item Confirmation command into

an ASBO containing a DTD-based Authorization command.

Note: The variable xxx specifies the XML definition type used (DTD or XSD).

4. If the status of the item is Synchronized, Rejected, or Error the collaboration

object checks the Retail_Item internals.lastCascadedGLN attribute. If the

attribute is not false it deletes the entry from the message store

corresponding to the Retail_Item internals.originalCorrelationID value by

converting the business object to a UCCnetGBO_storable business object and

passing this object to its ToMessage_Store port. If the status of the

Retail_Item is Accepted or Review the message store entry is not deleted. This

port is bound to the appropriate persistence mechanism, such as a

MessageStore collaboration object, which performs the actual deletion.
v Regardless of the original command type, if the status of the item is Error, the

UCCnetMessageSend collaboration object does the following:

– If the value of its FILTER_DUPLICATE configuration property is true, it

maintains the identifier store by converting the business object to a

UCCnetGBO_identifier business object and calling an IdentifierStore

48 Solution Development Guide

collaboration object to remove the entry from the identifier store. The key

attributes for DTD processing are gtin, version, and topic. The key attributes

for XSD processing are gtin, topic, dataRecipientGLN, dataSourceGLN,

targetMarket, and uniqueCreatorID. See “Filtering to eliminate processing of

duplicate items” on page 18 and “Persisting or deleting an item to or from a

local identifier store” on page 19.

– Checks the Retail_Item internals.lastCascadedGLN attribute. If the attribute is

not false it calls a MessageStore collaboration object to delete the entry from

the message store. See “Persisting, retrieving, or deleting an item to or from a

local message store” on page 52.

– It stops further processing of the Catalogue Item Confirmation command so

that no response is returned to UCCnet.

Chapter 9. Sending responses to UCCnet 49

50 Solution Development Guide

Chapter 10. Using identifier, message, and item stores

Identifies how and why various collaboration objects persist, retrieve, update, and

delete items to and from identifier, message, and item stores.

Local stores

Three local stores, or database tables, are used in the Product Information

Management for Retailers solution. The stage of item processing determines when

these stores are accessed, by which collaboration objects, and which actions

(Create, Retrieve, Delete, Update) are performed on them.

Identifier store

The identifier store stores unique identifying information for each item, which is

used by a UCCnetMessageReceive collaboration object to prevent duplicate

Catalogue Item Notifications with NEW_ITEM, DATA_CHANGE, WITHDRAW, or

DE_LIST commands from being processed. This collaboration object triggers an

IdentifierStore collaboration object, which performs the actual Create action on the

store. When error conditions are encountered, the UCCnetMessageSend

collaboration object can also trigger an IdentifierStore collaboration object to delete

the item from the identifier store.

Message store

The message store holds item information that is used by UCCnetMessageReceive

and UCCnetMessageSend collaboration objects to build appropriate messages to be

sent back to UCCnet. These collaboration objects trigger a MessageStore

collaboration object, which performs the actual Create, Retrieve, and Delete actions

on the store.

Item store

The item store saves a complete version of the Retail_Item business object. A

complete version of the item might have to be stored and later merged with

updated information for some of its attributes for the following reasons:

v Processes to be performed on the item are long-running, disjoint, and

asynchronous, or cannot persist the entire Retail_Item business object.

v A complete version of the item is needed for validation or back-up.

v Complete information might be needed by business review/approval processes.

ItemValidation, ItemCollector, ItemDispatcher, and Process_Reviewed_Item

collaboration objects trigger an ItemStore collaboration object, which performs the

actual Create, Retrieve, Update, and Delete actions on the store.

Persisting or deleting an item to or from a local identifier store

Various collaboration objects used in the Product Information Management for

Retailers solution can initiate the storage or deletion of a business object to or from

an identifier store.

 51

Description

Various collaboration objects used in the Product Information Management for

Retailers solution can initiate the storage or deletion of a business object to or from

an identifier store, as follows:

v For a Catalogue Item Notification with a NEW_ITEM, DATA_CHANGE,

WITHDRAW, or DE_LIST command, a UCCnetMessageReceive collaboration

object initiates persisting the UCCnetGBO_envelope business object by sending it

with a Create verb to its ToIdentifier_Store port.

v When error conditions are encountered, a UCCnetMessageSend collaboration

object initiates deleting the UCCnetGBO_envelope business object by sending it

with a Delete verb to its ToIdentifier_Store port.

In either case, before sending the UCCnetGBO_envelope business object to the

port, the collaboration object first converts it to a UCCnetGBO_identifier business

object by passing it through the map specified in its TOIDENTIFIER_STORE_MAP

property. The ToIdentifier_Store port can then be bound to a persistence

mechanism. In the context of the Product Information Management for Retailers

solution, this mechanism is an IdentifierStore collaboration object.

The IdentifierStore collaboration object receives the business object on its From port

and, through a series of interactions with the IBM WebSphere Business Integration

Data Handler for XML (which are detailed per command in the IdentifierStore

collaboration template), stores or deletes the identifier. The key to this record in the

identifier store is made up of the attributes gtin, version, and topic of the

UCCnetGBO_identifier business object for DTD processing, and the attributes gtin,

topic, dataRecipientGLN, dataSourceGLN, targetMarket, and uniqueCreatorID of

the UCCnetGBO_identifier business object for XSD processing. The

UCCnetMessageReceive collaboration object can also check if a duplicate item

already exists in the identifier store to prevent processing of duplicate items. See

“Filtering to eliminate processing of duplicate items” on page 18 for more

information.

Persisting, retrieving, or deleting an item to or from a local message

store

Various collaboration objects used in the Product Information Management for

Retailers solution can initiate the storage, retrieval, or deletion of a business object

to or from a message store.

Description

v A UCCnetMessageReceive collaboration object initiates persisting a business

object for use in a return message by sending it with a Create verb to its

ToMessage_Store port.

v A UCCnetMessageSend collaboration object initiates retrieving or deleting a

business object by passing it with either a Retrieve or Delete verb to a

MessageStore collaboration object through its ToMessage_Store port.

In each case, before persisting, retrieving, or deleting the business object, the

collaboration object first converts it to a UCCnetGBO_storable business object. The

UCCnetGBO_storable business object is a combination of one instance of an

Catalogue Item Notification, together with the message header and routing

information for the worklist message in which the item was contained. The

outgoing port on each collaboration object can then be bound to a persistence

52 Solution Development Guide

mechanism. In the context of the Product Information Management for Retailers

solution, this mechanism is a MessageStore collaboration object.

The MessageStore collaboration object receives the business object on its From port

and, through a series of interactions with the IBM WebSphere Business Integration

Data Handler for XML (which are detailed per command in MessageStore

collaboration template), stores, retrieves, or deletes the message. When it retrieves

a message, it returns it to the calling collaboration object. The key to this record in

the message store is saved in the correlationID attribute of the

UCCnetGBO_storable business object.

Generating data base keys

A key is guaranteed to be unique for each item and for each type of command.

