IBM WebSphere Business Integration Adapters

Adapter for ACORD XML User Guide

V10.x

<|ll

Note!
FBefore using this information and the product it supports, read the information in|[“Notices” on page 79

19December 2003

This edition of this document applies to IBM WebSphere Business Integration Adapter for ACORD XML, version
1.0.0, and to all subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, e-mail doc-comments@us.ibm.com. We look forward to hearing
from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document .
Audience .
Prerequisites for thls document .
Related documents .
Typographic conventions .

New in this release
New in release 1.0.x

Chapter 1. Overview .
Overview of the ACORD standards.
Adapter for ACORD XML environment
Connector architecture . .
Application-connector Cornrnunlcatlon
Event handling

Business object requests

Verb processing .
Processing locale- dependent data .
Common configuration tasks

Chapter 2. Installing and conflgurmg the adapter

Overview of installation tasks .
Installing the adapter and related files
Installed file structure .

Connector configuration .

Queue Uniform Resource Ident1f1ers (URI)
Meta-object attributes configuration
Startup file configuration .

Startup .

Chapter 3. Creating or modifying business objects.

Adapter business object structure .
Error handling
Tracing .

Chapter 4. Troubleshootmg
Start-up problems
Event processing

Appendix A. Standard configuration propertles for connectors

New and deleted properties . .
Configuring standard connector propertles
Summary of standard properties

Standard configuration properties .

Appendix B. Connector Configurator.

Overview of Connector Configurator .

Starting Connector Configurator .
Running Configurator from System Manager .
Creating a connector-specific property template
Creating a new configuration file .

Using an existing file . .

Completing a configuration file.

Setting the configuration file properties .

© Copyright IBM Corp. 2003

<< <

. Vil
. Vil

-—h

= O O o N U1 N =

.4
.41
.42
.43

. 45
. 45
.45

. 47
. 47
. 47
. 48
. 52

. 63
. 63
. 64
. 65
. 65
. 67
. 69
. 69
.70

iii

Saving your configuration file .

Changing a configuration file

Completing the configuration
Using Connector Configurator in a globalized environment

Notices

Programming interface information
Trademarks and service marks .

iV Adapter for ACORD XML User Guide

. 76
.77
.77
.78

. 79
. 80
. 80

About this document

The IBM(R) WebSphere(R) Business Integration Adapter portfolio supplies
integration connectivity for leading e-business technologies, enterprise applications,
legacy, and mainframe systems. The product set includes tools and templates for
customizing, creating, and managing components for business process integration.

This document describes the installation, configuration, business object
development, and troubleshooting for the IBM WebSphere Business Integration
Adapter for ACORD XML.

Audience

This document is for consultants, developers, and system administrators who
support and manage the WebSphere business integration system at customer sites.

Prerequisites for this document

Users of this document should be familiar with the WebSphere business integration
system, with business object and collaboration development, and with the ACORD
XML specifications.

Related documents

The complete set of documentation available with this product describes the
features and components common to all WebSphere Business Integration Adapters
installations, and includes reference material on specific components.

This document contains many references to two other documents: the System
Installation Guide for Windows or for UNIX and the System Implementation Guide for
WebSphere InterChange Server. If you choose to print this document, you may want
to print these documents as well.

You can install related documentation from the following sites:

¢ For general adapter information; for using adapters with WebSphere message
brokers (WebSphere MQ Integrator, WebSphere MQ Integrator Broker,
WebSphere Business Integration Message Broker); and for using adapters with
WebSphere Application Server:

[http:/ /www.ibm.com/websphere/integration/wbiadapters/infocenter|

* For using adapters with InterChange Server:

http:/ /www.ibm.com /websphere/integration/wicserver /infocenter]

http:/ /www.ibm.com /websphere /integration/ wbicollaborations /infocenter|

e For more information about message brokers (WebSphere MQ Integrator Broker,
WebSphere MQ Integrator, and WebSphere Business Integration Message
Broker):

[http:/ /www.ibm.com /software/integration /mqfamily /library /manualsa /|

* For more information about WebSphere Application Server:

[http:/ /www.ibm.com/software/webservers/appserv/library.html|

© Copyright IBM Corp. 2003 v

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
 http://www.ibm.com/websphere/integration/wicserver/infocenter
http://www.ibm.com/websphere/integration/wbicollaborations/infocenter
http://www.ibm.com/software/integration/mqfamily/library/manualsa/
http://www.ibm.com/software/webservers/appserv/library.html

These sites contain simple directions for downloading, installing, and viewing the

documentation.

Typographic conventions

vi

This document uses the following conventions:

courier font

bold
italic, italic
blue outline

{}
L]

/,\

%text% and $text

ProductDir

Indicates a literal value, such as a command name, filename,
information that you type, or information that the system
prints on the screen.

Indicates a new term the first time that it appears.

Indicates a variable name or a cross-reference.

A blue outline, which is visible only when you view the
manual online, indicates a cross-reference hyperlink. Click
inside the outline to jump to the object of the reference.

In a syntax line, curly braces surround a set of options from
which you must choose one and only one.

In a syntax line, square brackets surround an optional
parameter.

In a syntax line, ellipses indicate a repetition of the previous
parameter. For example, option[,...] means that you can
enter multiple, comma-separated options.

In a naming convention, angle brackets surround individual
elements of a name to distinguish them from each other, as
in <server_name><connector_name>tmp.10g.

In this document, backslashes (\) are used as the convention
for directory paths. For UNIX installations, substitute slashes
(/) for backslashes. All product pathnames are relative to the
directory where the product is installed on your system.
Text within percent (%) signs indicates the value of the
Windows text system variable or user variable. The
equivalent notation in a UNIX environment is $text,
indicating the value of the text UNIX environment variable.
Represents the directory where the product is installed.

Adapter for ACORD XML User Guide

New in this release

New in release 1.0.x
Version 1.0.x is the first release of the Adapter for ACORD.

© Copyright IBM Corp. 2003

vii

viii Adapter for ACORD XML User Guide

Chapter 1. Overview
¢ [“Overview of the ACORD standards’]

+ [“Adapter for ACORD XML environment” on page 2|
¢ |“Connector architecture” on page 5

» [“Application-connector communication” on page §

* |“Event handling” on page §

* [“Guaranteed event delivery” on page 7|

+ [“Business object requests” on page 9|

* [“Verb processing” on page 9

* [‘Processing locale-dependent data” on page 14|

+ ["Common configuration tasks” on page 141|

The connector for ACORD XML is a runtime component of the WebSphere
Business Integration Adapter for ACORD XML. The connector allows the
WebSphere integration broker to exchange business objects with applications that
send or receive ACORD XML messages. This chapter describes the connector
component and the relevant business integration system architecture.

Connectors consist of an application-specific component and the connector
framework. The application-specific component contains code tailored to a
particular application. The connector framework, whose code is common to all
connectors, acts as an intermediary between the integration broker and the
application-specific component. The connector framework provides the following
services between the integration broker and the application-specific component:

* Receives and sends business objects
* Manages the exchange of startup and administrative messages

This document contains information about the application-specific component and
connector framework. It refers to both of these components as the connector.

For more information about the relationship of the integration broker to the
connector, see the IBM WebSphere InterChange Server System Administration Guide.

Note: All WebSphere business integration adapters operate with an integration
broker. The connector for ACORD XML operates with:

¢ the InterChange Server integration broker, which is described in the
Technical Introduction to IBM WebSphere InterChange Server

* the WebSphere Application Server (WAS) integration broker, which is
described in Implementing Adapters with WebSphere Application Server

Overview of the ACORD standards

The ACORD organization maintains a set of electronic standards for the insurance
industry. These standards are XML version 1.0 compliant markup languages for
describing various aspects of the life, health annuity, and insurance industries.

The adapter for ACORD XML 1.0.0 supports two major segments of the ACORD

XML standards, XML for Life and Property & Casualty (P&C). When ACORD
messages are represented as XML documents in the schema described here, they

© Copyright IBM Corp. 2003

can be converted into business objects within a WebSphere business integration
system, then exchanged as business information across the internet, over different
domains, and among disparate applications in the enterprise.

