IBM WebSphere Business Integration Adapters

Implementing Adapters with WebSphere

Message Brokers

<|ll

IBM WebSphere Business Integration Adapters

Implementing Adapters with WebSphere

Message Brokers

<|ll

Note!
FBefore using this information and the product it supports, read the information in|[“Notices” on page 183

20February2004

This edition of this document applies to the IBM WebSphere Business Integration Adapter Framework, version 2.4,
and to all subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing
from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document . vii
Audience . . vii
Related documents . vii
WebSphere Business Integratlon adapters
publications . . viii
WebSphere message broker publlcatlons . viii
System Manager publications . . viii
Typographic conventions . viii
Summary of Changes . Xi
New with WebSphere Business Integration Adapter
Framework v 2.4.0 . e . xi
February 2004. . xi
December 2003 . xi
New in WebSphere Business Integratlon Adapters A\
231 . . xi

New in WebSphere Busmess Integratlon Adapters v
2.20. .

New in WebSphere Busmess Integratlon Adapters Y
2.1.0.

New in WebSphere Busmess Integratlon Adapters v
2.0.1. .. Lo

. Xii

. Xii

. Xii

Part 1. Overview and concepts . . . 1
Chapter 1. Overview of WebSphere
Business Integration adapters . . 3
A note about documents you need . .4
What is the WebSphere business integration system7 4
What are WebSphere message brokers? .5
What are WebSphere Business Integration adapters7 5
How the WebSphere business integration system
works . . 6
Data flow in the busmess mtegratlon system . 8
Summary of the business integration process . . 12
Chapter 2. Business objects . 15
Roles of a business object. .15
Event .15
Request. .15
Response . .15
Structure of a busmess ob]ect . 16
Business object type . 16
Business object verbs . . . 16
Business object attribute values. .17
Types of business objects . . .18
Business object definitions and busmess ob]ects .18
Components of a business object definition . .19
Verbs . 20
A closer look at busmess ob]ects .21
Attribute organization . .21
Application-specific mformatlon .21
Ways to create or modify business object defmltrons 23
Creating business object definitions .23

© Copyright IBM Corp. 2002, 2004

Modifying business object definitions.24

Chapter 3. Connectors 25

Connector startup25
Event notification25
Setting up the apphcatron s event—notlfrcatlon
mechanism26
Detecting anevent29
Processing anevent.29
Guaranteed event delivery31
Request processing31
Verb-based processing. . . .32
Business object construction and deconstructron 33
Application-specific information for verbs . . . 35
Connector configuration36
Connector development37

Chapter 4. Data transport and the
integration broker 39

The role of the integration broker39
Asynchronous data transport39
Synchronous data transport40
Interfaces for message exchange40
Message formats.40
Message queues41
For more information42

Part 2. Deployment and

administration. 43

Chapter 5. Planning your
implementation45

Developing the business process interfaces 45
Stages of an implementation.45
Discovering and assessing busmess goals .. .46
Evaluating existing components and designing
new ones 47
Developing and Conflgurmg the busmess
integration system 47
Validating the business mtegratlon system .o .48
Deploying the business integration system . . . 49
Development tools49

Chapter 6. Installing WebSphere
Business Integration adapters 51

Installing for Windows systems.51
Software Requirements51
Installing the JDK52
Installing WebSphere MQ. B2
Installing WebSphere Business Integratron
adapters53

Installing for UNIX systems O
Software Requirements53

iii

Installing the JDK . 54
Installing WebSphere MQ. . . 56
Installing WebSphere Business Integratlon
adapters . 56
Chapter 7. Administering the business
integration system. . 57
Starting a connector . 57
From Windows . . 57
From UNIX . 58
Stopping a connector . . . 58
From the connector system . . 58
From the broker system . . 59
Creating multiple connector instances . 60
Create a new directory . 60
Using Adapter Monitor and Fault Queue Manager 61
Adapter Monitor perspective61
Setting Adapter Monitor preferences . . 62
Loading an adapter. .62
Adapter Monitor displays . 63
Change the state of an adapter . . 64
Using the Fault Queue Manager Dlsplay . 65
Handling failed events . .66
Clearing messages from WebSphere MQ queues . .67
Managing log and trace files. . .. 67
Archival logging of log and trace flles . 68
Managing other files L. . 68
Using Log Viewer to view connector messages . 69
Setting Log Viewer preferences . . 70
Changing how messages are viewed . . .72
Controlling the Log Viewer dlsplay output .74
Filtering messages . . .74
Chapter 8. Configuring the WebSphere
business integration system .77
Overview of configuration tasks . .77
Configuring the message broker to work with the
connector . .77
Configuring the WebSphere MQ queues . 78
Defining the queue configuration . . 80
Creating business object definitions . 81
Creating a message broker project . . .82
Specifying importer and workspace paths . . 82
Creating a new user project 83
Deploying to a message broker workspace . . 85
Deploying to an integrator broker . . 88
Choosing XML Namespace length . . .9
Enabling the application for use with the connector 91
Configuring the connector . .9
Specifying the location of the Connector s local
repository . . .92
Specifying the queues to be used by the
connector . .92
Setting the connectlon mode w1th the queue
manager .. 92
Setting conflguratlon propertles for synchronous
execution . . . 93
Configuring logglng and trac1ng optlons . 93
Configuring the connector startup files, shortcuts,
and environment variables . 95

iv Implementing Adapters with WebSphere Message Brokers

Defining message flows96
Transaction management L7

Using Visual Test Connector to verify your

interfaces97

Appendix A. WebSphere MQ message
formats9

Message descriptor.99
Message header9
Messagebody99

Appendix B. WebSphere MQ message
body formats for administrative

messages . e e . 107
Messages from the connector framework to
WebSphere message brokers 107
Messages from WebSphere message brokers to the
connector framework.107
Appendix C. Standard configuration
properties for connectors . . 109
New and deleted properties 109
Configuring standard connector propertles .. . 109
Using Connector Configurator. 109
Setting and updating property values 110
Summary of standard properties 110
Standard configuration properties 114
AdminInQueve.114
AdminOutQueue114
AgentConnections.114
AgentTraceLevel115
ApplicationName115
BrokerType115
CharacterEncoding . . B 1)
ConcurrentEVentTrlggeredFlows15
ContainerManagedEvents 116
ControllerStoreAndForwardMode 116
ControllerTraceLevel116
DeliveryQueue117
DeliveryTransport117
DuplicateEventElimination 118
FaultQueue18
JvmMaxHeapSize18
JvmMaxNativeStackSize. 118
JvmMinHeapSize118
jms.FactoryClassName119
jms.MessageBrokerName119
jms.NumConcurrentRequests 119
jms.Password119
jms.UserName119
ListenerConcurrency119
Locale. . . B L)
LogAtInterchangeEnd L. ..o ..o 120
MaxEventCapacity120
MessageFileName120
MonitorQueue120
OADAutoRestartAgent121
OADMaxNumRetry121
OADRetryTimelnterval121

PollEndTime. 121
PollFrequency . 121
PollQuantity. 122
PollStartTime 122
RequestQueue . . 122
RepositoryDirectory . . 122
ResponseQueue . 122
RestartRetryCount. . 122
RestartRetryInterval . . 123
RHF2MessageDomain . 123
SourceQueue . . 123
SynchronousRequestQueue . 123
SynchronousResponseQueue . 123
SynchronousRequestTimeout . . 124
WireFormat . . . 124
W51fSynchronousRequest T1meout . 124
XMLNameSpaceFormat . . 124
Appendix D. Connector startup
options . . 125
Windows. . 125
UNIX . . 126
Appendix E. System Manager and the
Eclipse Workbench . . 129
About System Manager . . . 129
About the Eclipse Platform . . 129
About WSWB and WSADIE . 131
About System Manager . . 131
Using System Manager . . 131
Starting System Manager . 131
System Manager interface . . 132
Working with integration component 11brar1es . 135
Creating integration component libraries . . 135
Working with user projects . . . 136
Configuring integration broker preferences for
user projects. . 137
Creating user projects . 137
Adding shortcuts to a user pro]ect . 139
Working with components in integration
component libraries . . 141
Launching designer tools . 141
Creating new components . . 142
Modifying existing components .. 142
Importing components into a library from a
package . . . 142
Working with solutrons . . 144
Exporting a solution . . 144
Importing a solution . . 146
Exporting components to a package usmg System
Manager . . . 147
Dependencies and references . . . 148
Showing dependencies and references . . 149
Standard operations available for multiple
workbench resources . .. o149
Adding projects to the workspace from source
code control . . . 149
Cutting, copying, and pastmg resources . 150
Refreshing resources . . 150
Deleting resources. . 150

Using Eclipse-based workbenches . 150
Opening and closing perspectives . 150
Showing and closing views. . 152
Customizing perspectives . 153
Saving perspectives . 153
Setting the default perspectlve . . 153
Configuring System Manager preferences . . 154

Troubleshooting problems connecting to the

integration broker in System Manager . . 156

Appendix F. Using the Connector

Script Generator tool . . 157

Appendix G. Using Visual Test

Connector. . 159

Recommended testing procedure . 159

Starting Test Connector . . 160

Shutting down Test Connector. . . lel

Creating and editing connector profiles. . 161
Saving the connector definition to a file . 16l
Creating a new profile . 162
Editing a profile . 163
Deleting a profile . . 163

Emulating a connector . 164

Working with business objects. . . 164
Working with request business objects . . le4
Setting values for business object attributes . 167
Saving a business object . . 168
Loading a business object . 169
Deleting a business object . . 169
Accepting a request business object . . 169
Working with response business objects . 169
Comparing business object instances . 171

Appendix H. Upgrading WebSphere

Business Integration adapters . . 173

Assumptions . 173

Installing WebSphere Bus1ness Integratlon adapters 173

Upgrading WebSphere message brokers . 173
WebSphere MQ Integrator Broker . 174
WebSphere MQ Integrator . . 174
WebSphere Business Integration Message Broker 174

Installing service packs for WebSphere MQ . 174

Creating the response queue ... 174

Updating the value of the local queue manager 's

coded character set ID . 174

Upgrading existing adapters . 174
Upgrading business objects. . . 175
Updates to the connector configuration f11es . . 175
Configuring the new connector startup scripts 177

Configuring new adapters . . 177

Customizing the new WebSphere MQ batch f11es 177

Glossary . 179

Index . . 181

Notices . Ce e e . 183

Programming interface 1nformat10n . . 184

Contents

A\

Trademarks and service marks 184

vi Implementing Adapters with WebSphere Message Brokers

About this document

The IBM(R) WebSphere(R) Business Integration Adapter portfolio supplies
integration connectivity for leading e-business technologies, enterprise applications,
and legacy and mainframe systems. The product set includes tools and templates
for customizing, creating, and managing components for business process
integration.

This document describes how to install, configure, deploy, and manage WebSphere
Business Integration adapters with supported WebSphere Business Integration
message brokers. The message brokers supported are the following: WebSphere
MQ Integrator 2.1, WebSphere MQ Integrator Broker 2.1, and WebSphere Business
Integration Message Broker 5.0.

Notes:

1. In this document, “application” refers to an enterprise software product that a
partner of IBM develops and sells, or that a customer of IBM develops and
uses. An application participates in an IBM WebSphere Integration Adapters
solution, but it is not part of the IBM WebSphere Integration Adapters product.

2. Illustrations in this manual are only examples used to show structure and
concepts. They do not necessarily document specific business integration
scenarios.

Audience

This document is for customers and consultants who are implementing or
administering WebSphere Business Integration adapters using a WebSphere
message broker as the integration broker for the adapter. It is assumed that the
reader already knows how to configure and administer the message broker that
will be used, and has a solid understanding of WebSphere MQ messaging and
message flows.

If you are already familiar with WebSphere Business Integration adapters that use
another integration broker, you should still read this book carefully because there
are significant differences between their functionality and behavior other

integration broker environments and the WebSphere message broker environment.

Related documents

To deploy and manage WebSphere Business Integration adapters with a WebSphere
message broker as the integration broker, you might need to refer to
documentation that spans the libraries of several different products:

* Individual WebSphere Business Integration adapters

* One of the following: WebSphere MQ Integrator Broker, WebSphere MQ
Integrator or WebSphere Business Integration Message Broker

* WebSphere MQ.

Information about related books and instructions for accessing them are provided
below.

© Copyright IBM Corp. 2002, 2004 vii

WebSphere Business Integration adapters publications

The complete set of documentation available with this product describes the
features and components common to all WebSphere adapter installations, and
includes reference material on specific components.

You can install the documentation or read it directly online at the following Web
site: http://www.ibm.com/websphere/integration/wbiadapters/infocenter

The documentation set consists primarily of Portable Document Format (PDF) files,
with some additional files in HTML format. To read it, you need an HTML
browser such as Netscape Navigator or Internet Explorer, and Adobe Acrobat
Reader 4.0.5 or higher. For the latest version of Adobe Acrobat Reader for your
platform, go to the Adobe Web site (http://www.adobe. com).

WebSphere message broker publications

This implementation guide provides the information necessary to deploy a
business integration system consisting of WebSphere Business Integration adapters
and an existing WebSphere message broker (one of WebSphere MQ Integrator 2.1,
WebSphere MQ Integrator Broker 2.1, or WebSphere Business Integration Message
Broker 5.0.)

Detailed information about installing, configuring, and managing the message
broker, as well as creating and managing message flows, can be found at the IBM
web sites listed below:

* For general information about the WebSphere MQ family of products:

[http://www.ibm.com/software/integration/mqfamily|
* For WebSphere MQ Integrator 2.1:

http://www.ibm.com/software/integration/mqfamily/library|
/manualsa/manuals/wsmgsiv2l.html|

* For WebSphere Business Integration Message Broker:

[http://www.ibm.com/software/integration/wbimessagebroker/1ibrary|

System Manager publications

Many configuration and administrative activities for WebSphere Business
Integration adapters can be performed using a graphical user interface called
System Manager. For information about System Manager beyond what is covered
in this manual, refer to the following two guides:

* IBM WebSphere Interchange Server System Administration Guide
* IBM WebSphere Interchange Server Implementation Guide

These are available at the following web site:

lhttp://www.ibm.com/websphere/integration/wicserver/infocenter|

Typographic conventions

viii

This document uses the following conventions:

courier font Indicates a literal value, such as a command name, filename,
information that you type, or information that the system
prints on the screen.

bold Indicates a new term the first time that it appears.
italic, italic Indicates a variable name or a cross-reference.

Implementing Adapters with WebSphere Message Brokers

http://www.adobe.com
http://www-3.ibm.com/software/integration/mqfamily
http://www-3.ibm.com/software/integration/mqfamily/library/manu
http://www-3.ibm.com/software/integration/mqfamily/library/manu
http://www-3.ibm.com/software/integration/wbimessagebroker/libr
www.ibm.com/websphere/integration/wicserver/infocenter

blue text

{1
(]

/,\

ProductDir
%Stext% and $text

Windows:
UNIX:
AIX:
Solaris:
HP-UX:

Blue text, which is visible only when you view the manual
online, indicates a cross-reference hyperlink. Click any blue
text to jump to the object of the reference.

In a syntax line, curly braces surround a set of options from
which you must choose one and only one.

In a syntax line, square brackets surround an optional
parameter.

In a syntax line, ellipses indicate a repetition of the previous
parameter. For example, option[,...] means that you can
enter multiple, comma-separated options.

In a naming convention, angle brackets surround individual
elements of a name to distinguish them from each other, as
in <server_name><connector_name>tmp.10g.

In this document, backslashes (\) are used as the convention
for directory paths. For UNIX installations, substitute slashes
(/) for backslashes. All product pathnames are relative to the
directory where the product is installed on your system.
Represents the directory where the product is installed.

Text within percent (%) signs indicates the value of the
Windows text system variable or user variable. The
equivalent notation in a UNIX environment is $text,
indicating the value of the text UNIX environment variable.
Paragraphs beginning with any of these indicate notes listing
operating system differences.

About this document 1X

X Implementing Adapters with WebSphere Message Brokers

Summary of Changes

This chapter contains information about changes to Implementing Adapters with
WebSphere Message Brokers for the current release.

New with WebSphere Business Integration Adapter Framework v 2.4.0

February 2004

This manual has been updated to include the changes listed below:

* |Appendix E, “System Manager and the Eclipse Workbench,” on page 129|has
been added explaining System Manager and the Eclipse Workbench.

* Information about starting and stopping connectors in |Chapter 7]
“Administering the business integration system,” on page 57 and in
Appendix D, “Connector startup options,” on page 125 has been updated.

December 2003

This manual has been updated to include the major changes listed below:

e The title of this book has changed. It was previously called Implementing Adapters
with WebSphere MQ Integrator Broker.

¢ The scope of this document has changed to reflect that several different message
brokers (WebSphere MQ Integrator 2.1, WebSphere MQ Integrator Broker 2.1,
and WebSphere Business Integration Message Broker 5.0) are now supported for
use as integration brokers for adapters. Previously only one broker, the
WebSphere MQ Integrator Broker was supported.

¢ System Manager is now used to deploy adapter projects to the integration
broker.

* During configuration, you can now select whether your project will use "long”
or "short” XML namespaces in its serialized business objects.

* The manual now mentions using System Manager to start, stop and pause
adapters.

* Changes made to accommodate new installation and packaging of adapters.

New in WebSphere Business Integration Adapters v 2.3.1

This book has been updated to include the changes listed below:

* The title of this book has changed. It was previously called Implementation Guide
for WebSphere MQ Integrator Broker.

¢ The message domain in RFH2 message headers can now be set to XML through
a new standard configuration property. This is described in
“WebSphere MQ message formats,” on page 99

* |Appendix H, “Upgrading WebSphere Business Integration adapters,” on pagel
173 has been updated to contain instructions for updating to release 2.3.1.

* The previously existing chapters "Installing WebSphere Business Integration
Adapters on Windows” and Installing WebSphere Business Integration Adapters
on UNIX" have been replaced with a single chapter, "Installing WebSphere
Business Integration Adapters.” Details of WebSphere Integration Adapter
installation are contained in a separate manual, "Installation Guide for
WebSphere Business Integration Adapters.”

© Copyright IBM Corp. 2002, 2004 xi

New in WebSphere Business Integration Adapters v 2.2.0

This book has been updated to include the changes listed below:

Appendix H, “Upgrading WebSphere Business Integration adapters,” on page
173] includes information about upgrading WebSphere Business Integration
Adapters to version 2.2.0.

[“Guaranteed event delivery” on page 31|provides information about the
guaranteed-event-delivery feature, which ensures that each event is never
processed more than once.

In”Performing a silent installation or uninstallation of WebSphere Business
Integration Adapters” on page 54 explains how to perform an installation or
uninstallation of WBIA without human intervention.

In Chapter 7 “Performing a silent installation or uninstallation of WebSphere
Business Integration Adapters” on page 63 explains how to perform an
installation or uninstallation of WBIA without human intervention.

“Using WBIA batch files to configure WebSphere MQ queues:” on page 76
provides information on a new batch file you can use to configure WebSphere
MQ queues in the business integration system.

[“Clearing messages from WebSphere MQ queues” on page 67| explains how to
use a new batch file for clearing messages from WebSphere MQ queues.

The following names have changed:
— WebSphere MQ Integrator is now WebSphere MQ Integrator Broker
— MQSeries is now WebSphere MQ.

References to Borland VisiBroker have been removed because this product is no
longer needed for WebSphere Business Integration Adapters that use WebSphere
MQ Integrator Broker.

New in WebSphere Business Integration Adapters v 2.1.0

The changes made in WebSphere Business Integration Adapters 2.1 do not affect
the content of this document.

New in WebSphere Business Integration Adapters v 2.0.1

This book has been updated to include the following changes:

xii

Appendix H, “Upgrading WebSphere Business Integration adapters,” on pagel
173| describes how to upgrade from WBIA V 2.0 to
V 2.0.1.

“Installing for Windows systems” on page 49 explains how to uninstall the
WebSphere business integration system or selected adapters in a Windows
environment.

“Uninstalling WebSphere Business Integration Adapters” on page 62" explains
how to uninstall the WebSphere business integration system or selected adapters
in a UNIX environment.

Appendix C, “Standard configuration properties for connectors,” on page 109
lists standard configuration properties for connectors that use WebSphere MQ
Integrator as the integration broker.

Appendix G, “Using Visual Test Connector,” on page 159 describes how to use
the Visual Test Connector tool to verify that the business integration components
you have defined and configured are working correctly.

[“Creating a message broker project” on page 82| has been revised and enhanced.

Implementing Adapters with WebSphere Message Brokers

* Information about changes to support internationalization has been added.

Summary of Changes ~ Xiii

xiv Implementing Adapters with WebSphere Message Brokers

Part 1. Overview and concepts

© Copyright IBM Corp. 2002, 2004

2 Implementing Adapters with WebSphere Message Brokers

Chapter 1. Overview of WebSphere Business Integration
adapters

As connectivity configurations and topologies have grown in complexity and size,
the ability to move information between applications, using data transformations
and routing rules, has become more critical than ever before. By using a
WebSphere message broker as the integration broker for your WebSphere Business
Integration adapters , you can achieve the cross-application information
connectivity you need to attain your business goals.

WebSphere Business Integration adapters use modular components and
application-independent business logic. This modular approach provides many
benefits over traditional custom integration efforts—including faster deployment,
easier application upgrades, and reusability of both business process flows and
application access code. The business integration system the adapters support is
distributed and flexible, with customization features that make it possible to meet
site-specific and application-specific needs.

This implementation guide explains how to deploy and manage a WebSphere
business integration system featuring WebSphere Business Integration adapters
with supported WebSphere message brokers functioning as integration brokers for
the adapter. The following WebSphere message brokers are supported as
integration brokers:

* WebSphere MQ Integrator 2.1.0
* WebSphere MQ Integrator Broker 2.1.0
* WebSphere Business Integration Message Broker 5.0

Note: Throughout this document, the term "message brokers” is used to refer
specifically to the software products listed above and no others. When
"message brokers” is used, the feature being described applies to all of the
products listed above.

This guide is divided into two parts:

¢ Part 1 presents a conceptual overview of WebSphere Business Integration
adapters, the major components of the adapters portfolio, and the process by
which they interact with the integration broker to create a business integration
system.

 Part 2 offers task-oriented information to help you install, configure, and
administer WebSphere Business Integration adapters with WebSphere message
brokers.

This chapter describes the architecture of a business integration system and
introduces the components of an adapter. It contains the following sections:

+ [“What is the WebSphere business integration system?” on page 4|

* [“What are WebSphere message brokers?” on page 5

* |“What are WebSphere Business Integration adapters?” on page 5|

* ["How the WebSphere business integration system works” on page 6|

© Copyright IBM Corp. 2002, 2004

A note about documents you need

To perform all the tasks necessary to deploy a business integration adapter, you
need to use this book together with other books in the WebSphere Business
Integration adapters library, particularly:

* The Business Object Development Guide
* The adapter user guides for the adapters you are deploying.

If you are developing a custom adapter, you also need to use either or both of the
following books:

* Connector Development Guide for Java
* Connector Development Guide for C++ .

For a complete listing of the books in the library, see|[“WebSphere Business|
[Integration adapters publications” on page viii]

What is the WebSphere business integration system?

4

To compete effectively in e-business, an enterprise must meet two challenges:

* It must move business information among diverse sources to perform business
exchanges.

* It must process and route business information among disparate applications in
the enterprise environment

A business integration system addresses both these needs with flexibility and
extensibility.

At the highest-level, the WebSphere business integration system consists of an
integration broker (a supported WebSphere message broker, WebSphere
InterChange Server, or WebSphere Application Server) and a set of adapters that
allow heterogeneous business applications to exchange data through the
coordinated transfer of information, in the form of business objects.

[Figure 1 on page 5 shows a simplified representation of a WebSphere business
integration system.

Implementing Adapters with WebSphere Message Brokers

/

—

(i \ ——— Business WSQVE“OH Business 1
App A @ integration roker integration App B
adapter adapter
for App A for App B

Business
integration
adapter
for App C

Figure 1. High-level view of a WebSphere business integration system

What are WebSphere message brokers?

WebSphere message brokers are a subset of the integration brokers that can be
used in the WebSphere business integration system. Message brokers extend the
basic connectivity and transport capabilities of WebSphere MQ messaging. The
message brokers supported as integration brokers for adapters are the following:

* WebSphere MQ Integrator 2.1.0
* WebSphere MQ Integrator Broker 2.1.0
¢ WebSphere Business Integration Message Broker 5.0

WebSphere message brokers enable diverse applications to exchange information in
dissimilar forms by handling the processing required for the information to arrive
in the right place, in the correct format, in accordance with user-defined rules. Data
exchange is performed by the broker without requiring applications to have any
knowledge of the data conventions or requirements of the applications receiving
their data.

What are WebSphere Business Integration adapters?

The WebSphere Business Integration adapters portfolio consists of a collection of
software programs, application programming interfaces (APIs), and tools you can
use to enable applications to exchange business data through the WebSphere
message brokers. Each business application requires its own application-specific
adapter to participate in the business integration system.

Each adapter includes:
* A connector that links the application to the integration broker

* Tools with graphical user interfaces to help you configure a connector and create
the business object definitions needed for the application.

Chapter 1. Overview of WebSphere Business Integration adapters 5

* An Object Discovery Agent (ODA), which runs against an application’s data
store to create business object definitions, which you can then refine. Note that
WebSphere Business Integration adapters for some applications do not include
an ODA.

* An Object Discovery Agent Development Kit (ODK), which consists of a set of
APIs you can use to develop an ODA.

A separately-available Adapter Development Kit (ADK) provides a framework for
developing custom adapters in cases where a prebuilt connector for a particular
legacy or specialized application is not available from IBM.

How the WebSphere business integration system works

6

In the WebSphere business integration system, connectivity for moving data
between applications and the integration broker is supplied by connectors using
Java Message Service (JMS) over WebSphere MQ queues. A connector can reside on
any machine from which it can access the necessary queues and communicate with
the application.

Each connector consists of two parts—the connector framework and the
application-specific component:

¢ The connector framework interacts with the integration broker using WebSphere
MQ queues.

* The application-specific component interacts directly with an application.

The subcomponents of a connector are shown in [Figure 2 on page 7}.

Implementing Adapters with WebSphere Message Brokers

?Integration broker [l

Connector

/

Connector framework

‘ Transport layer

ﬁansport interface ﬂ
'Generic services ﬂ

Application-specific component

se class ness cation
functions object event
handler notification

mplication interface functions i,l

I 1

Figure 2. Subcomponents of a connector

Data is exchanged between applications by means of application-specific business
objects, which are transported between the connector framework and the
integration broker as WebSphere MQ messages (also referred to as business object
messages).

Business objects encapsulate and transmit business data for the several purposes.
They convey:

* New or changed data from a source application to a destination application.
* Requests for data made by a source application to a destination application.
* Data returned by an application in response to a request for data.

Instructions, associated with each piece of data, encoded as metadata, specify the
location in the application’s database where the data is to be found, created, or
updated. New instances of business objects are created by the application-specific
component based on templates called business object definitions, which specify
the structure and organization of the business object’s attributes, values, and
metadata.

Because application-specific information and other metadata in the business object
definition guide the actions of the application-specific component, such an
application-specific component’s behavior can be described as metadata-driven. An
application-specific component that is metadata-driven is flexible because it has no
hard-coded instructions for each type of business object that it supports. Without
recoding or recompiling, the application-specific component automatically supports
new business object definitions, as long as the corresponding application data can
be accurately described by the connector’s metadata syntax.

Chapter 1. Overview of WebSphere Business Integration adapters 7

8

Within the integration broker, WebSphere MQ message flows define the steps in
the processing of business object messages by the integration broker. They specify
the set of actions, or rules, executed between receipt of the message by the
integration broker, and delivery of the message to the destination application.

Data flow in the business integration system

In the business integration system, data flow—the movement and processing of
data sent from one application or entity to another— can occur either as an
asynchronous or a synchronous exchange between applications on a local network.

An application might need to exchange data with another application to
communicate changes in its data store or to obtain data.

The exchange of data in the business integration system consists of these steps:
1. Event notification

2. Integration broker processing

3. Request processing.

Each of these is explained in more detail below.

Event notification

The process of conveying changed application data to the integration broker is
called event notification. Most applications that participate in the business
integration system are modified during the configuration process to include an
event store, such as a table for logging the application’s data changes and data
requests. To detect that an application has newly changed data to share or that it
needs information from another application, the connector framework initiates a
poll call at periodic intervals. The poll call asks the application-specific component
to check for changes to the application’s event store.

If there has been a change since the last poll call, the application-specific
component determines if a business object definition exists to represent the
changed data or the data request. The presence of a suitable business object
definition in the connector’s local repository is an indicator that this particular
change or request needs to be communicated to another application. The
application-specific component sends the application data, in the form of a
business object, to the connector framework. This is referred to as an event
delivery, because a change to an application’s data or a request for data is
considered an event.

[Figure 3 on page 9 shows a connector and its supporting infrastructure detecting a
change to the application’s data store and constructing an application-specific
business object to convey the changed data to the integration broker.

Implementing Adapters with WebSphere Message Brokers

I 1

Connector

' Integration broker [

Connector
framework

O vent
delivery

a Poll

Application-specific

component
Check for
BO definition
A
© Poliing
A=>"
Retrieve N
business|
data
Application
vent
store

Figure 3. The connector detecting and delivering an event.

The numbers in the figure show the sequence of steps:

1.

2.

The connector framework initiates to the application-specific component to
have it check for changes to the application’s event store.

The application-specific component polls for changes to the application’s event
store.

The application-specific component determines whether the changed data maps
to a supported business object definition.

The application-specific component instantiates a business object and uses it to
retrieve the changed data.

The application-specific component initiates an event delivery to transfer the
business object to the connector framework.

When the connector framework of the source application receives the
application-specific business object, it converts the business object to a WebSphere
MQ message that can be placed on a WebSphere MQ queue for receipt by the
integration broker. A data handler is used by the connector framework to
transform the business object into a message in the appropriate XML-based wire
format for the destination WebSphere MQ queue. [Figure 4 on page 10|shows this
process.

Chapter 1. Overview of WebSphere Business Integration adapters 9

Connector framework

Event Integration broker
PRt e deliver:
handler Y
message
Delivery
queue

Application-specific
component

e —

Business
data

!~
Application A

Figure 4. The connector framework transforming a business object into an MQ message.

Integration broker processing

Once the message is placed on the WebSphere MQ event delivery queue for the
integration broker, the integration broker removes the message from the queue,
and passes it through the message flow for the queue. Processing might involve:

* Transforming the message by computing a value

* Extracting fields from the data within the message

* Routing the message to one or more destinations

* Archiving the message in a message warehouse

* Updating database information from the message content

¢ Transforming the message’s content or structure so that it can be processed by
the destination application.

The resulting message, now called a request, is placed on a WebSphere MQ
request queue to be transferred to the connector framework of the destination
application. illustrates the processing performed by the integration broker.

Integration broker

Connector A Event Message flow Connector B
! Request
— delivery | e b |
message message
- Request
Delivery queue /
queue

Figure 5. Integration broker processing

10 Implementing Adapters with WebSphere Message Brokers

Request processing

Once the request has been placed on the queue for the destination connector, a
listening mechanism notifies the connector framework that a WebSphere MQ
message has arrived on its request queue and needs to be processed. The connector
framework invokes the data handler to convert the WebSphere MQ message into a
business object that can be processed by the destination application, as shown in

Integration broker

Request
queue

BO

BO

Application-specific
component

—f

{Business

data

'Application B ﬂ

Figure 6. Request processing by the connector.

In some cases, the request might require a response from the destination
application. Generally, a response is used to:

¢ Return data that the source application has requested from the destination
application

* Return information to the source application about a new business entity (such
as a customer or an order) that the source application has asked the destination
application to create.

If a response is needed, the application-specific component modifies the request
business object to carry the information and sends the business object back to the
connector framework. The connector framework calls the data handler to convert
the business object to a WebSphere MQ message and places the message on the
reply-to queue specified in the originating request message. A correlation ID in the
resi onse message identifies the message to which it is responding.
I'Z

illustrates how response processing is performed.

Chapter 1. Overview of WebSphere Business Integration adapters 11

12

Integration broker

Response
message [}

Response
queue

Application-specific
component

—f

Business
data

F Application B i I

Figure 7. Response processing by the connector.

Summary of the business integration process

Now that you have learned about each step in the business integration process,
you can step back for a look at the system as a whole. shows a summary

diagram of the business integration system. Two scenarios, illustrating its
operation, are presented below.

Qnector A

Connector framework

Integration broker

| Message II | Il

Queue

1

A ge flo

Queue

nector B

Connector framework

Queue
essage

Queue|

Application-specific
component

Data
handler

/\ '

New or changed data

Application A

essage flo

Implementing Adapters with WebSphere Message Brokers

Data BO
handler

BO

Application-specific
component

|

—[r

New or changed data

Application B

Figure 8. Data flow in the WebSphere business integration system.

Example of sending changed data to another application
As an example, here are the steps by which the business integration system
enables application A to send changed data to application B for synchronization:

1. Connector A’s application-specific component detects a change to data in
application A. It determines that a business object definition exists for
communicating this change and uses the business object definition to construct
a business object to carry the changed information.

2. The application-specific component passes the business object to the connector
framework.

3. The connector framework invokes the data handler to transform the business
object into a WebSphere MQ message of the correct XML-based wire format
and places the message on a WebSphere MQ queue for the integration broker.

4. The integration broker receives the message and passes it to the message flow.

5. After the message is processed by the message flow, the integration broker
places the resulting message on the WebSphere MQ queue for the connector for
application B.

6. Connector B’s connector framework removes the message from the queue and
calls the data handler to convert it to a business object that can be processed by
the application-specific component.

7. Application B updates its customer information to reflect the change of address.

If application A were requesting data from application B instead of notifying it of a
data change, application B would need to send a response back to application A.
The following example illustrates this scenario.

Example of obtaining data from another application
Here are the steps by which the business integration system enables application A

to retrieve information about a customer’s most recent purchase from application
B.

1. Connector A’s application-specific component detects that application A has
requested data from application B. It determines that a business object
definition exists for communicating this request and uses the business object
definition to construct a business object for the requested information.

2. The application-specific component passes the business object to the connector
framework.

3. The connector framework invokes the data handler to transform the business
object into a WebSphere MQ message of the correct wire format and places the
message on a WebSphere MQ queue for the integration broker.

4. The integration broker receives the message and passes it to the message flow.

5. After the message is processed by the message flow, the integration broker
places the resulting message on the WebSphere MQ queue for the connector for
application B.

6. Connector B’s connector framework removes the message from the queue and
calls the data handler to convert it to a business object that can be processed by
the application-specific component.

7. Connector B’s application-specific component retrieves the information
specified in the request and passes it back to the connector framework as a
business object.

8. Connector B’s connector framework invokes the data handler to transform the
business object to a response message and places it on the reply-to queue
specified in the originating request.

Chapter 1. Overview of WebSphere Business Integration adapters 13

The chapters that follow describe in more detail the business integration
components introduced here and the process by which they enable applications to
share data.

14 Implementing Adapters with WebSphere Message Brokers

Chapter 2. Business objects

A business object reflects a data entity—a collection of data treated as a unit. For
example, a data entity can be equivalent to an employee record, containing all the
basic information about the employee - the name, address, telephone number,
employee number, position code, salary, and so forth.

The business integration system creates business objects that reflect the information
contained in entities. In this book, a data entity is often referred to in the context of
the kind of business information it contains—for example, an employee entity or a
customer entity.

Business object definitions are the templates from which the application-specific
component creates a particular instance of a business object.

This chapter introduces business objects in more detail and explains how they are
used by the business integration system to carry data between applications. It
includes the following sections:

+ |“Roles of a business obiject”]

* |[“Types of business objects” on page 18|

+ |“Business object definitions and business objects” on page 18|

+ |“A closer look at business objects” on page 21|

* |[“Ways to create or modify business object definitions” on page 23|

Roles of a business object

A business object can act as an event, a request, or a response.

Event

A business object can report the occurrence of an application event, an operation
that affected a data entity in an application. The application event might be the
creation, deletion, or change in value of that collection of data.

When a connector detects an application event and sends a business object to the
integration broker, the role of the business object is to represent the event. So, it is
called an event in the business integration system.

For example, a connector might poll an application for new employee entities on
behalf of the integration broker. If the application creates a new employee entity,
the connector sends an event business object to the integration broker.

Request

Requests are typically generated as follows. The integration broker sends a
business object message as a request to the connector framework, instructing it
have the application-specific component insert, change, delete, or retrieve some
data in an application.

Response

When a connector finishes processing a request, it usually returns a response to
the integration broker. For example, when a connector receives a request to create

© Copyright IBM Corp. 2002, 2004 15

an employee record in the destination application, it sends a business object with
the created employee data and a status indicator that shows that the create was
successful.

Structure of a business object

A business object is a self-describing unit that contains a type (its name),
processing instructions (a verb), and data (attribute values).

is an example of a simple business object, showing its type, verb, and
attribute values.

} Business object type

Create } Verb

3

Como

David

Apt 2C

123 Fairchild
Mountain View r Attribute values
CA
94040
408
6321111

Figure 9. Business object components.

The next sections describe these components.

Business object type

Each business object has a type name that identifies it within the business
integration system. For example, the type might be Customer, Employee, Item, or
Contract.

Business object verbs

A business object verb specifies an action in relation to the attribute values. The
verb can indicate various types of actions, depending on the role of the business
object. lists the three business object roles and describes the meaning of the
verb in a business object that has each role.

Table 1. Meanings of business object verbs.

Role of business object = Meaning of verb

Event Describes what happened in an application. For example, in an
event, the Create verb indicates that the source application
created a new data entity.

Request Tells the connector how to interact with the application in order
to process the business object. For example, the Update verb is a
request to the connector to update the data entity.

16 Implementing Adapters with WebSphere Message Brokers

Table 1. Meanings of business object verbs. (continued)

Role of business object = Meaning of verb

Response Lists the verb specified in the associated request. For example,
in a response, the Retrieve verb indicates that the connector
obtained the attribute values from the application.

Note: The IBM convention is to use the format business-object-type.verb to indicate a
particular type of business object with a particular verb. For example,
Customer.Create is a Customer business object with the Create verb.

Business object attribute values

A business object contains attribute values that represent data fields associated
with the data entity, such as Last Name, First Name, Employee ID, or Invoice
Status.