The key for the item store is saved in the Retail_Item business object

internals.correlationID attribute. Do not modify the value of this attribute.

Entries in the item store and message store can possess identical keys since the

stores are different tables within the database.

Persisting, retrieving, updating, or deleting an item to or from a local

item store

Various collaboration objects used in the Product Information Management for

Retailers solution can initiate the storage, retrieval, updating, or deletion of a

business object to or from an item store.

Description

v ItemValidation, ItemDispatcher, and Process_Reviewed_Item collaboration

objects initiate persisting a business object. An ItemValidation collaboration

object initiates storing the item prior to its being sent to a process for obtaining

missing information or for business review/approval. An ItemDispatcher

collaboration object initiates storing an item with cascaded GLNs. A

Process_Reviewed_Item collaboration object initiates storing the item after it is

synchronized to a back-end system, so the item is available to be used later for

validation or back-up.

To enable persisting the item in the local item store, set an ItemValidation or

Process_Reviewed_Item collaboration object’s configuration property

RETAIN_ITEM_IN_LOCAL_STORE to true; an ItemDispatcher collaboration

object persists by default. ItemValidation and ItemDispatcher collaboration

objects then send the business object with a Create verb to their LocalItemStore

ports; the ItemDispatcher collaboration object to its LocalItemStore port; and the

Process_Reviewed_Item collaboration object, to its local_store port.

v An ItemCollector collaboration object initiates retrieving and deleting a

Retail_Item business object. The ItemCollector collaboration object sends the item

with a Retrieve or Delete verb to its local_store port.

v An ItemDispatcher collaboration object initiates updating a Retail_Item business

object. The ItemDispatcher collaboration object sends the item with an Update

verb to its LocalItemStore port.

v A Process_Reviewed_Item collaboration object initiates deleting a business

object. To enable deletion of the business object, set a Process_Reviewed_Item

collaboration object’s configuration property DELETE_FROM_LOCAL_STORE to

true. It then passes the item with a Delete verb to its local_store port.

Chapter 10. Using identifier, message, and item stores 53

The ItemValidation and ItemDispatcher collaboration objects’ LocalItemStore ports,

and the ItemCollector and Process_Reviewed_Item collaboration objects’ local_store

ports, are all bound to a persistence mechanism. In the context of the Product

Information Management for Retailers solution, this mechanism is an ItemStore

collaboration object.

The ItemStore collaboration object receives the business object on its From port

and, through a series of interactions with the IBM WebSphere Business Integration

Data Handler for XML (which are detailed per command in ItemStore

collaboration template), stores, retrieves, updates, or deletes the item. When the

collaboration object retrieves an item, it returns it to the calling collaboration object.

The key to this record in the item store is saved in the internals.correlationID

attribute of the Retail_Item business object.

Note: If the item has not been stored by another collaboration object and therefore

does not have to be deleted, set the Process_Reviewed_Item collaboration

object’s property DELETE_FROM_LOCAL_STORE to false.

Generating data base keys

A UCCnetMessageReceive collaboration object generates keys to items in each of

the stores.A key is guaranteed to be unique for each item and for each type of

command. The key for the item store is saved in the Retail_Item business object

internals.correlationID attribute. Do not modify the value of this attribute.

Generating data base keys

 Data base table Key

item store v For systems with cascaded GLNs:

messageHeader.messageIdentifier +

notification.sequenceId +

internals.cascadedGlns.gln

v For systems without cascaded GLNs:

messageHeader.messageIdentifier +

notification.sequenceId

message store v For systems with cascaded GLNs:

messageHeader.messageIdentifier +

notification.sequenceId +

internals.cascadedGlns.gln

v For systems without cascaded GLNs:

messageHeader.messageIdentifier +

notification.sequenceId

identifier store v For systems supporting XSD XML

definition: gtin, topic, dataRecipientGLN,

dataSourceGLN, targetMarket,

uniqueCreatorID attributes of

UCCnetGBO_identifier business object

v For systems supporting DTD XML

definition: gtin, version, topic attributes of

UCCnetGBO_identifier business object

Entries in the item store and message store can possess identical keys because the

stores are different tables within the database.

54 Solution Development Guide

Chapter 11. Controlling e-mail

Details how various collaboration objects enable a Role_Email collaboration object

to alert users of item status or if errors occur during processing. It also describes

how to specify message text, subjects, and recipients in external files to eliminate

updating individual collaboration objects each time one of these variables changes.

Specifying changing individual or multiple message recipients and how to use

substitution variables in message and subject text is also covered.

Related topics

ItemValidation, ItemCollector, ItemDispatcher, and Process_Reviewed_Item

collaboration objects can be configured to initiate sending e-mail to alert recipients

of item status or when processing errors occur. These collaboration objects link to a

Role_Email collaboration object, which actually controls sending the e-mail.

The Role_Email collaboration object allows the contents of the Retail_Item

attributes that specify e-mail message text, subject text, and recipients to contain

the names of files. These files contain the actual e-mail message text, subject text,

and addresses, and can be easily modified without modifying the using

collaboration objects. This feature permits messages, subjects, and recipients to be

shared among multiple collaboration objects. Also, more than one recipient can be

specified to receive e-mail through use of a comma-delimited list. Plus, e-mail

message and subject text can be constants that contain variables. The Role_Email

collaboration object substitutes data from the processing state or business object

into these variables dynamically.

Alerting email recipients of item status or processing errors

ItemValidation, ItemCollector, ItemDispatcher, and Process_Reviewed_Item

collaboration objects can initiate sending e-mail to alert recipients of item status or

when processing errors occur.

Description

You can configure the following actions:

v Alerting of Approved item status - Process_Reviewed_Item collaboration objects

only

v Alerting of Accepted item status - Process_Reviewed_Item collaboration objects

only

v Alerting of Rejected item status - ItemValidation and Process_Reviewed_Item

collaboration objects only

v Alerting of processing errors - ItemValidation, ItemCollector, ItemDispatcher, and

Process_Reviewed_Item collaboration objects

Common configuration properties control whether e-mail is sent and delineate the

contents of the message text, message subject, and the mail recipients. These

collaboration objects link to a Role_Email collaboration object, which actually

controls sending the e-mail through use of the sendEmail API. This collaboration

object formulates the sendEmail API parameters from the triggering business object

(Retail_Item in the Product Information Management for Retailers solution) passed

to it from the various collaboration objects.

 55

Alerting of Approved item status

Properties that can be configured to enable e-mail to be sent if an item contains a

status of Approved.

Overview

The collaboration object sends the business object to its mail port and the

Role_Email collaboration object receives it on its From port. The Role_Email

collaboration object then formulates the sendEmail API parameters from the values

of the EMAIL_ROLE_ATTRIBUTE, EMAIL_MSG_ATTRIBUTE, and

EMAIL_SUBJECT_ATTRIBUTE properties passed to it.

