IBM WebSphere Business Integration Adapters

Implementing Adapters with WebSphere
Application Server

<|ll

IBM WebSphere Business Integration Adapters

Implementing Adapters with WebSphere
Application Server

<|ll

Note!
FBefore using this information and the product it supports, read the information in|[“Notices” on page 165,

19December2003

This edition of this document applies to IBM WebSphere Business Integration Adapter Framework 2.4, and to all
subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing
from you

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document . vii
Audience . . vii
Related documents . vii
WebSphere Business Integratlon adapters
publications . . . vii
WebSphere Apphcatlon Server pubhcatlons . vii
System Manager publications . .o . viii
WebSphere MQ publications . viii
Typographic conventions . viii
Summary of Changes . ix

New with WebSphere Business Integratlon Adapter
Framework v 2.4.0 . .
WebSphere Business Integration Adapters V. 2 3 1.

. ix

. ix
Part 1. Overview and concepts . . . 1
Chapter 1. Overview of WebSphere
Business Integration adapters . . 3
A note about documents you need . S .3
What is the WebSphere business integration system7 4
What is an integration broker? .4
What are WebSphere Business Integratlon adapters7 5
How the WebSphere business integration system
works . .5
Data flow in the busmess mtegratlon system .7
Summary of the business integration process . . 11
Chapter 2. Business objects . 13
Roles of a business object. .13
Event .13
Request. .13
Response . .13
Structure of a busmess ob]ect .14
Business object type .14
Business object verbs . . .14
Business object attribute values. . 15
Types of business objects . . . 16
Business object definitions and busmess ob]ects .16
Components of a business object definition. .17
Verbs . .18
A closer look at busmess ob]ects .19
Attribute organization . .19
Application-specific mformatlon . .19
Ways to create or modify business object def1n1t10ns 21
Creating business object definitions .21
Modifying business object definitions. .22
Chapter 3. Connectors . . 23
Connector startup .23
Event notification . .23
Setting up the apphcatlon s event-notlflcatlon
mechanism . .24
Detecting an event . .27

© Copyright IBM Corp. 2003

Processing an event.27
Guaranteed event delivery29
Request processing29
Verb-based processing 30
Business object construction and deconstructlon 31
Application-specific information for verbs . . . 33
Connector configuration34
Connector development34

Chapter 4. Data transport and the
integration broker37

The role of the integration broker37
Asynchronous data transport37
Synchronous data transport37
Interfaces for message exchange37
Message formats.38
Message queues39
For more information40

Part 2. Deployment and

administration. 4

Chapter 5. Overview: Implementing
WebSphere Application Server as an
integration broker 43

Chapter 6. Installing WebSphere
Business Integration adapters 45

Installing for Windows systems.45
Software Requirements45
Installing the JDK46
Installing WebSphere MQ.46
Installing WebSphere Business Integratlon
adapters46
Installing plug—ms for WebSphere Studlo
Application Developer Integration Edition . . . 47

Installing for UNIX systems47
Software Requirements47
Installing the JDK48
Installing WebSphere MQ. . . oL L4
Installing WebSphere Business Integratlon
adapters50

Chapter 7. Configuring the WebSphere
business integration system 51

Overview of configuration tasks51
Creating business object definitions52
Adding business objects to ICLs 53
Configuring WebSphere MQ queues for WebSphere
Application Server53
Creating the WebSphere MQ queues54
Defining the queue configuration 56

Enabling the application for use with the Connector 56

iii

Configuring the connector .o . 57
Running Connector Configurator . . 58
Setting Standard and Connector-Specific
properties . . 59
Designating supported busmess ob]ect . 59
Specifying the queues to be used by the
connector . . 60
Setting the connectlon mode w1th the queue
manager . . 60
Configuring loggmg and tracmg optlons . 61
Configuring the connector startup files, shortcuts,
and environment variables . . 63

Using Visual Test Connector to verify your

interfaces . . 64

Chapter 8. Deploying to WebSphere

Application Server. . 65

Saving configurations as ICLs . . 65

Creating user projects in System Manager . . 67

Deploying user projects . . 67

Creating WebSphere Application Server apphcatrons 68
Agent Delivery (Asynchronous Event Delivery) 69

Agent Request (Synchronous event delivery) .82
Create an EJB project . . 83
Create an MDB . . 84

Hub One Way . . 88
Creating the EJB. .. 8
Create an application client pro]ect for testlng .9

Hub Request . . . 95
Creating the EJB pro]ect 96

Requirements for initiating business ob]ects in

interaction patterns. . 98
Adding the business ob]ect mltlahzatlon hbrary 98

Reserved values in business object handling .99

Transactional support. . 100

Chapter 9. Administering the business

integration system . . 103

Starting a connector . . 103
From Windows. . 103
From UNIX . . 104

Stopping a connector . . 104
For a Windows system . . 104
For a UNIX system . 104

Creating multiple connector 1nsta . 104
Create a new directory . . 104

Clearing messages from WebSphere MQ queues 105

Managing log and trace files 106
Archival logging of log and trace flles . . 107
Managing other files . . 107

Using Adapter Monitor and Fault Queue Manager 108
Adapter Monitor perspective 108
Setting Adapter Monitor preferences. . 109
Loading an adapter . 109
Adapter Monitor displays . 110
Changing the state of an adapter . 111
Using the Fault Queue Manager dlsplay 112
Handling failed events ... 113

Using Log Viewer to view connector messages .. 114
Setting Log Viewer preferences . 114

iv Implementing Adapters with WebSphere Application Server

Changing how messages are viewed. .
Controlling the Log Viewer dlsplay output
Filtering messages .

Appendix A. WebSphere MQ message
formats .

Appendix B. Standard configuration
properties for connectors .
New and deleted properties .
Configuring standard connector propertles
Using Connector Configurator.
Setting and updating property values
Summary of standard properties .
Standard configuration properties
AdminInQueue.
AdminOutQueue .
AgentConnections .
AgentTraceLevel
ApplicationName .
BrokerType .
CharacterEncoding . .
ConcurrentEVentTrlggeredFlows .
ContainerManagedEvents .
ControllerStoreAndForwardMode
ControllerTraceLevel .
DeliveryQueue .
DeliveryTransport .
DuplicateEventElimination .
FaultQueue .
JvmMaxHeapSize .
JvmMaxNativeStackSize .
JvmMinHeapSize .
jms.FactoryClassName
jms.MessageBrokerName
jms.NumConcurrentRequests .
jms.Password
jms.UserName .
ListenerConcurrency .
Locale .
LogAtInterchangeEnd
MaxEventCapacity
MessageFileName .
MonitorQueue . .
OADAutoRestartAgent .
OADMaxNumRetry .
OADRetryTimelnterval .
PollEndTime. .
PollFrequency .
PollQuantity.
PollStartTime
RequestQueue .
RepositoryDirectory .
ResponseQueue
RestartRetryCount.
RestartRetryInterval .
RHF2MessageDomain
SourceQueue
SynchronousRequestQueue
SynchronousResponseQueue

. 116
. 118
. 118

. 121

. 127
. 127
. 127
. 127
. 128
. 128
. 132
. 132
. 132
. 132
. 133
. 133
. 133
. 133
. 133
. 134
. 134
. 134
. 135
. 135
. 136
. 136
. 136
. 136
. 136
. 137
. 137
. 137
. 137
. 137
. 137
. 137
. 138
. 138
. 138
. 138
. 139
. 139
. 139
. 139
. 139
. 140
. 140
. 140
. 140
. 140
. 140
. 141
. 141
. 141
. 141
. 141

SynchronousRequestTimeout .
WireFormat . e
WsifSynchronousRequest Timeout
XMLNameSpaceFormat .

Appendix C. Connector startup
options .

Windows .
UNIX .

Appendix D. Using the Connector
Script Generator tool .

Appendix E. Using Visual Test
Connector. ..
Recommended testing procedure .
Starting Test Connector .
Shutting down Test Connector. .
Creating and editing connector profiles.
Saving the connector definition to a file
Creating a new profile
Editing a profile
Deleting a profile .

. 142
. 142
. 142
. 142

. 143
. 143
. 144

. 147

. 149
. 149
. 150
. 151
. 151
. 151
. 152
. 153
. 154

Emulating a connector154
Working with business objects. 154
Working with request business objects 154
Setting values for business object attributes . . 158
Saving a business object. 159
Loading a business object 159
Deleting a business object 160
Accepting a request business object 160
Working with response business objects . . . 160
Comparing business object instances 161

Appendix F. Upgrading WebSphere
Business Integration adapters . . 163
Assumptions163
Installing WebSphere Business Integration adapters 163
Installing service packs for WebSphere Application

Server.163
Installing service packs for WebSphere MQ . . . 164
Upgrading existing adapters 164
Notices . Ce e e . 165
Programming interface information 166

Contents V

vi Implementing Adapters with WebSphere Application Server

About this document

IBM(R) WebSphere(R) Business Integration Adapters portfolio supplies integration
connectivity for leading e-business technologies, enterprise applications, and legacy
and mainframe systems. The system includes tools and templates for customizing,
creating, and managing components for business process integration.

This document describes how to install, configure, deploy, and manage WebSphere
Business Integration adapters using WebSphere Application Server as the
integration broker.

Note: Illustrations in this manual are only example used to show structure and
concepts. They do not necessarily document specific business integration
scenarios.

Audience

This document is for customers and consultants who are implementing or
administering WebSphere Business Integration adapters for use with WebSphere
Application Server. It is assumed that the reader already knows how to configure
and administer WebSphere Application Server Enterprise and WebSphere Studio
Application Developer Integration Edition, and has a solid understanding of
WebSphere MQ messaging and message flows.

Related documents

Documentation you might need to deploy and manage WebSphere Business
Integration adapters spans the libraries of several different products:

* Each of the WebSphere Business Integration adapters

* WebSphere Application Server

* WebSphere Studio Application Developer Integration Edition
* WebSphere MQ

Information about related books and instructions for accessing them are provided
below.

WebSphere Business Integration adapters publications

The complete set of documentation describes the features and components
common to all WebSphere Business Integration adapters installations, and includes
reference material on specific components.

You can install the documentation or read it directly online at the following IBM
Web site: |http://www.1'bm.com/websphere/integration/wbiadapters/infocenter|

The site contains simple instructions for downloading, installing, and viewing the
documentation.

WebSphere Application Server publications

You can browse and download documents about WebSphere Application Server
and WebSphere Studio Application Developer Integration Edition at IBM’s Web

© Copyright IBM Corp. 2003 vii

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

sites at: http://www.ibm.com/software/webservers/appserv/library|and at

[http://www.ibm.com/software/awdtools/studiointegration/Iibrary|

System Manager publications

Many configuration and administrative activities for WebSphere Business
Integration adapters can be performed using a graphical user interface called
System Manager. For more information about system manager, refer to the

following two guides:

* IBM WebSphere Interchange Server System Administration Guide

* IBM WebSphere Interchange Server Implementation Guide

These are available at the following web site:

lhttp://www.ibm.com/websphere/integration/wicserver/infocenter|

WebSphere MQ publications

WebSphere MQ publications provide information about WebSphere MQ message
formats and protocols. You can browse and download these documents from IBM’s

Web site at: |nttp://www.ibm.com/software/integration/mqfamily]

Typographic conventions

viii

This document uses the following conventions:

courier font

bold
italic, italic
blue text

{1}
L]

/,\

ProductDir
%text% and $text

Windows:
UNIX:
AIX:
Solaris:

Indicates a literal value, such as a command name, filename,
information that you type, or information that the system
prints on the screen.

Indicates a new term the first time that it appears.

Indicates a variable name or a cross-reference.

Blue text, which is visible only when you view the manual
online, indicates a cross-reference hyperlink. Click any blue
text to jump to the object of the reference.

In a syntax line, curly braces surround a set of options from
which you must choose one and only one.

In a syntax line, square brackets surround an optional
parameter.

In a syntax line, ellipses indicate a repetition of the previous
parameter. For example, option[,...] means that you can
enter multiple, comma-separated options.

In a naming convention, angle brackets surround individual
elements of a name to distinguish them from each other, as
in <server_name><connector_name>tmp.10g.

In this document, backslashes (\) are used as the convention
for directory paths. For UNIX installations, substitute slashes
(/) for backslashes. All product pathnames are relative to the
directory where the product is installed on your system.
Represents the directory where the product is installed. .
Text within percent (%) signs indicates the value of the
Windows text system variable or user variable. The
equivalent notation in a UNIX environment is $text,
indicating the value of the text UNIX environment variable.
Paragraphs beginning with any of these indicate notes listing
operating system differences.

Implementing Adapters with WebSphere Application Server

http://www.ibm.com/software/webservers/appserv/library
http://www.ibm.com/software/awdtools/studiointegration/library
www.ibm.com/websphere/integration/wicserver/infocenter
http://www.ibm.com/software/integration/mqfamily

Summary of Changes

This chapter summarizes the major changes made tolmplementing Adapters with
WebSphere Application Server guide for each release.

New with WebSphere Business Integration Adapter Framework v 2.4.0
¢ Installation information updated for current release, including support of
WebSphere Application Server 5.0.2.
¢ Installation information added for UNIX platforms.

* Information about starting and stopping adapters has been updated to include
mention using Adapter Monitor.

¢ An appendix, “Upgrading WebSphere Business Integration adapters,” has been
added.

¢ “Using Visual Test Connector” appendix has been updated.
* Changes made to accommodate new installation and packaging of adapters.

WebSphere Business Integration Adapters v. 2.3.1

The Implementing Adapters with WebSphere Application Server guide was new for this

release.

© Copyright IBM Corp. 2003

ix

X Implementing Adapters with WebSphere Application Server

Part 1. Overview and concepts

© Copyright IBM Corp. 2003

2 Implementing Adapters with WebSphere Application Server

Chapter 1. Overview of WebSphere Business Integration
adapters

The WebSphere Business Integration adapters use modular components and
application-independent business logic. The business integration system
supported by WebSphere Business Integration adapters is distributed and flexible,
with customization features that make it possible to meet site-specific and
application-specific needs.

This implementation guide explains how to deploy and manage a WebSphere
business integration system that utilizes WebSphere Business Integration adapters
with WebSphere Application Server. The guide is divided into two parts:

e Part 1 presents a conceptual overview of the WebSphere Business Integration
adapters portfolio, its major components, and the process by which adapters
interact with an integration broker to create a business integration system.
Information in Part 1 applies to WebSphere Business Integration adapters used
with WebSphere Application Server as the integration broker and (except where
noted as specific to WebSphere Application Server) with other integration
brokers.

* DPart 2 offers task-oriented information to help you install, configure, and
administer WebSphere Business Integration adapters specifically with WebSphere
Application Server as the integration broker. Part 2 is specific to the use of
adapters with WebSphere Application Server and WebSphere Studio Application
Developer, Integration Edition.

This chapter describes the architecture of a business integration system and
introduces the components of a WebSphere Business Integration adapter. It
contains the following sections:

+ |“What is the WebSphere business integration system?” on page 4|

* [“What is an integration broker?” on page 4|

* |“What are WebSphere Business Integration adapters?” on page 5|

* |"How the WebSphere business integration system works” on page 5|

A note about documents you need

To perform all the tasks necessary to deploy a business integration adapter, you
need to use this book together with other books in the WebSphere Business
Integration adapters library, particularly:

 The Business Object Development Guide
* The adapter user guides for the adapters you are deploying.

If you are developing a custom adapter, you also need to use either or both of the
following books:

¢ Connector Development Guide for Java
* Connector Development Guide for C++ .

For a complete listing of the books in the library, see [“WebSphere Business|
[Integration adapters publications” on page vii

© Copyright IBM Corp. 2003 3

What is the WebSphere business integration system?

To compete effectively in e-business, an enterprise must meet two challenges:

* It must move business information among diverse sources to perform business
exchanges.

* It must process and route business information among disparate applications in
the enterprise environment

A business integration system addresses both these needs with flexibility and
extensibility.

At the highest-level, the WebSphere business integration system consists of an
integration broker and a set of adapters that allow heterogeneous business
applications to exchange data through the coordinated transfer of information, in
the form of business objects.

shows a simplified representation of a WebSphere business integration
system.

——— Business |”t§9r|?“0” Business]
App A @ integration roker integration App B
adapter adapter
for App A for App B

Business
integration
adapter
for App C

Figure 1. High-level view of a WebSphere business integration system

What is an integration broker?

An integration broker enables diverse applications to exchange information in
dissimilar forms by handling the processing required for the information to arrive
in the right place and in the correct format. In addition, a broker may facilitate the
application of user-defined rules or business logic to the processing of the data.
Data exchange is performed by the integration broker without requiring
applications to have any knowledge of the data conventions or requirements of the
applications receiving their data.

4 Implementing Adapters with WebSphere Application Server

What are WebSphere Business Integration adapters?

The WebSphere Business Integration adapters consist of a collection of software
programs, application programming interfaces (APIs), and tools you can use to
enable applications to exchange business data through an integration broker. Each
business application requires its own application-specific adapter to participate in
the business integration system.

Each adapter in WebSphere Business Integration adapters portfolio includes:
* A connector that links the application to the integration broker

* Tools with graphical user interfaces to help you configure a connector and create
the business object definitions needed for the application.

* An Object Discovery Agent (ODA), which runs against an application’s data
store to create business object definitions, which you can then refine. Note that
WebSphere Business Integration adapters for some applications do not include
an ODA.

* An Object Discovery Agent Development Kit (ODK), which consists of a set of
APIs you can use to develop an ODA.

A separately-available Adapter Development Kit (ADK) provides a framework for
developing custom adapters in cases where a prebuilt connector for a particular
legacy or specialized application is not available from IBM.

How the WebSphere business integration system works

In the WebSphere business integration system implemented with WebSphere
Application Server, connectivity for moving data between applications and
WebSphere Application Server is supplied by connectors using WebSphere MQ as
the Java Message Service (JMS) provider. A connector can reside on any machine
from which it can access the necessary queues and communicate with the
application.

Each connector consists of two parts—the connector framework and the
application-specific component:

¢ The connector framework interacts with the integration broker using WebSphere
MQ queues.

* The application-specific component interacts directly with an application.

The subcomponents of a connector are shown in [Figure 2 on page 6

Chapter 1. Overview of WebSphere Business Integration adapters 5

?Integration broker [l

Connector

/

Connector framework

‘ Transport layer

ﬁansport interface ﬂ
'Generic services ﬂ

Application-specific component

se class ness cation
functions object event
handler notification

rprlication interface functions i,l

[

Figure 2. Subcomponents of a connector

Data is exchanged between applications by means of application-specific business
objects, which are transported between the connector framework and the
integration broker as WebSphere MQ JMS messages (also referred to as business
object messages).

Business objects encapsulate and transmit business data for the several purposes.
They convey:

* New or changed data from a source application to a destination application.
* Requests for data made by a source application to a destination application.
* Data returned by an application in response to a request for data.

Instructions, associated with each piece of data, encoded as metadata, specify the
location in the application’s database where the data is to be found, created, or
updated. New instances of business objects are created by the application-specific
component based on templates called business object definitions, which specify
the structure and organization of the business object’s attributes, values, and
metadata.

Because application-specific information and other metadata in the business object
definition guide the actions of the application-specific component, such an
application-specific component’s behavior can be described as metadata-driven. An
application-specific component that is metadata-driven is flexible because it has no
hard-coded instructions for each type of business object that it supports. Without
recoding or recompiling, the application-specific component automatically supports
new business object definitions, as long as the corresponding application data can
be accurately described by the connector’s metadata syntax.

6 Implementing Adapters with WebSphere Application Server

Data flow in the business integration system

In the business integration system, data flow—the movement and processing of
data sent from one application or entity to another— can occur either as an
asynchronous or a synchronous exchange between applications, either on a local
network or across the Internet.

An application might need to exchange data with another application to
communicate changes in its data store or to obtain data.

The exchange of data in the business integration system consists of these steps:
1. Event notification
2. Integration broker processing

3. Request processing

Each of these is explained in more detail below.

Event notification

The process of conveying changed application data to the integration broker is
called event notification. Most applications that participate in the business
integration system are modified during the configuration process to include an
event store, such as a table for logging the application’s data changes and data
requests. To detect that an application has newly changed data to share or that it
needs information from another application, the connector framework initiates a
poll call at periodic intervals. The poll call asks the application-specific component
to check for changes to the application’s event store.

If there has been a change since the last poll call, the application-specific
component determines if a business object definition exists to represent the
changed data or the data request. The presence of a suitable business object
definition in the connector’s local repository is an indicator that this particular
change or request needs to be communicated to another application. The
application-specific component sends the application data, in the form of a
business object, to the connector framework. This is referred to as an event
delivery, because a change to an application’s data or a request for data is
considered an event.

[Figure 3 on page § shows a connector and its supporting infrastructure detecting a
change to the application’s data store and constructing an application-specific
business object to convey the changed data to the integration broker.

Chapter 1. Overview of WebSphere Business Integration adapters 7

I 1

Connector

' Integration broker [

Connector
framework

Application-specific

component
Check for
BO definition
A
© Poliing
A=>'
Retrieve N
business|
data
Application
vent
store

Figure 3. The connector detecting and delivering an event.

The numbers in the figure show the sequence of steps:

1. The connector framework initiates to the application-specific component to
have it check for changes to the application’s event store.

2. The application-specific component polls for changes to the application’s event
store.

3. The application-specific component determines whether the changed data maps
to a supported business object definition.

4. The application-specific component instantiates a business object and uses it to
retrieve the changed data.

5. The application-specific component initiates an event delivery to transfer the
business object to the connector framework.

When the connector framework of the source application receives the
application-specific business object, it converts the business object to a WebSphere
MQ message that can be placed on a WebSphere MQ queue for receipt by the
integration broker. A data handler is used by the connector framework to
transform the business object into a message in the appropriate XML-based wire
format for the destination WebSphere MQ queue. [Figure 4 on page 9 shows this
process.

8 Implementing Adapters with WebSphere Application Server

N
Connector A
Connector framework

Event Integration broker
ol Y deliver
handler v
message
Delivery
queue

Application-specific
component

L

Business
data

/_ e
Application A

Figure 4. The connector framework transforming a business object into an MQ message.

Integration broker processing

After the message is placed on the WebSphere MQ event delivery queue for the
integration broker, the integration broker removes the message for processing. In a
WebSphere Application Server environment, this task, and the processing that
follows, are performed by J2EE components that have been created using
WebSphere Studio Application Developer, Integration Edition. Messages picked up
from the queue are handled by MDBs and processed by EJBs.

The processing in the integration broker produces a message that is to be sent to
the destination application. The message, called a request (or HubRequest in an
WebSphere Application Server environment), is placed on a WebSphere MQ
request queue to be transferred to the connector framework of the destination
application.

Request processing
Once the request has been placed on the queue for the destination connector, a

listening mechanism notifies the connector framework of the destination
application’s adapter that a WebSphere MQ message has arrived on its request
queue and needs to be processed. The connector framework invokes the data
handler to convert the WebSphere MQ message into a business object that can be
processed by the destination application, as shown in [Figure 5 on page 10}

Chapter 1. Overview of WebSphere Business Integration adapters 9

10

Connector framework

Integration broker Request

message] |

Request
queue

ta
andler

Application-specific

component
Business
data
Application B

Figure 5. Request processing by the connector.

In some cases, the request might require a response from the destination
application. Generally, a response is used to:

* Return data that the source application has requested from the destination
application

* Return information to the source application about a new business entity (such
as a customer or an order) that the source application has asked the destination
application to create.

If a response is needed, the application-specific component modifies the request
business object to carry the information and sends the business object back to the
connector framework. The connector framework calls the data handler to convert
the business object to a WebSphere MQ message and places the message on the
reply-to queue specified in the originating request message. A correlation ID in the

response message identifies the message to which it is responding.
ﬁ

illustrates how response processing is performed.

Implementing Adapters with WebSphere Application Server

Integration broker Response
message [}

Response
queue

Application-specific
component

~f

Business
F Application B

data

Figure 6. Response processing by the connector.

Summary of the business integration process

Now that you have learned about each step in the business integration process,
you can step back for a look at the system as a whole. Two scenarios are presented
below.

Example of sending changed data to another application
As an example, here are the steps by which the business integration system
enables application A to send changed data to application B for synchronization:

1.

Connector A’s application-specific component detects a change to data in
application A. It determines that a business object definition exists for
communicating this change and uses the business object definition to construct
a business object to carry the changed information.

The application-specific component passes the business object to the connector
framework.

The connector framework invokes the data handler to transform the business
object into a WebSphere MQ message of the correct XML-based wire format
and places the message on a WebSphere MQ queue for the integration broker.

The integration broker receives and processes the message. In a WebSphere
Application Server environment, this takes place when an MDB receives the
message from the queue and routes it to the appropriate EJB for processing.

After processing the message that originated from the connector for application
A, the integration broker places the resulting message on the WebSphere MQ
queue for the connector for application B.

Connector B’s connector framework removes the message from the queue and
calls the data handler to convert it to a business object that can be processed by
the application-specific component.

Application B updates its customer information to reflect the change of address.

Chapter 1. Overview of WebSphere Business Integration adapters 11

12

If application A were requesting data from application B instead of notifying it of a
data change, application B would need to send a response back to application A.
The following example illustrates this scenario.

Example of obtaining data from another application
Here are the steps by which the business integration system enables application A
to retrieve information about a customer’s most recent purchase from application

B.
1.

Connector A’s application-specific component detects that application A has
requested data from application B. It determines that a business object
definition exists for communicating this request and uses the business object
definition to construct a business object for the requested information.

The application-specific component passes the business object to the connector
framework.

The connector framework invokes the data handler to transform the business
object into a WebSphere MQ message of the correct wire format and places the
message on a WebSphere MQ queue for the integration broker.

In a WebSphere Application Server environment, an MDB in the integration
broker receives the message and invokes an EJB that will process it.

One or more EJBs process the incoming message and then place the resulting
outgoing message on the WebSphere MQ queue for the connector for
application B.

Connector B’s connector framework removes the message from the queue and
calls the data handler to convert it to a business object that can be processed by
the application-specific component.

Connector B’s application-specific component retrieves the information
specified in the request and passes it back to the connector framework as a
business object.

Connector B’s connector framework invokes the data handler to transform the
business object to a response message and places it on the reply-to queue
specified in the originating request.

The chapters that follow describe in more detail the business integration
components introduced here and the process by which they enable applications to
share data.

Implementing Adapters with WebSphere Application Server

Chapter 2. Business objects

A business object reflects a data entity—a collection of data treated as a unit. For
example, a data entity can be equivalent to an employee record, containing all the
basic information about the employee - the name, address, telephone number,
employee number, position code, salary, and so forth.

The business integration system creates business objects that reflect the information
contained in entities. In this book, a data entity is often referred to in the context of
the kind of business information it contains—for example, an employee entity or a
customer entity.

Business object definitions are the templates from which the application-specific
component creates a particular instance of a business object.

This chapter introduces business objects in more detail and explains how they are
used by the business integration system to carry data between applications. It
includes the following sections:

+ |“Roles of a business obiject”]

* |[“Types of business objects” on page 16|

+ |“Business object definitions and business objects” on page 16|

+ |“A closer look at business objects” on page 19|

+ |[“Ways to create or modify business object definitions” on page 21|

Roles of a business object

A business object can act as an event, a request, or a response.

Event

A business object can report the occurrence of an application event, an operation
that affected a data entity in an application. The application event might be the
creation, deletion, or change in value of that collection of data.

When a connector detects an application event and sends a business object to the
integration broker, the role of the business object is to represent the event. So, it is
called an event in the business integration system.

For example, a connector might poll an application for new employee entities on
behalf of the integration broker. If the application creates a new employee entity,
the connector sends an event business object to the integration broker.

Request

Requests are typically generated as follows. The integration broker sends a
business object message as a request to the connector framework, instructing it
have the application-specific component insert, change, delete, or retrieve some
data in an application.

Response

When a connector finishes processing a request, it usually returns a response to
the integration broker. For example, when a connector receives a request to create

© Copyright IBM Corp. 2003 13

an employee record in the destination application, it sends a business object with
the created employee data and a status indicator that shows that the create was
successful.

Structure of a business object

A business object is a self-describing unit that contains a type (its name),
processing instructions (a verb), and data (attribute values).

is an example of a simple business object, showing its type, verb, and
attribute values.

} Business object type

Create } Verb

3

Como

David

Apt 2C

123 Fairchild
Mountain View r Attribute values
CA
94040
408
6321111

Figure 7. Business object components.

The next sections describe these components.

Business object type

Each business object has a type name that identifies it within the business
integration system. For example, the type might be Customer, Employee, Item, or
Contract.

Business object verbs

A business object verb specifies an action in relation to the attribute values. The
verb can indicate various types of actions, depending on the role of the business
object. lists the three business object roles and describes the meaning of the
verb in a business object that has each role.

Table 1. Meanings of business object verbs.

Role of business object = Meaning of verb

Event Describes what happened in an application. For example, in an
event, the Create verb indicates that the source application
created a new data entity.

Request Tells the connector how to interact with the application in order
to process the business object. For example, the Update verb is a
request to the connector to update the data entity.

14 Implementing Adapters with WebSphere Application Server

Table 1. Meanings of business object verbs. (continued)

Role of business object = Meaning of verb

Response Lists the verb specified in the associated request. For example,
in a response, the Retrieve verb indicates that the connector
obtained the attribute values from the application.

Note: The IBM convention is to use the format business-object-type.verb to indicate a
particular type of business object with a particular verb. For example,
Customer.Create is a Customer business object with the Create verb.

Business object attribute values

A business object contains attribute values that represent data fields associated
with the data entity, such as Last Name, First Name, Employee ID, or Invoice
Status.

Some attributes, instead of containing data, contain child business objects or
arrays of child business objects. illustrates the structure of a Contract
business object. The Line Item information in the contract is in an array of child

business objects.

Create
ID
Customer ID
Date
Text
Authorization

Line-item

Business object 1

Line items

Line-item

Business object 2
— —

Line-item

Business object 3
T —

Figure 8. Business object with child business objects.

A business object that contains child business objects or arrays of child business
objects is a hierarchical business object. One whose attributes contain only data is
a flat business object.

Chapter 2. Business objects 15

Types of business objects

There are two types of business objects: application-specific and generic.
Application-specific business objects are used in any WebSphere business
integration system, regardless of which integration broker is being used. Generic
business objects are used only if the integration broker is WebSphere InterChange
Server (ICS). When WebSphere Application Server is the integration broker, only
application-specific business objects are used. Therefore, all references to business
objects throughout this book refer to application-specific business objects. Many of
the books in the IBM WebSphere Business Integration (WBI) Server documentation
set cover both environments and therefore refer to both types of business objects.

* Application-specific business objects reflect the data entity attributes and the
data model of a specific application or other programmatic entity.

* Generic business object contain sets of business-related attributes that are
common across a wide range of applications, and are not tied to any specific
application’s data model. Generic business objects are not used when WebSphere
Application Server is the integration broker, but are discussed in the books that
are included in both the WebSphere Business Integration adapters library and
the WebSphere InterChange Server library.

When an application-specific component detects an application event such as an
update, it retrieves the appropriate data entity from the application and transforms
it into a business object.

Note: When documentation refers to a business object whose name includes an
application name, such as Clarify_Contact or Oracle_Customer, it refers to
an application-specific business object. A Clarify_Contact business object, for
example, contains the set of information that the Clarify application stores
about a contact. In another application, a contact entity might store a
somewhat different set of information, store the information in a different
order or format, or have a different name.

After an application-specific component has built a business object, it sends
the business object to the connector framework. The connector framework
calls the data handler to convert the business object to a WebSphere MQ
message to be dispatched to the integration broker.

Business object definitions and business objects

16

[Chapter 1, “Overview of WebSphere Business Integration adapters,” on page 3
introduced business objects but only mentioned briefly the distinction between
business object definitions and instances of the business objects themselves. Let’s
look more closely at that distinction now:

* A business object definition specifies the types and order of information in
each entity, and the verbs that it supports. The local repository for the connector
stores business object definitions.

* A business object is an instance of the definition, containing actual data.
Business objects are created at runtime and not stored in the repository.

[Figure 9 on page 17]illustrates the relationship between a business object definition
and a business object.

Implementing Adapters with WebSphere Application Server

Business object definition Business object

T — T —

Su\;/)é)rct))r;ed Attributes Verb: Create
Create Attribute name Type Attribute value
Retrieve Entity N Stri Jane's Car Wash
Update ntity Name ring ane's Car Was
Delote Entity ID String 50059

Reference ID String Null

Reference Name String Null
Cust_Phone_Cntry String 01
Cust_Phone_No String 415-333-4444
Cust_Fax_Cntry String 01
Cust_Fax_No String 415-666-7777
Type String Regular

Status String Active

Industry String Retail Sanitation
Primary_Addr? String Yes
Address_Line1 String 200 Airport Blvd
Address_Line2 String Null
Address_Line3 String Null

City String Burlingame
State String

Region String

Postal_Code1 String

Postal_Code2 String

Figure 9. Business object definition and business object.

Components of a business object definition

In simplified terms, a business object is characterized by its type, its attribute
values, and its verbs.

Opverall, a business object definition is identified by its name. The name indicates
the business object definition type, such as Customer, VantiveCase, or Invoice. A
business object can also have application-specific information (metadata) that helps
the application-specific component process it. All business objects also contain
attributes and verbs, as the next sections describe.

Attributes

Attributes in a business object definition describe the values connected with the
entity, such as Last Name, Employee ID, Case Number, Amount, or Date Initiated.
At runtime, attributes are filled in with actual data.

For example, an Employee business object definition might contain attributes for
the employee’s name, address, employee ID, and other relevant information. The
attributes of a business object are analogous to the fields of a form or columns in a
database table.

An attribute can also refer to a child business object or to an array of child

business objects, such as an array of line items in a contract or part references in an
invoice.

Chapter 2. Business objects 17

18

Verbs

ObjectEventld attribute: The ObjectEventld attribute is a required attribute and is
the last attribute in every business object.

When a connector publishes an event, it uses the ObjectEventld attribute of the
business object definition to store a unique value that identifies the specific
business object instance that is being created. In some implementations, the value
of the ObjectEventld attribute can be generated by the business integration system
and used to identify and track the flow of the specific event through the system.

Basic and compound attribute types: If an attribute’s type is a basic data type,
such as String, Boolean, Double, Float, or Integer, the attribute value is a discrete
piece of data, such as the value of a field in a database. Examples include
LastName, CustomerID, PartNumber, AssignedTo, and Price.

If an attribute’s type is the name of another business object definition (a compound
type), the attribute value is a child business object or an array of child business
objects. Examples include Customer, Contract, and Oracle_Contact.

Attribute properties: A number of properties define the value that the attribute
represents. Without showing all possible properties, illustrates the place
of attribute properties in a business object definition.

Name
Header Type
Attribute Key value?
Attribute Maximum length

Application-specific

Attribute information
Supported verbs Default value
Required?

Figure 10. Attribute properties.

The set of properties for a particular attribute depends on whether the attribute
type is basic or compound; that is, an attribute’s properties differ depending on
whether the attribute refers to a single unit of data or to a child business object.

Verbs indicate actions on the data in the business object. A business object
definition contains a list of verbs; a business object contains only one verb.

The most common verbs associated with business object definitions are Create,
Retrieve, Update, and Delete.

Implementing Adapters with WebSphere Application Server

The meaning of a verb differs according to the role of the business object. The verb
can describe an application event, make a call, make a request, or identify the
result of a previous request.

Note: Some applications do not support requests for hard deletes. For such
applications, the business integration system performs the equivalent logical
deletion, which is usually an update to inactive status. Furthermore, even if
an application supports hard deletes, you can configure the business
integration system so that it converts Delete verbs to Update verbs when
sending requests to that application.

A closer look at business objects

A business object contains the data that an application-specific component moves
into or out of a particular application. Therefore, each business object definition
reflects the application’s data model and the application-specific component’s
access method.

Even when two application-specific business objects refer to similar application
entities, differences appear in the way that attributes are organized and in the
application-specific information for them.