Some attributes, instead of containing data, contain child business objects or
ﬁ

arrays of child business objects. |[Figure 10| illustrates the structure of a Contract
business object. The Line Item information in the contract is in an array of child
business objects.

Create
ID
Customer ID
Date
Text
Authorization

Line-item

Business object 1

Line items

Line-item

Business object 2
— —

Line-item

Business object 3
T —

Figure 10. Business object with child business objects.

A business object that contains child business objects or arrays of child business
objects is a hierarchical business object. One whose attributes contain only data is
a flat business object.

Chapter 2. Business objects 17

Types of business objects

The full-scale business integration system, which uses WebSphere InterChange
Server (ICS) as its integration broker, includes two kinds of business objects:
application-specific and generic. However, a WebSphere Business Integration
adapter running on a message broker as the integration broker uses only
application-specific business objects, not generic business objects. Therefore, all
references to business objects throughout this book refer to application-specific
business objects. Many of the books in the IBM WebSphere Business Integration
(WBI) Server documentation set cover both environments and therefore refer to
both types of business objects.

* Application-specific business objects reflect the data entity attributes and the
data model of a specific application or other programmatic entity.

* Generic business objects contain sets of business-related attributes that are
common across a wide range of applications, and are not tied to any specific
application’s data model. Generic business objects are not used by WebSphere
Business Integration adapters running on message brokers but are discussed in
the books that are included in both the WebSphere Business Integration adapters
library and the WebSphere InterChange Server library.

When an application-specific component detects an application event such as an
update, it retrieves the appropriate data entity from the application and transforms
it into a business object.

Note: When documentation refers to a business object whose name includes an
application name, such as Clarify_Contact or Oracle_Customer, it refers to
an application-specific business object. A Clarify_Contact business object, for
example, contains the set of information that the Clarify application stores
about a contact. In another application, a contact entity might store a
somewhat different set of information, store the information in a different
order or format, or have a different name.

After an application-specific component has built a business object, it sends
the business object to the connector framework. The connector framework
calls the data handler to convert the business object to a WebSphere MQ
message to be dispatched to the integration broker.

Business object definitions and business objects

18

[Chapter 1, “Overview of WebSphere Business Integration adapters,” on page 3
introduced business objects but only mentioned briefly the distinction between
business object definitions and instances of the business objects themselves. Let’s
look more closely at that distinction now:

* A business object definition specifies the types and order of information in
each entity WebSphere Business Integration Adapters for WebSphere MQ
Integrator Broker handles, and the verbs that it supports. The local repository for
the connector stores business object definitions.

* A business object is an instance of the definition, containing actual data.
Business objects are created at runtime and not stored in the repository.

[Figure 11 on page 19|illustrates the relationship between a business object
definition and a business object.

Implementing Adapters with WebSphere Message Brokers

Business object definition Business object

T — T —

Su\;/)é)rct))r;ed Attributes Verb: Create
Create Attribute name Type Attribute value
Retrieve Entity N Stri Jane's Car Wash
Update ntity Name ring ane's Car Was
Delote Entity ID String 50059

Reference ID String Null

Reference Name String Null
Cust_Phone_Cntry String 01
Cust_Phone_No String 415-333-4444
Cust_Fax_Cntry String 01
Cust_Fax_No String 415-666-7777
Type String Regular

Status String Active

Industry String Retail Sanitation
Primary_Addr? String Yes
Address_Line1 String 200 Airport Blvd
Address_Line2 String Null
Address_Line3 String Null

City String Burlingame
State String

Region String

Postal_Code1 String

Postal_Code2 String

Figure 11. Business object definition and business object.

Components of a business object definition

In simplified terms, a business object is characterized by its type, its attribute
values, and its verbs.

Opverall, a business object definition is identified by its name. The name indicates
the business object definition type, such as Customer, VantiveCase, or Invoice. A
business object can also have application-specific information (metadata) that helps
the application-specific component process it. All business objects also contain
attributes and verbs, as the next sections describe.

Attributes

Attributes in a business object definition describe the values connected with the
entity, such as Last Name, Employee ID, Case Number, Amount, or Date Initiated.
At runtime, attributes are filled in with actual data.

For example, an Employee business object definition might contain attributes for
the employee’s name, address, employee ID, and other relevant information. The
attributes of a business object are analogous to the fields of a form or columns in a
database table.

An attribute can also refer to a child business object or to an array of child

business objects, such as an array of line items in a contract or part references in an
invoice.

Chapter 2. Business objects 19

20

Verbs

ObjectEventld attribute: The ObjectEventld attribute is a required attribute and is
the last attribute in every business object.

When a connector publishes an event, it uses the ObjectEventld attribute of the
business object definition to store a unique value that identifies the specific
business object instance that is being created.

The value of the ObjectEventld attribute is generated and handled by the business
integration system, which uses it to identify and track the flow of the specific event
through the system.

Basic and compound attribute types: If an attribute’s type is a basic data type,
such as String, Boolean, Double, Float, or Integer, the attribute value is a discrete
piece of data, such as the value of a field in a database. Examples include
LastName, CustomerID, PartNumber, AssignedTo, and Price.

If an attribute’s type is the name of another business object definition (a compound
type), the attribute value is a child business object or an array of child business
objects. Examples include Customer, Contract, and Oracle_Contact.

Attribute properties: A number of properties define the value that the attribute
represents. Without showing all possible properties, illustrates the place
of attribute properties in a business object definition.

Name
Header Type
Attribute Key value?
Attribute Maximum length

Application-specific

Attribute information
Supported verbs Default value
Required?

Figure 12. Attribute properties.

The set of properties for a particular attribute depends on whether the attribute
type is basic or compound; that is, an attribute’s properties differ depending on
whether the attribute refers to a single unit of data or to a child business object.

Verbs indicate actions on the data in the business object. A business object
definition contains a list of verbs; a business object contains only one verb.

The most common verbs associated with business object definitions are Create,
Retrieve, Update, and Delete.

Implementing Adapters with WebSphere Message Brokers

The meaning of a verb differs according to the role of the business object. The verb
can describe an application event, make a call, make a request, or identify the
result of a previous request.

Note: Some applications do not support requests for hard deletes. For such
applications, the business integration system performs the equivalent logical
deletion, which is usually an update to inactive status. Furthermore, even if
an application supports hard deletes, you can configure the business
integration system so that it converts Delete verbs to Update verbs when
sending requests to that application.

A closer look at business objects

A business object contains the data that an application-specific component moves
into or out of a particular application. Therefore, each business object definition
reflects the application’s data model and the application-specific component’s
access method.

Even when two application-specific business objects refer to similar application
entities, differences appear in the way that attributes are organized and in the
application-specific information for them.

Attribute organization

Applications often organize the same information in different ways. For example,
Application A stores a telephone number and fax number for a contact in four
fields, but Application B stores the same numbers in two fields.

APP ation A APP ation B

Main phone country code

Main phone number Telephone number

Main fax country code Fax number

Main fax number

Figure 13. Telephone data in two applications.

The business object definitions for the Application A business object and the
Application B business object have different attributes to reflect this difference.

Application-specific information

Business objects also differ because each can optionally contain built-in processing
instructions for its application-specific component. Referred to as
application-specific information (or metadata), it can consist of any information
that the application-specific component needs to process the business object.

A business object definition can have application-specific information that applies
to the entire business object, to each attribute, and to each verb. At each place

Chapter 2. Business objects 21

22

where application-specific information appears in a business object definition, it
provides information that the connector uses in its interactions with the

application.

Application-specific information for a business object
Application-specific information for the business object provides information that
the application-specific component uses when processing the business object as a

whole.

Application-specific information for an attribute

Often, application-specific information that applies to an attribute identifies the
attribute value’s location in the application. The application-specific component
uses this identifier when building API calls to the application to retrieve or enter

the attribute value.

Application-specific information takes different forms for different applications.
Sometimes the application-specific component can reference the attribute location
by means of the application’s form and field names; other times the reference is

more complex.

provides examples of parameters that might be included in an attribute’s
application-specific information. These parameters would be relevant only to a
business object that represents data in a database table.

Table 2. Example name-value parameters for attribute application-specific information

Parameter

Description

TN=TableName

The name of the database table.

CN=col_name

The name of the database column for this attribute.

FK=[..]fk_attributeName]

The value of the Foreign Key property defines a
parent/child relationship.

UID=AUTO

This parameter notifies the connector to generate the unique
ID for the business object and load the value in this
attribute.

CA=set_attr_name

The Copy Attribute property instructs the connector to copy
the value of one attribute into another. If set_attr_name is
set to the name of another attribute within the current
individual business object, the connector uses the value of
the specified attribute to set the value of this attribute before
it adds the business object to the database during a Create
operation.

0B=[ASC|DESC]

If a value is specified for the Order By parameter and the
attribute is in a child business object, the connector uses the
value of the attribute in the ORDER BY clause of retrieval
queries to determine whether to retrieve the child business
object in ascending order or descending order.

UNVL=value

Specifies the value the connector uses to represent a null
when it retrieves a business object with null-valued
attributes.

A single attribute’s application-specific information might combine several of the
example parameters listed above. This example uses semicolon (;) delimiters to

separate the parameters:

TN=LineItems;CN=POid;FK=..PO_ID

Implementing Adapters with WebSphere Message Brokers

The application-specific information in this example specifies the name of the table,
the name of the column, and that the current attribute is a foreign key that links
the child business object to its parent.

In exceptional cases, application-specific information for attributes is unnecessary.

For example, some applications provide very direct and easy to use designations
for units of data. Imagine that an application identifies sample fields as
illustrates.

Table 3. Sample application identifiers

Application’s identifier for the field containing the

Attribute value

Customer ID XCustomerID
Customer name XCustomerName
Status XStatus

Industry XIndustry

In the example that illustrates, it is easy for the application-specific
component to associate an attribute with its identifier in the application because
the rules for conversion are so regular: add the X or subtract the X. Therefore, the
attributes in business objects for this application may not need application-specific
information.

Application-specific information for verbs

A business object definition can include application-specific information for each
verb that it supports. The application-specific information tells the
application-specific component how to process the business object when that verb
is active.

Ways to create or modify business object definitions

Each connector requires a set of business object definitions to define the data that
is to be communicated to other applications. When the application-specific
component is required to send data to the integration broker, it instantiates a new
business object from one of the business object definitions it supports. One step in
the process of configuring a connector is to select the business object definitions to
be supported. First, however, you need to create or otherwise generate business
object definitions for the application.

Creating business object definitions

There are several ways to construct or obtain business object definitions for an
application.

* If an Object Discovery Agent (ODA) exists for your application, you can use it to
build business object definitions. An ODA examines the structure and
organization of the application’s stored data and constructs business object
definitions based on what it finds. If an ODA does not exist for your application,
you can use the Object Discovery Agent development kit (ODK) to build an
ODA.

* You can use the Business Object Designer tool to create business object
definitions, either by modifying those generated by an ODA or by constructing
them from scratch.

Chapter 2. Business objects 23

Other resources

The Business Object Development Guide provides detailed information about creating
business object definitions.

In addition, many adapters include sample business objects. If samples are
included, they are located in the product directory under:

Windows:
\connectors\ConnName\Samples

UNIX:
/connectors/ConnName/Samples.

Modifying business object definitions

You might need to modify a business object definition for several reasons - to
capture additional application data, to stop collecting data found to be
unnecessary, or to respond to changes to another application. The Business Object
Designer tool, described in the Business Object Development Guide, is the most
convenient way to make these modifications.

24 Implementing Adapters with WebSphere Message Brokers

Chapter 3. Connectors

A connector mediates between an application and the integration broker on a local
network. It can be specific to an application—such as SAP R/3, version 4—or to a
data format or protocol, such as XML or WebSphere MQ. It consists of an
application-specific component and a connector framework.

All connectors share certain common behaviors, differing only in the manner in
which they interact with applications and with business objects. This chapter is an
introduction to both the common behavior of connectors and to the areas in which
they differ. It includes the following sections:

* [“Connector startup’

¢ |“Event notification”

+ |[“Request processing” on page 31|

[“Guaranteed event delivery” on page 31|

+ |[“Connector configuration” on page 36|

+ |[“Connector development” on page 37]

In some environments, connectors are “black boxes”; you can simply install,
configure, administer, and use a connector without much concern for its internals.
If you need to create a custom connector, however, you need more detailed
knowledge of connector behavior. For information on creating or modifying a
connector, refer to the Connector Development Guide for Java or the Connector
Development Guide for C++.

Connector startup

A connector must be explicitly started using a startup script which can be invoked
from the command line or from a Windows shortcut.

Each connector has a local repository, which holds the connector’s configuration
file and a separate XML schema document for each business object definition. The
repository is a directory in the local file system where the application-specific
component is installed.

During startup, the connector does the following:

1. Loads the supported business object definitions and configuration properties
from its local repository.

2. Connects to the application.

Note: An integration broker need not be running when you start a connector.
However, no data can be transferred until the integration broker is active.

Event notification

A connector whose application provides triggering events must learn about those
events and send the associated data to the integration broker. [Figure 14 on page 26|
illustrates a connector’s interactions with respect to event notification.

© Copyright IBM Corp. 2002, 2004 25

Connector

Integration broker Message
Queue Connector
framework

Forwarding
an event

Application-specific
component

—f

Detecting and retrieving

an event =
ﬁpplication ﬂ

Figure 14. Event notification in a connector.

The ways in which application-specific components detect and retrieve events
differ from one connector to another. However, the way in which
application-specific components send events to the connector framework, and the
way in which the connector framework deliver those events to the integration
broker, is standard across all connectors.

The following subsections describe general concepts regarding the operation of
most connectors, including;:

* How connectors use application event-notification mechanisms
* How connectors detect and process events.

This discussion is not intended to describe the specific implementation of any
particular connector.

Setting up the application’s event-notification mechanism

To a connector, an application event is any operation that affects the data of an
application entity that is associated with a WebSphere Business Integration
adapters business object definition. There are other types of events in applications;
for example, a mouse click is an event to an application’s window system or forms
interface. The connector, however, is interested only in a pre-defined subset of the
data-level events that create, update, delete, or otherwise affect the content of the
application’s data store.

Some applications explicitly trap and report events, providing user-friendly event
management and configurable event text. Other applications, without a concept of
discrete, reportable events, might silently update their databases when something
happens. WebSphere Business Integration adapters provide connectors for both
types of applications.

For most connectors, some application configuration is needed to set up an event-
notification mechanism for the connector’s use. An event-notification mechanism

26 Implementing Adapters with WebSphere Message Brokers

maintains an ordered list of operations that take place in the application. It might
have the physical form of an application event queue, an e-mail inbox, or a
database table.

What types of event-notification mechanisms do connectors use? The next sections
illustrate some general approaches.

When applications have event support

If an application is event-based, it probably has an event-notification interface for
use by client applications such as connectors. The application might also permit
you to configure the text of the event report. For such applications, setting up the
connector’s event-notification mechanism is a normal application setup task.

For example, imagine that an application lets you install a script that executes
when a particular type of event occurs and that the script can place a notification
in an event inbox. To install the connector for that application, you create a user
account for the connector, write or obtain scripts for handling the events you want
to track, install the scripts, specify the type of event that triggers each script, and
create the inbox. When you are done, the application-specific component
periodically retrieves the inbox contents to check for new events.

Figure 15|illustrates an application configuration that includes an event inbox.

r Connector w

A

Polling

Application

Event
notification

Figure 15. Example: Using an event inbox for event notification.

Event
notification
mechanism

Event-triggered
script

Another application might have an internal workflow system that can generate
mail messages or write to an event queue when a particular operation occurs.
[Figure 16 on page 28] illustrates an application that has its own business object
repository where business objects and events are defined. In the figure, Customer
is a business object and Create, Delete, and Update are the types of events
associated with it.

When a business object event such as Customer.Update takes place, the event is
sent to the workflow system, which places an entry in an event table in the
application database.

Chapter 3. Connectors 27

28

r Connector

Polling

Application

Event
table
i
Workflow
U

Customer.Update

Business object repository

Business
object
Events

[Create] [Delete]

Update

Figure 16. Example: Using application workflow for event notification.

When applications lack event support

The preferred method for a connector to interact with application events is through
the application’s API, which provides a framework that enforces the application’s
data model and logic. However, some application APIs do not provide native
support for event notification.

One way that a connector can receive event notifications from such an application
is to interact with the application database. For example, you can set up a trigger
on an Employee table that detects updates to the rows. When an update occurs,
the trigger inserts information about the update into a table, created when you
deploy the connector. Each new row that appears in the event table represents an
event notification. The connector can use SQL queries to retrieve new events from
the table.

[Figure 17 on page 29| illustrates this approach.

Implementing Adapters with WebSphere Message Brokers

Employee table

12345 Aleph Alek 3344 Oak Street
67890 Bays Betty 294 Pine Ave
83920 Camph Cal 97 A Street
39482 Deck Debbie 1264 Rhineland
Edgar 3 Ash street

Trigger

Camph 83920 971022 14:20:33 Create
For new row: Ellis 33993 971022 22:00:00 Create
insert into event table
last name, ID,
system time, “Create”

Figure 17. Example: Using the database for event notification.

In the application database has a trigger on the creation of records in the
Employee Table. Each time the application inserts a new record, the trigger creates
a row in the event table. The row contains the key values of the new employee
record (last name and employee ID), the system time, and the event type, Create.

Detecting an event

A connector’s application-specific component learns about application events
through its event-notification mechanism, the most common of which is polling for
new events in the event store. The polling method is specific to the application,
based on the event- notification mechanism that the connector uses.

Polling is configurable. When you use the Connector Configurator tool to configure
a connector, you can:

¢ Adjust the frequency with which the application-specific component polls the
application

¢ Specify the hours during which the application-specific component polls the
application.

For most connectors, you can also specify the number of events to be processed
per poll call.

An application-specific component need only poll an application if another
application is interested in that application’s events. If a particular application is
not the source of events, you can stop the application-specific component from
polling by setting its polling frequency to “no” using the Connector Configurator.
To learn more about the Connector Configurator, refer to either of the Connector
Development Guides or to the adapter user guide for the adapter you are
deploying.

Processing an event
After detecting an event, the connector’s application-specific component:

* Associates the application event with a business object definition and creates an
instance of that business object

Chapter 3. Connectors 29

* Sets the verb and key value attributes in the business object
* Retrieves application data and populates the business object’s attributes
* Sends the business object to the connector framework

* Archives the event (optional).

Associating an application event with a business object
definition

When an application-specific component retrieves an event, it must determine
which business object definition and verb represent the event.

The application-specific component uses the event text to associate the event with
a business object definition and verb, as [Table 4{ shows.

Table 4. Event text and business object formation

Type of data in the Examples Use

application event

Application entity type Customer, Part, Item Determining the associated
business object definition

Operation that occurred Create, Update, Delete Determining the active verb

of the business object

For example, a connector can associate the following event text with an
Employee.Create business object:

1997.10.19.12:50.22 employee created Tname="como" id="101961"

From left to right, the event text consists of:

e A time stamp that helps to uniquely identify the event
* The application entity “employee”

* The operation “created”

e The employee’s last name and ID, unique identifiers (key values) with which the
application-specific component can retrieve the rest of the employee information.

Note that this example is simple; other types of event text might require more
processing by the application-specific component.

Building an application-specific business object

If the connector’s been configured to support the business object definition for the
event, the application-specific component builds a business object, uses a key value
to retrieve application data, and fills in the business object with the application
data. [“Business object construction and deconstruction” on page 33| describes the
process of building a business object.

Sending the application-specific business object to the
connector framework

The application-specific component sends the business object to the connector
framework without needing to know the identity of the application that will
receive the information carried in the business object.

Archiving events
Application event archives are useful for troubleshooting and record-keeping. An
event archive contains status information about each event, such as:

* Successfully sent to the integration broker

30 Implementing Adapters with WebSphere Message Brokers

* Processing failed

If an application provides an event archiving feature, the connector generally uses
it. A connector for an application that does not support event archiving might have
its own event archive. For example, if a connector’s event-notification mechanism
is like the database mechanism illustrated in [Figure 17 on page 29| a database
trigger could copy deleted events to an archive table. that you create when you
deploy the connector.

Guaranteed event delivery

Guaranteed event delivery ensures that critical events, such as financial
transactions, are processed correctly, regardless of any service interruptions that
might occur. This feature enables the connector framework to guarantee that each
event is detected and transmitted only once from the source connector’s event
store to the destination connector’s request queue.

Without guaranteed event delivery, a small window of possible failure exists
between the time that the connector detects an event and the time all necessary
processing has completed. If a failure occurs in this window, the event has been
sent but its event record remains in the event store. When the connector restarts, it
finds this event record still in the event store and treats it as a new event, causing
the event to be sent twice.

For more information about guaranteed event delivery and to learn how to enable
it for the adapter you are deploying, refer to the adapter’s user guide.

Request processing

The integration broker also sends requests, in the form of WebSphere MQ
messages, to the connector framework. A request can ask the destination
application to do either of the following:

* To retrieve business data and return it to the integration broker.
* To update the application’s data store.

For example, the integration broker might send a connector a request message to
delete a contract, update a part, or create a customer.

When the connector framework receives an integration broker’s request, it converts
the message into a suitable business object and forwards it to the
application-specific component. For example, if the integration broker sends a
request to delete a contract, the application-specific component receives the request
in the form of a Customer.Delete business object. The application-specific
component translates the business object into an application request—typically a
set of calls to the API—and then returns the results, if needed.

[Figure 18 on page 32| illustrates a connector’s interactions with respect to handling
messages from the integration broker.

Chapter 3. Connectors 31

32

Connector

Connector
framework

Message|

Integration broker Message

Application-specific
component

o

Request Response
‘ 1
Application

Figure 18. Connector interactions for request handling.

When an application-specific component receives a request, it determines how to
process the request based on three types of information:

e The verb of the business object

* Metadata that is contained in the business object definition itself and used in the
construction and deconstruction of the business object

* Application-specific information for the verb.

These factors are described in the topics that follow.

Verb-based processing

A connector’s application-specific component responds to the Create, Retrieve,
Update, or Delete verb in a request according to the logic and API of its
application. The application-specific components of different connectors might
handle the same type of request differently, although the result is logically the
same.

For some connectors, only one method is required for performing operations on a
business object, regardless of what verb the request contains. But for many
connectors, each verb requires a different method.

When an application-specific component receives a request, it invokes the method
in the application that matches the business object’s active verb. For example,
when a application-specific component receives an AppAEmployee.Update
business object, it invokes the Update method on the AppAEmployee object. The
Update method interacts with the application in order to perform the update.

[Figure 19 on page 33 illustrates some verb handling methods.

Implementing Adapters with WebSphere Message Brokers

H Connector

L

Connector framework

Integration broker Messagg

N

L 11 1
(Customer.Createl|ltem.Retrievel[Contract.Delet
BO BO

BO
1]

Application-specific : y
component DoCreate() oRetrieve()f| | DoDelete()

gl ANy AN/
P

\% V
Application l

When the connector in receives a Customer.Create, Item.Retrieve, or
Contract.Delete request, it invokes its DoCreate(), DoRetrieve(), or DoDelete()
method, respectively. Each method builds the appropriate commands for the
application to perform the specified operation.

Figure 19. The processing of requests.

Business object construction and deconstruction

A connector’s application-specific component accomplishes its event notification
and request-handling tasks by constructing and deconstructing business objects:

* When an application-specific component detects an event that it must send to
the integration broker, it constructs a business object that represents the event.

* When an application-specific component receives a business object that
represents a request from the integration broker, it deconstructs the business
object to create an application request.

Business object metadata and connector actions

A connector’s transformation of an application event to a business object and from
a business object to an application request is driven by data definitions (metadata)
that are defined when a business object is designed.

Application-specific components and business object metadata are designed to
work together. The design of an application-specific component and its business
objects is analogous to the design of a computer device in which certain functions
can be implemented by either the software or hardware. The developer considers
performance, extensibility, and other issues to decide where to implement key
features.

Business object definitions include properties that specify the types, sizes, and
default values for attributes. They also include application-specific properties that
contain instructions to the application-specific component on how to process the
business object.

Chapter 3. Connectors 33

34

For example, recall that|Appendix G, “Using Visual Test Connector,” on page 159
presents some examples of application-specific information for the attributes of a
business object that represents a customer. [Figure 15 on page 27| shows some of
those examples.

Table 5. Example name-value parameters for application-specific information associated
with attributes.

Parameter Description

TN=TableName The name of the database table

CN=col name The name of the database column for this attribute.
FK=[..]fk attributeName] The value of the Foreign Key property defines a

parent/child relationship.

UID=AUTO This parameter notifies the connector to generate
the unique ID for the business object and load the
value in this attribute.

CA=set attr name The Copy Attribute property instructs the connector
-7 to copy the value of one attribute into another. If
set_attr_name is set to the name of another
attribute within the current individual business
object, the connector uses the value of the specified
attribute to set the value of this attribute before it
adds the business object to the database during a
Create operation.

When processing a business object, the application-specific component reads the
definition and uses the application-specific information to build an application
request. For more information on business objects, see the Business Object
Development Guide.

Because the application-specific component is metadata-driven, its actions are
controlled by application-specific information and other metadata in the business
object definition. It does not have hard-coded instructions for each type of
supported business object. Being metadata-driven gives the application-specific
component the flexibility to automatically support any new or changed business
object definition as long as the corresponding application data can be accurately
described by the connector’s metadata syntax.

An example of business object construction
The following process describes how an application-specific component creates a
business object from its definition:

1. Obtains the business object definition from its local repository and uses it to
create a business object instance.

2. The application-specific component loops through the business object instance
attribute by attribute, using application-specific information to prepare an API
call or build a query to obtain the application entity.

3. The application-specific component sends the request to the application and
retrieves the results.

4. The application-specific component loops through the results, using the value
of AppSpecificInfo to determine which retrieved value represents each business
object attribute.

[Figure 20 on page 35|is an example of an application-specific component that is
building a business object from the definition. The application-specific component

Implementing Adapters with WebSphere Message Brokers

has retrieved an application event involving an item whose key value, the item
number, is 123. The application-specific component must build an Item business
object from the business object definition, which contains four attributes: Group,
Description, Price, and ItemNum.

Application-specific
component

Business object definition item

Attribute: ltemNum
Attribute: Price
Attribute: Description
Attribute: Group

Application request

Type=Stri
ype=String Where ItemNum=123

Key=False

Required=True Get

AppSpecificlnfo= |FormXFieldB f >| FormXFieldB}
|| |MaxLength=128 FormXFieldC

FormXFieldD

(

|

API | Application
|

Business object item

Application result

hardware

hammer
$12.98

ltemNum=123

Group-

Description=
Price=

Figure 20. Building a business object in a connector.

Using the item number, 123, to identify the item, the application-specific
component retrieves the values of the remaining attributes. Application-specific
information identifies the form and field identifier for the required data.

For example, FormXFieldB identifies Group data. The application-specific
component requests the value of Field B in Form X for item ID 123. The
application-specific component then uses the returned value, “hardware,” to fill in
the value of the business object’s Group attribute.

The process of deconstruction works in the opposite way. The application-specific
component uses the business object definition to determine how to make an
application request from the data contained in the business object that it received.

Application-specific information for verbs

Each verb in the business object definition can have application-specific
information associated with it. The content of the verb’s application-specific
information is unique to the particular connector. The application-specific
information for the verb provides the connector’s application-specific component
with additional instructions for processing the business object.

For example, application-specific information for the Retrieve verb in a business

object definition might supply special input arguments to the Retrieve method in
that application-specific component.

Chapter 3. Connectors 35

As an example, suppose that the MyApp application has three forms in which
information about Inventoryltem appears:

* Inventoryltem-New

* Inventoryltem-Change

* Inventoryltem-Remove.

When the application-specific component for MyApp performs an operation on an
inventory item, it must reference the correct form for that operation. In the
Inventoryltem business object definition, the application-specific information for
the verb can be used to store the form name.

The combination of verb-specific methods and application-specific input to those
methods gives an application-specific component unique instructions for
processing.

Connector configuration

36

Before a connector can be used, you must use the Connector Configurator to define
a configuration file that contains:

¢ The business objects that the connector supports

* The configuration properties for the connector.

There are two types of connector configuration properties, standard properties and
application-specific properties.

Standard properties, which apply to all connectors, specify information such as:

* The integration broker used with the connector

* The location of the connector’s local repository

e The name of the queue manager that manages the queues used by the connector.

[Appendix C, “Standard configuration properties for connectors,” on page 109 lists
the standard configuration properties for connectors working with WebSphere
message brokers.

Application-specific properties specify values that a particular application-specific
component needs to establish a session with the application. They also direct
certain aspects of the application-specific components processing behavior. Here
are examples of application-specific properties for various connectors:

* The name or IP address of the machine running the application
* The name of the application database

* The login user ID and password the connector needs to use to access the
application

¢ The name of the event inbox
e The number of events to be retrieved per polling event.

Some connector configuration properties can also be set at the command line when
you start up the connector. Properties set on the command line override the values
set in the connector’s configuration file.

For more information on configuring a connector, refer to [‘Configuring the|
connector” on page 91 To learn more about starting up a connector, see |”Starting z_a]
connector” on page 57.

Implementing Adapters with WebSphere Message Brokers

Connector development

To modify or create a connector, you use class libraries, header files, and samples
to create an application-specific component. You then use the Connector
Configurator to create and modify business object definitions and create connector
repository definitions.

Connector development involves defining the relationship between the
application-specific component and a particular application. The actual coding of a
application-specific component is usually a fairly straightforward process. The
most challenging tasks are:

* Designing the application’s event-notification method
* Defining business object definitions

* Defining the relationship between the business objects and the application
objects.

For detailed information on connector architecture, modifications, and
development, refer to the Connector Development Guide for Java or the Connector
Development Guide for C++.

The next chapter, [Chapter 4, “Data transport and the integration broker,” on page|
provides a more detailed look at the mechanisms and protocols used to transfer
information among the business integration system’s components.

Chapter 3. Connectors 37

38 Implementing Adapters with WebSphere Message Brokers

Chapter 4. Data transport and the integration broker

When a WebSphere Business Integration adapter uses a message broker as its
integration broker, WebSphere MQ queues and standard Java Messaging Service
(JMS) software are used as the communication transport mechanism between the
connector framework and the integration broker. Connectors read messages from
and write messages to pre-defined queues, managed by the WebSphere MQ Queue
manager. The integration broker communicates with the connector’s connector
framework using the same methods.

This chapter describes in detail the messaging interfaces and protocols used to
exchange data among applications in the WebSphere business integration system. It
includes the following sections:

+ |“The role of the integration broker”|

* [“Asynchronous data transport’|

+ |“Synchronous data transport” on page 40

+ |“Interfaces for message exchange” on page 40|

The role of the integration broker

In a business integration system that uses a WebSphere message broker, the
integration broker has two jobs: routing messages between applications and
processing messages using message flows. Specifically, the integration broker:

* Receives a message from the outbound queue of the sending application’s
connector.

* Passes the message to the message flow for processing. A single message flow,
defined for each queue, processes all messages placed on that queue. The
message flow, however, can include different instructions for processing each
type of message it expects to handle. Each message contains a header with
information about the kind of data it carries. The message flow uses the header
information to determine which set of processing instructions to use for the
message.

* Transfers the message to the inbound queue of the destination application’s
connector.

Communication between the integration broker and a connector can be
asynchronous or synchronous.

Asynchronous data transport

Programs that use asynchronous messaging transport need not establish
connections or wait for messages (discrete units of data); each program sends and
receives messages by interacting asynchronously with the messaging service. The
messaging service provides guaranteed delivery, storing the message if the
destination program is unavailable and retrying until it is available. Asynchronous
messaging is a useful communication protocol when an immediate response is less
important than reliable delivery.

© Copyright IBM Corp. 2002, 2004 39

Synchronous data transport

Although none of the pre-packaged adapters currently use synchronous data
transport, this option is available for customized connectors.

Programs that use synchronous messaging transport post request messages to the
integration broker on a synchronous request queue and receive response messages
from the integration broker from a synchronous response queue. A correlation ID
on the response message identifies the request message to which it is responding.
Response messages generally consist of business object messages and a status
indicator that shows whether the request was processed successfully.

Interfaces for message exchange

40

This section describes the messaging interfaces used by the connector framework
and the integration broker to transmit messages and the information needed to
process them.

Several distinct types of messages are exchanged within the business integration
system. Essential information needed to identify the different types of messages, as
well as process and route them correctly, is stored in the message header and the
message descriptor of each message. Message flows you create for your business
integration system use the information presented below to recognize and correctly
manage messages they are called upon to process.

The following types of messages are passed:

* Event delivery messages are sent by the connector framework to the WebSphere
message broker to notify of an event in the source application.

¢ Request messages are exchanged between the connector framework and the
WebSphere message broker to convey a request for data.

* Response messages are exchanged between the connector framework and
WebSphere message broker to reply to a request for data.

* Administrative messages are exchanged between the connector framework and
WebSphere message broker to convey administrative commands.

Message formats

Messages exchanged between the connector framework and the integration broker
are formatted by the data handler, based on:

* The WireFormat standard property in the connector’s configuration file

e The XML schema detailing the message body format

* The content of the message: a business object or an administrative message
* The origin and destination of the message.

Each message contains three components: a message descriptor (MQMD), a
message header (MQRFH2), and a message body.

Message descriptor
The WebSphere MQ message descriptor (MQMD) contains the message ID and
includes information needed for processing the message.

Implementing Adapters with WebSphere Message Brokers

Message header

The MQRFH2 message header carries JMS-specific data that is associated with the
message content. It can also carry additional information that is not directly
associated with JMS. The message header contains the following folders:

* The <mcd> folders contains properties that describe the “shape” or “format” of
the message. For example, the Msd property describes the format as being Text,
Bytes, Stream, Map, Object, or “Null”.

* The <jms> folder is used to transport JMS header fields, and JMS properties that
cannot be fully expressed in the MQMD. This folder is always present in the
messages implemented using JMS, which are sent by the connector framework.
However, in the business integration system, this folder is irrelevant and is
omitted by the integration broker when sending messages to the connector
framework.

* The <usr> folder is used to transport any application-defined properties
associated with the message. This folder is only present if the application has set
some application-defined properties. In the business integration system, this
folder is used to send return status information in a response message. The
tables below identify the types of messages that require this folder.

Message body

The message body is formatted as specified by the XML schema specified for the
message. In order for the data handler to find and use the correct XML schema for
formatting a message, the following three names must be the same:

* The name of the XML schema stored in the connector’s repository

¢ The name of the XML schema imported into the WebSphere message broker’s
message repository and saved as a message set definition.

* The value of messagetype in the message’s MQRFH2 message header.

The message formats and the settings for particular properties for the different
types of messages exchanged by the connector framework and the WebSphere

message broker are listed in [Appendix A, “WebSphere MQ message formats,” on|

Message queues

The WebSphere MQ queues that need to be defined and configured for use with
the connector are described below.

Required types of queues

Separate sets of WebSphere MQ message queues are used for transporting business

object messages and administrative messages between the connector framework

and the WebSphere message broker. You must define queues with the following

properties:

* DeliveryQueue: Delivers event delivery messages from the connector framework
to the WebSphere message broker.

* RequestQueue: Delivers request messages from the WebSphere message broker
to the connector framework.

* FaultQueue: Delivers fault messages from the connector framework to the
WebSphere message broker. The connector framework places a message on this
queue when it is unable to place the message on the reply-to queue.

* SynchronousRequestQueue: Delivers request messages that require a
synchronous response from the connector framework to the WebSphere message
broker. This queue is necessary only if the connector uses synchronous
execution.

Chapter 4. Data transport and the integration broker 41

42

* SynchronousResponseQueue: Delivers response messages from the WebSphere
message broker to the connector framework sent in reply to a synchronous
request. This queue is necessary only if the connector uses synchronous
execution.

* AdminInQueue: Delivers administrative messages from the WebSphere message
broker to the connector framework.

* AdminOutQueue: Delivers administrative messages from the connector
framework to the WebSphere message broker.

During connector configuration, you specify the name of each queue as a standard
property in the connector’s configuration file.

Queue manager

The connector uses a single queue manager to manage all of its interactions with
queues. The standard properties in the connector’s configuration file contain the
queue manager information needed by the connector at startup. The connector
uses this information to establish a connection to the queue manager it will use to
communicate with the WebSphere message broker.

The WebSphere business integration system supports several queue managers and
queue configurations. The connector can communicate with the queue manager in
any of the following modes:

* Bindings mode: The integration broker and the connector communicate directly
with the queue manager, without using a TCP/IP connection. The queue
manager and the connector must be on the same machine and must use the
same queue manager. This is the default mode.

* Bindings mode with remote queue definitions: If the integration broker and the
connector are installed on separate machines, with each machine running its
own queue manager, the connector and the integration broker can still
communicate with their respective queue managers using bindings mode but
remote queue definitions are also needed.

* Client mode: Communication occurs through a client connection that uses

TCP/IP as its underlying transport. If the queue manager and the connector are
on the different machines, the connector is limited to using client mode.

For more information

To learn more about WebSphere MQ messages see WebSphere MQ: Using Java. To
learn more about WebSphere MQ queues, see WebSphere MQ: Intercommunication
and WebSphere MQ: Script Command (MQSC) Reference.

Implementing Adapters with WebSphere Message Brokers

Part 2. Deployment and administration

© Copyright IBM Corp. 2002, 2004

43

44 Implementing Adapters with WebSphere Message Brokers

Chapter 5. Planning your implementation

This chapter provides an overview of the planning required to implement the
WebSphere business integration system. It includes the following sections:

+ [“Developing the business process interfaces’|

* |“Stages of an implementation’

+ [“Development tools” on page 49

Developing the business process interfaces

WebSphere Business Integration adapters provide configurable, modular elements
that enable connectivity between enterprise applications. These modular elements,
which include connectors and business objects, work together to form business
process interfaces used to send data from one application to another.

A critical aspect of implementing a business integration system is to identify and
develop the business process interfaces that are needed. A typical implementation
will use multiple business process interfaces.

Each interface addresses a specific business task that needs to be integrated. For a
simplified example, assume that an enterprise uses Application A as its system of
record, but uses Application B for billing. The business problem is to integrate data
exchanges for several types of business information between the two applications.
One crucial type of business information is customer data--the customer’s name,
address, and other details need to be synchronized between the two applications
so that when data changes in one, it also changes in the other.

To accomplish this requires two interfaces:
e Application A customersync to Application B
* Application B customersync to Application A.