The ACORD XML adapter provides the means for moving data between
WebSphere business integration system and the ACORD messaging application. It
is described in [“Connector architecture” on page 5.|

XML for Life

XML for Life is a family of standards for the life insurance industry designed to
enable real-time, cross platform business partner message/information sharing. It
accomplishes this by combining the rich data vocabulary of the Life Data Model
with all the benefits of XML.

ACORD messages represented in XML for Life are platform and language
independent, so they can be exchanged over disparate systems, languages,
communication methods, and messaging infrastructures.

ACORD provides standards for Life in the form of schema files. The most recent
version of Life, version 2.8.0, is comprised of three core specifications:

e XMLife, an XML version of the Life Data Model
» TxLife, a wrapper around XMLife content

e XTbML, a structure for creating any-dimensional tabular data
Note: The current version 2.8.0 for Life is backwards compatible.
Note: ACORD XML for Life does not support DTDs.

ACORD messaging applications are expected to build XML messages based on the
ACORD schema specifications, which can be downloaded from the ACORD
website. The implementation of these schemas may vary between clients.

Note: XMLIfE and TXLifE use a single XML namespace for backwards
compatibility: jhttp:/ /ACORD.org /Standards/Life/2}

ACORD XML for Property & Casualty

The ACORD XML for Property and Casualty (P&C) standard defines property and
casualty transactions that include both request and response messages for
accounting, claims, personal lines, commercial lines, specialty lines and surety
transactions.

See [“Limitations on business object generation from ACORD XML schemas” on|
IEage 4] for information about limitations on business object creation from ACORD
XML for Property and Casualty schemas.

Adapter for ACORD XML environment

Before installing, configuring, and using the adapter, you must understand its
environmental requirements:

* [“Broker compatibility” on page 3|

» |“Adapter standards” on page 3|

+ [“Adapter platforms” on page 3|

« |“Adapter dependencies” on page 4]

2 Adapter for ACORD XML User Guide

http://ACORD.org/Standards/Life/2

* |"Locale-dependent data” on page 4|

Broker compatibility

The adapter framework that an adapter uses must be compatible with the version
of the integration broker (or brokers) with which the adapter is communicating.
The 1.0 version of the adapter for ACORD XML is supported on the following
adapter framework and integration brokers:

* Adapter framework: WebSphere Business Integration Adapter Framework,
versions:

- 21

- 22

- 2.3x

- 24

* Integration brokers:

— WebSphere InterChange Server, versions:
- 411
- 42
- 421
- 42x

— WebSphere MQ Integration Broker, version 2.1.0

— WebSphere Business Integration Message Broker, version 5.0

— WebSphere Application Server Enterprise, version 5.0.2, with WebSphere
Studio Application Developer Integration Edition, version 5.0.1

See the Release Notes for any exceptions.

Note: For instructions on installing the integration broker and its prerequisites, see
the following documentation.

For WebSphere InterChange Server (ICS), see the System Installation Guide for UNIX
or for Windows.

For message brokers (WebSphere MQ Integrator Broker, WebSphere MQ Integrator,
and WebSphere Business Integration Message Broker), see Implementing Adapters
with WebSphere Message Brokers, and the installation documentation for the message
broker. Some of this can be found at the following Web site:

http:/ /www.ibm.com /software/integration /mgfamily /library /manualsa /| For
WebSphere Application Server, see Implementing Adapters with WebSphere
Application Server and the documentation at:

|http: / /www.ibm.com/software/webservers/appserv/ library.htm]|

Adapter standards
The adapter is written to the the following versions of the ACORD standards.
¢ XML for Life 2.8
* XML for Property & Casualty 1.4.1

Adapter platforms
The adapter is supported on the following platforms:
* Windows 2000
e AIX51,52

Chapter 1. Overview 3

http://www.ibm.com/software/integration/mqfamily/library/manualsa/
http://www.ibm.com/software/webservers/appserv/library.html

e Solaris 7, 8
* HP-UX 11i

Adapter dependencies
The adapter has the following software prerequisites and other dependencies:

* The adapter is supported on WebSphere MQ Integrator Broker, Version 2.1 and
WebSphere InterChange Server, Version 4.2

* If you are using the WebSphere Business Integration Message Broker, version 5.0,
you must install CSD02 on top of that integration broker.

¢ The connector supports interoperability with applications via WebSphere MQ, or
WebSphere MQ 5.1, 5.2,' and 5.3. Accordingly, you must have one of these
software releases installed.

Note: The adapter does not support Secure Socket Layers (SSL) in WebSphere
MQ 5.3. For the WebSphere MQ software version appropriate to adapter
framework-integration broker communication, see the Installation Guide
for your platform (Windows/Unix).

* In addition, you must have the IBM WebSphere MQ Java client libraries.

Limitations on business object generation from ACORD XML
schemas

The XML Object Discovery Agent (ODA) must generate business objects
representing all of the possible message types in the ACORD XML Property &
Casualty schemas. However, the size of the resulting data exceeds the capacity of
the application-specific information (ASI) where this data is stored. To avoid these
limits at run-time, edit the Property and Casualty Schemas/DTDs to reduce the
number of message types in the entities.

For example, the "Insurance Service Request” schema has many choice elements
representing various message types. You can remove any message types you don’t
anticipate using in order to accomodate the remaining types within the confines of
the ASI size limitations.

For more information, please refer to the Business Object Development Guide.

Locale-dependent data

The connector has been internationalized so that it can support double-byte
character sets, and deliver message text in the specified language. When the
connector transfers data from a location that uses one character code to a location
that uses a different code set, it performs character conversion to preserves the
meaning of the data.

The Java runtime environment within the Java Virtual Machine (JVM) represents
data in the Unicode character code set. Unicode contains encoding for characters in
most known character code sets (both single-byte and multibyte). Most
components in the WebSphere business integration system are written in Java.
Therefore, when data is transferred between most integration components, there is
no need for character conversion.

1. If your environment implements the convert-on-the-get methodology for character-set conversions you must download the latest
MAS88 (JMS classes) from IBM. The patch level should be at least 5.2.2 (for WebSphere MQ version 5.2). Doing so may avoid
unsupported encoding errors.

4 Adapter for ACORD XML User Guide

To log error and informational messages in the appropriate language and for the
appropriate country or territory, configure the Locale standard configuration
property for your environment. For more information on configuration properties,
see[Appendix A, “Standard configuration properties for connectors,” on page 47

Connector architecture

The ACORD XML connector allows IBM WebSphere Business Integration
Collaborations to asynchronously exchange business objects with applications that
issue or receive ACORD XML messages when changes to data occur.

The connector uses an MQ implementation of the Java" Message Service (JMS), an
API for accessing enterprise-messaging systems that also makes possible
guaranteed event delivery.

Connector for ACORD XML

The connector for ACORD XML is metadata-driven. Message routing and format
conversion are initiated by an event polling technique.

The connector retrieves ACORD XML messages from queues, calls data handlers to
convert those messages to their corresponding business objects, and then delivers
the business objects to collaborations. In the opposite direction, the connector
receives business objects from collaborations, converts them into ACORD XML
messages using the same data handler, and then delivers the messages to an
ACORD messaging application.

The ACORD XML connector uses the XML data handler to process ACORD XML
messages. For information about how to configure this data handler to work with
the ACORD XML connector, see Chapter 3, "XML data handler,” in the Data
Handler Guide.

XML and business objects

The type of business object and verb used in processing a message is based on the
FORMAT field contained in the ACORD XML message header. The connector uses
meta-object entries to determine business object name and verb. For each message,
you construct a meta-object to store the business object name and verb to associate
with the ACORD XML message header FORMAT field text.

You can optionally construct a dynamic meta-object that is added as a child to the
business object passed to the connector. The child meta-object values override
those specified in the static meta-object that is specified for the connector as a
whole. If the child meta-object is not defined or does not define a required
conversion property, the connector, by default, examines the static meta-object for
the value. You can specify one or more dynamic child meta-objects instead of, or to
supplement, a single static connector meta-object.

The connector can poll multiple input queues, polling each in a round-robin
manner and retrieving a specified number of messages from each queue. For each
message retrieved during polling, the connector adds a dynamic child meta-object
(if specified in the business object). The child meta-object values can direct the
connector to populate attributes of the business object with the format of the
message as well as with the name of the input queue from which the message was
retrieved.