Attribute organization

Applications often organize the same information in different ways. For example,
Application A stores a telephone number and fax number for a contact in four
fields, but Application B stores the same numbers in two fields.

APP ation A APP ation B

Main phone country code

Main phone number Telephone number

Main fax country code Fax number

Main fax number

Figure 11. Telephone data in two applications.

The business object definitions for the Application A business object and the
Application B business object have different attributes to reflect this difference.

Application-specific information

Business objects also differ because each can optionally contain built-in processing
instructions for its application-specific component. Referred to as
application-specific information (or metadata), it can consist of any information
that the application-specific component needs to process the business object.

A business object definition can have application-specific information that applies
to the entire business object, to each attribute, and to each verb. At each place

Chapter 2. Business objects 19

20

where application-specific information appears in a business object definition, it
provides information that the connector uses in its interactions with the
application.

Application-specific information for a business object
Application-specific information for the business object provides information that
the application-specific component uses when processing the business object as a
whole.

Application-specific information for an attribute

Often, application-specific information that applies to an attribute identifies the
attribute value’s location in the application. The application-specific component
uses this identifier when building API calls to the application to retrieve or enter
the attribute value.

Application-specific information takes different forms for different applications.
Sometimes the application-specific component can reference the attribute location
by means of the application’s form and field names; other times the reference is
more complex.

provides examples of parameters that might be included in an attribute’s
application-specific information. These parameters would be relevant only to a
business object that represents data in a database table.

Table 2. Example name-value parameters for attribute application-specific information

Parameter Description
TN=TableName The name of the database table
CN=col name The name of the database column for this attribute.

FK=[..]fk attributeName] The value of the Foreign Key property defines a
- parent/child relationship.

UID=AUTO This parameter notifies the connector to generate the unique
ID for the business object and load the value in this
attribute.

CA=set attr name The Copy Attribute property instructs the connector to copy

the value of one attribute into another. If set_attr_name is
set to the name of another attribute within the current
individual business object, the connector uses the value of
the specified attribute to set the value of this attribute before
it adds the business object to the database during a Create
operation.

0B=[ASC | DESC] If a value is specified for the Order By parameter and the
attribute is in a child business object, the connector uses the
value of the attribute in the ORDER BY clause of retrieval
queries to determine whether to retrieve the child business
object in ascending order or descending order.

UNVL=value Specifies the value the connector uses to represent a null
when it retrieves a business object with null-valued
attributes.

A single attribute’s application-specific information might combine several of the
example parameters listed above. This example uses semicolon (;) delimiters to
separate the parameters:

TN=LineItems;CN=P0id;FK=..PO_ID

Implementing Adapters with WebSphere Application Server

The application-specific information in this example specifies the name of the table,
the name of the column, and that the current attribute is a foreign key that links
the child business object to its parent.

In exceptional cases, application-specific information for attributes is unnecessary.

For example, some applications provide very direct and easy to use designations
for units of data. Imagine that an application identifies sample fields as

illustrates.

Table 3. Sample application identifiers

Application’s identifier for the field containing the

Attribute value

Customer ID XCustomerID
Customer name XCustomerName
Status XStatus

Industry XIndustry

In the example that illustrates, it is easy for the application-specific
component to associate an attribute with its identifier in the application because
the rules for conversion are so regular: add the X or subtract the X. Therefore, the
attributes in business objects for this application may not need application-specific
information.

Application-specific information for verbs

A business object definition can include application-specific information for each
verb that it supports. The application-specific information tells the
application-specific component how to process the business object when that verb
is active.

Ways to create or modify business object definitions

Each connector requires a set of business object definitions to define the data that
is to be communicated to other applications. When the application-specific
component is required to send data to the integration broker, it instantiates a new
business object from one of the business object definitions it supports. One step in
the process of configuring a connector is to select the business object definitions to
be supported. First, however, you need to create or otherwise generate business
object definitions for the application.

Creating business object definitions

There are several ways to construct or obtain business object definitions for an
application.

* If an object discovery agent (ODA) exists for your application, you can use it to
build business object definitions. An ODA examines the structure and
organization of the application’s stored data and constructs business object
definitions based on what it finds. If an ODA does not exist for your application,
you can use the object discovery agent development kit (ODK) to build an ODA.

* You can use the Business Object Designer tool to create business object
definitions, either by modifying those generated by an ODA or by constructing
them from scratch.

Other resources
The Business Object Development Guide provides detailed information about creating
business object definitions.

Chapter 2. Business objects 21

In addition, many adapters include sample business objects. If samples are
included, they are located in the product directory under:

Windows:
\connectors\ConnName\Samp1les

UNIX:
/connectors/ConnName/Samples.

Modifying business object definitions

You might need to modify a business object definition for several reasons - to
capture additional application data, to stop collecting data found to be
unnecessary, or to respond to changes to another application. The Business Object
Designer tool, described in the Business Object Development Guide, is the most
convenient way to make these modifications.

22 Implementing Adapters with WebSphere Application Server

Chapter 3. Connectors

A connector mediates between an application and the integration broker on a local
network. It can be specific to an application—such as SAP R/3, version 4—or to a
data format or protocol, such as XML or WebSphere MQ. It consists of an
application-specific component and a connector framework.

All connectors share certain common behaviors, differing only in the manner in
which they interact with applications and with business objects. This chapter is an
introduction to both the common behavior of connectors and to the areas in which
they differ. It includes the following sections:

* [“Connector startup’

¢ |“Event notification”

+ |[“Request processing” on page 29|

[“Guaranteed event delivery” on page 29|

+ |[“Connector configuration” on page 34|

+ |[“Connector development” on page 34|

In some environments, connectors are “black boxes”; you can simply install,
configure, administer, and use a connector without much concern for its internals.
If you need to create a custom connector, however, you need more detailed
knowledge of connector behavior. For information on creating or modifying a
connector, refer to the Connector Development Guide for Java or the Connector
Development Guide for C++.

Connector startup

A connector must be explicitly started using a startup script which can be invoked
from the command line or from a Windows shortcut.

Each connector has a local repository, which holds the connector’s configuration
file and a separate XML schema document for each business object definition. The
repository is a directory in the local file system where the application-specific
component is installed.

During startup, the connector does the following:

1. Loads the supported business object definitions and configuration properties
from its local repository.

2. Connects to the application.

Note: An integration broker need not be running when you start a connector.
However, no data can be transferred until the integration broker is active.

Event notification

Note: “Event notification” refers to the processing of events that originate from the
connector’s event notification mechanism. In the Agent Request interaction
pattern, the processing of the message that contains such an event requires a
response from the integration broker; this is sometimes referred to as
“synchronous event delivery” or “synchronous event processing.” In the

© Copyright IBM Corp. 2003 23

24

Agent Delivery interaction pattern, a response from the integration broker is
not required; this is sometimes referred to as “asynchronous request
processing”.

A connector whose application provides triggering events must learn about those
events and send the associated data to the integration broker. illustrates a
connector’s interactions with respect to event notification.

Connector

Integration broker Message

Queue Connector
framework

I
50

Application-specific
component

—f

Detecting and retrieving

an event =
Application

Figure 12. Event notification in a connector.

The ways in which application-specific components detect and retrieve events
differ from one connector to another. However, the way in which
application-specific components send events to the connector framework, and the
way in which the connector framework deliver those events to the integration
broker, is standard across all connectors.

The following subsections describe general concepts regarding the operation of
most connectors, including:

* How connectors use application event-notification mechanisms
* How connectors detect and process events.

This discussion is not intended to describe the specific implementation of any
particular connector.

Setting up the application’s event-notification mechanism

To a connector, an application event is any operation that affects the data of an
application entity that is associated with a WebSphere Business Integration
adapters business object definition. There are other types of events in applications;
for example, a mouse click is an event to an application’s window system or forms
interface. The connector, however, is interested only in a pre-defined subset of the
data-level events that create, update, delete, or otherwise affect the content of the
application’s data store.

Implementing Adapters with WebSphere Application Server

Some applications explicitly trap and report events, providing user-friendly event
management and configurable event text. Other applications, without a concept of
discrete, reportable events, might silently update their databases when something
happens. WebSphere Business Integration adapters provide connectors for both
types of applications.

For most connectors, some application configuration is needed to set up an event-
notification mechanism for the connector’s use. An event-notification mechanism
maintains an ordered list of operations that take place in the application. It might
have the physical form of an application event queue, an e-mail inbox, or a
database table.

What types of event-notification mechanisms do connectors use? The next sections
illustrate some general approaches.

When applications have event support
If an application is event-based, it probably has an event-notification interface for

use by client applications such as connectors. The application might also permit
you to configure the text of the event report. For such applications, setting up the
connector’s event-notification mechanism is a normal application setup task.

For example, imagine that an application lets you install a script that executes
when a particular type of event occurs and that the script can place a notification
in an event inbox. To install the connector for that application, you create a user
account for the connector, write or obtain scripts for handling the events you want
to track, install the scripts, specify the type of event that triggers each script, and
create the inbox. When you are done, the application-specific component
periodically retrieves the inbox contents to check for new events.

illustrates an application configuration that includes an event inbox.

r Connector w

A

Polling

Application

Event
notification

Figure 13. Example: Using an event inbox for event notification.

Event
notification
mechanism

Event-triggered
script

Another application might have an internal workflow system that can generate
e-mail messages or write to an event queue when a particular operation occurs.
[Figure 14 on page 26| illustrates an application that has its own business object
repository where business objects and events are defined. In the figure, Customer
is a business object and Create, Delete, and Update are the types of events
associated with it.

When a business object event such as Customer.Update takes place, the event is
sent to the workflow system, which places an entry in an event table in the
application database.

Chapter 3. Connectors 25

26

r Connector

Polling

Application

Event
table
i
Workflow
U

Customer.Update

Business object repository

Business
object
Events

[Create] [Delete]

Update

Figure 14. Example: Using application workflow for event notification.

When applications lack event support

The preferred method for a connector to interact with application events is through
the application’s API, which provides a framework that enforces the application’s
data model and logic. However, some application APIs do not provide native
support for event notification.

One way that a connector can receive event notifications from such an application
is to interact with the application database. For example, you can set up a trigger
on an Employee table that detects updates to the rows. When an update occurs,
the trigger inserts information about the update into a table, created when you
deploy the connector. Each new row that appears in the event table represents an
event notification. The connector can use SQL queries to retrieve new events from
the table.

[Figure 15 on page 27| illustrates this approach.

Implementing Adapters with WebSphere Application Server

Employee table

12345 Aleph Alek 3344 Oak Street
67890 Bays Betty 294 Pine Ave
83920 Camph Cal 97 A Street
39482 Deck Debbie 1264 Rhineland
Edgar 3 Ash street

Trigger

Camph 83920 971022 14:20:33 Create
For new row: Ellis 33993 971022 22:00:00 Create
insert into event table
last name, ID,
system time, “Create”

Figure 15. Example: Using the database for event notification.

In the application database has a trigger on the creation of records in the
Employee Table. Each time the application inserts a new record, the trigger creates
a row in the event table. The row contains the key values of the new employee
record (last name and employee ID), the system time, and the event type, Create.

Detecting an event

A connector’s application-specific component learns about application events
through its event-notification mechanism, the most common of which is polling for
new events in the event store. The polling method is specific to the application,
based on the event- notification mechanism that the connector uses.

Polling is configurable. When you use the Connector Configurator tool to configure
a connector, you can:

¢ Adjust the frequency with which the application-specific component polls the
application

¢ Specify the hours during which the application-specific component polls the
application.

For most connectors, you can also specify the number of events to be processed
per poll call.

An application-specific component need only poll an application if another
application is interested in that application’s events. If a particular application is
not the source of events, you can stop the application-specific component from
polling by setting its polling frequency to “no” using the Connector Configurator.
To learn more about the Connector Configurator, refer to either of the Connector
Development Guides or to the adapter user guide for the adapter you are
deploying.

Processing an event
After detecting an event, the connector’s application-specific component:

* Associates the application event with a business object definition and creates an
instance of that business object

Chapter 3. Connectors 27

* Sets the verb and key value attributes in the business object
* Retrieves application data and populates the business object’s attributes
* Sends the business object to the connector framework

* Archives the event (optional).

Associating an application event with a business object
definition

When an application-specific component retrieves an event, it must determine
which business object definition and verb represent the event.

The application-specific component uses the event text to associate the event with
a business object definition and verb, as [Table 4f shows.

Table 4. Event text and business object formation

Type of data in the Examples Use

application event

Application entity type Customer, Part, Item Determining the associated
business object definition

Operation that occurred Create, Update, Delete Determining the active verb

of the business object

For example, a connector can associate the following event text with an
Employee.Create business object:

1997.10.19.12:50.22 employee created Tname="como" id="101961"

From left to right, the event text consists of:

* A time stamp that helps to uniquely identify the event
¢ The application entity “employee”

* The operation “created”

* The employee’s last name and ID, unique identifiers (key values) with which the
application-specific component can retrieve the rest of the employee information.

Note that this example is simple; other types of event text might require more
processing by the application-specific component.

Building an application-specific business object

If the connector’s been configured to support the business object definition for the
event, the application-specific component builds a business object, uses a key value
to retrieve application data, and fills in the business object with the application
data. [“Business object construction and deconstruction” on page 31| describes the
process of building a business object.

Sending the application-specific business object to the
connector framework

The application-specific component sends the business object to the connector
framework without needing to know the identity of the business process that will
receive the information carried in the business object.

Archiving events
Application event archives are useful for troubleshooting and record-keeping. An
event archive contains status information about each event, such as:

* Successfully sent to the integration broker
* Processing failed

28 Implementing Adapters with WebSphere Application Server

If an application provides an event archiving feature, the connector generally uses
it. A connector for an application that does not support event archiving might have
its own event archive. For example, if a connector’s event-notification mechanism
is like the database mechanism illustrated in[Figure 15 on page 27} a database
trigger could copy deleted events to an archive table. that you create when you
deploy the connector.

Guaranteed event delivery

Guaranteed event delivery ensures that critical events, such as financial
transactions, are processed correctly, regardless of any service interruptions that
might occur. This feature enables the connector framework to guarantee that each
event is detected and transmitted only once from the source connector’s event
store to the destination connector’s request queue.

Without guaranteed event delivery, a small window of possible failure exists
between the time that the connector detects an event and the time all necessary
processing has completed. If a failure occurs in this window, the event has been
sent but its event record remains in the event store. When the connector restarts, it
finds this event record still in the event store and treats it as a new event, causing
the event to be sent twice.

For more information about guaranteed event delivery and to learn how to enable
it for the adapter you are deploying, refer to the adapter’s user guide.

Request processing

Note: In WebSphere Business Integration adapters documentation, "request
processing” refers to the handling of a business object request message sent
from the integration broker to a connector. The Hub Request interaction
pattern is request processing in which the connector is required to return a
result to the integration broker. The Hub One Way interaction pattern is
request processing in which the connector is not required to return a result
to the integration broker.

When a process tells it to do so, the integration broker sends requests, in the form
of WebSphere MQ messages, to a connector.

In a typical scenario, the integration broker first receives an event notification
business object message from the connector for a source application, and as a result
of processing that event, it then sends a request business object message to the
connector for a destination application.

A request can be made to the destination application to do either of the following:
* To retrieve business data and return it to the integration broker.
* To update the application’s data store.

For example, the integration broker might send a connector a request message to
delete a contract, update a part, or create a customer.

When the connector framework receives an integration broker’s request, it converts
the message into a suitable business object and forwards it to the
application-specific component. For example, if the integration broker sends a
request to delete a contract, the application-specific component receives the request
in the form of a Customer.Delete business object. The application-specific

Chapter 3. Connectors 29

30

component translates the business object into an application request—typically a
set of calls to the API—and then returns the results, if needed.

illustrates a connector’s interactions with respect to handling messages
from the integration broker in a Hub Request interaction pattern.

Connector

Connector
framework
M. g &
Integration broker M AN
essage |5 %

Application-specific
component

o

Request Response
‘ 4
Application

Figure 16. Connector interactions for request handling.

When an application-specific component receives a request, it determines how to
process the request based on three types of information:

* The verb of the business object

* Metadata that is contained in the business object definition itself and used in the
construction and deconstruction of the business object

* Application-specific information for the verb.

These factors are described in the topics that follow.

Verb-based processing

A connector’s application-specific component responds to the Create, Retrieve,
Update, or Delete verb in a request according to the logic and API of its
application. The application-specific components of different connectors might
handle the same type of request differently, although the result is logically the
same.

For some connectors, only one method is required for performing operations on a
business object, regardless of what verb the request contains. But for many
connectors, each verb requires a different method.

When an application-specific component receives a request, it invokes the method
in the application that matches the business object’s active verb. For example,
when a application-specific component receives an AppAEmployee.Update
business object, it invokes the Update method on the AppAEmployee object. The
Update method interacts with the application in order to perform the update.

Implementing Adapters with WebSphere Application Server

illustrates some verb handling methods.

E Connector

Ly

Connector framework

Integration broker Messagg

|
(Customer.Createl|ltem.Retrieve[Contract.Delet
BO BO BO

I

Application-specific - y
component DoCreate() oRetrieve()} | DoDelete()

gh ANV4 ANY4

V V
Application [

When the connector in receives a Customer.Create, Item.Retrieve, or
Contract.Delete request, it invokes its DoCreate(), DoRetrieve(), or DoDelete()
method, respectively. Each method builds the appropriate commands for the
application to perform the specified operation.

Figure 17. The processing of requests.

Business object construction and deconstruction

A connector’s application-specific component accomplishes its event notification
and request-handling tasks by constructing and deconstructing business objects:

* When an application-specific component detects an event that it must send to
the integration broker, it constructs a business object that represents the event.

* When an application-specific component receives a business object that
represents a request from the integration broker, it deconstructs the business
object to create an application request.

Business object metadata and connector actions
A connector’s transformation of an application event to a business object and from

a business object to an application request is driven by data definitions (metadata)
that are defined when a business object is designed.

Application-specific components and business object metadata are designed to
work together. The design of an application-specific component and its business
objects is analogous to the design of a computer device in which certain functions
can be implemented by either the software or hardware. The developer considers
performance, extensibility, and other issues to decide where to implement key
features.

Business object definitions include properties that specify the types, sizes, and
default values for attributes. They also include application-specific properties that
contain instructions to the application-specific component on how to process the
business object.

Chapter 3. Connectors 31

32

Table 5. Example name-value parameters for application-specific information associated
with attributes.

Parameter Description

TN=TableName The name of the database table

CN=col name The name of the database column for this attribute.
FK=[..] fk_attributeName] The value of the Foreign Key property defines a

parent/child relationship.

UID=AUTO This parameter notifies the connector to generate
the unique ID for the business object and load the
value in this attribute.

CA=set attr name The Copy Attribute property instructs the connector
-7 to copy the value of one attribute into another. If
set_attr_name is set to the name of another
attribute within the current individual business
object, the connector uses the value of the specified
attribute to set the value of this attribute before it
adds the business object to the database during a
Create operation.

When processing a business object, the application-specific component reads the
definition and uses the application-specific information to build an application
request. For more information on business objects, see the Business Object
Development Guide.

Because the application-specific component is metadata-driven, its actions are
controlled by application-specific information and other metadata in the business
object definition. It does not have hard-coded instructions for each type of
supported business object. Being metadata-driven gives the application-specific
component the flexibility to automatically support any new or changed business
object definition as long as the corresponding application data can be accurately
described by the connector’s metadata syntax.

An example of business object construction
The following process describes how an application-specific component creates a

business object from its definition:

1. Obtains the business object definition from its local repository and uses it to
create a business object instance.

2. The application-specific component loops through the business object instance
attribute by attribute, using application-specific information to prepare an API
call or build a query to obtain the application entity.

3. The application-specific component sends the request to the application and
retrieves the results.

4. The application-specific component loops through the results, using the value
of AppSpecificInfo to determine which retrieved value represents each business
object attribute.

[Figure 18 on page 33|is an example of an application-specific component that is
building a business object from the definition. The application-specific component
has retrieved an application event involving an item whose key value, the item
number, is 123. The application-specific component must build an Item business
object from the business object definition, which contains four attributes: Group,
Description, Price, and ItemNum.

Implementing Adapters with WebSphere Application Server

Business object definition item

Attribute: ltemNum
Attribute: Price
Attribute: Description
Attribute: Group

Type=String
Key=False
Required=True

Application-specific
component

Application request

Where ItemNum=123
Get

AppSpecificlnfo= |FormXFieldB f

>| FormXFieldBj|

MaxLength=128

FormXFieldC
FormXFieldD

Business object item

ltemNum=123

Group= | hardware
Descript
Price=

hardware

Application result

(

|
API | Application

hammer
$12.98

Figure 18. Building a business object in a connector.

Using the item number, 123, to identify the item, the application-specific
component retrieves the values of the remaining attributes. Application-specific
information identifies the form and field identifier for the required data.

For example, FormXFieldB identifies Group data. The application-specific
component requests the value of Field B in Form X for item ID 123. The
application-specific component then uses the returned value, “hardware,” to fill in
the value of the business object’s Group attribute.

The process of deconstruction works in the opposite way. The application-specific
component uses the business object definition to determine how to make an
application request from the data contained in the business object that it received.

Application-specific information for verbs

Each verb in the business object definition can have application-specific
information associated with it. The content of the verb’s application-specific
information is unique to the particular connector. The application-specific
information for the verb provides the connector’s application-specific component
with additional instructions for processing the business object.

For example, application-specific information for the Retrieve verb in a business
object definition might supply special input arguments to the Retrieve method in

that application-specific component.

As an example, suppose that the MyApp application has three forms in which
information about Inventoryltem appears:

¢ Inventoryltem-New

* Inventoryltem-Change

Chapter 3. Connectors 33

* Inventoryltem-Remove.

When the application-specific component for MyApp performs an operation on an
inventory item, it must reference the correct form for that operation. In the
Inventoryltem business object definition, the application-specific information for
the verb can be used to store the form name.

The combination of verb-specific methods and application-specific input to those
methods gives an application-specific component unique instructions for
processing.

Connector configuration

Before a connector can be used, you must use the Connector Configurator to define
a configuration file that contains:

¢ The business objects that the connector supports
* The configuration properties for the connector.

There are two types of connector configuration properties, standard properties and
application-specific properties.

Standard properties, which apply to all connectors, specify information such as:

* The integration broker used with the connector

* The location of the connector’s local repository

e The name of the queue manager that manages the queues used by the connector.

Application-specific properties specify values that a particular application-specific
component needs to establish a session with the application. They also direct
certain aspects of the application-specific components processing behavior. Here
are examples of application-specific properties for various connectors:

e The name or IP address of the machine running the application
* The name of the application database

* The login user ID and password the connector needs to use to access the
application

¢ The name of the event inbox

* The number of events to be retrieved per polling event.

Some connector configuration properties can also be set at the command line when
you start up the connector. Properties set on the command line override the values
set in the connector’s configuration file.

For more information on configuring a connector, refer to [“Configuring thel
connector” on page 57.| To learn more about starting up a connector, see |"Starting 9]
connector” on page 103

Connector development

To modify or create a connector, you use class libraries and samples to create an
application-specific component. You then use the Connector Configurator to create
and modify business object definitions and create connector repository definitions.

34 Implementing Adapters with WebSphere Application Server

Connector development involves defining the relationship between the
application-specific component and a particular application. The actual coding of a
application-specific component is usually a fairly straightforward process. The
most challenging tasks are:

* Designing the application’s event-notification method

* Defining business object definitions

* Defining the relationship between the business objects and the application
objects.

For detailed information on connector architecture, modifications, and
development, refer to the Connector Development Guide for Java or the Connector
Development Guide for C++.

The next chapter, [Chapter 4, “Data transport and the integration broker,” on page]
provides a more detailed look at the mechanisms and protocols used to transfer
information among the business integration system’s components.

Chapter 3. Connectors 35

36 Implementing Adapters with WebSphere Application Server

Chapter 4. Data transport and the integration broker

WebSphere Business Integration adapters implemented with WebSphere
Application Server as the integration broker use WebSphere MQ queues and Java
Messaging Service (JMS) software as the communication transport mechanism
between the connector framework and the integration broker. Connectors read
messages from and write messages to pre-defined queues, managed by the
WebSphere MQ Queue manager.

This chapter describes in detail the messaging interfaces and protocols used to
exchange data among applications in the WebSphere business integration system.

The role of the integration broker

The integration broker both routes messages between application connectors and
performs processing on the messages. Specifically, the integration broker:

* Receives a message from the outbound queue of a connector.
¢ Performs processing on that message.

* As a result of that processing, sends a messages to the inbound queues of one or
more connectors.

Communication between the integration broker and a connector can be
asynchronous or synchronous.

Asynchronous data transport

Programs that use asynchronous messaging transport need not establish
connections or wait for messages (discrete units of data); each program sends and
receives messages by interacting asynchronously with the messaging service. The
messaging service provides guaranteed delivery, storing the message if the
destination program is unavailable and retrying until it is available.

Synchronous data transport

Programs that use synchronous messaging transport post request messages to the
integration broker on a synchronous request queue and receive response messages
from the integration broker from a synchronous response queue. A correlation ID
on the response message identifies the request message to which it is responding.
Response messages generally consist of business object messages and a status
indicator that shows whether the request was processed successfully.

Interfaces for message exchange

This section describes the messaging interfaces used by the connector framework
and the integration broker to transmit messages and the information needed to
process them.

Several distinct types of messages are exchanged within the business integration
system. Essential information needed to identify the different types of messages, as
well as process and route them correctly, is stored in the message header and the
message descriptor of each message. Message flows you create for your business

© Copyright IBM Corp. 2003 37

38

integration system use the information presented below to recognize and correctly
manage messages they are called upon to process.

The following types of messages are passed:

* Event delivery messages are sent by the connector framework to the integration
broker to notify the broker of an event in the source application. In the
WebSphere Application Server environment, such messages are commonly
referred to as Agent Delivery. Agent delivery messages are written to the
Delivery Queue (see "Required Types of Queues,” below) by the connector
framework, and are read from the DeliveryQueue by the integration broker.

* Request messages are exchanged between the connector framework and the
integration broker to convey a request for data.

When the integration broker sends a request to the connector framework and
expects a response, the exchange is referred to as a HubRequest. In a
HubRequest, the request from the integration broker is written to the
RequestQueue, where it is read by the connector framework.

A request from the connector framework to the integration broker is referred to
as an AgentRequest. An AgentRequest is written by the connector to the
SynchronousRequestQueue, where it is read by the integration broker.

In requests from either the integration broker or the connector framework, the
JMSReplyto property in the message header of the request determines whether a
response is expected, and specifies the queue to which the response should be
sent.

* Response messages are exchanged between the connector framework and the
integration broker to reply to a request for data. When the connector framework
responds to a request from the integration broker, the response message is
written to a ResponseQueue. When the integration broker responds to a request
from the connector framework, the response message is written to the
SynchronousResponseQueue.

* One-way messages are sent from the integration broker to the connector
framework. In the WebSphere Application Server environment, such messages
are commonly referred to as HubOneWay. A HubOneWay message is written to
a RequestQueue by the integration broker and is read from the RequestQueue
by the connector framework.

* Administrative messages are exchanged between the connector framework and
the integration broker to convey administrative commands.

Message formats

Messages exchanged between the connector framework and the integration broker
are formatted by the data handler, based on:

e The WireFormat standard property in the connector’s configuration file

* The XML schema detailing the message body format

* The content of the message: a business object or an administrative message
* The origin and destination of the message.

Each message contains three components: a message descriptor (MQMD), a
message header (MQRFH2), and a message body.

Message descriptor

The WebSphere MQ message descriptor (MQMD) contains the message ID and
includes information needed for processing the message.

Implementing Adapters with WebSphere Application Server

Message header

The MQRFH?2 message header carries J]MS-specific data that is associated with the
message content. It can also carry additional information that is not directly
associated with JMS.

Message body
The message body is formatted as specified by the XML schema specified for the

message. In order for the data handler to find and use the correct XML schema for
formatting a message, the following three names must be the same:

¢ The name of the XML schema stored in the connector’s repository

* The name of the XML schema imported into the integration broker’s message
repository and saved as a message set definition.

¢ The value of messagetype in the message’s MQRFH2 message header.

The message formats and the settings for particular properties for the different
types of messages exchanged by the connector framework and the integration
broker are listed in[Appendix A, “WebSphere MQ message formats,” on page 121/

Message queues

The WebSphere MQ queues that need to be defined and configured for use with
the connector are described below.

Required types of queues

Separate sets of WebSphere MQ message queues are used for transporting business
object messages and administrative messages between the connector framework
and WebSphere Application Server. For descriptions of these queues, see
fthe WebSphere MQ queues” on page 54

Queue manager
The connector uses a single queue manager to manage all of its interactions with

queues. The standard properties in the connector’s configuration file contain the
queue manager information needed by the connector at startup. The connector
uses this information to establish a connection to the queue manager it will use to
communicate with the integration broker.

The WebSphere business integration system supports several queue managers and
queue configurations. The connector can communicate with the queue manager in
any of the following modes:

* Bindings mode: The integration broker and the connector communicate directly
with the queue manager, without using a TCP/IP connection. The queue
manager and the connector must be on the same machine and must use the
same queue manager. This is the default mode.

* Bindings mode with remote queue definitions: If the integration broker and the
connector are installed on separate machines, with each machine running its
own queue manager, the connector and the integration broker can still
communicate with their respective queue managers using bindings mode but
remote queue definitions are also needed.

¢ Client mode: Communication occurs through a client connection that uses
TCP/IP as its underlying transport. If the queue manager and the connector are
on the different machines, the connector is limited to using client mode.

Chapter 4. Data transport and the integration broker 39

For more information

To learn more about WebSphere MQ messages see WebSphere MQ: Using Java. To
learn more about WebSphere MQ queues, see WebSphere MQ: Intercommunication
and WebSphere MQ: Script Command (MQSC) Reference.

40 Implementing Adapters with WebSphere Application Server

Part 2. Deployment and administration

© Copyright IBM Corp. 2003

41

42 Implementing Adapters with WebSphere Application Server

Chapter 5. Overview: Implementing WebSphere Application
Server as an integration broker

WebSphere Application Server uses J2EE technology to fulfill the role of an
integration broker, implementing data exchanges between disparate applications
across a network or across the Internet.

The WebSphere Application Server environment supports four types of operations
for the exchange of business data. These types are sometimes referred to as
"interaction patterns.” The following table describes each interaction pattern and
the WebSphere MQ queues that are used to implement it:

Interaction pattern

Description

Queues used

Agent Request

Connector sends synchronous
request message to WebSphere
Application Server, reporting the
occurrence of an event in the
application, and waits for a
response. (In the documentation
for individual adapters, this is
commonly referred to as
Synchronous Event Delivery.)

SynchronousRequestQueue
for request to broker.
SynchronousResponseQueue
for response to connector.

Agent Delivery

Connector sends asynchronous
message to broker, reporting the
occurrence of an event in the
application. Connector does not
wait for a response. (In the
documentation for individual
adapters, this is commonly
referred to as Asynchronous Event
Delivery.)

DeliveryQueue

Hub Request

Broker sends synchronous
request message to a connector
and waits for a response. (In the
documentation for individual
adapters, this is commonly
referred to as Synchronous
Request Processing.)

RequestQueue for message
from broker to connector.
ResponseQueue for response
from connector to broker.

Hub One Way

Broker sends asynchronous
request message to the connector
and does not wait for a
response. (In the documentation
for individual adapters, this is
commonly referred to as an
Asynchronous Request Processing.)

RequestQueue

At a high level, the tasks necessary for implementing WebSphere Application
Server as the integration broker for these exchanges are the following:

* Design and development of the integration components

Integration components are the WebSphere Business Integration adapter
connectors that interact with applications and the WebSphere Business
Integration adapter business objects that contain the data that is exchanged. Part

© Copyright IBM Corp. 2003

43

One of this guide introduces the necessary concepts for understanding the
integration components, and provides links to more detailed documentation for
the design and development of WebSphere Business Integration adapter
connectors and business objects.

¢ Installation and configuration of the integration components

Information for installing the connector is provided later in this guide in
[Chapter 6, “Installing WebSphere Business Integration adapters,” on page 45|and
in additional documents referenced from that chapter. Information for
configuring the connector and its business objects, including the tasks of setting
up queues and using Connector Configurator, is provided later in this guide.

* Deploying configured components to WebSphere Application Server

This includes the use of System Manager to create user projects from configured
components, and the use of WebSphere Studio Application Developer to create
service projects that can be deployed to WebSphere Application Server. These
tasks are described later in this guide.

44 Implementing Adapters with WebSphere Application Server

Chapter 6. Installing WebSphere Business Integration

adapters

This chapter describes how to install WebSphere Business Integration adapters and
its supporting software using a WebSphere Application Server as the integration
broker.

If you are upgrading WebSphere Business Integration adapters from a previous
version, see |[Appendix F, “Upgrading WebSphere Business Integration adapters,” on|

|Eage 16§| for instructions.

This chapter describes installation on both Windows and UNIX operating systems.
You need only refer to the section that is appropriate for your operating system, as
listed below:

+ [“Installing for Windows systems”]

+ |“Installing for UNIX systems” on page 47]

This chapter contains information specific to installing the supporting software
(JDK and WebSphere MQ) on the integration broker. A separate document, the
Installation Guide for WebSphere Business Integration Adapters, contains all the details
necessary for installation of WebSphere Business Integration adapters. The sections
of this chapter that describe installation for either Windows or UNIX systems refer
you to the Installation Guide for WebSphere Business Integration Adapters at the
appropriate point in the installation process.

Installing for Windows systems

This section includes the following topics:

* |"Software Requirements”]

* [“Installing the JDK” on page 46

* |"Installing WebSphere MQ” on page 46|

¢ |“Installing WebSphere Business Integration adapters” on page 46|

« |“Installing plug-ins for WebSphere Studio Application Developer Integration|
Edition” on page 47]

Software Requirements

The WebSphere business integration system includes WebSphere Business
Integration adapters and other components. WebSphere Business Integration
adapters and some associated components are delivered on CD or through ESD
(IBM Electronic Software Delivery). Other components used by the WebSphere
business integration system must be obtained and installed separately.

[Table 6 on page 46| lists the software requirements for the WebSphere business
integration system.

© Copyright IBM Corp. 2003 45

Table 6. WebSphere business integration system software requirements for Windows systems

Shipped with

required for viewing the HTML documents. For the exact versions supported, refer to the
instructions that can be downloaded from
Inttp://www.ibm.com/integration/wbiadapters/library/infocenter]

Software product
Windows 2000 (Professional, Server, or Advanced Server) with Service Pack 4. No
Note: Beginning with the release of WebSphere Business Integration Adapter Framework 2.4.0,
adapters are no longer supported on Windows NT.

IBM WebSphere Application Server Enterprise Edition, V. 5.0.2 No
WebSphere Studio Application Developer Integration Edition. V. 5.0.1 No
Java Runtime Environment (JRE): IBM version 1.3.1 SR5. Yes
Java Development Kit - only needed for developing custom Java connectors. IBM JDK version Yes
1.3.1 SR5.

IBM WebSphere MQ version 5.3.0.5 (this is version 5.3 with CSD05). No
Browser: An HTML browser such as Microsoft Internet Explorer or Netscape Navigator is No

Installing the JDK

The JDK (Java Development Kit) is required only if you plan to develop custom
Java connectors (the Java compiler is needed). For development on Windows
systems, the JDK is included in the WebSphere Business Integration Adapter
FrameWork. Refer to the WebSphere Business Integration Adapters Installation Guide

for information on installing the JDK.

Installing WebSphere MQ

IBM WebSphere MQ is the messaging software that enables communication

between the integration broker and the adapters.