SEND_MAIL_ON_APPROVAL

This property controls whether the Retail_Item is sent to the port connected to the

Role_Email collaboration object. In essence, its value of true or false controls

whether e-mail is sent. This property must be configured by the user.

APPROVED_EMAIL_ROLE

This property specifies the Retail_Item attribute containing the recipients that are

to receive the message. It must be configured by the user. If this property and the

SEND_MAIL_ON_APPROVAL property exist, and the Retail_Item has a status of

Approved, the value of APPROVED_EMAIL_ROLE is stored in the Retail_Item

attribute specified by the Process_Reviewed_Item collaboration object’s

EMAIL_ROLE_ATTRIBUTE property. By default, this Retail_Item attribute is

internals.message_recipient_role. To successfully use the Role_Email collaboration

object as the notifying collaboration object, the Retail_Item attribute specified in the

Process_Reviewed_Item collaboration object’s EMAIL_ROLE_ATTRIBUTE property

must match the Retail_Item attribute specified in the Role_Email collaboration

object’s MSG_RECIPIENT_ATTRIBUTE property. This Retail_Item attribute can

contain either the actual recipient or list of recipients or a filename containing this

value. See “Specifying message text, subjects, and recipients in external files” on

page 62 for more information on how to specify e-mail recipients by using

filenames and the benefits of specifying e-mail recipients in this way.

Note: If the APPROVED_EMAIL_ROLE property does not exist, a value of

unknown is set in the Retail_Item attribute specified in the collaboration

object’s EMAIL_ROLE_ATTRIBUTE.

APPROVED_EMAIL_MSG

This property specifies the Retail_Item attribute containing the appropriate

message text to be sent. If the SEND_MAIL_ON_APPROVAL and

APPROVED_EMAIL_ROLE properties exist, and the Retail_Item has a status of

Approved, the value of APPROVED_EMAIL_MSG is stored in the Retail_Item

attribute specified by the Process_Reviewed_Item collaboration object’s

EMAIL_MSG_ATTRIBUTE property. By default, this Retail_Item attribute is

internals.message_text. To successfully use the Role_Email collaboration object as

the notifying collaboration object, the Retail_Item attribute specified in the

Process_Reviewed_Item collaboration object’s EMAIL_MSG_ATTRIBUTE property

must match the Retail_Item attribute specified in the Role_Email collaboration

object’s MSG_TEXT_ATTRIBUTE property. This Retail_Item attribute can contain

either the actual message text or a filename containing the message text. See

“Specifying message text, subjects, and recipients in external files” on page 62.

56 Solution Development Guide

APPROVED_EMAIL_SUBJECT

This property specifies the Retail_Item attribute containing the appropriate

message subject. If the SEND_MAIL_ON_APPROVAL and

APPROVED_EMAIL_ROLE properties exist, and the Retail_Item has a status of

Approved, the value of APPROVED_EMAIL_SUBJECT is stored in the Retail_Item

attribute specified by the Process_Reviewed_Item collaboration object’s

EMAIL_SUBJECT_ATTRIBUTE property. By default, this Retail_Item attribute is

internals.message_subject. To successfully use the Role_Email collaboration object

as the notifying collaboration object, the Retail_Item attribute specified in the

Process_Reviewed_Item collaboration object’s EMAIL_SUBJECT_ATTRIBUTE

property must match the Retail_Item attribute specified in the Role_Email

collaboration object’s MSG_SUBJECT_ATTRIBUTE property. This Retail_Item

attribute can contain either the actual subject text or a filename containing the

subject text. See “Specifying message text, subjects, and recipients in external files”

on page 62.

Alerting of Accepted item status

Properties that can be configured to enable email to be sent if an item contains a

status of Accepted

Overview

The collaboration object sends the business object to its mail port and the

Role_Email collaboration object receives it on its From port. The Role_Email

collaboration object then formulates the sendEmail API parameters from the values

of the EMAIL_ROLE_ATTRIBUTE, EMAIL_MSG_ATTRIBUTE, and

EMAIL_SUBJECT_ATTRIBUTE properties passed to it.

A Process_Reviewed_Item collaboration object contains the following properties

that can be configured to enable email to be sent if an item contains a status of

Accepted.

SEND_MAIL_ON_ACCEPTED

This property controls whether the Retail_Item is sent to the port connected to the

Role_Email collaboration object. In essence, its value of true or false controls

whether email is sent. This property must be configured by the user.

ACCEPTED_EMAIL_ROLE

This property specifies the Retail_Item attribute containing the recipients that are

to receive the message. It must be configured by the user. If this property and the

SEND_MAIL_ON_ACCEPTED property exist, and the Retail_Item has a status of

Accepted, the value of ACCEPTED_EMAIL_ROLE is stored in the Retail_Item

attribute specified by the Process_Reviewed_Item collaboration object’s

EMAIL_ROLE_ATTRIBUTE property. By default, this Retail_Item attribute is

internals.message_recipient_role. To successfully use the Role_Email collaboration

object as the notifying collaboration object, the Retail_Item attribute specified in the

Process_Reviewed_Item collaboration object’s EMAIL_ROLE_ATTRIBUTE property

must match the Retail_Item attribute specified in the Role_Email collaboration

object’s MSG_RECIPIENT_ATTRIBUTE property. This Retail_Item attribute can

contain either the actual recipient or list of recipients or a filename containing this

value. See “Specifying message text, subjects, and recipients in external files” on

page 62.

Chapter 11. Controlling e-mail 57

Note: If the ACCEPTED_EMAIL_ROLE property does not exist, a value of

unknown is set in the Retail_Item attribute specified in the collaboration

object’s EMAIL_ROLE_ATTRIBUTE.

ACCEPTED_EMAIL_MSG

This property specifies the Retail_Item attribute containing the appropriate

message text to be sent. If the SEND_MAIL_ON_ACCEPTED and

ACCEPTED_EMAIL_ROLE properties exist, and the Retail_Item has a status of

Accepted, the value of ACCEPTED_EMAIL_MSG is stored in the Retail_Item

attribute specified by the Process_Reviewed_Item collaboration object’s

EMAIL_MSG_ATTRIBUTE property. By default, this Retail_Item attribute is

internals.message_text. To successfully use the Role_Email collaboration object as

the notifying collaboration object, the Retail_Item attribute specified in the

Process_Reviewed_Item collaboration object’s EMAIL_MSG_ATTRIBUTE property

must match the Retail_Item attribute specified in the Role_Email collaboration

object’s MSG_TEXT_ATTRIBUTE property. This Retail_Item attribute can contain

either the actual message text or a filename containing the message text. See

“Specifying message text, subjects, and recipients in external files” on page 62.