The enterprise might also need to track and record the items for which the
customer is billed. This requires additional interfaces:

* Application A itemsync to Application B

* Application B itemsync to Application A.

Each interface can be distinguished from others in terms of its source application
in combination with the type of business data being exchanged. Each interface also
has its own event-notification mechanism, trigger, and business object that initiate
flows out of the source application.

Stages of an implementation

The implementation of a business integration system is performed in stages. The
exact details and the nature and timing of deliverables produced in each stage may
vary according to the organization that is performing the implementation.
However, viewed at a high level, there are several broad stages that are used in
any implementation of a WebSphere business integration system. These include:

* Discovery and assessment of requirements

* Evaluation of available components

© Copyright IBM Corp. 2002, 2004 45

46

* Design of new (custom) or extended components
* Development and configuration

* Validation

* Deployment.

Discovering and assessing business goals

This stage begins the implementation process by identifying the business goals for
the project, the system requirements, and the overall scope of the development
effort.

Discovery starts at a high level and moves to lower levels of detail. It starts with
the following high-level questions:

* What are the specific business problems that need to be resolved for the
enterprise?

* What enterprise-level business processes need to be integrated to resolve the
business problem?

Ask the following questions and others that might be applicable to the
enterprise:

— What are the applications involved in the interface and their versions?

— Which ones are the source applications?

— Which ones are the destination applications?

— Which application is the system of record?

— Are the applications in production or still being developed?

— Are the applications developed in-house or are they packaged applications?

* What is the technology environment—including applications, databases, and
APIs—in which the business processes need to be integrated?

Determine the characteristics of the technology environment. Examine each of
the following:

— Database

— Platform and operating system

— APIs that exist for the applications

— Location of all the application client and server platforms
— Network environment

— Application versions

— Anticipated transaction volume.

To identify the interfaces needed for the implementation and the components that
will be used, you will research information in lower levels of detail, identifying
and describing the specific business processes that you intend to implement, the
business logic and data transformations that are required, and details of the
applications and databases that will interact. Your research may include the
following information-gathering tasks:

* Identify and describe business processes that need to occur in order to solve the
business problem. Ask the following questions:

— What is a normal process flow in your business process?

— What event initiates the transaction or data flow?

— What applications are involved in the business process?

— Which organizations own the business process, applications, and data?
— What are the inputs and outputs?

Implementing Adapters with WebSphere Message Brokers

— Are there prerequisites/dependencies for the data?
— Are there filtering requirements?

— If there are multiple destination points, what determines where the data is
sent?

— Is the interface bi-directional?
— What is the frequency of the transaction process?

— Is there a time frame in which the transaction process needs to complete? Do
other processes depend upon it?

— What is the volume of data?
— Is the interface real time or batch?
— Is the interface synchronous (requiring a reply) or asynchronous (fire and
forget)?

— What is the error-handling procedure?

* Describe the structure of the data entity or entities exchanged between
applications in the business process.

* Identify data transformations that are required between source and destination
applications.

¢ Identify the programmatic events (things that happen in the process, such as
routing logic and filtering logic) that occur or need to occur in the business
process.

¢ Illustrate the business process flow with a flow diagram. The flow diagrams will
help you analyze the functions that need to be performed. You will use them to

create message flows for routing and transforming the data to be exchanged
among applications.

Evaluating existing components and designing new ones

Evaluation and design are dependent upon the detailed information gathered
during discovery.

When you have determined the detailed requirements of an interface and the
integration components that it comprises, you are ready to evaluate existing
components to see if any will meet your needs. You may find that for some
requirements, components already exist and can be used as is, that for other
requirements existing components need to be extended (revised according to your
needs), and that for other requirements you will need to create new (custom)
integration components.

Evaluate each component both individually and in terms of how it relates to other
components in the overall interface. You cannot complete the design of one
component until you have also begun the design of the components with which it
interacts in the interface.

For detailed information about designing components, see the following books:
* Business Object Development Guide

* Connector Development Guide for Java

* Connector Development Guide for C++

Developing and configuring the business integration system

In this stage, you create any new integration components that are required and
configure components for each business process interface that is to be
implemented.

Chapter 5. Planning your implementation 47

48

This is an iterative process that may require you to reconfigure components or
revise their design. As you create and configure the components of an interface,
you perform unit tests to determine that individual components function correctly.
When an entire interface has been configured, you perform string tests to
determine that all the components of an individual interface function correctly
together.

Overall development flow

At a high level, it is recommended that integration components be developed in

the following general order:

* Connectors
Connectors and the business objects that they use interact directly with the
application itself. For this reason, and because creation of a new connector
usually takes more time than the creation of any other component, the connector
should either be identified (if one already exists) or created first. If no custom
connectors need to be created, you can start the development process with
application-specific business objects. Before you decide what connectors need to
be developed or extended, be sure that you have investigated which ones are
already available from IBM, and that you understand the relevant licensing
terms for the site.

* Business Objects

Because other components will be dependent upon business objects, develop
these first.

You create a custom application-specific business object in multiple iterations,
testing each iteration with the connector, and then adding functionality and
re-testing. You configure the connector during the first unit test, and through
iterations of development and unit testing, you will complete the
implementation of the business object and the configured connector.

Sequence of tasks
Development and configuration is typically performed in a prescribed sequence of
steps.

Develop custom connectors (if required)

Develop or extend application-specific business objects

Configure WebSphere MQ Integrator Broker to work with connectors
Configure connectors

Develop message flows

Unit test application-specific business objects

Configure connectors with business objects

© N oA N~

String test the interface.

Validating the business integration system

During the validation stage, system testing is performed in a controlled test
environment to ensure that all requirements identified during the Discovery phase
have been met by the system design. System Testing during the validation phase
includes functional, performance and regression testing (as required).

* Functional Testing - Ensures that all functional requirements of the system are
met. A requirements matrix should be used to ensure that requirements are
tested and acceptable.

* Performance Testing - Ensures that timing requirements such as throughput,
response time, and latency are met through design or optimization.

Implementing Adapters with WebSphere Message Brokers

Regression Testing - As modifications are made to system design or
configuration parameters during the validation phase, regression testing must be
performed to ensue that other system functions and throughput capabilities have
not been degraded.

Validation stage tasks include the following:

Develop a requirements matrix containing all functional and performance
requirements.

Identify, designate and configure a system testing environment.
Identify and develop a test data set to be use for system testing.

Migrate the system implementation from the development environment to the
test environment.

Develop, coordinate, and obtain client concurrence for system testing plans and
procedures. Assign specific tests for each test matrix item.

Perform system, functional, and performance testing.

Identify, control and resolve defects found while system testing.
Perform regression testing (as required).

Develop and publish a System Test Report.

Obtain client acceptance of the developed system.

Deploying the business integration system

The objective of the deployment stage is to ensure that the developed and tested
business integration system is implemented in the client production environment,
optimized as required, and is production ready at the client site.

Deployment stage tasks include the following;:

Develop and obtain client acceptance for an overall cutover and deployment
plan, ensuring uninterrupted continuing operations with the existing systems
and processes.

Migrate the developed and tested system from the test environment to the
production environment.

Obtain and document client unique business process and data conversion
requirements for systems integration.

Develop, implement and test modifications required to support unique
production environment (i.e., addresses, passwords, etc.), requirements.

Install and test business integration system software on client production system.
Optimize business integration system for the production environment.
Obtain client acceptance of the deployed system.

Development tools

WebSphere Business Integration adapters include several tools to assist you in
creating and modifying connectors and business objects. These are listed and
described in

Table 6. WebSphere Business Adapters development tools.

Tool Description For more information

Adapter Development A separately-available kit that ~ See the Connector Development
Kit provides a set of class libraries ~ Guide for Java and the Connector

and utilities with which you can Development Guide for C++.
develop connectors.

Chapter 5. Planning your implementation 49

50

Table 6. WebSphere Business Adapters development tools. (continued)

Tool Description For more information
Connector A graphical user interface used See the Connector Development
Configurator to configure connectors. Guide for Java and the Connector

Development Guide for C++, or the
adapter user guide for the
connector you are deploying.

Business Object
Designer

A graphical user interface used
for creating business object
definitions both manually and
from Object Discovery Agents
(ODAs).

See the Business Object
Development Guide.

Object Discovery
Agent Development
Kit (ODK)

A set of APIs that let you create
Object Discovery Agents
(ODAs). ODAs identify business
object requirements specific to a
data source and generate
definitions from those
requirements.

See the Business Object
Development Guide.

Visual Test Connector

A tool that simulates the

See |Appendix G, “Using Visuall

activities of a connector to allow [Test Connector,” on page 159

you to test whether you have
developed your business
integration interfaces correctly.

Note: If you attempt to launch one of the designer tools and experience an error
about a class not being found, you must launch System Manager and then
try to launch the designer tool again. System Manager does not have to
remain running after the tool is initially launched, however.

Implementing Adapters with WebSphere Message Brokers

Chapter 6. Installing WebSphere Business Integration
adapters

This chapter describes how to install WebSphere Business Integration adapters and
supporting software on a WebSphere message broker.

If you are upgrading WebSphere Business Integration adapters from a previous
version, see |[Appendix H, “Upgrading WebSphere Business Integration adapters,”|

Ign page 173 for instructions.

This chapter describes installation on both Windows and UNIX operating systems.
You need only refer to the section that is appropriate for your operating system, as
listed below:

+ [“Installing for Windows systems”]

+ |“Installing for UNIX systems” on page 53]

This chapter contains information specific to installing the supporting software
(JDK and WebSphere MQ) on a WebSphere message broker. A separate document,
the Installation Guide for WebSphere Business Integration Adapters, contains all the
details necessary for installation of WebSphere Business Integration adapters. The
sections of this chapter that describe installation for either Windows or UNIX
systems refer you to the Installation Guide for WebSphere Business Integration Adapters
at the appropriate point in the installation process.

Installing for Windows systems

This section includes the following topics:

* [“Software Requirements”]

+ |“Installing the JDK” on page 52|

* |"Installing WebSphere MQ” on page 52|

* |“Installing WebSphere Business Integration adapters” on page 53|

Software Requirements

The WebSphere business integration system includes WebSphere Business
Integration adapters and other components. WebSphere Business Integration
adapters and some associated components are delivered on CD or through ESD
(IBM Electronic Software Delivery). Other components used by the WebSphere
business integration system must be obtained and installed separately.

[Table 7 on page 52| lists the software requirements for the WebSphere business
integration system.

© Copyright IBM Corp. 2002, 2004 51

Table 7. WebSphere business integration system software requirements for Windows systems

Shipped with

required for viewing the HTML documents. For the exact versions supported, refer to the
instructions that can be downloaded from
Ihttp://www.ibm.com/integration/wbiadapters/library/infocenter

Software product
Windows 2000 (Professional, Server, or Advanced Server) with Service Pack 4. No
Note: Beginning with WebSphere Business Integration Adapter Framework 2.4.0, adapters are
no longer supported on Windows NT.
One of the following message brokers:
IBM WebSphere MQ Integrator Broker v 2.1.0 with the following: No
» CSDO5 service pack.
Download
from http://www.ibm.com/software/integration/mqfamily/support/summary/mgsib.html
IBM WebSphere MQ Integrator v. 2.1.0. Check with your IBM representative to determine if any
service packs are required.
IBM WebSphere Business Integration Message Broker v. 5.0 with the following;:
* CSDO2 service pack. Download from
http://www.ibm.com/software/integration/mqfamily/support/summary/wbib.html
Java Runtime Environment (JRE): IBM version 1.3.1 SR5. Yes
Java Development Kit - only needed for developing custom Java connectors. IBM JDK version Yes
1.3.1 SR5.
IBM WebSphere MQ version 5.3.0.2 with CSDO05. No
Browser: An HTML browser such as Microsoft Internet Explorer or Netscape Navigator is No

Installing the JDK

The JDK (Java Development Kit) is required only if you plan to develop custom
Java connectors (the Java compiler is needed). For development on Windows
systems, the JDK is included in the WebSphere Business Integration Adapter
FrameWork. Refer to the WebSphere Business Integration Adapters Installation Guide

for more information on installing the Adapter Framework.

Installing WebSphere MQ

IBM WebSphere MQ is the messaging software that enables communication

between a WebSphere message broker and the adapters.

Refer to the following WebSphere MQ publications for installation and

configuration information:

* WebSphere MQ: Quick Beginnings

e WebSphere MQ: System Administration
* WebSphere MQ: Intercommunication

Note: You can browse or download these documents from IBM’s Web site at:

[http:/ /www.ibm.com /software /mgseries|

For information about related WebSphere MQ books, see |“WebSphere message|

broker publications” on page viii.|

To configure WebSphere MQ to work with a WebSphere message broker, see

[‘Configuring the message broker to work with the connector” on page 771

52 Implementing Adapters with WebSphere Message Brokers

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
http://www.ibm.com/software/mqseries

Installing WebSphere Business Integration adapters

For information on installing WebSphere Business Integration adapter products,
refer to the Installation Guide for WebSphere Business Integration Adapters, located in
the WebSphere Business Integration Adapters Infocenter at the following site:

http:/ /www.ibm.com /websphere/integration/wbiadapters/infocenter

Installing for UNIX systems

This section includes the following topics:

» |“Software Requirements’|

12

* [“Installing the JDK” on page 54
. "’Installing WebSphere MQ” on page 56

+ [“Installing WebSphere Business Integration adapters” on page 56

Software Requirements

The WebSphere business integration system includes WebSphere Business
Integration adapters and other components. WebSphere Business Integration
adapters and some associated components are delivered on CD or through ESD
(IBM Electronic Software Delivery). Other components used by the WebSphere
business integration system must be obtained and installed separately.

[Table 8 on page 54 lists the software requirements for the WebSphere business
integration system.

Chapter 6. Installing WebSphere Business Integration adapters 53

Table 8. WebSphere business integration system software requirements for UNIX systems.

Software

Shipped with
product

Operating system:
e AIX - AIX 5L version 5.1 maintenance level 1 or 5.2 with maintenance level 4
¢ Solaris - Solaris 7.0 or 8.0 , with Patch Cluster released 7/23/03

* HP-UX- HP-UX 11.11 (11i,r=B.11.110306.4). June 2003 GOLDBASE 11i,r=B.11.110306.4 and
June 2003 GOLDAPPS11i 11i,r=B.11.110306.4 bundles.

No

One of the following message brokers:

IBM WebSphere MQ Integrator Broker v 2.1.0 with the following:

* CSDO5 service pack.
Download from
http:/ /www.ibm.com/software/integration/mqfamily /support/summary/mqsib.html

IBM WebSphere MQ Integrator v. 2.1.0. Check with your IBM representative to determine if
any service packs are required.

IBM WebSphere Business Integration Message Broker v. 5.0 with the following;:

» CSDO02 service pack. Download from
http:/ /www.ibm.com/software/integration/mqfamily /support/summary/wbib.html

Java Runtime Environment:

e AIX - IBM JRE version 1.3.1 SR5.
e Solaris - Sun JRE version 1.3.1.7.
e HP-UX - Sun JRE version 1.3.1.6.

Yes

Java Development Kit - only needed for developing custom Java connectors.
* AIX: IBM JDK version 1.3.1 SR5.
e Solaris: Sun JDK version 1.3.1.7.
e HP-UX: Sun JDK version 1.3.1.6.

WebSphere MQ version 5.3.0.2 with CSDO05.

Browser: An HTML browser such as Microsoft Internet Explorer or Netscape Navigator is
required for viewing the HTML documents. For the exact versions supported, refer to the
instructions that can be downloaded from
lhttp://www.ibm.com/integration/wbiadapters/library/infocenter

No

Installing the JDK

The JRE includes the Java Virtual Machine (JVM), which is needed to run
WebSphere Business Integration adapters. However, it does not include
development tools, such as JavaC (the Java compiler). If you do not plan to create

custom connectors, use the JRE.

The JRE contains the runtime component of the Java software, which the
WebSphere business integration system requires to execute. The JRE is included in
the WebSphere Business Integration Adapter Framework. Therefore, there is no

need to install it separately.

If you plan to create custom connectors, install the full JDK, which you can
download from the Sun or IBM Web site. For Solaris and HP-UX, you can

download the JDK from |http:/ /java.sun.com/products/jdk/1.3} For AIX, you can

download the JDK from |http:/ /www.ibm.com/developerworks/java/jdkl

To install the JDK on your system:

54 Implementing Adapters with WebSphere Message Brokers

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
 http://java.sun.com/products/jdk/1.3
http://www-106.ibm.com/developerworks/java/jdk

. Navigate to the directory in which you want to install the JDK.
cd /install_dir

where the install_dir is the path of the directory that will contain the JDK

software. You can install this software anywhere:

* The JDK is normally installed in a subdirectory of the /usr directory. If the
/usr filesystem has enough space, install the JDK there, in a directory such
as /usr/jdk1.3.

* You can create an extract directory for the JDK (such as /home_dir/jdk1.3)
and move into this directory. You must create a symbolic link from the
/usr/jdkl.3 directory to this extract directory.

. On either the Sun or the IBM Web site, locate the Web page to download the
JDK.

The JDK is usually located under the Java 2 SDK Standard Edition for UNIX.

. Download and read the accompanying README file for how to download the
JDK.

. Download the JDK into your installation directory.

IBM and Sun provide a self-extracting tar file that allows you to extract its
contents in any directory you choose. This file usually has the format

JDK version.bin (where JDK version is the version of the JDK to download).
Consult the README file for how to extract the JDK software from this file.

. Download any operating-system patches listed for the JDK that are appropriate
for your version of the UNIX operating system.

Before installing these patches, verify that they are not already installed on
your system.

. Create a link from your download directory (for example, the /usr/jdk1.3
directory) to the Java directory.

a. rm /usr/java
b. Tn -s /usr/jdkl.3 /usr/java

. After the installation, make sure the bin directory of the JDK is included in the
PATH environment variable.

You can do this in either of the following ways:

+ Edit /etc/profile, which is read at every user’s startup. Shells such as ksh,
bash, and sh obtain the settings in the /etc/profile file.

For example, if you installed JDK in the /usr/jdkl1.3 directory, edit the PATH
entry of /etc/profile so that it appears as follows:
PATH=/usr/jdk1.3/bin:$PATH
export PATH

* Edit the personal profile file in the home directory of the WebSphere
business integration administrator.

The name of this personal profile file depends on the particular shell that the
WebSphere business integration administrator account uses. Changes made
in this personal profile affect only the user logged in as the WebSphere
business integration administrator.

Use the syntax appropriate for the particular shell to include the JDK bin
directory in the PATH environment variable. For example, if the WebSphere
business integration administrator account uses the sh shell, you can edit the
lines that add the JRE path (/usr/java/bin) to include the JDK path, as
follows:

PATH=/usr/jdk1.3/bin:/usr/java/bin:$PATH
export PATH

Chapter 6. Installing WebSphere Business Integration adapters 55

Add these lines after the line that sources the CWSharedEnv.sh file in the
personal profile file for your WebSphere business integration administrator
account.

Installing WebSphere MQ

IBM WebSphere MQ is the messaging software that enables communication
between a WebSphere message broker and the adapters.

Refer to the following WebSphere MQ publications for installation and
configuration information:

* WebSphere MQ: Quick Beginnings
e WebSphere MQ: System Administration
* WebSphere MQ: Intercommunication

Note: You can browse or download these documents from IBM’s Web site at:
[http: / /www.ibm.com /software /mgseries]

To configure WebSphere MQ to work with a WebSphere message broker, see
[“Configuring the message broker to work with the connector” on page 77/

Installing WebSphere Business Integration adapters

To install WebSphere Business Integration Adapters, first obtain a supported
version of the product. Then download the documentation for that release from the
WebSphere Business Integration Adapters InfoCenter at the following Web address:
lhttp:/ /www.ibm.com /software /websphere /wbiadapters /infocenter] Follow the
instructions in the Installation Guide for WebSphere Business Integration Adapters to
install the product in your business integration system.

56 Implementing Adapters with WebSphere Message Brokers

http://www.ibm.com/software/mqseries
http://www.ibm.com/software/websphere/wbiadapters/infocenter

Chapter 7. Administering the business integration system

This chapter provides information about the administrative tasks you need to
perform for WebSphere Business Integration Adapters. Administrative tasks that
relate exclusively to the WebSphere message broker you are using are covered in
the administrative documentation for that message broker (Refer to
ldocuments” on page viil for more information.)

The following sections are included in this chapter:

« |“Starting a connector’]

4

* |’Stopping a connector” on page 58|

. "’Creating multiple connector instances” on page 60|

« |[“Using Adapter Monitor and Fault Queue Manager” on page 61|

+ [“Managing log and trace files” on page 67|

* [“Using Log Viewer to view connector messages” on page 69|

Starting a connector

The method for starting a connector depends on whether it is running on a UNIX
or a Windows system. Settings in the connector configuration file are the default
source for connector property values. However, some connector properties
specified in the connector’s configuration file can be overridden at runtime.
[Appendix D, “Connector startup options,” on page 125 lists the options you can
use to override properties set in the connector’s configuration file.

Note: Be sure you have followed the instructions in [“Configuring the connector]
[startup files, shortcuts, and environment variables” on page 95 before you
start a connector.

From Windows
You can start the connector in several ways:
¢ Double-click the desktop shortcut, if you have one created.

* Select the connector to start from Programs > IBM WebSphere Business
Integration Adapters > Adapters > Connectors. The program name is “IBM
WebSphere Business Integration Adapters” by default, but it can be customized.

* You can start the connector from the Adapter Monitor perspective of System
Manager. Refer to [‘Change the state of an adapter” on page 64| for details.

¢ In a DOS window:

— For most connectors, type the command:

start_connName connectorName brokerName -cConfigFile
Where:
connName and connectorName are the name of the connector, brokerName is the

name of the WebSphere message broker, and configFile specifies the
full-path name of the connector’s configuration file.

You can modify the startup options for a connector by editing the connector’s
shortcut properties or by editing directly the connector’s start_connName .bat
file.

© Copyright IBM Corp. 2002, 2004 57

Note: Most connectors, including all Java-based connectors and most
connectors provided by IBM can use the syntax described above. You
can determine if your connector uses this syntax by looking in the
directory ProductDir/connectors. If a script named start_connName is
present, use the syntax above . Some connectors written in C++ must
use the syntax described in the following section instead. If a
start_connName script associated with your connector is not present in
this directory, use the syntax described below.

— For a C++ connector that cannot use the start_connName syntax described
above (some connectors from IBM, and some custom connectors) navigate to
the directory where the connector is installed. By default, this directory is
ProductDir. Type the command:

start_connector connectorName brokerName -cConfigFile
Where:

connectorName is the name of the connector, brokerName is the name of the
WebSphere message broker, and configFile specifies the full-path name of
the connector’s configuration file.

You can modify the startup options for a Java connector by editing the
connector’s shortcut properties or by editing the connector’s
start_connector.bat file directly.

From UNIX

To start a connector:
1. Navigate to the ProductDir/bin directory

2. Run the connector manager script by issuing the command:
connector_manager_connName -start

Where:
connName is the name of the connector.

The case and spelling of this connector name must match the name of the
connector’s subdirectory under ProductDir/bin/connectors.

Stopping a connector

A connector can be stopped from either the system on which the connector is
installed or the system on which the integration broker is installed. Several
methods are available to stop a connector, as follows:

From the connector system
From Windows

* On Windows, you can stop the connector from the Adapter Monitor perspective
of System Manager. Refer to [‘Change the state of an adapter” on page 64| for
details.

* If you cannot stop the connector from Adapter Monitor, in the console window
for that connector type “Q”, and press Enter. This terminates the connector’s
process.

From UNIX

From a UNIX system, use the following command.
1. Navigate to the ProductDir/bin directory,
2. Type: connector_manager_connName - option

58 Implementing Adapters with WebSphere Message Brokers

where option is one of the following options:

Table 9. connector_manager command stopping options

Option Description

- stopgraceful Invokes a java utility from the
connector-agent side to stop the connector
agent. However, if the automatic restart
feature is on, the connector agent will restart
itself again.

-stop Invokes a java utility that stops the
connector agent, so even if the automatic
restart feature is on, the connector agent will
be forced to shut down.

-kiTl Kills the operating-system process for the
connector agent. Use this if other methods
fail to stop the connector.

From the broker system

From either Windows or UNIX systems, you can issue the mqsiremotestopadapter
command at the command line on the integration broker from the system on
which the integration broker is installed if the WebSphere Business Integration
Adapters Utility has been installed.

Note: The WebSphere MQ Integrator Broker SupportPac, I002: WebSphere
Business Integration Adapters Utility must have been installed to make this
command available.

The syntax for the command is:

mqgsiremotestopadapter brokerName -c adapterName -n adapterQueue
[-h hostName] [-p port] [-q adapterQueueManager]

For details refer to the following section, [“Mgsiremotestopadapter command line]

parameters.”

Mgsiremotestopadapter command line parameters
Required Parameters

brokerName
The name of the WebSphere message broker with which the adapter is
communicating.

-c adapterName
Identifies the name of the adapter to shutdown.

-n adapterQueue
The name of the WebSphere MQ queue monitored by the adapter for a
shutdown message.

Optional Parameters

-h hostName
The name or IP address of the machine where the WebSphere MQ Queue
Manager, specified with -q parameter, is running (defaults to the local
machine).

-p port The port on which the WebSphere MQ Queue Manager, specified with the
-q parameter, is listening for incoming requests. The default value is 1414.

Chapter 7. Administering the business integration system 59

-q adapterQueueManager
Specifies the WebSphere MQ Queue Manager that is being used by the
adapter. The queue identified by the -n parameter must be managed by
this Queue Manager. This Queue Manager is located on the same machine
as the adapter.

Creating multiple connector instances

60

Creating multiple instances of a connector is in many ways the same as creating a
custom connector. You can set your system up to create and run multiple instances
of a connector by following the steps below. You must:

* Create a new directory for the connector instance

* Make sure you have the requisite business object definitions
* Create a new connector definition file

* Create a new start-up script

Create a new directory

You must create a connector directory for each connector instance. This connector
directory should be named:

ProductDir\connectors\connectorInstance
where connectorInstance uniquely identifies the connector instance.

If the connector has any connector-specific meta-objects, you must create a
meta-object for the connector instance. If you save the meta-object as a file, create
this directory and store the file here:

ProductDir\repository\connectorInstance

Create business object definitions
If the business object definitions for each connector instance do not already exist
within the project, you must create them.

1. If you need to modify business object definitions that are associated with the
initial connector, copy the appropriate files and use Business Object Designer to
import them. You can copy any of the files for the initial connector. Just rename
them if you make changes to them.

2. Files for the initial connector should reside in the following directory:
ProductDir\repository\initialConnectorInstance

Any additional files you create should be in the appropriate connectorInstance
subdirectory of ProductDir\repository.

Create a connector definition
You create a configuration file (connector definition) for the connector instance in
Connector Configurator. To do so:

1. Copy the initial connector’s configuration file (connector definition) and rename
it.

2. Make sure each connector instance correctly lists its supported business objects
(and any associated meta-objects).

3. Customize any connector properties as appropriate.

Create a start-up script
To create a startup script:

Implementing Adapters with WebSphere Message Brokers

1. Copy the initial connector’s startup script and name it to include the name of
the connector directory:

dirname

2. Put this startup script in the connector directory you created in

[directory” on page 60.|

3. Create a startup script shortcut (Windows only).

4. Copy the initial connector’s shortcut text and change the name of the initial
connector (in the command line) to match the name of the new connector
instance.

You can now run both instances of the connector on your integration server at the
same time.

For more information on creating custom connectors, refer to the Connector
Development Guide for C++ or for Java.

Using Adapter

Monitor and Fault Queue Manager

Adapter Monitor is a perspective of the System Manager that enables you to
change the state of an adapter, and, through Fault Queue Manager, to handle
events that have failed and been received by the fault queue. For more information
on using System Manager, refer to the[Appendix E, “System Manager and the|
[Eclipse Workbench,” on page 129

Adapter Monitor perspective

The Adapter Monitor perspective enables you to administer adapters and, through
the Fault Queue Manager panel, to resubmit messages when errors occur in the
processing of submitted events.

Adapter Monitor is used only with adapters that have been configured for use
with JMS.

Opening Adapter Monitor
You can open Adapter Monitor as follows: In the System Manager perspective,
expand a project folder, right-click on a connector definition icon, and choose

Chapter 7. Administering the business integration system 61

Adapter Monitor from the pop-up dialog. The Adapter Monitor window displays:

b ndapter Monitor - WebSphere Studio Application Developer Integration Edition 1ol x|
File Edit Mavigate Search Project Server Run Window Help

|- ER&[&]B]| <%

El: Adapter Mol w X || 5 Details X

B ‘ X mn s ‘ " ‘ (] Agent Mame | status
L

| Yersion |

Irkeqration Broker

|@= e d|a

[Fault Queue Manager

25 " (§3 v x
Message ID | Resubmit Ta | Status I Description I Timestamp
[| |

Setting Adapter Monitor preferences

You can set preferences that determine the intervals at which the Adapter Monitor
will poll the state of the adapter and the number of messages that will be
displayed in the Fault Queue Manager. To set the preferences, from the WSADIE

menu bar, choose Window>Preferences>Adapter Monitor Preferences, and set
values for the following:

* Adapter Monitor View

Enter a numeric value for the number of seconds that will elapse between each
poll of the adapter status.

* Fault Queue Manager
Enter a numeric value for the maximum number of messages that will be
displayed by Fault Queue Manager.

Choose Apply or OK.

Loading an adapter

To use Adapter Monitor, first start the queue manager. Then start the adapter and
load the adapter into the Adapter Monitor view (you can also start the adapter
after loading it into the Adapter Monitor view.

To start the adapter, use the connector startup script, shortcut, Visual Test

Connector or other mechanism that you have set up for starting the specific
adapter.

62 Implementing Adapters with WebSphere Message Brokers

To load the adapter in Adapter Monitor, right click Integration Broker and choose
Load Adapter. The following dialog appears:

Load an adapter

Load Adapter 5 &

()
Ta monitor, Load an Adapter from a project or file ﬁ

Adapter Mame

Please select one of the Options to load the Adapter
Select From an Integration Server Project .

Seleck From a lacal Configuration File e~

Browse. .. |

Finish I Cancel |

You can choose to load an adapter either from the adapter’s configuration file, or
from an integration project.

e If you choose to load from project, the dialog displays the User Projects
currently available in System Manager. Select the connector within a project and
click Finish. (If no User Projects are available, the display will be empty, and you
will need to either create a User Project, or load from the configuration file.)

* If you choose to load from file, a browse box opens; navigate to the
configuration file for the adapter (typically, the configuration file has an file
extension of *.cfg, but other extensions are possible) and choose Save. The name
of your selected configuration file appears in the box. Choose Finish. The
adapter is loaded into Adapter Monitor, and the current data for the adapter is
displayed.

Adapter Monitor displays

When you load an adapter, an icon for the adapter appears under the Integration
Broker folder in the top left panel. The icon indicates the current state of the
adapter. The act of loading an adapter into Adapter Monitor does not by itself
change the state of the adapter. After you have loaded the adapter, you can then
perform actions from Adapter Monitor to change the state of the adapter.

The Adapter Monitor displays are refreshed periodically, according to the polling
time interval that you set for the Adapter Monitor View in its preferences.

Chapter 7. Administering the business integration system 63

64

However, you can perform an immediate refresh at any time by choosing the
Refresh button from the toolbar or menu bar.

The top right panel of Adapter Monitor is the Details panel. The Details panel
shows the name of the adapter, its status, and version.

The bottom panel of Adapter Monitor comprises the Fault Queue Manager view.
This view shows the messages that have been routed to the queue manager’s fault
queue. You can use the Fault Queue Manager display to either resubmit or delete
messages that were placed in the fault queue as the result of a failed event flow.

Change the state of an adapter

The Adapter Monitor enables you to monitor and change the state of an adapter.
The state of an adapter refers to the processing that is (or is not) being performed
by an adapter.

Note: The existence of an adapter "state” presumes that the adapter has been
started. An adapter that has not yet been started, or that was shutdown and
not restarted, has no state, and is not affected by any actions in the Adapter
Monitor. For information about starting an adapter, see
[connector” on page 57

. Generally, the adapter performs two types of processing:

* Polling for event notification

The adapter polls the event store of its application for events and sends the
events as business object messages to the integration broker.

* Request processing

The adapter receives request business objects sent from the integration broker to
the application.

Adapter State Request Processing Polling
Active yes yes
Paused yes no
Inactive no no

To change the state of an adapter, right-click on the icon for the adapter, and
choose one of the following:

* Activate

Changes the adapter from the Paused or Inactive state to Active
* Deactivate

Changes the adapter from the Paused or Active state to Inactive
* Pause

Changes the adapter from Active state to Paused
* Shutdown

Stops the adapter. This action terminates the connector startup script, closing the
connection with the application and freeing any allocated resources. The
connector remains shut down until restarted. The connector cannot be restarted
from Adapter Monitor; see "Starting an Adapter” for instructions on starting and
restarting.

The following two commands do not directly affect the processing of the connector,
but do affect what the Adapter Monitor displays about the connector:

Implementing Adapters with WebSphere Message Brokers

* Delete

Deletes this adapter configuration from the Adapter Monitor. This does not
change the adapter or alter its state; it only makes it unavailable from the
Adapter Monitor.

* Refresh
Triggers a GETSTATUS command which gets the current status of the connector
agent
: &P Adapter Monitor - WebSphere Studio Workbench SDK -10] x|
:. File Edit Mavigate Search Project Server Run ‘Window Help
5 - B8 & (8|2]1%-
'
! 58 | Xm0 % | b | (L§3 Agent MName | Status | wersion |
'lg E--Ei Integration Broker Loopbackl Connector_sa %_, ACTIVE rull
l Loopback] Conneck
] ,* fActivate
! B Ceactivate
' 11 Pause
i Y, shutdawn
Delete
&9 Refresh
[} Fault Queue Manager ég » @") v X
Message 1D | Resubmit To | Skatus | Descripkion | Timestamp
[10:414d51 2063726F7373776F7260,.. | LOOPBACK ICONNECTORIRESPONS... nul case 2 Tue May 13 10:25:5¢
[10:414d512063726F 73737767260, | xyzeyzfsfislkksh null case 4 Tue May 13 10:28:5:
< | |

Using the Fault Queue Manager Display

The Fault Queue Manager display shows events that have failed and been received
by the fault queue. The display shows as many failed messages as you set in the
preferences, listed in the order in which they were received.

To display information from the queue manager about any listed fault queue
message, double-click the message field. Information for that message is displayed

Chapter 7. Administering the business integration system 65

66

in the editor view panel (read only):

4P Adapter Monitor - WebSphere Studio Workbench SDK i =131 x|

File Edit Mavigate Search Project Server Run Window Help

|I5- 1288 (|8][] ¢ [|%-

g By Adapter Monitar » % | & Detals x
B =8 | S E 0% | ® ‘ £§3 Agent Mame | status | version |
,E E»Ci Integration Broker LoopbacklConnectar_sa & INACTIVE rull
' & LoopbackiConnector_sa
— = 102414051 2083728 73737 7 72647 520 6T .. [= 414051208372
[MS Message class: jms_text
IMSType: null
IMSDeliveryMode: 2 —
IMSExpiration: 0O
JIMSPriority: 4
JMSMessagelD: ID:414dS12063726f7373776f 7260647 32e364FF83220000a02
JMSTimestamp: 1056477400186
MASCarrelatinn T ool hd
4 .2
&5 Fault Queue Manager 2% n £§3 v X
Message 1D I Resubmit To I Status I Description I Timestamp
[]10:414d51 206372673737 76F 7260647322 364FF8. .. REQUESTOUELE rill case 1 Tue Jun 24 10:56:40 F
] . | LOCPBACK | CONMECTOR/RESPONS. ., Tue Jun 24 0P
[110:414d512063726F7373776f 7260647 326364FF8, .. null ! case 3 Tue Jun 24 10:56:40 P
[110:414d51 2063726F7373776F 7260647 322364008, .. xyzxyzFsfisikkst rull case 4 Tue Jun 24 10:56:40 P
< | |

Handling failed events

The Fault Queue Manager lists and enables you to handle the failed event
messages from two types of interaction patterns: the HubRequest
(request/response) and the Agent Delivery for container managed events.

You can either delete event messages from the queue, or attempt to resubmit them.

To resubmit an event, mark the check box in the Message ID field for the event,
right click, and choose Resubmit.

Adapter Monitor attempts to resubmit the event. If the event is successfully
resubmitted, it is removed from the Fault Queue Manager display.

Messages with null value for the ResubmitTo field can not be resubmitted. An
attempt to resubmit an event can fail, either because the message itself is invalid,
or the ResubmitTo queue is not valid or available.

A message can be invalid because it contains an invalid JMS type or because it
cannot be converted to a business object. In either case, when the attempt to
resubmit an invalid message fails, Fault Queue Manager displays an error for the
invalid message. When you choose OK, the message is not resubmitted, and it is
removed from the fault queue display. If you close the dialog without choosing
OK, the message will remain in the fault queue display.

If a message is valid but the resubmit attempt fails because the message
ResubmitTo queue is null, invalid or unavailable , a Resubmit dialog appears,
showing the values of the message. You can choose to either retain (by choosing
Cancel) or delete (by choosing OK) the message from the queue.

Implementing Adapters with WebSphere Message Brokers

Clearing messages from WebSphere MQ queues

WebSphere Business Integration Adapters provides a sample batch file you can use
to clear messages from the WebSphere MQ queues in the business integration
system. Clearing the queues might be necessary if a problem with the business
integration system prevents messages from being removed for processing.

To clear messages from WebSphere MQ queues, run the batch file, clear_mq.bat
(Windows) or clear_mq (UNIX) located in the ProductDir\templates directory. This
batch file clears messages from the queues specified in the file,

crossworlds mg.tst. For more information about editing crossworlds mq.tst,
sed“Using WebSphere Business Integration Adapters batch files to configure|
[WebSphere MQ queues” on page 78

Managing log and trace files

The following tools provide graphical user interfaces for configuring and viewing
message logging and tracing. Use the:

* Connector Configurator to set up or change connector logging, and tracing
* Log Viewer to display log and trace files.

In addition to using Log Viewer to view logs, you can open the log with a text
editor.

During startup, the connector generates a temporary log file. This file contains all
messages that are logged during startup, including connector properties and
business object definitions that are passed to the connector framework. The file
name is broker_name_connector_name_tmp.log, and it is written to the ProductDir
directory. Once the connector is running, it handles logging and tracing as
configured in the standard connector configuration properties.