Refer to the following WebSphere MQ publications for installation and

configuration information:

* WebSphere MQ: Quick Beginnings

* WebSphere MQ: System Administration
* WebSphere MQ: Intercommunication

Note: You can browse or download these documents from IBM’s Web site at:

[www.ibm.com/software /integration /mqfamily]

To configure WebSphere MQ to work with the integration broker, see |”Configurin,<_z;|

[WebSphere MQ queues for WebSphere Application Server” on page 53]

Installing WebSphere Business Integration adapters

For information on installing WebSphere Business Integration adapter products,
refer to the Installation Guide for WebSphere Business Integration Adapters, located in
the WebSphere Business Integration Adapters Infocenter at the following site:

http:/ /www.ibm.com /websphere/integration/wbiadapters/infocenter

46 Implementing Adapters with WebSphere Application Server

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
http://www.ibm.com/software/mqseries

Installing plug-ins for WebSphere Studio Application
Developer Integration Edition

To use WebSphere Application Server as the integration broker with WebSphere
Business Integration adapters, you must add certain plug-ins to your existing
installation of WebSphere Studio Application Developer Integration Edition. The
plug-ins are copied to your system when you run the installer for the WebSphere
Business Integration Adapter Framework (see|“Installing WebSphere Business|
[ntegration adapters” on page 46| The Adapter Framework installer copies the
following plug-ins to the location that you specify:

\plugins\com.ibm.btools.adaptermonitor
\plugins\com.ibm.btools.adaptermonitor.help
\plugins\com.ibm.btools.csm
\plugins\com.ibm.btools.csm.help
\plugins\com.ibm.btools.itools.ae.settings
\plugins\com.ibm.btools.itools.codeGen
\plugins\com.ibm.btools.itools.cwconverter
\plugins\com.ibm.btools.itools.datamanager
\plugins\com.ibm.btools.itools.msg.importer
\plugins\com.ibm.btools.itools.wsdlgen

In order for the installer to copy the plug-in files to the correct location on your
system, you should already have WebSphere Studio Application Developer
Integration Editions installed, before you run the Adapter Framework installer. For
general instructions about installing WebSphere Studio Application Developer
Integration Edition, consult the documentation that is available for that product
through the Infocenter.

Installing for UNIX systems

This section includes the following topics:

* |“Software Requirements”]

* |“Installing the JDK” on page 4§

* [“Installing WebSphere MQ” on page 49|

« |"Installing WebSphere Business Integration adapters” on page 50|

Software Requirements

The WebSphere business integration system includes WebSphere Business
Integration adapters and other components. WebSphere Business Integration
adapters and some associated components are delivered on CD or through ESD
(IBM Electronic Software Delivery). Other components used by the WebSphere
business integration system must be obtained and installed separately.

[Table 7 on page 48| lists the software requirements for the WebSphere business
integration system.

Chapter 6. Installing WebSphere Business Integration adapters 47

Table 7. WebSphere business integration system software requirements for UNIX systems.

Shipped with

required for viewing the HTML documents. For the exact versions supported, refer to the
instructions that can be downloaded from
Ihttp://www.ibm.com/integration/wbiadapters/library/infocenter]

Software product
Operating system: No
e AIX - AIX 5L version 5.1 maintenance level 1 or 5.2 with maintenance level 4
¢ Solaris - Solaris 7.0 or 8.0 , with Patch Cluster released 7/23/03
* HP-UX- HP-UX 11.11 (11i,r=B.11.110306.4). June 2003 GOLDBASE 11i,r=B.11.110306.4 and

June 2003 GOLDAPPS11i 11i,r=B.11.110306.4 bundles.
IBM WebSphere Application Server Enterprise Edition, V. 5.0.2 No
Java Runtime Environment: Yes
* AIX - IBM JRE version 1.3.1 SR5.
¢ Solaris - Sun JRE version 1.3.1.7.
* HP-UX - Sun JRE version 1.3.1.6.
Java Development Kit - only needed for developing custom Java connectors. No
* AIX: IBM JDK version 1.3.1 SR5.
e Solaris: Sun JDK version 1.3.1.7.
e HP-UX: Sun JDK version 1.3.1.6.
WebSphere MQ version 5.3.0.5 (this is version 5.3 with CSDO05). No
Browser: An HTML browser such as Microsoft Internet Explorer or Netscape Navigator is No

Installing the JDK

The JRE includes the Java Virtual Machine (JVM), which is needed to run
WebSphere Business Integration adapters. However, it does not include
development tools, such as JavaC (the Java compiler). If you do not plan to create

custom connectors, use the JRE.

The JRE contains the runtime component of the Java software, which the
WebSphere business integration system requires to execute. The JRE is included in
WebSphere Business Integration Adapter Framework. Therefore, there is no need to

install it separately.

If you plan to create custom connectors, install the full JDK, which you can
download from the Sun or IBM Web site. For Solaris and HP-UX, you can

download the JDK from |http://java.sun.com/products/jdk/1.3} For AIX, you can

download the JDK from |http://www.ibm.com/developerworks /java/jdk

To install the JDK on your system:

1. Navigate to the directory in which you want to install the JDK.

cd /install_dir

where the install_dir is the path of the directory that will contain the JDK

software. You can install this software anywhere:

* The JDK is normally installed in a subdirectory of the /usr directory. If the
/usr filesystem has enough space, install the JDK there, in a directory such

as /usr/jdkl.3.

48 Implementing Adapters with WebSphere Application Server

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
 http://java.sun.com/products/jdk/1.3
http://www-106.ibm.com/developerworks/java/jdk

* You can create an extract directory for the JDK (such as /home_dir/jdk1.3)
and move into this directory. You must create a symbolic link from the
/usr/jdk1.3 directory to this extract directory.

2. On either the Sun or the IBM Web site, locate the Web page to download the

JDK.

The JDK is usually located under the Java 2 SDK Standard Edition for UNIX.

3. Download and read the accompanying README file for how to download the
JDK.

4. Download the JDK into your installation directory.
IBM and Sun provide a self-extracting tar file that allows you to extract its
contents in any directory you choose. This file usually has the format
JDK version.bin (where JDK version is the version of the JDK to download).
Consult the README file for how to extract the JDK software from this file.

5. Download any operating-system patches listed for the JDK that are appropriate
for your version of the UNIX operating system.
Before installing these patches, verify that they are not already installed on
your system.

6. Create a link from your download directory (for example, the /usr/jdk1.3
directory) to the Java directory.

a. rm /usr/java
b. Tn -s /usr/jdkl.3 /usr/java
7. After the installation, make sure the bin directory of the JDK is included in the
PATH environment variable.
You can do this in either of the following ways:

» Edit /etc/profile, which is read at every user’s startup. Shells such as ksh,
bash, and sh obtain the settings in the /etc/profile file.

For example, if you installed JDK in the /usr/jdkl1.3 directory, edit the PATH
entry of /etc/profile so that it appears as follows:
PATH=/usr/jdk1.3/bin:$PATH
export PATH

* Edit the personal profile file in the home directory of the WebSphere
business integration administrator.

The name of this personal profile file depends on the particular shell that the
WebSphere business integration administrator account uses. Changes made
in this personal profile affect only the user logged in as the WebSphere
business integration administrator.

Use the syntax appropriate for the particular shell to include the JDK bin
directory in the PATH environment variable. For example, if the WebSphere
business integration administrator account uses the sh shell, you can edit the
lines that add the JRE path (/usr/java/bin) to include the JDK path, as
follows:

PATH=/usr/jdk1.3/bin:/usr/java/bin:$PATH
export PATH

Add these lines after the line that sources the CWSharedEnv.sh file in the
personal profile file for your WebSphere business integration administrator
account.

Installing WebSphere MQ

IBM WebSphere MQ is the messaging software that enables communication
between an integration broker and the adapters.

Chapter 6. Installing WebSphere Business Integration adapters 49

50

Refer to the following WebSphere MQ publications for installation and
configuration information:

* WebSphere MQ: Quick Beginnings
> WebSphere MQ: System Administration
* WebSphere MQ: Intercommunication

Note: You can browse or download these documents from IBM’s Web site at:
[http: / /www.ibm.com /software /integration/ mgfamily}

To configure WebSphere MQ to work with the integration broker, see |“Conﬁgurin§
[WebSphere MQ queues for WebSphere Application Server” on page 53

Installing WebSphere Business Integration adapters

To install WebSphere Business Integration Adapters, first obtain a supported
version of the product. Then download the documentation for that release from the
WebSphere Business Integration Adapters InfoCenter at the following Web address:
lhttp:/ /www.ibm.com /software /websphere /wbiadapters/infocenter] Follow the
instructions in the Installation Guide for WebSphere Business Integration Adapters to
install the product in your business integration system.

Implementing Adapters with WebSphere Application Server

http://www.ibm.com/software/mqseries
http://www.ibm.com/software/websphere/wbiadapters/infocenter

Chapter 7. Configuring the WebSphere business integration

system

This chapter describes the tasks necessary for setting up a connector for use with
WebSphere Application Server. These instructions assume the following;:

You have already installed WebSphere Application Server Enterprise, v. 5.0.2 or
later and WebSphere Studio Application Developer Integration Edition, v. 5.0.1
or later.

You have already installed the WebSphere Business Integration adapter and
Adapter Framework, and other required software for the adapter (for example, a
data handler which is required for some adapters but not others).

You have installed MQSeries and other prerequisite software, as described in
Prerequisites in the Installation chapter of this guide.

You have already created or acquired a connector and installed it to your
system. For instructions on installing a connector, see the documentation that
accompanies the connector that you acquired, or see the Connector Development
Guide if you have created your own connector.

This chapter explains how to configure WebSphere Application Server, business
objects, and the connectors to work together as a business integration system. It
includes the following sections:

+ |[“Overview of configuration tasks”|

+ |“Creating business object definitions” on page 52|

* [“Adding business objects to ICLs” on page 53|

“Configuring WebSphere MQ queues for WebSphere Application Server” on

[page 53|

+ |“Enabling the application for use with the connector” on page 56

« [“Configuring the connector” on page 57|

+ |[“Using Visual Test Connector to verify your interfaces” on page 64

Overview of configuration tasks

To configure the business integration system, you need to perform the following
tasks:

1.

© Copyright IBM Corp. 2003

Create business object definitions, and add them into your ICL projects in
System Manager.

Configure WebSphere Application Server to support the connector by defining
the necessary JMS queues for the data transactions you wish to implement. You
will use the Administrative Console in WebSphere Application Server to set
JNDI names for the queues, and you will later use Deployment Descriptor
editor in the Business Integration perspective to map names.

If you have not already done so, generate business object definitions for use
with the connector.

Add the business object definitions in System Manager

Configure your connector with its associated business objects, using Connector
Configurator.

Configure standard and application-specific configuration properties for the
connector, including the properties that specify queues.

51

7. Configure tracing, logging, and messaging options for the connector.
Each of these tasks is covered in more detail below.

When you have complete these tasks, your next steps will be to use System
Manager and WSAD-IE to create service projects from the configured components,
and deploy the service projects to WebSphere Application Server. Those tasks are
described in [Chapter 8, “Deploying to WebSphere Application Server,” on page 65,

Creating business object definitions

52

To create the business object definitions to be used by the connector, see the
Business Object Development Guide.

Note: WebSphere Business Integration adapters used with WebSphere Application
Server use only application-specific business objects, not generic business
objects. All references to business objects throughout this book refer to
application-specific business objects. Generic business objects are used in
business integration systems based on the WebSphere InterChange Server
integration broker. Some of the books in the WebSphere Business Integration
adapters library, such as the Business Object Development Guide are also part
of the WebSphere InterChange Server library and refer to both types of
business objects.

The options for creating business object definitions are as follows:

* Use an ODA (Object Discovery Agent) to generate application-specific business
object definitions. The ODA examines specified objects in the application,
“discovers” the elements of those objects that correspond to business object
attributes and their attributes, and generates business object definitions to
represent the information. Business Object Designer provides a graphical
interface to access the Object Discovery Agent and to work with it interactively.
Refer to the adapter user guide for the connector you are configuring to
determine whether an ODA (Object Discovery Agent) is provided.

 If no ODA is included with the business integration adapter, you can use the
Object Discovery Agent Development Kit (ODK) to develop an ODA and then
run it against the application.

* Create business object definitions manually using the Business Object Designer
tool.

In addition, many adapters come with sample business objects. If they are
included, the samples are located in the following product directory:

ProductDir\connectors\ConnName\Samples

To start Business Object Desginer, use the Run command from the Start menu and
browse for the BusObjDesigner.exe file. Alternatively, you can create and use a
Windows shortuct to BusObjDesigner.exe

For more information about using Business Object Designer, see the Business Object
Development Guide.

Once you create the business object definitions for application-specific business
objects, read [Appendix E, “Using Visual Test Connector,” on page 149 |which
explains how to test the business object definitions once you have created them.

Implementing Adapters with WebSphere Application Server

Adding business objects to ICLs

For a connector to make use of a business object, the business object must be
designated as a supported business object for that connector. You must designate
the supported business objects when you configure the connector using Connector
Configurator. To do that , you must first add the business object definition files to
the same integration component library that contains the connector.

This is done through System Manager, as follows:

1. In the System Manager perspective, under Integration Component Libraries,
expand the folder for an Integration Component Library project that you have
created.

Select the folder Business Objects.
From the System Manager menu, choose File>Import.
The Import (Select) dialog appears. Select File system and choose Next.

A

The Import (File System) dialog appears. Use the Browse menu to navigate to a
folder than contains business object definitions, in the form of *.xsd files, that
you want to use.

6. Check the boxes for the files you want to use. By default, check Create selected
folders only. Choose Finish.

7. After the dialog closes, select the Business Objects folder again in your
Integration Component Library project folder. Right-click and choose Refresh
View. The business object defintions that you imported will now be visible in
your Business Objects folder.

Configuring WebSphere MQ queues for WebSphere Application Server

To enable WebSphere Application Server to work with a connector, you need to
create and configure WebSphere MQ queues.

The WebSphere Application Server environment allows you to map the names of
physical WebSphere MQ queues to the JNDI names used in the binding properties
of WebSphere Application Server. If circumstances at a later time require you to
use a different queue or queue manager, you can change that name in the local
configuration file, and change it in the WebSphere Application Server
Administrative Console, without having to regenerate .wsdl files.

Creating and configuring the queues includes the following tasks:

¢ Create WebSphere MQ queues that correspond to the interaction patterns you
are implementing. This task is described in [’Creating the WebSphere MQ|
|queues” on page 54{

* Specify the queue manager and queue names in the configuration properties for
the connector. This task is described in|[“Saving configurations as ICLs” on page|

¢ Export the connector configuration file into a WebSphere Application Server
project and configure the queue names within the project files, so that the
physical queue names acquired from the configuration file are associated with
JNDI names that you specify in the Administrative Console of WebSphere
Application Server. This task is described in [“Deploying user projects” on pag

* In the Administrative Console of WebSphere Application Server, establish JNDI
names that correspond to each of the queues. This task is described in Chapter
9.

Chapter 7. Configuring the WebSphere business integration system 53

54

[‘Message queues” on page 39| provides information about how WebSphere MQ
queues are used in the WebSphere business integration system.
fconnection mode with the queue manager” on page 60| explains how to specify the
connection mode in the connector’s configuration file.

Creating the WebSphere MQ queues

The business integration system requires that you create queues with the properties
listed below.

Note: When you configure the connector, under [“Specifying the queues to be used|
[by the connector” on page 60,you will need to specify the name of each of
these queues as a standard property in the connector’s configuration file.

* DeliveryQueue: Delivers event delivery messages from the connector framework
to the integration broker.

* RequestQueue: Delivers Hub One Way or Hub Request request messages from
the integration broker to the connector framework.

* ResponseQueue: Delivers response messages from the connector framework to
the integration broker, in reply to Hub Requests.

* FaultQueue: Delivers fault messages from the connector framework to the
integration broker. The connector framework places a message on this queue
when it is unable to place the message on the reply-to queue.

* SynchronousRequestQueue: Delivers request messages from the connector
framework to the integration broker.

¢ SynchronousResponseQueue: Delivers response messages from the integration
broker to the connector framework, in reply to the requests in the
SynchronousRequestQueue.

* AdminInQueue: Delivers administrative messages from the integration broker to
the connector framework.

* AdminOutQueue: Delivers administrative messages from the connector
framework to the integration broker.

Ways to define queues
You can configure the WebSphere MQ queues needed for your adapter, using any
of the following methods:

* Customize and run a batch file provided with WebSphere Business Integration
adapters.

* Use WebSphere MQ Explorer.
* Issue WebSphere MQ commands.

Tip
To make it easy to identify the connector with which a queue is associated,
use the name of the connector as a prefix in the queue name. For example,
name the Clarify connector’s event delivery queue:
clarifyconnector/deliveryqueue.

Using WebSphere Business Integration adapter batch files to configure
WebSphere MQ queues: WebSphere Business Integration adapters provide a set
of batch files that you can run to configure the WebSphere MQ queues needed for
the adapters you are deploying. The batch files, located in ProductDir\templates,
consist of:

Implementing Adapters with WebSphere Application Server

* configure_mgq.bat (Windows)
configure_mgq (UNIX)

Run this batch file to configure the WebSphere MQ queues specified in
crossworlds mq.tst

* crossworlds_mq.tst
Edit this file to specify the WebSphere MQ queues in the business integration
system. This file is read as input by configure_mg.bat and clear_mq.bat, a batch
file provided with your WebSphere Business Integration adapter to clear
messages from WebSphere MQ queues.

For more information about using clear_mq.bat, seq’Clearing messages from|
[WebSphere MQ queues” on page 105.|

The contents of the crossworlds_mq.tst file are shown below. You can use this one
file to specify the queues needed by each adapter you are configuring. Edit the file
as follows:

1. Delete the statements:
DEFINE QLOCAL(IC/SERVER_NAME/DestinationAdapter)
DEFINE QLOCAL(AP/DestinationAdapter/SERVER_NAME) These apply only
to business integration systems that use WebSphere InterChange Server.

2. For each adapter you are deploying, create a separate set of queue definition
statements using as a template the statements beginning with DEFINE
QLOCAL (AdapterName/AdminInQueue).

3. If you are using bindings mode with remote queue definitions, customize the
statement, DEFINE CHANNEL (CHANNEL1) CHLTYPE(SVRCONN) TRPTYPE(TCP), with
the requested information for each queue manager you need to configure. If
you are using client mode for your queue configuration, leave the statement as
is. For more information about supported queue configurations, see
[the queue configuration” on page 56.

***/
* For each JMS queue (delivery Transport is JMS),

* default values follow the convention:

* AdapterName/QueueName
**/

DEFINE QLOCAL (AdapterName/AdminInQueue)

DEFINE QLOCAL(AdapterName/AdminQutQueue)

DEFINE QLOCAL (AdapterName/DeliveryQueue)

DEFINE QLOCAL (AdapterName/RequestQueue)

DEFINE QLOCAL (AdapterName/ResponseQueue)

DEFINE QLOCAL (AdapterName/FaultQueue)

DEFINE QLOCAL (AdapterName/SynchronousRequestQueue)

DEFINE QLOCAL (AdapterName/SynchronousResponseQueue)
**/
* Define the default CrossWorlds channel type */
**/

DEFINE CHANNEL(CHANNEL1) CHLTYPE(SVRCONN) TRPTYPE(TCP)
**/

* End of CrossWorlds MQSeries Object Definitions */

**/

Using WebSphere MQ Explorer to configure WebSphere MQ queues: For
information about configuring queues using WebSphere MQ Explorer, open
WebSphere MQ Explorer and refer to its online help.

Using WebSphere MQ commands to configure WebSphere MQ queues: For
information about configuring queues using WebSphere MQ commands, see
WebSphere MQ: System Administration Guide and WebSphere MQ: Script (MQSC)
Command Reference.

Chapter 7. Configuring the WebSphere business integration system 55

Defining the queue configuration

The WebSphere business integration system supports several queue managers and
queue configurations. The connector can communicate with the queue manager in
any of the following modes.

Bindings mode
With bindings mode, the integration broker and the connector can communicate

directly with the queue manager, without using a TCP/IP connection. The
integration broker and the connector need to be installed on the same machine so
that they can use the same queue manager. This is the default mode.

Bindings mode with remote queue definitions
If WebSphere Application Server and the connector are installed on separate

machines, with each machine running its own queue manager, the connector and
the integration broker can still communicate with their respective queue managers
using bindings mode. However, you need to specify remote queue definitions as
explained in the example below.

Suppose brokerQM is the queue manager used by the integration broker and
connQM is the queue manager used by the connector. To enable communication
between the two queue managers, you need to set up the following channel
definitions:

* For each queue that transmits messages from the connector to the broker, a
remote queue definition must be created on connQM that points to a local queue
on brokerQM. This requirement applies to the following queues:

— DeliveryQueue

— SynchronousRequestQueue
— FaultQueue

— AdminOutQueue

* For each queue that transmits messages from the integration broker to the
connector, a remote queue definition must be created on brokerQM that points
to a local queue on connQM. This requirement applies to the following queues:

— RequestQueue
— AdminInQueue

* For reply-to queues: when the integration broker sends a request message to the
connector framework, it specifies in the message header the queue manager and
queue to which the response is to be sent.This is also true for requests sent from
the connector framework to the integration broker. You must perform certain
administrative tasks to have response messages routed to the correct reply-to
queue. These are described in WebSphere MQ: Intercommunication.

Client mode

If WebSphere Application Server and the connector must use TCP/IP to
communicate with their respective queue managers, then they must use a client
mode connection. Communication occurs through a client connection that uses
TCP/IP as its underlying transport.

Enabling the application for use with the connector

56

To allow the connector’s application-specific component to deliver business data to
and from the application, you must establish a dedicated user account for the
connector on the application. You will need to specify the user ID and password of
this account when you create the configuration file for the connector.

Implementing Adapters with WebSphere Application Server

For most connectors, the application must be configured to implement the event
detection mechanism. Once the application has been configured, it can detect entity
changes and write event records to the event store. The information is then picked
up by the connector and processed. You should create triggers only for business
objects and operations that are to be processed by a WebSphere MQ message flow.
Otherwise, the message queues will fill up with messages that are never removed
for processing.

For detailed information about these tasks and others necessary to enable the
application to work with the connector, refer to the adapter user guide for the
connector you are configuring.

Configuring the connector

The Connector Configurator tool provides a graphical user interface for
configuring the connector. When you are finished specifying values for the
connector’s configuration properties, the Connector Configurator generates a
configuration file for the connector.

The connector configuration that you create through Connector Configurator is
used as the source for the .wsdl file used in generating a Service Project for the
interaction pattern in WebSphere Application Server, and it is also used as the local
configuration file that is installed at the same location where the connector agent
(also referred to as the adapter agent) is installed. When you have completed the
steps for creating a configuration file, you will be able to both save the
configuration as an Integration Component Libraries project in the System
Manager perspective (so that it can be used in generating a *.wsdl file) and save
the configuration as a file that can accompany the connector agent in the location
where the agent is installed.

Important: If the business integration adapter is running on UNIX, you must
create the configuration file using Connector Configurator on Windows
and then copy the file to your UNIX machine. When you create the
configuration file, make sure that you observer UNIX path and file
name conventions when setting properties.

Depending on the adapter product that you have purchased, you may already
have a starting point for your connector configuration, either as a connector
definition file in the directory ProductDir\connectors\repository\ConnName, or as a
sample configuration file. You can open such files in Connector Configurator, and
then revise them to create a complete configuration file for the connector. Note that
while the connector definition file provides some starting values for the
configuration file, a completed configuration file contains all the standard and
application-specific properties for the connector, and specifies its supported
business objects. [Appendix B, “Standard configuration properties for connectors,”
Ign page 127:| describes these properties in detail.

If no connector definition file or sample configuration file has been provided, you
must create a new configuration file for that connector, using Connector
Configurator.

The sections below discuss Connector Configurator settings that apply to every
connector working with WebSphere Application Server.

Chapter 7. Configuring the WebSphere business integration system 57

58

Running Connector Configurator

Use Connector Configurator to create a new connector configuration, to revise an
existing connector configuration that already has been saved to the System
Manager integration component libraries, or to open an existing connector
connector file that exists outside of System Manager.

Regardless of how you begin the process, in order to use the connector
configuration with WebSphere Application Server as the integration broker, you
must save the completed connector configuration to a project in the integration
component libraries of System Manager.

To start and run Connector Configurator, do one of the following:

If you are creating a new connector configuration:
1. Open the System Manager perspective.

2. In the System Manager perspective, expand the Integration Component
Libraries folder and select an existing Integration Component Library project
folder. (If one does not already exist, you will need to create a new one. To
create a new Integration Component Library project folder, select Integration
Component Libraries, and right-click to open the New Integration Component
Library dialog. Enter a project name for the new library project, and click
Finish. The new library project appears as a folder within the top level
Integration Component Libraries folder.) Expand the folder for the the
Integration Component Library project that you are using, and select
Connectors within it.

3. From the System Manager menu bar, click Tools>Connector Configurator. The
Connector Configurator window opens and displays a New Connector dialog
box.

4. Enter a name for the new connector configuration.

5. Click the pull-down menu next to System Connectivity: Integration Broker, and
select WAS.

6. Select a template if one exists. If you do not have a template, choose None.
7. Before you make any settings in the configuration file, click the Standard
Properties tab and verify the following settings:
¢ BrokerType is WAS
* DeliveryTransport is JMS
* WireFormat is CwXML

To edit an existing configuration that has been previously saved in System

Manager:

1. In the System Manager perspective, expand the Integration Component
Libraries icon and highlight Connectors.

2. Select a connector configuration listed in the Connector folder, right-click on it,
and choose Edit Definition. Connector Configurator opens and displays the
configuration for the connector, with the integration broker type and file name
at the top.

3. Before you make any settings in the configuration file, click the Standard
Properties tab and verify the following settings:

* BrokerType is WAS
* DeliveryTransport is JMS
* WireFormat is CwXML

Implementing Adapters with WebSphere Application Server

To use an existing file to configure a connector, you must open the file in
Connector Configurator, revise the configuration, and then save the configuration
to the Integration Components Library in System Manager.

Follow these steps to open a *.txt, *.cfg, or *.in file from a directory:
1. In Connector Configurator, click File > Open > From File.

2. In the Open File Connector dialog, select one of the following file types to see
the available files:

 Configuration (*.cfg)

¢ ICS Repository (*.1in, *.out)
Choose this option if a repository file was used to configure the connector in
an ICS environment. A repository file may include multiple connector
definitions, all of which will display when you open the file.

 All files (*.¥)
Choose this option if a *.txt file was delivered in the adapter package for
the connector, or if a definition file is available under another extension.

3. In the directory display, navigate to the appropriate connector definition file,
select it, and click Open.

4. Before you make any settings in the configuration file, click the Standard
Properties tab and verify the following settings:
* BrokerType is WAS
¢ DeliveryTransport is JMS
* WireFormat is CwXML

After you have opened Connector Configurator as described above, you can set the
properties (includingthe properties that specify queues) and designate supported
business objects, as described in this section. When you have completed the
configuration, choose Save To Project.

Setting Standard and Connector-Specific properties

Configuration of a connector requires that you set values for both standard
properties and connector-specific properties. For connector-specific properties, see
the documentation for the specific adatper that you are using. For standard
properties, sedAppendix B, “Standard configuration properties for connectors,” on|

lpage 127 later in this guide.

Note that the following property settings are mandatory for connectors that use
WebSphere Application Server as the integration broker:

¢ BrokerType must be set to WAS
* DeliveryTransport must be set to JMS
* WireFormat must be set to CwXML

Designating supported business object

In order to designate business objects as supported by the connector, the business
objects must first have been saved to projects in an Integration Components
Library folder, as described in [“Adding business objects to ICLs” on page 53 The
following instructions assume that you have already done that.

To designate existing supported business objects for the connector:

1. Open the connector configuration in Connector Configurator. Choose the
Supported Business Objects tab.

Chapter 7. Configuring the WebSphere business integration system 59

The Business Object Name drop-down box will appear. Initially, if you have not
yet designated any supported business objects for this connector configuration,
the first visible field is blank. Click the drop-down arrow.

A scroll list displays, showing all the business objects that are available to be
designated as supported in this connector configuration. To be available, a
business object must have previously been saved to the subfolder Business
Objects in the same Integration Components Library project that contains the
Connectors subfolder for this connector configuration.

To designate one of the listed business objects as a supported business object
for this connector configruation, click on it in the drop-down field. The
business object name is added to the first field in the drop-down, and a new
blank field is added. Repeat the process in the new blank field, continuing until
you have added all the intended business object designations.

When finished, choose File>Save to project. This saves your connector
configuration as an Integration Component Library project, and an icon for it is
displayed in the System Manager Perspective.

Specifying the queues to be used by the connector

In |[“Creating the WebSphere MQ queues” on page 54, you defined a set of queues
to be used by the connector to communicate with WebSphere Application Server.

In the Connector Configurator, click the Standard Properties tab and assign these
queues to the connector by setting values for the following standard properties:

DeliveryQueue
RequestQueue
ResponseQueue

FaultQueue
SynchronousRequestQueue
SynchronousResponseQueue
SynchronousRequestTimeout
AdminInQueue
AdminOutQueue

Setting the connection mode with the queue manager

The default connection mode is bindings mode. Specify client mode as follows:

1.

In the Connector Configurator, click the Standard Properties tab.

2. Assign to the standard property, jms.MessageBrokerName, the following value:

QueueMgrName : [Channel] : [HostName] : [PortNumber], where the variables
represent the following;:

QueueMgrName
The name of the queue manager.

Channel
The channel used by the client.

HostName
The name of the machine where the queue manager is to reside.

PortNumber
The port number to be used by the queue manager for listening.

For example:

jms .MessageBrokerName = WMQIB.Queue.Manager:CHANNEL1:RemoteMachine:1456

60 Implementing Adapters with WebSphere Application Server

Configuring logging and tracing options
Logging is used to communicate system messages, component state changes,
failures, and tracing information. The following files are generated:

Table 8. Connector logging and tracing files.

Default file name and path

Description

Temporary log file:

ProductDir\broker_name_connector_name_tmp.1og.

During startup, the connector generates
a temporary log file. This file contains
all messages that are logged during
startup, including connector properties
and business object definitions that are
passed to the connector framework. and
the file is written to the directory in
which the product is installed.

Connector log file:

UNIX: A connector logs messages to STDOUT by default, then those
messages are rerouted to
ProductDir/1ogs/connector_manager_ConnName.10g.

WINDOWS: A connector logs messages to STDOUT by default, but can be
configured to send to a local destination log file in the ProductDir
directory.

The connector’s log file is used to store
messages issued by the connector. It
also contains messages regarding
WebSphere MQ communication errors.

Connector message file:

ProductDir\connectors\messages\ConnName_LocaleName.txt

This file contains the full text for each
message issued by the connector. You
can use this file to look up the text of
message IDs you see in the log file. If
the locale specified in the connector
configuration file is not supported, the
file ConnName . txt is used.

Trace file:

Defaults to STDOUT for both UNIX and Windows.

Contains trace messages as specified by
the selected trace level.

The logging system is always active and provides an accurate monitor of the

connector.

To troubleshoot a problem, you can turn on tracing. Trace messages help you
monitor actions taken in components of the business integration system. Trace
levels define the amount of detail written to the trace file. The higher the trace
level, the more detail you receive. Tracing differs from logging in the following

ways:

* Logging always occurs, but tracing can be turned on and off as needed.

* Tracing contains more detailed information than logging about the state of

components and the actions taken by them.

* Logging and tracing settings are persistent after reboots.

Tracing is off by default because it produces messages that are more detailed than

you normally need.

For information about viewing logging and tracing messages using LogViewer, see

[‘Using Log Viewer to view connector messages” on page 114.|

Chapter 7. Configuring the WebSphere business integration system 61

62

Configuring connector logging
To configure connector logging options, click the Trace/Log Files tab and specify

the following:

1. To have log messages routed to STDOUT, click the To console (STDOUT)
check box.

2. To have log messages routed to a file, click the To file check box and specify
the full-path name of the log file you want to use. You can have log messages
routed to the console and to a file by specifying both the “To console” and “To
file” options.

3. If you designated the use of a log file, also specify the following options:

a. To limit the size of the log file, set Log file size to a numeric value and unit
of measure.

b. To permit the log file to grow with no limit, click the Unlimited check box.

c. If you have set a maximum size for the log file and you want to use file
archiving, set Number of archives to the number of archive files you want
to maintain.

For more information about managing log files, see|“Managing log and trace files”]

Configuring connector tracing
To configure connector tracing options:

1. Click the Trace/Log Files tab.
2. To have trace messages routed to STDOUT, check To console (STDOUT).

3. To have trace messages routed to a file, check To file and specify the full-path
name of the trace file you want to use. You can have trace messages routed to
the console and to a file by specifying both the To console and To file options.

4. If you designated the use of a trace file, also specify the following options:

a. To limit the size of the trace file, set Trace file size to a numeric value and
unit of measure.
b. To permit the trace file to grow with no limit, check Unlimited.

c. If you have set a maximum size for the trace file and you want to use file
archiving, set Number of archivesto the number of archive files you want
to maintain.

5. To set the tracing level:
a. Click the Standard Properties tab.
b. Set the AgentTraceLevel property to one of the values listed in

Refer to the adapter user guide for the connector you are configuring for more
details about the information generated by the different trace levels for that
connector. You can set connector tracing to one of the following levels:

Implementing Adapters with WebSphere Application Server

Table 9. Connector trace levels.

Trace level Description
1 Traces initialization and the sending and receipt of business objects.
2 Prints messages for level 1. In addition, provides more details than Level 1

for the same types of events.

3 Prints messages for levels 1 and 2. In addition, traces the exchange of
messages between the connector agent and the messaging driver.

4 Prints messages for levels 1 through 3. In addition, traces the passing of
business objects between internal levels of the connector.

5 Prints messages for levels 1 through 4. In addition, traces the passing of
administrative messages between internal levels of the connector.

A new or changed tracing level takes effect when you restart the connector.

For more information about archiving trace files, see|Managing log and trace]
ffiles” on page 106.|

Configuring the connector startup files, shortcuts, and
environment variables

The procedure for starting a connector and the set-up tasks required both depend
on the platform where the connector is running.

For Windows

When you install WebSphere Business Integration adapters on Windows, a shortcut
is created for each installed connector on the WebSphere Business Integration
Adapters program menu (Start > Programs > IBM WebSphere Business
Integration Adapters > Adapters > Connectors). You must use the startup
options listed in|Appendix C, “Connector startup options,” on page 143 to
customize the following;:

e The connector’s shortcut properties
* The connector’s startup file, start_connName .bat (for connectors written in Java)

* The connector’s startup file, start_connector.bat file (for connectors written in
C++).

For UNIX

In the UNIX environment, you start a connector by running
connector_manager_connName script, which is a wrapper for the generic connector
manager script (ProductDir/bin/connector_manager). This wrapper includes the
following information:

* The name of the connector to start or stop

* Appropriate command-line options of the generic connector manager. For
example:

— The SAP connector requires the -t command-line option. Therefore, its startup
script already includes the -t option.

— All UNIX connectors run with the -b option. Therefore, all connector startup
scripts already include the -b option. To have a connector run in the
foreground, remove the -b option from the generic connector manager script
(connector_manager).

¢ The name of the configuration file.

Chapter 7. Configuring the WebSphere business integration system 63

If you have created a custom adapter or if you have installed an adapter using
electronic software delivery (ESD), you need to do the following before you start
up the connector for the first time:

1. Run the Connector Script Generator tool to update the
connector_manager_connName script with the name of the connector’s
configuration file. See |[Appendix D, “Using the Connector Script Generator]
[tool,” on page 147 | for more information about running this tool.

Alternatively, you can navigate to the ProductDir/bin directory and edit the
connector_manager_connName file to specify the name of the connector’s
configuration file. In the file, locate the AGENTCONFIG_FILE variable and set
it to the full-path name of the configuration file as follows:

AGENTCONFIG_FILE=ConfigFile

2. If desired, update your PATH environment variable to include the
ProductDir/bin directory.

3. Ensure that the CWSharedEnv.sh file is sourced from the shell startup script
(such as .cshrc) for your account.

Customizing the startup script: The generic connector manager script calls the
appropriate start_connector.sh script, which is the actual script that manages the
particular connector. Each WebSphere Business Integration adapter includes a
start_connector.sh script. You can modify the start_connector.sh script to
include any of the supported startup options listed in|Appendix C, “Connector]
lstartup options,” on page 143)

Note: For information about creating a startup files for connectors, see Connector
Development Guide for C++ or Connector Development Guide for Java.