ACCEPTED_EMAIL_SUBJECT

This property specifies the Retail_Item attribute containing the appropriate

message subject. If the SEND_MAIL_ON_ACCEPTED and

ACCEPTED_EMAIL_ROLE properties exist, and the Retail_Item has a status of

Accepted, the value of ACCEPTED_EMAIL_SUBJECT is stored in the Retail_Item

attribute specified by the Process_Reviewed_Item collaboration object’s

EMAIL_SUBJECT_ATTRIBUTE property. By default, this Retail_Item attribute is

internals.message_subject. To successfully use the Role_Email collaboration object

as the notifying collaboration object, the Retail_Item attribute specified in the

Process_Reviewed_Item collaboration object’s EMAIL_SUBJECT_ATTRIBUTE

property must match the Retail_Item attribute specified in the Role_Email

collaboration object’s MSG_SUBJECT_ATTRIBUTE property. This Retail_Item

attribute can contain either the actual subject text or a filename containing the

subject text. See “Specifying message text, subjects, and recipients in external files”

on page 62.

Alerting of Rejected item status

Properties that can be configured to enable e-mail to be sent if an item contains a

status of Rejected.

Overview

The ItemValidation collaboration object sends the object to its Notify port; the

Process_Reviewed_Item collaboration object, to its mail port. The Role_Email

collaboration object receives it on its From port and then formulates the sendEmail

API parameters from the values of the EMAIL_ROLE_ATTRIBUTE,

EMAIL_MSG_ATTRIBUTE, and EMAIL_SUBJECT_ATTRIBUTE properties passed

to it.

ItemValidation and Process_Reviewed_Item collaboration objects contain the

following properties that can be configured to enable e-mail to be sent if an item

contains a status of Rejected

58 Solution Development Guide

SEND_MAIL_ON_REJECTION

This property controls whether the Retail_Item is sent to the port connected to the

Role_Email collaboration object. In essence, its value of true or false controls

whether e-mail is sent. This property must be configured by the user.

REJECT_EMAIL_ROLE

This property specifies the Retail_Item attribute containing the recipients that are

to receive the message. It must be configured by the user. If this property and the

SEND_MAIL_ON_REJECTION property exist (and, in the ItemValidation

collaboration object, are not BLANK), and the Retail_Item has a status of ,Rejected

the value of REJECT_EMAIL_ROLE is stored in the Retail_Item attribute specified

by the ItemValidation or Process_Reviewed_Item collaboration object’s

EMAIL_ROLE_ATTRIBUTE property. By default, this Retail_Item attribute is

internals.message_recipient_role. To successfully use the Role_Email

collaboration object as the notifying collaboration object, the Retail_Item attribute

specified in the ItemValidation or Process_Reviewed_Item collaboration object’s

EMAIL_ROLE_ATTRIBUTE property must match the Retail_Item attribute

specified in the Role_Email collaboration object’s MSG_RECIPIENT_ATTRIBUTE

property. This Retail_Item attribute can contain either the actual recipient or list of

recipients or a filename containing this value. See “Specifying message text,

subjects, and recipients in external files” on page 62.

Note: In the Process_Reviewed_Item collaboration object, if the

REJECT_EMAIL_ROLE property does not exist, a value of unknown is set in

the Retail_Item attribute specified by the EMAIL_ROLE_ATTRIBUTE

property. In the ItemValidation collaboration object, if the

REJECT_EMAIL_ROLE property exists but is BLANK, no notification is

executed (no default mail recipient exists).

REJECT_EMAIL_MSG

This property specifies the Retail_Item attribute containing the appropriate

message text to be sent. If the SEND_MAIL_ON_REJECTION and

REJECT_EMAIL_ROLE properties exist (and, in the ItemValidation collaboration

object, are not BLANK), and the Retail_Item has a status of Rejected, the value of

REJECT_EMAIL_MSG is stored in the Retail_Item attribute specified by the

ItemValidation or Process_Reviewed_Item collaboration object’s

EMAIL_MSG_ATTRIBUTE property. By default, this Retail_Item attribute is

internals.message_text. To successfully use the Role_Email collaboration object as

the notifying collaboration object, the Retail_Item attribute specified in the

ItemValidation or Process_Reviewed_Item collaboration object’s

EMAIL_MSG_ATTRIBUTE property must match the Retail_Item attribute specified

in the Role_Email collaboration object’s MSG_TEXT_ATTRIBUTE property. This

Retail_Item attribute can contain either the actual message text or a filename

containing the message text. See “Specifying message text, subjects, and recipients

in external files” on page 62.

Note: In the ItemValidation collaboration object, if the REJECT_EMAIL_MSG

property exists but is BLANK, a default value is placed in the Retail_Item

attribute specified by the EMAIL_MSG_ATTRIBUTE property.

Chapter 11. Controlling e-mail 59

REJECT_EMAIL_SUBJECT

This property specifies the Retail_Item attribute containing the appropriate

message subject. If the SEND_MAIL_ON_REJECTION and REJECT_EMAIL_ROLE

properties exist (and, in the ItemValidation collaboration object, are not BLANK),

and the Retail_Item has a status of Rejected, the value of

REJECT_EMAIL_SUBJECT is stored in the Retail_Item attribute specified by the

ItemValidation or Process_Reviewed_Item collaboration object’s

EMAIL_SUBJECT_ATTRIBUTE property. By default, this Retail_Item attribute is

internals.message_subject. To successfully use the Role_Email collaboration

object as the notifying collaboration object, the Retail_Item attribute specified in the

ItemValidation or Process_Reviewed_Item collaboration object’s

EMAIL_SUBJECT_ATTRIBUTE property must match the Retail_Item attribute

specified in the Role_Email collaboration object’s MSG_SUBJECT_ATTRIBUTE

property. This Retail_Item attribute can contain either the actual subject text or a

filename containing the subject text. See “Specifying message text, subjects, and

recipients in external files” on page 62.

Note: In the ItemValidation collaboration object, if the REJECT_EMAIL_SUBJECT

property exists but is BLANK, a default value is placed in the Retail_Item

attribute specified by the EMAIL_SUBJECT_ATTRIBUTE property.

Alerting of processing errors

Properties that can be configured to enable email to be sent if errors are detected

during processing.

Overview

The ItemValidation and ItemDispatcher collaboration objects send the object to

their Notify ports; the ItemCollector collaboration object, to its email port; the

Process_Reviewed_Item collaboration object, to its mail port. The Role_Email

collaboration object receives it on its From port and then formulates the sendEmail

API parameters from the values of the EMAIL_ROLE_ATTRIBUTE,

EMAIL_MSG_ATTRIBUTE, and EMAIL_SUBJECT_ATTRIBUTE properties passed

to it.

ItemValidation, ItemCollector, ItemDispatcher, and Process_Reviewed_Item

collaboration objects contain the following properties that can be configured to

enable email to be sent if errors are detected during processing.

SEND_MAIL_ON_ERROR

This property controls whether the Retail_Item is sent to the port connected to the

Role_Email collaboration object. In essence, its value of true or false controls

whether email is sent. This property must be configured by the user.