Chapter 1. Overview 5

When a message is retrieved from the input queue, the connector looks up the
business object name associated with the FORMAT field contained in the message
header. The message body, along with a new instance of the appropriate business
object, is then passed to the data handler. If a business object name is not found
associated with the format, the message body alone is passed to the data handler.
If a business object is successfully populated with message content, the connector
checks to see if it is subscribed, and then delivers it to InterChange Server using
the gotApplEvents() method.

Application-connector communication

The connector makes use of IBM’s WebSphere MQ implementation of the Java
Message Service (JMS). The JMS is an open-standard API for accessing
enterprise-messaging systems. It is designed to allow business applications to
asynchronously send and receive business data and events.

Message request

illustrates a message request communication. When the doVerbFor()
method receives a WebSphere business integration system business object from a
collaboration, the connector passes the business object to the data handler. The
data handler converts the business object into XML and the connector issues it as a
message to a queue. There, the JMS layer makes the appropriate calls to open a
queue session and routes the message.

AE::PE)EF;D Integration
Output queue e
via JMS service XML
provider ‘—[
| 1 '
) |§| N Request | d) n

message

!
Data
handler

Figure 1. Application-connector communication method: Message request

Event delivery

illustrates the event delivery direction. The pol1ForEvents() method
retrieves the next applicable message from the input queue. The message is staged
in the in-progress queue where it remains until processing is complete. Using
either the static or dynamic meta-objects, the connector verifies that the message
type (i.e., XML) is supported. The connector then passes the message to the
configured data handler, which converts the message into a WebSphere business
integration business system business object. The verb that is set reflects the
conversion properties established for the message type. The connector then
determines whether the business object is subscribed to by a collaboration. If so,
the gotApplEvents() method delivers the business object to InterChange Server,
and the message is removed from the in-progress queue.

6 Adapter for ACORD XML User Guide

Input queue via

JMS service In-progress
pmidser"” queus gotApplEvents()
| | pollForEvents() [I3
=l Event T ! Event BO |
message i
Adapter for Integration
ACORD broker

W—

Figure 2. Application-connector communication method: Event delivery

Guaranteed event delivery

The guaranteed-event-delivery feature enables the connector framework to ensure
that events are never lost and never sent twice between the connector’s event
store, the JMS event store, and the destination’s JMS queue. To become
JMS-enabled, you must configure the connector DeliveryTransport standard
property to JMS. Thus configured, the connector uses the JMS transport and all
subsequent communication between the connector and the integration broker
occurs through this transport. The JMS transport ensures that the messages are
eventually delivered to their destination. Its role is to ensure that once a
transactional queue session starts, the messages are cached there until a commit is
issued; if a failure occurs or a rollback is issued, the messages are discarded.

Note: Without use of the guaranteed-event-delivery feature, a small window of
possible failure exists between the time that the connector publishes an
event (when the connector calls the gotApplEvent() method within its
pollForEvents() method) and the time it updates the event store by deleting
the event record (or perhaps updating it with an “event posted” status). If a
failure occurs in this window, the event has been sent but its event record
remains in the event store with an “in progress” status. When the connector
restarts, it finds this event record still in the event store and sends it,
resulting in the event being sent twice.

You can configure the guaranteed-event-delivery feature for a JMS-enabled
connector with, or without, a JMS event store. To configure the connector for
guaranteed event delivery, see instructions in the Connector Development Guide for
Java.

If the connector framework cannot deliver the business object to the ICS
integration broker, then the object is placed on a FaultQueue (instead of
UnsubscribedQueue and ErrorQueue) and generates a status indicator and a
description of the problem. FaultQueue messages are written in MQRFH?2 format.

Chapter 1. Overview 7

Event handling

For event notification, the connector detects events written to a queue by an
application rather than a database trigger. An event occurs when an application or
other ACORD software generates ACORD XML messages and stores them on the
MQ message queue.

Retrieval

The connector uses the pol1ForEvents() method to poll the MQ queue at regular
intervals for messages. When the connector finds a message, it retrieves it from the
MQ queue and examines it to determine its format. If the format has been defined
in the connector’s static object, the connector passes both the message body and a
new instance of the business object associated with the format to the configured
data handler; the data handler is expected to populate the business object and
specify a verb. If the format is not defined in the static meta-object, the connector
passes only the message body to the data handler; the data handler is expected to
determine, create and populate the correct business object for the message. See
[“Error handling” on page 42| for event failure scenarios.

The connector processes messages by first opening a transactional session to the
input queue. This transactional approach allows for a small chance that a business
object could be delivered to a collaboration twice due to the connector successfully
submitting the business object but failing to commit the transaction in the queue.
To avoid this problem, the connector moves all messages to an in-progress queue.
There, the message is held until processing is complete. If the connector shuts
down unexpectedly during processing, the message remains in the in-progress
queue instead of being reinstated to the original input queue.

Note: Transactional sessions with a JMS service provider require that every
requested action on a queue be performed and committed before events are
removed from the queue. Accordingly, when the connector retrieves a
message from the queue, it does not commit to the retrieval until three
things occur: 1) The message has been converted to a business object; 2) the
business object is delivered to InterChange Server by the gotAppT1Events()
method, and 3) a return value is received.

Recovery

Upon initialization, the connector checks the in-progress queue for messages that
have not been completely processed, presumably due to a connector shutdown.
The connector configuration property InDoubtEvents allows you to specify one of
four options for handling recovery of such messages: fail on startup, reprocess,
ignore, or log error.

Fail on startup

With the fail on startup option, if the connector finds messages in the in-progress
queue during initialization, it logs an error and immediately shuts down. It is the
responsibility of the user or system administrator to examine the message and take
appropriate action, either to delete these messages entirely or move them to a
different queue.

Reprocess

With the reprocessing option, if the connector finds any messages in the
in-progress queue during initialization, it processes these messages first during
subsequent polls. When all messages in the in-progress queue have been
processed, the connector begins processing messages from the input queue.

8 Adapter for ACORD XML User Guide

Ignore
With the ignore option, if the connector finds any messages in the in-progress
queue during initialization, the connector ignores them, but does not shut down.

Log error
With the log error option, if the connector finds any messages in the in-progress
queue during initialization, it logs an error but does not shut down.

Archiving

If the connector property ArchiveQueue is specified and identifies a valid queue,
the connector places copies of all successfully processed messages in the archive
queue. If ArchiveQueue is undefined, messages are discarded after processing. For
more information on archiving unsubscribed or erroneous messages, see |”Err0;|
handling” on page 42|in|Chapter 3, “Creating or modifying business objects,” on|
age 41

Note: By JMS conventions, a retrieved message cannot be issued immediately to
another queue. To enable archiving and re-delivery of messages, the
connector first produces a second message that duplicates the body and the
header (as applicable) of the original. To avoid conflicts with the JMS service
provider, only JMS-required fields are duplicated. Accordingly, the format
field is the only additional message property that is copied for messages
that are archived or re-delivered.

Business object requests

Business object requests are processed when InterChange Server sends a business
object to the doVerbFor() method. Using the configured data handler, the connector
converts the business object to an WebSphere MQ message and issues it. There are
no requirements regarding the type of business objects processed except those of
the data handler.

Verb processing

The connector processes business objects passed to it by a collaboration based on
the verb for each business object. The connector uses business object handlers and
the doForVerb() method to process the business objects that the connector
supports. The connector supports the following business object verbs:

* Create

* Update

* Delete

* Retrieve

* Exists

* Retrieve by Content

Note: Business objects with Create, Update, and Delete verbs can be issued either
asynchronously or synchronously. The default mode is asynchronous. The
connector does not support asynchronous delivery for business objects with
the Retrieve, Exists, or Retrieve by Content verbs. Accordingly, for Retrieve,
Exists, or Retrieve by Content verbs, the default (and only) mode is
synchronous.

Chapter 1. Overview 9

Create, update, and delete

Processing of business objects with create, update and delete verbs depends on
whether the objects are issued asynchronously or synchronously.

Asynchronous delivery
This is the default delivery mode for business objects with Create, Update, and
Delete verbs. A message is created from the business object using a data handler

and then written to the output queue. If the message is delivered, the connector
returns BON_SUCCESS, else BON_FAIL.

Note: The connector has no way of verifying whether the message is received or if
action has been taken.