Using Visual Test Connector to verify your interfaces

64

Visual Test Connector simulates the activities of a connector to allow you to test
your integration components without the complexity of running an actual
connector. You can use Visual Test Connector to verify that you have configured
your source and destination connectors correctly and that you have properly
specified their supported business object definitions. See [Appendix E, “Using]|
[Visual Test Connector,” on page 149 for detailed information on how to use Visual
Test Connector.

Implementing Adapters with WebSphere Application Server

Chapter 8. Deploying to WebSphere Application Server

Before you perform the tasks in this chapter, you should have done the following:

Created and configured JMS queues for the data transactions you wish to
implement

Configured your connectors with their associated business objects, using
Connector Configurator.

This chapter describes how to

1.

2.

Save connector configurations and associated business objects as Integration
Component Libraries in System Manager.

Create User Projects, consisting of groups of Integration Component Libraries,
in the System Manager perspective of WebSphere Studio Application Developer
Integration Edition

From the System Manager perspective of WebSphere Studio Application
Developer Integration Edition, deploy the System Manager user projects to the
Business Integration perspective.

Use the Business Integration perspective to create the WebSphere Application
Server components used for each interaction pattern, and use the WebSphere
Application Server Administrative Console to complete the setup of the queues.

For each interaction pattern, create an Enterprise Application Archive project
that can be deployed on a server.

Saving configurations as ICLs

The WebSphere Business Integration adapters use configured resources--referred to

as

integration components--that are managed through the System Manager

perspective. Integration components are organized in sets, referred to as
Integration Component Libraries (ICLs). The integration components commonly
used for all adapters are connectors and business object definitions.

To implement an adapter, you must configure the connector and designate the
business object definitions that the connector supports. You must save both the
business object definitions and the connector configurations into Integration
Component Library projects in System Manager. To do so:

1.

In the System Manager perspective, right-click on the Integration Component
Libraries perspective, and choose New Integration Component Library.

2. In the New Integration Component Library dialog, provide a name for the

library in the Project name field, and choose Finish. A new folder, with the
name you have chosen, is added to the Integration Component Libraries. The
folder contains subfolders for several types of integration components; for the
purpose of implementing a connector with WebSphere Application Server as
the broker, you will require only the Business Objects and Connectors folders.

3. Select the Business Objects folder and choose File>Import. The Import dialog

© Copyright IBM Corp. 2003

displays.

Select File System and choose Next. The Import File system dialog displays. In
the Directory drop down list, browse to a folder where you have placed
business object definition (.xsd) files that you want to use with the connector
in the interaction pattern that you have created.

65

66

10.

11.

12.

Select the folder and choose OK. The Import dialog appears, with check boxes
next to each of the available resources. Check the box for each .xsd file that
you expect to use, and choose Finish.

In System Manager, in the Business Objects folder under Integration
Component Libraries, right click on the Business Objects folder and refresh the

view. Icons for the imported business object definitions will appear under the
folder.

Select the Connectors folder, then, from the Tools menu, choose Connector
Configurator. The Connector Configurator tool is activated, and the New
Connector dialog displays.

You will use the Connector Configurator tool to set configuration properties
and specify supported business objects for your connector. If you already have
a sample or partial connector configuration file, cancel the New Connector
dialog. Then, in the Connector Configurator dialog, choose File>Open>From
file. The Open File Connector dialog appears. Navigate to your existing
sample or partial connector configuration file, select it, and choose Open. The
Connector Configurator properties screen, named for the selected connector
configuration, displays.

If you are creating a completely new connector configuration, select WAS as the
Integration Broker, provide a name for the new connector configuration, select
a property template (choose None if you don’t already have one), and click
OK. The Connector Configurator properties screen, named for the new
connector configuration, displays.

For any connector used with WebSphere Application Server, set configuration
values in the following tab:

a. In the Standard Properties tab, set required values for the use of your
integration broker, including the queues that are used to implement the
interaction patterns. See [‘Specifying the queues to be used by the]

connector” on page 60hnd [‘Configuring WebSphere MQ queues for|

WebSphere Application Server” on page 53

b. In the Supported Business Objects tab, specify the business objects
supported for use with the connector you are implementing. See
[‘Designating supported business object” on page 59|

¢. When you have completed the tabs, choose File>Save as>To Project. The
Save As dialog appears. Choose the Integration Component Library into
which you want to save this connector configuration, enter the name you
want to use for the connector, and choose Save. The Connector
Configurator validates your connector configuration and displays a
message for either success or failure. If you have no more changes to make
to the configuration properties of this connector, close the Connector
Configurator.

In the System Manager perspective, under the Integration Component Library
project that you created, an icon for your connector configuration is now
displayed under the Connectors folder.

Your connector is now configured as part of an Integration Components
Library, with the properties and supported business objects that you specified.
If you need to make a change in the configuration, you can do so by
double-clicking this specific connector icon to open its configuration file in
Connector Configurator. Note that if you wish to add additional supported
business objects to the configuration for this connector, you must first save the
business objects into the same Integration Component Library in which this
connector resides. Then you can open Connector Configurator, select the

Implementing Adapters with WebSphere Application Server

Supported Business Objects tab, and click in the Business Object Name drop
down box to see the additional available business objects.

Creating user projects in System Manager

System Manager user projects specify the integration components that will be used
for some particular purpose, such as a specific interaction pattern. After you have
created System Manager user projects and populated them with integration
components, you can deploy the user projects to the Business Integration
perspective, for use in the creation of WebSphere Application Server Enterprise
Application Archive projects.

User projects are created within the System Manager perspective, using the New
User Project dialog. To create a user project, open the System Manager perspective,
and do the following:

1. Under the User Projects folder, select and right-click on WAS Projects.

2. In the pop-up menu, select New User Project. The New User Project dialog
appears. In the Project name field, enter a name that you want to use for the
user project.

If the dialog contains a prompt to Select the type of User Project to create, choose
WebSphere Application Server Project. (Depending on the configuration of your
installation of WebSphere Business Integration adapters, WebSphere Application
Server Project may be the only choice available.) The Available Integration
Component Libraries field shows folders for any integration component
libraries that you have created, and includes check boxes for both the libraries
and the individual integration components that they contain. Expand the
folders and check the boxes for all the components that you want to make
available in the user project that you are creating. Choose Finish. (If you have
not yet created any integration component libraries, none will be displayed.
However, you can still create the user project at this time. At a later time you
can right-click the user project that you have created and choose Update project
to add any new integration component libraries that you have created.)

Note: You can also access the New User Project dialog through the Business
Integration perspective by choosing New>Project>WebSphere Business
Integration>User Project. When the new user project is created, the
System Manager perspective is opened automatically; the new user
project is created in the System Manager perspective. That does not
change the other procedures for this task.

3. The User Project is created and appears under the WAS Projects folder in the
System Manager perspective.

Deploying user projects

After you have created a user project and added integration component libraries to
it, you can deploy that project to generate files that can be used in the WebSphere
Application Development Environment, Integration Edition for the creation of
WebSphere Application Server projects. To do so:

1. In the System Manager perspective, right-click on the icon for your user project
(make sure that you are within the User Projects folder, not within the
Integration Component Libraries folder). A pop-up menu appears.

2. Choose Deploy WAS Project. The Component Selection Page appears, listing the
specific integration components available in the user project you have selected.
(You should see a connector and one or more business objects. If you do not

Chapter 8. Deploying to WebSphere Application Server 67

see business objects, verify that you designated business objects as supported
when you configured the connector, that you included that connector
configuration and those business objects in an integration component library,
and that you updated the user project with that integration component library.)
Check the boxes for the components that you want to include, and click Next.
A pop-up menu appears, providing three choices:

* Export to a Service Project

This option saves the connector configuration files, in WSDL format, and the
business object definition files, in XSD format, directly into a WebSphere
Studio Application Developer Integration Edition service project. The service
project must already exist, and must reside within the current workspace.

* Export as a Jar File

This option saves the connector configuration files, in WSDL format, and the
business object definition files, in XSD format, into a JAR file. The JAR file
can be used locally or moved to another machine and installation of
WebSphere Studio Application Developer Integration Edition to be imported
into a Services Project.

* Export to a Directory

This choice saves the connector configuration files and business object
definition files of your user project to the directory location that you select.
The connector configuration files (file in XML format with a .cfg or .con
extension) are transformed into Web Services Description Language (WSDL)
format and renamed with the .wsdl extension. The business object definition
files are saved in .xsd format.

To use these files in WebSphere Studio Application Developer Integration
Edition, you will import them into a Service Project, as described in
[files for a new service project” on page 69)

Select a choice and click Finish.

Files will be generated in the location that you specified. The files are an
interface .wsdl file, a JMS bindings .wsdl file, and a JMS services .wsdl file, all
specific to this connector configuration, and .xsd files corresponding to each of
the business object definitions.

Creating WebSphere Application Server applications

In this task, you create WebSphere Application Server applications that implement
interaction patterns. The applications include the following types of projects:

Service Project

Contains the initial .wsdl and XSD files that were deployed from System
Manager, generated .wsdl files with EJB bindings, and may contain generated
helper classes.

Enterprise Application Archive project

Contains one or more EJB projects (which contain generated Session and
Message Driver Beans (MDBs))

In addition to WebSphere Application Server components (EJBs and MDBs), the
tooling generates the following helper classes:

Data-type java beans, generated for each XML Schema Definition found in the
wsdl or xsd file, with format depending only on the schema.

Format-handler java beans, used to serialize and deserialize data-type beans to
and from wire format. The wire format (and therefore the format handlers) are

68 Implementing Adapters with WebSphere Application Server

specific to the encoding and binding, as specified in the .wsdl file. For this
solution, binding is jms and encoding is XML (reflected in the package name of
the format handler class).

After you have created the projects, you can export an individual interaction
pattern as an Enterprise Application Archive application for deployment on a
WebSphere Application Server, or you can include multiple interaction patterns in
a single Enterprise Application Archive application for deployment.

Note: The final Enterprise Application Archive project must include a a helper file,
boutils jar, that contains the business object initialization library routine. You
must add this file to the completed Enterprise Application Archive by
importing it manually, as described under Adding the Business Object
Library Routine, later in this section.

The topics in this section describe how to create for each interaction pattern.

Agent Delivery (Asynchronous Event Delivery)

The Agent Delivery interaction pattern asynchronously delivers a message from the
adapter to WebSphere Application Server. No response message is required from
WebSphere Application Server.

To create an Agent Delivery interaction pattern, you must create an Enterprise
Application Archive application that contains:

* A message driven bean (MDB) that receives messages and invokes the E]B

* An EJB that is triggered by the MDB and that implements the business logic that
you want to use for processing the event

* Helper classes that represent the .xsd files as java beans, and format handler java
beans that convert XML to java, as specified in the .wsdl file.

The Enterprise Application Archive application must also contain .wsdl and .xsd
files from the Service Project. If you chose Export to Service Project when you
deployed your System Manager user project, the Service Project already exists and
is included in the Enterprise Application Archive. If you instead exported your
System Manager user project as individual files to a directory or as a JAR file, you
will need to import the file or files into a new Service Project.

Import files for a new service project
This step is not necessary if you exported your System Manager user project

directly into an existing service project, as described in [“Deploying user projects”|
If you exported from System Manager to a JAR file or to a directory,
you will need to perform this step to import the files into a service project. This
step creates a Session Bean and .wsdl files that describe it.

This procedure assumes that in System Manager you chose the option to Export to
a Directory. To import the exported files into a new service project, do the
following:

1. In the Business Integration perspective, choose File>New>Service Project.

Chapter 8. Deploying to WebSphere Application Server 69

2. The New Service Project dialog displays. Enter a name that you want to use
for this project, accept the default for Project contents, and click Next.

Service Project
Zreake a service project. *ﬁ

Project name: | LAgentDelveryServiceProject

Project contenks:
v Use default

Direckary; | DiwS12200workspaceiLagentDeliveryServiceProject Browse, ., |

% Back | Mext = “ Finish I Cancel |

3. Click Finish. The new service project is created in your default workspace.
The core libraries, and any additional elements that you included from
existing projects, are displayed in the Package Explorer view of the Business
Integration perspective.

4. In the Package Explorer view, right-click on the new service project you have
created, and choose Import.

70 Implementing Adapters with WebSphere Application Server

5. The Import dialog displays. Select the File System folder and click Next.

select
Import resources from the local File system

Select an impart source:

(2, App Clisnt JAR file
(B, EAR File
(5%,E18 14R file
ﬁ Existing Project into Workspace
ﬁExternal Plug-ins and Fragmenks
3
ﬂp‘
heHTTR
I;?PHTTF‘ Recaording
@‘ Logging tilities XML Log File
@Profiling Filz
&1 RAR Fil
@Securitv Certificate
’§; Server Configuration
$0symptom Database File
Tearn Project Sek
5, WA file
l‘-@‘ web Service
web3phere Application Server Log File

=

= Back

(o]

Einish | Cancel |

6. In the Directory scroll box, browse to the folder that contains the .wsdl files

and .xsd files that you have created for use in this interaction pattern. If you

created the .xsd files and .wsdl files for this interaction by deploying a user

project from System Manager, you should have a folder with the same name
that you gave the user project. Choose that folder, and click OK.

7. The Import dialog now displays the files contained within the project folder

that you have selected. Checkboxes enable you to include or exclude specific

xsd or .wsdl files. Your default choice, assuming that the user project that you
created in System Manager contains only elements that are usable in the
interaction pattern that you are creating, should be to include all the .xsd and

.wsdl files displayed in the folder. However, the dialog enables you to select

any or all of the files. Typically you should have all of the business object .xsd

files that you designated as supported in the connector configuration in the

same folder with the WSDL file that was created from the connector’s

configuration file. Error messages may be displayed if the .xsd files for any

supported business objects are missing from the folder that contains the

Chapter 8. Deploying to WebSphere Application Server

71

WSDL file.

File system

Import resources from the local file system, D
A
Direckary: I DS 1 2200 workspace|PHUbOnEY vy ServiceProject j Browse. .. |

O &) .serverpreference -]
D .SErvices

[Pl 5] address.sd

@ Cuskomer esd

(3] CustomerRaole.xsd

[S) GenEmplaves.xsd

@ Loopback?. wsdl

@ Loopback2 MSBinding. wsdl

@ Loopback2IM5Service. wadl o

F-[F = PHubOne'WayServicePraject

Filker Tvpes. .. E Select Al Deselect Al I

Select the destination for imported resources:

Folder: | LHUbOne'wayServiceProject Browse. .. |

opkions:
r Crverwrite existing resources without warning
{" Create complete Folder structure

{%' Create selected Folders only

< Back | [ext = i Cancel |

8. Specify the name of the destination folder for the files that you are importing;
for example, MyServices\com\ibm\cw

9. Click Finish.

10. In Package Explorer, the files that you imported are displayed under the
service project that you named.

Create an EJB

The Agent Delivery interaction pattern requires an EJB to consume the message
incoming to WebSphere Application Server from the agent. You must both create
the EJB and add business logic to the EB] method to process the received event.

Start by creating a project that will contain the EJB:

1. In the J2EE view of the Business Integration perspective, choose
File>New>Project.

72 Implementing Adapters with WebSphere Application Server

2. In the New Project dialog, choose EJB in the left-hand panel, then select E]B
project in the right-hand panel, and then choose Next.

New Project

select P

L]
Create an EJB project ﬁ
- Business Inkegration w
B

- JZEE

- Jawa

- Plug-in Development
- SErver

- Simple

- eh

[#-Examples

= Back I Mext = I Einish | Cancel |

3. In the Select an E]JB Version dialog, choose Create 2.0 EJB Project, and click
Next.

EJB Projeck Creation

select an EJB Yersion.

Select the EJB spec version for the project you wank bo create. m

{™ Create 1.1 EJE Project.

Create an EJB Project according bo the EJ8 1.1
specification,

Create an EJB Project according bo the EJ8 2.0
specification,

= Back. I _Next;v I Einish Cancel

Chapter 8. Deploying to WebSphere Application Server 73

4. In the EJB Project Creation Dialog, provide a name for your EJB project, and
the name of a new or existing Enterprise Application Archive project folder to
which it will be added. If you specify a name for a new Enterprise
Application Archive project, a folder with that project name will be created.

EJB Projeck Creation

EJB Project
Create an EJB Project and add it to a new or existing Enterprise &pplication project. m

Project name: I LAgentDeliveryServiceProjectE)8

W Use defadlt
Direckary; | D51 220 workspaceLsgentDelveryServiceProjectEJE Browse, ., |

Enterprise application project: & Mew ¢ Existing
Mew project name: | LAgenkDeliveryServiceProjectEaR)

v Lse default
Iew project location: ID:'|,v5122D'|,w0rksp-3-:=3-ﬁ‘mger.tDeIiv&:rﬁrviceprojectEnR Browse, ,, |

= Back. | Hext = | Einish I Cancel |

5. Choose Finish. A project, containing an EJB module, is generated under the
name that you specified. The EJB project is created for you and you can see it
in the J2EE Hierarchy view under EJB Modules. In the Services view, under
Service Projects, select the .wsdl interface file that you imported from your
connector configuration (for example, AgentDelConnector.wsdl). Right click,
and choose New>Build from Service. The New Service Skeleton dialog opens.

74 Implementing Adapters with WebSphere Application Server

6. Choose EJB Service Skeleton and click Next.

Mew Service Ske

Create Service

Template to create a stateless session bean {and, optionally, a new @tg

binding For this service) based on an existing service interface.

Choose the Service.

% Jav

oMl]

E

Client

WebSphere Application Server V5

—| @ - e - ®
Inbound EJB EJB
Services Service

W5DL
A

WS oL —

7. In the New Service Skeleton dialog, select Create a new port and binding and
select Generate helper classes. Choose Next.

Chapter 8. Deploying to WebSphere Application Server

75

76

8. The Service Skeleton dialog appears.

service Skeleton

Create a service skeletan, e‘tgj

Select the service inkerface For the new sheleton:

I

WSDL Files I [LagentDeliveryServiceProjectiagentDelConnector . we - Browse...

Port bvpe name: ICustomerngentDelivery j

Specify the port location and its name:

Source Folder: I ILagentDeliveryServiceProject Browse, ..

Package: I agent.delivery Browse, ..

File: name: I CustomeragentDeliveryEJBService, wsdl Browse, .,

[EEF

Service name: I CustomeragentDeliveryEIBService Erawse. ..

Part name: I CustomerfgentDelivervEJBPort

Specify the binding location and its name:

Source Folder: I ILagentDeliveryServiceProject

Package: I agent, delivery

[

File: name: I CustomerfgentDeliveryE JBBinding, wsdl Browse, .,

Binding name: I CustomerfgentDelivervE JBBinding

< Back | Mexk = | Finiishy I Cancel |

9. Select the appropriate Port type name according to the interaction pattern you
are creating, and provide a meaningful package name in place of the default.
Click Next.

10. In the next dialog, you can specify properties for generating the E]JB skeleton,
or accept the defaults. Click Finish. The newly created EJB project will be
listed under Deployable Services in the Services view.

11. Edit the skeleton to add any necessary business logic.

Create an MDB

A message driver bean is responsible for receiving events as messages from the
connector and invoking EJB processing of the events.

In this step, you will deploy the EJB service to the server using existing inbound
port and bindings - the original JMS bindings. This step generates an MDB that
invokes the appropriate method of the Session Bean skeleton. The MDB is specific
to the port type and the selection of the operation is made based on the incoming
message properties: WSDLOperation (and possibly WSDLInput and WSDLOutput)
properties. The additional helper classes, format handlers, are also generated
during the deployment. These are used to convert from the wire format (the XML
message) to the Java Class, which in turn is passed as an argument to the business
method of the EJB.

You must configure the JNDI names used by the EJB and MDB. The JNDI setup is
necessary since the lookup names of the queue connection factory and queues

Implementing Adapters with WebSphere Application Server

defined in WSDL may not match the actual names defined on your server. The

WebSphere Application Server allows you to map the name you are looking up (as
specified in WSDL) to the actual JNDI name deployed on the server, thus allowing

correct execution without the need for modification of your wsdl files. You also

need to specify what listener port is used by the MDB.

1.

In the Package Explorer view, expand the folder for the Service Project that

you have created and select the EJBService .wsdl file that was generated in the

previous task. Right-click on the file, and in the pop-up choose Enterprise

Services>Generate Deploy Code.

ication Developer Integration Editi

File Edit Source Refactor Mavigate Search Project Run Window Help

B-HEE | AR R| N A | D & |

]|

R t_l@‘@?O

El-To H Services
EI{E} com.ibm.cw
----- [S) Address.xsd
----- [8] Customer.xsd
----- @) CustomeragentDeliveryEJB8inding

Open

----- @) Custom Open With

----- [8] Customm
----- @ GenEmg
----- @) Loopbac
----- @) Loopbac
----- @) Loopba:

E- B com.ibm s
@ Custam
B3 com.ibm.w

B3 com.ibm.we
B3 com.ibm.w
B3 com.ibm.we

b © Generate Helper Classes

H--Ef com.ibm.we
- EF com.ibr.we

% Generate Service Proxy..

:_ senerate Deploy Code. ..

4
Services |Package Expl

jﬁ Run on Server...

Chapter 8. Deploying to WebSphere Application Server

77

78

2. In the Generate Deploy Code dialog, select Use an existing port, and choose

Next

Deployment

Deploy & service,

Select the service to deploy:

I ILagentDelveryServiceProjectjagentidelivery | Browse, .. |
ICustumAgerﬁ)eivelﬂ'EBSﬁ'vice j

| CustomeragentDelveryPTEJBFort d

Setyice file name:

Service names:

Pork name:

[T Generate helper classes

Specify whether ko generate a new or Lse an existing port:

" Create a new pork and binding %

@ Lse an =xizing o

Specify the binding bype to generate:

Inbound binding tvpe: |S04F j
Deploy service as a Web service. This Web
service can then be invoked using the WWeb
SEFYICE programming model,

Description:

Specify or create the JZEE application projects:

| LagentDeliveryServiceProjectEAR

EAR prioject:

Browse, ., |
j Brawse, ., |

EJE projeck:

Web project: I

3. In the Inbound Service Files dialog, select the JMSService

.wsdl file for your

project, and the corresponding service name and port name. Choose Finish.

4. In the J2EE Hierarchy view, select your project under EJB

Modules, right-click,

choose Open With the EJB Deployment Descriptor editor and choose the Bean

tab. Verify that the Destination type is Queue. Specify the

correct ListenerPort,

so that its queue connection factory and queue match those specified in the

.wsdl file for this interaction pattern.

[Business Integration - WebSphere Studio Application Developer Integration Edition:
File Edi Navigate Search Project Rum Window Help

e

S-ERs | fnspean] el dodem|w]T]s -

=27 [
5 || 49 326E Herarchy x | 9 Admin Conscle w |
m= [% Erterprise Applications A
:% L7 Application Clent Modules Beans
=l L, Conrector Madules
-5 Web Modudes ® CustomerAgentDelven®T
D0 s jeenlies sl
B 1CustomenOnetayE)6 Transaction type: | Container
| (3 2CustomerDeliveryETE Display name:
1+ @ SCustomenConsumsE 18 Deseription:
i {3k bpecontaner s ProcessCortaine Messzge selector: | WSDLBInding = 'CustomeragereDebveryBindng

| (3 bperemotecepioy_sib

acknowledge mode

[(3 compensate_eib

=3 LagentDeliveryServicsProjectEJ8

= fveryPT
- @ CustomerfgentDelvery] = Message Driven

E',! CustomerigentDelveryPTH
(3% customeragentDelveryPT
i [3% CustomersgerkDelveryPTB—
. FRC§ CustomerServiceMDE
| J) Resourcefef cwfisenfeomiLs

Destination bype:

Subszription durabilk:

- WebSphere Bindings

| Queue

< Destination type: Queue
[3% CustomerServicelDE

The falowing are binding properties For the: WebSphere Applcation Sery

| B (3 LagentDeliverySenviceProjectE T [el [peserption

I Resource

P _rfi Maps = ListenerPort name: | LagentDeliveryUstenerPort] |
) L3 | = Class and Interface Files
Services | Package Explorer | JZEE Hierarchy | Overview ssemhlr Descriptar |Refaremas | Access | Sowrce
3% Outine % | 7 Tasks (Filker matched 0 of 1 item)

[tn Fokder

Implementing Adapters with WebSphere Application Server

5. Choose the References tab. Select the resource queue name listed under the
MDB. The name from the .wsdl file then appears in the Name box at right.
Under WebSphere Bindings,in the [NDI name field, enter the correct JNDI
name for the deployment of this queue, as defined in the WebSphere
Application Server Administrative Console.

X | & E18 Deployment Dessripter

| UadnnConsde SRS

References
A feerET
i ‘-_?‘ E:i::sse?mi [\.'Beryﬂ Name: cwfibmjcomyiLoopbacksLOCAL_DELIVERYQUELE
(- ReseurceEnvRer ewfbmicomibosgt | DesTrRtion:
i) RescurceRel evfibm comLoopback
Type: JEia e, Quele
 \Websphere Bindings

The Following are bindng propesties for the WebSphers Application Server.
DT measne | cvyficenicomLocabackZL OCAL_DELIVERYQUEUE])

Il ¥

6. Select the connector factory listed under the MDB. Under WebSphere
Bindings, in the [NDI name field, enter the correct JNDI name for the
deployment of this connection factory, as defined in the WebSphere
Application Server Administrative Console.

| wadnnconsle [SEEEER X | emoepioyment pescipe
References a
=

é"f_; E:i:::ﬂgelftﬁeli I:W:WPT Mame: cvifibrnfcomiLoopback2QCF

T Descrigtion: ;[

Type: Javax.jms. QueueConnectionFackory =
Autheritication; | Application =]
shating scops: | Unshareable B

- WebSphere Bindings

The following are bindng properties for the WebSphere &pplication Server.

WOT name: | ovybeicomfLoopback2QCF |

- WebSphere Extensions

4 | | LI The fallewing are extension properties for the WebSphere &pplication Server,

Isclation level: =1 —
| Cannection policy: F =]
| Overview |Beans | Assembly Descriptor IReEererxes [m:-:ess | Souwce

7. Save the changes that you made in the EJB Deployment Descriptor editor.
8. Open the Server Configuration tab in the lower panel of the Business
Integration perspective and right-click on the Servers icon.
79

Chapter 8. Deploying to WebSphere Application Server

80

9. Choose New, and choose Servers and Server Configuration. The Create a New

10.

11.

12.

13.

14.

15.

Server and Server Configuration dialog appears.

Create a New Server and Server Configuration

Creakte a new sek(;-er and server configuration
Choose the properties For the new server. %
Server name: I WAS_EE_Test_Env
Folder: j
Server bype: l_—‘_lfa WebSphere version 5.0 -
: EE Remaoke Server
mﬁ EE Tesk Enviranment
Remote Server
57 Remake Server Attach
----- Test Environment
&#-Cg WebSphere version 4.0
-0 Apache Tomcat version 4.1
[]--EE; Apache Tomcat version 4.0 ;I
Template: INDne j
Description: Runs all 12ZEE projects directly out of the workspace,
Server configuration byvpe: WebSphere v5.0 EE Server Configuration
Template: INc-ne j

Descripkion: A server configuration For WebSphere version 5.0,

In the Server name field, enter a name for the server instance you are creating.
Enter the same name in the Folderfield. In the Server Type field, select EE Test
Environment.

Choose Finish, and respond Yes when prompted to create a new server project
with the name you specified.

After the utility completes, in the Server Configuration panel double-click the
icon for the new server instance that you have created. The WebSphere Server
panel appears, with the name of the server instance you have created. Choose
the Configuration tab.

The WebSphere Server Configuration panel appears. Put a check in the Enable
administration console check boxes.

= X

WebSpherg\g Server Configuration —

Scope; |I-:calhost,flocalhostfserver1

Server Configuration

Enter settings for the server configuration,

Configuration name: | ‘Was_EE_Test_Env

Enable administration console

Enable universal best clisnt

-
| | 3

Server ICc-nFigu...]F‘aths | Emwiran. .. |Wel:- |Data sa... (Parts |'\-'ariables | Trace |Security“ "

Choose the Variables tab. In the Defined variables drop down box, locate the
MQ_INSTALL_ROQT variable. Change the value of the variable to the
absolute root path of your MQ installation.

Save your configuration. (Ctrl+S).

Implementing Adapters with WebSphere Application Server

16. Start the newly configured server instances, as follows: In the lower portion of
the Business Integration perspective, choose the Servers tab. The Servers panel
displays. In the Servers panel, select the icon for the newly configured server
instance, and click the run button to start the server.

17.

Open the WebSphere Application Server Administrative Console. Under

General Properties under the Configuration tab, add the listener port name
that you specified in the Bean tab of EJB Deployment Descriptor. Add the
same connection factory JNDI value and destination JNDI queue name value
that you specified in the References tab of EJB Deployment Descriptor. As
appropriate for your needs, make any necessary changes in the Maximum

sessions, Maximum retries, and Maximum messages fields.

mﬁ X | & EIB Deployment Descriptor N

Home | Sawe | Preferences | Logout | Help |

[SRy

User ID: Thomas:

localhost
B Servers
Application Servers
@ Applicstions
O Resources
ORI Providers

H Securly
B Environment

M Suskom A dmicickratinn

RBuntime || Configuration

General Properties

Connection factory JNDI name

Deslingtion JNDI name

Hame « [CRgenioeiveryListensiFort] [niame of the istener port

Irifial State [Saned =] [i) The execution stete reque
% server is frst starled.

Description I [i] & description of the ksten

adminiztrative purposes

'lcwﬁblr\fcumﬂ.mpbaclﬂQCF l

[i] The JNDI name for the
factory 10 be used by ihe lisk
examglie, msfoonnFactoryl

slcwnbmumLoopback:LOCALJ)ELl]

[il The JNDI name for the dez
uzed by the listerer pord, for

imEsidesn .

Mecdmum Segsions:

[t

[i The manceum rumber of ©
sarver sessions uzed by & li
process messages, in the rar
2147483647,

Mscdmum refriss

o

[i] The mascmum rumber of ti
liztener s 1o deliver & mes:
liztener is stopped, in the ran:
2147483647

Maximum messages

@Tha misdmum rumber of n
the kstener can process inor
sezzion, nthe range Othrour

18. In the WebSphere Application Server Administrative Console, add the queue
as a resource. Provide a display name for the queue and a JNDI lookup name.
The JNDI lookup name must be the same as specified for the EJB Deployment
Descriptor and the listener port.

m X | @ EI8 Deployment Descriptor

Home | Sawe | Preferences | Logout | Help |
User ID: Thomas ‘General Properties
Scope * celslocahost nodeslocalhost [i]The scope of the configured resource. Th
localhost incicates the configurstion location for the
B Servers contigurstion fie,
Application Servers Name = |LDelveryaueues [1] The required display name for the resourc
B Applicstions
i JNDI Narme » [00phackzL OC AL _DELIVERY GUELE [0 The JHDI name for the resource.
& Resources =
P " Description D [i] 4n optional descrigtion for the resource.
Genenc JMS Providers
highIphers M3 Frovider
MG WS Provider D
Mail Pronsigers Cotegary | [i] An optional categary string which can be |
" Provider: cisssify or group the resource.
i Persistence NN PERSISTENT - [ivmether sl messages sent to the destinat
USL Providers. I :l persistent, non-persistent, or have their persi
Resource Sdsclers datined by the spodcation,
Exdended Messaning Provider Priority ISPECIFED = [Minnether the message priorty for this dest
Ohiect Pools cefined by the application or the Specified pri
N property.
Scheduier Configr alion
") . Specified Priority I: (i1 the: Priority property is set to Specified, t
Al Pl Frivdds the message priarity for this quesss, inthe ran
Wlork Mangaes through &
@ Securly Expiry [unLraTED =] [[wvnether the expiry timecut for this queue
oy the sppication or the Specified expiry prog
@ Envdronment
messayes on the queus never exgire (have s
M Ceimbmin b omimimbrnbine, O N I G AL

In the Base Queue Name field, enter the name of the physical queue that you
created in the MQ queue manager. This must correspond to the

Chapter 8. Deploying to WebSphere Application Server

81

DeliveryQueue that you specified in the connector configuration properties
using Connector Configurator.

m * ‘ @ EJ8 Deployment Descriptor

Home | Sawe | Preferences | Logout | Help |

Tamwm

User ID: Thomas

localhost
B Servers
Application Ssrvers
B Applicationz
B Resouwrces
Prowiilers
Generic JMS Providers
ViehSnhere JMS Provider

Statl Plugin Provider

ied Expiry

milizeconds

(i1t the Expiry timeout property is =at t
type here the number of miliseconds (¢
afler which messages on this gueue &

Baze Guese Name

* ‘LDeIivevaueue

() The name of the gueue ta which me
sent, on he queus manager specified |
cqueus manager Name property.

Bacze Queus Manager Name

Jan_mt 19621

[[The name of the WiehSphere ha qu
which messages are sent.

CCSID

[i)The coded character zet iderfifier f
WebSphers MO queus manager.

WishSnhers MO JMS Brovider

Mative Encoding

™ Use native encoding

[iwien ensbled, native encoding iz u
disabied, the settings for integer, decim
point are used

B ALl L ir wier

Irdeaer Encodng |NDM ..I [Tit mative encoding s not enabled, se
integer encoding is normal or reversed
Decimsl Encoding IN‘""""' el (D native encading is not enabled, se
decimal encoding iz normal or reversec
Floating Poirt Encoding |IEEENmmaI 3 [i)it native encoding iz not enabled, se
floading poit sncading.
Tai Cliert - [iwshether the receiving applicetion is
S
o is & traditional WebSphere MQ apaic
MQ Queue C Prop

In the JNDI Name field, enter the name of the queue that you established in
the destination JNDI queue name value in the Bean tab of EJB Deployment
Descriptor. Provide a value for Base Queue Manager Name.

19. Create a queue connection factory, with the JNDI name corresponding to the
name used in the EJB Deployment Descriptor and in the listener port.

After you have completed these steps, you will have a completed Enterprise
Application Archive application for this interaction pattern. You can then test this
Enterprise Application Archive application in the EE Test Environment and deploy
the application as an Enterprise Application Archive file to another WebSphere
Application Server environment.

Agent Request (Synchronous event delivery)

The Agent Request interaction pattern synchronously delivers a request message
from the adapter to WebSphere Application Server and requires a response.

To create an Agent Request interaction pattern, you must create an Enterprise

Application Archive application that contains:
* A message driven bean (MDB) that receives messages and invokes the EJB

* An EJB that is triggered by the MDB and that implements the business logic that
you want to use for processing the event

* Helper classes that represent the .xsd files as java beans, and format handler java
beans that convert XML to java, as specified in the .wsdl file.

The Enterprise Application Archive application must also contain .wsdl and .xsd
files from the Service Project. If you chose Export to Service Project when you
deployed your System Manager user project, the Service Project already exists and
is included in the Enterprise Application Archive. If you instead exported your
System Manager user project as individual files to a directory or as a JAR file, you
will need to import the file or files into a new Service Project. To do so, follow the
same procedure as described for an Agent Delivery interaction pattern, in
ffiles for a new service project” on page 69|

The procedure for creating an Agent Request interaction pattern is similar to that
for creating an Agent Delivery pattern, except that this pattern requires that a

82 Implementing Adapters with WebSphere Application Server

response message be sent. Accordingly, the business logic in the EJB skeleton for
the Agent Request interaction pattern must return a value.

Perform the following steps to create an Agent Request interaction pattern.

Create an EJB project

The Agent Request interaction pattern requires an EJB to consume the message
incoming to WebSphere Application Server from the agent. You must both create
the EJB and add business logic to the EB] method to process the received event.