ERROR_EMAIL_ROLE

This property specifies the Retail_Item attribute containing the recipients that are

to receive the message. It must be configured by the user. If an error occurs and

this property and the SEND_MAIL_ON_ERROR property exist (and, in the

ItemValidation collaboration object, are not BLANK), the value of

ERROR_EMAIL_ROLE is stored in the Retail_Item attribute specified by the

ItemValidation, ItemCollector, ItemDispatcher, or Process_Reviewed_Item

collaboration object’s EMAIL_ROLE_ATTRIBUTE property. By default, this

60 Solution Development Guide

Retail_Item attribute is internals.message_recipient_role. To successfully use the

Role_Email collaboration object as the notifying collaboration object, the

Retail_Item attribute specified in the ItemValidation, ItemCollector, ItemDispatcher,

or Process_Reviewed_Item collaboration object’s EMAIL_ROLE_ATTRIBUTE

property must match the Retail_Item attribute specified in the Role_Email

collaboration object’s MSG_RECIPIENT_ATTRIBUTE property. This Retail_Item

attribute can contain either the actual recipient or list of recipients or a filename

containing this value. See “Specifying message text, subjects, and recipients in

external files” on page 62.

Note: In the Process_Reviewed_Item collaboration object, if the

ERROR_EMAIL_ROLE property does not exist, a value of unknown is set in

the Retail_Item attribute specified by the EMAIL_ROLE_ATTRIBUTE

property. In the ItemValidation collaboration object, if the

ERROR_EMAIL_ROLE property exists but is BLANK, no notification is

executed (no default mail recipient exists).

E-mail error properties

The following properties

v ERROR_EMAIL_MSG (ItemValidation, ItemDispatcher and

Process_Reviewed_Item collaboration objects only)

v ERROR_RETRIEVE_EMAIL_MSG (ItemCollector collaboration object only)

v ERROR_SEND_EMAIL_MSG (ItemCollector collaboration object only)

specify the Retail_Item attribute containing the appropriate message text to be sent.

If an error occurs and the SEND_MAIL_ON_ERROR and ERROR_EMAIL_ROLE

properties exist (and, in the ItemValidation collaboration object, are not BLANK),

the value of ERROR_EMAIL_MSG, ERROR_RETRIEVE_EMAIL_MSG, or

ERROR_SEND_EMAIL_MSG is stored in the Retail_Item attribute specified by the

ItemValidation, ItemCollector, ItemDispatcher, or Process_Reviewed_Item

collaboration object’s EMAIL_MSG_ATTRIBUTE property. By default, this

Retail_Item attribute is internals.message_text. To successfully use the

Role_Email collaboration object as the notifying collaboration object, the

Retail_Item attribute specified in the ItemValidation, ItemCollector, ItemDispatcher,

or Process_Reviewed_Item collaboration object’s EMAIL_MSG_ATTRIBUTE

property must match the Retail_Item attribute specified in the Role_Email

collaboration object’s MSG_TEXT_ATTRIBUTE property. This Retail_Item attribute

can contain either the actual message text or a filename containing the message

text. See “Specifying message text, subjects, and recipients in external files” on

page 62.

Note: In the ItemValidation collaboration object, if the ERROR_EMAIL_MSG

property exists but is BLANK, a default value is placed in the Retail_Item

attribute specified by the EMAIL_MSG_ATTRIBUTE property. In the

ItemCollector collaboration object, if the ERROR_RETRIEVE_EMAIL_MSG

or ERROR_SEND_EMAIL_MSG properties exist but are BLANK, a default

value is placed in the Retail_Item attribute specified by the

EMAIL_MSG_ATTRIBUTE property. In the ItemDispatcher collaboration

object, if the ERROR_EMAIL_MSG property exists but is BLANK, the

exception that occurred in the collaboration object is used as the message

text.

Chapter 11. Controlling e-mail 61

ERROR_EMAIL_SUBJECT

This property specifies the Retail_Item attribute containing the appropriate

message subject. If an error occurs and the SEND_MAIL_ON_ERROR and

ERROR_EMAIL_ROLE properties exist (and, in the ItemValidation collaboration

object, are not BLANK), the value of ERROR_EMAIL_SUBJECT is stored in the

Retail_Item attribute specified by the ItemValidation, ItemCollector, ItemDispatcher,

or Process_Reviewed_Item collaboration object’s EMAIL_SUBJECT_ATTRIBUTE

property. By default, this Retail_Item attribute is internals.message_subject. To

successfully use the Role_Email collaboration object as the notifying collaboration

object, the Retail_Item attribute specified in the ItemValidation, ItemCollector,

ItemDispatcher, or Process_Reviewed_Item collaboration object’s

EMAIL_SUBJECT_ATTRIBUTE property must match the Retail_Item attribute

specified in the Role_Email collaboration object’s MSG_SUBJECT_ATTRIBUTE

property. This Retail_Item attribute can contain either the actual subject text or a

filename containing the subject text. See “Specifying message text, subjects, and

recipients in external files.”

Note: In the ItemValidation collaboration object, if the ERROR_EMAIL_SUBJECT

property exists but is BLANK, a default value is placed in the Retail_Item

attribute specified by the EMAIL_SUBJECT_ATTRIBUTE property.

QUALIFICATION_FAILED_EMAIL_MSG

The QUALIFICATION_FAILED_EMAIL_MSG property is used only with the

Process_Reviewed_Item collaboration object.

Set this attribute to the appropriate message text to be sent if the status of the item

returned on the Process_Reviewed_Item collaboration object’s reprocess port from

the ItemValidation collaboration object is Rejected.

Specifying message text, subjects, and recipients in external files

A Role_Email collaboration object allows the contents of the Retail_Item attributes

that specify email message text, subject text, and recipients to contain the names of

files.

Description

These files contain the actual email message text, subject text, and addresses, and

can be easily modified without modifying the using collaboration objects. This

feature permits messages, subjects, and recipients to be shared among multiple

collaboration objects. A solution’s messages, subjects, and recipients can all be

contained in one easily modifiable directory.

The Role_Email collaboration object uses the following configuration properties to

identify the Retail_Item attributes containing the email message text, subject text,

and recipients:

MSG_TEXT_ATTRIBUTE

Identifies the Retail_Item attribute containing the message text, by default,

internals.message_text

MSG_SUBJECT_ATTRIBUTE

Identifies the Retail_Item attribute containing the subject text, by default,

internals.message_subject

62 Solution Development Guide

MSG_RECIPIENT_ATTRIBUTE

Identifies the Retail_Item attribute containing the recipient or list of

recipients, by default, internals.message_recipient_role

The collaboration object distinguishes whether the content of the Retail_Item

attributes are actual values or filenames through use of its configuration property

FILE_NAME_PREFIX. If the value of the Retail_Item attribute specified in the

MSG_TEXT_ATTRIBUTE, MSG_SUBJECT_ATTRIBUTE, or

MSG_RECIPIENT_ATTRIBUTE property is prefixed with the String specified in

FILE_NAME_PREFIX, the Role_Email collaboration object interprets the rest of the

value as a filename. The collaboration object reads the value of the file into a String

variable in preparation for further processing. Files must be identified by their

fully qualified names.