Synchronous delivery

If a replyToQueue has been defined in the connector properties and a
responseTimeout exists in the conversion properties for the business object, the
connector issues a request in synchronous mode. The connector then waits for a
response to verify that appropriate action was taken by the receiving application.

For ACORD XML, the connector initially issues a message with a header as shown
in the table below.

Field Description Value

Format Format name Output format as defined in the conversion properties and truncated to 8
characters to meet IBM requirements (example: MQSTR)

MessageType Message Type MQMT_DATAGRAM*if no response is expected from the receiving application.
MQMT_REQUEST=* if a response is expected

Report Options for report When a response message is expected, this field is populated as

message requested. follows:MQRO_PAN= to indicate that a positive-action report is required if

processing is successful. MQRO_NAN= to indicate that a negative-action
report is required if processing fails. MQRO_COPY_MSG_ID_TO_CORREL_ID+* to
indicate that the correlation ID of the report generated should equal the
message ID of the request originally issued.

ReplyToQueue |Name of reply queue |When a response message is expected this field is populated with the
value of connector property ReplyToQueue.

Persistence Message persistence MQPER_PERSISTENT*

Expiry Message lifetime MQEI_UNLIMITED*

* Indicates constant defined by IBM.

The message header described in the table above is followed by the message body.
The message body is a business object that has been serialized using the data

handler.

The Report field is set to indicate that both positive and negative action reports are
expected from the receiving application. The thread that issued the message waits
for a response message that indicates whether the receiving application was able to
process the request.

When an application receives a synchronous request from the connector, it
processes the business object and issues a report message as described in the tables

below.

10 Adapter for ACORD XML User Guide

Field Description Value
Format Format name Input format of busObj as defined in the conversion properties.
MessageType Message Type MQMT_REPORT*
*Indicates constant defined by IBM.
Verb Feedback field |Message body
Create, Update, or Delete SUCCESS (Optional) A serialized business object reflecting changes.
VALCHANGE
VALDUPES (Optional) An error message.
FAIL
WebSphere MQ feedback code Equivalent CrossWorlds response*
MQFB_PAN or MQFB_APPL_FIRST SUCCESS
MQFB_NAN or MQFB_APPL_FIRST + 1 FAIL
MQFB_APPL_FIRST + 2 VALCHANGE
MQFB_APPL_FIRST + 3 VALDUPES
MQFB_APPL_FIRST + 4 MULTIPLE_HITS

MQFB_APPL_FIRST
MQFB_APPL_FIRST
MQFB_APPL_FIRST
MQFB_APPL_FIRST

+

FAIL_RETRIEVE_BY_CONTENT
BO_DOES_NOT_EXIST
UNABLE_TO_LOGIN

APP_RESPONSE_TIMEOUT (results in
immediate termination of connector agent)

+

+ | +
o |N|oo|o

*See the Connector Development Guide for Java for details.

If the business object can be processed, the application creates a report message
with the feedback field set to MQFB_PAN (or a specific WebSphere business
integration system value). Optionally the application populates the message body
with a serialized business object containing any changes. If the business object
cannot be processed, the application creates a report message with the feedback
field set to MQFB_NAN (or a specific WebSphere business integration system value)
and then optionally includes an error message in the message body. In either case,
the application sets the correlationID field of the message to the messagelD of the
connector message and issues it to the queue specified by the replyTo field.

Upon retrieval of a response message, the connector by default matches the
correlationID of the response to the messageID of a request message. The
connector then notifies the thread that issued the request. Depending on the
feedback field of the response, the connector either expects a business object or an
error message in the message body. If a business object was expected but the
message body is not populated, the connector simply returns the same business
object that was originally issued by InterChange Server for the Request operation.
If an error message was expected but the message body is not populated, a generic
error message will be returned to InterChange Server along with the response
code. However, you can also use a message selector to identify, filter and otherwise
control how the adapter identifies the response message for a given request. This
message selector capability is a JMS feature. It applies to synchronous request
processing only and is described below.

Chapter 1. Overview 11

Filtering response messages using a message selector: Upon receiving a business
object for synchronous request processing, the connector checks for the presence of
a response_selector string in the application-specific information of the verb. If
the response_selector is undefined, the connector identifies response messages
using the correlation ID as described above.

If response_selector is defined, the connector expects a name-value pair with the
following syntax:

response_selector=JMSCorrelationID LIKE ’selectorstring’

The message selectorstring must uniquely identify a response and its values be
enclosed in single quotes as shown in the example below:

response_selector=JMSCorrelationID LIKE 'Oshkosh'

In the above example, after issuing the request message, the adapter would
monitor the ReplyToQueue for a response message with a correlationID equal to
"Oshkosh.” The adapter would retrieve the first message that matches this message
selector and then dispatch it as the response.

Optionally, the adapter performs run-time substitutions enabling you to generate
unique message selectors for each request. Instead of a message selector, you
specify a placeholder in the form of an integer surrounded by curly braces, for
example: ' {1}"'. You then follow with a colon and a list of comma-separated
attributes to use for the substitution. The integer in the placeholder acts as an
index to the attribute to use for the substitution. For example, the following
message selector:

response_selector=JMSCorrelationID LIKE '{1}': MyDynamicMO0.CorrelationID
would inform the adapter to replace {1} with the value of the first attribute
following the selector (in this case the attribute named Correlationld of the
child-object named MyDynamicMO0. If attribute CorrelationID had a value of 123ABC,
the adapter would generate and use a message selector created with the following
criteria:

JMSCorrelation LIKE '123ABC'
to identify the response message.
You can also specify multiple substitutions such as the following:

response_selector=Primaryld LIKE '{1}' AND AddressId LIKE '{2}"
PrimaryId, Address[4].AddressId

In this example, the adapter would substitute {1} with the value of attribute
PrimaryId from the top-level business object and {2} with the value of AddressId
from the 5th position of child container object Address. With this approach, you
can reference any attribute in the business object and meta-object in the response
message selector. For more information on how deep retrieval is performed using
Address[4] .AddressId, see JCDK API manual (getAttribute method)

An error is reported at run-time when any of the following occurs:
* If you specify a non-integer value between the '{}' symbols

12 Adapter for ACORD XML User Guide

* If you specify an index for which no attribute is defined
* If the attribute specified does not exist in the business or meta-object
e If the syntax of the attribute path is incorrect

For example, if you include the literal value "{" or ’} in the message selector, you
can use '{{” or "{}" respectively. You can also place these characters in the attribute
value, in which case the first "{" is not needed. Consider the following example
using the escape character: response_selector=JMSCorrelation LIKE '{1}' and
CompanyName="A{{P': MyDynamicMO0.CorrelationID

The connector would resolve this message selector as follows:

JMSCorrelationID LIKE '123ABC' and CompanyName='A{P'
When the connector encounters special characters such as '{’, '}, " or ’;’ in
attribute values, they are inserted directly into the query string. This allows you to
include special characters in a query string that also serve as application-specific
information delimiters.

The next example illustrates how a literal string substitution is extracted from the
attribute value:

response_selector=JMSCorrelation LIKE '{1}' and CompanyName='A{{P':
MyDynamicMO.CorrelationID

If MyDynamicM0.CorrelationID contained the value {A:B}C;D, the connector would
resolve the message selector as follows: JMSCorrelationID LIKE '{A:B}C;D' and
CompanyName="A{P'

For more information on the response selector code, see J]MS 1.0.1 specifications.

Creating custom feedback codes: You can extend the WebSphere MQ feedback
codes to override default interpretations by specifying the connector property
FeedbackCodeMappingMO. This property allows you to create a meta-object in
which all WebSphere business integration system-specific return status values are
mapped to the WebSphere MQ feedback codes. The return status assigned (using
the meta-object) to a feedback code is passed to InterChange Server. For more
information, see [“FeedbackCodeMappingMO” on page 21}

Retrieve, exists and retrieve by content

Business objects with the Retrieve, Exists, and Retrieve By Content verbs support
synchronous delivery only. The connector processes business objects with these
verbs as it does for the synchronous delivery defined for create, update and delete.
However, when using Retrieve, Exists, and Retrieve By Content verbs, the
responseTimeout and replyToQueue are required. Furthermore, for Retrieve By
Content and Retrieve verbs, the message body must be populated with a serialized
business object to complete the transaction.

The table below shows the response messages for these verbs.