Start by creating a project to contain the EJB:

1. In the J2EE view of the Business Integration perspective, choose
File>New>Project.

2. In the New Project dialog, choose E]B in the left-hand panel, then select EJB
project in the right-hand panel, and then choose Next.

3. In the Select an E]JB Version dialog, choose Create 2.0 EJB Project, and click
Next.

4. In the E]JB Project Creation Dialog, provide a name for your EJB project, and
the name of a new or existing Enterprise Application Archive project folder to
which it will be added. If you specify a name for a new Enterprise
Application Archive project, a folder with that project name will be created.

EJB Projeck Creation

EJB Project
Create an EJB Project and add it to a new or existing Enterprise &pplication project. m

Project name: l LAgentRequestServiceProjectE 18]

W Use defadlt
Direckary; | Di\wS1 220 workspace\LisgentRequestServiceProjectEE Browse, ., |

Enterprise application project: & Mew ¢ Existing

Mew project name: | LAgentRequestServiceProjectEAR |

v Lse default
Iew project location: ID:'|,v5122D'|,w0rksp-a-:=3-ﬁ‘mger.tRequestServicerjectEAR Browse, ,, |

= Back. | Hext = “ Einish I Cancel |

5. Choose Finish. A project, containing an EJB module, is generated under the
name that you specified. The EJB project is created for you and you can see it
in the J2EE Hierarchy view under EJB Modules. In the Services view, under
Service Projects, select the .wsdl interface file that you imported from your
connector configuration (for example, AgentReqConnector.wsdl). Right click,
and choose New>Build from Service. The New Service Skeleton dialog opens.

Chapter 8. Deploying to WebSphere Application Server 83

84

6. Choose EJB Service Skeleton and click Next.

Mew Service Skeleton

Create Service
Template to create a stateless session bean {and, optionally, a new
binding For this service) based on an existing service interface.

Choose the Service.

%Java Service Skeleton
E4F 6 Service Skeleto

e

WebSphere Application Server V5

B U g - e - e
Client Inbound EJB EJB
Services Service
ol
W5DL
A

7. In the New Service Skeleton dialog, select Create a new port and binding and
select Generate helper classes. Choose Next.

8. The Service Skeleton dialog appears.

9. Select the appropriate Port type name according to the interaction pattern you
are creating, and provide a meaningful package name in place of the default.
Click Next.

10. In the next dialog, you can specify properties for generating the EJB skeleton,
or accept the defaults. Click Finish. The newly created E]JB project will be
listed under Deployable Services in the Services view.

11. Edit the skeleton to add any necessary business logic.

Create an MDB

A message driver bean is responsible for receiving events as messages from the
connector and invoking EJB processing of the events.

In this step, you will deploy the EJB service to the server using existing inbound
port and bindings - the original JMS bindings. This step generates an MDB that
invokes the appropriate method of the Session Bean skeleton. The MDB is specific
to the port type and the selection of the operation is made based on the incoming
message properties: WSDLOperation (and possibly WSDLInput and WSDLOutput)
properties. The additional helper classes, format handlers, are also generated
during the deployment. These are used to convert from the wire format (the XML
message) to the Java Class, which in turn is passed as an argument to the business
method of the EJB.

You must configure the JNDI names uses by the EJB and MDB. The JNDI setup is
necessary since the lookup names of the queue connection factory and queues
defined in WSDL may not match the actual names defined on your server. The
WebSphere Application Server allows you to map the name you are looking up (as
specified in the .wsdl file) to the actual JNDI name deployed on the server, thus

Implementing Adapters with WebSphere Application Server

allowing correct execution without the need for modification of your wsdl files.
You also need to specify what listener port is used by the MDB.

1. In the Package Explorer view, expand the folder for the Service Project that
you have created and select the EJBService .wsdl file that was generated in the
previous task. Right-click on the file, and in the pop-up choose Enterprise
Services>Generate Deploy Code.

2. In the Generate Deploy Code dialog, select Use an existing port. You can either
select the same EJB project you created in the previous step (for the EJB
skeleton) or specify the name of a new EJB project to create. A new EJB project
must be in the same Enterprise Application Archive project as your existing
EJB skeleton project. Choose Next.

enerate Lepliy Lode

Deployment

Deploy & service, .—-

Select the service to deploy:

Service file name: IILHgE:ﬂeq.&dﬁeniuePrujectIagent,frequest Browse. ., |
Service name: ICustunﬁAgatRﬂpastPTEBService j

Part name: | CustomerAgentRequestPTE POt =l

[Generate helper dasses

Specify whether to generate a new or use an existing port:
" Create a new port and binding

l ¥ {se an existing port: '

Specify. the binding type ko generake:
Inbound binding type; ISO.D.P j

Description; Deplay service as a Web service, This Web
service can then be invoked using the WWeb
service programming model,

Specify or creake the J2EE application projects:
EAR project: I LagentRequestServiceProjectEAR j

EJE projeck: AgentR equestServiceProjectEJE Browse. .. |
Web project; I j Browse, . |

3. In the Inbound Service Files dialog, select the JMSService .wsdl file for your
project, and the corresponding service name and port name. Choose Finish.

4. In the J2EE Hierarchy view, select your project under EJB Modules, right-click,
choose Open With the EJB Deployment Descriptor editor and choose the Bean
tab. Verify that the Destination type is Queue. Specify the correct ListenerPort,
so that its queue connection factory and queue match those specified in the
.wsdl file for this interaction pattern.

5. Choose the References tab. Select the resource queue name listed under the
MDB. The name from the .wsdl file then appears in the Name box at right.
Under WebSphere Bindings, in the JNDI name field, enter the correct JNDI
name for the deployment of this queue, as defined in the WebSphere

Chapter 8. Deploying to WebSphere Application Server 85

Application Server Administrative Console.

= Hisrarchy * | CEIEE X | § B Deployment Descrgtar
1 3CuskomerConsumeEJB - References

) bpeconkaines_efb: ProcessContainer
1 bperemotedeploy _sib

| compensata_ek - @ CustomerfigentsquestPT
| LiHubOneWayServiceProjectE 16 = L@ CustomerSenvicsDE Mame: | cwfibmjccmft oopbackesynchronousRequestQueus
| LagentDeliverySeviceProjectEJ6 o =) Descrision:
) LgentReguestServiceProjectE]B o] RescurceRef cnjibmjcomiLoopback

@ CustomerAgentRequestPT

_j‘ CuskomerAgentRequestPTHo Type: Javar e Queue

f ,ﬂ CuskomerAgentRequestPT

@ ijl:usmerm E:‘;ZEMPTB& ~ WehbSphere Bindings

=n=7 AssemblyDescriptar The following are binding propesties for the WebSphere Applicatic
5l Maps INDI name: | cvwfiomfcom/Leooback2Syrchroncusiequestueue]

1 LHubOneWayServiceProjectE6
1 PAgentDeliveryServiceProjeckEIE. —
1 PAgentRequest ServicePrajectEIB

@ CustomerAgentRequestPT

1] CustomerAgentRequestPTHO

’ gj‘ CustomerAgentRequestPT 4 ﬂ %
- g CustomerAgentRequestPTEe: - |
*

|Package Explorer | JZEE Hierarchy I‘O\-'erview |Beans LAssemhly Desc«lptur‘lﬂefaremes IAc:ess | Sowrce

[U | P AP R S

6. Select the connector factory listed under the MDB. Under WebSphere
Bindings,in the [NDI name field, enter the correct JNDI name for the
deployment of this connection factory, as defined in the WebSphere
Application Server Administrative Console.

Ferarchy -l L] E S Deplogs X | @ EJB Deployment Descriptor
3CustomerConsumeE B - References
pecontanes_ejh: ProcessContainer
wperematedeploy_ejb Mame: cwfibmjcomiLoopback2 QCF
‘ompensate_gb - @ CustomerAgentRequestPT Descriction:
AHubOneWayServicePrajeckEJB =5 CustomerServiceMDE B
MAgentDeliveryServiceProjectE)E m? ResourceErmRel owfbmicomLoopt

H I !

AnentRequestServiceProjectE 1R)
& CustomerhgentRequestPT Type: javan jms.QueveCornectionFactory
i %,: Eustoma::en:::qmgﬂu Authertication: | Application

oW CustomnerfgentRequest

¥ CustomeragentRequestPTEe, Sharing scope: | Unshareable
% CustomerServiceMDE
121 AssemblyDescriptor - WebSphere Bindi -
23l Maps The Fallowing are binding properties for the WebSpher
HubOnewsyServicePrajectEJR

name: fcomjLoopha F

stgentDeliveryServiceProjectElE — et i Lewpmjcomjl gh2ock
AfentRequestSericeProjettEIR - WebSphere Extensions

& CustomerAgentRequestPT
[custemeragentrRequestPTHo
LJJR CustomerAgentRegquestPT

- U} CustomerAgentRequestPTRe. |
»

The following are extension properties for the WebSpl
LI Isclation level:

. M - . Connection policy:

Backage Explorer | J2EE Hierarchy | Overview |Beans | Assembly Descriptor |References fAccess | Source

e % | o Tasks (Filter matched O of 1 ibem)
pentRequest ServiceProjectE B [l] Description | Resource | tn Foider

7. Save the changes that you made in the EJB Deployment Descriptor editor.

8. Open the Server Configuration tab in the lower panel of the Business
Integration perspective and right-click on the Servers icon.

9. Choose New, and choose Servers and Server Configuration. The Create a New
Server and Server Configuration dialog appears.

10. In the Server name field, enter a name for the server instance you are creating.
Enter the same name in the Folderfield. In the Server Type field, select EE Test
Environment.

11. Choose Finish, and respond Yes when prompted to create a new server project
with the name you specified.

12. After the utility completes, in the Server Configuration panel double-click the
icon for the new server instance that you have created. The WebSphere Server
panel appears, with the name of the server instance you have created. Choose
the Configuration tab.

86 Implementing Adapters with WebSphere Application Server

13.

14.

15.
16.

17.

18.

The WebSphere Server Configuration panel appears. Put a check in the Enable
administration console check box.

Choose the Variables tab. In the Defined variables drop down box, locate the
MQ_INSTALL_ROQT variable. Change the value of the variable to the
absolute root path of your MQ installation.

Save your configuration. (Ctrl+S).

Start the newly configured server instances, as follows: In the lower portion of
the Business Integration perspective, choose the Servers tab. The Servers panel
displays. In the Servers panel, select the icon for the newly configured server
instance, and click the run button to start the server.

Open the WebSphere Application Server Administrative Console. Under
General Properties under the Configuration tab, add the listener port name
that you specified in the Bean tab of EJB Deployment Descriptor. Add the
same connection factory JNDI value and destination JNDI queue name value
that you specified in the References tab of EJB Deployment Descriptor. As
appropriate for your needs, make any necessary changes in the Maximum
sessions, Maximum retries, and Maximum messages fields.

onServer Administrative Console [EREMRNEEEN

Home | Save | Preferences | Logout | Help |

User Ib: Tremas Liztenar portz for Mezzage Driven Baans to listen upon for mezzages. Each part =pecifiss the JMS Connaction Factory and JMS De:
localhost an MO8 deployed against that part, wil listen upon. [i

B Servers :”—‘C e
Applicafion Servers Buntime nfgiration
E Applications =
PR General Properties
Resmrces Mame [[name of the listener port
= |LAgentR: siListenerPort
& Seculy [LagentRecue: nel
& Erwironmert Initial State «[Stared =] [i]The: execution state requested «
server is fiesl slarled
System Administration ~
Destription I [[] 4 p=scription of the kstener por
® Troubleshooting sddministrative purposses
‘Connection factory JNDI name - |cwtibmfcum.l.mpback20CF LIJ The JNDI name for the S cont
factary 1o be used by he listener p
examgle, imsiconnFactory.
Destination JNDI reme - |cwmmfcomLoqpnacu2Syncrvnnnue [EThe JMDI name for the destinatic
wzed by the listener port, for exam;
jmeidestri .
Msmum SESsons l1 [The maxemum rumber of concu
server sessions used by & kstener
Drocess messages,inthe range 1
2147403647,
COMUM PEIriEs & MM i of times:
s cl o [0 h s of tines i
listener tres to deliver a messane |
ligtener i stopped, inthe range 0t
|Weh$pnere Status [1] <Previous Next s Februsry 6, 2003 11:28;

In the WebSphere Application Server Administrative Console, add the queue
as a resource. Provide a display name for the queue, and use that same value
in the Base Queue Name field. In the JNDI Name field, enter the name of the
queue that you established in the destination J]NDI queue name value in the

Chapter 8. Deploying to WebSphere Application Server 87

Bean tab of EJB Deployment Descriptor.

ebSphere App

Home | Save | Preferences | Logout | Help | i
User ID: Thomas ’
localhost Configuration |
B Servers
Apnlication Servars General Properties
Applicsiion Servars
N Stope = celg;iocathost nodesocslhost [i] The scope of the configured resource. Triis valug
@ Applications incicates the contiguration location for the
O Resources I configuration fle
JDEC Providers Name * [LsynchronousRequestGusue [The recuired dizplay name for the resource.
Gengric JM3 Providers JNDI Name [cwibmicomioopback2Syncrronous [The: JHDI name for the resource.
JMS Provider
here Erowi Degcription |—J [i) &n cetional descrigtion for the resource,
IMail Prondiders
' ronmen| Provider:
Puoud =
Besource Adeglers Calegry | [i) &n cational category string which csn be used to
Messan ider ciEsSity oF oroup the resource
Obiect Paols Persistence |NON PERSISTENT = [(htether sll messages sent to the destination are
N persiztent, non-persistent, or have ther persistencs
Scheghier Confiar afion detined by the spplication.
Bt i P Priority [sPEciFED ~] [ivether the message pricrty for tris destination iz
Wigrk Manager clefined by the spgication o the Specified priority
@ Securiy Eropery.
@ Erwironment Specified Priceily E (i1 the Priority property is set o Specified, lype here
rom the message priority Tor this ques, in the range 0
System Administration S
— - . . T =
Provide a value for Base Queue Manager Name.
m. X } @ EJB Deployment Descriptor
r D
- -
ebSphere Ap onso =]
]
-
M
Home | Save | Preferences | Logowt | Help |
User ID: Thomas Expiry |UNLIMTED ;I [lvether the expiry timecct for this ¢
oy the sppication of (he Specified expir
localhost messages on the queus never expire (b
B Servers unfimied expiry timeout).
Apglicalion Servers Specified Expiry I miliseconds [i1f the Expiry timeout property is 5=t t
ARRICHon =Srvers .
- ftype here the number of milizeconds (g
[Applications atter which messages on this queue e
O Resources Base Quews Nams - |LSyncrronnusRaquestGueue (i) The name of the queus to which me
Proiar: serf, on Ihe aueue manager specified b
JOOC Providgrs 2
CUELIE MENaGEs NEme DIopenty.
Generic JMS Froviders
MIge Base Queus Manager Name [am_mt 1950t [{] The name of the WebSphere M o
L Frovi ccsn I [[The coded character set idetifier fo
Mail Providers WiehSphers MG queus manager.
RES0Lrce EnveOnnent Providers. Mative Ericoding I™ Use native encading [hnen enaited, native encoding s w
Provh clisakled, the seftings for integer, decim
URL Providers. i
poink &re used
Irteger Encoding |Nam.g4 7I (i1t netive encoding is not enabled, se
Exdended Messaning Provider integer encoding i normal of reversad
Qbiec] Pools Decimsal Encoding Mormal v (111t niative encoding is not enabled, se
Sthegier Confizralion decinal encoding is normal or reversed
Sttt Plugin Frovider Floating Poind Encoding IIEEENurmuI T| [1t native encading is not enabled, se
tloating point encoding
Target Client ME v [ilwether the receiving application is
@ Securty s] or i o tracitionsl WebSphere MQ appic
B Environment BAD: T 1 i

After you have completed these steps, you will have a completed Enterprise
Application Archive application for this interaction pattern. You can then test this
Enterprise Application Archive application in EE Test Environment and deploy the
Enterprise Application Archive application to another WebSphere Application

Server environment.

Hub One Way

88

The Hub One Way interaction pattern delivers a message from WebSphere
Application Server to the adapter, without expecting a response from the adapter.

The Enterprise Application Archive application for the interaction pattern must
contain a service project. If you chose Export to Service Project when you deployed
your System Manager user project, the service project already exists. If you
exported the System Manager user project as a JAR file or as a set of files to a
directory, you will need to import the files to create a service project. If you need

Implementing Adapters with WebSphere Application Server

to perform that task, sed“Import files for a new service project” on page 69 |which

describes that procedure for the Agent Delivery interaction pattern. The remainder

of these instructions for the HubOneWay interaction pattern assume that you chose
Export to Service Project when you deployed your System Manager user project.

To create a HubOneWay interaction pattern, create an Enterprise Application
Archive application that contains:

* The Session Bean that invokes the JMS service and can be used from any J2EE
application. The Session Bean has a business method for each operation of the
deployed (JMS) Port Type.

After creating the Session Bean, you must configure it, using the Deployment
Descriptor editor, to perform necessary WebSphere mappings between JNDI
names and the queue names and connection factory names derived from the
.wsdl file.

* Helper classes that represent the .xsd files as java beans, and format handler java
beans that convert XML to java, as specified in the .wsdl file.

These tasks are described in the topics that follow.

Creating the EJB

This step creates a Session Bean, along with the .wsdl files describing it (the EJB
service and bindings).

1. In the Package Explorer view, select the J]MSServices .wsdl file. (Note that
because the service project is identical for all four interaction patterns, this can
be the same JMSServices file generated when you created the service project
for the Agent Delivery interaction pattern.)

2. Right-click the file and choose Enterprise Services>Generate Deploy Code. The
Generate Deploy Code dialog displays.

Generate Deploy Code

Deployment

Deploy a service. -.ﬁ
Select the service to deploy:
Service file name; IILHubOnE!WayServicd)mixt,fLoopbackZJMSS Browse. . |
Sepvice name: ICustnmerSeniue j
Port name: ‘HubOneWay]llSPurt j
V¥ Generate helper classes
Specify whether to generate a new or uss an existing port:
l {* Create a new pork and binding]
™ Use an existing pork
Specify the binding tvpe to generate:
Descripkion: Deploy service as a session EJB. This session %
EJB can then be invoked using the J2EE
programmineg model.
Specify or create the J2EE application projects:
EAR project: | LHUbOneWayServiceProjectEAR =l
EJ6 praject: | LHubOnewayServiceProjectE 18 | Erowse.., |
Web oroieck: [+ | Browse... |

Chapter 8. Deploying to WebSphere Application Server 89

90

7.

8.

In the Port Name drop-down, select the port name for this interaction pattern.
Select Create a new port and binding.

In the Inbound binding type drop-down, select EJB, J]MS, or SOAP. Your
selection affects the WSDL files generated, for the EJB access you get the EJB
Bindings and Service files.

Choose Next. The Inbound Service Files dialog appears.

Generate Deploy Code

Inbound Service Files

Specify where to create the service port and binding. .—ﬁ

Service inberface:

File mame: I ILHubOneb ayServiceProject fLoopbacks wsd|

Patt bype name: I CustomerHubOneWayPT

Specify the port name and where ko create it:

Source Falder: | LHUbOneWayServiceProjectEJGfejbModule

Package: I hub. oneway I Browse, ., |

File name; | CustomerHubOneW ayPTEJBService. wsdl Browse, ,, |
Service nare: | CustomerHubOne'W ayPTService Erawse, ., |
Port name: | CustomerHubOneWayPTEIBPort

Specify the binding name and where to create it:
Source Folder: | LHubOne'W ayServiceProjectE J6/eibModule

Package: lhub.onewa‘r | I Brawse, ., |
File name: | CustomerHubOneW ayPTEJBGINding. vesdl Browse, ., |
Binding name: | CustomerHubOnew ayPTEJBEinding

In the Inbound Service Files dialog, specify a meaningful package name for
both the port name and the binding name.

Choose Next. The EJB Port dialog appears, with a field that specifies a JNDI
name as an EJB port property. Accept the default value.

Use the Deployment Descriptor editor to map JNDI names to a queue
connection factory name and a queue name.

dtn o v x| |SEEED x|

[# corn.iben.eis, container 2l R
eferences
|2 comn.ibrnswebsphers csi
_E hub. oneway
i III _CustomerHubOneW ayPTSer =& CustomerHubOneWayPTService

[4] _CustomerHubOnetayPTser - ResourceEnwRef cwfibmjcom/Loo Name: owfibmjcomfLoophack2QCF
i [d) _EasRemotestatelessCustom i @mﬂ{ﬁ"ﬁh Description:

i |4] _EISRemoteStatelessCustom
8] CustomerHubOnewWayPTSery

% Customem:t&neway?ﬁav Type: javvas.jms. QusueConneckionFacko
CuskormerHubOneWayPTSery
i 1| Cont.
i [ExSRemotestatelassCustome [% Authentication: | Jorkames
i [J) EXSRemateStatelessCustome Sharing scope:
i [4] EXsStatelessCustomerHubOn
@) CustomertivhOnewayPTEJBE ~ WebSphere Bindi
Eﬂ Cl.rston::!\bOrlweWavPTE.’GE The fallawing are binding properties for the Webs)
org.oma.stub.java.lang pe
[orc.omg.ctub.javar.ejb INDT mamne: [cw/iormicomLoopback2 QCF |
& META-INF
¥ [B = WebSphere Extensions
@ i efo-fa-bnd.cni - ' | . The Fallowing are extension properties for the We
- MANIFEST, MF = — Isclationlevel: |

Implementing Adapters with WebSphere Application Server

10.

stor S o s v x| [SEEEEE x|
zom.lbn.es. conkainer =1 References
com.ibm.websphere csi

wb.oneway

[J] _CustomerHubOnew ayPTSer =@ CustomerHubOnetwayPTService ome: - TR ST
[J] _CustomerHubOnev ayPTSer :HJ ResourceEnvRef cwjibm/comiLoop | me: cusfibenfeomLoophad _REQUESTOU!
[3] _EIsRemotestatelessCustom "yl ResourceRef cwfbmjcom/Loopbac Description:

[4] _E1s8emotestatelessCustom
1] CustomerHubOneWayPTSery
[9] CustomerHubOnewayPTSery Type: Java., jms.Quee
[4] CustomerHubOneWayPTSery
[#] EJSRemotestatelessCustome

EXSRemateStatekssCustone I MebSphereBindings
4] EXsSEatelessCustomerHubOn The following are bindng properties for the WebSphere Applicat
9] CustomerHubOneWayPTE BE INDT name: | cufibmfcomyLoopback2LOCAL_REQUESTQUELIE |
&) CustomerHubOneWayPTEBS

arg.omg.stub.java.lang =

rg.oma.shub, javax.ejb

HETA-INF [

@ sjb-jar.xml
[ibm-ejb-jar-bnd. i]
5 MANIFESTMF

wins i dd Remove
»
JZEE Mavigator ‘ Overview | Beans ||lssernbly Descriptor [ReFer\enras]hc(ess Source

RN

An EJB that represents Hub One Way is completed. You can deploy it or use it
as any other WebSphere Application Server component.

‘“[

& Console [<terminateds EnterpriseUTE (WebSphere v5.0)]

Create an application client project for testing

To be able to test the complete application package, you may optionally choose to
add a client project to the Enterprise Application Archive file. Create the Enterprise
Application Archive Client project with the client class. In the main() method of
the class, the code should do the lookup of the EJB and invoke its appropriate
business method. Before the application client can be run, you will need to specify
the name of the class containing the main() method of the client in the Application
Client deployment descriptor.

To create the application client project:

1.

In the Package Explorer view, choose File>New project and choose
J2EE>Application Client Project. Choose Next.

In the J2EE Specification version dialog, choose Create J2EE 1.3 Application
Client project. Choose Next.

In the Application Client project creation dialog, provide a project name, check
Existing, and browse to select the name of the source Enterprise Application
Archive project containing the EJB you created in the previous task. Choose
Next.

The Module Dependencies dialog appears, with a list of available dependent
JAR files. Mark the boxes for the JAR files that should be included in the

Chapter 8. Deploying to WebSphere Application Server 91

Enterprise Application Archive project with this module, and choose Finish.

Application Client project creation

Module Dependencies

Select dependent JARs for the module within the Enterprise Application project.

Project name:]LH.l:»OmWayCiat
Enterprise application project name: !LHM'BWayServi:erje.ctEAR

Available dependent JARs:

JARMadule | progect
LHUbOneWayServiceProject. jar LHubOneWayServiceProject
LHubOneW avServiceProjectE 8. jar LHUbOneWayServiceProjectEJB

Manifest Class-Path:
LHUbOnew ayvServiceProject. jar LHUBONSW ayServiceProjectEdE . jar ;l

7

= Back. | Hext = | Einish I Cancel |

5. To create a package within the client application, in the Package Explorer
view, select the application client module that you have created, and choose
the Create a Java Package button from the toolbar. The New Java Package
dialog appears. Enter a name for the package and choose Finish. A folder with
that package name is added under the application client module folder.

6. To create a Java class in which to add logic, select the application client folder
and choose the Create Java Class button from the menu bar.

7. The New Java Class dialog appears. In the Package field, select the client
package that you created previously; provide a name for the class; specify
Public for modifiers; and specify public static void and inherited abstract

92 Implementing Adapters with WebSphere Application Server

methods for the method stubs to be created.

Java Class

Create a new Java dass.

i o

Source Folder: ILI-l.l:Q‘reWayCIientIappClientModuIe Browse. .,
Package: I dient Browse, .,
I~ Enclosing kype: I Browse...
Mame: lLH.h(heWayCIientCodd I

Maodifiers: & public ' default T private € protected

I~ abstract [final ™ static

Superclass: I jawa.lang. Object Browse. ..

Interfaces: a4

It

Remove

Ythich methcn:t%d:ns woadd you like to create?
¥ public static woid mainfString[] args)
I Constructors From superclass
¥ Inherited abstract methods

Finish I Cancel

8. Choose Finish.
9. Open the Java class and add your logic.

10. Add necessary Jar files. To do so, in Package Explorer select and right-click
the application client, choose Properties, and choose Java Build Path. The Java
Build Path panel displays.

11. Choose the Libraries tab, choose Add External Jars, and navigate to the
directory in which you installed WebSphere Studio Application Developer
Integration Edition, and expand the \runtime\ee_v5\lib folder. Select the files,

Chapter 8. Deploying to WebSphere Application Server 93

94

including wsatlib.jar, wsdl4j jar, wsif.jar, qname.jar.

13. Update the application client package using the

&b Properties for LHubOneWayClient x|
- Info Java Build Path
Beanlnfo Path
External Tools Builders @ source | & Projects Wil Lbraries I 1) Order and Export |
i J2EE 14Rs and class folders on the build path:
i Java Build Path
. Javador Location ﬁﬁ wsatlib. jar - D:\wS12200runtimesies_vSYlib Add JARs... |
- Java JAR Dependencies ﬁ}’awsdlqj.jar - D:lwS12200runtimesies_vSilib i
-~ Praject References mwsif.jar - DSl 220 runtimestee_wSilib e
- Server Preference & SERVERIDK_S0_PLUGINDIR jreflib/rt jar - D:\wS12204n Add Variable. .. I
" Walidation 4 WAS_S0_PLUGINDIR fibyjiviefb3s. jar - Di\wS12200runtir
2 WAS_S0_PLUGINDIR flbfj2ee jar - Di\v51220\runtimes, Advanced.., |
4] | i
Build output Folder:
| LHubOneWayClient]appChentMadule Browse. ., l
(64 | Cancel l
12. Click OK.

Deployment Descriptor Editor. To do so: In Package Explorer, expand the
META-INF folder under the application client module, and select the
application-client.xml file. Right click the file, and choose Open
With>Deployment Descriptor Editor. The Client Deployment Descriptor dialog

Implementing Adapters with WebSphere Application Server

appears.

&b 12€E - WebSphere Studio Application Developer Integeation Edition

Fis Eck Nsvioats

Search Froject Frofils Hun Window Helo

NI

(=3
=

|| & 5 o8 88

[E [e o || 5[] 0 || % -

[EE

[&]® [=-x-

IFEICRELY

¥5 JZEE Navigatr -
A B comBmmebspherecs
i+ @ org.omg stubjava.lang
B ong.cnng. stubs Java.h
o METAANF

Lo %

N \ﬂ{!@! ﬂ*

| o Lk Oneieyhent
| B Chent Deploryrant Dascrighor
= (B appClenitodule
i deck
] LHubOrew sy et Cods jave
= & METAINF

{)
(% MANIFEST.MF
-k Lbranias

- T LHbOnesaySardcePr oject

T LHbOnemayTenvie Pl S4R
LH.bOneayZarvceProjsctEXE:
gerhiielveryServioet oject
ﬁ Pigriedsery il i IEAR
Tt PAgErtDeeryServieProltE e

o PAgETRREqUES:SarceFTORCt

:»répnmammv wisErernct i _!_I
jJZEEHc(udrr TOFE Havigator |

B x|
| LHUbOneWayClient

|~ Genesal Information

| Cissbere name: [LHoboomiayClerk
| Deseription: =

| _* References
| Tree flowing is 2 brk bo the refesences defined for this applcation chent

| cversien References souree

[et

Large: [

J[Erevse... |

||

= Main Class

The Folowing mandezt stiribube specifies the lava dass of the
spcheaton entry pank;

]]

|| g thbOnekayClon:

“;‘Emn)

Console [<kermnated s EnferoriselITE (WebSohere v5.01]
TR T ES’I‘
L)

Sazidbet

Veblraup
| Geridhet

S42fdbci
S42idbot

S42(dbet

TSeZfdbci VWeblroup

Applicationdg & WSVROZ20L
Ga2fdbof Extendeddessa I EKSGO2ZOZI:
Ge2fdbof SchedulswSerwy I
S42fdbof Enterpriseirs I aPPROOOYL:
S42fdbof dckivitySessi I WACSOL
JHEMDIDProvid & ‘FJJJD’JJ-"I
JHSHOIDProvid & :
§4Zidbef StaffSarvies] I STFFWCIZI
Servertol labo

7T’5’R¥'EDIEDI'7EIW—UETIBTSEI “Tent
I SRMED120L piversal Tes!
: Application stopped IEHUI\'
The Extended Hcsn—mw ser
The Scheduler Service 4

SCHDDOOZT:
The application Profil £
91: The dctiwibySession servwic
Stoppins the HOJD JHS Prow
HQTD THS Provider is stopp

A NSWRDOZAL

Staff Service stopping
-
. .

| Teks |Fropestios | Seevers | Consche D6 Servers

|

14. Add the Main-Class name. The Application

Server serverl stopped
[wricatis [

client is ready to use.

Hub Request

The Hub Request interaction pattern synchronously delivers a message from
WebSphere Application Server to the adapter and receives a reply.

The Enterprise Application Archive application for the interaction pattern must
contain a service project. If you chose Export to Service Project when you deployed
your System Manager user project, the service project already exists. If you
exported the System Manager user project as a JAR file or as a set of files to a
directory, you will need to import the files to create a service project. If you need

to perform that task, sed“Import files for a new service project” on page 69|which

describes that procedure for the Agent Delivery interaction pattern. The remainder
of these instructions for the Hub Request interaction pattern assume that you chose
Export to Service Project when you deployed your System Manager user project.

To create a Hub Request interaction pattern, create an Enterprise Application
Archive application that contains:

* The Session Bean that invokes the JMS service and can be used from any J2EE
application. The Session Bean has a business method for each operation of the
deployed (JMS) Port Type.
After creating the Session Bean, you must configure it, using the Deployment
Descriptor editor, to perform necessary WebSphere mappings between JNDI
names and the queue names and connection factory names derived from the

.wsdl file.

* Helper classes that represent the .xsd files as java beans, and format handler java
beans that convert XML to java, as specified in the .wsdl file.

These tasks are described in the topics that follow.

Chapter 8. Deploying to WebSphere Application Server

95

96

Creating the EJB project

This step creates a Session Bean, along with the .wsdl files describing it as an EJB
service and bindings.

1.

In the Package Explorer view, select the J]MSServices .wsdl file. (Note that
because the service project is identical for all four interaction patterns, this can
be the same JMSServices file generated when you created the service project
for the Agent Delivery interaction pattern.)

Right-click the file and choose Enterprise Services>Generate Deploy Code. The
Generate Deploy Code dialog displays.

ala] v X
doa|awoe
=12 H Services -
EIE com.ibm. cw
—[8) Customer.xsd
@] CustomerfgentDeliveryEIBBInding
@] CustomerfgentDeliveryEJBService
@) CustomerAgentRequestE JBBinding
@) CustomerfigentRequestEIBService
- [8] CustomerRole.xsd
@] LoopbackzConnector.wsdl
@) bor MSEindings.:
B |8 L copbad2Connedh =
= £ c?m. e websphere. Adap Qi]
@ CustomerResponseMessage Open With ;
--E# com.ibm.wess. websphere.cross it
B--H3 com.ibm.wess.websphere.cross Copy
F--E# com.ibm.wess.websphere.cross Biihe
[--E# com.ibm.weess.websphere.crass ke
E-ff com.ibm.wwes. websphere.cross i =
E--E3 com.ibm. wems, websphere. cross
9 I Import. ..

Services IF‘ackage Explorer JJZEE Hierarch: Expart, ..

o g
a= Outline ld G Generate Helper Classes

@: Generate Service Proxy. ..

#n outling is not available. Add Boakmark

Refresh

24 Debug on Server...

=

Tmatazslarataimn

3. In the Port Name drop-down, select the port name for this interaction pattern.

Implementing Adapters with WebSphere Application Server

4. Select Create a new port and binding.

Generate Deploy Code

Deployment

Deploy a service, _-

Select the service ko deplay: =

Service file name: I I1H S&vices.fmrﬂhﬂcwﬂ.m;backZConnecto Browse, ., |
Service name: IGenErmluyeeSeni:e j
Fott mane: IGenEnﬁuyml—l.bReq.&dﬂiﬁ';gPort j

Iv Generate helper classes

Specify whether to generate 3 new or Lss an existing port:
[% Create anew port and binding I

™ Use an existing pork

Specify the binding by
Inbound binding typ{: IEJB j

Descripkion: n
EJB can then be invoked using the JZEE
programming model.

Specify or create the J2EE 5

EAR projeck: VI
EJE projeck: j Erowse. .. |
Web projeck: vl Browse, |

= Back | Mext = “ Einish I Cancel |

5. In the Inbound binding type drop-down, select EJB, JMS, or SOAP. Your
selection affects the WSDL files generated, for the EJB access you get the EJB
Bindings and Service files.

6. Choose Next. The Inbound Service Files dialog appears.

7. In the Inbound Service Files dialog, edit as necessary and specify a
meaningful package name for both the port name and the binding name.

8. Choose Next if you need to change the JNDI lookup name, or choose Finish.

9. Use the Deployment Descriptor editor to map queue names and queue
connection factory names, in the same manner as you did for the Hub One
Way interaction pattern. But for the Hub Request interaction pattern to
execute correctly, the sending and receiving of the message must not be part
of the same transaction. The simple solution is to disable transactions on the

Chapter 8. Deploying to WebSphere Application Server 97

EJB in its deployment descriptor:

Assembly Descriptor o
= Security Roles
The Following security roles are defined For the EJB JAR:
Marne;
Descripkion: ;l
i
¥ Method Fermissions /0o oot ot i i v iy e Contaier Transactions v ooty oy oy
The Following method permissions are defined for the EJB JAR: The Following container transactions are defined for the EJE JAR:
[#--42 hotSupported
|
[Add. . | [Edit, .. | [Rer.1.:~e| I Add. .. | [Edit... | IREn‘.we |
~ Excludes List e B IR i
The Follnwinolmethnd elements are 1.as unrallahle by the assemhly descrintor:
Overview |Bedns ‘Assembl\\;D&ccrbhnr eferences |Access | Extended Messaging | Source

10. An EJB that represents Hub Request is completed. You can deploy it or use it
as any other WebSphere Application Server component.