For instance, if the filename containing the email recipient(s) is

c:\Email_Files\CategoryManagerRole.txt and the value of FILE_NAME_PREFIX

is @, set the value of the Retail_Item attribute identified by the

MSG_RECIPIENT_ATTRIBUTE property, as follows:

@c:\Email_Files\CategoryManagerRole.txt

If the values of the Retail_Item attributes specified in the MSG_TEXT_ATTRIBUTE,

MSG_SUBJECT_ATTRIBUTE, and MSG_RECIPIENT_ATTRIBUTE properties do not

start with the String specified in FILE_NAME_PREFIX, the Role_Email

collaboration object obtains the email values directly from the attributes. If the

Retail_Item attributes for message text or subject text contain no values, the

Role_Email collaboration object supplies default values for them.

Specifying changing individual or multiple message recipients

Using a Role_Email collaboration to route e-mail.

Purpose

A Role_Email collaboration object allows all e-mail messages to be routed to an

administrator or to a specific role in an organization (like a Category Manager),

without the need to maintain the email recipient’s fully qualified e-mail address in

every collaboration object that might send e-mail. By placing the e-mail address in

an external file, if the address changes, the file can be modified without having to

reconfigure the using collaboration objects. More than one recipient can be

specified to receive the e-mail through use of a comma-delimited list. The

comma-delimited list can be specified in the business object attribute or in the

external file pointed to by the attribute.

Using substitution variables in message and subject text

Email message and subject text can be constants that contain variables.

A Role_Email collaboration object substitutes data from the processing state or

business object into these variables dynamically. For instance, in the message

An item with GTIN ${item.catalogueItem.tradeItem.itemInformation. \

tradeItemIdentification.gtin} was approved and synchronized to the back end system

the GTIN value represented by ${item.catalogueItem.tradeItem.

itemInformation.tradeItemIdentification.gtin}

${item.catalogueItem.tradeItem. itemInformation.tradeItemIdentification.gtin}

Chapter 11. Controlling e-mail 63

is filled in automatically during the generation of this message.

Variables to be substituted must be enclosed in prefix and suffix characters. The

substitution variable characters are defined in the values of the Role_Email

collaboration object’s configuration properties SUBSTITUTION_VARIABLE_PREFIX

and SUBSTITUTION_VARIABLE_SUFFIX. In the following example, these

properties are set as follows:

SUBSTITUTION_VARIABLE_PREFIX = ${

SUBSTITUTION_VARIABLE_SUFFIX = }

As a result, the substitution variables in the email message and subject text must

appear as: ${variable_name}

Note: These characters might have to be changed to meet National Language

requirements.

Supported values

The supported values for variable_name, along with the values that the

collaboration object actually inserts in the text, are as follows:

 ROOT The entire triggering business object.

Date The current date

getName The name of the triggering business object

getVerb The verb of the triggering business object

Any attribute name The value of the named attribute from the

triggering business object. If the value for

variable_name does not match one of the

specific values above, the collaboration

object interprets it as the name of a business

object attribute.

64 Solution Development Guide

Chapter 12. Logging

Describes the special capabilities of various collaboration objects to log errors, item

status, and when mail is sent.

Description

ItemValidation, ItemCollector, Process_Reviewed_Item, and Role_Email

collaboration objects can log error situations and, in some cases, item status. A

Role_Email collaboration object can also log each time an email message is sent.

Logging that mail is sent

Set a Role_Email collaboration object’s configuration property LOG_ALL_MAIL to

true to place an entry in the configured log destination each time an email message

is generated.

Logging errors

If error conditions are encountered during any stage of processing, actions are

taken. ItemValidation, ItemCollector, and Process_Reviewed_Item collaboration

objects do the following:

Description

If error conditions are encountered during any stage of processing, ItemValidation,

ItemCollector, and Process_Reviewed_Item collaboration objects do the following:

v Set the Retail_Item business object’s attribute value named in the configuration

property ITEM_STATUS_ATTRIBUTE to .Error

v Log the error in the configured log destination.

v Return the object to the calling collaboration object through the From port.

If any errors are detected when email is sent, the Role_Email collaboration object

logs them in the log destination.

Note: For error logging to occur in ItemCollector and Process_Reviewed_Item

collaboration objects, tracing must be enabled. For error logging to occur in

a Role_Email collaboration object, its LOG_ERROR configuration property

must be set to true.

Logging item status

The available configuration properties to log item status.

Description

The values of configuration properties in ItemValidation, ItemCollector, and

Process_Reviewed_Item collaboration objects control the logging of item status. A

value of true in the following properties enables the business object to be logged

in the configured log destination:

 65

LOG_ERROR_ITEM

Specifies whether the collaboration object logs the business object being

processed (in addition to the error) when an error is detected during

processing.

LOG_REVIEW_ITEM

(ItemValidation collaboration objects only) Specifies whether the

collaboration object logs the business object being processed when the

object is successfully processed. The Review item status means that the item

continues to be processed for required missing attribute data review or

approval.

LOG_APPROVED_ITEM

(Process_Reviewed_Item collaboration objects only) Specifies whether the

collaboration object logs the business object being processed when the

object status is Approved.

LOG_ACCEPTED_ITEM

(Process_Reviewed_Item collaboration objects only) Specifies whether the

collaboration object logs the business object being processed when the

object status is Accepted.

LOG_REJECTED_ITEM

(ItemValidation and Process_Reviewed_Item collaboration objects only)

Specifies whether the collaboration objects log the business object being

processed when the object status is Rejected.

Solution requirements dictate the type of logging that occurs, as well as when it

occurs. It is recommended that the LOG_ERROR_ITEM property always be set to

true so that any item that fails is logged for diagnostic purposes.

To log an item only after it completes the business review/approval process, set

the LOG_APPROVED_ITEM and LOG_REJECTED_ITEM properties of the

Process_Reviewed_Item collaboration object to true and the LOG_REVIEW_ITEM

and LOG_REJECTED_ITEM properties of the ItemValidation collaboration object

and the LOG_ACCEPTED_ITEM property of the Process_Reviewed_Item

collaboration object to false.

To log an item both before and after it enters the business review/approval

process, set all logging collaboration properties of ItemValidation and

Process_Reviewed_Item collaboration objects to true.

Planning files for logging and tracing

Use separate files for logging and tracing. Use logging files to maintain persistent

records of processed data. Use tracing files to diagnose problems and to show the

flow of an item through the Product Information Management for Retailers

solution. The Log Viewer tool has log and trace file filters that enable users to view

the log or trace records for a particular business object or collaboration object.

66 Solution Development Guide

Chapter 13. Tracing

Outlines how to trace and identify problems that might occur in the solution

workflow.

All collaboration objects based on collaboration templates included in the Product

Information Management for Retailers solution provide tracing capabilities to

record logical flows and data processed. Users can enable tracing for a particular

collaboration object by selecting the collaboration object in the System Manager,

displaying its properties, and, on the Collaboration General Properties tab,

selecting a trace level greater than 0 from the System trace level field.