Verb Feedback field Message body
Retrieve or FAIL (Optional) An error message.
RetrieveByContent FAIL_RETRIEVE_BY_CONTENT

MULTIPLE_HITS SUCCESS A serialized business object.
Exist FAIL (Optional) An error message.

Chapter 1. Overview 13

Verb Feedback field Message body

SUCCESS

Processing locale-dependent data

The connector has been internationalized so that it can support double-byte
character sets, and deliver message text in the specified language. When the
connector transfers data from a location that uses one character code to a location
that uses a different code set, it performs character conversion to preserve the
meaning of the data.

The Java runtime environment within the Java Virtual Machine (JVM) represents
data in the Unicode character code set. Unicode contains encodings for characters
in most known character code sets (both single-byte and multibyte). Most
components in the WebSphere business integration system are written in Java.
Therefore, when data is transferred between most integration components, there is
no need for character conversion.

To log error and informational messages in the appropriate language and for the
appropriate country or territory, configure the Locale standard configuration
property for your environment. For more information on configuration properties,
see[Appendix A, “Standard configuration properties for connectors,” on page 47

Common configuration tasks

After installation, you must configure the connector before starting it. This section
provides an overview of some of the configuration and startup tasks that most
developers will need to perform.

Installing the adapter

See [Chapter 2, “Installing and configuring the adapter,” on page 17 for a
description of what and where you must install.

Configuring connector properties

Connectors have two types of configuration properties: standard configuration
properties and connector-specific configuration properties. Some of these properties
have default values that you do not need to change. You may need to set the
values of some of these properties before running the connector. For more
information, see [Chapter 2, “Installing and configuring the adapter,” on page 17

When you configure connector properties for the adapter for ACORD XML, make
sure that:

* The value specified for connector property HostName matches that of the host
of your WebSphere MQ server.

* The value specified for connector property Port matches that of the port for the
listener of your queue manager

* The value specified for connector property Channel matches the server
connection channel for your queue manager.

* The queue URI’s for connector properties InputQueue, InProgressQueue,
ArchiveQueue, ErrorQueue, and UnsubscribeQueue are valid and actually exist.

14 Adapter for ACORD XML User Guide

Configuring the connector to send requests without
notification

To configure the connector to send requests without notification (the default

asynchronous mode, also known as “fire and forget”):

* Create a business object that represents the request you want to send and is also
compatible with the data handler that you have configured for the connector.

* Use either a static or a dynamic meta-object to specify the target queue and
format. For more on static and dynamic meta-objects, see|“Static meta-objects’]
[on page 25|and [“Dynamic child metaobject” on page 31|

* Set the property ResponseTimeout in the (static or dynamic) meta-object to -1.
This forces the connector to issue the business object without checking for a
return.

+ For more information, see|“Create, update, and delete” on page 10 |”Meta-object|
attributes configuration” on page 25| and |[Chapter 3, “Creating or modifying|
business objects,” on page 41|

Configuring the connector to send requests and get
notifications

To configure the connector to send requests and get notifications (synchronous
event handling):

+ Follow the steps described in [“Configuring the connector to send requests|
[without notification”| with this exception: you specify a positive
ResponseTimeout value to indicate how long the connector waits for a reply.

* See [‘Create, update, and delete” on page 10| for details of exactly what the
connector expects in a response message. If the requirements listed are not met
by the response message, the connector may report errors or fail to recognize the
response message. See also sections on [“Meta-object attributes configuration” on|
[page 25| and |[Chapter 3, “Creating or modifying business objects,” on page 41|

Configuring a static meta-object

A static meta-object contains application-specific information that you specify
about business objects and how the connector processes them. A static meta-object
provides the connector with all the information it needs to process a business
object when the connector is started.

If you know at implementation time which queues that different business objects
must be sent to, use a static meta-object. To create and configure this object:

* Follow the steps in|’Static meta-objects” on page 25

* Make sure the connector subscribes to the static meta-object by specifying the
name of the static meta-object in the connector-specific property
ConfigurationMetaObject. For more information, see [“Connector-specifid
[properties” on page 19].

Configuring a dynamic meta-object

If the connector is required to process a business object differently depending on
the scenario, use a dynamic meta-object. This is a child object that you add to the
business object. The dynamic meta-object tells the connector (at run-time) how to
process a request. Unlike the static meta-object, which provides the connector with
all of the information it needs to process a business object, a dynamic meta-object
provides only those additional pieces of logic required to handle the processing for
a specific scenario. To create and configure a dynamic meta-object:

Chapter 1. Overview 15

* Create the dynamic meta-object and add it as a child to the request business
object

* Program your collaboration with additional logic that populates the dynamic
meta-object with information such as the target queue, message format, etc.,
before issuing it to the connector.

The connector will check for the dynamic meta-object and use its information to
determine how to process the business object. For more information, see
lchild metaobject” on page 31}

Configuring MQMD formats

MQMDs are message descriptors. MQMDs contain the control information
accompanying application data when a message travels from one application to
another. You must specify a value for the MQMD attribute OutputFormat in either
your static or dynamic meta-object. For more information, see |”Create, update, andl
[delete” on page 10}

Configuring queue URIs
To configure queues for use with the adapter for ACORD XML:
* Specify all queues as Uniform Resource Identifiers (URIs). The syntax is:
queue://<queue manager name>/<actual queue>

* Specify the host for the queue manager in connector-specific configuration
properties.

* If your target application expects an MQMD header only and cannot process the
extended MQRFH?2 headers used by JMS clients, append ?targetClient=1 to the
queue URI. For more information, see|“Queue Uniform Resource Identifiers
[(URD)” on page 24 and the WebSphere MQ programming guide.

Configuring data handlers
There are two ways to configure a data handler:

* Specify the data handler class name in the connector-specific property
DataHandlerClassName. For more information, see [“Connector-specifid
[properties” on page 19}

* Or specify both a mime type and the data handler meta-object that defines the
configuration for that mime type in the connector-specific properties
DataHandlerMimeType and DataHandlerConfigMO, respectively. For more
information, see the Data Handler Guide.

Modifying the startup script

See |Chapter 2, “Installing and configuring the adapter,” on page 17] for a
description of how to start the connectors. You must configure connector properties
before startup. You must also modify the startup file:

* Make sure you modify the start_connector script to point to the location of the
client libraries. Do not install multiple versions of the client libraries or versions
that are not up-to-date with your WebSphere MQ server. For more information,
see [“Startup file configuration” on page 40

16 Adapter for ACORD XML User Guide

Chapter 2. Installlng and configuring the adapter

“Overview of installation tasks”|

“Installing the adapter and related files”|

“Installed file structure”|

“Connector configuration” on page 18|

“Queue Uniform Resource Identifiers (URI)” on page 24

“Meta-object attributes configuration” on page 25|

“Startup file configuration” on page 40|
“Startup” on pageTOl

This chapter describes how to install and configure the connector and how to
configure the message flows to work with the connector.

Overview of installation tasks

To install the connector for ACORD XML, you must perform the following tasks:

Install the integration broker This task, which includes installing the
WebSphere business integration system and starting the integration broker, is
described in the installation documentation for your broker and operating
system.

Install the adapter and related files This task includes installing the files for the
adapter from the software package onto your system. See [‘Installing the adapter|
[and related files.”]

Installing the adapter and related files

For information on installing WebSphere Business Integration adapter products,
refer to the Installation Guide for WebSphere Business Integration Adapters, located in
the WebSphere Business Integration Adapters Infocenter at the following site:

http:/ /www.ibm.com /websphere/integration/wbiadapters/infocenter

Installed file structure

The sections below describe the paths and filenames of the product after
installation.

Note: WebSphere MQ and JMS typically are installed in separate directories in

both Windows and UNIX environments. On an AIX system for example,
WebSphere MQ is installed by default in /var/mgm/ while JMS is installed in
/usr/mgm/java/1ib. You may want to redirect the JMS install to
/var/mgm/java/1ib to avoid deletion by routine /usr-related system
administration tasks. Likewise on Windows, WebSphere MQ is generally
installed under \Program Files\WebSphere MQ and JMS under \Program
Files\IBM\MQSerires\Java. Update your classpath accordingly in the
WebSphere MQ connector startup script.

Windows file structure

The Installer copies the standard files associated with the connector into your
system.