While logging and tracing messages are written using UTF-8 encoding in the locale
specified in the connector’s configuration file, time information is written in a
locale-independent format.

At connector startup, a log file is also created, if one does note already exist, in the
location specified in the connector’s configuration file. If a log file already exists,
new entries are simply added to it. Unless a limit has been placed on the size of
the connector log file, its size depends on the amount of time since it was last
managed and the volume of transactions passing through the system. If the
connector log file is configured with no size limit, it can continue to grow until it
cannot be opened or it exhausts its disk space.

If tracing is enabled, a trace file is created at startup if one does not already exist.
The size of the trace file must be managed in the same manner as the connector
log file to avoid the problems caused by excessively large files.

[Table 13 on page 93|lists the files used by the connector to store logging and
tracing information.

To manage log and trace files, you can use the Connector Configurator to:
* Specify a size limit for log and trace files

* Have the files automatically archived once they reach their size limit.

* Specify the number of archive files to maintain.

Chapter 7. Administering the business integration system 67

68

For more information about using the Connector Configurator to set these options,
see [’Configuring logging and tracing options” on page 93.|

Archival logging of log and trace files

If archival logging is enabled, each time the connector’s log or trace file reaches its
maximum size, it is renamed as a new archive file. The archive file’s name is
derived from the original log or trace file name, with the following inserted into
the name: _Arc_number.

For example, if five archive files are to be used and the log file has the name
Connector.log, then:

* The first archive created is named Connector_Arc_01.7og.

* When the new log file fills up, Connector_Arc_01.10g is renamed
Connector_Arc_02.7og,

* New log information is again saved to Connector_Arc_01.1og and so on in a
circular fashion, until there are five archive files.

* If there are already five archive files when a new log file is created, the oldest
one, number five, is deleted. Then the remaining archive files are renamed and
their numbers incremented so the number of archives matches the number you

configured. shows the progression of files using this configuration.

Rename ' | Log/trace 4\ Rename
= archive-3 file] ~»
‘ ' Log/trace ' . ‘ ' Log/trace |
archive-2 file archive-4 file
Renameﬁ Nﬂename
‘ ’ Log/trace | ‘ ’ Log/trace '
archive-1 file archive-5 file
Renam&)) %ename
‘ | Log/trace ' ' | Log/trace '
file archive-n file

Figure 21. Circular archival logging.

See the configuration task [“Configuring logging and tracing options” on page 93|
for details.

Managing other files

While log and trace files can be managed by means of archival logging, other log
files specific to each application need to be managed manually. Most of these files
are created during runtime if they do not already exist. New information is
appended to any existing file.

Implementing Adapters with WebSphere Message Brokers

Any file management procedure can be used, but IBM suggests the following
periodic log file management:

* Rename the files by appending a date to the file.
* Move the files to an archive directory.

Using Log Viewer to view connector messages

Log Viewer allows you to see messages contained in the log file and the trace file
for the connector. You can sort and filter the output display as well as print, save,
and email copies of the file. Logging and tracing options, as well as the location of

the generated files, are specified as a properties in the connector’s configuration
file.

Note: Log Viewer runs only on a Windows 2000 machine. To configure or view a
UNIX log file using Log Viewer, copy the log file from the UNIX machine to
a Windows machine and view it from there.

To start Log Viewer, you can do either of the following;:

e From the IBM WebSphere Business Integration Adapters Start menu shortcut,
select Log Viewer from the Tools submenu. Use the Open option of the File
menu to browse for the log file.

* Use the Run command from the Start menu and browse for the LogViewer.exe
file. Use the Open option of the File menu to browse for the log file.

Using the Log Viewer menu options, you can perform the following tasks:

* |“Setting Log Viewer preferences” on page 70|

+ |[“Changing how messages are viewed” on page 72|

« [“Controlling the Log Viewer display output” on page 74|

Log Viewer, displaying a sample log file is shown in [Figure 22 on page 70}

Chapter 7. Administering the business integration system 69

E LogYiewer - . =10l x|

File Edit Wiew Help

B8] |dl=| 8 #@l] 2|

Date Time System Type SubSystem [Thread Hame & ID Message g
2002/07/08 11:27:13.534 ConnectarAgent Trace PeopleSoftConnectar fmain (#2087638140) Sefting property = AppSenveriachineMameCrlP
: to peoplesoftd and the property value is from
Canfig file

thomeituninadebSphereAdaptersirepositoryP
: eopleSoftConnector.cfg
2002/07/08 11:27:13.548 ConnectorAgent Trace PeopleSoftConnector main (#2087638140) Setfting property = RequestQueue to ttunina and
: the property value is from Config file
ihomeftuninaiebSphereAdaptersirepositoryP
: eopleSoftConnector.cfy
2002907108 11:27:13.561 ConnectorAgent Trace PeopleSoftConnector main #2087638140) Sefting property = RestartRetryinterval to 1 and
i the property value is from Config file
fhomeittuninadehSphereAdaptersirepositoryP
i eopleSoftConnector.cfg
2002/07/08 11:27:13.873 Connectordgent Trace PeopleSofiConnector main #2087638140) Changing property = MessageFileName from
: fThomelfttuninaiebhSphereAdaptersilnterchange
System.bd to
ihomelttuninaiebSphereAdapters/connectars!
messagesiPeopleSoftConnector.td and the
property value is fram Canfig file
thomeittuninadehSphereAdaptersirepositoryP
eopleSoftConnector.cfg

200207108 11:27:26.923 ConnectorAgent Trace PeopleSoftConnector Emain (#2087638140) Setting property = QlueueManagerPassword
i and value is encrypted. Property value is from
Config file
ihomedttunina®ebSphereAdaptersirepositoryP
eopleSoftConnector.cfo |LI
|4 |»
Ready A

Figure 22. Log Viewer with sample log.

Setting Log Viewer preferences

1. To set Log Viewer preferences, select Edit >Preferences from the menu bar.
The User Configuration Options, General properties dialog box displays (see

[Figure 23).

Uszer configuration options [%]

General | Fomat | Columns |

Open action

" Add a new file ta the existing data
" Replace all existing data with the new file

ok, I Cancel

Figure 23. Log Viewer User Configuration Options, General Properties screen.

70 Implementing Adapters with WebSphere Message Brokers

This dialog lets you specify how to display the log file when you open it. The
available choices are:

* Query your preferences each time you open a log file.

* Merge the log file you are opening with the log file that is currently
displayed.

* Replace the log file that is currently displayed with the contents of the one
you are opening.

2. To change the background color and font of the Log Viewer messages, click the
Format tab.

The User Configuration Options, Format properties dialog box displays (see

[Figure 29).

Uszer configuration options
General Format lEUIumns]

Select background, font and test color for the messages of different levels

| Default message | T“MT["] Fart and Text Calor I
| Efror message | [l=| Font and Text Calor]
| Warning message | I:I!'I Fant and Text Colar]
_ -l"l Fant and Text Color]
| Flaw Trace Message | |:||.l Fort and Test Color]

| Infarmation message | [l=| Fortand Text Cc-lc-rl

v “wirap meszage text into mutiple lines

Q.] Cancel

Figure 24. Log Viewer User Configuration Options, Format Properties screen.

This dialog lets you specify how to display the log messages. The available
choices are:

* Assign different background colors and fonts for each of the types of
messages that display so you can easily recognize their severity (for example,
red background with larger font allows for Warning messages).

* Wrap the text of messages if the text is wider than the column.

Note: Flow trace messages are not generated for connectors using a WebSphere
message broker.

3. To change the Log Viewer columns that are displayed, click the Columns tab.

The User Configuration Options, Columns properties dialog box displays (see
[Figure 25 on page 72).

Chapter 7. Administering the business integration system 71

72

User configuration options . ZI

General | Format Colurnnsl

Available Columns Yisible

Date Time System

h=glD »n ||Type Up |

Floww Initistor 1D
Thread Mame & ID Downl
BusChj
Message
Ok, Cancel

Figure 25. Log Viewer User Configuration Options, Columns Properties screen.

This dialog lets you specify which columns display in Log Viewer as follows:
* To display a column, highlight a column name in the Available Columns

pane and click the >> button to move it to the Visible pane.

To hide a column, highlight a column name in the Visible pane and click the
<< button to move it to the Available Columns pane.

Click any of the column names in the Available Columns pane and click the
Up or Down button to change its ordering from left to right in the Log
Viewer display. Up moves columns to the left and Down moves columns to
the right.

Click the checkbox next to Automatically hide empty columns to keep the
Log Viewer display compact.

Note: The column, Flow Initiator ID, is not relevant for connectors using a

WebSphere message broker.

Changing how messages are viewed

The View menu contains additional options to change Log Viewer displays. From
that menu, you can:

Display /hide the Log Viewer toolbar.

Display /hide the Log Viewer status bar.

Split the window into two or more views

Filter or show all messages by checking filtering options in the filter tabs, such
as time range or by type of message (see IFigure 26 on page 73| and ITable 10 onl

. To set filter options:
1.

From the menu bar, select View > Filter > Use Filter . The Filter Settings
dialog box displays.

In the Activate Filters area, click the box that is associated with the tab
containing the filter options you want to apply.

Click OK to enable filtering.

Implementing Adapters with WebSphere Message Brokers

The filtered output can be toggled on or off with the Filter Toggle button on
the toolbar.

Filter settings]

Setup Filters
Type IBusObjl System | Subsystem | FlowlnitiatorlD | MsglD | 7.4 [»]

Select All | Deselect All l Inwert Selection l

Activate Filters
I Type I~ Time I~ Thread

I BusOhj I =g D I Message

I~ Bystem I~ Subsystem [Flow Initistor ID

cocs_|

Figure 26. Log Viewer Filter screen.

Note: The tab, Flowlnitiator ID, is not relevant for connectors using a WebSphere
message broker.

* Sort the messages; shows the Sort options. Click the down arrow in
each sort field to select Date/Time or EventID. You can also sort in ascending or
descending order.

— Sart by
- " Azcending
Buz0bj -
I J " Descending
 Then by
- ' Aszcending
Date Time hd
I J (" Descending
— Then by
5 Azcending
Dezcending

ak I Cancel

Figure 27. Log Viewer Sort Properties screen.

Chapter 7. Administering the business integration system 73

74

Controlling the Log Viewer display output

Several options are available for controlling Log Viewer output. In the File menu,
there are options for print previewing, printing, saving, refreshing the display,
sending to an email recipient, and determining the style for page setup, headers
and footers. The variables for header and footers are:

Variable name Description

$F Name of file

$A Application name

$P Page number

$N Total number of pages

$D Date (can be followed by additional parameters (for example
$D{%y:%h:%m})

Filtering messages

To filter the messages that will be displayed in Log Viewer, choose
View->Filter->Use Filterfrom the Log Viewer menu bar. The Filter Settings dialog
displays categories that correspond to the parameters of the logging message
format. Message format parameters are listed in

Table 10. Message format parameters for log file.

Variable Description

Time Timestamp: the date of logging in the format year/month/date
time.

System For connectors using the WMQI integration broker, system is the
application-specific component of the connector.

Thread Thread name and thread ID.

Name The name of the component, such as ClarifyConnector.

MsgType Indicates the severity of the message. See [Table 11 on page 75|

MsgID The message number.

SubSystem The connector name.

BO The business object name.

MsgText The associated text for the message number.

BOD Business object dump. The data contained in the business object.

In the Filter Settings dialog, you first choose the filtering categories that you want
to use, then select the specific items that you want to display from each category,
and then choose which filters you want to activate for your current Log Viewer
display.

Follow these steps:

1. In the Filter Settings dialog, choose a tab under Set up Filters to display the
items that you want to use for filtering messages. For example, choose Time if
you want to filter according to the timestamp of the message. You can set up
multiple filters, and use them either separately or together.

Implementing Adapters with WebSphere Message Brokers

2. In the displayed list of items, select each item for which you want to view
messages in Log Viewer. For example, if you want to view only messages that
are timestamped between 5 March 2002 at 9:00 AM and 6 March 2002 at 5:00
PM, select the range for those times under the Time tab.

You can use the buttons below the list box to select all the displayed items, or
to deselect all the displayed items, or to invert your current selection choices.

3. Under Activate Filters, check the box for each filter type that you want to
activate. For example, if you want to see only those messages with a particular
message ID that have a particular timestamp, activate both the MsgID filter and
the Time filter.

4. Click OK. The Filter Settings dialog closes, and the Log Viewer display
refreshes to show only those messages that you have allowed through the
filters.

Note that in addition to filtering according to the categories, you can also display
only those messages that contain a specific text string. To do so, select Messages
under Set up Filters, enter the specific text for which you want to show messages,
and check the box for Message under Activate Filters.

Message types
able 11| describes the types of messages issued by WebSphere Business Integration
Adapters.

Table 11. Message types.

Message type Description

Info Informational only. You do not need to take action.

Warning A default condition chosen by InterChange Server.

Error A serious problem that you should investigate.

Fatal Error An error that stops operation and should be reported.

Trace Tracing information for the trace level specified.

Flow Trace Flow tracing information for business objects.

Internal Error A serious internal problem that should be investigated.
Internal Fatal Error An internal error that stops operation. It should be reported.

Note: If a message type of Internal Error or Internal Fatal Error appears, record the
circumstances surrounding the problem, and then contact IBM Technical
Support.

Chapter 7. Administering the business integration system 75

76 Implementing Adapters with WebSphere Message Brokers

Chapter 8. Configuring the WebSphere business integration
system

This chapter explains how to configure the components of the WebSphere business
integration system: the integration broker, the business objects, and the connectors.
It includes the following sections:

» |[“Overview of configuration tasks’|

» |“Configuring the message broker to work with the connector”|

» |“Creating business object definitions” on page 8]

+ [“Creating a message broker project” on page 82|

s

* |“Enabling the application for use with the connector” on page 91|

. "’Conﬁguring the connector” on page 91|

* |“Defining message flows” on page 96|

+ |[“Using Visual Test Connector to verify your interfaces” on page 97|

Overview of configuration tasks

To configure the business integration system, you need to perform the following
tasks:

1. Configure the message broker to support the connector by defining the
necessary queues.

2. Generate the business object definitions to be used by the connector.
3. Create a message broker project and deploy it to the message broker.

4. Configure standard and application-specific configuration properties for the
connector.

5. Configure tracing, logging, and messaging options for the connector.

6. Create message flows to define how the message broker is to process the
business object messages it received.

Each of these tasks is covered in more detail below.

Configuring the message broker to work with the connector

To enable a WebSphere message broker to work with a connector, you need to
configure the WebSphere MQ queues that carry messages between the connector
and the integration broker, and define appropriate queue configurations. You also
need to ensure that the connector’s configuration file contains correctly specified
queue and queue manager information.

[“Message queues” on page 41| provides information about how WebSphere MQ
queues are used in the WebSphere business integration system.
lconnection mode with the queue manager” on page 92| explains how to specify the
connection mode in the connector’s configuration file. For detailed information

about WebSphere MQ queues, queue managers, and queue configurations, see
WebSphere MQ: Intercommunication.

© Copyright IBM Corp. 2002, 2004 77

78

Configuring the WebSphere MQ queues

The business integration system requires that you configure queues with the
properties listed below.

Note: When you configure the connector, under [“Specifying the queues to be used|
[by the connector” on page 92| you will need to specify the name of each of
these queues as a standard property in the connector’s configuration file.

* DeliveryQueue: Delivers event delivery messages from the connector framework
to a WebSphere message broker.

* RequestQueue: Delivers request messages from a WebSphere message broker to
the connector framework.

* ResponseQueue: This queue is not used with WebSphere message brokers but
must be defined for consistency with WebSphere InterChange Server.

* FaultQueue: Delivers fault messages from the connector framework to the
message broker. The connector framework places a message on this queue when
it is unable to place the message on the reply-to queue.

* SynchronousRequestQueue: Delivers request messages from the connector
framework to the message broker that require a synchronous response. This
queue is necessary only if the connector uses synchronous execution. With
synchronous execution, the connector framework sends the message to
SynchronousRequestQueue and waits for a response back from the message
broker on the SynchronousResponseQueue. The response message sent to the
connector bears a correlation ID that matches the ID of the original message.

* SynchronousResponseQueue: Delivers response messages from the message
broker to the connector framework sent in reply to a synchronous request. This
queue is necessary only if the connector uses synchronous execution.

* AdminInQueue: Delivers administrative messages from the message broker to
the connector framework.

* AdminOutQueue: Delivers administrative messages from the connector
framework to the message broker.

Ways to define queues
You can configure the WebSphere MQ queues needed for your adapter, using any
of the following methods:

¢ Customize and run a batch file provided with WebSphere Business Integration
Adapters.

* Use WebSphere MQ Explorer.
* Issue WebSphere MQ commands.

Tip
To make it easy to identify the connector with which a queue is associated,
use the name of the connector as a prefix in the queue name. For example,
name the Clarify connector’s event delivery queue:
clarifyconnector/deliveryqueue.

Using WebSphere Business Integration Adapters batch files to configure
WebSphere MQ queues: WebSphere Business Integration Adapters provides a set
of batch files that you can run to configure the WebSphere MQ queues needed for
the adapters you are deploying. The batch files, located in ProductDir\templates,
consist of:

Implementing Adapters with WebSphere Message Brokers

configure_mgq.bat (Windows)
configure_mgq (UNIX)

Run this batch file to configure the WebSphere MQ queues specified in
crossworlds mq.tst

crossworlds_mgq.tst

Edit this file to specify the WebSphere MQ queues in the business integration
system. This file is read as input by configure_mg.bat and clear_mq.bat, a batch
file WebSphere Business Integration Adapters provided to clear messages from
WebSphere MQ queues.

For more information about using clear_mq.bat, see|“Clearing messages from|

[WebSphere MQ queues” on page 67}

The contents of the crossworlds_mq.tst file are shown below. You can use this one
file to specify the queues needed by each adapter you are configuring. Edit the file
as follows:

1.

Delete the statements:

DEFINE QLOCAL(IC/SERVER_NAME/DestinationAdapter)
DEFINE QLOCAL(AP/DestinationAdapter/SERVER_NAME)

These apply only to business integration systems that use WebSphere
InterChange Server.

For each adapter you are deploying, create a separate set of queue definition
statements using as a template the statements beginning with DEFINE
QLOCAL (AdapterName/AdminInQueue).

If you are using bindings mode with remote queue definitions, customize the
statement, DEFINE CHANNEL (CHANNEL1) CHLTYPE(SVRCONN) TRPTYPE(TCP), with
the requested information for each queue manager you need to configure. If
you are using client mode for your queue configuration, leave the statement as
is. For more information about supported queue configurations,

see ["Defining the queue configuration” on page 80|

***/

L I O R R R N

*/

Define the local queues for all Server/Adapter pairs. */
For MQ queues, they must have the following definition: */
Application = DEFINE QLOCAL (AP/AdapterName/ServerName) */

*/

Example: */
DEFINE QLOCAL(AP/ClarifyConnector/CrossWorlds) x/
*/

DEFINE QLOCAL(AP/SAPConnector/CrossWorlds) x/
*/

If your server is named something different than 'CrossWorlds' */
make sure to change the entries to reflect that. */

**/

DEFINE QLOCAL(IC/SERVER NAME/DestinationAdapter)
DEFINE QLOCAL(AP/DestinationAdapter/SERVER_NAME)

**/

*
*
*

For each JMS queue (delivery Transport is JMS),
default values follow the convention:
AdapterName/QueueName

**/

DEFINE QLOCAL (AdapterName/AdminInQueue)

DEFINE QLOCAL(AdapterName/AdminQutQueue)

DEFINE QLOCAL (AdapterName/DeliveryQueue)

DEFINE QLOCAL (AdapterName/RequestQueue)

DEFINE QLOCAL (AdapterName/ResponseQueue)

DEFINE QLOCAL (AdapterName/FaultQueue)

DEFINE QLOCAL (AdapterName/SynchronousRequestQueue)

Chapter 8. Configuring the WebSphere business integration system 79

80

DEFINE QLOCAL(AdapterName/SynchronousResponseQueue)

**/
* Define the default CrossWorlds channel type */
R T T L e L R XL /
DEFINE CHANNEL(CHANNEL1) CHLTYPE(SVRCONN) TRPTYPE(TCP)
**/

* End of CrossWorlds MQSeries Object Definitions */

**/

Using WebSphere MQ Explorer to configure WebSphere MQ queues: For
information about configuring queues using WebSphere MQ Explorer, open
WebSphere MQ Explorer and refer to its online help.

Using WebSphere MQ commands to configure WebSphere MQ queues: For
information about configuring queues using WebSphere MQ commands, see
WebSphere MQ: System Administration Guide and WebSphere MQ: Script (MQSC)
Command Reference.

Defining the queue configuration

The WebSphere business integration system supports several queue managers and
queue configurations. The connector can communicate with the queue manager in
any of the following modes.

Bindings mode

With bindings mode, the WebSphere message broker and the connector can
communicate directly with the queue manager, without using a TCP/IP
connection. The integration broker and the connector need to be installed on the
same machine so that they can use the same queue manager. This is the default
mode.

Bindings mode with remote queue definitions

If the WebSphere message broker and the connector are installed on separate
machines, with each machine running its own queue manager, the connector and
the integration broker can still communicate with their respective queue managers
using bindings mode. However, you need to specify remote queue definitions as
explained in the example below.

Suppose brokerQM is the queue manager used by the integration broker and
connQM is the queue manager used by the connector. To enable communication
between the two queue managers, you need to set up the following channel
definitions:

* For each queue that transmits messages from the connector to the message
broker, a remote queue definition must be created on connQM that points to a
local queue on brokerQM. This requirement applies to the following queues:

— DeliveryQueue

SynchronousRequestQueue

FaultQueue
AdminOutQueue

* For each queue that transmits messages from the integration broker to the
connector, a remote queue definition must be created on brokerQM that points
to a local queue on connQM. This requirement applies to the following queues:

— RequestQueue
— AdminInQueue

* For reply-to queues: when the integration broker sends a request message to the
connector framework, it specifies in the message header the queue manager and

Implementing Adapters with WebSphere Message Brokers

queue to which the response is to be sent.This is also true for requests sent from
the connector framework to the integration broker.|[Appendix A, “WebSphere]
[MQ message formats,” on page 99 provides more information about these
header fields. You must perform certain administrative tasks to have response
messages routed to the correct reply-to queue. These are described in WebSphere
MQ: Intercommunication.

Client mode

If the message broker and the connector must use TCP/IP to communicate with
their respective queue managers, then they must use a client mode connection.
Communication occurs through a client connection that uses TCP/IP as its
underlying transport.

Creating business object definitions

To create the business object definitions to be used by the connector, you have
several options, all of which are covered in detail in the Business Object Development
Guide.

Note: WebSphere Business Integration Adapters uses only application-specific
business objects, not generic business objects. All references to business
objects throughout this book refer to application-specific business objects.
Generic business objects are used in business integration systems based on
the WebSphere InterChange Server integration broker. Some of the books in
the WebSphere Business Integration Adapters library, such as Business Object
Development Guide are also part of the WebSphere InterChange Server library
and refer to both types of business objects.

The options for creating business object definitions are as follows:

* Use an ODA (Object Discovery Agent) to generate application-specific business
object definitions. The ODA examines specified objects in the application,
“discovers” the elements of those objects that correspond to business object
attributes and their attributes, and generates business object definitions to
represent the information. Business Object Designer provides a graphical
interface to access the Object Discovery Agent and to work with it interactively.
Refer to the adapter user guide for the connector you are configuring to
determine whether an ODA (Object Discovery Agent) is provided.

* If no ODA is included with the business integration adapter, you can use the
Object Discovery Agent Development Kit (ODK) to develop an ODA and then
run it against the application.

* Create business object definitions manually using the Business Object Designer
tool.

In addition, many adapters come with sample business objects. If they are
included, the samples are located in the following product directory:

ProductDir\connectors\ConnName\Samples

Once you create the business object definitions for application-specific business
objects, read [Appendix G, “Using Visual Test Connector,” on page 159 which
explains how to test the business object definitions once you have created them.

Chapter 8. Configuring the WebSphere business integration system 81

Creating a message broker project

82

Once you have created the business object definitions the connector is to support,
you must deploy them into the message broker workspace (for WebSphere
Business Integration Message Broker) or deploy them to the message broker (for
WebSphere MQ Integrator or WebSphere MQ Integrator Broker.) You do this using
the System Manager. System Manager is installed with the Adapter Framework
and provides a graphical user interface from which to configure and administer
adapters. (For more information about System Manager, refer to the
[“System Manager and the Eclipse Workbench,” on page 129))

Note: The connector must be installed before you can deploy the project to the
message broker. Refer to the WebSphere Business Integration Adapters
Installation Guide for installation instructions.

To start System Manager, from the Windows Start menu select IBM WebSphere
Business Integration Adapters > Tools > System Manager. Make sure you are
viewing the System Manager perspective. The first step you should complete
before creating a new project is to specify the importer paths.

Specifying importer and workspace paths

You must specify the paths for the broker importer and message broker workspace
directory before you deploy a project to a message broker if they are not in the
same workspace.

Note: If you are deploying business objects to WebSphere Business Integration
Message Broker, and the System Manager and Message Broker Toolkit are in
the same plugin directory you do not have to perform this step. During
deployment, the specified project will be created in the current System
Manager workspace.

— Tip
After deployment, the Broker Application Development perspective in
the System Manager workbench will display an entry for the
destination message set project. If plugins for both System Manager
and the Message Broker Toolkit are launched when you start the
workbench, then they are in the same workspace. If you can see the
Broker Application Development perspective in the same workbench as
System Manager, then the Message Broker Toolkit plugins were also
launched.

If the broker importer and message broker workspace are in different directories,
specify their paths as follows:

Implementing Adapters with WebSphere Message Brokers

1. From System Manager select Window > Preferences > System Manager
Preferences >Broker Preferences. The following window appears:

&b Preferences Ed
[+ Workbench Broker Preferences
- Build Crder
- Collaharation Debugger Broker deplovment preferences
[#- Debug

+
)

- Exbernal Tools —Integrator Broker Settings
lI-|nes|tpaII,l'Llpdate Specify the Inkegrator broker importer path I Browse. . |
-Inteqrated Test Enviranment —Message Broker Settings
- Java Specify the Message broker importer path I— Browse. .. |
- Plug-In Development
-] System Manager Preferences | Specify the Message broker workspace directory I Browse. . |
. Broker Preferences
Compiler

i+~ Deployment Settings
System Manitar Settings
[#]- Team

=

s s s

Apply |

Import. .. | Expart... | QF Cancel |

2. Enter (or click Browse to locate) the pathnames as follows:

For WebSphere MQ Integrator Broker or WebSphere MQ Integrator, enter the
integrator importer path (under "Integrator Broker Settings”). The importer is
called mqsiTmpXMLSchema.exe and should be found in the bin directory of your
broker installation.

For WebSphere Business Integration Message Broker, enter the message broker
importer path and the message broker workspace directory (under "Message
Broker Settings”). The importer is called mqsicreatemsgdefs.exe and should be
found in the eclipse directory of your broker installation. Make sure to select
the message broker workspace, not the System Manager workspace. The
default path for the message broker workspace is eclipse\workspace. (The
message broker workspace is the workspace used to store the message set and
message flow projects, and any other projects of WebSphere Business
Integration Message Broker tooling.)

Note: Pathnames entered should be absolute.

Creating a new user project

To create a new user project, follow these steps:

Chapter 8. Configuring the WebSphere business integration system 83

84

1.

From the User Projects menu, select Message broker Projects and then New

Message broker project as in the following illustration:

'ﬁa System Manager - WebSphere Studio Workbench SDK

File Edit Mavigate Search Project

Component Tools Server

Run Mfindow Help

EREEEEELLEY LR IENEIEE

ge

S| i&# User Projects
: & WAS Projects
T il

|CF P | B

ge broker

& Integration Component Librz

cage broker project

Import Solution
Expart Salution

InterChange Se...ent Management

------ #1L InterChange Server Instanc

Cuk:
Loy
Faste
Delete

Refresh View

Console ‘Log Oukput

1 ikem selected

2. A New User Project window will be displayed. Enter the name of the project.

For example:

New User Projeck

Mew User Project

Mew ser Project creation.

=

Project name: | MewProjectl

Project contents:
V¥ Use default

Directary; | CIBMyWebspherelC3 Tools wWEB203 Workspacel NewPraject 1

#vailable Inteqgration Componerk Libraries
—

Ercwse. ., |

[Fl= Business Objects
[¥lE= Cannectars

Finish Cancel |
L\;

3. In the Available Integration Component Libraries window you will see a list of
the integration component libraries that have been detected. (Note: A path to
the libraries must be entered when you install System Manager). Select the plus

Implementing Adapters with WebSphere Message Brokers

signs (+) to expand the checkboxes in the Available Integration Component
Libraries window and select the business object definitions and connectors you
wish to include in this project.

Note: Selecting the checkbox beside "Business Objects” (as in the example) will
select all available business object definitions. Selecting the checkbox
beside "Connectors” (as in the example) will select all available
connectors.

4. Click Finish. The name of the new project will appear in the Broker Projects list
in System Manager.

5. In the User Projects panel, expand the name of the new project and the
"Business Objects” and "Connectors” items that appear and you will see the
names of the Business Objects and Connectors that you selected.

The remaining steps in the deployment process differ depending upon which
message broker you are using as an integration broker. In the next step you will
right-click on the new project name and choose one of two types of deployment, as

follows:

If you are using... Select... Refer to...

WebSphere Business Deploy to message broker “Deploying to a messagel

Integration Message Broker | workspace broker workspace” on page|
8

WebSphere MQ Integrator Deploy to integrator broker ||[“Deploying to an integrator]|

WebSphere MQ Integrator proker” on page 88

Broker

Deploying to a message broker workspace

To deploy the project to a message broker workspace (for WebSphere Business
Integration Message Broker used as the integration broker), do the following from
System Manager:

1. Right-click on the name of the new project in the User Projects panel, then
select "Deploy to message broker workspace” as shown in the following

Chapter 8. Configuring the WebSphere business integration system 85

86

illustration:

&P System Manager - WebSphere Studio Workbench SDK [_[O] <]
File Edit Mavigate Search Project Component Tools Server Run Window Help

|- ERe [Domin®Eed || & <[%-

n Manager

[=]-fa# User Projects
T&# InterChange Server Prajects
[=-1a$ Broker Projects

1= ffadfa

[=-1&F MancyPrajl

! {= Business Objects

H {2 Connectors

= B Update project. ..

B-EZ create New Folder...
[#-{@# Integration

=

Expott as Repository File..,

Cut
Copy

InterChange Sery, [A5t2
— Delete

411 InterChanc Refresh View

g x
Deploy to Integrator Broke k LI
I8 Details of Shorkcut
Team 4
Compare With >
Replace With 5
Restore From Local History... d
||Cnnsne Cog Cukput

IPrajectl

The following window appears, showing the available business objects:

Deploy to Message Broker workspace...

Deploy to Message Broker workspace...

Select the Business objects o deploy
COhbjects marked may Fail validation due to missing child Business objects
Available child Business objects in the project will also be automatically deploved

B appHela

B at_pf_Message

B at_PF_Request

=] Caesar_Customer
=] Caesar_Ovder

=] Clarify_BusCrg

B Clarify_Contact

B Clarify_PartMaster
=] Clarify_PartnerSite
=] Clarify_PartRequest
B Clarify_SFaAQuote
A é Conkack LI

|»

[+ Select all Business Cbjects:

V¥ Show orly Top level Business objects(zomputing top level BO's takes some time)

< Back I Mext = I Firmish | Cancel |

2. Choose the desired business objects in the list (or "Select all business objects” or
"Show only Top level Business objects”).

Implementing Adapters with WebSphere Message Brokers

3. Click Next. The following window appears:
-

select the parameters

Select the destination project name and parameters

—Select the Destination Project:

Enter the Message Set project name: I MancyProjl

Enter a base Message set projectioptional): I

Enter the base Message set{optional): I

—Select the parameters

r Replace existing project with the same name
v Mamespace aware{Cnly applicable to new projects)
r Deploy in verbose mode

long Please select the xml namespace format

{Conmectors in the source project will be configured accordingly),

< Back | Mext = | Finish I Cancel |

4. Enter a name for the Message Set project (required) and any other parameters
(optional). The parameters are described in more detail below:

Message set project name. Any text string designating the name of this project.
This name will appear in the System Manager window when deployment is
complete.

Base message set project and base message set. If you enter names of an
existing base message set project and base message set, then the contents of the
base message set will be used as the basis of the new destination project. All
the message set definitions in the base project will be copied to the new
destination project. In addition, the destination project will also include any
business objects you selected from the previous window during this
deployment. You can view the names of existing message set projects and base
message sets from the Broker Application Development perspective of Message
Broker Tooling.

Note: You must enter both a base message set project and a base message set;
if only one of these parameters is specified, it will be ignored, and only
those business objects selected during this deployment will be included
in the project.

Replace existing project with the same name. This option is applicable if the

name entered in the Enter message set project name field is identical to the

name of an existing project. If so, selecting this option replaces an existing
project’s content with content based on your selections during this deployment

(only the name remains the same) . If this option is not checked and the

specified project name matches that of an existing project, then the project

retains whatever business objects it already contained and those selected during
this deployment will be added. All existing business objects with the same
names will be overwritten. If this option is checked but the project name does
not match an existing project, this option is ignored and a new project is
created.

Chapter 8. Configuring the WebSphere business integration system 87

Namespace aware and xml namespace format. By default, XML namespace
format is set to short. It is important to select the correct combination of choices for
Namespace aware and XML namespace format, or your deployment might fail. Refer
to[“Choosing XML Namespace length” on page 90| for information on whether
to select long or short for this parameter.

Deploy in verbose mode. Selecting this option will cause more details of the
deployment process to be displayed or logged during deployment.

5. Click Finish. If the project deploys successfully, a window will display a
message indicating successful deployment. In addition, The results of the
deployment will be recorded in the default log file
mgsicreatemsgdefs.report.txt,located in the importer directory (default
directory eclipse). Also refer to the console panel of System Manager; it will
display which business objects have successfully deployed.

Note: The Message Broker Toolkit must closed when you click Finish for
deployment to succeed. If the Toolkit was open at this time, you will
receive a message stating that deployment of some or all of the business
objects and message sets failed. You must redeploy from the beginning
of the process, making sure that the Toolkit is closed.

Deploying to an integrator broker

To deploy the project to an integrator broker (for WebSphere MQ Integrator or
WebSphere MQ Integrator Broker used as the integration broker), do the following
from System Manager:

1. Right-click on the name of the new project in the User Projects panel, then
select "Deploy to integrator broker” as shown in the following illustration:

&P system Manager - WebSphere Studio Workbench SDK =] B3
File Edit Mavigate Search Project Component Tools Server Run Window Help

EEEREREEL- PR RIS

WebSphere Busine...n System Manager (R gl 4

El-{a# User Projects
[#-1@$ InterChange Server Prajects
[=-1&% Broker Projects

& ffadfa

=18 MancyProjl

{22 Business Objects

i {== Connectors

!

= Bus, Update project...

B Con Create Mew Folder...
[+-fa$ Integration Com

Export as Repositary File...

cut
Copy
Paste

InterChange Serv...one
——————————— Delete

Refresh View

474 Interchange Se

Deploy to Message Broker workspace. .. o

Deploy ta Integrator Broker. .. ﬂ
[fl Details of Shortcut

Team 13

Compare With 3

Replace With 2

Restore From Local History. .. ﬂ

|| Consale [Log Gutput

IProjectl

88 Implementing Adapters with WebSphere Message Brokers

The following window appears, showing the available business objects:

Deploy to Integrator Broker...

Deploy to Integrator Broker...

Select the Business CObjects to create corresponding message sets
Chjects marked may not get deploved due to missing child business objects,

B Caesar_nddress
B Caesar_Customer

¥ Select all Business Objects:

™ show orly Top level Business objects(computing top level BO's takes some time)

= Back | Mext = | Finish I Cancel |

Choose the desired business objects in the list (or"Select all business objects” or
"Show only Top level Business objects”.

Click Next. The Parameter Selection window appears. This window allows you
to change WebSphere MQ Integrator values and to select the XML namespace

Chapter 8. Configuring the WebSphere business integration system 89

90

format for the connector. For example:

Parameter Selection 0y
—Select the deployment options
Properk I Value I Description
MR.M_DE MRM_DE1L Message Repositary Manager DB Mame
DE_User MRMDBADmIn | User Mame with permissions to modify DE
DE_PwW HkA Ak Password
ssiPrefix %5l Prefix used Faor ¥ML Schema instance namespace
DefMameSpace Specify a default namespace
[oMameSpacelac MoMameSpacelac
XMLTabMame CrxML XML WWire Format
ReporkOnly M Pseudo-impart{no permanent changes to Data. ..
Verbose M Verbiose(Far troubleshooting)
Trace M Tracefor troubleshooting)
DatestringConly M Model parameters using MRM STRING data type?
IncITimeFrac h Wark Fractions of a second in MRM DATETIME?
Showschema M Cump the Schema tags(troubleshooking)?

Select the connector(s) xml namespace format I'ﬂj
Connectors in the praject are configured accordingly ~

< Back | Mext = | Finish I Cancel |

4. Enter the Password (DB_PW property) and any other values to change from the
defaults. (Values entered from any previous use of this window will have been
saved and will be presented as the defaults.) Note that by default, XML
namespace format is set to short. It is important to select the correct
combination of choices for Namespace aware and XML namespace format, or your
deployment might fail. Refer to ["Choosing XML Namespace length”| for
information on whether to select long or short for this parameter.

5. Click Finish. If deployment is successful, a window will appear with a message
indicating sucessful deployment. Also refer to the console panel of System
Manager; it will display which business objects have successfully deployed.

Choosing XML Namespace length

When you deploy your project to a message broker, you have the option of
selectinglong or short XMLNameSpace format. The default is short.
XMLNameSpaceFormat is a standard configuration connection property for adapters.
The choice you make within System Manager overrides whatever might already
exist in the adapter’s configuration file. If you are deploying to WebSphere
Business Integration Message Broker, the Select the parameters window allows
you to specify that the project is namespace-aware. If the project is
namespace-aware, either short or Tong formats are allowed. If the project is not
namespace-aware, then Tong must be used. Selecting short with a project that is
not namespace-aware will cause deployment to fail.