Optionally, after completing the above steps, you can create an application client
project for testing. See the steps describing this task for the Hub One Way
interaction pattern.

Requirements for initiating business objects in interaction patterns

98

The topics in this section describe mandatory requirements for the use of business
objects in interaction patterns.

Adding the business object initialization library

The BusinessObject initialization library routine is required for EJBs that create
business objects. The JAR file containing it (boutils.jar) must be part of the
Enterprise Application Archive project and specified as the dependency of the EJB
module. These are the steps:

1.

Select the Enterprise Application Archive application in the Business Integration
Perspective, J2EE Hierarchy View. Right-click on it and choose Import.

Use the Import dialog to navigate to and import the boutils.jar file that is
shipped with the adapter.

Verify that the newly imported file appears within the folder hierarchy for the
enterprise application:
Add the imported jar to the list of dependencies of the EJB module (in the
above Enterprise Application Archive) in which you are planning to use the
utility library. Select the E]JB project, then properties from the popup menu and

Implementing Adapters with WebSphere Application Server

Java JAR Dependencies in the list.

|k3'\“

G Frugeress fur CUStuiz e UL DNz o 2 ARELE

-~ Info Java JAR Dependencies
- BeanInfo Path
;E;:Ernal Tooly Buildoes Project name: ICustUmerHubOn
-~ lava Build Path Enterprise application project name: IOHEWEYEAR -
- Javadoc Location
- lawa JAR Dependencies Available dependent 1ARs:
- Links Validation/Refactori
- Project References anud“b |Pro Up |
- Server Preference Ea?restServiDBs_l.jar Tes P
- walidation B 5 boutil jar :
Select all
Deselect all
Manifest Class-Path:
TestServices_1.jar boutil.jar
B 2 e B Restore Qefaultsl Apply |
| oK] Cancel |

5. Check the box for boutil jar
6. Press OK.

Now the boutils jar file is part of the Enterprise Application and will be included
in the Enterprise Application Archive file.

Reserved values in business object handling

At runtime, when business objects containing the CxIgnore or CxBlank attribute
values are sent from a source adapter to the WebSphere Application Server broker
implementation, the CwXML data handler sets reserved values in place of those
attribute values in the XML instance document that it passes to the broker; after
the broker processes the business object and returns it as an XML message to the
destination adapter, the data handler in the destination adapter restores the
CxIgnore and CxBlank values. This sequence of actions is necessary to prevent the
java object in the broker from assigning a default value of zero to those attributes
when it processes the business object.

The following table shows the reserved values that are used in place of the values
CxIgnore and CxBlank for each data type:

Data type CxIgnore CxBlank

int Integer MIN_VALUE Integer MAX_VALUE
float Float. MIN_VALUE Float MAX_VALUE
double Double. MIN_VALUE Double. MAX_VALUE
string, date, longtext "CxIgnore”

Note: For the Boolean data type, possible values are either ‘true’ or ‘false’. Due to
this limitation, it is not possible to set CxIgnore or CxBlank values for
Boolean data type. The procedure for handling the Boolean data type is to

Chapter 8. Deploying to WebSphere Application Server 99

define the attribute type as String data type to set ‘CxIgnore” or ‘CxBlank’

values.
Business objects sent from the adapter agent are initiated to the values shown in
the table above. However, any business object created in the user application, as in
a Hub One Way or Hub Request interaction pattern, must be explicitly initiated.
This can be accomplished by invoking
BusinessObjectUtilities.initializeBO(<BOInstance>) on every business object created,
as in the following sample fragment:

TestCustomerElement customer = new TestCustomerElement();
AddressElement address = new AddressElement();

customer.setAddress (address);
BusinessObjectUtilities.initializeBO(customer);

customer.setCustomerId("2424234");
address.setCountry("USA");

Note that you should create all your business objects, create their parent/child
structure, and invoke the initialization routine on the parent business object, before
any business object attributes are set.

Transactional support

100

Transactional behavior for all interaction patterns is supported with the following
conditions.

In the HubRequest pattern, the sending of the message and waiting for and
receiving of the response must not be part of one transaction. If one transaction is
used, the J2EE component will block indefinitely, since no message can be received
until one is sent, which only happens when the transaction is committed.

A special care must be taken when transactions are used with the patterns that
originate from the agent (AgentDelivery and AgentRequest) to prevent disabling of
the message listener. When the MDB receives an agent-originated message and an
exception is thrown in MDB or any other WebSphere Application Server
component it invokes, the transaction is rolled back and the message is put back in
the queue and then redelivered. If the error continues, the redelivery either stops
after a predefined number of attempts, disabling the listener, or continues
indefinitely (depending on the listener port setting). To prevent this situation, if
transactions are used, the user should add user code to the MDB to detect and
handle the redelivered messages. The sample below shows how the redelivered
message can be detected in the MDB.

public void onMessage(javax.jms.Message msg) {
try {
// -> new code start
if(msg.getIMSRedelivered()) {
System.out.printin("Message redelivered");
// User code to handle redelivered message
}
else{
System.out.printin("Message delivered first time");
// First time delivery, unless user code for
// redelivery returns, it should invoke
executeOperation(msg)

// <- new code end
executeOperation(msg);

1
catch (WSIFException e) {
e.printStackTrace();
}

Implementing Adapters with WebSphere Application Server

catch (javax.jms.JMSException e) {
e.printStackTrace();
}

Chapter 8. Deploying to WebSphere Application Server 101

102 Implementing Adapters with WebSphere Application Server

Chapter 9. Administering the business integration system

This chapter provides information about the administrative tasks you need to
perform for WebSphere Business Integration adapters.

The following sections are included in this chapter:

“Starting a connector”/

“Stopping a connector” on page 104

“Managing log and trace files” on page 104

“Using Log Viewer to view connector messages” on page 114|

Starting a connector

The method for starting a connector depends on whether it is running on a UNIX
or a Windows system. Settings in the connector configuration file are the default
source for connector property values. However, some connector properties
specified in the connector’s configuration file can be overridden at runtime.

[Appendix C, “Connector startup options,” on page 143|lists the options you can

use to override properties set in the connector’s configuration file.

Note: Be sure you have followed the instructions in [“Configuring the connector]

[startup files, shortcuts, and environment variables” on page 63| before you
start a connector.

From Windows

You can start the connector in several ways:

* Double-click the desktop shortcut, if you have one created.

* Select the connector to start from Programs > IBM WebSphere Business

Integration Adapters > Adapters > Connectors. The program name is “IBM
WebSphere Business Integration Adapters”, by default, but it can be customized.

* You can start the connector from the Adapter Monitor perspective of System

Manager. Refer to [‘Changing the state of an adapter” on page 111| for details.

¢ In a DOS window:

© Copyright IBM Corp. 2003

— For a Java connector, type the command:

start_connName connectorName brokerName -cConfigfFile
Where:

connName and connectorName are the name of the connector, brokerName is WAS
, and configFile specifies the full-path name of the connector’s configuration
file.

You can modify the startup options for a Java connector by editing the
connector’s shortcut properties or by editing directly the connector’s
start_connName .bat file.

For a C++ connector, navigate to the directory where the connector is
installed. By default, this directory is ProductDir. Type the command:

start_connector connectorName brokerName -cConfigFile

103

Where:

connectorName is the name of the connector, brokerName is WAS, and
configFile specifies the full pathname of the connector’s configuration file.

You can modify the startup options for a Java connector by editing the
connector’s shortcut properties or by editing the connector’s
start_connector.bat file directly.

From UNIX

To start a connector:

1.
2.

Navigate to the ProductDir/bin directory

Run the connector manager script by issuing the command:
connector_manager_connName -start

Where:
connName is the name of the connector.

The case and spelling of this connector name must match the name of the
connector’s subdirectory under ProductDir/bin/connectors.

Stopping a connector

Several methods are available to stop a connector, as follows:

For a Windows system

e From a Windows system, you can stop the connector from the Adapter Monitor

perspective of System Manager. Refer to [“Changing the state of an adapter” on|

for details.

* In the console window: type “Q”, and press Enter.

For a UNIX system

1.
2.

Navigate to the ProductDir/bin directory.

Type:
connector_manager_connName -kill where ConnName specifies the name of the
connector.

Creating multiple connector insta

104

Creating multiple instances of a connector is in many ways the same as creating a
custom connector. You can set your system up to create and run multiple instances
of a connector by following the steps below. You must:

* Create a new directory for the connector instance

* Make sure you have the requisite business object definitions

¢ Create a new connector definition file

¢ Create a new start-up script

Create a new directory

You must create a connector directory for each connector instance. This connector
directory should be named:

ProductDir\connectors\connectorInstance

Implementing Adapters with WebSphere Application Server

where connectorInstance uniquely identifies the connector instance.

If the connector has any connector-specific meta-objects, you must create a
meta-object for the connector instance. If you save the meta-object as a file, create
this directory and store the file here:

ProductDir\repository\connectorInstance

Create business object definitions
If the business object definitions for each connector instance do not already exist
within the project, you must create them.

1. If you need to modify business object definitions that are associated with the
initial connector, copy the appropriate files and use Business Object Designer(?)
to import them. You can copy any of the files for the initial connector. Just
rename them if you make changes to them.

2. Files for the initial connector should reside in the following directory:
ProductDir\repository\initialConnectorInstance

Any additional files you create should be in the appropriate connectorInstance
subdirectory of ProductDir\repository.

Create a connector definition
You create a configuration file (connector definition) for the connector instance in
Connector Configurator. To do so:

1. Copy the initial connector’s configuration file (connector definition) and rename
it.

2. Make sure each connector instance correctly lists its supported business objects
(and any associated meta-objects).

3. Customize any connector properties as appropriate.

Create a start-up script
To create a startup script:

1. Copy the initial connector’s startup script and name it to include the name of
the connector directory:

dirname

2. Put this startup script in the connector directory you created in
[directory” on page 104.|

3. Create a startup script shortcut (Windows only).

4. Copy the initial connector’s shortcut text and change the name of the initial
connector (in the command line) to match the name of the new connector
instance.

You can now run both instances of the connector on your integration server at the
same time.

For more information on creating custom connectors, refer to the Connector
Development Guide for C++ or for Java.

Clearing messages from WebSphere MQ queues

WebSphere Business Integration adapters provide a sample batch file you can use
to clear messages from the WebSphere MQ queues in the business integration
system. Clearing the queues might be necessary if a problem with the business
integration system prevents messages from being removed for processing.

Chapter 9. Administering the business integration system 105

To clear messages from WebSphere MQ queues, run the batch file, clear_mq.bat
(Windows) or clear_mq (UNIX) located in the ProductDir\templates directory. This
batch file clears messages from the queues specified in the file crossworlds mq.tst.
For more information about editing crossworlds mq.tst, see|“Using WebSphere
Business Integration adapter batch files to configure WebSphere MQ queues” on|

page 54.|

Managing log and trace files

106

The following tools provide graphical user interfaces for configuring and viewing
message logging and tracing. Use the:

* Connector Configurator to set up or change connector logging, and tracing
* Log Viewer to display log and trace files.

In addition to using Log Viewer to view logs, you can open the log with a text
editor.

During startup, the connector generates a temporary log file. This file contains all
messages that are logged during startup, including connector properties and
business object definitions that are passed to the connector framework. The file
name is broker_name_connector_name_tmp.Tlog, and it is written to the ProductDir
directory. Once the connector is running, it handles logging and tracing as
configured in the standard connector configuration properties.

While logging and tracing messages are written using UTF-8 encoding in the locale
specified in the connector’s configuration file, time information is written in a
locale-independent format.

At connector startup, a log file is also created, if one does note already exist, in the
location specified in the connector’s configuration file. If a log file already exists,
new entries are simply added to it. Unless a limit has been placed on the size of
the connector log file, its size depends on the amount of time since it was last
managed and the volume of transactions passing through the system. If the
connector log file is configured with no size limit, it can continue to grow until it
cannot be opened or it exhausts its disk space.

If tracing is enabled, a trace file is created at startup if one does not already exist.
The size of the trace file must be managed in the same manner as the connector
log file to avoid the problems caused by excessively large files.

[Table 8 on page 61|lists the files used by the connector to store logging and tracing
information.

To manage log and trace files, you can use the Connector Configurator to:
* Specify a size limit for log and trace files
* Have the files automatically archived once they reach their size limit.

* Specify the number of archive files to maintain.

For more information about using the Connector Configurator to set these options,
see [“Configuring logging and tracing options” on page 61

Implementing Adapters with WebSphere Application Server

Archival logging of log and trace files

If archival logging is enabled, each time the connector’s log or trace file reaches its
maximum size, it is renamed as a new archive file. The archive file’s name is
derived from the original log or trace file name, with the following inserted into
the name: _Arc_number.

For example, if five archive files are to be used and the log file has the name

Connector.log, then:

* The first archive created is named Connector_ Arc_01.1og.

* When the new log file fills up, Connector_Arc_01.1og is renamed
Connector_Arc_02.7o0g,

* New log information is again saved to Connector_Arc_01.1og and so on in a
circular fashion, until there are five archive files.

* If there are already five archive files when a new log file is created, the oldest
one, number five, is deleted. Then the remaining archive files are renamed and
their numbers incremented so the number of archives matches the number you
configured. shows the progression of files using this configuration.

Log/trace

Rename ‘ ' J g Rename
= archive-3 file SN
‘ ’ Log/trace ’ - ‘ | Log/trace !
archive-2 file archive-4 file
Renameﬁ NRename
‘ ' Log/trace ‘ ’ Log/trace
archive-1 file archive-5 file
Renam&)) %ename
‘ ' Log/trace ' ‘ ' Log/trace '
file archive-n file

Figure 19. Circular archival logging.

See the configuration task|’Configuring logging and tracing options” on page 61|
for details.

Managing other files

While log and trace files can be managed by means of archival logging, other log
files specific to each application need to be managed manually. Most of these files
are created during runtime if they do not already exist. New information is
appended to any existing file.

Any file management procedure can be used, but IBM suggests the following
periodic log file management:

Chapter 9. Administering the business integration system 107

* Rename the files by appending a date to the file.
* Move the files to an archive directory.

Using Adapter Monitor and Fault Queue Manager

108

Adapter Monitor is a perspective that enables you to change the state of an
adapter, and, through Fault Queue Manager, to handle events that have failed and
been received by the fault queue. For more information on using System Manager,
refer to the IBM WebSphere Interchange Server System Administration Guide.

Note: In this section, the term "adapter” means the same thing as the term
"connector” in other WebSphere Business Integration adapters
documentation. References in this section to "changing the state of an
adapter” mean the same thing as "changing the state of a connector.”

Adapter Monitor perspective

The Adapter Monitor perspective enables you to administer adapters and, through
the Fault Queue Manager panel, to resubmit messages when errors occur in the
processing of submitted events.

Adapter Monitor is used only with adapters that have been configured for use
with JMS.

Note: Adapter Monitor runs in a Windows environment. To use Adapter Monitor
for adapters installed on UNIX, you must create remote queues.

Opening Adapter Monitor

You can open Adapter Monitor in either of the following ways:

* From the menu bar in WebSphere Studio Application Developer Integration
Edition, choose Window>Open Perspective>Adapter Monitor.

* In the System Manager perspective, expand a WebSphere Application Server
project folder, right-click on a connector definition icon, and choose Adapter
Monitor from the pop-up dialog.

In either method, the Adapter Monitor window displays:

.ﬁ: Adapter Monitor - WebSphere Studio Application Developer Integration Edition : o | I:Ilil
File Edit Mavigate Search Project Server Run Window Help

=R ENEEEIEE

5. Adapter Mof w X ||(2 Details X

=8 ‘ X m NI '% ‘ n ‘ (ﬁ! Agent Name | status | wersion |
L g

'Iri'tr:e;;r-ati-:n Eroker

|l © & | B

g Fault Queue Manager %g " (éh > X
Message 1D | Resubmit T | Status | Description | Tirmestamp:
‘. | |

Implementing Adapters with WebSphere Application Server

Setting Adapter Monitor preferences

You can set preferences that determine the intervals at which the Adapter Monitor
will poll the state of the adapter and the number of messages that will be
displayed in the Fault Queue Manager. To set the preferences, from the menu bar
in WebSphere Studio Application Developer Integration Edition, choose
Window>Preferences>Adapter Monitor Preferences, and set values for the
following:

* Adapter Monitor View

Enter a numeric value for the number of seconds that will elapse between each
poll of the adapter status.

* Fault Queue Manager

Enter a numeric value for the maximum number of messages that will be
displayed by Fault Queue Manager.

Choose Apply or OK.

Loading an adapter

To use Adapter Monitor, first start the queue manager. Then start the adapter and
load the adapter into the Adapter Monitor view (you can also start the adapter
after loading it into the Adapter Monitor view).

To start the adapter, use the connector startup script, shortcut, Visual Test

Connector or other mechanism that you have set up for starting the specific
adapter.

Chapter 9. Administering the business integration system 109

110

To load the adapter in Adapter Monitor, right click Integration Broker and choose
Load Adapter. The following dialog appears:

Load an adapter

Load Adapter 5 &

()
Ta monitor, Load an Adapter from a project or file ﬁ

Adapter Mame

Please select one of the Options to load the Adapter
Select From an Integration Server Project .

Seleck From a lacal Configuration File e~

Browse. .. |

Finish I Cancel |

You can choose to load an adapter either from the adapter’s configuration file, or
from an integration project.

e If you choose to load from a project, the dialog displays the User Projects
currently available in System Manager. Select the connector within a project and
click Finish. (If no User Projects are available, the display will be empty, and you
will need to either create a User Project, or load from the configuration file.)

* If you choose to load from a file, a browse box opens; navigate to the
configuration file for the adapter (typically, the configuration file has a file
extension of *.cfg, but other extensions are possible) and choose Save. The name
of your selected configuration file appears in the box. Choose Finish. The
adapter is loaded into Adapter Monitor, and the current data for the adapter is
displayed.

Adapter Monitor displays

When you load an adapter, an icon for the adapter appears under the Integration
Broker folder in the top left panel. The icon indicates the current state of the
adapter. The act of loading an adapter into Adapter Monitor does not by itself
change the state of the adapter. After you have loaded the adapter, you can then
perform actions from Adapter Monitor to change the state of the adapter.

The Adapter Monitor displays are refreshed periodically, according to the polling
time interval that you set for the Adapter Monitor View in its preferences.

Implementing Adapters with WebSphere Application Server

However, you can perform an immediate refresh at any time by choosing the
Refresh button from the toolbar or menu bar.

The top right panel of Adapter Monitor is the Details panel. The Details panel
shows the name of the adapter, its status, and version.

The bottom panel of Adapter Monitor comprises the Fault Queue Manager view.
This view shows the messages that have been routed to the queue manager’s fault
queue. You can use the Fault Queue Manager display to either resubmit or delete
messages that were placed in the fault queue as the result of a failed event flow.

Changing the state of an adapter

The Adapter Monitor enables you to monitor and change the state of an adapter.
The state of an adapter refers to the processing that is (or is not) being performed
by an adapter.

Note: The existence of an adapter "state” presumes that the adapter has been
started. An adapter that has not yet been started, or that was shutdown and
not restarted, has no state, and is not affected by any actions in the Adapter
Monitor.

Generally, the adapter performs two types of processing;:

* Polling for event notification

The adapter polls the event store of its application for events and sends the
events as business object messages to the integration broker.

* Request processing

The adapter receives request business objects sent from the integration broker to
the application.

Adapter State Request Processing Polling
Active yes yes
Paused yes no
Inactive no no

To change the state of an adapter, right-click on the icon for the adapter, and
choose one of the following:

* Activate

Changes the adapter from the Paused or Inactive state to Active
* Deactivate

Changes the adapter from the Paused or Active state to Inactive
¢ Pause

Changes the adapter from Active state to Paused
* Shutdown

Stops the adapter. This action terminates the connector startup script, closing the
connection with the application and freeing any allocated resources. The adapter
remains shut down until restarted. The adapter cannot be restarted from
Adapter Monitor.

The following two commands do not directly affect the processing of the connector,
but do affect what the Adapter Monitor displays about the connector:

¢ Delete

Chapter 9. Administering the business integration system 111

112

Deletes this adapter configuration from the Adapter Monitor. This does not
change the adapter or alter its state; it only deletes the entry from the Adapter
Monitor.

¢ Refresh

Triggers a GETSTATUS command which gets the current status of the connector
agent

e I . A
cg: Adapter Monitor - WebSphere Studio Workbench SDK

I
| File Edit Mavigate Search Project Serwer Run ‘Window Help

EEEEENREILE

=T

'
' -
l = | B &dapter Maf v X || Detals X
! @ 38 | ¥ E % | " ‘ (~§3 Agent Name | status | version |
] % E--[i Integration Broker LoopbacklConnector_sa Q ACTIVE null
l [™| copbiackl Connect
1 _*' Activate
|-
| B Deactivate
' 1l Pause
% shutdown
% Delete
C§3 Refresh
[Fault Queus Manager E M v x
Message 10 | Resubmit To | Skatus | Descripkion | Timestamp
DID:414d512063?26f7373?76f726c... LOOPBACK1CONKNECTOR/RESPONS... null case 2 Tue May 13 10:28:5¢
I 1041451206 3726F7373776F726c.., xyzuvafsFislidesh null case 4 Tue May 13 10:28:5¢
4] | |

Using the Fault Queue Manager display

The Fault Queue Manager display shows events that have failed and been received
by the fault queue. The display shows as many failed messages as you set in the
preferences, listed in the order in which they were received.

To display information from the queue manager about any listed fault queue
message, double-click the message field. Information for that message is displayed

Implementing Adapters with WebSphere Application Server

in the editor view panel(read only):

4P adapter Monitor - WebSphere Studio Workbench SDK i 13 x|
File Edit Mavigate Search Project Server Run Window Help
|- HE &[G [%-
g B Adapter Moritar » % | & Detals x
ElE:] | X E Y% | ® ‘ =) Agent Mame | Status | version |
,E =] fi Inkegration Broker LoopbacklConnectar_sa & INACTIVE null
' ﬁ LoopbackiConnector_sa
— [=oi414a512083728F 7373776 7260847326504 .. [R E e
1IMS Message class: jms_text
IMSType: null
IMSDeliveryMode: 2 —
JMSExpiration: 0O
IMSPriority: 4
JMSMessagelD: ID:414dS12063726f7373776f726064732e364FF83220000a02
JMSTimestamp: 1056477400186
TMSCarrelationT:noll hd
4 L2
[Fault Queue Manager 25‘ " @3 nER
Message ID I Resubmit To I Status I Description I Timestamp
[]10:414d51 206372673737 76F 7260647326 364Ff8... REQUESTOUELE riull case 1 Tue Jun 24 10:56:40
] LOCPBACKICONNECTORJRESPONS. . Tue Jun 24 0P|
[]10:414d51 2063726 7373776 7260647 3283646 il il case 3 Tue Jun 24 10:56:40 P
[110:414d512063726F7373776F 7260647 322364008, .. xyzxyzFsfislkisf rull case 4 Tue Jun 24 10:56:40 P
« | |

Handling failed events

The Fault Queue Manager lists and enables you to handle the failed event
messages from two types of interaction patterns: the HubRequest (synchronous
event delivery) interaction pattern and the Agent Delivery (asynchronous event
delivery) interaction pattern for container managed events.

You can either delete event messages from the queue, or attempt to resubmit them.

To resubmit an event, mark the checkbox in the Message ID field for the event,
right click, and choose Resubmit.

Adapter Monitor attempts to resubmit the event. If the event is successfully
resubmitted, it is removed from the Fault Queue Manager display.

Messages with null value for the ResubmitTo field cannot be resubmitted. An
attempt to resubmit an event can fail, either because the message itself is invalid,
or the ResubmitTo queue is not valid or available.

A message can be invalid because it contains an invalid JMS type or because it
cannot be converted to a business object. In either case, when the attempt to
resubmit an invalid message fails, Fault Queue Manager displays an error for the
invalid message. When you choose OK, the message is not resubmitted, and it is
removed from the fault queue display. If you close the dialog without choosing
OK, the message will remain in the fault queue display.

If a message is valid but the resubmit attempt fails because the message
ResubmitTo queue is null, invalid or unavailable , a Resubmit dialog appears,
showing the values of the message. You can choose to either retain (by choosing
Cancel) or delete (by choosing OK) the message from the queue.

Chapter 9. Administering the business integration system 113

Using Log Viewer to view connector messages

Log Viewer allows you to see messages contained in the log file and the trace file
for the connector. You can sort and filter the output display as well as print, save,
and email copies of the file. Logging and tracing options, as well as the location of
the generated files, are specified as a properties in the connector’s configuration
file.

Note: Log Viewer runs only on a Windows 2000 machine. To configure or view a
UNIX log file using Log Viewer, copy the log file from the UNIX machine to
a Windows machine and view it from there.

To start Log Viewer, use the Run command from the Start menu and browse for
the LogViewer.exe file. Use the Open option of the File menu to browse for the log

file. Alternatively, you can create and use a Windows shortuct to LogViewer.exe

Using the Log Viewer menu options, you can perform the following tasks:

* |“Setting Log Viewer preferences’]

+ |[“Changing how messages are viewed” on page 116

+ [“Controlling the Log Viewer display output” on page 118|

Log Viewer, displaying a sample log file is shown in

E LogYiewer =10] x|

File Edit Wiew Help

=R~ |Edl=| S| gim(s] 2]

Date Time System Type SubSystem Thread Hame & ID Message g
2002/07/08 11:27:13.534 ConnectarAgent Trace PeopleSoftConnectar main (#2087638140) Sefting property = AppServeriachineMameOrlP
to peoplesoft® and the property value is fram
Canfig file

ThomefttuninanebSphereAdaptersirepositordP
eopleSoftConnector.cfa

2002/07/08 11:27:13.548 ConnectorAgent Trace PeopleSoftConnector main (#2087638140) Setfting property = RequestQueue to ttunina and
the property value is fram Config file
fhomesttuninadiebSpherefAdaptersirepositoryF
eopleSoftConnector.cfy

2002907108 11:27:13.561 ConnectorAgent Trace PeopleSoftConnector main (#2087638140) Setting propery = RestartRetrylnterval to 1 and
the property value is from Config file
thomesttuninadehSphereAdaptersirepositoryP
eopleSoftConnector.cfg

2002/07/08 11:27:13.873 Connectordgent Trace PeopleSofiConnector main #2087638140) Changing property = MessaoeFileName from
thomesttuninadVebSphereAdaptersiinterchange
System.bd to
ihomelttuninaiebSphereAdapters/connectars!
messagesiPeopleSoftConnector.td and the
property value is fram Canfig file
thomeittuninadehSphereAdaptersirepositoryP
eopleSoftConnector.cfg

200207108 11:27:26.923 ConnectorAgent Trace PeopleSoftConnector main #2087638140) Setting property = QlueueManagerPassword
and value is encrypted. Property value is from
Caonfig file
ihomedttunina®ebSphereAdaptersirepositoryP
eopleSoftConnector.cfo I_vJ
|4 |»
Ready 7

Figure 20. Log Viewer with sample log.

Setting Log Viewer preferences

1. To set Log Viewer preferences, select Edit >Preferences from the menu bar.

The User Configuration Options, General properties dialog box displays (see
|Figure 21 on page 115').

114 Implementing Adapters with WebSphere Application Server

Uszer configuration options [%]

General | Fomat | Columns |

Open action

" Add a new file ta the existing data
" Replace all existing data with the new file

ok, I Cancel |

Figure 21. Log Viewer User Configuration Options, General Properties screen.

This dialog lets you specify how to display the log file when you open it. The
available choices are:

* Query your preferences each time you open a log file.

* Merge the log file you are opening with the log file that is currently
displayed.

* Replace the log file that is currently displayed with the contents of the one
you are opening.

2. To change the background color and font of the Log Viewer messages, click the
Format tab.

The User Configuration Options, Format properties dialog box displays (see

[Figure 2.

Uszer configuration options
General Format lEUIumns]

Select background, font and test color for the messages of different levels

H Faont and Text Calor I

- Fatit and Text Colar ’

Fott and Text Color]

Default message

Error message

En

Warning message

=

Fort and Text Color]

Flow Trace Message

=T

Fart and Text Color I

Fotit and Text Color I

JE@EDEL

&

| Tracing message |

Infarmation message

v “wirap meszage text into mutiple lines

:

Q. Cancel

Figure 22. Log Viewer User Configuration Options, Format Properties screen.

This dialog lets you specify how to display the log messages. The available
choices are:

Chapter 9. Administering the business integration system 115

 Assign different background colors and fonts for each of the types of
messages that display so you can easily recognize their severity (for example,
red background with larger font allows for Warning messages).

* Wrap the text of messages if the text is wider than the column.

Note: Flow trace messages are not generated for connectors using WebSphere
Application Server.

3. To change the Log Viewer columns that are displayed, click the Columns tab.
The User Configuration Options, Columns properties dialog box displays (see

[Figure 23

User configuration options x|

General | Format Colurnnsl

Available Columns Yisible
Date Time System
h=glD »n | Type Up |
Floww Initistor 1D
Thread Mame & ID Downl
BusChj
Message
Ok, Cancel

Figure 23. Log Viewer User Configuration Options, Columns Properties screen.

This dialog lets you specify which columns display in Log Viewer as follows:

* To display a column, highlight a column name in the Available Columns
pane and click the >> button to move it to the Visible pane.

* To hide a column, highlight a column name in the Visible pane and click the
<< button to move it to the Available Columns pane.

* Click any of the column names in the Available Columns pane and click the
Up or Down button to change its ordering from left to right in the Log
Viewer display. Up moves columns to the left and Down moves columns to
the right.

* Click the checkbox next to Automatically hide empty columns to keep the
Log Viewer display compact.

Note: The column, Flow Initiator ID, is not relevant for connectors using
WebSphere Application Server.

Changing how messages are viewed

The View menu contains additional options to change Log Viewer displays. From
that menu, you can:

* Display/hide the Log Viewer toolbar.
 Display/hide the Log Viewer status bar.

+ Split the window into two or more views

116 Implementing Adapters with WebSphere Application Server

* Filter or show all messages by checking filtering options in the filter tabs, such
as time range or by type of message (see [Figure 24| and [Table 10 on page 118). To
set filter options:

1. From the menu bar, select View > Filter > Use Filter . The Filter Settings
dialog box displays.

2. In the Activate Filters area, click the box that is associated with the tab
containing the filter options you want to apply.

3. Click OK to enable filtering.

The filtered output can be toggled on or off with the Filter Toggle button on
the toolbar.

Filter settings]

Setup Filters
Type IBusObjl System | Subsystem | FlowlnitiatorlD | MsglD | 7.4 [»]

Select All | Deselect All l Inwert Selection l

Activate Filters
I~ Twpe [~ Time I” Thread

I BusOhj I =g D I Message

I~ Bystem I~ Subsystem [Flow Initistor ID

cores_|

Figure 24. Log Viewer Filter screen.

Note: The tab, Flowlnitiator ID, is not relevant for connectors using WebSphere
Application Server.

* Sort the messages; [Figure 25 on page 118 shows the Sort options. Click the down
arrow in each sort field to select Date/Time or EventID. You can also sort in
ascending or descending order.

Chapter 9. Administering the business integration system 117

— Sart by
- " Azcending
Buz0bj -
I J " Descending
 Then by
- ' Aszcending
Date Time hd
I J (" Descending
— Then by
& Aszcending
" Descending

ak I Cancel

Figure 25. Log Viewer Sort Properties screen.

Controlling the Log Viewer display output

Several options are available for controlling Log Viewer output. In the File menu,
there are options for print previewing, printing, saving, refreshing the display,
sending to an email recipient, and determining the style for page setup, headers
and footers. The variables for header and footers are:

Variable name Description

$F Name of file

$A Application name

$P Page number

$N Total number of pages

$D Date (can be followed by additional parameters (for example
$D{%y:%h:%m})

Filtering messages
To filter the messages that will be displayed in Log Viewer, choose
View->Filter->Use Filterfrom the Log Viewer menu bar. The Filter Settings dialog
displays categories that correspond to the parameters of the logging message

format. Message format parameters are listed in [Table 10

Table 10. Message format parameters for log file.

Variable Description

Time Timestamp: the date of logging in the format year/month/date
time.

System For connectors using the WMQI integration broker, system is the
application-specific component of the connector.

Thread Thread name and thread ID.

Name The name of the component, such as ClarifyConnector.

MsgType Indicates the severity of the message. See [[able 11 on page 119|

MsgID The message number.

SubSystem The connector name.

BO The business object name.

118 Implementing Adapters with WebSphere Application Server

Table 10. Message format parameters for log file. (continued)

Variable Description
MsgText The associated text for the message number.
BOD Business object dump. The data contained in the business object.

In the Filter Settings dialog, you first choose the filtering categories that you want

to use, t

hen select the specific items that you want to display from each category,

and then choose which filters you want to activate for your current Log Viewer

display.

Follow these steps:

1. In the Filter Settings dialog, choose a tab under Set up Filters to display the

item
you

s that you want to use for filtering messages. For example, choose Time if
want to filter according to the timestamp of the message. You can set up

multiple filters, and use them either separately or together.

2. In the displayed list of items, select each item for which you want to view
messages in Log Viewer. For example, if you want to view only messages that
are timestamped between 5 March 2002 at 9:00 AM and 6 March 2002 at 5:00

PM,
You

select the range for those times under the Time tab.
can use the buttons below the list box to select all the displayed items, or

to deselect all the displayed items, or to invert your current selection choices.

3. Under Activate Filters, check the box for each filter type that you want to
activate. For example, if you want to see only those messages with a particular
message ID that have a particular timestamp, activate both the MsgID filter and
the Time filter.

4. Click OK. The Filter Settings dialog closes, and the Log Viewer display
refreshes to show only those messages that you have allowed through the
filters.

Note that in addition to filtering according to the categories, you can also display
only those messages that contain a specific text string. To do so, select Messages
under Set up Filters, enter the specific text for which you want to show messages,
and check the box for Message under Activate Filters.

Message types
@. describes the types of messages issued by WebSphere Business Integration
adapters.

Table 11. Message types.

Message type Description

Info Informational only. You do not need to take action.

Warning A default condition chosen by InterChange Server.

Error A serious problem that you should investigate.

Fatal Error An error that stops operation and should be reported.

Trace Tracing information for the trace level specified.

Flow Trace Flow tracing information for business objects.

Internal Error A serious internal problem that should be investigated.
Internal Fatal Error An internal error that stops operation. It should be reported.

Chapter 9. Administering the business integration system 119

Note: If a message type of Internal Error or Internal Fatal Error appears, record the
circumstances surrounding the problem, and then contact IBM Technical
Support.

120 Implementing Adapters with WebSphere Application Server

Appendix A. WebSphere MQ message formats

The following tables list WebSphere MQ message formats, and the settings for
particular properties, for the different types of messages exchanged by the
connector framework and the integration broker.

Table 12. Format and property settings of event delivery messages from the connector
framework to the integration broker.

MQMD

Contains no relevant information.

RFH2 message header

In the <mcd> folder, the following fields contain information that
identifies the message, its format, and how it needs to be parsed:

Message domain is set to mrm. This specifies that the
integration broker should use the parser specifically for
MRM-managed messages (those that are fully modelled in the
message repository).

Message type identifies the name of the highest-level business
object represented by the message.

Message set identifies the message set this specific message is
associated with. A separate message set is created for each
type of business object.

Message format is set to CwXML.

Message body

Contains an XML instance document that conforms to the XML
schema and the imported message set definition for the business
object specified by the message type in the RFH2 header.

© Copyright IBM Corp. 2003

121

122

Table 13. Format and property settings of request messages from the connector framework

to the integration broker.

MQMD

Reply-to information is located in two fields: ReplyToQ and
ReplyToQMgr. They contains the queue name and queue
manager name to which the integration broker needs to direct
the response message. In JMS messages, these fields specify the
JMSReplyTo destination on the request message. MessagelD
(JMSMessagelD) contains a unique value, which is copied to the
CorrelID property field on the response message.