© Copyright IBM Corp. 2003

17

The utility installs the connector into the ProductDir\connectors\ACORD directory,
and adds a shortcut for the connector to the Start menu.

The table below describes the Windows file structure used by the connector, and
shows the files that are automatically installed when you choose to install the
connector through Installer.

Subdirectory of ProductDir

Description

connectors\ACORD\BIA_ACORD. jar Contains classes used by the WebSphere MQ

connectors\ACORD\start_ACORD.

connectors\messages\BIA_ACORD
repository\ACORD\BIA_CN_ACORD

connector only

bat System startup script for the connector. This

script is called from the generic connector
manager script. When you click the
Connector Configuration screen of System
Manager, the installer creates a customized
wrapper for this connector manager script.
Use this customized wrapper to start and
stop the connector (Windows 2000).

Connector.txt Message file for the connector

.txt Connector configuration file

Note: All product pathnames are relative to the directory where the product is
installed on your system.

UNIX file structure

The Installer copies the standard files associated with the connector into your
system.

The utility installs the connector into the ProductDir/connectors/ACORD directory.
The table below describes the UNIX file structure used by the connector, and

shows the files that are automatically installed when you choose to install the
connector through Installer.

Subdirectory of ProductDir
connectors/ACORD/BIA_ACORD. ja

connectors/ACORD/BIA_ACORD.sh

Description

r Contains classes used by the ACORD XML
connector only

System startup script for the connector. This
script is called from the generic connector
manager script. When you click the
Connector Configuration screen of System
Manager, the installer creates a customized
wrapper for this connector manager script.
Use this customized wrapper to start and
stop the connector.

connectors/messages/ACORD/BIA_ACORDConnector.txt Message file for the connector

repository/ACORD/BIA_CN_ACORD

Ltxt Connector configuration file

Note: All product pathnames are relative to the directory where the product is
installed on your system.

Connector configuration

Connectors have two types of configuration properties: standard configuration
properties and adapter-specific configuration properties. You must set the values of
these properties before running the adapter.

You use Connector Configurator to configure connector properties:

18 Adapter for ACORD XML User Guide

* For a description of Connector Configurator and step-by-step procedures, see
[Appendix B, “Connector Configurator,” on page 63

* For a description of standard connector properties, see [“Standard connector]
broperties”] and then [Appendix A, “Standard configuration properties for|
connectors,” on page 47

e For a descrir tion of connector-specific properties, see [“Connector-specifid

properties.”

A connector obtains its configuration values at startup. During a runtime session,
you may want to change the values of one or more connector properties. Changes
to some connector configuration properties, such as AgentTraceLevel, take effect
immediately. Changes to other connector properties require component restart or
system restart after a change. To determine whether a property is dynamic (taking
effect immediately) or static (requiring either connector component restart or
system restart), refer to the Update Method column in the Connector Properties
window of Connector Configurator.

Standard connector properties

Standard configuration properties provide information that all connectors use. See
[Appendix A, “Standard configuration properties for connectors,” on page 47| for
documentation of these properties.

Note: When you set configuration properties in Connector Configurator, you
specify your broker using the BrokerType property. Once this is set, the
properties relevant to your broker will appear in the Connector Configurator
window.

Connector-specific properties

Connector-specific configuration properties provide information needed by the
connector at runtime. Connector-specific properties also provide a way of changing
static information or logic within the connector without having to recode and
rebuild the agent.

The table below lists the connector-specific configuration properties for the adapter.
See the sections that follow for explanations of the properties.

Name Possible values Default value Required
ApplicationPassword| Login password No
ApplicationUserName| Login user ID No
ArchiveQueue| Queue to which copies of queue://crossworlds. No
successfully processed messages are queuemanager /MQCONN.ARCHIVE
sent
Character set for queue manager null No
connection
Channe MQ server connector channel Yes
(ConfigurationMetaObject] Name of configuration meta-object Yes
DataHandlerClassName] Data handler class name com.crossworlds.DataHandlers. No
text.xml
[DataHandlerConfigM Data handler meta-object MO_DataHandler_ Default Yes
[DataHandlerMimeType MIME type of file text/xml No
DefaultVerb Any verb supported by the Create
connector.
Queue for unprocessed messages queue://crossworlds. No

queuemanager/MQCONN. ERROR

Chapter 2. Installing and configuring the adapter 19

Possible values Default value Required

Feedback code meta-object No
WebSphere MQ server Yes
FailOnStartup Reprocess Reprocess No
IgnoreLogError
Poll queues queue://crossworlds. No
queuemanager/MQCONN. IN
In-progress event quetie queue://crossworlds. No
queuemanager/MQCONN. IN_PROGRESS
Number of messages to retrieve from 1 No

each queue specified in the
InputQueue property

ort] Port established for the WebSphere Yes

MQ listener

Queue to which response messages queue://crossworlds. No
are delivered when the connector queuemanager/MQCONN.REPLYTO
issues requests

[UnsubscribedQueud| Queue to which unsubscribed queue://crossworlds. No
messages are sent queuemanager/MQCONN.UNSUBSCRIBE

true or false false

ApplicationPassword
Password used with UserID to log in to WebSphere MQ.

Default = None.

If the ApplicationPassword is left blank or removed, the connector uses the default
password provided by WebSphere MQ.*

ApplicationUserName
User ID used with Password to log in to WebSphere MQ.

Default = None.

If the ApplicationUserName is left blank or removed, the connector uses the default
user ID provided by WebSphere MQ.*

ArchiveQueue
Queue to which copies of successfully processed messages are sent.

Default = queue://crossworlds.queue.manager/MQCONN.ARCHIVE
CCSID

The character set for the queue manager connection. The value of this property
should match that of the CCSID property in the queue URI; see [‘Queue Uniform|
[Resource Identifiers (URI)” on page 24|

Default = null.

Channel
MQ server connector channel through which the connector communicates with
WebSphere MQ.

Default = none.

20 Adapter for ACORD XML User Guide

If the Channel is left blank or removed, the connector uses the default server
channel provided by WebSphere MQ.*

ConfigurationMetaObject

Name of static meta-object containing configuration information for the connector.

Default = none.

DataHandlerClassName
Data handler class to use when converting messages to and from business objects.

Default = com.crossworlds.DataHandlers.text.xml

DataHandlerConfigMO

Meta-object passed to data handler to provide configuration information.
Default = MO_DataHandler_Default

DataHandlerMimeType
Allows you to request a data handler based on a particular MIME type.

Default = text/xm]

DefaultVerb

Specifies the verb to be set within an incoming business object, if it has not been
set by the data handler during polling.

Default= Create

ErrorQueue
Queue to which messages that could not be processed are sent.

Default = queue://crossworlds.queue.manager/MQCONN.ERROR
FeedbackCodeMappingMO

Allows you to override and reassign the default feedback codes used to
synchronously acknowledge receipt of messages to InterChange Server. This
property enables you to specify a meta-object in which each attribute name is
understood to represent a feedback code. The corresponding value of the feedback
code is the return status that is passed to InterChange Server. For a listing of the
default feedback codes, see [’Synchronous delivery” on page 10}. The connector
accepts the following attribute values representing WebSphere MQ-specific
feedback codes:

* MQFB_APPL_FIRST

¢ MQFB_APPL_FIRST_OFFSET_N where N is an integer (interpreted as the value of
MQFB_APPL_FIRST + N)

« MQFB_NONE
- MQFB_PAN
« MQFB_NAN

The connector accepts the following WebSphere business integration
system-specific status codes as attribute values in the meta-object:

* SUCCESS
* FAIL
e APP_RESPONSE_TIMEOUT

Chapter 2. Installing and configuring the adapter 21

MULTIPLE_HITS

* UNABLE_TO_LOGIN
* VALCHANGE
VALDUPES

The table below shows a sample meta-object.

Attribute name Default value
MQFB_APPL_FIRST SUCCESS
MQFB_APPL_FIRST + 1 FAIL
MQFB_APPL_FIRST + 2 UNABLE_TO_LOGIN

Default = none.

HostName
The name of the server hosting WebSphere MQ.

Default = none.

InDoubtEvents

Specifies how to handle in-progress events that are not fully processed due to
unexpected connector shutdown. Choose one of four actions to take if events are
found in the in-progress queue during initialization:

e FailOnStartup. Log an error and immediately shut down.