Note: IBM recommends that any new projects be set to namespace-aware mode for
ongoing compatibility with industry standards. IBM recommends setting
XMLNameSpace format to short, if possible, for better performance.

If you are deploying to WebSphere MQ Integrator or WebSphere MQ Integrator

Broker, then long or short are allowed. However, if short is selected, then the

Implementing Adapters with WebSphere Message Brokers

RFHZmessagedomain property of the connector must be set to xml. If
RFHZmessagedomain is set to mrm, only XML messages in Tong namespace format
can be processed.

Note: WebSphere MQ Integrator and WebSphere MQ Integrator Broker do not
support namespaces. Therefore you cannot specify namespace-aware for

projects deployed to these brokers.
shows the XMLNameSpace format alternatives available:

Table 12. XMLNameSpace format alternatives

Message Broker Namespace aware?
Yes No
WebSphere Business Integration long or short long
Message Broker
WebSphere MQ Integrator or N/A long or short (for short,
WebSphere MQ Integrator Broker RFH2messagedomain
must be xml)

Enabling the application for use with the connector

To allow the connector’s application-specific component to deliver business data to
and from the application, you must establish a dedicated user account for the
connector on the application. You will need to specify the user ID and password of
this account when you create the configuration file for the connector.

For most connectors, the application must be configured to implement the event
detection mechanism. Once the application has been configured, it can detect entity
changes and write event records to the event store. The information is then picked
up by the connector and processed. You should create triggers only for business
objects and operations that are to be processed by a WebSphere MQ message flow.
Otherwise, the message queues will fill up with messages that are never removed
for processing.

For detailed information about these tasks and others necessary to enable the
application to work with the connector, refer to the adapter user guide for the
connector you are configuring.

Configuring the connector

The Connector Configurator tool provides a graphical user interface for
configuring the connector. When you are finished specifying values for the
connector’s configuration properties, the Connector Configurator generates a
configuration file for the connector and places it in the connector’s local repository.

Important: If the business integration adapter is running on UNIX, you must
create the configuration file using Connector Configurator on Windows
and then copy the file to your UNIX machine. When you create the
configuration file, make sure that you observer UNIX path and file
name conventions when setting properties.

When you ran the IBM WebSphere Business Integration adapter installer, it loaded
a connector definition file for the connector in
ProductDir\connectors\repository\ConnName. The connector definition file
provides initial values for some configuration file properties. The next step is to

Chapter 8. Configuring the WebSphere business integration system 91

92

use Connector Configurator to create a configuration file for the connector. While
the connector definition file provides some starting values for the configuration
file, the configuration file contains all the standard and application-specific
properties for the connector, and specifies its supported business objects.
[Appendix C, “Standard configuration properties for connectors,” on page 109,|
describes these properties in detail.

If you manually installed a new connector (one not pre-built by IBM) you must
create a new configuration file for that connector, using Connector Configurator.

— Tip
Use the information provided below together with the adapter user guide for
the connector you are configuring, which contains:

¢ Complete instructions for using Connector Configurator

* Detailed information about the supported settings for the connector’s
standard properties, application-specific properties, and logging and tracing
options.

The sections below discuss Connector Configurator settings that apply to every
connector working with a WebSphere message broker.

Specifying the location of the connector’s local repository

You can specify the location you want to use for the local repository using the
standard property, RepositoryDirectory. The default location is
ProductDir\repository.

Specifying the queues to be used by the connector

In|“Configuring the WebSphere MQ queues” on page 78)you defined a set of
queues to be used by the connector to communicate with the message broker. In
the Connector Configurator, click the Standard Properties tab and assign these
queues to the connector using the following standard properties:

* DeliveryQueue
* RequestQueue

* ResponseQueue (this queue is used only with WebSphere InterChange Server
but must be defined for compatibility)

* FaultQueue

* SynchronousRequestQueue (needed only if the connector is using synchronous
execution)

* SynchronousResponseQueue (needed only if the connector is using synchronous
execution)

* AdminInQueue
* AdminOutQueue

Setting the connection mode with the queue manager

The default connection mode is bindings mode. Specify client mode as follows:
1. In the Connector Configurator, click the Standard Properties tab.

2. Assign to the standard property, jms.MessageBrokerName, the following value:
QueueMgrName : [Channel] : [HostName] : [PortNumber], where the variables
represent the following:

Implementing Adapters with WebSphere Message Brokers

QueueMgrName

The name of the queue manager.

Channel
The channel used by the client.

HostName

The name of the machine where the queue manager is to reside.

PortNumber

The port number to be used by the queue manager for listening.

For example:

jms .MessageBrokerName = WMQIB.Queue.Manager:CHANNEL1:RemoteMachine:1456

Setting configuration properties for synchronous execution

If your connector uses synchronous execution, click the Standard Properties tab

and set the following properties:

¢ SynchronousRequestQueue = SynchronousRequestQueue

* SynchronousResponseQueue = SynchronousResponseQueue

* SynchronousRequestTimeout = 10000

Configuring logging and tracing options
Logging is used to communicate system messages, component state changes,
failures, and tracing information. The following files are generated:

Table 13. Connector logging and tracing files.

Default file name and path

Description

Temporary log file:

ProductDir\broker_name_connector_name_tmp.10g.

During startup, the connector generates
a temporary log file. This file contains
all messages that are logged during
startup, including connector properties
and business object definitions that are
passed to the connector framework. and
the file is written to the directory in
which the product is installed.

Connector log file:

UNIX: A connector logs messages to STDOUT by default, then those
messages are rerouted to
ProductDir/logs/connector_manager_ConnName.10g.

WINDOWS: A connector logs messages to STDOUT by default, but can be
configured to send to a local destination log file in the ProductDir
directory.

The connector’s log file is used to store
messages issued by the connector. It
also contains messages regarding
WebSphere MQ communication errors.

Connector message file:

ProductDir\connectors\messages\ConnName_LocaleName .txt

This file contains the full text for each
message issued by the connector. You
can use this file to look up the text of
message IDs you see in the log file. If
the locale specified in the connector
configuration file is not supported, the
file ConnName . txt is used.

Trace file:

Defaults to STDOUT for both UNIX and Windows.

Contains trace messages as specified by
the selected trace level.

Chapter 8. Configuring the WebSphere business integration system 93

94

The logging system is always active and provides an accurate monitor of the
connector.

To troubleshoot a problem, you can turn on tracing. Trace messages help you
monitor actions taken in components of the business integration system. Trace
levels define the amount of detail written to the trace file. The higher the trace
level, the more detail you receive. Tracing differs from logging in the following
ways:

* Logging always occurs, but tracing can be turned on and off as needed.

* Tracing contains more detailed information than logging about the state of
components and the actions taken by them.

* Logging and tracing settings are persistent after reboots.

Tracing is off by default because it produces messages that are more detailed than
you normally need.

For information about viewing logging and tracing messages using LogViewer, see
[“Using Log Viewer to view connector messages” on page 69.]

Configuring connector logging
To configure connector logging options, click the Trace/Log Files tab and specify
the following:

1. To have log messages routed to STDOUT, click the To console (STDOUT)
check box.

2. To have log messages routed to a file, click the To file check box and specify
the full-path name of the log file you want to use. You can have log messages
routed to the console and to a file by specifying both the “To console” and “To
file” options.

3. If you designated the use of a log file, also specify the following options:

a. To limit the size of the log file, set Log file size to a numeric value and unit
of measure.

b. To permit the log file to grow with no limit, click the Unlimited check box.

c. If you have set a maximum size for the log file and you want to use file
archiving, set Number of archives to the number of archive files you want
to maintain.

For more information about managing log files, see|[“Managing log and trace files”|

Configuring connector tracing
To configure connector tracing options:

1. Click the Trace/Log Files tab.
2. To have trace messages routed to STDOUT, check To console (STDOUT).

3. To have trace messages routed to a file, check To file and specify the full-path
name of the trace file you want to use. You can have trace messages routed to
the console and to a file by specifying both the To console and To file options.

4. If you designated the use of a trace file, also specify the following options:

a. To limit the size of the trace file, set Trace file size to a numeric value and
unit of measure.

b. To permit the trace file to grow with no limit, check Unlimited.

Implementing Adapters with WebSphere Message Brokers

c. If you have set a maximum size for the trace file and you want to use file
archiving, set Number of archivesto the number of archive files you want
to maintain.

5. To set the tracing level:
a. Click the Standard Properties tab.
b. Set the AgentTraceLevel property to one of the values listed in [Table 14

Refer to the adapter user guide for the connector you are configuring for more
details about the information generated by the different trace levels for that
connector. You can set connector tracing to one of the following levels:

Table 14. Connector trace levels.

Trace level Description
1 Traces initialization and the sending and receipt of business objects.
2 Prints messages for level 1. In addition, provides more details than Level 1

for the same types of events.

3 Prints messages for levels 1 and 2. In addition, traces the exchange of
messages between the connector agent and the messaging driver.

4 Prints messages for levels 1 through 3. In addition, traces the passing of
business objects between internal levels of the connector.

5 Prints messages for levels 1 through 4. In addition, traces the passing of
administrative messages between internal levels of the connector.

A new or changed tracing level takes effect when you restart the connector.

For more information about archiving trace files, see|“Managing log and trace
ffiles” on page 67|

Configuring the connector startup files, shortcuts, and
environment variables

The procedure for starting a connector and the set-up tasks required both depend
on the platform where the connector is running.

For Windows

When you install WebSphere Business Integration Adapters on Windows, a
shortcut is created for each installed connector on the WebSphere Business
Integration Adapters program menu (Start > Programs > IBM WebSphere Business
Integration Adapters > Adapters > Connectors). You must use the startup
options listed in[Appendix D, “Connector startup options,” on page 125| to
customize the following;:

¢ The connector’s shortcut properties
* The connector’s startup file, start_connName .bat (for connectors written in Java)

* The connector’s startup file, start_connector.bat file (for connectors written in
C++).

For UNIX

In the UNIX environment, you start a connector by running
connector_manager_connName script, which is a wrapper for the generic connector
manager script (ProductDir/bin/connector_manager). This wrapper includes the
following information:

¢ The name of the connector to start or stop

Chapter 8. Configuring the WebSphere business integration system 95

* Appropriate command-line options of the generic connector manager. For
example:

— The SAP connector requires the -t command-line option. Therefore, its startup
script already includes the -t option.

— All UNIX connectors run with the -b option. Therefore, all connector startup
scripts already include the -b option. To have a connector run in the
foreground, remove the -b option from the generic connector manager script
(connector_manager).

* The name of the configuration file.

If you have created a custom adapter or if you have installed an adapter using
electronic software delivery (ESD), you need to do the following before you start
up the connector for the first time:

1. Run the Connector Script Generator tool to update the
connector_manager_connName script with the name of the connector’s

configuration file. See [Appendix F, “Using the Connector Script Generator tool,”]
for more information about running this tool.

Alternatively, you can navigate to the ProductDir/bin directory and edit the
connector_manager_connName file to specify the name of the connector’s
configuration file. In the file, locate the AGENTCONFIG_FILE variable and set
it to the full-path name of the configuration file as follows:
AGENTCONFIG_FILE=ConfigFile

2. If desired, update your PATH environment variable to include the
ProductDir/bin directory.

3. Ensure that the CWSharedEnv.sh file is sourced from the shell startup script
(such as .cshrc) for your account.

Customizing the startup script: The generic connector manager script calls the
appropriate start_connector.sh script, which is the actual script that manages the
particular connector. Each WebSphere Business Integration adapter includes a
start_connector.sh script. You can modify the start_connector.sh script to
include any of the supported startup options listed in[Appendix D, “Connector|
lstartup options,” on page 125

Note: For information about creating a startup files for connectors, see Connector
Development Guide for C++ or Connector Development Guide for Java.

Defining message flows

96

When a WebSphere Business Integration adapter uses a message broker as its
integration broker, it uses WebSphere MQ message flows to process and route
business object messages representing data or requests being sent by business
applications to one another. A single message flow, defined for each queue,
processes all messages placed on that queue. Using the MQ Integrator Broker
Control Center (for WebSphere MQ Integrator Broker or WebSphere MQ
Integrator) or the Message Brokers Toolkit (for WebSphere Business Integration
Message Broker), you can build message flows from message-processing primitives
to allow processing decisions to be made on either the message header or the
message content. That is, the message flow can specify different processing steps
for each type of message it is expected to handle.

Implementing Adapters with WebSphere Message Brokers

Each business message (sent by the connector framework to the integration broker
or from the integration broker to the connector framework) includes message
header and message descriptor information that identifies the business object the
message represents.

Before you define the message flows for the business integration system, you need
to identify the business objects that will be processed from each queue. You also
need to familiarize yourself with the message descriptor, message header, and
message format for each type of message the message flows will process. Refer to
“Interfaces for message exchange” on page 40| and [Appendix A, “WebSphere MQ)
message formats,” on page 99 for more information.

For detailed information on creating message flows, see your message broker
documentation.

Transaction management

WebSphere message brokers offer distributed transaction support. Message flows
can execute within a globally coordinated transaction, in which messages received
from and sent to WebSphere MQ queues can be coordinated with any database
updates performed during the processing of a message. Message flows can use the
features of WebSphere MQ to act as a Transaction Manager to coordinate database
updates within the WebSphere MQ unit of work. See your message broker’s
administration documentation for further information about implementing
transaction management in your business integration system.

Using Visual Test Connector to verify your interfaces

Visual Test Connector simulates the activities of a connector to allow you to test
your integration components without the complexity of running an actual
connector. You can use Visual Test Connector to verify that you have configured
your source and destination connectors correctly and that you have properly
specified their supported business object definitions. See [Appendix G, “Using|
[Visual Test Connector,” on page 159 for detailed information on how to use Visual
Test Connector.

Chapter 8. Configuring the WebSphere business integration system 97

98 Implementing Adapters with WebSphere Message Brokers

Appendix A. WebSphere MQ message formats

Each message contains three components: a message descriptor (MQMD), a
message header (MQRFH2), and a message body.

Message descriptor

The WebSphere MQ message descriptor (MQMD) contains the message ID and
includes information needed for processing the message.

Message header

The MQRFH?2 message header carries J]MS-specific data that is associated with the
message content. It can also carry additional information that is not directly
associated with JMS. The message header contains the following folders:

* The <mcd> folders contains properties that describe the “shape” or “format” of
the message.

* The <jms> folder is used to transport JMS header fields, and JMS properties that
cannot be fully expressed in the MQMD. This folder is always present in the
messages implemented using JMS, which are sent by the connector framework.
However, in the business integration system, this folder is irrelevant and is
omitted by the WebSphere message broker when sending messages to the
connector framework.

¢ The <usr> folder is used to transport any application-defined properties
associated with the message. This folder is only present if the application has set
some application-defined properties. In the business integration system, this
folder is used to send return status information in a response message. The
tables below identify the types of messages that require this folder.

Message body

The message body is formatted as specified by the XML schema specified for the
message. In order for the data handler to find and use the correct XML schema for
formatting a message, the following three names must be the same:

e The name of the XML schema stored in the connector’s repository

¢ The name of the XML schema imported into a WebSphere message broker’s
message repository and saved as a message set definition.

* The value of messagetype in the message’s MQRFH?2 message header.
The message formats and the settings for particular properties for the different

types of messages exchanged by the connector framework and WebSphere MQ
Integrator are listed in the tables below.

© Copyright IBM Corp. 2002, 2004 99

100

Table 15. Format and property settings of event delivery messages from the connector
framework to a WebSphere message broker.

MQMD

Contains no relevant information.

RFH2 message header

In the <mcd> folder, the following fields contain information that
identifies the message, its format, and how it needs to be parsed:

* Message domain is set to mrmby default. This specifies that
the integration broker should use the parser specifically for
MRM-managed messages (those that are fully modelled in the
message repository). This setting can be changed to xml by
changing the RHF2MessageDomain standard connector
configuration property. Refer to [Appendix C, “Standard)|
lconfiguration properties for connectors”| for more information.

* Message type identifies the name of the highest-level business
object represented by the message.

* Message set identifies the message set this specific message is
associated with. A separate message set is created for each
type of business object.

* Message format is set to CwXML.

Message body

Contains an XML instance document that conforms to the XML
schema and the imported message broker message set definition
for the business object specified by the message type in the RFH2
header.

Implementing Adapters with WebSphere Message Brokers

Table 16. Format and property settings of request messages from the connector framework
to a WebSphere message broker.

MQMD

Reply-to information is located in two fields: ReplyToQ and
ReplyToQMgr. They contain the queue name and queue
manager name to which the integration broker needs to direct
the response message. In JMS messages, these fields specify the
JMSReplyTo destination on the request message. MessagelD
(JMSMessagelD) contains a unique value, which is copied to the
CorrelID property field on the response message.

RFH2 message header

In the <mcd> folder, the following fields contain information that
identifies the message, its format, and how it needs to be parsed:

* Message domain is set to mrm by default. This specifies that
the integration broker should use the parser specifically for
MRM-managed messages (those that are fully modelled in the
message repository).This setting can be changed to xml by
changing the RHF2MessageDomain standard connector
configuration property. Refer to [Appendix C, “Standard)|
lconfieuration properties for connectors”|' for more information.

* Message type identifies the name of the highest-level business
object represented by the message.

* Message set identifies the message set this specific message is
associated with. A separate message set is created for each
type of business object.

* Message format is set to CwXML.

In the <jms> folder, the Rto (JMSReplyTo) field contains a URI
that encodes the queue name and queue manager name to which
the integration broker needs to direct the response message. See
WebSphere MQ: Using Java for information about how this URI is
specified. The reply-to information in Rto and in
ReplyToQ/ReplyToQMgr in the MQMD are the same.

Message body

Contains an XML instance document that conforms to the XML
schema and the imported message broker message set definition
for the business object specified by the message type in the RFH2
header.

Appendix A. WebSphere MQ message formats 101

102

Table 17. Format and property settings of response messages from a WebSphere message
broker to the connector framework.

MQMD

The CorrelID field contains the message ID of the request to
which the integration broker is responding. For J]MS messages,
this field is used to define JMSCorrelationID.

RFH2 message header

In the <mcd> folder, the following fields contain information that
identifies the message, its format, and how it needs to be parsed:

* Message domain is set to mrm by default. This specifies that
the integration broker should use the parser specifically for
MRM-managed messages (those that are fully modelled in the
message repository). This setting can be changed to xml by
changing the RHF2MessageDomain standard connector

configuration property. Refer to '|Appendix C, “Standard|
onfiguration properties for connectors”[' for more information.
* Message type identifies the name of the highest-level business
object represented by the message.

* Message set identifies the message set this specific message is
associated with. A separate message set is created for each
type of business object.

* Message format is set to CwXML.

In the <usr> folder, the following fields contain return status
information:

* Status field contains a string with return status information.

Possible string values are:

-1: The requested operation failed.
0: The requested operation succeeded.
1: The requested operation succeeded. The application

has returned a changed business object.

* Description field - When status is set to -1, it contains an
extended error string with the message sent by the integration
broker.

Message body

Contains an XML instance document that conforms to the XML
schema and the imported message broker message set definition
for the business object specified by the message type in the RFH2
header.

Implementing Adapters with WebSphere Message Brokers

Table 18. Format and property settings for request messages sent from a WebSphere
message broker to the connector framework.

MQMD

Reply-to information is located in two fields: ReplyToQ and
ReplyToQMgr. They contains the queue name and queue
manager name to which the integration broker needs to direct
the response message. In JMS messages, these fields specify the
JMSReplyTo destination on the request message. If the ReplyToQ
and ReplyToQMgr fields are left blank, the connector framework
is not expected to provide a response. If a response is required,
messages can also specify reply-to information in the Rto
property field of the message header. MessagelD (JMSMessagelD)
contains a unique value, which is copied to the CorrellD
property field on the response message.

RFH2 message header

In the <mcd> folder, the following fields contain information that
identifies the message, its format, and how it needs to be parsed:

* Message domain is set to mrm. This specifies that the
integration broker should use the parser specifically for
MRM-managed messages (those that are fully modelled in the
message repository).This setting can be changed to xml by
changing the RHF2MessageDomain standard connector
configuration property. Refer to [Appendix C, “Standard)|
lconfiguration properties for connectors”| for more information.

* Message type identifies the name of the highest-level business
object represented by the message.
* Message set identifies the message set this specific message is

associated with. A separate message set is created for each
type of business object.

* Message format is set to CwXML.

In the <jms> folder, the Rto (JMSReplyTo) property field can
optionally contain the queue name and queue manager name to
which the connector framework needs to direct the response
message.

Message body

Contains an XML instance document that conforms to the XML
schema and the imported message broker message set definition
for the business object specified by the message type in the RFH2
header.

Appendix A. WebSphere MQ message formats 103

104

Table 19. Format and property settings for response messages sent from the connector
framework to a WebSphere message broker.

MQMD

The CorrelID property field contains the message ID of the
request to which the connector framework is responding.

RFH2 message header

In the <mcd> folder, the following fields contain information that
identifies the message, its format, and how it needs to be parsed:

* Message domain is set to mrm. This specifies that the
integration broker should use the parser specifically for
MRM-managed messages (those that are fully modelled in the
message repository).This setting can be changed to xml by
changing the RHF2MessageDomain standard connector
configuration property. Refer to [Appendix C, “Standard)
lconfiguration properties for connectors”|' for more information.

* Message type identifies the name of the highest-level business
object represented by the message.

* Message set identifies the message set this specific message is
associated with. A separate message set is created for each
type of business object.

* Message format is set to CwXML.

In the <usr> folder, the following fields contain return status
information:

* Status field contains a string with a return status indicator.

Possible string values are:

-1: The requested operation failed.
0: The requested operation succeeded.
1: The requested operation succeeded. The application

has returned a changed business object.

* Description property field - When status is set to -1, it contains
an extended error string with the message sent by the
connector framework.

Message body

Contains an XML instance document that conforms to the XML
schema and the imported message broker message set definition
for the business object specified by the message type in the RFH2
header.

Table 20. Format and property settings for administrative messages sent from the connector
framework to a WebSphere message broker.

MQMD

Contains no relevant information.

RFH2 message header

In the <mcd> folder, the following fields contain information that
identifies the message, its format, and how it needs to be parsed:

* Message domain is set to xml to indicate that the message
should be parsed by the WebSphere message broker’s generic
XML parser.

Message body

See [Appendix D, “Connector startup options,” on page 125 for
information about message body content.

Implementing Adapters with WebSphere Message Brokers

Table 21. Format and property settings for administrative messages sent from a WebSphere
message broker to the connector framework

MQMD If the administrative message is Stop Connector, the Format
property is set to: MQC.MQFMT_STRING and the Expiry
(JMSExpiration) property field is set to one minute.

Message body See [Appendix D, “Connector startup options,” on page 125 for
information about message body content.

Appendix A. WebSphere MQ message formats 105

106 Implementing Adapters with WebSphere Message Brokers

Appendix B. WebSphere MQ message body formats for
administrative messages

This appendix includes sample message body contents for administrative messages
exchanged between the connector framework and WebSphere message brokers.

Messages from the connector framework to WebSphere message
brokers

The connector framework sends the integration broker a message with the
following message body contents if an error requires the connector to shut down:

<?xml version="1.0" encoding="UTF-8"?>

<CwConnectorCommand

<CwConnectorCommand
xmIns="http://www.ibm.com/websphere/crossworlds/2002/CwConnectorCommand"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/websphere/crossworlds/2002/

CwConnectorCommand file:CwConnectorCommand.xsd">

<Source>Connectorl</Source>
<Destination>IntegrationBroker</Destination>
<Command>Shutdown</Command>

</CwConnectorCommand>

Messages from WebSphere message brokers to the connector
framework

The integration broker sends the connector framework a message with the
following message body contents to initiate a shutdown of the connector:

<?xml version="1.0" encoding="UTF-8"?>

<CwConnectorCommand
xmins="http://www.ibm.com/websphere/crossworlds/2002/CwConnectorCommand"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/websphere/crossworlds/2002/

CwConnectorCommand file:CwConnectorCommand.xsd">

<Source>IntegrationBroker</Source>
<Destination>Adapter</Destination>
<Command>Shutdown</Command>

</CwConnectorCommand>

© Copyright IBM Corp. 2002, 2004 107

108 Implementing Adapters with WebSphere Message Brokers

Appendix C. Standard configuration properties for connectors

This appendix describes the standard configuration properties for the connector
component of WebSphere Business Integration adapters. The information covers
connectors running on the following integration brokers:

* WebSphere InterChange Server (ICS)

* WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere
Business Integration Message Broker, collectively referred to as the WebSphere
Message Brokers (WMQI).

* WebSphere Application Server (WAS)

Not every connector makes use of all these standard properties. When you select
an integration broker from Connector Configurator, you will see a list of the
standard properties that you need to configure for your adapter running with that
broker.

For information about properties specific to the connector, see the relevant adapter
user guide.

Note: In this document, backslashes (\) are used as the convention for directory
paths. For UNIX installations, substitute slashes (/) for backslashes and
follow the conventions for each operating system.

New and deleted properties

These standard properties have been added in this release.

New properties
* XMLNameSpaceFormat

Deleted properties
* RestartCount

Configuring standard connector properties

Adapter connectors have two types of configuration properties:
+ Standard configuration properties
* Connector-specific configuration properties

This section describes the standard configuration properties. For information on
configuration properties specific to a connector, see its adapter user guide.

Using Connector Configurator

You configure connector properties from Connector Configurator, which you access
from System Manager. For more information on using Connector Configurator,
refer to the Connector Configurator appendix.

Note: Connector Configurator and System Manager run only on the Windows

system. If you are running the connector on a UNIX system, you must have
a Windows machine with these tools installed. To set connector properties

© Copyright IBM Corp. 2002, 2004 109

for a connector that runs on UNIX, you must start up System Manager on
the Windows machine, connect to the UNIX integration broker, and bring up
Connector Configurator for the connector.

Setting and updating property values

The default length of a property field is 255 characters.

The connector uses the following order to determine a property’s value (where the
highest number overrides other values):

1. Default

2. Repository (only if WebSphere InterChange Server is the integration broker)
3. Local configuration file

4. Command line

A connector obtains its configuration values at startup. If you change the value of
one or more connector properties during a run-time session, the property’s Update
Method determines how the change takes effect. There are four different update
methods for standard connector properties:
* Dynamic
The change takes effect immediately after it is saved in System Manager. If the
connector is working in stand-alone mode (independently of System Manager),
for example with one of the WebSphere message brokers, you can only change
properties through the configuration file. In this case, a dynamic update is not
possible.

e Component restart
The change takes effect only after the connector is stopped and then restarted in
System Manager. You do not need to stop and restart the application-specific
component or the integration broker.

* Server restart
The change takes effect only after you stop and restart the application-specific
component and the integration broker.

* Agent restart (ICS only)
The change takes effect only after you stop and restart the application-specific
component.

To determine how a specific property is updated, refer to the Update Method
column in the Connector Configurator window, or see the Update Method column
in the Property Summary table below.

Summary of standard properties

110

[Table 22 on page 111| provides a quick reference to the standard connector
configuration properties. Not all the connectors make use of all these properties,
and property settings may differ from integration broker to integration broker, as
standard property dependencies are based on RepositoryDirectory.

You must set the values of some of these properties before running the connector.
See the following section for an explanation of each property.

Implementing Adapters with WebSphere Message Brokers

Table 22. Summary of standard configuration properties

Update
Property name Possible values Default value method Notes
|AdminInQueud| Valid JMS queue name CONNECTORNAME /ADMININQUEUE | Component | Delivery
restart Transport is
JMS
[AdminOutQueue] Valid JMS queue name | CONNECTORNAME/ADMINOUTQUEUE | Component | Delivery
restart Transport is
JMS
|AgentConnections| 1-4 1 Component | Delivery
restart Transport is
MQ or IDL:
Repository
directory
is
<REMOTE>
|AgentTraceLevel| 0-5 0 Dynamic
|ApplicationName] Application name Value specified for the Component
connector application name restart
IIBrokerTXEgI ICS, WMQI, WAS
IICharacterEncodingI ascii7, ascii8, SJIS, ascii7 Component
Cp949, GBK, Big5h, restart
Cp297, Cp273, Cp280,
Cp284, Cp037, Cp437
Note: This is a subset
of supported
values.
|ConcurrentEventTriggeredFlows| 1to 32,767 1 Component | Repository
restart directory
is
<REMOTE>
|ContainerManagedEvents| No value or JMS No value Component | Delivery
restart Transport is
JMS
|ControllerStoreAndForwardModed | true or false True Dynamic Repository
directory
is
<REMOTE>
|ControllerTraceLevel| 0-5 0 Dynamic Repository
directory
is
<REMOTE>
CONNECTORNAME/DELIVERYQUEUE | Component |JMS transport
| restart only
DeliveryTranspor MQ, IDL, or JMS JMS Component | If
restart Repository
directory
is local, then
value is
JMS only
[DuplicateEventElimination] True or False False Component | JMS transport
restart only: Container
Managed Events
must be
<NONE>
[FaultQueue] CONNECTORNAME / FAULTQUEUE Component [JMS
restart transport
only

Appendix C. Standard configuration properties for connectors

111

Table 22. Summary of standard configuration properties (continued)

Update
Property name Possible values Default value method Notes
Ijms.FactoryClassNamd CxCommon.Messaging.jms | CxCommon.Messaging. Component |JMS transport
.IBMMQSeriesFactory or | jms.IBMMQSeriesFactory restart only
CxCommon.Messaging
.Jjms.SonicMQFactory
or any Java class name
Ijms.MessageBrokerNamd If FactoryClassName is crossworlds.queue.manager Component |JMS transport
IBM, use restart only
crossworlds.queue.
manager.
If FactoryClassName
is Sonic, use
localhost:2506.
Ijms.NumConcurrentRequests| Positive integer 10 Component |JMS transport
restart only
Any valid password Component |JMS transport
restart only
I Any valid name Component |JMS transport
restart only
Heap size in megabytes 128m Component | Repository
restart directory
is
<REMOTE>
[[vmMaxNativeStackSize| Size of stack in kilobytes | 128k Component | Repository
restart directory
is
<REMOTE>
Heap size in megabytes Im Component | Repository
restart directory
is
<REMOTE>
|ListenerConcurrencv| 1- 100 1 Component | Delivery
restart Transport must
be MQ
Locale) en_US, ja_JP, ko_KR, en_US Component
zh_CN, zh_TW, fr_FR, restart
de_DE,
it_IT, es_ES, pt_BR
Note: This is a
subset of the
supported
locales.
|Log AtInterchangeEnd| True or False False Component Repository
restart Directory must
be <REMOTE>
1-2147483647 2147483647 Dynamic Repository
Directory must
be <REMOTE>
MessageFileName Path or filename InterchangeSystem. txt Component
restart
Any valid queue name CONNECTORNAME /MONITORQUEUE Component |JMS transport
restart only:
DuplicateEvent
Elimination
must be True
|OADAut0RestartAgent| True or False False Dynamic Repository

Directory must
be <REMOTE>

112 Implementing Adapters with WebSphere Message Brokers

Table 22. Summary of standard configuration properties (continued)

Update
Property name Possible values Default value method Notes
[OADMaxNumRetry| A positive number 1000 Dynamic Repository
Directory must
be <REMOTE>
|OADRetryTimelntervall| A positive number in 10 Dynamic Repository
minutes Directory must
be <REMOTE>
|PollEnd Time| HH:MM HH MM Component
restart
[PollFrequency| A positive integer in 16000 Dynamic
milliseconds
no (to disable polling)
key (to poll only when
the letter p is entered in
the connector’s
Command Prompt
window)
[PollQuantity]| 1-500 1 Agent JMS transport
restart only:
Container
Managed
Events is
specified
[PollStartTime| HH:MM(HH is 0-23, MM is | HH:MM Component
0-59) restart
[RepositoryDirectory| Location of metadata Agent For ICS: set to
repository restart <REMOTE>
For WebSphere
MQ message
brokers and
WAS: set to
C:\crossworlds\
repository
IRequestQueue] Valid JMS queue name CONNECTORNAME /REQUESTQUEUE Component | Delivery
restart Transport is
JMS
IResponseQueud Valid JMS queue name CONNECTORNAME /RESPONSEQUEUE Component | Delivery
restart Transport is
JMS:
required only
if Repository
directory is
<REMOTE>
[RestartRetryCount| 0-99 3 Dynamic
[RestartRetryIntervall A sensible positive 1 Dynamic
value in minutes:
1 - 2147483547
IRHF2MessageDomain| mrm, xml mrm Component | Only if Delivery
restart Transport is JMS

and WireFormat
is CwXML.

Appendix C. Standard configuration properties for connectors

113

Table 22. Summary of standard configuration properties (continued)

Update
Property name Possible values Default value method Notes
Valid WebSphere MQ CONNECTORNAME / SOURCEQUEUE Agent Only if
name restart Delivery
Transport is
JMS and
Container
Managed
Events is
specified
[SynchronousRequestQueud CONNECTORNAME/ Component | Delivery
SYNCHRONOUSREQUESTQUEUE restart Transport is
JMS
|SynchronousRequestTimeout] 0 - any number (millisecs) | 0 Component | Delivery
restart Transport is
JMS
|SynchronousResponseQueud| CONNECTORNAME/ Component | Delivery
SYNCHRONOUSRESPONSEQUEUE restart Transport is
JMS
CwXML, CwBO CwXML Agent CwXML if
restart Repository
Directory is
not <REMOTE>:
CwBO if
Repository
Directory is
<REMOTE>
[WsifSynchronousRequest Timeout| |0 - any number 0 Component | WAS only
(millisecs) restart
IXMLNameSpaceFormat| short, long short Agent WebSphere MQ
restart message
brokers and
WAS only

Standard configuration properties

This section lists and defines

properties.

AdmininQueue

The queue that is used by the integration broker to send administrative messages
to the connector.

each of the standard connector configuration

The default value is CONNECTORNAME /ADMININQUEUE.

AdminOutQueue

The queue that is used by the connector to send administrative messages to the
integration broker.

The default value is CONNECTORNAME /ADMINOUTQUEUE.

AgentConnections

Applicable only if RepositoryDirectory is <REMOTE>.

The AgentConnections property controls the number of ORB connections opened
by orb.init[].

114

Implementing Adapters with WebSphere Message Brokers

By default, the value of this property is set to 1. There is no need to change this
default.

AgentTraceLevel

Level of trace messages for the application-specific component. The default is 0.
The connector delivers all trace messages applicable at the tracing level set or
lower.

ApplicationName

Name that uniquely identifies the connector’s application. This name is used by
the system administrator to monitor the WebSphere business integration system
environment. This property must have a value before you can run the connector.

BrokerType

Identifies the integration broker type that you are using. The options are ICS,
WebSphere message brokers (WMQI, WMQIB or WBIMB) or WAS.

CharacterEncoding

Specifies the character code set used to map from a character (such as a letter of
the alphabet, a numeric representation, or a punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. A C++ connector currently
uses the value ascii7 for this property.

By default, a subset of supported character encodings only is displayed in the drop
list. To add other supported values to the drop list, you must manually modify the
\Data\Std\stdConnProps.xml file in the product directory. For more information,
see the appendix on Connector Configurator.

ConcurrentEventTriggeredFlows
Applicable only if RepositoryDirectory is <REMOTE>.

Determines how many business objects can be concurrently processed by the
connector for event delivery. Set the value of this attribute to the number of
business objects you want concurrently mapped and delivered. For example, set
the value of this property to 5 to cause five business objects to be concurrently
processed. The default value is 1.

Setting this property to a value greater than 1 allows a connector for a source
application to map multiple event business objects at the same time and deliver
them to multiple collaboration instances simultaneously. This speeds delivery of
business objects to the integration broker, particularly if the business objects use
complex maps. Increasing the arrival rate of business objects to collaborations can
improve overall performance in the system.

To implement concurrent processing for an entire flow (from a source application
to a destination application), you must:

* Configure the collaboration to use multiple threads by setting its Maximum number
of concurrent events property high enough to use multiple threads.

* Ensure that the destination application’s application-specific component can
process requests concurrently. That is, it must be multi-threaded, or be able to
use connector agent parallelism and be configured for multiple processes. Set the
Parallel Process Degree configuration property to a value greater than 1.

Appendix C. Standard configuration properties for connectors 115

The ConcurrentEventTriggeredFlows property has no effect on connector polling,
which is single-threaded and performed serially.

ContainerManagedEvents

This property allows a JMS-enabled connector with a JMS event store to provide
guaranteed event delivery, in which an event is removed from the source queue
and placed on the destination queue as a single JMS transaction.

The default value is No value.

When ContainerManagedEvents is set to JMS, you must configure the following
properties to enable guaranteed event delivery:

* PollQuantity = 1 to 500
* SourceQueue = CONNECTORNAME/SOURCEQUEUE

You must also configure a data handler with the MimeType, DHClass, and
DataHandlerConfigMOName (optional) properties. To set those values, use the
Data Handler tab in Connector Configurator. The fields for the values under the
Data Handler tab will be displayed only if you have set ContainerManagedEvents to
JMS.

Note: When ContainerManagedEvents is set to JMS, the connector does not call its
poll1ForEvents() method, thereby disabling that method’s functionality.

This property only appears if the DeliveryTransport property is set to the value
JMS.

ControllerStoreAndForwardMode
Applicable only if RepositoryDirectory is <REMOTE>.

Sets the behavior of the connector controller after it detects that the destination
application-specific component is unavailable.

If this property is set to true and the destination application-specific component is
unavailable when an event reaches ICS, the connector controller blocks the request
to the application-specific component. When the application-specific component
becomes operational, the controller forwards the request to it.

However, if the destination application’s application-specific component becomes
unavailable after the connector controller forwards a service call request to it, the
connector controller fails the request.

If this property is set to false, the connector controller begins failing all service
call requests as soon as it detects that the destination application-specific

component is unavailable.

The default is true.

ControllerTraceLevel
Applicable only if RepositoryDirectory is <REMOTE>.

Level of trace messages for the connector controller. The default is 0.

116 Implementing Adapters with WebSphere Message Brokers

DeliveryQueue
Applicable only if DeliveryTransport is JMS.

The queue that is used by the connector to send business objects to the integration
broker.

The default value is CONNECTORNAME/DELIVERYQUEUE.

DeliveryTransport

Specifies the transport mechanism for the delivery of events. Possible values are MQ
for WebSphere MQ, IDL for CORBA IIOP, or JMS for Java Messaging Service.

* If ICS is the broker type, the value of the DeliveryTransport property can be
MQ, IDL, or JMS, and the default is IDL.