RFH2 message header

In the <mcd> folder, the following fields contain information that
identifies the message, its format, and how it needs to be parsed:

* Message domain is set to mrm. This specifies that the
integration broker should use the parser specifically for
MRM-managed messages (those that are fully modelled in the
message repository).

* Message type identifies the name of the highest-level business
object represented by the message.

* Message set identifies the message set this specific message is
associated with. A separate message set is created for each
type of business object.

* Message format is set to CwXML.

In the <jms> folder, the Rto (JMSReplyTo) field contains a URI
that encodes the queue name and queue manager name to which
the integration broker needs to direct the response message. See
WebSphere MQ: Using Java for information about how this URI is
specified. The reply-to information in Rto and in
ReplyToQ/ReplyToQMgr in the MQMD are the same.

Message body

Contains an XML instance document that conforms to the XML
schema and the imported message set definition for the business
object specified by the message type in the RFH2 header.

Implementing Adapters with WebSphere Application Server

Table 14. Format and property settings of response messages from integration broker to the
connector framework.

MQMD The CorrelID field contains the message ID of the request to
which the integration broker is responding. For J]MS messages,
this field is used to define JMSCorrelationID.

RFH2 message header In the <mcd> folder, the following fields contain information that
identifies the message, its format, and how it needs to be parsed:

* Message domain is set to mrm. This specifies that the
integration broker should use the parser specifically for
MRM-managed messages (those that are fully modelled in the
message repository).

* Message type identifies the name of the highest-level business
object represented by the message.

* Message set identifies the message set this specific message is
associated with. A separate message set is created for each
type of business object.

* Message format is set to CwXML.

In the <usr> folder, the following fields contain return status
information:

¢ Status field contains a string with return status information.

Possible string values are:

-1: The requested operation failed.
0: The requested operation succeeded.
1: The requested operation succeeded. The application

has returned a changed business object.

* Description field - When status is set to -1, it contains an
extended error string with the message sent by the integration
broker.

Message body Contains an XML instance document that conforms to the XML
schema and the imported message set definition for the business
object specified by the message type in the RFH2 header.

Appendix A. WebSphere MQ message formats 123

124

Table 15. Format and property settings for request messages sent from integration broker to

the connector framework.

MQMD

Reply-to information is located in two fields: ReplyToQ and
ReplyToQMgr. They contains the queue name and queue
manager name to which the integration broker needs to direct
the response message. In JMS messages, these fields specify the
JMSReplyTo destination on the request message. If the ReplyToQ
and ReplyToQMgr fields are left blank, the connector framework
is not expected to provide a response. If a response is required,
messages can also specify reply-to information in the Rto
property field of the message header. MessagelD (JMSMessagelD)
contains a unique value, which is copied to the CorrellD
property field on the response message.

RFH2 message header

In the <mcd> folder, the following fields contain information that
identifies the message, its format, and how it needs to be parsed:

* Message domain is set to mrm. This specifies that the
integration broker should use the parser specifically for
MRM-managed messages (those that are fully modelled in the
message repository).

* Message type identifies the name of the highest-level business
object represented by the message.

* Message set identifies the message set this specific message is
associated with. A separate message set is created for each
type of business object.

* Message format is set to CwXML.

In the <jms> folder, the Rto (JMSReplyTo) property field can
optionally contain the queue name and queue manager name to
which the connector framework needs to direct the response
message.

Message body

Contains an XML instance document that conforms to the XML
schema and the imported message set definition for the business
object specified by the message type in the RFH2 header.

Implementing Adapters with WebSphere Application Server

Table 16. Format and property settings for response messages sent from the connector
framework to integration broker.

MQMD

The CorrelID property field contains the message ID of the
request to which the connector framework is responding.

RFH2 message header

In the <mcd> folder, the following fields contain information that
identifies the message, its format, and how it needs to be parsed:

* Message domain is set to mrm. This specifies that the
integration broker should use the parser specifically for
MRM-managed messages (those that are fully modelled in the
message repository).

* Message type identifies the name of the highest-level business
object represented by the message.

* Message set identifies the message set this specific message is
associated with. A separate message set is created for each
type of business object.

* Message format is set to CwXML.

In the <usr> folder, the following fields contain return status
information:

* Status field contains a string with a return status indicator.

Possible string values are:

-1: The requested operation failed.
0: The requested operation succeeded.
1: The requested operation succeeded. The application

has returned a changed business object.

* Description property field - When status is set to -1, it contains
an extended error string with the message sent by the
connector framework.

Message body

Contains an XML instance document that conforms to the XML
schema and the imported message set definition for the business
object specified by the message type in the RFH2 header.

Table 17. Format and property settings for administrative messages sent from the connector
framework to integration broker.

MQMD

Contains no relevant information.

RFH2 message header

In the <mcd> folder, the following fields contain information that
identifies the message, its format, and how it needs to be parsed:

* Message domain is set to xml to indicate that the message
should be parsed by generic XML parser.

Message body

See |Appendix C, “Connector startup options,” on page 143 for
information about message body content.

Table 18. Format and property settings for administrative messages sent from integration
broker to the connector framework

MQMD

If the administrative message is Stop Connector, the Format
property is set to: MQC.MQFMT_STRING and the Expiry
(JMSExpiration) property field is set to one minute.

Message body

See |Appendix C, “Connector startup options,” on page 143 for
information about message body content.

Appendix A. WebSphere MQ message formats 125

126 Implementing Adapters with WebSphere Application Server

Appendix B. Standard configuration properties for connectors

This appendix describes the standard configuration properties for the connector
component of WebSphere Business Integration adapters. The information covers
connectors running on the following integration brokers:

* WebSphere InterChange Server (ICS)

* WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere
Business Integration Message Broker, collectively referred to as the WebSphere
Message Brokers (WMQI).

* WebSphere Application Server (WAS)

Not every connector makes use of all these standard properties. When you select
an integration broker from Connector Configurator, you will see a list of the
standard properties that you need to configure for your adapter running with that
broker.

For information about properties specific to the connector, see the relevant adapter
user guide.

Note: In this document, backslashes (\) are used as the convention for directory
paths. For UNIX installations, substitute slashes (/) for backslashes and
follow the conventions for each operating system.

New and deleted properties

These standard properties have been added in this release.

New properties
* XMLNameSpaceFormat

Deleted properties
* RestartCount

Configuring standard connector properties

Adapter connectors have two types of configuration properties:
+ Standard configuration properties
* Connector-specific configuration properties

This section describes the standard configuration properties. For information on
configuration properties specific to a connector, see its adapter user guide.

Using Connector Configurator

You configure connector properties from Connector Configurator, which you access
from System Manager. For more information on using Connector Configurator,
refer to the Connector Configurator appendix.

Note: Connector Configurator and System Manager run only on the Windows

system. If you are running the connector on a UNIX system, you must have
a Windows machine with these tools installed. To set connector properties

© Copyright IBM Corp. 2003 127

for a connector that runs on UNIX, you must start up System Manager on
the Windows machine, connect to the UNIX integration broker, and bring up
Connector Configurator for the connector.

Setting and updating property values

The default length of a property field is 255 characters.

The connector uses the following order to determine a property’s value (where the
highest number overrides other values):

1. Default

2. Repository (only if WebSphere InterChange Server is the integration broker)
3. Local configuration file

4. Command line

A connector obtains its configuration values at startup. If you change the value of
one or more connector properties during a run-time session, the property’s Update
Method determines how the change takes effect. There are four different update
methods for standard connector properties:
* Dynamic
The change takes effect immediately after it is saved in System Manager. If the
connector is working in stand-alone mode (independently of System Manager),
for example with one of the WebSphere message brokers, you can only change
properties through the configuration file. In this case, a dynamic update is not
possible.

e Component restart
The change takes effect only after the connector is stopped and then restarted in
System Manager. You do not need to stop and restart the application-specific
component or the integration broker.

* Server restart
The change takes effect only after you stop and restart the application-specific
component and the integration broker.

* Agent restart (ICS only)
The change takes effect only after you stop and restart the application-specific
component.

To determine how a specific property is updated, refer to the Update Method
column in the Connector Configurator window, or see the Update Method column
in the Property Summary table below.

Summary of standard properties

128

[Table 19 on page 129 provides a quick reference to the standard connector
configuration properties. Not all the connectors make use of all these properties,
and property settings may differ from integration broker to integration broker, as
standard property dependencies are based on RepositoryDirectory.

You must set the values of some of these properties before running the connector.
See the following section for an explanation of each property.

Implementing Adapters with WebSphere Application Server

Table 19. Summary of standard configuration properties

Update
Property name Possible values Default value method Notes
|AdminInQueud| Valid JMS queue name CONNECTORNAME /ADMININQUEUE | Component | Delivery
restart Transport is
JMS
[AdminOutQueue] Valid JMS queue name | CONNECTORNAME/ADMINOUTQUEUE | Component | Delivery
restart Transport is
JMS
|AgentConnections| 1-4 1 Component | Delivery
restart Transport is
MQ or IDL:
Repository
directory
is
<REMOTE>
|AgentTraceLevel| 0-5 0 Dynamic
|ApplicationName] Application name Value specified for the Component
connector application name restart
IIBrokerTXEgI ICS, WMQI, WAS
IICharacterEncodingI ascii7, ascii8, SJIS, ascii7 Component
Cp949, GBK, Big5h, restart
Cp297, Cp273, Cp280,
Cp284, Cp037, Cp437
Note: This is a subset
of supported
values.
|ConcurrentEventTriggeredFlows| 1to 32,767 1 Component | Repository
restart directory
is
<REMOTE>
|ContainerManagedEvents| No value or JMS No value Component | Delivery
restart Transport is
JMS
|ControllerStoreAndForwardModed | true or false True Dynamic Repository
directory
is
<REMOTE>
|ControllerTraceLevel| 0-5 0 Dynamic Repository
directory
is
<REMOTE>
CONNECTORNAME/DELIVERYQUEUE | Component |JMS transport
| restart only
DeliveryTranspor MQ, IDL, or JMS JMS Component | If
restart Repository
directory
is local, then
value is
JMS only
[DuplicateEventElimination] True or False False Component | JMS transport
restart only: Container
Managed Events
must be
<NONE>
[FaultQueue] CONNECTORNAME / FAULTQUEUE Component [JMS
restart transport
only

Appendix B. Standard configuration properties for connectors

129

Table 19. Summary of standard configuration properties (continued)

Update
Property name Possible values Default value method Notes
Ijms.FactoryClassNamd CxCommon.Messaging.jms | CxCommon.Messaging. Component |JMS transport
.IBMMQSeriesFactory or | jms.IBMMQSeriesFactory restart only
CxCommon.Messaging
.Jjms.SonicMQFactory
or any Java class name
Ijms.MessageBrokerNamd If FactoryClassName is crossworlds.queue.manager Component |JMS transport
IBM, use restart only
crossworlds.queue.
manager.
If FactoryClassName
is Sonic, use
localhost:2506.
Ijms.NumConcurrentRequests| Positive integer 10 Component |JMS transport
restart only
Any valid password Component |JMS transport
restart only
I Any valid name Component |JMS transport
restart only
Heap size in megabytes 128m Component | Repository
restart directory
is
<REMOTE>
[[vmMaxNativeStackSize| Size of stack in kilobytes | 128k Component | Repository
restart directory
is
<REMOTE>
Heap size in megabytes Im Component | Repository
restart directory
is
<REMOTE>
|ListenerConcurrencv| 1- 100 1 Component | Delivery
restart Transport must
be MQ
Locale) en_US, ja_JP, ko_KR, en_US Component
zh_CN, zh_TW, fr_FR, restart
de_DE,
it_IT, es_ES, pt_BR
Note: This is a
subset of the
supported
locales.
|Log AtInterchangeEnd| True or False False Component Repository
restart Directory must
be <REMOTE>
1-2147483647 2147483647 Dynamic Repository
Directory must
be <REMOTE>
MessageFileName Path or filename InterchangeSystem. txt Component
restart
Any valid queue name CONNECTORNAME /MONITORQUEUE Component |JMS transport
restart only:
DuplicateEvent
Elimination
must be True
|OADAut0RestartAgent| True or False False Dynamic Repository

Directory must
be <REMOTE>

130 Implementing Adapters with WebSphere Application Server

Table 19. Summary of standard configuration properties (continued)

Update
Property name Possible values Default value method Notes
[OADMaxNumRetry| A positive number 1000 Dynamic Repository
Directory must
be <REMOTE>
|OADRetryTimelntervall A positive number in 10 Dynamic Repository
minutes Directory must
be <REMOTE>
|PollEnd Time| HH:MM HH MM Component
restart
IPollFrequency| A positive integer in 10000 Dynamic
milliseconds
no (to disable polling)
key (to poll only when
the letter p is entered in
the connector’s
Command Prompt
window)
[PollQuantity]| 1-500 1 Agent JMS transport
restart only:
Container
Managed
Events is
specified
[PollStartTime| HH:MM(HH is 0-23, MM is | HH:MM Component
0-59) restart
[RepositoryDirectory]| Location of metadata Agent For ICS: set to
repository restart <REMOTE>
For WebSphere
MQ message
brokers and
WAS: set to
C:\crossworlds\
repository
|IRequestQueue) Valid JMS queue name CONNECTORNAME /REQUESTQUEUE Component | Delivery
restart Transport is
JMS
IResponseQueud Valid JMS queue name CONNECTORNAME /RESPONSEQUEUE Component | Delivery
restart Transport is
JMS:
required only
if Repository
directory is
<REMOTE>
[RestartRetryCount| 0-99 3 Dynamic
[RestartRetryIntervall A sensible positive 1 Dynamic
value in minutes:
1 - 2147483547
IRHF2MessageDomain| mrm, xml mrm Component | Only if
restart DeliveryTransport]
is JMS and
WireFormat is
CwXML.

Appendix B. Standard configuration properties for connectors

131

Table 19. Summary of standard configuration properties (continued)

Update
Property name Possible values Default value method Notes
Valid WebSphere MQ CONNECTORNAME / SOURCEQUEUE Agent Only if
name restart Delivery
Transport is
JMS and
Container
Managed
Events is
specified
[SynchronousRequestQueud CONNECTORNAME/ Component | Delivery
SYNCHRONOUSREQUESTQUEUE restart Transport is
JMS
|SynchronousRequestTimeout] 0 - any number (millisecs) | 0 Component | Delivery
restart Transport is
JMS
|SynchronousResponseQueud| CONNECTORNAME/ Component | Delivery
SYNCHRONOUSRESPONSEQUEUE restart Transport is
JMS
CwXML, CwBO CwXML Agent CwXML if
restart Repository
Directory is
not <REMOTE>:
CwBO if
Repository
Directory is
<REMOTE>
[WsifSynchronousRequest Timeout| |0 - any number 0 Component | WAS only
(millisecs) restart
IXMLNameSpaceFormat| short, long short Agent WebSphere MQ
restart message
brokers and
WAS only

Standard configuration properties

This section lists and defines

properties.

AdmininQueue

The queue that is used by the integration broker to send administrative messages
to the connector.

each of the standard connector configuration

The default value is CONNECTORNAME /ADMININQUEUE.

AdminOutQueue

The queue that is used by the connector to send administrative messages to the
integration broker.

The default value is CONNECTORNAME /ADMINOUTQUEUE.

AgentConnections

Applicable only if RepositoryDirectory is <REMOTE>.

The AgentConnections property controls the number of ORB connections opened
by orb.init[].

132

Implementing Adapters with WebSphere Application Server

By default, the value of this property is set to 1. There is no need to change this
default.

AgentTraceLevel

Level of trace messages for the application-specific component. The default is 0.
The connector delivers all trace messages applicable at the tracing level set or
lower.

ApplicationName

Name that uniquely identifies the connector’s application. This name is used by
the system administrator to monitor the WebSphere business integration system
environment. This property must have a value before you can run the connector.

BrokerType

Identifies the integration broker type that you are using. The options are ICS,
WebSphere message brokers (WMQI, WMQIB or WBIMB) or WAS.

CharacterEncoding

Specifies the character code set used to map from a character (such as a letter of
the alphabet, a numeric representation, or a punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. A C++ connector currently
uses the value ascii7 for this property.

By default, a subset of supported character encodings only is displayed in the drop
list. To add other supported values to the drop list, you must manually modify the
\Data\Std\stdConnProps.xml file in the product directory. For more information,
see the appendix on Connector Configurator.

ConcurrentEventTriggeredFlows
Applicable only if RepositoryDirectory is <REMOTE>.

Determines how many business objects can be concurrently processed by the
connector for event delivery. Set the value of this attribute to the number of
business objects you want concurrently mapped and delivered. For example, set
the value of this property to 5 to cause five business objects to be concurrently
processed. The default value is 1.

Setting this property to a value greater than 1 allows a connector for a source
application to map multiple event business objects at the same time and deliver
them to multiple collaboration instances simultaneously. This speeds delivery of
business objects to the integration broker, particularly if the business objects use
complex maps. Increasing the arrival rate of business objects to collaborations can
improve overall performance in the system.

To implement concurrent processing for an entire flow (from a source application
to a destination application), you must:

* Configure the collaboration to use multiple threads by setting its Maximum number
of concurrent events property high enough to use multiple threads.

* Ensure that the destination application’s application-specific component can
process requests concurrently. That is, it must be multi-threaded, or be able to
use connector agent parallelism and be configured for multiple processes. Set the
Parallel Process Degree configuration property to a value greater than 1.

Appendix B. Standard configuration properties for connectors 133

The ConcurrentEventTriggeredFlows property has no effect on connector polling,
which is single-threaded and performed serially.

ContainerManagedEvents

This property allows a JMS-enabled connector with a JMS event store to provide
guaranteed event delivery, in which an event is removed from the source queue
and placed on the destination queue as a single JMS transaction.

The default value is No value.

When ContainerManagedEvents is set to JMS, you must configure the following
properties to enable guaranteed event delivery:

* PollQuantity = 1 to 500
* SourceQueue = CONNECTORNAME/SOURCEQUEUE

You must also configure a data handler with the MimeType, DHClass, and
DataHandlerConfigMOName (optional) properties. To set those values, use the
Data Handler tab in Connector Configurator. The fields for the values under the
Data Handler tab will be displayed only if you have set ContainerManagedEvents to
JMS.

Note: When ContainerManagedEvents is set to JMS, the connector does not call its
poll1ForEvents() method, thereby disabling that method’s functionality.

This property only appears if the DeliveryTransport property is set to the value
JMS.

ControllerStoreAndForwardMode
Applicable only if RepositoryDirectory is <REMOTE>.

Sets the behavior of the connector controller after it detects that the destination
application-specific component is unavailable.

If this property is set to true and the destination application-specific component is
unavailable when an event reaches ICS, the connector controller blocks the request
to the application-specific component. When the application-specific component
becomes operational, the controller forwards the request to it.

However, if the destination application’s application-specific component becomes
unavailable after the connector controller forwards a service call request to it, the
connector controller fails the request.

If this property is set to false, the connector controller begins failing all service
call requests as soon as it detects that the destination application-specific

component is unavailable.

The default is true.

ControllerTraceLevel
Applicable only if RepositoryDirectory is <REMOTE>.

Level of trace messages for the connector controller. The default is 0.

134 Implementing Adapters with WebSphere Application Server

DeliveryQueue
Applicable only if DeliveryTransport is JMS.

The queue that is used by the connector to send business objects to the integration
broker.

The default value is CONNECTORNAME/DELIVERYQUEUE.

DeliveryTransport

Specifies the transport mechanism for the delivery of events. Possible values are MQ
for WebSphere MQ, IDL for CORBA IIOP, or JMS for Java Messaging Service.

* If ICS is the broker type, the value of the DeliveryTransport property can be
MQ, IDL, or JMS, and the default is IDL.

* If the RepositoryDirectory is a local directory, the value may only be JMS.

The connector sends service call requests and administrative messages over
CORBA IIOP if the value configured for the DeliveryTransport property is MQ or
IDL.

WebSphere MQ and IDL
Use WebSphere MQ rather than IDL for event delivery transport, unless you must
have only one product. WebSphere MQ offers the following advantages over IDL:

* Asynchronous communication:
WebSphere MQ allows the application-specific component to poll and
persistently store events even when the server is not available.

* Server side performance:
WebSphere MQ provides faster performance on the server side. In optimized
mode, WebSphere MQ stores only the pointer to an event in the repository
database, while the actual event remains in the WebSphere MQ queue. This
saves having to write potentially large events to the repository database.

* Agent side performance:
WebSphere MQ provides faster performance on the application-specific
component side. Using WebSphere MQ, the connector’s polling thread picks up
an event, places it in the connector’s queue, then picks up the next event. This is
faster than IDL, which requires the connector’s polling thread to pick up an
event, go over the network into the server process, store the event persistently in
the repository database, then pick up the next event.

JMS
Enables communication between the connector and client connector framework
using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as

Jjms .MessageBrokerName, jms.FactoryClassName, jms.Password, and jms.UserName,
appear in Connector Configurator. The first two of these properties are required for
this transport.

Important: There may be a memory limitation if you use the JMS transport
mechanism for a connector in the following environment:

* AIX5.0
* WebSphere MQ 5.3.0.1
* When ICS is the integration broker

Appendix B. Standard configuration properties for connectors 135

136

In this environment, you may experience difficulty starting both the connector
controller (on the server side) and the connector (on the client side) due to memory
use within the WebSphere MQ client. If your installation uses less than 768M of
process heap size, IBM recommends that you set:

e The LDR_CNTRL environment variable in the CWSharedEnv.sh script.

This script resides in the \bin directory below the product directory. With a text
editor, add the following line as the first line in the CWSharedEnv.sh script:

export LDR_CNTRL=MAXDATA=0x30000000

This line restricts heap memory usage to a maximum of 768 MB (3 segments *
256 MB). If the process memory grows more than this limit, page swapping can
occur, which can adversely affect the performance of your system.

* The IPCCBaseAddress property to a value of 11 or 12. For more information on
this property, see the System Installation Guide for UNIX.

DuplicateEventElimination

When you set this property to true, a JMS-enabled connector can ensure that
duplicate events are not delivered to the delivery queue. To use this feature, the
connector must have a unique event identifier set as the business object’s
ObjectEventld attribute in the application-specific code. This is done during
connector development.

This property can also be set to false.

Note: When DuplicateEventETlimination is set to true, you must also configure
the MonitorQueue property to enable guaranteed event delivery.

FaultQueue

If the connector experiences an error while processing a message then the
connector moves the message to the queue specified in this property, along with a
status indicator and a description of the problem.

The default value is CONNECTORNAME/FAULTQUEUE.

JvmMaxHeapSize

The maximum heap size for the agent (in megabytes). This property is applicable
only if the RepositoryDirectory value is <REMOTE>.

The default value is 128m.

JvmMaxNativeStackSize

The maximum native stack size for the agent (in kilobytes). This property is
applicable only if the RepositoryDirectory value is <REMOTE>.

The default value is 128Kk.

JvmMinHeapSize

The minimum heap size for the agent (in megabytes). This property is applicable
only if the RepositoryDirectory value is <REMOTE>.

The default value is 1m.

Implementing Adapters with WebSphere Application Server

jms.FactoryClassName

Specifies the class name to instantiate for a JMS provider. You must set this
connector property when you choose JMS as your delivery transport mechanism
(DeliveryTransport).

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.MessageBrokerName

Specifies the broker name to use for the JMS provider. You must set this connector
property when you choose JMS as your delivery transport mechanism
(DeliveryTransport).

The default is crossworlds.queue.manager.

jms.NumConcurrentRequests

Specifies the maximum number of concurrent service call requests that can be sent
to a connector at the same time. Once that maximum is reached, new service calls
block and wait for another request to complete before proceeding.

The default value is 10.

jms.Password
Specifies the password for the JMS provider. A value for this property is optional.

There is no default.

jms.UserName

Specifies the user name for the JMS provider. A value for this property is optional.

There is no default.

ListenerConcurrency

This property supports multi-threading in MQ Listener when ICS is the integration
broker. It enables batch writing of multiple events to the database, thus improving
system performance. The default value is 1.

This property applies only to connectors using MQ transport. The
DeliveryTransport property must be set to MQ.

Locale

Specifies the language code, country or territory, and, optionally, the associated
character code set. The value of this property determines such cultural conventions
as collation and sort order of data, date and time formats, and the symbols used in
monetary specifications.

A locale name has the following format:
Ul _TT.codeset

where:

Il a two-character language code (usually in lower
case)

Appendix B. Standard configuration properties for connectors 137

T a two-letter country or territory code (usually in
upper case)

codeset the name of the associated character code set; this
portion of the name is often optional.

By default, only a subset of supported locales appears in the drop list. To add
other supported values to the drop list, you must manually modify the
\Data\Std\stdConnProps.xml file in the product directory. For more information,
see the appendix on Connector Configurator.

The default value is en_US. If the connector has not been globalized, the only valid
value for this property is en_US. To determine whether a specific connector has
been globalized, see the connector version list on these websites:

http:/ /www.ibm.com/software/websphere/wbiadapters/infocenter, or
http:/ /www.ibm.com/websphere/integration/wicserver/infocenter

LogAtinterchangeEnd
Applicable only if RespositoryDirectory is <REMOTE>.

Specifies whether to log errors to the integration broker’s log destination. Logging
to the broker’s log destination also turns on e-mail notification, which generates
e-mail messages for the MESSAGE_RECIPIENT specified in the InterchangeSystem.cfg
file when errors or fatal errors occur.

For example, when a connector loses its connection to its application, if
LogAtInterChangeEnd is set to true, an e-mail message is sent to the specified
message recipient. The default is false.

MaxEventCapacity

The maximum number of events in the controller buffer. This property is used by
flow control and is applicable only if the value of the RepositoryDirectory
property is <REMOTE>.

The value can be a positive integer between 1 and 2147483647. The default value is
2147483647.

MessageFileName

The name of the connector message file. The standard location for the message file
is \connectors\messages. Specify the message filename in an absolute path if the
message file is not located in the standard location.

If a connector message file does not exist, the connector uses
InterchangeSystem.txt as the message file. This file is located in the product
directory.

Note: To determine whether a specific connector has its own message file, see the
individual adapter user guide.

MonitorQueue

The logical queue that the connector uses to monitor duplicate events. It is used
only if the DeliveryTransport property value is JMS and
DuplicateEventElimination is set to TRUE.

138 Implementing Adapters with WebSphere Application Server

The default value is CONNECTORNAME/MONITORQUEUE

OADAutoRestartAgent
Valid only when the RepositoryDirectory is <REMOTE>.

Specifies whether the connector uses the automatic and remote restart feature. This
feature uses the MQ-triggered Object Activation Daemon (OAD) to restart the
connector after an abnormal shutdown, or to start a remote connector from System
Monitor.

This property must be set to trueto enable the automatic and remote restart
feature. For information on how to configure the MQ-triggered OAD feature. see
the Installation Guide for Windows or for UNIX.

The default value is false.

OADMaxNumRetry
Valid only when the RepositoryDirectory is <REMOTE>.

Specifies the maximum number of times that the MQ-triggered OAD automatically
attempts to restart the connector after an abnormal shutdown. The
OADAutoRestartAgent property must be set to true for this property to take effect.

The default value is 1000.

OADRetryTimelnterval
Valid only when the RepositoryDirectory is <REMOTE>.

Specifies the number of minutes in the retry-time interval for the MQ-triggered
OAD. If the connector agent does not restart within this retry-time interval, the
connector controller asks the OAD to restart the connector agent again. The OAD
repeats this retry process as many times as specified by the 0ADMaxNumRetry
property. The OADAutoRestartAgent property must be set to true for this property
to take effect.

The default is 10.

PollIEndTime

Time to stop polling the event queue. The format is HH:MM, where HH represents
0-23 hours, and MM represents 0-59 seconds.

You must provide a valid value for this property. The default value is HH:MM, but
must be changed.

PollFrequency

The amount of time between polling actions. Set Pol1Frequency to one of the
following values:

¢ The number of milliseconds between polling actions.

* The word key, which causes the connector to poll only when you type the letter
p in the connector’s Command Prompt window. Enter the word in lowercase.

* The word no, which causes the connector not to poll. Enter the word in
lowercase.

Appendix B. Standard configuration properties for connectors 139

140

The default is 10000.

Important: Some connectors have restrictions on the use of this property. To
determine whether a specific connector does, see the installing and
configuring chapter of its adapter guide.

PollQuantity

Designates the number of items from the application that the connector should poll
for. If the adapter has a connector-specific property for setting the poll quantity, the
value set in the connector-specific property will override the standard property
value.

PollStartTime

The time to start polling the event queue. The format is HH: MM, where HH represents
0-23 hours, and MM represents 0-59 seconds.

You must provide a valid value for this property. The default value is HH:MM, but
must be changed.

RequestQueue

The queue that is used by the integration broker to send business objects to the
connector.

The default value is CONNECTOR/REQUESTQUEUE.

RepositoryDirectory

The location of the repository from which the connector reads the XML schema
documents that store the meta-data for business object definitions.

When the integration broker is ICS, this value must be set to <REMOTE> because
the connector obtains this information from the InterChange Server repository.

When the integration broker is a WebSphere message broker or WAS, this value
must be set to <local directory>.

ResponseQueue

Applicable only if DeliveryTransport is JMS and required only if
RepositoryDirectory is <REMOTE>.

Designates the JMS response queue, which delivers a response message from the
connector framework to the integration broker. When the integration broker is ICS,
the server sends the request and waits for a response message in the JMS response
queue.

RestartRetryCount

Specifies the number of times the connector attempts to restart itself. When used
for a parallel connector, specifies the number of times the master connector
application-specific component attempts to restart the slave connector
application-specific component.

The default is 3.

Implementing Adapters with WebSphere Application Server

RestartRetrylnterval

Specifies the interval in minutes at which the connector attempts to restart itself.
When used for a parallel connector, specifies the interval at which the master
connector application-specific component attempts to restart the slave connector
application-specific component. Possible values ranges from 1 to 2147483647.

The default is 1.

RHF2MessageDomain
WebSphere message brokers and WAS only.

This property allows you to configure the value of the field domain name in the
JMS header. When data is sent to WMQI over JMS transport, the adapter
framework writes JMS header information, with a domain name and a fixed value
of mrm. A connfigurable domain name enables users to track how the WMQI broker
processes the message data.

A sample header would look like this:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>
Retek _POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

The default value is mrm, but it may also be set to xml. This property only appears
when DeliveryTransport is set to JMSand WireFormat is set to CwXML.

SourceQueue

Applicable only if DeliveryTransport is JMS and ContainerManagedEvents is
specified.

Designates the JMS source queue for the connector framework in support of
guaranteed event delivery for JMS-enabled connectors that use a JMS event store.
For further information, see [‘ContainerManagedEvents” on page 134

The default value is CONNECTOR/SOURCEQUEUE.

SynchronousRequestQueue
Applicable only if DeliveryTransport is JMS.

Delivers request messages that require a synchronous response from the connector
framework to the broker. This queue is necessary only if the connector uses
synchronous execution. With synchronous execution, the connector framework
sends a message to the SynchronousRequestQueue and waits for a response back
from the broker on the SynchronousResponseQueue. The response message sent to
the connector bears a correlation ID that matches the ID of the original message.

The default is CONNECTORNAME/SYNCHRONOUSREQUESTQUEUE

SynchronousResponseQueue
Applicable only if DeTiveryTransport is JMS.

Delivers response messages sent in reply to a synchronous request from the broker

to the connector framework. This queue is necessary only if the connector uses
synchronous execution.

Appendix B. Standard configuration properties for connectors 141

142

The default is CONNECTORNAME/SYNCHRONOUSRESPONSEQUEUE

SynchronousRequestTimeout
Applicable only if DeTiveryTransport is JMS.

Specifies the time in minutes that the connector waits for a response to a
synchronous request. If the response is not received within the specified time, then
the connector moves the original synchronous request message into the fault queue
along with an error message.

The default value is 0.

WireFormat
Message format on the transport.
* If the RepositoryDirectory is a local directory, the setting is CwXML.
* If the value of RepositoryDirectory is <REMOTE>, the setting isCwBO.

WsifSynchronousRequest Timeout
WAS integration broker only.
Specifies the time in minutes that the connector waits for a response to a
synchronous request. If the response is not received within the specified, time then
the connector moves the original synchronous request message into the fault queue

along with an error message.

The default value is 0.

XMLNameSpaceFormat
WebSphere message brokers and WAS integration broker only.

A strong property that allows the user to specify short and long name spaces in
the XML format of business object definitions.

The default value is short.

Implementing Adapters with WebSphere Application Server

Appendix C. Connector startup options

The tables below list the options you can specify when starting a connector from
Windows or UNIX. Some of these options override selected property settings in the
connector’s configuration file.

Windows

You can modify the startup for a connector by editing the following to use the
connector startup options listed in [Table 20

* The connector’s shortcut properties

¢ The connector’s startup file, start_connName .bat (for connectors written in Java)

* The connector’s startup file,start_connector.bat file (for connectors written in

C++).

Note: The -c, -n, and -s options are required to start the connector. If you use the
shortcut to start the connector, the shortcut properties must include these
options in the target field. Similarly, if you start the connector using the
start_connector.bat or start_connName.bat, it must include these options.

Table 20. Connector startup options for Windows.

Option

Description

-c configFile

The full path name of the configuration file to be used during startup.
This option is required.

-f pollFrequency

The amount of time between polling actions. Possible values for
poll1Frequency are:

¢ The number of milliseconds between polling actions.

* key: Causes the connector to poll only when you type the letter p
in the connector’s Command Prompt window. Enter the word in
lowercase.

* no: Causes the connector not to poll. Enter the word in lowercase.

The default is 10000.

-J

Specifies that the connector is written in Java. This option is optional
if you specify -1 className.

-1 className

Specifies the name of the global class. This option is required for Java
connectors.

-n connectorName

Specifies the name of the connector to start. This option is required.

-s brokerName

Specifies the integration broker name. This option is required.

-t

Note: The installer has included (or omitted) the -t option in the
shortcut as required for the connector. If you start up a connector
from the command line, the value you specify for -t must be the same
as the -t value specified in the shortcut. Turns on the connector
property, SingleThreadAppCalls. This property guarantees that all
calls the connector framework makes to the application-specific
connector code are with one event-triggered flow. The default value is
false. This property should not be changed from its shipped value.
Each connector has the appropriate setting for this option, depending
on its architecture.

© Copyright IBM Corp. 2003

143

Table 20. Connector startup options for Windows. (continued)

Option Description

-x connectorProps Passes application-specific connector properties to the connector. Use
the format prop_name=value for each value you enter.

UNIX

In the UNIX environment, you start a connector by running
connector_manager_connName script, which is a wrapper for the generic connector
manager script (ProductDir/bin/connector_manager). The generic connector
manager script calls the appropriate start_connector.sh script, which handles the
actual connector management for the connector.

Each WebSphere Business Integration adapter includes a start_connector.sh
script. You can modify the start_connector.sh script to also include any of the
supported startup options listed in [[able 21|

Table 21. Options for the start_connector.sh script.

Option Description

-b This option runs the connector as a background thread; that is,
no input is read from STDIN (standard input). The generic
connector_manager script (called by each
connector_manager_connector script) automatically specifies
the -b option when it invokes the start_connector.sh script
for a connector. You can remove this option from the script to
prevent a connector from being run in the background. The -b
option is not valid on the command-line invocation of
connector_manager_connector.

-fpoll_freq The amount of time between polling actions. Possible values
for poll_freq are:

¢ The number of milliseconds between polling actions.

* key: Causes the connector to poll only when you type the
letter p in the connector’s Command Prompt window. Enter
the word in lowercase.

* no: Causes the connector not to poll. Enter the word in
lowercase.

The default is 10000. The -f option is valid on the
command-line invocation of connector_manager_connector.
The connector manager script can pass this option to its
associated start_connector.sh script. This option overrides

the poll frequency specified in the connector’s configuration
file.