* Reprocess. Process the remaining events first, then process messages in the
input queue.
e Ignore. Disregard any messages in the in-progress queue.

* LogError. Log an error but do not shut down
Default = Reprocess.

InputQueue

Message queues that will be polled by the connector for new messages. The
connector accepts multiple semi-colon delimited queue names. For example, to poll
the following three queues: MyQueueA, MyQueueB, and MyQueueC, the value for
connector configuration property InputQueue would equal:
MyQueueA;MyQueueB;MyQueueC.

If the InputQueue property is not supplied, the connector will start up properly,
print a warning message, and perform request processing only. It will perform no
event processing.

The connector polls the queues in a round-robin manner and retrieves up to
pollQuantity number of messages from each queue. For example, if pollQuantity
equals 2, and MyQueueA contains 2 messages, MyQueueB contains 1 message and
MyQueueC contains 5 messages, the connector retrieves messages in the following
manner:

Since we have a PollQuantity of 2, the connector will retrieve at most 2 messages
from each queue per call to pollForEvents. For the first cycle (1 of 2), the connector
retrieves the first message from each of MyQueueA, MyQueueB, and MyQueueC.
That completes the first round of polling and if we had a PollQuantity of 1, the
connector would stop. Since we have a PollQuantity of 2, the connector starts a

22 Adapter for ACORD XML User Guide

second round of polling (2 of 2) and retrieves one message each from MyQueueA
and MyQueueC--it skips MqQueueB since it is now empty. After polling all queues
2x each, the call to the method pollForEvents is complete. Here’s the sequence of
message retrieval:

1 message from MyQueueA
1 message from MyQueueB
1 message from MyQueueC
1 message from MyQueueA
Skip MyQueueB since it’s now empty

ook wn =

1 message from MyQueueC

Default = queue://crossworlds.queue.manager/MQCONN. IN

InProgressQueue

Message queue where messages are held during processing. You can configure the
connector to operate without this queue by using System Manager to remove the
default InProgressQueue name from the connector-specific properties. Doing so
prompts a warning at startup that event delivery may be compromised if the
connector is shut down while are events pending.

Default= queue://crossworlds.queue.manager/MQCONN.IN_PROGRESS

PollQuantity

Number of messages to retrieve from each queue specified in the InputQueue
property during a pol1ForEvents scan.

Default =1

Port
Port established for the WebSphere MQ listener.

Default = None.

ReplyToQueue

Queue to which response messages are delivered when the connector issues
requests. You can also use attributes in the child dynamic meta-object to ignore a
response. For more information on the these attributes, see |“]MS headers]
WebSphere MQ message properties, and dynamic child meta-object attributes” on|

page 34.|

Default = queue://crossworlds.queue.manager/MQCONN.REPLYTO

UnsubscribedQueue
Queue to which messages that are not subscribed are sent.

Default = queue://crossworlds.queue.manager/MQCONN.UNSUBSCRIBED

Note: *Always check the values WebSphere MQ provides since they may be
incorrect or unknown. If so, please implicitly specify values.

UseDefaults

On a Create operation, if UseDefaults is set to true, the connector checks whether
a valid value or a default value is provided for each isRequired business object
attribute. If a value is provided, the Create operation succeeds. If the parameter is

Chapter 2. Installing and configuring the adapter 23

set to false, the connector checks only for a valid value and causes the Create
operation to fail if it is not provided. The default is false.

Queue Uniform Resource Identifiers (URI)

The URI for a queue begins with the sequence queue:// followed by:
e The name of the queue manager on which the queue resides

* Another /

e The name of the queue

* Optionally, a list of name-value pairs to set the remaining queue properties.

For example, the following URI connects to queue IN on queue manager
crossworlds.queue.manager and causes all messages to be sent as WebSphere MQ
messages with priority 5.
queue://crossworlds.queue.manager/MQCONN.IN?targetClient=1&priority=5

The table below shows property names for queue URIs.

Property name Description Values

expiry Lifetime of the message in 0 = unlimited. positive
milliseconds. integers = timeout (in ms).

priority Priority of the message. 0-9, where 1 is the highest

priority. A value of -1 means
that the property should be
determined by the
configuration of the queue. A
value of -2 specifies that the
connector can use its own
default value.

persistence Whether the message should 1 = non-persistent 2 =

be ‘hardened’ to disk. persistent A value of -1

means that the property
should be determined by the
configuration of the queue. A
value of -2 specifies that the
connector can use its own
default value.

CCSID Character set encoding of the Integers - valid values listed

outbound message. in base WebSphere MQ

documentation. This value
should match that of the
CCSID connector-specific
configuration property; see
[“CCSID” on page 20|

targetClient Whether the receiving 0 = JMS (MQRFH2 header) 1
application is JMS compliant = MQ (MQMD header only)
or not.

encoding How to represent numeric An integer value as described
fields. in the base WebSphere MQ

documentation.

Note: The adapter has no control of the character set (CCSID) or encoding
attributes of data in MQMessages. Because data conversion is applied as the
data is retrieved from or delivered to the message buffer, the connector
relies upon the IBM WebSphere MQ implementation of JMS to convert data
(see the IBM WebSphere MQ Java client library documentation).

24 Adapter for ACORD XML User Guide

Accordingly, these conversions should be bi-directionally equivalent to those
performed by the native WebSphere MQ API using option MQGMO_CONVERT.
The connector has no control over differences or failures in the conversion
process. The connector can retrieve message data of any CCSID or encoding
supported by WebSphere MQ without additional modifications. To deliver a
message of a specific CCSID or encoding, the output queue must be a
fully-qualified URI and specify values for CCSID and encoding. The
connector passes this information to WebSphere MQ, which (via the JMS
API) uses the information when encoding data for MQMessage delivery.
Often, lack of support for CCSID and encoding can be resolved by
downloading the most recent version of the IBM WebSphere MQ Java client
library from IBM’s web site. If problems specific to CCSID and encoding
persist, contact WebSphere business integration system Technical Support to
discuss the possibility of using an alternate Java Virtual Machine to run the
connector.

Meta-object attributes configuration

The connector for ACORD XML can recognize and read two kinds of meta-objects:
* a static connector meta-object
* a dynamic child meta-object

The attribute values of the dynamic child meta-object duplicate and override those
of the static meta-object.

Static meta-objects

The ACORD XML static meta-object consists of a list of conversion properties
defined for different business objects. To define the conversion properties for a
business object, first create a string attribute and name it using the syntax
busObj_verb. For example, to define the conversion properties for a Customer
object with the verb Create, create an attribute named Customer_Create. In the
application-specific text of the attribute, you specify the actual conversion
properties.

Note: If a static meta object is not specified, the connector is unable to map a
given message format to a specific business object type during polling.
When this is the case, the connector passes the message text to the
configured data handler without specifying a business object. If the data
handler cannot create a business object based on the text alone, the
connector reports an error indicating that this message format is
unrecognized.

The table below describes the meta-object properties.

Property name Description

CorrelationID This property affects adapter behavior during request
processing only and is handled the same as the
CorrelationlID property in the dynamic meta-object. For
more information, see [‘Asynchronous request processing”]

Chapter 2. Installing and configuring the adapter 25

Property name

CollaborationName

DataEncoding

DataHandlerConfigMO

DataHandlerMimeType

Description

The CollaborationName must be specified in the application
specific text of the attribute for the business object/verb
combination. For example, if a user expects to handle
synchronous requests for the business object Customer with
the Create verb, the static metadata object must contain an
attribute named Customer_Create.

The Customer_Create attribute must contain application
specific text that includes a name-value pair. For example,
CollaborationName=MyCustomerProcessingCollab. See the
| Application-specific information” on page 2§ section for
syntax details.

Failure to do this will result in run-time errors when the
connector attempts to synchronously process a request
involving the Customer business object.

Note: This property is only available for synchronous
requests.

DataEncoding is the encoding to be used to read and write
messages. If this property is not specified in the static
meta-object, the connector tries to read the messages without
using any specific encoding. DataEncoding defined in a
dynamic child meta-object overrides the value defined in the
static meta-object. The default value is Text. The format for
the value of this attribute is messageType[:enc]. Le.,
Text:1S08859 1, Text:UnicodelLittle, Text, or Binary.This
property is related internally to the InputFormat property:
specify one and only one DataEncoding per InputFormat.
Meta-object passed to data handler to provide configuration
information. If specified in the static meta-object, this will
override the value specified in the DataHandlerConfigMO
connector property. Use this static meta-object property
when different data handlers are required for processing
different business object types. If defined in a dynamic child
meta-object, this property will override the connector
property and the static meta-object property. Use the
dynamic child meta-object for request processing when the
data format may be dependent on the actual business data.
The specified business object must be supported by the
connector.