* If the RepositoryDirectory is a local directory, the value may only be JMS.

The connector sends service call requests and administrative messages over
CORBA IIOP if the value configured for the DeliveryTransport property is MQ or
IDL.

WebSphere MQ and IDL

Use WebSphere MQ rather than IDL for event delivery transport, unless you must
have only one product. WebSphere MQ offers the following advantages over IDL:

* Asynchronous communication:
WebSphere MQ allows the application-specific component to poll and
persistently store events even when the server is not available.

* Server side performance:
WebSphere MQ provides faster performance on the server side. In optimized
mode, WebSphere MQ stores only the pointer to an event in the repository
database, while the actual event remains in the WebSphere MQ queue. This
saves having to write potentially large events to the repository database.

* Agent side performance:
WebSphere MQ provides faster performance on the application-specific
component side. Using WebSphere MQ), the connector’s polling thread picks up
an event, places it in the connector’s queue, then picks up the next event. This is
faster than IDL, which requires the connector’s polling thread to pick up an
event, go over the network into the server process, store the event persistently in
the repository database, then pick up the next event.

JMS

Enables communication between the connector and client connector framework
using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as
jms.MessageBrokerName, jms.FactoryClassName, jms.Password, and jms.UserName,
appear in Connector Configurator. The first two of these properties are required for
this transport.

Important: There may be a memory limitation if you use the JMS transport
mechanism for a connector in the following environment:

* AIX5.0
* WebSphere MQ 5.3.0.1
* When ICS is the integration broker

Appendix C. Standard configuration properties for connectors 117

118

In this environment, you may experience difficulty starting both the connector
controller (on the server side) and the connector (on the client side) due to memory
use within the WebSphere MQ client. If your installation uses less than 768M of
process heap size, IBM recommends that you set:

e The LDR_CNTRL environment variable in the CWSharedEnv.sh script.

This script resides in the \bin directory below the product directory. With a text
editor, add the following line as the first line in the CWSharedEnv.sh script:

export LDR_CNTRL=MAXDATA=0x30000000

This line restricts heap memory usage to a maximum of 768 MB (3 segments *
256 MB). If the process memory grows more than this limit, page swapping can
occur, which can adversely affect the performance of your system.

* The IPCCBaseAddress property to a value of 11 or 12. For more information on
this property, see the System Installation Guide for UNIX.

DuplicateEventElimination

When you set this property to true, a JMS-enabled connector can ensure that
duplicate events are not delivered to the delivery queue. To use this feature, the
connector must have a unique event identifier set as the business object’s
ObjectEventld attribute in the application-specific code. This is done during
connector development.

This property can also be set to false.

Note: When DuplicateEventETlimination is set to true, you must also configure
the MonitorQueue property to enable guaranteed event delivery.

FaultQueue

If the connector experiences an error while processing a message then the
connector moves the message to the queue specified in this property, along with a
status indicator and a description of the problem.

The default value is CONNECTORNAME/FAULTQUEUE.

JvmMaxHeapSize

The maximum heap size for the agent (in megabytes). This property is applicable
only if the RepositoryDirectory value is <REMOTE>.

The default value is 128m.

JvmMaxNativeStackSize

The maximum native stack size for the agent (in kilobytes). This property is
applicable only if the RepositoryDirectory value is <REMOTE>.

The default value is 128Kk.

JvmMinHeapSize

The minimum heap size for the agent (in megabytes). This property is applicable
only if the RepositoryDirectory value is <REMOTE>.

The default value is 1m.

Implementing Adapters with WebSphere Message Brokers

jms.FactoryClassName

Specifies the class name to instantiate for a JMS provider. You must set this
connector property when you choose JMS as your delivery transport mechanism
(DeliveryTransport).

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.MessageBrokerName

Specifies the broker name to use for the JMS provider. You must set this connector
property when you choose JMS as your delivery transport mechanism
(DeliveryTransport).

The default is crossworlds.queue.manager.

jms.NumConcurrentRequests

Specifies the maximum number of concurrent service call requests that can be sent
to a connector at the same time. Once that maximum is reached, new service calls
block and wait for another request to complete before proceeding.

The default value is 10.

jms.Password
Specifies the password for the JMS provider. A value for this property is optional.

There is no default.

jms.UserName

Specifies the user name for the JMS provider. A value for this property is optional.

There is no default.

ListenerConcurrency

This property supports multi-threading in MQ Listener when ICS is the integration
broker. It enables batch writing of multiple events to the database, thus improving
system performance. The default value is 1.

This property applies only to connectors using MQ transport. The
DeliveryTransport property must be set to MQ.

Locale

Specifies the language code, country or territory, and, optionally, the associated
character code set. The value of this property determines such cultural conventions
as collation and sort order of data, date and time formats, and the symbols used in
monetary specifications.

A locale name has the following format:
Ul _TT.codeset

where:

Il a two-character language code (usually in lower
case)

Appendix C. Standard configuration properties for connectors 119

T a two-letter country or territory code (usually in
upper case)

codeset the name of the associated character code set; this
portion of the name is often optional.

By default, only a subset of supported locales appears in the drop list. To add
other supported values to the drop list, you must manually modify the
\Data\Std\stdConnProps.xml file in the product directory. For more information,
see the appendix on Connector Configurator.

The default value is en_US. If the connector has not been globalized, the only valid
value for this property is en_US. To determine whether a specific connector has
been globalized, see the connector version list on these websites:

http:/ /www.ibm.com/software/websphere/wbiadapters/infocenter, or
http:/ /www.ibm.com/websphere/integration/wicserver/infocenter

LogAtinterchangeEnd
Applicable only if RespositoryDirectory is <REMOTE>.

Specifies whether to log errors to the integration broker’s log destination. Logging
to the broker’s log destination also turns on e-mail notification, which generates
e-mail messages for the MESSAGE_RECIPIENT specified in the InterchangeSystem.cfg
file when errors or fatal errors occur.

For example, when a connector loses its connection to its application, if
LogAtInterChangeEnd is set to true, an e-mail message is sent to the specified
message recipient. The default is false.

MaxEventCapacity

The maximum number of events in the controller buffer. This property is used by
flow control and is applicable only if the value of the RepositoryDirectory
property is <REMOTE>.

The value can be a positive integer between 1 and 2147483647. The default value is
2147483647.

MessageFileName

The name of the connector message file. The standard location for the message file
is \connectors\messages. Specify the message filename in an absolute path if the
message file is not located in the standard location.

If a connector message file does not exist, the connector uses
InterchangeSystem.txt as the message file. This file is located in the product
directory.

Note: To determine whether a specific connector has its own message file, see the
individual adapter user guide.

MonitorQueue

The logical queue that the connector uses to monitor duplicate events. It is used
only if the DeliveryTransport property value is JMS and
DuplicateEventElimination is set to TRUE.

120 Implementing Adapters with WebSphere Message Brokers

The default value is CONNECTORNAME/MONITORQUEUE

OADAutoRestartAgent
Valid only when the RepositoryDirectory is <REMOTE>.

Specifies whether the connector uses the automatic and remote restart feature. This
feature uses the MQ-triggered Object Activation Daemon (OAD) to restart the
connector after an abnormal shutdown, or to start a remote connector from System
Monitor.

This property must be set to trueto enable the automatic and remote restart
feature. For information on how to configure the MQ-triggered OAD feature. see
the Installation Guide for Windows or for UNIX.

The default value is false.

OADMaxNumRetry
Valid only when the RepositoryDirectory is <REMOTE>.

Specifies the maximum number of times that the MQ-triggered OAD automatically
attempts to restart the connector after an abnormal shutdown. The
OADAutoRestartAgent property must be set to true for this property to take effect.

The default value is 1000.

OADRetryTimelnterval
Valid only when the RepositoryDirectory is <REMOTE>.

Specifies the number of minutes in the retry-time interval for the MQ-triggered
OAD. If the connector agent does not restart within this retry-time interval, the
connector controller asks the OAD to restart the connector agent again. The OAD
repeats this retry process as many times as specified by the 0ADMaxNumRetry
property. The OADAutoRestartAgent property must be set to true for this property
to take effect.

The default is 10.

PollIEndTime

Time to stop polling the event queue. The format is HH:MM, where HH represents
0-23 hours, and MM represents 0-59 seconds.

You must provide a valid value for this property. The default value is HH:MM, but
must be changed.

PollFrequency

The amount of time between polling actions. Set Pol1Frequency to one of the
following values:

¢ The number of milliseconds between polling actions.

* The word key, which causes the connector to poll only when you type the letter
p in the connector’s Command Prompt window. Enter the word in lowercase.

* The word no, which causes the connector not to poll. Enter the word in
lowercase.

Appendix C. Standard configuration properties for connectors 121

122

The default is 10000.

Important: Some connectors have restrictions on the use of this property. To
determine whether a specific connector does, see the installing and
configuring chapter of its adapter guide.

PollQuantity

Designates the number of items from the application that the connector should poll
for. If the adapter has a connector-specific property for setting the poll quantity, the
value set in the connector-specific property will override the standard property
value.

PollStartTime

The time to start polling the event queue. The format is HH: MM, where HH represents
0-23 hours, and MM represents 0-59 seconds.

You must provide a valid value for this property. The default value is HH:MM, but
must be changed.

RequestQueue

The queue that is used by the integration broker to send business objects to the
connector.

The default value is CONNECTOR/REQUESTQUEUE.

RepositoryDirectory

The location of the repository from which the connector reads the XML schema
documents that store the meta-data for business object definitions.

When the integration broker is ICS, this value must be set to <REMOTE> because
the connector obtains this information from the InterChange Server repository.

When the integration broker is a WebSphere message broker or WAS, this value
must be set to <local directory>.

ResponseQueue

Applicable only if DeliveryTransport is JMS and required only if
RepositoryDirectory is <REMOTE>.

Designates the JMS response queue, which delivers a response message from the
connector framework to the integration broker. When the integration broker is ICS,
the server sends the request and waits for a response message in the JMS response
queue.

RestartRetryCount

Specifies the number of times the connector attempts to restart itself. When used
for a parallel connector, specifies the number of times the master connector
application-specific component attempts to restart the slave connector
application-specific component.

The default is 3.

Implementing Adapters with WebSphere Message Brokers

RestartRetrylnterval

Specifies the interval in minutes at which the connector attempts to restart itself.
When used for a parallel connector, specifies the interval at which the master
connector application-specific component attempts to restart the slave connector
application-specific component. Possible values ranges from 1 to 2147483647.

The default is 1.

RHF2MessageDomain
WebSphere message brokers and WAS only.

This property allows you to configure the value of the field domain name in the
JMS header. When data is sent to WMQI over JMS transport, the adapter
framework writes JMS header information, with a domain name and a fixed value
of mrm. A connfigurable domain name enables users to track how the WMQI broker
processes the message data.

A sample header would look like this:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>
Retek _POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

The default value is mrm, but it may also be set to xml. This property only appears
when DeliveryTransport is set to JMSand WireFormat is set to CwXML.

SourceQueue

Applicable only if DeliveryTransport is JMS and ContainerManagedEvents is
specified.

Designates the JMS source queue for the connector framework in support of
guaranteed event delivery for JMS-enabled connectors that use a JMS event store.
For further information, see [’ContainerManagedEvents” on page 116/

The default value is CONNECTOR/SOURCEQUEUE.

SynchronousRequestQueue
Applicable only if DeliveryTransport is JMS.

Delivers request messages that require a synchronous response from the connector
framework to the broker. This queue is necessary only if the connector uses
synchronous execution. With synchronous execution, the connector framework
sends a message to the SynchronousRequestQueue and waits for a response back
from the broker on the SynchronousResponseQueue. The response message sent to
the connector bears a correlation ID that matches the ID of the original message.

The default is CONNECTORNAME/SYNCHRONOUSREQUESTQUEUE

SynchronousResponseQueue
Applicable only if DeTiveryTransport is JMS.

Delivers response messages sent in reply to a synchronous request from the broker

to the connector framework. This queue is necessary only if the connector uses
synchronous execution.

Appendix C. Standard configuration properties for connectors 123

124

The default is CONNECTORNAME/SYNCHRONOUSRESPONSEQUEUE

SynchronousRequestTimeout
Applicable only if DeTiveryTransport is JMS.

Specifies the time in minutes that the connector waits for a response to a
synchronous request. If the response is not received within the specified time, then
the connector moves the original synchronous request message into the fault queue
along with an error message.

The default value is 0.

WireFormat
Message format on the transport.
* If the RepositoryDirectory is a local directory, the setting is CwXML.
* If the value of RepositoryDirectory is <REMOTE>, the setting isCwBO.

WsifSynchronousRequest Timeout
WAS integration broker only.
Specifies the time in minutes that the connector waits for a response to a
synchronous request. If the response is not received within the specified, time then
the connector moves the original synchronous request message into the fault queue

along with an error message.

The default value is 0.

XMLNameSpaceFormat
WebSphere message brokers and WAS integration broker only.

A strong property that allows the user to specify short and long name spaces in
the XML format of business object definitions.

The default value is short.

Implementing Adapters with WebSphere Message Brokers

Appendix D. Connector startup options

The tables below list the command-line options you can specify when starting a
connector from Windows or UNIX. Some of these options override selected
property settings in the connector’s configuration file.

Note: Information about the structure and development of startup scripts is
available in the Connector Development Guide for C++ or Connector
Development Guide for Java.

Windows

You can modify the startup for a connector by editing the following to use the
connector startup options listed in [Table 23]

* The connector’s shortcut properties.
* The connector’s startup file, usually start_connName .bat.

Note: You can determine if your connector uses this file by looking in the
directory ProductDir/connectors. If a script named start_connName
(where connName is the name of your connector) is present, this is the file
to edit.

* The connector’s startup file, start_connector.bat file (only for connectors
written in C++ that do not use a start_connName .bat startup file.).

Note: The -c option is required to start the connector. If you use the shortcut to
start the connector, the shortcut properties must include this option in the
target field. Similarly, if you start the connector using start_connector.bat
or start_connName .bat, the command line must include this option.

Table 23. Command-line connector startup options for Windows.

Option Description

The full path name of the configuration file to be used during

-c configFile
startup. This option is required.

The amount of time between polling actions. Possible values for

-f pollFrequency
poll1Frequency are:
¢ The number of milliseconds between polling actions.

* key: Causes the connector to poll only when you type the letter p
in the connector’s Command Prompt window. Enter the word in
lowercase.

* no: Causes the connector not to poll. Enter the word in lowercase.

The default is 10000.

Specifies that the connector is written in Java. This option is optional
if you specify -1 className.

© Copyright IBM Corp. 2002, 2004 125

Table 23. Command-line connector startup options for Windows. (continued)

Option

Description

-t

Note: The installer has included (or omitted) the -t option in the
shortcut as required for the connector. If you start up a connector
from the command line, the value you specify for -t must be the
same as the -t value specified in the shortcut. Turns on the connector
property, SingleThreadAppCalls. This property guarantees that all
calls the connector framework makes to the application-specific
connector code are with one event-triggered flow. The default value
is false. This property should not be changed from its shipped
value. Each connector has the appropriate setting for this option,
depending on its architecture.

-X connectorProps

Passes application-specific connector properties to the connector. Use
the format prop_name=value for each value you enter.

UNIX

In the UNIX environment, you start a connector by running the
connector_manager_connName script, which is a wrapper for the generic connector
manager script (ProductDir/bin/connector_manager). The generic connector
manager script calls the appropriate start_connName.sh script, which handles the
actual connector management for the connector.

Each WebSphere Business Integration adapter includes a start_connName .sh script.
You can modifi this script to also include any of the supported startup options

listed in|Table 24}.

Table 24. Options for the start_connector.sh script.

Option

Description

-fpoll_freq

The amount of time between polling actions. Possible values
for pol1_freq are:

* The number of milliseconds between polling actions.

* key: Causes the connector to poll only when you type the
letter p in the connector’s Command Prompt window. Enter
the word in lowercase.

* no: Causes the connector not to poll. Enter the word in
lowercase.

The default is 10000. The -f option is valid on the
command-line invocation of connector_manager_connector.
The connector manager script can pass this option to its
associated start_connector.sh script. This option overrides
the poll frequency specified in the connector’s configuration
file.

126 Implementing Adapters with WebSphere Message Brokers

Table 24. Options for the start_connector.sh script. (continued)

Option

Description

-tthreading_type

The threading_type option specifies the threading model.
Note: Only use the -t option when you start a
custom-developed connector. Connectors that are installed
using the WebSphere Business Integration Adapters installer
already have a connector_manager_connector startup script that
specifies (or omits) the required -t option, as required by the
application, on the line that starts up the connector. Possible
values for threading_type are:

* SINGLE_THREADED: only a single thread accesses the
application

e MAIN_SINGLE_THREADED: only the main thread accesses the
application

* MULTI_THREADED: multiple threads can access the application.

The -t option is not valid on the command-line invocation of
connector_manager_connName. Specify it inside the generic
connector_manager script, in the invocation of the
start_connector.sh script.

Appendix D. Connector startup options 127

128 Implementing Adapters with WebSphere Message Brokers

Appendix E. System Manager and the Eclipse Workbench

This Appendix provides a general guide to using features of System Manager and
the Eclipse Workbench of which it is part.

Note: More detailed instructions for using some System Manager features are
included elsewhere in this manual. For information about using Adapter
Monitor and Fault Queue Manager, refer to[“Using Adapter Monitor and|
|Fault Queue Manager” on page 61.|For information on creating a new
project, refer to[’Creating a message broker project” on page 82.|

This chapter contains the following sections:

* |“About System Manager”|
* |“Using System Manager” on page 131]

+ |[“Working with integration component libraries” on page 135|

* [“Working with user projects” on page 136|

* [“Working with components in integration component libraries” on page 141|

+ |[“Working with solutions” on page 144

* [“Exporting components to a package using System Manager” on page 147

+ [“Dependencies and references” on page 148|

+ |“Standard operations available for multiple workbench resources” on page 149|

+ |[“Using Eclipse-based workbenches” on page 150

+ |“Troubleshooting problems connecting to the integration broker in System|
Manager” on page 156

About System Manager

System Manager is a plug-in that runs within the Eclipse-based tooling
frameworks named WebSphere Studio Workbench and WebSphere Studio
Application Developer Integration Edition. This section provides an overview of
the Eclipse framework, WSWB and WSADIE, and of the IBM WebSphere Adapter
tools plug-ins.

About the Eclipse Platform

The Eclipse Platform is an open-source integrated development environment (IDE)
for the creation of tools. It provides tools developers with a development kit and
runtime that enables the developer to write plug-ins that allow the user to work
with a particular type of resource.

IBM has two branded versions of the Eclipse plattorm—WebSphere Studio
WorkBench (WSWB) and WebSphere Studio Application Developer Integration
Edition (WSADIE).

Plug-ins

Plug-ins are the modular extensions that software vendors develop to add
functionality to an Eclipse-based workbench. Plug-ins encapsulate the perspectives,
editors, and views that enable users of the workbench to work with particular
types of resources.

For instance, one plug-in might provide the features of a text editor. Another
plug-in might provide the features of an HTML editor. The System Manager tool

© Copyright IBM Corp. 2002, 2004 129

130

plug-ins provide the features to work with integration components. The benefit of
this plug-in model is that the user has a single tool in which they can work with
many types of resources, rather than using dedicated tools for each type of
resource.

To install a plug-in, you extract one or more compressed archives that represents
the plug-in into the plugins directory within the product directory of your
workbench. The System Manager plug-ins are extracted into the plugins directory
by the installer.

IBM provides the System Manager plug-ins with the WebSphere Business
Integration Adapter framework to work with business integration resources. These
plug-ins are embodied by a number of uncompressed directories in the plugins
directory of your workbench within the com.ibm.btools namespace. Much of the
primary interface you will use in creating integration components—the System
Manager—is encompassed in the contents of the com.ibm.btools.csm plug-in
directory, for instance.

Workbench

The workbench is the collection of perspectives, editors, and views that are active
in your Eclipse-based tooling framework, which are in turn affected by the
collection of plug-ins you have installed and enabled. It is a general term used to
refer to the Eclipse-based interface in which you are working, independent of the
fact that the interface changes depending on how you use it.

Workspace
A workspace is a container for projects. The workspace is a directory in the file
system where, by default, you are prompted to store your projects.

Projects
Projects are user-defined groups of resources, and are ultimately directories in the
file system.

One of your first tasks when developing a business process interface is to define
an integration component library, which is a project that contains the components
you develop. When you create the integration component library you specify the
location in the file system where it is stored (by default this is the workspace
directory). A folder is created in that location with the name you specify for the
integration component library and within the library folder a number of folders is
created for each type of integration component (for instance, there are folders
named BusinessObjects and Connectors).

You also create projects named user projects. User projects are collections of
shortcuts that reference integration components. You must add integration
components to a user project from integration component libraries in order to
deploy components to an integration broker. Besides being required to deploy
components to a server, user projects are designed to allow you to functionally
group components together. An integration component library is a collection of all
components you might need to work with, but a user project is designed to let you
group together the components you are working on for a specific interface.

Resources
Resources are projects, files, and folders that you work with in the workbench.

When you create an integration component, it is stored as a file in the appropriate
folder within the integration component library project. The different types of

Implementing Adapters with WebSphere Message Brokers

integration components are stored with different extensions (for instance,
connectors are stored with extension .con), but they are all stored in XML format.

Perspectives

A perspective is a grouping of editors and views designed to provide a particular
user role with what it requires. For instance, the System Manager perspective
provides views for working with integration component libraries.

Editors

Editors allow you to open, save, and close resources in the workbench.

Views
Views provide information about the resources with which you are working in the
workbench.

System Manager, for example, has the WebSphere Business Integration System
Manager view, which is the view to integration component libraries and user
projects.

About WSWB and WSADIE

WebSphere Studio Workbench (WSWB) is an IBM-branded release of the Eclipse
platform. IBM delivers WSWB with its integration brokers and you can install it
along with the core infrastructure. WSWB is capable of running all the plug-ins
necessary to develop WebSphere Business Integration Adapters integration
components.

WebSphere Studio Application Developer Integration Edition (WSADIE) is an
IBM-branded release of the Eclipse platform, like WSWB, but can also be used to
develop new plug-ins. WSADIE is not delivered with the integration broker
because the ability to create new plug-ins is not required to develop integration
components. If you have it installed, however, then you can use it to run the
required System Manager and Integrated Test Environment plug-ins.

About System Manager

System Manager is the perspective in which you work with the integration
components and server instances in a WebSphere Business Integration Adapters
business integration system. You use System Manager primarily for the following
tasks:

* Launching other tools in the WebSphere Business Integration Adapters toolset
* Developing and configuring some integration components
* Deploying integration components to a repository or broker.

Using System Manager

This section describes how to start and use the System Manager perspective.

Starting System Manager

When you install an BM WebSphere integration broker, you have the option to
install the WebSphere Studio Workbench with support for the plug-ins required to
interact with the broker, or to install the plug-ins into an existing installation of
WebSphere Studio Application Developer Integration Edition.

To start System Manager, do the following:

Appendix E. System Manager and the Eclipse Workbench 131

1. Select Start > Programs > WebSphere Business Integration Adapters > Tools >
System Manager.

2. Select Windows > Open Perspective > Other from the menu bar.
3. Select System Manager from the list of perspectives and then click OK.

WebSphere Studio Workbench starts and appears. |i_3igure 28| shows the System
Manager perspective and ['System Manager interface”|describes the interface
and its elements.

System Manager interface

The System Manager perspective has several views and editors in the default
configuration it opens with. shows the System Manager perspective:

4P System Manager - WebSphere Stu a Workbench SDK = = x|

File Edi Havigate Search Project Component Tools Server Collaboration Debugger Run ‘window Help

Dm0 ed|] 7% [MeERlntumroon[surn

- X

eqration Comporent Libraries

3

InterChange Server Component Management: - x

Consale 4 x

@

Console | Log Output

1 item selected

Figure 28. System Manager perspective

describes the interface elements of the System Manager perspective,
identified by the numbers in [Figure 28 on page 132

Table 25. System Manager perspective interface elements

Interface element number | Interface element name

1 ["Menu bar and toolbar” on page 133|

2 [“Perspective shortcut bar” on page 134

132 Implementing Adapters with WebSphere Message Brokers

Table 25. System Manager perspective interface elements (continued)

Interface element number | Interface element name

3 "“WebSphere Business Integration System Manager view” on|
page 134]
4 Interchange Server Component Management view. This section

is relevant only when running WebSphere Interchange Server
as the integration broker. You can ignore it if you are using a
different broker.

5 [“Editor view” on page 134|

6 [“Console view” on page 135|

The following sections describe the interface elements of System Manager in
greater detail.

Menu bar and toolbar

You use the menu bar and toolbar to work with the Eclipse-based tooling
framework and to work with integration broker components. Many of the menu
bar items have toolbar equivalents, so the following sections only describe menu
bars and their items.

File menu: This is an Eclipse-standard menu that is used to work with resources.
You will use it primarily to create new integration component libraries and user
projects.

For more information on creating integration component libraries and user
projects, see |”Working with integration component libraries” on page 135| and
[“Working with user projects” on page 136]

Edit menu: This is an Eclipse-standard menu that has many standard items such
as Cut, Copy, and Paste.

For more information on cutting, copying, pasting, and deleting the components
you create, see [“Working with components in integration component libraries” onl|

|Eage 141.|

Navigate menu: This is an Eclipse-standard menu that allows you to navigate
among the resources in the workbench. For more information on this menu, see the
workbench documentation.

Search menu: This is an Eclipse-standard menu that allows you to search for and
search within resources. For more information on this menu, see the workbench
documentation.

Project menu: This is an Eclipse-standard menu that has menu items for
manipulating Project resources in the workbench; this menu item is not used when
working with the System Manager perspective. For more information on this
menu, see the workbench documentation.

Component menu: This menu is provided with the System Manager perspective
and is useful for working with integration components you create. The items in
this menu are documented throughout this guide and others in sections that
describe specific tasks.

Appendix E. System Manager and the Eclipse Workbench 133

134

Tools menu: This menu is provided with the System Manager perspective and is
used to launch tools used to create integration components.

For more information, see ["Working with components in integration component|
llibraries” on page 141

Server menu: This menu has the Register Servers item, which you can use to
register an InterChange Server instance. This item is not relevant if your
integration broker is not Interchange Server.

Run menu: This menu has an item to configure external tools to run external
programs, batch files, and build scripts. For more information, see the workbench
documentation.

Window menu: This menu has items for working with perspectives, views,
editors, and preferences.

These items are covered in the workbench documentation and in various sections
of this guide.

Help menu: This menu has items that launch the workbench documentation and
that provide version information about the workbench and perspectives.

Perspective shortcut bar

Use the perspective shortcut bar to navigate conveniently between different
perspectives. You might have the System Manager and Java perspectives open; you
can click on their workspace icons in the perspective shortcut toolbar to switch
between them.

You can also navigate to other perspectives by using the Window menu:

* To navigate to a perspective represented by an icon that is higher up in the
perspective shortcut bar than the icon for the perspective you are currently
viewing use the keyboard shortcut Alt+Up Arrow.

* To navigate to a perspective represented by an icon that is lower down in the
perspective shortcut bar than the icon for the perspective you are currently
viewing, select Perspective > Next from the menu bar, or use the keyboard
shortcut Alt+Down Arrow.

WebSphere Business Integration System Manager view
This view has the User Projects and Integration Component Libraries nodes,
which are types of integration broker projects.

For more information on working with these types of projects, see|”Working witEI
integration component libraries” on page 135 and [“Working with user projects” on|

page 136.|

InterChange Server Component Management view
This view is available for those using WebSphere InterChange Server as an
integration broker. It is not relevant for other integration brokers.

Editor view

This is the view in which you work with different resources in the framework,
such as files and integration component definitions. Different editors open to work
with different types of resources. For instance, text files are opened in a text editor.

Implementing Adapters with WebSphere Message Brokers

Console view

This view has two tabs: Console and Log Output. When you compile maps or
collaboration templates in System Manager, the Console tab displays messages to
indicate whether compilation for each component completed successfully and the
Log Output tab displays any errors or warnings encountered.

Working with integration component libraries

You use integration component libraries to store the components that you develop.
This section describes how to create a new integration component library.

Once you have created an integration component library you will typically want to
perform the following tasks as well:

* You will want to import components into the library. For information on several
ways of doing this, see['Working with components in integration component|
[libraries” on page 141)

* You will want to create shortcuts to the components in user projects. For more
information on this, see [“Working with user projects” on page 136.]

* You will want to deploy components to an integration broker. For more
information, see [“Deploying to a message broker workspace” on page 85

* You will want to export components to a package, either to import them into
servers or other libraries or to back up your development. For more information,
see [“Exporting components to a package using System Manager” on page 147]

Creating integration component libraries

Do the following to create a new integration component library in System Manager
by using a wizard:
1. Do one of the following to start the “New Integration Component Library”
wizard:
* Select File > New > Integration Component Library from the menu bar.

* In the WebSphere Business Integration System Manager view, right-click the
Integration Component Libraries folder and select New Integration
Component Library from the context menu.

* Click Open The New Wizard button in the toolbar and select New
Integration Component Library from the menu.

[Figure 29 on page 136|shows the “New Integration Component Library”
wizard.

Appendix E. System Manager and the Eclipse Workbench 135

New Integration Component Library

MNew Integration Component Library

[+
Create a new ICL project ﬁ

Praoject name: | CustomerSync

Project contents:
[V Use default

Directary; | CIBMYWebSpherel T3 Tools wWEB203 WorkspacehCustomer Sync Browse, |

Import components From server

|WiCs422DEY |

Register new server. .. |

Figure 29. Creating an integration component library

2. Type a name for the integration component library in the Project name field.

Project names can only contain alphanumeric characters and underscores, and
must be specified in English.

It is recommended that you name this type of library in such a way as to
associate it with the server it corresponds to. For instance, if the server name is
SERV420DEV, you might name the library SERV420DEVICL.

To have the folder for the library created in the default location (your
workspace) and with a name identical to the name specified for the library,
leave the Use default location checkbox enabled.

If you want to specify the name and location of the library folder, do the
following:

a. Clear the Use default location checkbox.

b. Type the full path and name of the directory that you want to use for the
library in the Location field, or click Browse to select an existing directory.

Note: There is no way to create the folder for a library in the path of the
workspace other than to let System Manager do it by use of the Use
default location checkbox.

Click Finish to complete the wizard.

System Manager creates a folder with the name you specified under the
Integration Component Libraries folder.

Working with user projects

136

You create shortcuts in user projects to the integration components you want to
work with in one or more libraries. User projects provide a way for you to
organize your view of components as an interface. You must add component
shortcuts to a user project to deploy the components to a server from System
Manager.

Implementing Adapters with WebSphere Message Brokers

This section contains the following sections:

* |“Configuring integration broker preferences for user projects”|

« |“Creating user projects”]

* |“Adding shortcuts to a user project” on page 139

* |“Exporting a solution” on page 144|

Configuring integration broker preferences for user projects

You can use System Manager to create user projects for multiple integration
brokers. Do the following to enable System Manager for different integration
brokers:

1. Open the file named cwtools.cfg in ProductDir\bin in a text editor.

2. To enable System Manager for WebSphere Application Server projects, set the
Installed property in the WAS_PROJECT section to the value true.

To enable System Manager for WebSphere MQ Integrator Broker projects, set
the Installed property in the WMQI_PROJECT section to the value true.

To enable System Manager for WebSphere InterChange Server projects, set the
Installed property in the ICS_PROJECT section to the value true.

3. Save and close the file.
Creating user projects
Note: The following is a general description of how to create user projects. For

specific instructions on creating a new message broker project, refer to
[“Creating a message broker project” on page 82.|

Do the following to create a new user project in System Manager by using a
wizard:

1. Do one of the following to start the “New User Project” wizard:
* Select File > New > User Project from the menu bar.

* In the WebSphere Business Integration System Manager view, right-click the
User Projects folder, then select New User Project, then select Message
Broker Projects from the context menu.

¢ In the WebSphere Business Integration System Manager view, expand the
User Projects folder, then right-click the Message broker Projects folder and
select New Message broker project from the context menu.

* Click Open The New Wizard button in the toolbar and select New User
Project from the menu.

2. Type a name for the user project in the Project name field.

Project names can only contain alphanumeric characters and underscores, and
must be specified in English.

It is recommended that you name this type of user project in such a way as to
associate it with the server it corresponds to. For instance, if the server name is
SERV420DEV, you might name the user project SERV420DEVUP.

3. To have the folder for the user project created in the default location (your
workspace) and with a name identical to the name specified for the user
project, leave the Use default checkbox enabled in the “Project contents” pane.

If you want to specify the name and location of the user project folder, do the
following:

a. Clear the Use default checkbox in the “Project contents” pane.

Appendix E. System Manager and the Eclipse Workbench 137

b. Type the full path and name of the directory that you want to use for the
user project in the Directory field, or click Browse to select an existing
directory.

Note: There is no way to create the folder for a user project in the path of the
workspace other than to let System Manager do it by use of the Use
default location checkbox.

4. If you do not want to create shortcuts to existing integration components at this
time, proceed to step

If you do want to create shortcuts to existing integration components, enable
the checkbox next to an integration component library to create shortcuts to all
of the components within it or expand an integration component library folder
and enable the checkboxes next to component groups, or expand the folders for
groups and enable the checkboxes for individual components.

Note: If you select components with the same names from multiple integration
component libraries you do not receive a prompt to inform you that
there are duplicate references in your selection. In the event that you do
select duplicate components, shortcuts are created for the component in
the integration component library that was furthest down in the list of
libraries when you made your selections in the wizard.

shows the “New User Project” wizard.

New User Projeck

Mew User Project & &

[+
Mew User Project creation, ﬁ

Project name: | MewProjectl

Project contents:
V¥ Use default

Directary; | CIBMyWebspherelC3 Tools wWEB203 Workspacel NewPraject 1 Browse, |

#vailable Inteqgration Componerk Libraries
—

[¥lE= Cannectars

Finish Cancel
L\;

Figure 30. Creating a user project

5. Click Finish to complete the wizard.

138 Implementing Adapters with WebSphere Message Brokers

System Manager creates a folder with the name you specified in the folder
corresponding to the integration broker (Message broker Projects) in the User
Projects folder.

Adding shortcuts to a user project

You add shortcuts to a user project to give yourself a view to an interface that you
are working on. There are several ways to add shortcuts to a user project,
described in the following sections:

+ [“Using the Dependency Tree”|

» [“Using the Update Project wizard” on page 140|

* |"Dragging-and-dropping components” on page 141|

* [“Importing a solution” on page 146|

» [“Importing a solution” on page 146|

Using the Dependency Tree

The “Dependency Tree” wizard is the most convenient interface for adding
component shortcuts to a user project. User projects are primarily designed to
represent interfaces, and interfaces are generally centered around a connector
object. User projects, then, are generally centered around a connector object as well,
and you can typically create the shortcuts you need for a user project by
discovering the dependencies of the connector object.

For conceptual information about dependencies, see [“Dependencies and|
freferences” on page 148

Do the following to add shortcuts to a user project by using the “Dependency
Tree” wizard:

1. Right-click an integration component, such as a connector object, in a library
and choose Show Dependencies from the context menu.

2. Select the user project to which you would like shortcuts to be added from the
Add to the project drop-down menu.

3. Select components for which you would like to create shortcuts in the left-hand
pane of the wizard.

You can use keyboard shortcuts to facilitate the process, such as holding down
Shift to select ranges of objects and holding down Ctrl to select single
non-contiguous objects.

4. Click the right-facing arrow to add the components to the right-hand pane of
the wizard.

[Figure 31 on page 140|shows the “Dependency Tree” wizard:

Appendix E. System Manager and the Eclipse Workbench 139

140

& Dependency Tree x|
Add o the project: I vl

(SRR 115 Cornector
B EmailNotification

oK I Cancel

Figure 31. Adding shortcuts to a user project by using the Dependency Tree

5. Click OK.

System Manager creates shortcuts to the selected components in the specified
user project.

Using the Update Project wizard

The “Update Project” wizard provides an interface to add shortcuts to a user

projects that is similar to the one displayed when you initially create a user project.

Do the following to use the “Update Project” wizard:

1. Right-click any user project in the WebSphere Business Integration System
Manager view and choose Update project from the context menu.

2. Enable the checkbox next to an integration component library to create
shortcuts to all of the components within it or expand an integration
component library folder and enable the checkboxes next to component groups,
or expand the folders for groups and enable the checkboxes for individual
components.

3. Click Finish.

If there are shortcuts in the user project to components with the same name as
those you selected in the wizard, then the wizard displays a prompt that allows
you to do the following:

* Overwrite the displayed component.
* Overwrite all duplicate components.
* Not overwrite the component.

* Cancel the update operation.

If you did not select any components with the same name as components for
which shortcuts already exist in the user project, then shortcuts are added to
the project and the wizard exits.

Implementing Adapters with WebSphere Message Brokers

Dragging-and-dropping components

You can select components from integration component library folders and
drag-and-drop them into a user project to add shortcuts to those components to
the user project.

If there are no shortcuts in the folder of the user project currently then you must
drag-and-drop the components onto the folder itself. Drag-and-drop the
components onto the folder and release the mouse button when a square appears
beneath the mouse pointer.

If there are already shortcuts in the folder of the user project then you cannot
drag-and-drop components onto the folder. Drag-and-drop the components
between existing shortcuts in the folder until a line appears and then release the
mouse button.

Working with components in integration component libraries

The majority of your time is spent working with integration components when you
implement a WebSphere Business Integration system. Although this guide does not
go into detail about how to develop individual components, this section does cover
how to launch the designer tools, how to start creating new components, how to
start modifying existing components, and how to work with the few components
that are developed in System Manager.

For more information on how to develop integration components, see the
following guides:

* Business Object Development Guide
* Connector Development Guide for Java or C++

Launching designer tools

This section describes the different ways you can launch each of the designer tools.
You can use the designer tools to create new components or to open and modify
existing components.

Note: If you attempt to launch one of the designer tools and experience an error
about a class not being found, you must launch System Manager and then
try to launch the designer tool again. System Manager does not have to
remain running after the tool is initially launched, however.

Business Object Designer
To launch Business Object Designer, do one of the following;:

* Right-click the Business Objects folder in the WebSphere Business Integration
System view and choose Create New Business Object from the context menu

* Select any folder in the WebSphere Business Integration System Manager view
and do one of the following:

— Select Tools > Business Object Designer from the menu bar
— Click the Business Object Designer toolbar button
— Use the keyboard shortcut Ctrl+4

* Select Start > Programs > IBM WebSphere Business Integration Adapters>
Tools > Business Object Designer

For more information on Business Object Designer, see the Business Object
Development Guide.