144 Implementing Adapters with WebSphere Application Server

Table 21. Options for the start_connector.sh script. (continued)

Option

Description

-tthreading_type

The threading_type option specifies the threading model.
Note: Only use the -t option when you start a
custom-developed connector. Connectors that are installed
using a pre-supplied IBM adapter installer already have a
connector_manager_connector startup script that specifies (or
omits) the required -t option, as required by the application,
on the line that starts up the connector. Possible values for
threading_type are:

The -t option is not valid on the command-line invocation of
connector_manager_connName. Specify it inside the generic
connector_manager script, in the invocation of the
start_connector.sh script.

SINGLE_THREADED: only a single thread accesses the
application

MAIN_SINGLE_THREADED: only the main thread accesses the
application

MULTI_THREADED: multiple threads can access the application.

Appendix C. Connector startup options 145

146 Implementing Adapters with WebSphere Application Server

Appendix D. Using the Connector Script Generator tool

The Connector Script Generator utility creates or modifies the connector script for
connectors running on the UNIX platform. Use this tool to do either of the
following:

* To generate a new connector startup script for a connector you have added
without using the WebSphere Business Integration Adapters installer.

¢ To modify an existing startup script for a connector to include the correct
configuration file path.

To run the Connector Script Generator, do the following:
1. Navigate to the ProductDir/bin directory.
2. Enter the command ./ConnConfig.sh.
The Connector Script Generator screen appears as shown in

'« Connector script generator

12ADK

Figure 26. Connector Script Generator.

3. From the Select Connector Name list, select the connector for which the startup
script is to be generated.

4. For Agent Config File, specify the connector’s configuration file by entering its
full-path name or by clicking Browse to select a file.

5. To generate or update the connector script, click Install.

The connector_manager_ConnectorName file (where ConnectorName is the name
of the connector you are configuring) is created in the ProductDir/bin directory.

6. Click Close.

© Copyright IBM Corp. 2003 147

148 Implementing Adapters with WebSphere Application Server

Appendix E. Using Visual Test Connector

Visual Test Connector simulates the activities of a connector to allow you to test
your integration components without the complexity of running an actual
connector. This chapter consists of the following sections:

* ["Recommended testing procedure”]|

» |“Starting Test Connector” on page 150

» [“Shutting down Test Connector” on page 151]

+ [“Creating and editing connector profiles” on page 151

* |“Emulating a connector” on page 154

» [“Working with business objects” on page 154]

Recommended testing procedure

This is the recommended test procedure for testing components in the WebSphere
business integration system:

1. If your integration broker is InterChange Server, consider using the System
View view, which can be very helpful in determining if a flow you have sent
ends in success or failure.

For more information, see the System Administration Guide.

2. Set up Test Connector to emulate a source connector.

a. Launch Test Connector as described in|“Starting Test Connector” on page|
[150]

b. Create a profile for the source connector in the interface as described in
[“Creating a new profile” on page 152}

c. Connect Test Connector to the agent to begin emulating the source
connector, as described in [“Emulating a connector” on page 154

3. Set up instances of Test Connector to emulate each destination connector
involved in the interface.

a. Launch Test Connector as described in|“Starting Test Connector” on page|

b. Create a profile for a destination connector as described in [“Creating a new|
[profile” on page 152}

c. Connect Test Connector to the agent to begin emulating the destination
connector as described in [“Emulating a connector” on page 154

d. Repeat hrough @above for all destination connectors involved in the
interface.

4. Arrange the instances of Test Connector on your screen so that you can easily
identify the connector being emulated in each Test Connector window. For
example, in [Figure 27 on page 150the source Test Connector is arranged to the
left of the destination Test Connector.

© Copyright IBM Corp. 2003 149

server]- [=10lx|
Fle ER Request Hep
_— e .
BAD oW R H0» - Response BO x|
BO R List -
poree [I — AT
peom =] o]
BoType [T omer
BO Editor
Verb:]ﬁ BoLocale: m Vert: |Creste v| BOLocale: |en US v
Mo [iwe [vaw | oo e [voe __ [=
Caesarld Integer 980550
CustomerType String Customer
CustomerSta... String Active
Customeria... String Iy League St..
=lol x| CreationDate String Mer 16, 2003
Fle EdR Request He =) Caeser_Add... Coesar_Addre...
= Addressid Integer 806561
=i o | -
D% @ ESD & B= Coesard | intoger asos0
i AddressT... Strir SoldTo
BoType [Clarty_Busorg =l I — baessT..|hg Soto
BOinstance [Clarify_Busorg 0 ¥ Create StreetAd... String 1725 Learning. 5
b —— Connedling 1o Server... Sun Mar 16 257,52 PST 2003 7| S e T
CaesarConnector Ready Sun Mar 16 225812 PST 2003 Cancel
Verb:[Create 7| BOLocalec fen US ¥ Received BO Caesar_Customer Sun Mar 16 23:09:26 PST 2003 EI —J
Name. Voie 4]
OrgStock... String L1 L'J
OrgType String Customer
OrgWebSte String [CassarConnector Ready
OrgFiscal... String
= Clarity_So... Gy _Sold A | =101 x|
=10} Clarify_Sold.
Ste.. Integer 1000010 _
Sol... String 7 el EB= - Response B0] x|
Sol.. St Trent c_a]ﬂ i
= e poree | = ©o|ed
|BOInstance > [crede
apecugn e Serat sy = 2] g S S
ClarifyConnector Ready Sun Mar 16 22:55:00 PST 2003 BO Ecltor
‘Sent BO Clarify_BusOrg Verb Create Sun Mar 16 23.09:12 PST 2003 Verb: +| oLocate: [en Us v Verk: |Creste | BOLocsle: |en US |
- T e T R Vo | |
L > CustomerTy... String o001
Classt String ul
jClertyCo Rt Rasy) Country String us
CustomerV... String
CentralDeiiv... String
LocationCode String
Deleteind String
CustomerN... String Ivy League St...
CustomerN... String
CustomerN... String
K ST Customen..._ String |
Connecting 1o Server .. Sun or 16 225750 PST 2003 | o s
SAPConnector Ready Sun Mar 16 22:56:10 PST 2003 [o] concel
Received BO SAP4_CustomerMaster Sun Mar 16 23.09:26 PST 2003
K} _I_I
[SAPConnector Ready [

Figure 27. Source and destination instances of Test Connector.

5. Send a request business object from the source connector. From the source Test
Connector, do the following:

a. Create a business object that is managed by the interface you need to test as
described in [“Creating request business objects” on page 154

b. Save the business object to a file to use in subsequent tests as described in
[“Saving a business object” on page 159,

c. Send the business object as described in [“Sending request business objects’]

6. Simulate the response to the request business object from the destination
connector. From the destination Test Connector window, do the following:

a. Accept the request business object as described in [“Accepting a request]
[pusiness object” on page 160}

b. Send the business object as a response as described in [‘Sending a responseq
[business object” on page 161}

7. Repeat step Ehrough step Bas many times as necessary to test each interface.

Starting Test Connector

150

To start Test Connector, do one of the following depending on your integration
broker:

* If your integration broker is InterChange Server, select Start > Programs > IBM
WebSphere InterChange Server > IBM WebSphere Business Integration
Toolset > Development > Test Connector.

* If your integration broker is WebSphere Application Server or a WebSphere
message broker (WebSphere MQ Integrator, WebSphere MQ IntegratorBroker, or
WebSphere Business Integration Message Broker) select Start > Programs > IBM
WebSphere Business Integration Adapters > Tools > Test Connector.

Implementing Adapters with WebSphere Application Server

shows Test Connector after starting.

_|O] x|
File Edt FRequest Help
He el RS e
BOType I j BO Reguest List
EIOInsdanceI j Creste |
— B Editar
“erk: I vl BOLocale: Ien_LIS VI
Mame I Type I Yalle I
-
w
K| 3

Figure 28. Test Connector

The Test Connector window includes the following panes:

* The “Supported Business Objects” pane in which you can create business object

instances to send

The “BO Request List” pane, which displays any business object requests that

the connector has received

¢ The “Output” pane, which displays messages about Test Connector’s operations,

such as when a business object has been sent.

Shutting down Test Connector

To shut down Test Connector and cause it to stop emulating a connector agent,
select File > Exit from the menu bar. When presented with the “Shutdown”

prompt, click Yes.

Creating and editing connector profiles

Test Connector uses profiles to store the information it needs to emulate a

connector. You must create a profile for each connector you want to emulate. You
can edit and delete existing profiles.

Saving the connector definition to a file

To emulate a connector using Test Connector, you must save the connector
definition to a file. Do the following to save a connector definition to a file:

1.

Open the connector definition in Connector Configurator.

2. Select File > Save As > To File from the menu bar.

Appendix E. Using Visual Test Connector

151

152

3. Navigate to the directory in which you want the file saved, type a name in the

File name field, ensure that the value Configuration (*.cfg) is displayed in
the Save as type drop-down menu, and click Save.

Connector Configurator saves the connector definition to a file with the
specified name.

Creating a new profile

You must create a profile for any connector you want to emulate in Test Connector.
The profile specifies information such as the name of the connector, the
configuration file to be used, and the type of integration broker with which the
connector communicates. To create a new connector profile, do the following:

1.

Select File > Create/Select Profile from the menu bar to display the “Connector
Profile” window.

In the “Connector Profile window”, select File > New Profile from the menu
bar.

In the “New Profile” window, click Browse and then navigate to the
configuration file for the connector you preparing in [‘Saving the connector|
[definition to a file” on page 151

Type the name of the connector in the Connector Name field. You must type
the exact name of the connector definition as it exists in the integration broker
repository. For the adapter for JText, for instance, you must type
JTextConnector, without any spaces between the words JText and Connector,
and with each letter being the proper case.

Select the proper integration broker in the Broker Type drop-down menu—ICS,
WMQI or WAS.

Note: Select WMQI if your broker is any WebSphere message broker.
If you selected ICS as your broker type in step Bdo the following as well:
a. Type the name of the InterChange Server instance in the Server field.

Be sure to type the name precisely; it is case-sensitive and Test Connector
will not be able to communicate with InterChange Server if the name is not
correct.

b. Type the password for the admin user account in the Password field. The
default password is null.

[Figure 29 on page 153|shows the “New Profile” window:

Implementing Adapters with WebSphere Application Server

New Profile x|

Please select the connector configuration file:

I C:iebSpherelCS4200E W ConnectorConfigurationFiles\Clarify - Browse |

— Connectar

Connector Mame I ClarifyConnector

Broker Type IICS j

—Server

Server I WebSpherelC54200EY Server

Parssvvard | |

Figure 29. Creating a new connector profile

7.

Connector Profile x|

File Edit

Click OK to close the “New Profile” window.

The “Connector Profile” window displays the name of the connector in the
Connector column, the name of the InterChange Server instance in the Server
column (if the integration broker is ICS), and the path and name of the
connector configuration file in the Configuration File column.

shows the “Connector Profile” window with a profile for the
ClarifyConnector configured to communicate with an InterChange Server
instance, and a profile for the JTextConnector configured to communicate with
a WMQIB server.

<%§>'|7’| u|

Connectar | Server | Configuration File |

iClarifyConnector WebSpherelC34200E Server CAehSpherelCS420DEY W Connecto... ¢

JTextConnectar CrebSpherelCS4200EY Y Connecto...

Figure 30. The “Connector Profile” window

8.

Click OK to close the “Connector Profile” window.

Editing a profile

Follow the steps below to make changes to an existing connector profile:

1.

2.

Select File > Create/Select Profile from the menu bar of Test Connector or use
the keyboard shortcut Ctrl+N to display the Connector Profile window.

In the “Connector Profile” window select the profile you want to edit and then
select Edit > Edit Profile from the menu bar.

Type new values in the fields of the “New Profile” window and use the
Browse button to change the configuration file as necessary to make your edits.

Appendix E. Using Visual Test Connector 153

4. Click OK to close the “New Profile” window.

Deleting a profile

Do the following to delete a connector profile:

1. Select File > Create/Select Profile from the menu bar of Test Connector or use
the keyboard shortcut Ctrl+N to display the “Connector Profile” window.

2. In the “Connector Profile” window, select the profile you want to delete and
then select Edit > Delete Profile from the menu bar.

Emulating a connector

After creating a profile for a connector, you may use that profile to connect Test
Connector to the agent. Once you connect Test Connector to the agent, Test
Connector begins emulating the connector defined in the selected profile.

To connect Test Connector to the agent, do the following:
1. Select File > Create/Select Profile from the menu bar of Test Connector.

2. In the “Connector Profile” window, select the name of the connector whose
profile you want to open.

3. Click OK.

4. Select File > Connect from the menu bar.
Test Connector displays messages in the “Output” pane as it attempts to
emulate the connector. When it finishes connecting, it displays a message

indicating that it is “ready” in the “Output” pane and populates the BOType
list in the “Supported Business Objects” pane.

Working with business objects

154

To test whether a business process interface has been developed correctly, you
need to verify that business objects can be successfully exchanged and processed.
This section describes how to:

* Create, modify, delete, and save business object test data

* Compare the attribute values of business objects to easily and quickly view
changes made during processing

* Send and receive business objects

Working with request business objects

Request business objects are those that you send from Test Connector when it is
emulating a connector that is the source of the events that trigger an interface.
Working with request business objects consists of creating a business object
instance, populating it with data, and sending the request.

Creating request business objects
To create a new business object in Test Connector, do the following:

1. In the “Supported Business Objects” pane, select the name of the business
object you want to create from the BOType drop-down menu.

2. Click Create next to the BOInstance field.

3. When presented with the “New Instance” dialog, type a name for the instance
in the Enter Name field.

4. Select the desired verb from the Verb drop-down menu.
5. Select the desired locale from the the BOLocale drop-down menu.

Implementing Adapters with WebSphere Application Server

6. Provide values for the simple attributes and child business objects within the

toi—level obI'ect, as described in [“Setting values for business object attributes”]

on page 158,

[Figure 31 on page 155|shows a business object named Caesar_Customer with the

Create verb, the en_US locale, values specified for each of its simple attributes,
and a single instance of the Caesar_Address child business object.

¥TC -[WebsphereICS420DEYServer] - [CaesarConnecko

File Edt FRequest Help

=10l x|

A3 el E B

BOType ICaesar_Customer

[

EIOInEmanceICaesar_Customer_D j Creaiel

— B Editar
“erk: ICreate vl BOLocale: Ien_LIS VI
[Hame | Type I “alue I
Caesarld Iritecier 000001
Customer Type String Federal
Customer Status String A ctive
Customerhame String vy League ...
CreationDate String 03152003
[FlCaezar_fddress Cassar_Ad...
Lddressid Integer 00oooo2
Caesarld Irteger 00oa
AddressType String SaldTo
LddressStatus String A ctive
Streetdddress String 2000 Learni...
City String Trenton
State String M
Zip String 09253
PluzFour String 2293
Country String Usa,
Phonetumber String 1-732-344- .
ObjectEventld String
String I

B Reguest List

<

Connecting to Server... Sat Mar 15 20:26:02 PST 2003
CaesarConnector Ready Sat Mar 15 20:26:18 PST 2003

FaesarConnec’[or Ready

Figure 31. Populating a business object with data

7. Click OK.

Sending request business objects
Once you have created or loaded a business object and specified values for its
attributes, you have several ways to send the business object as a request to the

integration broker.

Sending request business objects asynchronously: When a source connector
sends a request business object in asynchronous mode, it does not expect to get
back a response business object. Once the request business object is dispatched, the

Appendix E. Using Visual Test Connector

155

156

source connector’s role in the transaction is finished. The response business object
is typically processed by the integration broker. The default mode for Test
Connector is asynchronous.

To send a business object asynchronously, do the following:

1. Select Request > Mode >Asynchronous from the menu bar.

Note: Test Connector operates in “Asynchronous” mode by default, so you
only have to perform this step if you previously were sending
synchronous requests from the connector. Furthermore, you do not have
to set the mode before sending each request.

2. Select Request > Send from the menu bar.

If the broker specified in the connector definition is InterChange Server then the
business object request is sent to the server for processing.

If the broker specified in the connector definition is one of the supported message
brokers or WebSphere Application Server then the business object is placed on the
queue specified in the RequestQueue standard property.

Sending request business objects synchronously: When a source connector sends
a request business object synchronously, it expects to get back a response business
object from the integration broker after any destination applications have processed
the request. In synchronous mode, Test Connector puts the response business
object on the queue specified by the source connector’s Synchronous Request
Queue property. The default mode for Test Connector is asynchronous.

1. Set Test Connector to synchronous mode by selecting Request > Mode >
Synchronous from the menu bar.

2. Select Request > Send from the menu bar.

3. If the broker specified in the connector definition is InterChange Server then
the “Select Collaboration” dialog is displayed. Select the collaboration to which
the business object should be sent from the Collaboration drop-down menu
and click OK.

If the broker specified in the connector definition is InterChange Server then the
business object request is sent to the configured port of the collaboration object
chosen for processing.

If the broker specified in the connector definition is one of the supported message
brokers or WebSphere Application Server then the business object is placed on the
queue specified in the SynchronousRequestQueue standard property.

Sending request business objects in batch mode: In batch mode, Test Connector
lets you specify the number of instances of a particular business object you want to
send, as well as one attribute in the top-level object —a primary key attribute, for
example—that you want set to a unique value for each instance. Test Connector
copies the business object as many times as you have specified, incrementing the
value of the single attribute you specified, and sends each business object. This
option allows you to create a large number of business objects quickly and easily.

If the selected attribute is a key field that participates in dynamic cross-referencing
as part of an identity relationship, then you must guarantee that the initial value
and all those that follow it are unique. Otherwise, the cross-referencing logic will
fail, causing the request business objects to fail.

Implementing Adapters with WebSphere Application Server

To ensure that the values are unique, you can use Relationship Manager or execute
SQL statements against the table for the relationship participant as follows.

Determine the highest current value for the participant and set the Initial Value
field to an even higher value. The first business object instance in the batch and
all those that follow will then be unique.

Delete the existing table entries for the participant, thus guaranteeing that no
entries have the same attribute value as any of the batch business objects.

To send business objects in batch mode, do the following:

1.

2.
3.

Select the name of the business object you would like to send from the BOType
drop-down menu.

Select Request > Send Batch from the menu bar.

In the “Batch Mode” window, select the desired verb from the Verb drop-down
menu.

Select the desired locale from the the BOLocale drop-down menu.

Select from the Attribute list the attribute in the top-level business object that
you want incremented with each business object request in the batch.

The selected attribute should typically be an attribute that uniquely identifies
the business object, such as a primary key.

In the Initial Value field, type the starting value for the attribute to be
incremented.

In the No. of BO'’s field, type the number of business object instances you want
generated and sent.

Click OK.

Test Connector generates the number of business objects you specified, all

identical with the exception of the one specified attribute, whose value is
incremented for each instance.

If the broker specified in the connector definition is InterChange Server then
the business object request is sent to the server for processing.

If the broker specified in the connector definition is one of the supported
message brokers or WebSphere Application Server then the business object is
placed on the queue specified in the RequestQueue standard property.

[Figure 32 on page 158 shows a batch mode configuration in which:

* Fifty business objects are to be sent.

* The value of the attribute Org0Objid is to be incremented.
* The starting value for the attribute is 100001.

Appendix E. Using Visual Test Connector 157

Batch Mode ll
BC Definition | Clarify_Bustrg

Warh: ICreate "I
BO Locale: Ien_LIS 'I

Attribute [orgobiid |

Initial alue | 100001

Mo, of BQ's | 50

Cancel |

Figure 32. The Batch Mode Window

Setting values for business object attributes

The following sections describe the various ways you can set the values of simple
and compound attributes in a business object instance:

* |“Setting values for simple attributes’]
+ |“Adding child business objects’]
* [“Removing child business objects”]

* [“Setting the verb of a child business object” on page 159

Setting values for simple attributes
To provide a value for a simple attribute, click its cell in the Value column and

enter a value.

Adding child business objects
To add an instance of a child business object, right-click the attribute that

represents the child object and select Add Instance from the context menu.

A plus sign (+) is added next to the attribute that represents child business object
to show that there is at least one child business object instance. If you expand the
child object attribute, numbered entries are displayed for each instance. The
individual instances also have plus signs (+) next to them, so you can expand them
and set values for their attributes.

To add more child business object instances, right-click the attribute that represents
the child object and select Add Instance from the context menu.

Note: If the Card property of the attribute that references the child business object
is set to the value 1 (indicating it is of single-cardinality), then you will only
be able to add one instance of the child object.

Removing child business objects
To remove an instance of a child business object, right-click the instance and select

Remove Instance from the context menu.
To remove all instances of a child business object, right-click the attribute that

represents the child business object and select Delete All Instances from the
context menu.

158 Implementing Adapters with WebSphere Application Server

Setting the verb of a child business object

You can set the verb of a child business object to test the effect that value has on
the business process. This can be helpful when you are troubleshooting logic that
involves the cross-referencing of child objects.

To set the verb of a child business object instance, right-click it and choose Set
Verb from the context menu. When presented with the “Select Verb” prompt,
selected the desired verb and click OK.

Using the Response BO toolbar
You can edit the attributes of a business object received by a destination connector
before you send it as a response. The toolbar of the “Response BO” dialog that you
use when doing so has several toolbar buttons that can be used to set the values of
the business object. For more information, see|“Editing response business objects”|

Saving a business object

You can save a business object in Test Connector so that it can be used for later
tests, shared with technical support (to help troubleshoot problems), or used as
response data. You can save any business object, including ones that you have
created and ones that appear as requests in the Test Connector window of a
destination connector. By default, business objects are saved to a file with a
business object extension (.bo).

It is recommended that you create a directory or directory structure specifically for
test data files, with subdirectories dedicated to each interface or to each connector,
as appropriate. This organization makes the necessary files are easy to locate and
makes testing more efficient. Furthermore, it is recommended that you give the test
data file for a business object the same name as the business object definition itself.

Saving request business objects
Do the following to save a business object instance that you have created as a
request:

1. Select the business object you want to save.
2. From the menu bar, select Edit > Save BO.

3. Navigate to the desired directory and specify a name for the file in the File
name field.

4. Click Save.

Saving response business object
Do the following to save a business object instance that has been received by a
destination instance of Test Connector and will be sent as a response:

1. Select the business object instance in the “BO Request List” pane.
2. Select Request > Edit Response from the menu bar.

3. Click Save BO.
4

. Navigate to the desired directory and specify a name for the file in the File
name field.

5. Click Save.

Loading a business object

To load a business object that has been saved to a file, do the following:
1. Select Edit > Load BO from the menu bar of Test Connector.
2. Navigate to the business object test data file and open it.

Appendix E. Using Visual Test Connector 159

160

3. When presented with the “New Instance” dialog, type a name for the instance
in the Enter Name field.

4. Click OK.

Deleting a business object

To delete a business object from Test Connector, select Edit > Delete BO from the
menu bar.

Note: This action only removes the business object from the Test Connector. It
does not remove the connector’s support for the business object definition.

Accepting a request business object

When you send a business object as a request, the business object appears in the
“BO Request List” pane of any Test Connector instances that are emulating
destination connectors in the interface, provided that the transaction did not fail.

After you have accepted the request business object, you can edit it if necessary as
described in [“Editing response business obijects.”|

Working with response business objects

Response business objects are those that you send from Test Connector when it is
emulating a connector that is the recipient of business object requests in an
interface. Working with request business objects consists of editing the values in
the business object instance and sending the response back to the broker.

Editing response business objects

When you receive a business object request in a destination instance of Test
Connector, you commonly want to edit the values of the attributes. For instance,
you will want to provide unique values for primary key attributes that participate
in relationships, or you will want to modify the value of other attributes to test
map or collaboration logic that responds differently depending on the exact values
in the business object. Do the following to set the values of business object
attributes :

1. Select the business object instance in the “BO Request List” pane.
2. Select Request > Edit Response from the menu bar.
3. Do the following to edit the attributes of the business object:

« Use one of the techniques described in [“Setting values for business obiject|
[attributes” on page 1580 modify the values of the business object attributes.

* Click Reset BO to default to set the values of the business object attributes
to their default values as specified in the business object definition.

e Click Clear BO values to clear the values of all the attributes in the business
object.

* Click Load BO to populate the attributes of the business object with test data
from a file.

The ability to load saved data into a business object request is very useful in
situations where you have to populate a response business object with data
before sending it as a reply. Instead of manually typing a value for each
attribute that requires response data, you can type the values once, save the
business object (as described in [“Saving a business object” on page 159), and
then load the saved data on subsequent tests.

Implementing Adapters with WebSphere Application Server

Sending a response business object
After you accept a request business object, edit the business object, if needed, and

send it back as a reply.

lists Test Connector’s reply options and shows their corresponding
connector return codes for both C++ and Java connectors. For more detailed
information about C++ or Java Connector return codes, see the Connector
Development Guide for Java or C++.

Table 22. Test Connector reply types and connector return codes.

Test Connector reply C++ connector return code Java connector return code
type
Success BON_SUCCESS SUCCESS
Fail BON_FAIL FAIL
Multiple Hits BON_MULTIPLE_HITS MULTIPLE_HITS
Retrieve By Content Fail | BON_FAIL_RETRIEVE_BY_CONTENT RETRIEVEBYCONTENT_FAILED
Not Found BON_BO_DOES_NOT_EXIST BO_DOES_NOT_EXIST
Value Duplicate BON_VALDUPES VALDUPES
To reply to a request business object, do the following:

1. Select the business object in the “BO Request List” pane.

2. From the menu bar, select Request > Reply.

3. Select an item from the Reply submenu.

Comparing business object instances

Test Connector can compare two business objects of the same type and display the
attributes that differ in value. You can use this function to view changes to a
business object at different points in the execution of a transaction (for instance,
you could compare a business object that has been sent to the integration broker
with the same business object after the integration broker has updated it). To
compare two business objects, do the following:

1. Create a request business object instance by following the instructions in either

“Creating request business objects” on page 154pr [“Loading a business object”]

on page 159.|

2. Select the response business object instance in the “BO Request List” pane that
you would like to compare the request business object instance to.

3. From the menu bar, select Edit > Compare BO’s.

Test Connector opens the “Compare Business Objects” window with a table

that dis
objects.

plays the attributes which have different values in the two business

Figure 33 on page 1625hows a comparison between two business object

instances.

Appendix E. Using Visual Test Connector 161

i Compare Business Objects ﬂ

Mame I Type I SourceBo I DestinationB0 I
Caesarld Irtecper 950530
CustomerStatus String A ctive

[Caczar_Address Caesar_Address present present

Auldressid Irtecper 906561
Caesarld Integer 980550
=z | String

Figure 33. The Business Object Comparison Window.

4. Click OK to close the window.

162 Implementing Adapters with WebSphere Application Server

Appendix F. Upgrading WebSphere Business Integration
adapters

This appendix describes the process for upgrading to new releases of the
WebSphere Business Integration Adapter Framework and adapters. It includes the
following topics:

. ”Assumptions"l

» [“Installing WebSphere Business Integration adapters”]|

» |“Installing service packs for WebSphere Application Server”]|

* ["Upgrading existing adapters” on page 164

Assumptions

These upgrade procedures assume the following:

* You are upgrading on a system that uses WebSphere Application Server as the
integration broker.

* You have WebSphere Business Integration Adapters version 2.3.1 currently
installed on your system.

* You have backed up any necessary files.
* You have stopped your system and any connectors that are running.

* You have read the release notes for any release-specific upgrade information that
may affect your installation. You can find the release notes online in the
WebSphere Business Integration Adapters InfoCenter at:

[http:/ /www.ibm.com /websphere/integration /wbiadapters /infocenter]

* You will perform the upgrade in a development environment, then move the
upgrades to your production environment after testing is completed.

Installing WebSphere Business Integration adapters

To install WebSphere Business Integration adapters, follow the instructions in the
Installation Guide for WebSphere Business Integration Adapters, available at the
following Web address:

http:/ /www.ibm.com/software/websphere /wbiadapters/infocenter.

In the installer screen that prompts you to specify the WebSphere Business
Integration adapter components you want to install, select:

* WebSphere Business Integration Adapter Framework
* WebSphere Business Integration Adapter Development Kit
e Any adapters you want to upgrade

* Any new adapters you want to install.

Installing service packs for WebSphere Application Server

If you are upgrading from WebSphere Business Integration Adapters version 2.3.1,
you should be running WebSphere Application Server Enterprise Edition 5.0. To
upgrade, apply WebSphere Application Server Enterprise Edition 5.0 Fix Pack 2.
This is available from the following web site:

http://www.ibm.com/support/docview.wss?rs=180&tc=SSEQTP&uid=swg24005055

© Copyright IBM Corp. 2003 163

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

Installing service packs for WebSphere MQ
If you are upgrading from WebSphere Business Integration Adapters version 2.3.1,

apply the WebSphere MQ CSDO05 Service Pack. Obtain the package from the
following URL:

http://www.ibm.com/software/integration/mgfamily/support/summary/

Upgrading existing adapters

There are no additional steps necessary for upgrading existing adapters from
WebSphere Business Integration Adapters version 2.3.1.

164 Implementing Adapters with WebSphere Application Server

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Burlingame Laboratory Director
IBM Burlingame Laboratory
577 Airport Blvd., Suite 800

© Copyright IBM Corp. 2003 165

Burlingame, CA 94010
US.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not necessarily tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

Programming interface information

166

Programming interface information, if provided, is intended to help you create
application software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

System Manager and other perspectives include software developed by the Eclipse

Project (http:/ /www.eclipse.org/)

Java
IBM WebSphere Business Integration Adapter Framework V2.4.0.

Implementing Adapters with WebSphere Application Server

Notices 167

Printed in USA

	Contents
	About this document
	Audience
	Related documents
	WebSphere Business Integration adapters publications
	WebSphere Application Server publications
	System Manager publications
	WebSphere MQ publications

	Typographic conventions

	Summary of Changes
	New with WebSphere Business Integration Adapter Framework v 2.4.0
	WebSphere Business Integration Adapters v. 2.3.1

	Part 1. Overview and concepts
	Chapter 1. Overview of WebSphere Business Integration adapters
	A note about documents you need
	What is the WebSphere business integration system?
	What is an integration broker?
	What are WebSphere Business Integration adapters?
	How the WebSphere business integration system works
	Data flow in the business integration system
	Event notification
	Integration broker processing
	Request processing

	Summary of the business integration process
	Example of sending changed data to another application
	Example of obtaining data from another application

	Chapter 2. Business objects
	Roles of a business object
	Event
	Request
	Response

	Structure of a business object
	Business object type
	Business object verbs
	Business object attribute values

	Types of business objects
	Business object definitions and business objects
	Components of a business object definition
	Attributes

	Verbs

	A closer look at business objects
	Attribute organization
	Application-specific information
	Application-specific information for a business object
	Application-specific information for an attribute
	Application-specific information for verbs

	Ways to create or modify business object definitions
	Creating business object definitions
	Other resources

	Modifying business object definitions

	Chapter 3. Connectors
	Connector startup
	Event notification
	Setting up the application’s event-notification mechanism
	When applications have event support
	When applications lack event support

	Detecting an event
	Processing an event
	Associating an application event with a business object definition
	Building an application-specific business object
	Sending the application-specific business object to the connector framework
	Archiving events

	Guaranteed event delivery

	Request processing
	Verb-based processing
	Business object construction and deconstruction
	Business object metadata and connector actions
	An example of business object construction

	Application-specific information for verbs

	Connector configuration
	Connector development

	Chapter 4. Data transport and the integration broker
	The role of the integration broker
	Asynchronous data transport
	Synchronous data transport
	Interfaces for message exchange
	Message formats
	Message descriptor
	Message header
	Message body

	Message queues
	Required types of queues
	Queue manager

	For more information

	Part 2. Deployment and administration
	Chapter 5. Overview: Implementing WebSphere Application Server as an integration broker
	Chapter 6. Installing WebSphere Business Integration adapters
	Installing for Windows systems
	Software Requirements
	Installing the JDK
	Installing WebSphere MQ
	Installing WebSphere Business Integration adapters
	Installing plug-ins for WebSphere Studio Application Developer Integration Edition

	Installing for UNIX systems
	Software Requirements
	Installing the JDK
	Installing WebSphere MQ
	Installing WebSphere Business Integration adapters

	Chapter 7. Configuring the WebSphere business integration system
	Overview of configuration tasks
	Creating business object definitions
	Adding business objects to ICLs
	Configuring WebSphere MQ queues for WebSphere Application Server
	Creating the WebSphere MQ queues
	Ways to define queues

	Defining the queue configuration
	Bindings mode
	Bindings mode with remote queue definitions
	Client mode

	Enabling the application for use with the connector
	Configuring the connector
	Running Connector Configurator
	Setting Standard and Connector-Specific properties
	Designating supported business object
	Specifying the queues to be used by the connector
	Setting the connection mode with the queue manager
	Configuring logging and tracing options
	Configuring connector logging
	Configuring connector tracing

	Configuring the connector startup files, shortcuts, and environment variables
	For Windows
	For UNIX

	Using Visual Test Connector to verify your interfaces

	Chapter 8. Deploying to WebSphere Application Server
	Saving configurations as ICLs
	Creating user projects in System Manager
	Deploying user projects
	Creating WebSphere Application Server applications
	Agent Delivery (Asynchronous Event Delivery)
	Import files for a new service project
	Create an EJB
	Create an MDB

	Agent Request (Synchronous event delivery)
	Create an EJB project
	Create an MDB

	Hub One Way
	Creating the EJB
	Create an application client project for testing

	Hub Request
	Creating the EJB project

	Requirements for initiating business objects in interaction patterns
	Adding the business object initialization library

	Reserved values in business object handling
	Transactional support

	Chapter 9. Administering the business integration system
	Starting a connector
	From Windows
	From UNIX

	Stopping a connector
	For a Windows system
	For a UNIX system

	Creating multiple connector insta
	Create a new directory
	Create business object definitions
	Create a connector definition
	Create a start-up script

	Clearing messages from WebSphere MQ queues
	Managing log and trace files
	Archival logging of log and trace files
	Managing other files

	Using Adapter Monitor and Fault Queue Manager
	Adapter Monitor perspective
	Opening Adapter Monitor

	Setting Adapter Monitor preferences
	Loading an adapter
	Adapter Monitor displays
	Changing the state of an adapter
	Using the Fault Queue Manager display
	Handling failed events

	Using Log Viewer to view connector messages
	Setting Log Viewer preferences
	Changing how messages are viewed
	Controlling the Log Viewer display output
	Filtering messages
	Message types

	Appendix A. WebSphere MQ message formats
	Appendix B. Standard configuration properties for connectors
	New and deleted properties
	Configuring standard connector properties
	Using Connector Configurator
	Setting and updating property values

	Summary of standard properties
	Standard configuration properties
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BrokerType
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	WebSphere MQ and IDL
	JMS

	DuplicateEventElimination
	FaultQueue
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	jms.FactoryClassName
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.UserName
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RequestQueue
	RepositoryDirectory
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousResponseQueue
	SynchronousRequestTimeout
	WireFormat
	WsifSynchronousRequest Timeout
	XMLNameSpaceFormat

	Appendix C. Connector startup options
	Windows
	UNIX

	Appendix D. Using the Connector Script Generator tool
	Appendix E. Using Visual Test Connector
	Recommended testing procedure
	Starting Test Connector
	Shutting down Test Connector
	Creating and editing connector profiles
	Saving the connector definition to a file
	Creating a new profile
	Editing a profile
	Deleting a profile

	Emulating a connector
	Working with business objects
	Working with request business objects
	Creating request business objects
	Sending request business objects

	Setting values for business object attributes
	Setting values for simple attributes
	Adding child business objects
	Removing child business objects
	Setting the verb of a child business object
	Using the Response BO toolbar

	Saving a business object
	Saving request business objects
	Saving response business object

	Loading a business object
	Deleting a business object
	Accepting a request business object
	Working with response business objects
	Editing response business objects
	Sending a response business object

	Comparing business object instances

	Appendix F. Upgrading WebSphere Business Integration adapters
	Assumptions
	Installing WebSphere Business Integration adapters
	Installing service packs for WebSphere Application Server
	Installing service packs for WebSphere MQ
	Upgrading existing adapters

	Notices
	Programming interface information