Enable tracing for one or more collaboration objects when a reproducible problem

occurs. If a problem occurs only once during processing, leave the tracing function

enabled continually so that the first occurrence of the failure is captured. However,

leaving the tracing function enabled continually can degrade performance. Clear

the trace file periodically to simplify viewing and filtering it.

Note: Use separate files for tracing and logging. Use tracing files to diagnose

problems and to show the flow of an item through the Product Information

Management for Retailers solution. Use logging files to maintain persistent

records of processed data. The Log Viewer tool has trace and log file filters

that enable users to view the trace or log records for a particular business

object or collaboration object.

 67

68 Solution Development Guide

Chapter 14. Handling solution processing errors

Provides troubleshooting tips that can be used to diagnose error conditions,

identify where in the process flow errors might have occurred, and recover from

error conditions.

Description

The Product Information Management for Retailers solution is designed so that its

component collaboration objects gather as much information as possible about an

error situation, notify the appropriate users that an error has occurred, and then

continue with item processing. Only severe system errors cause processing by a

collaboration object to end as an unfinished flow. This design prevents situations in

which a restarted flow might not have all of the resources available to it to

reprocess the item or might initiate tasks that should not be repeated. The

following examples describe some of the problems that can occur if item

processing is restarted:

v If an item is approved in the business process but the synchronization fails on

the back end, if the process is restarted, the item will not be found in the item

store (it has already been deleted).

v If an item is synchronized to the back end but an error occurs when sending the

response to UCCnet, if the process is restarted, the item will be synchronized to

the back end again.

The following lists several error situations that can occur when processing an item:

v A UCCnetMessageReceive collaboration object cannot parse the incoming

message into a specific item request.

v A database access failure occurs during processing by ItemValidation,

ItemCollector, ItemDispatcher, or Process_Reviewed_Item collaboration objects.

v The business review/approval process ends in error.

v An item cannot be synchronized to the back-end system.

v A response cannot be sent back to UCCnet.

Diagnosing error conditions

Some procedures to follow to determine how an item failed in processing and

where in the processing flow it failed.

Determining the problem from e-mail messages

The Product Information Management for Retailers solution uses e-mail routed to

specific user IDs to alert users when errors occur during item processing. The

e-mail provides basic information about the errors. E-mail messages can be

configured or modified.

Determining the problem from log or trace files

Use the log file to determine how far an item progressed through the solution flow

before a problem occurred. Filter the log file to examine specific collaboration

object or business object events. If the log does not provide enough information

about the failure, activate tracing for one or more collaboration objects and

 69

examine the trace file for more details. Filter the trace file to search for specific

collaboration object or business object events.

Determining the point of failure

The point of failure in solution processing determines the method used to restart

item processing. The following sections outline check points that can help pinpoint

where in item processing an error occurred.

Check that the item exists in the message store

Use database user interface methods to examine the message store. Search

for a message that correlates to the item in error. Refer to the key of the

message store to correlate the item.

Check that the item completed validation checks

Examine the log file for messages originating from the ItemValidation

collaboration object that indicate that the item completed validation checks.

Check that the item reached the business review/approval process

Use the user interface for the business review/approval process to search

for the item in question. If the item reached the business review/approval

process and the business review/approval process used is WebSphere MQ

Workflow, the item appears as a new task in the workflow.

Check that the item completed the business review/approval process

The log information related to the ItemCollector collaboration object

indicates the state of the item as it arrives from the business

review/approval process. If the error occurred in this process, the status of

the item passed to the ItemCollector collaboration object is Error.

 If the error resulted from the ItemCollector collaboration object not being

able to read the item from the item store, information in the log or trace

files can identify the failure. Remove the item from the stores and restart

the item from UCCnet.

Check that item synchronization to the back end occurred

In the context of the Product Information Management for Retailers

solution, the JTextConnector synchronizes the item to a back-end file

system by writing it to a flat file. Examine the directory containing the

item files to see if the failed item was written to a file. If it was, the item

was synchronized properly and the error occurred at a later stage.

 If the item was not written to a file, the error occurred prior to processing

performed by the Process_Reviewed_Item collaboration object. Most likely,

no response was sent to UCCnet.

Check that a response was sent to UCCnet

 Verify that a response was sent to UCCnet by examining the logging and

tracing information related to the UCCnetMessageSend collaboration object

or the AS2 channel output directory.

 If the response sent to UCCnet was Synchronised (for systems using the

XSD XML definition) or Authorized (for systems using the DTD XML

definition), the item was synchronized to the back-end system before the

error occurred.

 If the response sent was Rejected, most likely the item was rejected. The

error might have occurred after the response was sent. Normally, a

UCCnetMessageSend collaboration object is configured to not send

responses if errors occur during item processing.

70 Solution Development Guide

If no response was sent for the item, the item can be reprocessed.

Recovering from error conditions

Removing an existing item from the process that ended in error so it can be

reprocessed.

Description

After determining the nature of the error and correcting it, the existing item must

be removed from the process that ended in error so it can be reprocessed. Unless

the item is to be restarted by using a test connector , the item must be removed

from every store and from the business review/approval process before processing

can be restarted.

Removing an item from processing

1. Remove the item from the business review/approval process (WebSphere MQ

Workflow in the context of the Product Information Management for Retailers

solution) by referring to WebSphere MQ Workflow documentation that

describes how to remove the instance of the WebSphere MQ Workflow process

that ended in error.

2. Delete the item from the item store by finding the value of its

internals.correlationID attribute in the log file. Use this value as the key to

the item store and find and delete the Retail_Item record.

3. Delete the item from the message store finding the value of the correlationID

attribute of the related UCCnetGBO_storable business object in the log file. Use

this value as the key to the message store and find and delete the record.

4. If the original request was a NEW_ITEM, DATA_CHANGE, WITHDRAW, or

DE_LIST, delete the item from the identifier store by finding in the log file the

values of the gtin, version, and topic attributes of the related

UCCnetGBO_identifier business object for DTD processing or the gtin, topic,

dataRecipientGLN, dataSourceGLN, targetMarket, and uniqueCreatorID

attributes of the related UCCnetGBO_identifier business object for XSD

processing. Use these values as the key to the identifier store and find and

delete the record.

Restarting item processing

To restart item processing, do one of the following:

v Regenerate the message from UCCnet by obtaining the GTIN and trading

partner GLN from the log entries related to the item and using the UCCnet

Graphical User Interface (GUI) to request a republication of the item. This action

causes a message to arrive for the item and the item is processed normally.

v Regenerate the message from the UCCnet backup area. The original message

containing the failed item can be copied from the UCCnet staging directory to

the connector processing directory.

v Use a test connector to restart the item from the item store if the following

conditions exist:

– The item failed in the back-end process

– The item was synchronized

– No message was sent to UCCnet

– The item still exists in the item, identifier, and message stores

To use a test connector to restart the item, do the following:

Chapter 14. Handling solution processing errors 71

1. Do not delete the item from the item store, message store, or identifier store.

2. Start a test connector and connect it to an ItemCollector collaboration object

flow. This requires configuring a set of collaboration objects and connectors

to imitate a normal back-end flow.