Appendix E. System Manager and the Eclipse Workbench 141

142

Connector Configurator
To launch Connector Configurator, do one of the following;:

* Right-click the Connectors folder in the WebSphere Business Integration System
view and choose Create New Connector from the context menu

* Select any folder in the WebSphere Business Integration System Manager view
and do one of the following;:

— Select Tools > Connector Configurator from the menu bar
— Click the Connector Configurator toolbar button
— Use the keyboard shortcut Ctrl+1

* Select Start > Programs >IBM WebSphere Business Integration Adapters>
Tools > Connector Configurator

For more information on Connector Configurator, see any WebSphere Business
Integration adapter user guide or the Connector Development Guide for Java or C++.

Creating new components

Launching their respective designer tools as described in [‘Launching designer]|
ftools” on page 141] allows you to create new components. For example, for new
Business Objects launch Business Object Designer and for new connectors launch
Connector Configurator. Refer to the documentation for each of these tools for
more information.

Modifying existing components
* Double-click the component in a library or the shortcut to a component in a user
project.

* Select the component in a library or the shortcut to a component in a user
project and do one of the following:

Launch its designer tool as described in [‘Launching designer tools” on page|
141

Press Enter
Press Ctrl+E

Select Component > Edit Definitions from the menu bar

* Right-click the component in a library or the shortcut to a component in a user
project and choose Edit definition from the context menu

* Launch the component’s designer tool as described in [“Launching designer]
[tools” on page 141| and then open the component after the tool has started.

Importing components into a library from a package

You can export integration components to a .jar file package, as described in
[“Exporting components to a package using System Manager” on page 147 This
makes it easy to migrate components between environments, share them with
other developers, and submit them to technical support.

Do the following to import components into an integration component library from
a package:

Important: If there are components with the same name as those in the package
you are importing, System Manager overwrites the existing
components without a warning.

1. Right-click an integration component library and choose Import from
Repository File from the context menu.

Implementing Adapters with WebSphere Message Brokers

System Manager displays the “Import Repository File” wizard, as shown in

Figure 32

Import from Repository File
Components will be imported inta the ICL project From repositary File, D
A
Inkegration component library name: I WICS422DEVICL j
% Irterchange server repasitary File: | 1\ IBM\WebSpherelCSibackupst 10232 | Erou]
o Impaort From a Repository Files directary | Brawse, ., |
Finish Cancel

Figure 32. Importing a package

2. At the “Import Repository File” screen, ensure that the Integration Component
Library Name drop-down menu contains the name of the library into which
you want to import the components.

If you launched the “Import from Repository File” wizard from a library other
than the one into which you want to import the components, you can change
the destination this way instead of closing the wizard and launching it again.

3. Do one of the following to specify the components you want imported:

* To import a single package file, either type the full path and name of the
.jar file that you want to import in the Integration repository file field or
click Browse to select the file.

* To import an entire directory of package files, either type the full path to the
directory in the Import from a Repository Files directory field or click
Browse to select the file.

4. Click Finish.

Appendix E. System Manager and the Eclipse Workbench 143

Note: Do not use the File > Import menu item in the workbench to import a
package file. Although the “Zip file” wizard works with archives with the
.jar extension, and WebSphere Business Integration adapter package files
have a .jar extension, the “Zip file” wizard does not work properly with
package files.

Working with solutions

You can export a user project as a solution. This action copies the shortcuts from
the user project as well as the component definitions that the shortcuts reference in
the integration component libraries. This makes it easy to migrate an entire
interface or business integration system from one environment to another.

Exporting a solution

Do the following to export a user project and the integration components it

references as a solution:

1. In the WebSphere Business Integration System Manager view, expand the User
Projects folder, then right-click the Message Brokers folder and choose Export
Solution from the context menu.

System Manager displays the “Export Solution” wizard, as shown in

144 Implementing Adapters with WebSphere Message Brokers

Export as Repository File

InterChange System Components Export Wizard

Select distinct compaonent(s) from the following. D‘
=-[]& Test [(]& appHella
(& deploya
Ohijects [C1& Emailtatification
----- Oz collaboration Objects (&Helio
----- Oz collaboration Templates
----- Oz cornectors
----- [Database Connection Paols
----- O maps
----- & relationships

InterChange server repository jar file path:

|
Browse... |

™ Qwerwrite existing file withaut warning

Eirish I Cancel

Figure 33. Exporting a solution

2. Use the following techniques to select the components you want to export:

* Enable the checkbox next to user projects to select all of the components in
the projects.

* Enable the checkbox next to a component group to select all of the
components in the group.

* Highlight a component group and then enable checkboxes next to individual
components in the right-hand pane to select those components.

3. Either type the full path and name of the directory into which the solution
should be exported in the text field at the bottom of the wizard screen, or click
Browse to navigate to the desired directory.

4. Click Finish.

System Manager does the following to export the solution in the directory

specified in step

* Creates a User directory that contains the shortcuts in the user projects
selected during the export of the solution.

¢ Creates a System directory that contains the directories of the integration
component library referenced by the shortcuts in the user projects selected
during the export of the solution.

5. When prompted that the export operation completed successfully, click OK.

Appendix E. System Manager and the Eclipse Workbench 145

Importing a solution
Do the following to import a solution:

1. In the WebSphere Business Integration System Manager view, expand the User
Projects folder, then right-click the Message Brokers and choose Import
Solution from the context menu.

System Manager displays the “Import Solution” wizard, as shown in

Import from Repository File
Components will be imported inta the ICL project From repositary File, D
A
Inkegration component library name: I WICS422DEVICL j
% Irterchange server repasitary File: | C:\IBMyWebSpherelcSibackups| 10282 | Srol
o Impaort From a Repository Files directary | Brawse, ., |
Finish Cancel

Figure 34. Importing a solution

2. Either type the full path and name of the directory in which the exported
solution exists into the Solution directory name field, or click Browse to
navigate to the desired directory.

3. Click Finish.

System Manager creates the integration component libraries and user projects
defined in the exported solution in your environment.

146 Implementing Adapters with WebSphere Message Brokers

Exporting components to a package using System Manager

You can export integration components to a package file. Integration components
are resources, which are ultimately files stored in the file system as described in
[‘Resources” on page 130.] When System Manager exports components to a
package, it compresses the following resources into a .jar (Java archive) file:

* Definition files (stored in XML format, with different extensions depending on
the component type)

¢ Java source files for maps and collaboration templates
* Message files

Do the following to export components to a package:

1. Right-click either an integration component library or a user project that
contains the components you want to export and choose Export as Repository
File from the context menu.

System Manager displays the “Export Repository File” wizard, as shown in

oure 35,

Export Repository File

InterChange System Components Export Wizard l
Select distinct componenti’s) from the folkwing. EI

EEQ WebSpherelCS420DEVICL

----- [Fl== Benchmark

----- [Fli= Business Ohjects

----- [Fl= Collaboration Ohjects

----- [Flz= Collaboration Templates

----- M= connectors

----- EB- Databaze Connection Pools

InterChange server repository jar file path:

| CrivebSpherelCS4200EY backupstWebSpherel 54 200ENICLOS 12003 jar

Browse... |

|7 Drverwrite existing file without swarning

Finish I Cancel

Figure 35. Exporting a package

2. Use the following techniques to select the components you want to export:

¢ Enable the checkbox next to the integration component library or user project
to select all of the components in the library or project.

Appendix E. System Manager and the Eclipse Workbench ~ 147

* Enable the checkbox next to a component group to select all of the
components in the group.

* Highlight a component group and then enable checkboxes next to individual
components in the right-hand pane to select those components.

3. If you plan to specify an existing .jar file to export the components to and you
want to overwrite it without receiving a prompt, enable the Overwrite existing
file without warning checkbox.

Note: To benefit from the Overwrite existing file without warning checkbox
you must enable it before specifying the file to use as described in step @
System Manager prompts you to overwrite a file as soon as it detects
that an existing file has been specified and does not wait until you have
finished the wizard, so you must enable this option beforehand to
benefit from it.

4. Type the name and path of the .jar file to which the components should be
exported into the Repository jar file path field, or click Browse to select a file
to overwrite, or navigate to a directory and specify a file name.

If you specified the name and path to an existing file and did not enable the

Overwrite existing file without warning checkbox and you want to overwrite

the existing file then click Yes when prompted.

Note: If you type the name and path of the file into the field you must include
the .jar extension in order for the Finish button to be enabled.

5. Click Finish to complete the wizard.

Dependencies and references

148

Integration components depend upon one another to perform their roles in the
business integration system. For instance, business object definitions can contain
other business object definitions as children and connectors have maps associated
with their supported business objects. These dependencies must be satisfied for the
system to function properly.

The terms dependencies and references are used to describe the relationship
between components, depending on the context. For example, a connector
definition requires the business object definitions it supports so that it can
exchange data with the integration broker. In this context, the business object
definitions are dependencies of the connector definition. If you view the same
relationship between the business object definition and the connector definition,
but in the context of the business object, the connector is one of the references of
the business object definition—along with any other business objects that contain it
as a child, any maps that transform it, any collaboration templates that support it
for their port definitions, and so forth.

[Table 26 on page 149| specifies the components that can be dependencies and
references for each component type.

Implementing Adapters with WebSphere Message Brokers

Table 26. Integration component dependencies and references

Component Dependencies References
Business objects * Business objects * Business objects
* Maps

* Connectors
* Collaboration templates

* Collaboration objects

Connectors * Business objects * Collaboration objects
* Maps

Maps * Business objects * Connectors
* Maps ¢ Collaboration objects

Collaboration templates » Business objects None

Collaboration objects * Business objects ¢ Collaboration objects
* Maps

* Connectors
 Collaboration templates
¢ Collaboration objects

Showing dependencies and references

You can use System Manager to show the dependencies and references for an
integration component.

To show the dependencies for a component, right-click it in System Manager and
select Show Dependencies from the context menu. The “Dependency Tree” wizard
appears. For more information, see["Using the Dependency Tree” on page 139.|

To show the references for a component, right-click it in System Manager and
select Show References from the context menu. The “Object References” window
appears.

Standard operations available for multiple workbench resources

Although many of the tasks you perform in the workbench are sensitive to the
particular resource you are working with or the context in which you are working,
there are many operations that affect all resources the same way. This section
describes the tasks you can perform in the workbench that work similarly for all
resources.

Adding projects to the workspace from source code control

You can add integration component libraries and user projects to your workspace
from a source code control system such as Rational ClearCase.

For more information about how to do so, see the documentation for the source
code control system plug-in.

For an example of how to do so using ClearCase, see the Implementation Guide for
WebSphere Interchange Server.

Appendix E. System Manager and the Eclipse Workbench 149

Cutting, copying, and pasting resources

You can cut, copy, and paste resources both in System Manager and in the file
system.

To cut, copy, or paste a user project, integration component library, integration
component, shortcut, or folder in System Manager, right-click the resource and
choose the desired menu item. If you copy integration components, you cannot
paste them into the same library (for instance, to copy a business object definition
and paste it into the same library to specify a different name and use it as a
template). You can, however, open the component definition in its designer tool
and do a “Save as” operation to save it with a new name to the same library.

To cut, copy, and paste integration components or shortcuts in the file system,
launch Windows Explorer and navigate to the appropriate subdirectory within the
project directory, copy the file that shares the name of the component, and paste it
into the appropriate subdirectory within the destination project directory.

If you use cut, copy, and paste operations in the file system, you must refresh the
integration component library or user project in System Manager in order to see
the newly added resources. For more information, see [“Refreshing resources.”

You cannot just cut, copy, and paste whole user projects or integration component
libraries, because there are meta-data references maintained in the workbench that
specify which user projects and libraries exist. Copying a folder into the workspace
directory does not update those meta-data references. You can, however, create a
new user project or library in System Manager to satisfy the meta-data entries, and
then paste the folders of component definitions into the directory for the new
library or user project.

Refreshing resources

If you add component definitions to a library or shortcuts to a user project by
cutting, copying, and pasting files in the file system then you must refresh the
library in System Manager so that the changes are reflected.

To refresh an integration component library or user project, right-click it in System
Manager and choose Refresh View from the context menu.

Deleting resources

Do the following to delete a workbench resource:

1. Either right-click the resource in System Manager and choose Delete from the
context menu or select the resource in System Manager and press the Delete
key.

2. When presented with the “Delete Component” dialog, click OK.

Note: If a component has dependencies then you will not be allowed to delete it.

Using Eclipse-based workbenches

150

This section describes some of the optional tasks you may want to perform in your
tooling framework to make your experience with the tools more efficient.

Opening and closing perspectives

This section describes how to open and close perspectives.

Implementing Adapters with WebSphere Message Brokers

Opening perspectives
Do the following to open a perspective in the workbench:

1. Select Window > Open Perspective > Other from the menu bar of your
workbench.

2. At the “Select Perspective” dialog, choose the perspective you want to open
and click OK.

Besides the System Manager perspective that you use to work with integration
components, you might also want to explore the perspectives described in the
following sections:

Resource perspective: This perspective allows you to work directly with the
metadata files that represent project materials, such as integration component
libraries. shows the Resource perspective open where the .xsd file that
represents the business object has been opened from the Navigator view to display
its contents in the Editor view.

& Resource - WebSphere Studio Workbench SDK -18] x|
Eile Edit Navigate Search Project Server ClearCase JProbe Run Window Help
EREERNENEC T kR el B oI LN
| v o~ x| EEEE x|
== 7%xn1 0" 3" &
% _Q WHINCEAKEF Settings E lified" targetNamespace="http: //www.ibm. com/websphere crossvorlds/2002/BOSche—}
5] - ICS_USERpR] <xs:ammotation>
Y| 5@ Test <xs:docunentation)Mar 24, 2003 10:00:16 AM Eastern Stondard Time: English (United States)</xs:docunentation
P — </xs:annotation>
¢xs element name="Emaillotification"s
= & BusinessObjects <®s:annotation>

4) AppHello.xsd <xs:appinfo>
d} :pp‘ 6 xsd <bx:boDefinition version="1.0.0"/>
4l deploy.xe </xs:appinfo>

4) EmailNatification xsd </xs:annotation>
40 Hello.xsd <xs:conplexType>
+ <xs:sequence>
& Collaborations <xs:elenent default="" hane='RecipientNane'>
@& Connectors <xs: annotation> —

a <xs:docunentation/>
> DBConnections s lanointos

& Maps <bx:boAttributey

* Relationships <bx:attributelnfo isKey="true"/>
i, P </bx:boAttribute>

& Schedules (/Es:appinfo>
® G Templates /s annotation>

B .project <xs:sinpleType>

<xs:restriction base="xs:string">
<xs:maxlength value="255"/>
</@s:restriction>

<asielement dstault="Unknown : from Crossiorlds Interchangs server® names='MessageSubject’>
<xs:annotation>
<xs:documentation/>
cxs appinioy
= outl <bx:bohttribute)
a= Outline o <bx-attributeInfo isKey="trus"/>
</bx bohttributes

¢/us:appinfo>
</%s:annotation>

<xs:simpleTypey
| <zs:restriction base="zs:string’> _'ﬂ
a »

Definition | Documentation |Source |

7| Tasks (@ items) F B2>v x
[.cf + [pescription Resource | In Folder Location |

Tasks | TableviewerExample view

|writable [Insert 14:32

Figure 36. Resource perspective

Important: The metadata files exposed through the Resource perspective define
the WebSphere Business Integration components. The System Manager
perspective provides a way to work with those components safely
through interfaces. If you manipulate metadata files directly you run
the risk of ruining the component definition. It is recommended that
you only work with component metadata files if you understand their
structures very well, or in situations where you are interacting with
Technical Support to troubleshoot a definition and are asked to.

Java Perspective: This perspective provides editors and views that assist with
authoring Java files. Although you perform most Java programming in the
designer tools, you occasionally have to write external components such as data

Appendix E. System Manager and the Eclipse Workbench 151

handlers, or write utility classes. In these cases, this Java perspective can be very
useful. The following figure shows the Java perspective:

4 Java - WebSphere Studio Workbench SDK

=181 x|
Fle Edt Sowce Refactor Navigats Search Project Server Run Window Help
[F-HRa[-x-[odesced A7 -oFE 5
||, PockageExplorer = = - | B % 0 v x 8= Outine Bawo x
2l |[O Dateparser
%
— e template variable "typecomment®:
on of type comments go to
s
public class DateParser {
3
=l ;I_I
37 Tasks (0 items) ¥RIP v x
<1 [pescription [Resource. [In Folder [Location
Package Explorer | Hierarchy
|writable Insert 1001

Figure 37. Java perspective

Closing perspectives
You can do the following to close perspectives:

* Select Window > Close Perspective to close the currently active perspective.
* Select Window > Close All Perspectives to close all currently open perspectives

* Right-click the icon for a perspective in the perspective shortcut bar and choose
Close from the context menu to close that perspective.

* Right-click the icon for a perspective in the perspective shortcut bar and choose
Close All from the context menu to close all open perspectives.

Showing and closing views

You can control the panes that are displayed in the WebSphere WorkBench and
WebSphere Studio Application Developer Integration Edition perspectives.

Showing views
Do the following to show a view:

1. Select Window > Show View > Other.

2. Expand the folder for the view group, such as WebSphere Business
Integration Adapter Monitor Category.

3. Select the particular view, such as Fault Queue Manager.
4. Click OK.

152 Implementing Adapters with WebSphere Message Brokers

Closing views
To close a view, do one of the following;:

* Right-click the title bar of the view and choose Close from the context menu.
* Click the close button in the title bar of the view.

Customizing perspectives

You can customize a perspective to include the perspectives, views, wizards, and
plug-in interfaces that you want so that you can minimize the number of times
you have to open elements you use frequently and close elements you do not
need. Do the following to customize the currently active perspective:

1. Select Window > Customize Perspective from the menu bar.

2. Click on the node you want to customize to expand it.

3. Enable and disable checkboxes for the node elements. lists the
customizable perspective nodes and the effect that enabling them has.

Table 27. Customizable perspective nodes

Customize perspective

node Result

File > New Adds or subtracts items from the File > New menu.
Window > Open Adds or subtracts perspectives from the Window > Open
Perspective Perspective menu.

Window > Show View | Adds or subtracts views from the Perspective > Show View
menu.

Other Adds or subtracts from the menu bar and toolbar. For instance,
you must enable the ClearCase checkbox to display the
ClearCase menu.

Saving perspectives

You can save a perspective configuration to preserve customizations you have
made. Do the following to save a perspective:

1. Select Window > Save Perspective As from the tooling framework menu bar.
2. Type a name for the perspective in the Name field.
3. Click OK.

Setting the default perspective

By default your tooling framework opens to the Resource perspective. If you
primarily use the tooling framework to work with integration components, you
may want to make System Manager the default perspective. Do the following to
do so:

1. Select Window > Preferences from the menu bar of the tooling framework.
Expand the Workbench node.

Select the Perspectives node under the Workbench node.

Select the System Managerfrom the Available Perspectives list.

Click Make Default.

Click OK.

o ok wN

Appendix E. System Manager and the Eclipse Workbench 153

154

Configuring System Manager preferences
To set your System Manager preferences, do the following:
. Select Window > Preferences from the menu bar of the workbench.

2. Select System Manager Preferences and do the following to configure the
available preference options:

* If you do not want to be prompted when you delete a component from an

integration component library, enable the checkbox for the component type
in the “Do not confirm object deletion” pane.

Enable the Deep Copy checkbox if you want to copy a component’s
dependencies along with the component when you perform a copy operation
on it.

If Deep Copy is enabled and you copy a business object definition from one
library to another, then all of the child business objects it contains are copied
as well, for example. If Deep Copy is not enabled, however, and you copy a
business object definition from one library to another, then only the business
object itself is copied.

For more information on dependencies, see [‘Dependencies and references”|

Type the name and path of a file in the Log File field, or click Browse to
select a file. When errors occur in System Manager, the error information is
written to the file specified. Type a number in the Max Size field to specify
the maximum size of the log file in megabytes.

* Click Restore Defaults to set the preferences elements to their default values.

[Figure 38 on page 155|shows the System Manager preferences interface.

Implementing Adapters with WebSphere Message Brokers

dp Preferences

[+ Workbench

- Build Crder

[#- Callaboration Debugger

[+ Debug

[+ External Toals

- Help

- InstallfUpdate

- Inkegrated Test Environment
H- Java

|- Plug-In Development
Manager Preferences
roker Preferences

- Compiler

i+ Deployment Settings
Swstem Monitar Settings
[+ Tearn

B)

1]
L

System Manager Preferences

— Do not confirm object deletion
[Collaboration Templake
™ callaboration
™ Business Object Definition
™ Conmectaor
r Map
[schedule
[Relationship
™ Unresolved Flows

r Deep Copy

Log File I
Max Size I 10

Browse |

Restore Defaults | Apply |
Import. .. Expart... | QF, I Cancel |

Figure 38. System Manager preferences

3. The “Broker Preferences” interface allows you to configure System Manager to
work with the supported WebSphere message brokers.

Do the following to set your broker preferences:

a. Expand System Manager Preferences and then select Broker Preferences.
b. Either type the full path to the WebSphere MQ Integrator Broker importer

utility in the Specify the Integrator broker importer path field or click

Browse to select the directory.

c. Either type the full path to the WebSphere Business Integration Message

Broker importer utility in the Specify the Message broker importer path
field or click Browse to select the directory.

d. Either type the full path to the Eclipse workspace directory for WebSphere

Business Integration Message Broker in the Specify the Message broker

workspace directory field or click Browse to select the directory.

[Figure 39 on page 156/ shows the “Broker Preferences” interface:

Appendix E. System Manager and the Eclipse Workbench

155

dp Preferences x|

[+ Workbench Broker Preferences
- Build Crder
- Collaharation Debugger Braoker deplovment preferences
[#- Debug
& E'xllzernal Tasls —Integrator Broker Settings
elp

InstalliUpdate Specify the Inkegrator broker importer path I Browse. . |

Inteqrated Test Enviranment —Message Eroker Settings

]..
- Java Specify the Message broker importer path I— Browse... |
|- Flug-In Development

I System Manager Preferences |Specify the Message broker workspace directory I Browse. . |
¥ Preferences

-

I

; Deployment Settings
i System Manitar Settings
[+ Team

Restore Defaults | Apply |

Import. .. Expart... QF I Cancel |

Figure 39. Broker preferences

Note: The “Compiler” preferences interface, the “Deployment Settings”
interface, and the “System Monitor Settings” interfaces are for use when
using WebSphere Interchange Server as the integration broker. They are
not relevant for other integration brokers.

4. Click Apply to save your preferences and continue working in the
“Preferences” dialog, or click OK to save your preferences and exit the dialog.

Troubleshooting problems connecting to the integration broker in
System Manager

Investigate these possibilities to troubleshoot connection problems:
* Make sure that the importer path is specified.
* Make sure that the System Manager is deployed in the correct workspace.

156 Implementing Adapters with WebSphere Message Brokers

Appendix F. Using the Connector Script Generator tool

The Connector Script Generator utility creates or modifies the connector script for
connectors running on the UNIX platform. Use this tool to do either of the
following:

* To generate a new connector startup script for a connector you have added
without using the WebSphere Business Integration Adapters installer.

¢ To modify an existing startup script for a connector to include the correct
configuration file path.

To run the Connector Script Generator, do the following:
1. Navigate to the ProductDir/bin directory.
2. Enter the command ./ConnConfig.sh.
The Connector Script Generator screen appears as shown in

'« Connector script generator

12ADK

Figure 40. Connector Script Generator.

3. From the Select Connector Name list, select the connector for which the startup
script is to be generated.

4. For Agent Config File, specify the connector’s configuration file by entering its
full-path name or by clicking Browse to select a file.

5. To generate or update the connector script, click Install.

The connector_manager_ConnectorName file (where ConnectorName is the name
of the connector you are configuring) is created in the ProductDir/bin directory.

6. Click Close.

© Copyright IBM Corp. 2002, 2004 157

158 Implementing Adapters with WebSphere Message Brokers

Appendix G. Using Visual Test Connector

Visual Test Connector simulates the activities of a connector to allow you to test
your integration components without the complexity of running an actual
connector. This chapter consists of the following sections:

* ["Recommended testing procedure”]|

» |“Starting Test Connector” on page 160

» [“Shutting down Test Connector” on page 161]

+ [“Creating and editing connector profiles” on page 161

* |“Emulating a connector” on page 164

» [“Working with business objects” on page 164]

Recommended testing procedure

This is the recommended test procedure for testing components in the WebSphere
business integration system:

1. If your integration broker is InterChange Server, consider using the System
View view, which can be very helpful in determining if a flow you have sent
ends in success or failure.

For more information, see the System Administration Guide.

2. Set up Test Connector to emulate a source connector.

a. Launch Test Connector as described in|“Starting Test Connector” on page|
[L60]

b. Create a profile for the source connector in the interface as described in
[“Creating a new profile” on page 162}

c. Connect Test Connector to the agent to begin emulating the source
connector, as described in [“Emulating a connector” on page 164

3. Set up instances of Test Connector to emulate each destination connector
involved in the interface.

a. Launch Test Connector as described in|“Starting Test Connector” on page|

b. Create a profile for a destination connector as described in [“Creating a new|
[profile” on page 162}

c. Connect Test Connector to the agent to begin emulating the destination
connector as described in [“Emulating a connector” on page 164

d. Repeat hrough @above for all destination connectors involved in the
interface.

4. Arrange the instances of Test Connector on your screen so that you can easily
identify the connector being emulated in each Test Connector window. For
example, in [Figure 41 on page 160the source Test Connector is arranged to the
left of the destination Test Connector.

© Copyright IBM Corp. 2002, 2004 159

server]- [=10lx|
Fle ER Request Hep
_— e .
BAD oW R H0» - Response BO x|
BO R List -
poree [I — AT
peom =] o]
BoType [T omer
BO Editor
Verb:]ﬁ BoLocale: m Vert: |Creste v| BOLocale: |en US v
Mo [iwe [vaw | oo e [voe __ [=
Caesarld Integer 980550
CustomerType String Customer
CustomerSta... String Active
Customeria... String Iy League St..
=lol x| CreationDate String Mer 16, 2003
Fle EdR Request He =) Caeser_Add... Coesar_Addre...
= Addressid Integer 806561
=i o | -
D% @ ESD & B= Coesard | intoger asos0
i AddressT... Strir SoldTo
BoType [Clarty_Busorg =l I — baessT..|hg Soto
BOinstance [Clarify_Busorg 0 ¥ Create StreetAd... String 1725 Learning. 5
b —— Connedling 1o Server... Sun Mar 16 257,52 PST 2003 7| S e T
CaesarConnector Ready Sun Mar 16 225812 PST 2003 Cancel
Verb:[Create 7| BOLocalec fen US ¥ Received BO Caesar_Customer Sun Mar 16 23:09:26 PST 2003 EI —J
Name. Voie 4]
OrgStock... String L1 L'J
OrgType String Customer
OrgWebSte String [CassarConnector Ready
OrgFiscal... String
= Clarity_So... Gy _Sold A | =101 x|
=10} Clarify_Sold.
Ste.. Integer 1000010 _
Sol... String 7 el EB= - Response B0] x|
Sol.. St Trent c_a]ﬂ i
= e poree | = ©o|ed
|BOInstance > [crede
apecugn e Serat sy = 2] g S S
ClarifyConnector Ready Sun Mar 16 22:55:00 PST 2003 BO Ecltor
‘Sent BO Clarify_BusOrg Verb Create Sun Mar 16 23.09:12 PST 2003 Verb: +| oLocate: [en Us v Verk: |Creste | BOLocsle: |en US |
- T e T R Vo | |
L > CustomerTy... String o001
Classt String ul
jClertyCo Rt Rasy) Country String us
CustomerV... String
CentralDeiiv... String
LocationCode String
Deleteind String
CustomerN... String Ivy League St...
CustomerN... String
CustomerN... String
K ST Customen..._ String |
Connecting 1o Server .. Sun or 16 225750 PST 2003 | o s
SAPConnector Ready Sun Mar 16 22:56:10 PST 2003 [o] concel
Received BO SAP4_CustomerMaster Sun Mar 16 23.09:26 PST 2003
K} _I_I
[SAPConnector Ready [

Figure 41. Source and destination instances of Test Connector.

5. Send a request business object from the source connector. From the source Test
Connector, do the following:

a. Create a business object that is managed by the interface you need to test as
described in[“Creating request business objects” on page 164

b. Save the business object to a file to use in subsequent tests as described in
[“Saving a business object” on page 168

c. Send the business object as described in [“Sending request business objects’]

6. Simulate the response to the request business object from the destination
connector. From the destination Test Connector window, do the following:

a. Accept the request business object as described in [“Accepting a request]
[pusiness object” on page 169}

b. Send the business object as a response as described in [‘Sending a responseq
|business object” on page 170|

7. Repeat step Ehrough step Bas many times as necessary to test each interface.

Starting Test Connector

160

To start Test Connector, do one of the following depending on your integration
broker:

* If your integration broker is InterChange Server, select Start > Programs > IBM
WebSphere InterChange Server > IBM WebSphere Business Integration
Toolset > Development > Test Connector.

* If your integration broker is WebSphere Application Server or a WebSphere
message broker (WebSphere MQ Integrator, WebSphere MQ IntegratorBroker, or
WebSphere Business Integration Message Broker) select Start > Programs > IBM
WebSphere Business Integration Adapters > Tools > Test Connector.

Implementing Adapters with WebSphere Message Brokers

shows Test Connector after starting.

_|O] x|
File Edt FRequest Help
He el RS e
BOType I j BO Reguest List
EIOInsdanceI j Creste |
— B Editar
“erk: I vl BOLocale: Ien_LIS VI
Mame I Type I Yalle I
-
w
K| 3

Figure 42. Test Connector

The Test Connector window includes the following panes:

* The “Supported Business Objects” pane in which you can create business object

instances to send

The “BO Request List” pane, which displays any business object requests that

the connector has received

¢ The “Output” pane, which displays messages about Test Connector’s operations,

such as when a business object has been sent.

Shutting down Test Connector

To shut down Test Connector and cause it to stop emulating a connector agent,
select File > Exit from the menu bar. When presented with the “Shutdown”

prompt, click Yes.

Creating and editing connector profiles

Test Connector uses profiles to store the information it needs to emulate a

connector. You must create a profile for each connector you want to emulate. You
can edit and delete existing profiles.

Saving the connector definition to a file

To emulate a connector using Test Connector, you must save the connector
definition to a file. Do the following to save a connector definition to a file:

1.

Open the connector definition in Connector Configurator.

2. Select File > Save As > To File from the menu bar.

Appendix G. Using Visual Test Connector

161

3.

Navigate to the directory in which you want the file saved, type a name in the
File name field, ensure that the value Configuration (*.cfg) is displayed in
the Save as type drop-down menu, and click Save.

Connector Configurator saves the connector definition to a file with the
specified name.

Creating a new profile

You must create a profile for any connector you want to emulate in Test Connector.
The profile specifies information such as the name of the connector, the
configuration file to be used, and the type of integration broker with which the
connector communicates. To create a new connector profile, do the following:

1.

New Profile x|

Select File > Create/Select Profile from the menu bar to display the “Connector
Profile” window.

In the “Connector Profile window”, select File > New Profile from the menu
bar.

In the “New Profile” window, click Browse and then navigate to the
configuration file for the connector you preparing in [‘Saving the connector|
[definition to a file” on page 161

Type the name of the connector in the Connector Name field. You must type
the exact name of the connector definition as it exists in the integration broker
repository. For the adapter for JText, for instance, you must type
JTextConnector, without any spaces between the words JText and Connector,
and with each letter being the proper case.

Select the proper integration broker in the Broker Type drop-down menu—ICS,
WMQI or WAS.

Note: Select WMQI if your broker is any WebSphere message broker.
If you selected ICS as your broker type in step Bdo the following as well:
a. Type the name of the InterChange Server instance in the Server field.

Be sure to type the name precisely; it is case-sensitive and Test Connector
will not be able to communicate with InterChange Server if the name is not
correct.

b. Type the password for the admin user account in the Password field. The
default password is null.

shows the “New Profile” window:

Please select the connector configuration file:

I C:iebSpherelCS4200E W ConnectorConfigurationFiles\Clarify - Browse |

— Connectar

Connector Mame I ClarifyConnector

Broker Type IICS j

—Server

Server I WebSpherelC54200EY Server

Parssvvard | |

Figure 43. Creating a new connector profile

Implementing Adapters with WebSphere Message Brokers

7. Click OK to close the “New Profile” window.

The “Connector Profile” window displays the name of the connector in the
Connector column, the name of the InterChange Server instance in the Server
column (if the integration broker is ICS), and the path and name of the
connector configuration file in the Configuration File column.

shows the “Connector Profile” window with a profile for the
ClarifyConnector configured to communicate with an InterChange Server
instance, and a profile for the JTextConnector configured to communicate with
a WMQIB server.

Connector Profile x|
File Edit
|| =]
Connectar | Server | Configuration File |
iClarifyConnector WebSpherelC34200E Server CAehSpherelCS420DEY W Connecto... ¢
JTextConnectar CrebSpherelCS4200EY Y Connecto...

Figure 44. The “Connector Profile” window

8.

Click OK to close the “Connector Profile” window.

Editing a profile

Follow the steps below to make changes to an existing connector profile:

1.

2.

4.

Select File > Create/Select Profile from the menu bar of Test Connector or use
the keyboard shortcut Ctrl+N to display the Connector Profile window.

In the “Connector Profile” window select the profile you want to edit and then
select Edit > Edit Profile from the menu bar.

Type new values in the fields of the “New Profile” window and use the
Browse button to change the configuration file as necessary to make your edits.

Click OK to close the “New Profile” window.

Deleting a profile

Do the following to delete a connector profile:

1.

Select File > Create/Select Profile from the menu bar of Test Connector or use
the keyboard shortcut Ctrl+N to display the “Connector Profile” window.

In the “Connector Profile” window, select the profile you want to delete and
then select Edit > Delete Profile from the menu bar.

Appendix G. Using Visual Test Connector 163

Emulating a connector

After creating a profile for a connector, you may use that profile to connect Test
Connector to the agent. Once you connect Test Connector to the agent, Test
Connector begins emulating the connector defined in the selected profile.

To connect Test Connector to the agent, do the following:
1. Select File > Create/Select Profile from the menu bar of Test Connector.

2. In the “Connector Profile” window, select the name of the connector whose
profile you want to open.

3. Click OK.
4. Select File > Connect from the menu bar.

Test Connector displays messages in the “Output” pane as it attempts to
emulate the connector. When it finishes connecting, it displays a message
indicating that it is “ready” in the “Output” pane and populates the BOType
list in the “Supported Business Objects” pane.

Working with business objects

164

To test whether a business process interface has been developed correctly, you
need to verify that business objects can be successfully exchanged and processed.
This section describes how to:

* Create, modify, delete, and save business object test data

* Compare the attribute values of business objects to easily and quickly view
changes made during processing

* Send and receive business objects

Working with request business objects

Request business objects are those that you send from Test Connector when it is
emulating a connector that is the source of the events that trigger an interface.
Working with request business objects consists of creating a business object
instance, populating it with data, and sending the request.

Creating request business objects
To create a new business object in Test Connector, do the following:

1. In the “Supported Business Objects” pane, select the name of the business
object you want to create from the BOType drop-down menu.

2. Click Create next to the BOInstance field.

3. When presented with the “New Instance” dialog, type a name for the instance
in the Enter Name field.

4. Select the desired verb from the Verb drop-down menu.
5. Select the desired locale from the the BOLocale drop-down menu.

6. Provide values for the simple attributes and child business objects within the

toi -level obiect, as described in [“Setting values for business object attributes’]

[Figure 45 on page 165|shows a business object named Caesar_Customer with the
Create verb, the en_US locale, values specified for each of its simple attributes,
and a single instance of the Caesar_Address child business object.

Implementing Adapters with WebSphere Message Brokers

¥TC -[WebsphereICS420DEYServer] - [CaesarConnecko - |EI|5|

File Edt FRequest Help

A3 el E B

BOType ICaesar_Customer j EID) Rz L
Binstance ICaesar_Customer_D j Creste I
— B Editar
“erk: ICreate vl BOLocale: Ien_LIS VI
[Hame | Type I “alue I
Caesarld Iritecier 000001
Customer Type String Federal
Customer Status String A ctive
Customerhame String vy League ...
CreationDate String 03152003
[FlCaezar_fddress Cassar_Ad...
Lddressid Integer 00oooo2
Caesarld Irteger 00oa
AddressType String SaldTo
LddressStatus String A ctive
Streetdddress String 2000 Learni...
City String Trenton
State String M
Zip String 09253
PluzFour String 2293
Country String Usa,
Phonetumber String 1-732-344- .
ObjectEventld String
ObjectEventld String I

Connecting to Server... Sat Mar 15 20:26:02 PST 2003 ;I
CaesarConnector Ready Sat Mar 15 20:26:18 PST 2003

" o

FaesarConnec’[or Ready |

Figure 45. Populating a business object with data
7. Click OK.

Sending request business objects

Once you have created or loaded a business object and specified values for its
attributes, you have several ways to send the business object as a request to the
integration broker.

Sending request business objects asynchronously: When a source connector
sends a request business object in asynchronous mode, it does not expect to get
back a response business object. Once the request business object is dispatched, the
source connector’s role in the transaction is finished. The response business object
is typically processed by the integration broker. The default mode for Test
Connector is asynchronous.

To send a business object asynchronously, do the following:
1. Select Request > Mode >Asynchronous from the menu bar.

Note: Test Connector operates in “Asynchronous” mode by default, so you
only have to perform this step if you previously were sending

Appendix G. Using Visual Test Connector 165

166

synchronous requests from the connector. Furthermore, you do not have
to set the mode before sending each request.

2. Select Request > Send from the menu bar.

If the broker specified in the connector definition is InterChange Server then the
business object request is sent to the server for processing.

If the broker specified in the connector definition is one of the supported message
brokers or WebSphere Application Server then the business object is placed on the
queue specified in the RequestQueue standard property.

Sending request business objects synchronously: When a source connector sends
a request business object synchronously, it expects to get back a response business
object from the integration broker after any destination applications have processed
the request. In synchronous mode, Test Connector puts the response business
object on the queue specified by the source connector’s Synchronous Request
Queue property. The default mode for Test Connector is asynchronous.