3. Create a Retail_Item business object in the test connector and set the value of

its internals.correlationID attribute equal to the value of the

internals.correlationID attribute for the item found in the log.

4. Send the item. The ItemCollector collaboration object receives it and

processes it normally.

72 Solution Development Guide

Chapter 15. Handling data from other data sources

Suggestions for extending the solution to handle single data sources other than

UCCnet or multiple data sources.

Other data sources

The Product Information Management for Retailers solution can be extended to

handle different item sources in addition to UCCnet, including the World Wide

Retail Exchange (WWRE), the Universal Data Exchange (UDEX), or a user

interface. Items from various sources can differ significantly in the architecture of

the data that comprises them.

Extending the solution to handle a single data source other than

UCCnet

Put your short description here; used for first paragraph and abstract.

Description

To handle data from a source other than UCCnet, do the following:

1. Replace the UCCnetMessageReceive and UCCnetMessageSend collaboration

templates with custom collaboration templates that generate collaboration

objects that can parse incoming messages from and produce appropriate

response messages to the new data source.

2. Modify the Retail_Item business object item attribute type (by default,

Retailer_item) into a different child business object that represents the new

architecture of the item data. It is recommended that this child business object

closely follow the architecture of the data source (that is, UCCnet publication,

WWRE item, or other source).

3. Modify all solution maps that convert Retail_Item business objects to instead

convert items with the new data architecture.

4. Configure all the configuration properties that point to attributes in the

Retail_Item business object to instead point to the appropriate attributes in the

new data architecture.

Extending the solution to handle multiple data sources

To handle items from multiple data sources, the front end of the solution must

include collaboration objects that can parse each type of new item.

Description

To handle items from multiple data sources, the front end of the solution must

include collaboration objects that can parse each type of new item. These

collaboration objects must be based on custom collaboration templates similar to

the UCCnetMessageReceive collaboration template. Each of these front-end

collaboration objects must be attached to an ItemValidation collaboration object.

The ItemValidation collaboration objects operate identically for each front-end

parsing collaboration object, routing the different types of Retail_Item business

objects to ItemDispatcher collaboration objects. If the various data sources use the

 73

same business review/approval process, they can use a common data container.

Appropriate maps must be created that convert the different types of Retail_Item

business objects to the common data container.

When the business review/approval process completes, the common data container

is sent to the WebSphere MQ Workflow queue. The existing Product Information

Management for Retailers solution uses the MQWF_Retail_Item_to_Retail_Item

map to convert the WebSphere MQ Workflow container into a Retail_Item business

object. However, this map, which is used by the

WebSphereMQWorkflowConnector, cannot produce different types of Retail_Item

business objects. Because the incoming Retail_Item business objects are from

different sources, the Retail_Item business objects going to the back end are going

to be different as well.

A collaboration template (similar to the ItemCollector collaboration template) must

be created that develops and builds these different business objects. A collaboration

object based on this custom collaboration template can possibly use the call_map

API and have a different To port for each data source producing a Retail_Item

business object.

74 Solution Development Guide

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to: IBM

Director of Licensing IBM Corporation North Castle Drive Armonk, NY 10504-1785

U.S.A.

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or program(s) described in this publication

at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact: IBM Burlingame

Laboratory Director IBM Burlingame Laboratory 577 Airport Blvd., Suite 800

Burlingame, CA 94010 U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

 75

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not necessarily tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not necessarily tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

76 Solution Development Guide

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

Copyright license

This information may contain sample application programs in source language,

which illustrates programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States, other countries, or both:

 IBM

WebSphere

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Notices 77

78 Solution Development Guide

����

Printed in USA

	Contents
	About this book
	Who should read the Solution Development Guide
	Definitions and terminology
	How the Solution development guide is organized

	Chapter 1. Processing a business object: an example NEW_ITEM workflow
	Detailed workflow: receiving, filtering, and validating a business object
	Detailed workflow: processing a business object with cascaded GLNs
	Detailed workflow: completing the WebSphere MQ Workflow process and merging updated information into a complete business object
	Detailed workflow: synchronizing a business object to a back-end system

	Chapter 2. Filtering publication requests before business processing
	Filtering based on the presence of attributes required by UCCnet
	Filtering based on items belonging to approved supply-side trading partners
	Filtering based on items belonging to accepted categories
	Complex field filtering based on multiple attributes
	Filtering to eliminate processing of duplicate items
	Persisting or deleting an item to or from a local identifier store

	Chapter 3. Validating an item before business processing
	Validating an item against customized business policy rules
	Validating an item by requiring data for specific attributes
	Performing simple filtering
	Performing complex filtering
	Specifying attribute names
	Using the RetailUtility external Java class
	Using the Custom Missing Attribute Logic
	Using a custom missing data retrieval process to collect data

	Chapter 4. Adding customized code to the ItemValidation collaboration template
	Chapter 5. Processing business objects with cascaded GLNs
	Using the GLN Cascade Grouping File

	Chapter 6. Using a business process to review and approve an item
	Printing an item before it is sent through the business review/approval process
	Mapping an item to the business review/approval process
	Using WebSphere MQ Workflow containers
	Returning data from the business review/approval process to an ItemCollector collaboration object

	Chapter 7. Merging data into a complete item
	Merging static data by using the X_COPY ATTRIBUTE configuration properties
	Merging missing data by using the MISSING_DATA_CHILD_ATTRIBUTE configuration property

	Chapter 8. Processing an item after the business review/approval process completes
	Synchronizing an item to a back-end application other than a file system
	Synchronizing an item to multiple back-end applications

	Chapter 9. Sending responses to UCCnet
	Chapter 10. Using identifier, message, and item stores
	Persisting or deleting an item to or from a local identifier store
	Persisting, retrieving, or deleting an item to or from a local message store
	Persisting, retrieving, updating, or deleting an item to or from a local item store
	Generating data base keys

	Chapter 11. Controlling e-mail
	Alerting email recipients of item status or processing errors
	Alerting of Approved item status
	Alerting of Accepted item status
	Alerting of Rejected item status
	Alerting of processing errors

	Specifying message text, subjects, and recipients in external files
	Specifying changing individual or multiple message recipients
	Using substitution variables in message and subject text

	Chapter 12. Logging
	Logging that mail is sent
	Logging errors
	Logging item status

	Chapter 13. Tracing
	Chapter 14. Handling solution processing errors
	Diagnosing error conditions
	Recovering from error conditions

	Chapter 15. Handling data from other data sources
	Extending the solution to handle a single data source other than UCCnet
	Extending the solution to handle multiple data sources

	Notices
	Copyright license
	Programming interface information
	Trademarks