1. Set Test Connector to synchronous mode by selecting Request > Mode >
Synchronous from the menu bar.

2. Select Request > Send from the menu bar.

3. If the broker specified in the connector definition is InterChange Server then
the “Select Collaboration” dialog is displayed. Select the collaboration to which
the business object should be sent from the Collaboration drop-down menu
and click OK.

If the broker specified in the connector definition is InterChange Server then the
business object request is sent to the configured port of the collaboration object
chosen for processing.

If the broker specified in the connector definition is one of the supported message
brokers or WebSphere Application Server then the business object is placed on the
queue specified in the SynchronousRequestQueue standard property.

Sending request business objects in batch mode: In batch mode, Test Connector
lets you specify the number of instances of a particular business object you want to
send, as well as one attribute in the top-level object —a primary key attribute, for
example—that you want set to a unique value for each instance. Test Connector
copies the business object as many times as you have specified, incrementing the
value of the single attribute you specified, and sends each business object. This
option allows you to create a large number of business objects quickly and easily.

If the selected attribute is a key field that participates in dynamic cross-referencing
as part of an identity relationship, then you must guarantee that the initial value
and all those that follow it are unique. Otherwise, the cross-referencing logic will
fail, causing the request business objects to fail.

To ensure that the values are unique, you can use Relationship Manager or execute
SQL statements against the table for the relationship participant as follows.

* Determine the highest current value for the participant and set the Initial Value
field to an even higher value. The first business object instance in the batch and
all those that follow will then be unique.

* Delete the existing table entries for the participant, thus guaranteeing that no
entries have the same attribute value as any of the batch business objects.

To send business objects in batch mode, do the following:

Implementing Adapters with WebSphere Message Brokers

1. Select the name of the business object you would like to send from the BOType
drop-down menu.

2. Select Request > Send Batch from the menu bar.

3. In the “Batch Mode” window, select the desired verb from the Verb drop-down
menu.

4. Select the desired locale from the the BOLocale drop-down menu.

5. Select from the Attribute list the attribute in the top-level business object that
you want incremented with each business object request in the batch.

The selected attribute should typically be an attribute that uniquely identifies
the business object, such as a primary key.

6. In the Initial Value field, type the starting value for the attribute to be
incremented.

7. In the No. of BO'’s field, type the number of business object instances you want
generated and sent.

8. Click OK.

Test Connector generates the number of business objects you specified, all
identical with the exception of the one specified attribute, whose value is
incremented for each instance.

If the broker specified in the connector definition is InterChange Server then
the business object request is sent to the server for processing.

If the broker specified in the connector definition is one of the supported
message brokers or WebSphere Application Server then the business object is
placed on the queue specified in the RequestQueue standard property.

shows a batch mode configuration in which:

* Fifty business objects are to be sent.
* The value of the attribute OrgObjid is to be incremented.
* The starting value for the attribute is 100001.

Batch Mode ll
BC Definition | Clarify_Bustrg

Warh: ICreate "I
BO Locale: Ien_LIS 'I

Attribute [orgobiid |

Initial alue | 100001

Mo, of BQ's | 50

Cancel |

Figure 46. The Batch Mode Window

Setting values for business object attributes

The following sections describe the various ways you can set the values of simple
and compound attributes in a business object instance:

* [“Setting values for simple attributes” on page 16|

+ |“Adding child business objects” on page 168|

+ |“Removing child business objects” on page 168

* |“Setting the verb of a child business object” on page 168|

Appendix G. Using Visual Test Connector 167

168

Saving a business object

Setting values for simple attributes
To provide a value for a simple attribute, click its cell in the Value column and
enter a value.

Adding child business objects
To add an instance of a child business object, right-click the attribute that
represents the child object and select Add Instance from the context menu.

A plus sign (+) is added next to the attribute that represents child business object
to show that there is at least one child business object instance. If you expand the
child object attribute, numbered entries are displayed for each instance. The
individual instances also have plus signs (+) next to them, so you can expand them
and set values for their attributes.

To add more child business object instances, right-click the attribute that represents
the child object and select Add Instance from the context menu.

Note: If the Card property of the attribute that references the child business object
is set to the value 1 (indicating it is of single-cardinality), then you will only
be able to add one instance of the child object.

Removing child business objects
To remove an instance of a child business object, right-click the instance and select
Remove Instance from the context menu.

To remove all instances of a child business object, right-click the attribute that
represents the child business object and select Delete All Instances from the
context menu.

Setting the verb of a child business object

You can set the verb of a child business object to test the effect that value has on
the business process. This can be helpful when you are troubleshooting logic that
involves the cross-referencing of child objects.

To set the verb of a child business object instance, right-click it and choose Set
Verb from the context menu. When presented with the “Select Verb” prompt,
selected the desired verb and click OK.

Using the Response BO toolbar

You can edit the attributes of a business object received by a destination connector
before you send it as a response. The toolbar of the “Response BO” dialog that you
use when doing so has several toolbar buttons that can be used to set the values of
the business object. For more information, see|“Editing response business objects”|

You can save a business object in Test Connector so that it can be used for later
tests, shared with technical support (to help troubleshoot problems), or used as
response data. You can save any business object, including ones that you have
created and ones that appear as requests in the Test Connector window of a
destination connector. By default, business objects are saved to a file with a
business object extension (.bo).

It is recommended that you create a directory or directory structure specifically for
test data files, with subdirectories dedicated to each interface or to each connector,
as appropriate. This organization makes the necessary files are easy to locate and

Implementing Adapters with WebSphere Message Brokers

makes testing more efficient. Furthermore, it is recommended that you give the test
data file for a business object the same name as the business object definition itself.

Saving request business objects

Do the following to save a business object instance that you have created as a
request:

1. Select the business object you want to save.
2. From the menu bar, select Edit > Save BO.

3. Navigate to the desired directory and specify a name for the file in the File
name field.

4. Click Save.

Saving response business object

Do the following to save a business object instance that has been received by a
destination instance of Test Connector and will be sent as a response:

1. Select the business object instance in the “BO Request List” pane.
2. Select Request > Edit Response from the menu bar.

3. Click Save BO.
4

. Navigate to the desired directory and specify a name for the file in the File
name field.

Click Save.

o

Loading a business object
To load a business object that has been saved to a file, do the following;:
1. Select Edit > Load BO from the menu bar of Test Connector.
2. Navigate to the business object test data file and open it.

3. When presented with the “New Instance” dialog, type a name for the instance
in the Enter Name field.

4. Click OK.

Deleting a business object

To delete a business object from Test Connector, select Edit > Delete BO from the
menu bar.

Note: This action only removes the business object from the Test Connector. It
does not remove the connector’s support for the business object definition.

Accepting a request business object

When you send a business object as a request, the business object appears in the
“BO Request List” pane of any Test Connector instances that are emulating
destination connectors in the interface, provided that the transaction did not fail.

After you have accepted the request business object, you can edit it if necessary as
described in [“Editing response business objects” on page 170

Working with response business objects

Response business objects are those that you send from Test Connector when it is
emulating a connector that is the recipient of business object requests in an
interface. Working with request business objects consists of editing the values in
the business object instance and sending the response back to the broker.

Appendix G. Using Visual Test Connector 169

Editing response business objects

When you receive a business object request in a destination instance of Test
Connector, you commonly want to edit the values of the attributes. For instance,
you will want to provide unique values for primary key attributes that participate
in relationships, or you will want to modify the value of other attributes to test
map or collaboration logic that responds differently depending on the exact values
in the business object. Do the following to set the values of business object
attributes :

1. Select the business object instance in the “BO Request List” pane.
2. Select Request > Edit Response from the menu bar.
3. Do the following to edit the attributes of the business object:

+ Use one of the techniques described in [“Setting values for business object]
[attributes” on page 167ko modify the values of the business object attributes.

* Click Reset BO to default to set the values of the business object attributes
to their default values as specified in the business object definition.

e (Click Clear BO values to clear the values of all the attributes in the business
object.

¢ Click Load BO to populate the attributes of the business object with test data
from a file.

The ability to load saved data into a business object request is very useful in
situations where you have to populate a response business object with data
before sending it as a reply. Instead of manually typing a value for each
attribute that requires response data, you can type the values once, save the
business object (as described in [“Saving a business object” on page 168), and
then load the saved data on subsequent tests.

Sending a response business object
After you accept a request business object, edit the business object, if needed, and
send it back as a reply.

lists Test Connector’s reply options and shows their corresponding
connector return codes for both C++ and Java connectors. For more detailed
information about C++ or Java Connector return codes, see the Connector
Development Guide for Java or C++.

Table 28. Test Connector reply types and connector return codes.

Test Connector reply C++ connector return code Java connector return code

type

Success BON_SUCCESS SUCCESS

Fail BON_FAIL FAIL

Multiple Hits BON_MULTIPLE_HITS MULTIPLE_HITS

Retrieve By Content Fail | BON_FAIL_RETRIEVE_BY_CONTENT RETRIEVEBYCONTENT_FAILED
Not Found BON_BO_DOES_NOT_EXIST BO_DOES_NOT_EXIST

Value Duplicate BON_VALDUPES VALDUPES

To reply to a request business object, do the following:
1. Select the business object in the “BO Request List” pane.
2. From the menu bar, select Request > Reply.

3. Select an item from the Reply submenu.

170 Implementing Adapters with WebSphere Message Brokers

Comparing business object instances

Test Connector can compare two business objects of the same type and display the
attributes that differ in value. You can use this function to view changes to a
business object at different points in the execution of a transaction (for instance,
you could compare a business object that has been sent to the integration broker
with the same business object after the integration broker has updated it). To
compare two business objects, do the following;:
1. Create a request business object instance by following the instructions in either
“Creating request business objects” on page 164pr [“Loading a business object”]
on page 169,
2. Select the response business object instance in the “BO Request List” pane that
you would like to compare the request business object instance to.

3. From the menu bar, select Edit > Compare BO’s.

Test Connector opens the “Compare Business Objects” window with a table
that displays the attributes which have different values in the two business
objects. [Figure 47 on page 171khows a comparison between two business object
instances.

i Compare Business Objects ﬂ
Mame I Type I SourceBo I DestinationB0 I
Caesarld Irtecper 950530
CustomerStatus String A ctive
[Caczar_Address Caesar_Address present present
Auldressid Irtecper 906561

Caesarld Integer 980550

Figure 47. The Business Object Comparison Window.

4. Click OK to close the window.

Appendix G. Using Visual Test Connector 171

172 Implementing Adapters with WebSphere Message Brokers

Appendix H. Upgrading WebSphere Business Integration
adapters

This appendix describes the process for upgrading to new releases of WebSphere
Business Integration Adapters. It includes the following topics:

. ”Assumptions”l

» [“Installing WebSphere Business Integration adapters”|

» |[“Upgrading WebSphere message brokers”|

» |“Creating the response queue” on page 174|

» |“Updating the value of the local queue manager’s coded character set ID” on|

page 174
* [“Upgrading existing adapters” on page 174|

+ |“Configuring new adapters” on page 177]
+ |“Customizing the new WebSphere MQ batch files” on page 177

Assumptions

These upgrade procedures assume the following:

* You are upgrading on a system that uses WebSphere MQ Integrator Broker as
the integration broker. (Prior to the current release, other message brokers were
not supported.)

* You have WebSphere Business Integration Adapters version 2.0, 2.0.1, or 2.1.0,
2.2.0, or 2.3.1 currently installed on your system.

* You have backed up any necessary files.
* You have stopped your system and any connectors that are running.

* You have read the release notes for any release-specific upgrade information that
may affect your installation. You can find the release notes online in the
WebSphere Business Integration Adapters InfoCenter at:

[http: / /www.ibm.com /websphere/integration /wbiadapters/infocenter}

* You will perform the upgrade in a development environment, then move the
upgrades to your production environment after testing is completed.

Installing WebSphere Business Integration adapters

To install WebSphere Business Integration Adapters, follow the instructions in the
Installation Guide for WebSphere Business Integration Adapters, available at the
following Web address:

http:/ /www.ibm.com/software/websphere /wbiadapters/infocenter.

Upgrading WebSphere message brokers

Note: If you are upgrading from WebSphere MQ Integrator Broker or WebSphere
MQ Integrator to WebSphere Business Integration Message Broker, be sure
to import the message set and flow generated in the prior message broker
(WebSphere MQ Integrator Broker or WebSphere MQ Integrator) to
WebSphere Business Integration Message Broker as part of the upgrade
process.

© Copyright IBM Corp. 2002, 2004 173

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

WebSphere MQ Integrator Broker

If you are upgrading from WebSphere Business Integration Adapters version 2.3.1,
apply the WebSphere MQ Integrator Broker CSD05 Service Pack. Obtain the
package from the following URL:

http://www.ibm.com/software/integration/mgfamily/support/
summary/mqsib.html

WebSphere MQ Integrator

Contact your IBM representative for details of how to upgrade WebSphere MQ
Integrator.

WebSphere Business Integration Message Broker

This is the first release for which WebSphere Business Integration Message Broker
is supported, so no upgrades are necessary.

Installing service packs for WebSphere MQ

If you are upgrading from WebSphere Business Integration Adapters version 2.3.1,
apply the WebSphere MQ CSDO05 Service Pack. Obtain the package from the
following URL:

http://www.ibm.com/software/integration/mqfamily/support/summary/

Creating the response queue

If you are upgrading from a WebSphere Business Integration Adapters release prior
to 2.2.0, you need to define a new response queue, as follows. If you already have
release 2.2.0 or later, you do not need to perform this task.

WebSphere Business Integration Adapters version 2.2.0 requires an additional
WebSphere MQ queue, a response queue. Define this queue using a method listed
under [“Ways to define queues” on page 78|In[“Updates to the connector]|
fconfiguration files” on page 175[you must assign the name of this queue to the
new connector configuration standard property, ResponseQueue.

Updating the value of the local queue manager’s coded character set

ID

If you are upgrading from WebSphere Business Integration Adapters version 2.0,
execute the following command to update each queue manager’s CCSID:

runmgsc alter gmgr ccsid(1208)

For further information about this command, see WebSphere MQ: Script (MQSC)
Command Reference.

Upgrading existing adapters

174

For each existing adapter you are upgrading, perform the tasks listed in the topics
below:

* [“Upgrading business objects” on page 175

. "’Updates to the connector configuration files” on page 175

+ [“Configuring the new connector startup scripts” on page 177

Implementing Adapters with WebSphere Message Brokers

Upgrading business objects

Upgrading from releases 2.0.1, or 2.1.0, 2.2.0, or 2.3.1
It is not necessary to upgrade business objects if you are upgrading from
WebSphere Business Integration Adapters versions 2.0.1, or 2.1.0, 2.2.0, or 2.3.1.

Upgrading from release 2.0

Note: Perform this step only if upgrading existing adapters from WebSphere

Business Integration Adapters version 2.0.

For each adapter being upgraded, perform the following actions.

1.

5.
6.

Using the new version of Business Object Designer that you have installed,
load the adapter’s existing business object definitions and save them using the
same names. The business object definitions will be saved in the latest format
used by WebSphere Business Integration Adapters.

Note: If you are upgrading using WebSphere Business Integration Message
Broker 5.0 as the integration integration broker, skip this step. Instead,
update the business objects by reimporting them with System Manager,
as described in [“Deploying to a message broker workspace” on page 85|

Import the revised business object definitions into WebSphere MQ Integrator

Broker’s MRM using the XML Schema Importer with reset mode, which

removes all existing information from the message set before the import of the

updated XML Schema is started. To re-import the business object definitions,
issue the following command for each definition:

mqsiimpxmlschema -c -f parameter_file -o filename
Where:

parameter_file
is the name of the XML Schema importer parameters file.

filename
is the file in which the importer is to write the message set name
followed by the message set identifier, separated by an equal sign (=).
If the file already exists the line will be appended to this file.

For more information on importing XML schemas and using the
mgsiimpxmlschema command, see WebSphere MQ Integrator Broker: Working with
Messages

If Business Object Designer and the WebSphere MQ Integrator Broker Control
Center are on separate machines that do not use a shared file system, copy the
generated files to the machine where the integration broker is running.

From WebSphere MQ Integrator Broker’s Control Center, replace the existing
message sets and messages in your workspace.

Replace the existing assigned message sets with the new ones.

Re-deploy the message sets on the integration broker.

Updates to the connector configuration files

New releases of WebSphere Business Integration Adapters include certain changes
to the connector configuration files. Refer to the sections below depending upon
the release from which you are upgrading.

Appendix H. Upgrading WebSphere Business Integration adapters 175

176

Upgrades from release 2.3.1

If you are upgrading from WebSphere Business Integration Adapters versions 2.3.1,
be aware that there is a new standard configuration property
XMLNameSpaceFormat. The default value for this is short. If you want the
XMLNameSpaceFormat to be Tong, you must explicitly specify this in the
connector configuration file. You might also have to change the value of the
RFH2messagedomain property, depending on which message broker you are using.
Refer to[“Choosing XML Namespace length” on page 90for instructions on
choosing the correct XMLNameSpaceFormat.

Upgrades from release 2.2.0

WebSphere Business Integration Adapters versions 2.3.0 and later include the
following change to the connector configuration file . A new property,
RFH2MessageDomain, has been added to the standard configuration properties.
This property allows you to set the message domain to xml, if desired (default is
mrm). Refer to|Appendix A, “WebSphere MQ message formats,” on page 99 and
[Appendix C, “Standard configuration properties for connectors,” on page 109| for
more information.

When you open your existing connector configuration file using the new version of
Connector Configurator, the necessary changes to the file are made automatically.
However, you may wish to verify that the new property is present and set as
desired. To do so, perform the following actions:

1. Using the new version of Connector Configurator that you have installed, open
the adapter’s connector configuration file.

2. Click the Standard Properties tab.

3. Make any additional configuration property changes specific to the connector
as specified in its adapter user guide.

4. Save the file using its existing name.

Upgrades from releases prior to 2.2.0

WebSphere Business Integration Adapters versions 2.2.0 and later include the
following changes to the connector configuration file :

* The file format is now XML.

* The delivery transport mechanism is now called JMS not WMQI-JMS.

* A new property, ResponseQueue, is required but not used with WebSphere MQ

Integrator Broker. Assign this property the name of the response queue you have
defined in [“Creating the response queue” on page 174.|

* Certain standard connector configuration properties have been renamed.

* Additional standard and application-specific connector configuration properties
are now defined.

* You can now specify a client mode queue configuration using an existing
standard property. You are no longer required to manually edit the connector
configuration file. The messaging section you needed to add manually to the
connector configuration file to specify client mode is automatically deleted when
you save the connector configuration file using the current version of Connector
Configurator.

Tip
For information about using the Connector Configurator and to learn about
changes to connector configuration properties in the new version of the
adapter, refer to the adapter ’s user guide.

Implementing Adapters with WebSphere Message Brokers

When you open your existing connector configuration file using the new version of
Connector Configurator, the necessary changes to the file are made automatically.
However, you should still verify that the changes are correct as described below.

For each upgraded adapter, perform the following actions.

1. Using the new version of Connector Configurator that you have installed, open
the adapter’s connector configuration file.

2. Click the Standard Properties tab.

3. Ensure that the values for the following properties are set correctly for the
business integration system:

a. CharacterEncoding

jms.MessageBrokerName (formerly called QueueManagerName)
jms.Password (formerly QueueManagerPassword)
jms.UserName (formerly QueueManagerLogin)
jms.NumConcurrentRequests (formerly ConcurrentRequests)

-0 oo00T

Locale
g. SynchronousRequestTimeout (formerly Timeout).

4. Make any additional configuration property changes specific to the connector
as specified in its adapter user guide.

5. Save the file using its existing name.

Configuring the new connector startup scripts

The startup scripts for connectors have changed sufficiently in WebSphere Business
Integration Adapters 2.2.0 that you need to use the new versions. Customize the
startup scripts, as described in [“Configuring the connector startup files, shortcuts|
land environment variables” on page 95

Important
The current version of the WBIA Installer creates shortcuts in a Windows
installation only. If you have existing CDE shortcuts, they are not updated.

Configuring new adapters

For each new adapter you have installed, perform the configuration tasks listed in
the topics below:

+ |“Creating business object definitions” on page 81|

* |“Creating a message broker project” on page 82|

* [“Enabling the application for use with the connector” on page 91|

+ |“Configuring the connector” on page 91|

* [“Defining message flows” on page 96

Customizing the new WebSphere MQ batch files

WebSphere Business Integration Adapters version 2.2.0 provides batch files that
you can use to configure the WebSphere MQ queues needed for your adapters or
to clear the messages from WebSphere MQ queues when necessary. You can use
these batch files to configure or clear the WebSphere MQ queues for every adapter
in your business integration system using a single command. For more information
about customizing and running these batch files see “Using WebSphere Business

Appendix H. Upgrading WebSphere Business Integration adapters 177

[ntegration Adapters batch files to configure WebSphere MQ queues” on page 78|
and [’Clearing messages from WebSphere MQ queues” on page 67

178 Implementing Adapters with WebSphere Message Brokers

Glossary
A

adapter. A set of software modules that communicate
with an integration broker and with applications or
technologies to perform tasks such as executing
application logic and exchanging data. An IBM
WebSphere Business Integration Adapter always
consists of the adapter framework and a connector
specific to an application or technology. An adapter
might also contain a sample business object specific to
the application or technology, an Object Discovery
Agent (ODA) designed to generate business object
definitions specific to the application or technology, or
both.

adapter development kit (ADK). A development
environment for creating custom adapters.

adapter framework. The software that IBM provides
to install, configure, and run an adapter.

application connector. A connector that is designed to
interact with a specific application. Application-specific
connectors are intermediaries between an integration
broker and applications. These connectors convert
application-specific data into business objects that can
be manipulated by components of the integration
broker, and convert business objects from the
components into data that can be received by the
specific application.

application-specific component. The component of a
connector that contains code tailored to a particular
application or technology. This component initializes a
business object handler to respond to requests, and, if
needed, implements an event-notification mechanism to
detect and respond to events that an application or
external programmatic entity initiates. The code for this
component is written in C++ or Java, depending on the
language of the API provided by the application or
technology.

business integration system. A system, consisting of
an integration broker and a set of integration adapters,
which allows heterogeneous business applications to
exchange data through the coordinated transfer of
information in the form of business objects.

business object. A set of attributes that represent a
business entity (such as an Employee), an action on the
data (such as a create or update operation), and
instructions for processing the data. Components of the
business integration system use business objects to
exchange information and trigger actions.

© Copyright IBM Corp. 2002, 2004

C

character conversion. Encoding applied to a character
so that it retains its meaning when it is transferred
from a location that uses one character code set to a
location that uses a different code set. See also
character encoding.

character encoding. The mapping from a character (a
letter of the alphabet) to a numeric value in a character
code set. For example, the ASCII character code set
encodes the letter “A” as 65, while the EBCIDIC
character set encodes this letter as 43. The character
code set contains encodings for all characters in one or
more language alphabets.

connector. A set of software modules (the connector
framework and a connector’s application-specific
component) that uses business objects to send
information about an event to an integration broker or
to receive information about a request from the
integration broker. See also application connector and
technology connector.

connector framework. The component of a connector
that manages interactions between a connector’s
application-specific component and the integration
broker. This component provides all required
management services, and retrieves the metadata that
the connector requires from the repository. The
connector framework, whose code is common to all
connectors, is written in Java and includes a C++
extension to allow the development of
application-specific components written in C++.

integration broker. A program that integrates data
among heterogeneous applications. An integration
broker typically provides a variety of services that
include: the ability to route data, a repository of rules
that govern the integration process, connectivity to a
variety of applications, and administrative capabilities
that facilitate integration.

L

local repository. A collection of metadata that
describes components of the business integration
system such as business objects whose data is
transferred across applications. It also contains the
configuration information associated with the connector
framework and a connector’s application-specific
component. It is also referred to as the connector’s local
repository.

179

locale. The part of a user’s environment that brings
together information about how to handle data that is
specific to the end user’s particular country, language,
or territory. The locale is typically specified when
configuring the operating system or internationalized
software products.

o)

Object Discovery Agent (ODA). A tool designed to
“discover” business object requirements specific to a
data source and to generate business object definitions
from those requirements. Business Object Designer
presents a forms-based interface to available ODAs,
and helps manage the discovery and definition
generation processes.

Object Discovery Agent development kit (ODK). An
API for creating Object Discovery Agents (ODAs).

-

technology connector. A connector that is designed
for interactions that conform to a specific technology.
The WebSphere Business Integration Adapter for XML,
for example, can be an intermediary through which an
integration broker sends data to a web server (or other
programmatic entity) using the XML format, even if
that web server resides on a network that is not
running a WebSphere business integration system.

180 Implementing Adapters with WebSphere Message Brokers

Index
A

Administration

See CrossWorlds System Manager
Application entity 15
Application-specific business object 18
Application-specific information 21, 23

in business object attribute 22

in business object verb 33
Application-specific properties

(connector) 36

Archiving events 30
Attribute (business object) 17, 19, 20

application-specific information

for 22
data types of 20

B

base message set 87
base message set project 87
Basic attribute type 20
Business object 18
See also Business object definition
application-specific 18, 21, 23
application-specific information in 21
as event notification 15
as request 15
as response 15
attribute 17, 19, 20
attribute values 17
child 17
components 16
construction 33
deconstruction 33
flat 17
generic 18
hierarchical 17
mapping viii
roles of 15, 16
type 16
verb 16
Business object definition 18
connector download of 25
business object definitions, creating 81
business object definitions, deploying 82

C

Child business object 17
Compound attribute type 20
Configuration
connector
Connector
configuration 25, 36, 37
development 37
event notification behavior 25, 31
modification 37
polling 29
programming 49
properties 36

36, 37

© Copyright IBM Corp. 2002, 2004

Connector (continued)

request processing behavior 36
Connector agent

See also Connector, Connector

controller

constructing business objects

detecting events 29

polling 29

processing events 29, 31

processing requests 31, 36
Constructing business objects
CSM (CrossWorlds System

Manager) 131

CWSharedEnv.sh script 56

33, 35

33, 35

D

Data type (attribute) 20
Deconstructing business objects 33, 35
deploying business object definitions 82
deploying projects 82
deploying, to integrator broker 88
deploying, to WebSphere Business
Integration Message Broker 85
deploying, to WebSphere MQ Integrator
or WebSphere MQ Integrator
Broker 88

E

e-business
integrating applications 4
Environment variable
PATH 55
Error message
severity 75
type 75
Event
archiving 30
inbox 27
text of 30
Event notification 25, 31
business object role in 15
connector role in 25
setting up 26

F

Flat business object 17

G

Generic business object 18

H

Hierarchical business object 17
HP-UX operating system 54

IBM MQSeries

as a software requirement 54

installing 56
IBM WebSphere MQ

as a software requirement 52

installing 52
IBM WebSphere MQ, definition 56
IBM WebSphere MQSeries.

See IBM WebSphere MQ
importer, message broker 82
Installing

IBM MQSeries 56

IBM WebSphere MQ 52

JDK (Java Development Kit) 52, 54
integrator broker, deploying to 88

J

Java compiler.
See JDK
Java Database Connectivity.
See JDBC
Java Development Kit.
See JDK
JDK (Java Development Kit) 52
installing 52, 54

L

LogViewer
using 69
long, XML namespace length 90

M

message broker project 84
message broker projects, creating 82
message broker, definition viii
message set project, specifying name 87
message set, base 87
message set, project 87
Messages (CrossWorlds)
format 75
MQSeries.
See IBM MQSeries

N

namespace aware, field 88
namespace-aware 90

P

PATH environment variable 55
Polling
by connector agent 29
configurable properties 29

181

project, message broker 84
project, user 83
projects, deploying 82
Properties

connector 36
Publish and subscribe viii

R

Request business object 15
Request processing 36
Request processing (connector) 33
Requirements

software 51, 53

web browser 52, 54
Response business object 15
RFH2messagedomain, and XML

namespace format 91

S

Script

CWSharedEnv.sh 56
Severity (of messages) 75
short, XML namespace length 90
Software requirements 51, 53
Solaris operating system 54
specifying 88
Standard properties (connector) 36
System file

/etc/profile 55
System Manager 82
System Manager, using to deploy

projects 82

U

user project 83

\'}

Verb 16, 20
application-specific information
for 23,33
verbose mode 88

W

Web browser requirements 52, 54

WebSphere Business Integration Message
Broker, deploying to 82

WebSphere MQ Integrator Broker,
deploying to 82

WebSphere MQ Integrator, deploying
to 82

Windows 2000 52

Workflow (notification example) 27

workspace, message broker 82

X

XML namepace, choosing format 90
XMLNameSpaceFormat, configuration

property 90

182 Implementing Adapters with WebSphere Message Brokers

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Burlingame Laboratory Director
IBM Burlingame Laboratory
577 Airport Blvd., Suite 800

© Copyright IBM Corp. 2002, 2004 183

Burlingame, CA 94010
US.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not necessarily tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

Programming interface information

Programming interface information, if provided, is intended to help you create
application software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States or other countries, or both:

184 Implementing Adapters with WebSphere Message Brokers

IBM

the IBM logo
AIX
CrossWorlds
DB2

DB2 Universal Database
Domino
Lotus

Lotus Notes
MQIntegrator
MQSeries
Tivoli
WebSphere

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product or service names may be trademarks or service marks of
others.

W

JAVA,
IBM WebSphere Business Integration Adapter Framework V 2.4.0

Notices 185

186 Implementing Adapters with WebSphere Message Brokers

Printed in USA

	Contents
	About this document
	Audience
	Related documents
	WebSphere Business Integration adapters publications
	WebSphere message broker publications
	System Manager publications

	Typographic conventions

	Summary of Changes
	New with WebSphere Business Integration Adapter Framework v 2.4.0
	February 2004
	December 2003

	New in WebSphere Business Integration Adapters v 2.3.1
	New in WebSphere Business Integration Adapters v 2.2.0
	New in WebSphere Business Integration Adapters v 2.1.0
	New in WebSphere Business Integration Adapters v 2.0.1

	Part 1. Overview and concepts
	Chapter 1. Overview of WebSphere Business Integration adapters
	A note about documents you need
	What is the WebSphere business integration system?
	What are WebSphere message brokers?
	What are WebSphere Business Integration adapters?
	How the WebSphere business integration system works
	Data flow in the business integration system
	Event notification
	Integration broker processing
	Request processing

	Summary of the business integration process
	Example of sending changed data to another application
	Example of obtaining data from another application

	Chapter 2. Business objects
	Roles of a business object
	Event
	Request
	Response

	Structure of a business object
	Business object type
	Business object verbs
	Business object attribute values

	Types of business objects
	Business object definitions and business objects
	Components of a business object definition
	Attributes

	Verbs

	A closer look at business objects
	Attribute organization
	Application-specific information
	Application-specific information for a business object
	Application-specific information for an attribute
	Application-specific information for verbs

	Ways to create or modify business object definitions
	Creating business object definitions
	Other resources

	Modifying business object definitions

	Chapter 3. Connectors
	Connector startup
	Event notification
	Setting up the application’s event-notification mechanism
	When applications have event support
	When applications lack event support

	Detecting an event
	Processing an event
	Associating an application event with a business object definition
	Building an application-specific business object
	Sending the application-specific business object to the connector framework
	Archiving events

	Guaranteed event delivery

	Request processing
	Verb-based processing
	Business object construction and deconstruction
	Business object metadata and connector actions
	An example of business object construction

	Application-specific information for verbs

	Connector configuration
	Connector development

	Chapter 4. Data transport and the integration broker
	The role of the integration broker
	Asynchronous data transport
	Synchronous data transport
	Interfaces for message exchange
	Message formats
	Message descriptor
	Message header
	Message body

	Message queues
	Required types of queues
	Queue manager

	For more information

	Part 2. Deployment and administration
	Chapter 5. Planning your implementation
	Developing the business process interfaces
	Stages of an implementation
	Discovering and assessing business goals
	Evaluating existing components and designing new ones
	Developing and configuring the business integration system
	Overall development flow
	Sequence of tasks

	Validating the business integration system
	Deploying the business integration system

	Development tools

	Chapter 6. Installing WebSphere Business Integration adapters
	Installing for Windows systems
	Software Requirements
	Installing the JDK
	Installing WebSphere MQ
	Installing WebSphere Business Integration adapters

	Installing for UNIX systems
	Software Requirements
	Installing the JDK
	Installing WebSphere MQ
	Installing WebSphere Business Integration adapters

	Chapter 7. Administering the business integration system
	Starting a connector
	From Windows
	From UNIX

	Stopping a connector
	From the connector system
	From the broker system
	Mqsiremotestopadapter command line parameters

	Creating multiple connector instances
	Create a new directory
	Create business object definitions
	Create a connector definition
	Create a start-up script

	Using Adapter Monitor and Fault Queue Manager
	Adapter Monitor perspective
	Opening Adapter Monitor

	Setting Adapter Monitor preferences
	Loading an adapter
	Adapter Monitor displays
	Change the state of an adapter
	Using the Fault Queue Manager Display
	Handling failed events

	Clearing messages from WebSphere MQ queues
	Managing log and trace files
	Archival logging of log and trace files
	Managing other files

	Using Log Viewer to view connector messages
	Setting Log Viewer preferences
	Changing how messages are viewed
	Controlling the Log Viewer display output
	Filtering messages
	Message types

	Chapter 8. Configuring the WebSphere business integration system
	Overview of configuration tasks
	Configuring the message broker to work with the connector
	Configuring the WebSphere MQ queues
	Ways to define queues

	Defining the queue configuration
	Bindings mode
	Bindings mode with remote queue definitions
	Client mode

	Creating business object definitions
	Creating a message broker project
	Specifying importer and workspace paths
	Creating a new user project
	Deploying to a message broker workspace
	Deploying to an integrator broker
	Choosing XML Namespace length

	Enabling the application for use with the connector
	Configuring the connector
	Specifying the location of the connector’s local repository
	Specifying the queues to be used by the connector
	Setting the connection mode with the queue manager
	Setting configuration properties for synchronous execution
	Configuring logging and tracing options
	Configuring connector logging
	Configuring connector tracing

	Configuring the connector startup files, shortcuts, and environment variables
	For Windows
	For UNIX

	Defining message flows
	Transaction management

	Using Visual Test Connector to verify your interfaces

	Appendix A. WebSphere MQ message formats
	Message descriptor
	Message header
	Message body

	Appendix B. WebSphere MQ message body formats for administrative messages
	Messages from the connector framework to WebSphere message brokers
	Messages from WebSphere message brokers to the connector framework

	Appendix C. Standard configuration properties for connectors
	New and deleted properties
	Configuring standard connector properties
	Using Connector Configurator
	Setting and updating property values

	Summary of standard properties
	Standard configuration properties
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BrokerType
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	WebSphere MQ and IDL
	JMS

	DuplicateEventElimination
	FaultQueue
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	jms.FactoryClassName
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.UserName
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RequestQueue
	RepositoryDirectory
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousResponseQueue
	SynchronousRequestTimeout
	WireFormat
	WsifSynchronousRequest Timeout
	XMLNameSpaceFormat

	Appendix D. Connector startup options
	Windows
	UNIX

	Appendix E. System Manager and the Eclipse Workbench
	About System Manager
	About the Eclipse Platform
	Plug-ins
	Workbench
	Workspace
	Projects
	Resources
	Perspectives
	Editors
	Views

	About WSWB and WSADIE
	About System Manager

	Using System Manager
	Starting System Manager
	System Manager interface
	Menu bar and toolbar
	Perspective shortcut bar
	WebSphere Business Integration System Manager view
	InterChange Server Component Management view
	Editor view
	Console view

	Working with integration component libraries
	Creating integration component libraries

	Working with user projects
	Configuring integration broker preferences for user projects
	Creating user projects
	Adding shortcuts to a user project
	Using the Dependency Tree
	Using the Update Project wizard
	Dragging-and-dropping components

	Working with components in integration component libraries
	Launching designer tools
	Business Object Designer
	Connector Configurator

	Creating new components
	Modifying existing components
	Importing components into a library from a package

	Working with solutions
	Exporting a solution
	Importing a solution

	Exporting components to a package using System Manager
	Dependencies and references
	Showing dependencies and references

	Standard operations available for multiple workbench resources
	Adding projects to the workspace from source code control
	Cutting, copying, and pasting resources
	Refreshing resources
	Deleting resources

	Using Eclipse-based workbenches
	Opening and closing perspectives
	Opening perspectives
	Closing perspectives

	Showing and closing views
	Showing views
	Closing views

	Customizing perspectives
	Saving perspectives
	Setting the default perspective
	Configuring System Manager preferences

	Troubleshooting problems connecting to the integration broker in System Manager

	Appendix F. Using the Connector Script Generator tool
	Appendix G. Using Visual Test Connector
	Recommended testing procedure
	Starting Test Connector
	Shutting down Test Connector
	Creating and editing connector profiles
	Saving the connector definition to a file
	Creating a new profile
	Editing a profile
	Deleting a profile

	Emulating a connector
	Working with business objects
	Working with request business objects
	Creating request business objects
	Sending request business objects

	Setting values for business object attributes
	Setting values for simple attributes
	Adding child business objects
	Removing child business objects
	Setting the verb of a child business object
	Using the Response BO toolbar

	Saving a business object
	Saving request business objects
	Saving response business object

	Loading a business object
	Deleting a business object
	Accepting a request business object
	Working with response business objects
	Editing response business objects
	Sending a response business object

	Comparing business object instances

	Appendix H. Upgrading WebSphere Business Integration adapters
	Assumptions
	Installing WebSphere Business Integration adapters
	Upgrading WebSphere message brokers
	WebSphere MQ Integrator Broker
	WebSphere MQ Integrator
	WebSphere Business Integration Message Broker

	Installing service packs for WebSphere MQ
	Creating the response queue
	Updating the value of the local queue manager’s coded character set ID
	Upgrading existing adapters
	Upgrading business objects
	Upgrading from releases 2.0.1, or 2.1.0, 2.2.0, or 2.3.1
	Upgrading from release 2.0

	Updates to the connector configuration files
	Upgrades from release 2.3.1
	Upgrades from release 2.2.0
	Upgrades from releases prior to 2.2.0

	Configuring the new connector startup scripts

	Configuring new adapters
	Customizing the new WebSphere MQ batch files

	Glossary
	Index
	Notices
	Programming interface information
	Trademarks and service marks