Allows you to request a data handler based on a particular
MIME type. If specified in the static meta-object, this will
override the value specified in the DataHandlerMimeType
connector property. Use this static meta-object property
when different data handlers are required for processing
different business object types. If defined in a dynamic child
meta-object, this property will override the connector
property and the static meta-object property. Use the
dynamic child meta-object for request processing when the
data format might be dependent on the actual business data.
The business object specified in DataHandlerConfigM0 should
have an attribute that corresponds to the value of this

property.

26 Adapter for ACORD XML User Guide

Property name

DoNotReportBusObj

InputFormat

QutputFormat

InputQueue

QutputQueue

ResponseTimeout

TimeoutFatal

Description

Optionally, the user can include the DoNotReportBusObj
property. By setting this property to true, all PAN report
messages issued will have a blank message body. This is
recommended when a requestor wants to confirm that a
request has been successfully processed and does not need
notification of changes to the business object. This does not
effect NAN reports.

If this property is not found in the static meta-object, the
connector will default it to false and populate the message
report with the business object.

Note: This property is only available for synchronous
requests.

The InputFormat is the message format to associate with the
given business object. When a message is retrieved and is in
this format, it is converted to the given business object if
possible. This property is related internally to the
DataEncoding property: Specify one and only
oneDataEncoding per InputFormat. Do not set this property
using default conversion properties; its value is used to
match incoming messages to business objects.

The OutputFormat is set on messages created from the given
business object. If the OutputFormat is not specified, the
input format is used, if available. An OutputFormat defined
in a dynamic child meta-object overrides the value defined
in the static meta-object.

The InputQueue property in the connector-specific
properties defines which queues the adapter polls. This is
the only property that the adapter uses to determine which
queues to poll. In the static MO, the InputQueue property
and the InputFormat property can serve as criteria for the
adapter to map a given message to a specific business object.
For the ACORD XML adapter, you may not need this
feature.

The OutputQueue is the output queue to which messages
derived from the given business object are delivered. An
OutputQueue defined in a dynamic child meta-object
overrides the value defined in the static meta-object.
Indicates the length of time in milliseconds to wait before
timing out when waiting for a response. The connector
returns SUCCESS immediately without waiting for a response
if this is left undefined or with a value less than zero. A
ResponseTimeout defined in a dynamic child meta-object
overrides the value defined in the static meta-object.

If this property is defined and has a value of True, the
connector returns APP_RESPONSE_TIMEOUT when a response is
not received within the time specified by ResponseTimeout.
All other threads waiting for response messages immediately
return APP_RESPONSE_TIMEOUT to InterChange Server. This
causes InterChange Server to terminate the connector. A
TimeoutFatal defined in a dynamic child meta-object
overrides the value defined in the static meta-object.

Additionally, a reserved property named Default can be defined in the meta-object.
When this property is present, its application-specific information specifies default
values for all business object conversion properties.

Chapter 2. Installing and configuring the adapter 27

Consider the following sample meta-object.

Property name Application-specific text

Default DataEncoding=Text:UnicodelLittle;
OutputFormat=CUST_OUT;
OutputQueue=QueueA;ResponseTimeout=10000;
TimeoutFatal=False

Application-specific information
The application-specific information is structured in name-value pair format,
separated by semicolons. For example:

InputFormat=CUST_IN;OutputFormat=CUST_OUT

Mapping data handlers to InputQueues

You can use the InputQueue property in the application-specific information of the
static meta-object to associate a data handler with an input queue. This feature is
useful when dealing with multiple trading partners who have different formats
and conversion requirements. To do so you must:

1. Use connector-specific properties (see |[“InputQueue” on page 22)) to configure
one or more input queues.

2. For each input queue, specify the queue manager and input queue name as
well as data handler class name and mime type in the application-specific
information.

For example, the following attribute in a static meta-object associates a data
handler with an InputQueue named CompReceipts:

[Attribute]

Name = Cust_Create

Type = String

Cardinality = 1

MaxLength =1

IsKey = false

IsForeignKey = false

IsRequired = false

AppSpecificInfo = InputQueue=//queue.manager/CompReceipts;DataHandlerClassName=
com.crossworlds.DataHandlers.MQ.disposition_notification;DataHandTerMimeType=
message/

disposition_notification

IsRequiredServerBound = false

[End]

Overloading input formats

When retrieving a message, the connector normally matches the input format to
one specific business object and verb combination. The connector then passes the
business object name and the contents of the message to the data handler. This
allows the data handler to verify that the message contents correspond to the
business object that the user expects.

If, however, the same input format is defined for more than one business object,
the connector will be unable to determine which business object the data
represents before passing it to the data handler. In such cases, the connector passes
the message contents only to the data handler and then looks up conversion
properties based on the business object that is generated. Accordingly, the data
handler must determine the business object based on the message content alone.

28 Adapter for ACORD XML User Guide

If the verb on the generated business object is not set, the connector searches for
conversion properties defined for this business object with any verb. If only one set
of conversion properties is found, the connector assigns the specified verb. If more
properties are found, the connector fails the message because it is unable to
distinguish among the verbs.

Sample meta-object

The static meta-object shown below configures the connector to convert Customer
business objects using verbs Create, Update, Delete, and Retrieve. Note that
attribute Default is defined in the meta-object. The connector uses the conversion
properties of this attribute:

OutputQueue=CustomerQueuel;ResponseTimeout=5000;TimeoutFatal=true

as default values for all other conversion properties. Thus, unless specified
otherwise by an attribute or overridden by a dynamic child meta-object value, the
connector will issue all business objects to queue CustomerQueuel and then wait for
a response message. If a response does not arrive within 5000 milliseconds, the
connector terminates immediately.

Customer object with verb create: Attribute Customer_Create indicates to the
connector that any messages of format NEW should be converted to a Customer
business object with the verb Create. Since an output format is not defined, the
connector will send messages representing this object-verb combination using the
format defined for input (in this case NEW).

Customer object with verbs update and delete: Input format MODIFY is
overloaded—defined for both business object Customer with verb Update and
business object Customer with verb Delete. In order to successfully process
retrieved messages of this format, the business object name and possibly the verb
should be contained in the message content for the data handler to identify (see
[“Overloading input formats” on page 28). For Request processing operations, the
connector will send messages for either verb using the input format MODIFY since
an output format is not defined.

Customer object with verb retrieve: Attribute Customer_Retrieve specifies that
business objects of type Customer with verb Retrieve should be sent as messages
with format Retrieve. Note that the default response time has been overridden so
that the connector will wait up 10000 milliseconds before timing out (it will still
terminate if a response is not received).

[ReposCopy]

Version = 3.1.0
Repositories = 1cHyILNuPTc=
[End]
[BusinessObjectDefinition]
Name = Sample_MO

Version = 1.0.0

[Attribute]

Name = Default

Type = String

Cardinality = 1

MaxLength =1

IsKey = true

IsForeignKey = false
IsRequired = false
AppSpecificInfo = OutputQueue=CustomerQueuel;ResponseTimeout=5000;TimeoutFatal=true
IsRequiredServerBound = false
[End]

[Attribute]

Chapter 2. Installing and configuring the adapter 29

Name = Customer_Create

Type = String

Cardinality = 1

MaxLength =1

IsKey = false

IsForeignkKey = false
IsRequired = false
AppSpecificInfo = InputFormat=NEW
IsRequiredServerBound = false
[End]

[Attribute]

Name = Customer_Update

Type = String

Cardinality =1

MaxLength =1

IsKey = false

IsForeignKey = false
IsRequired = false
AppSpecificInfo = InputFormat=MODIFY
IsRequiredServerBound = false
[End]

[Attribute]

Name = Customer_Delete

Type = String

Cardinality =1

MaxLength = 1

IsKey = false

IsForeignKey = false
IsRequired = false
AppSpecificInfo = InputFormat=MODIFY
IsRequiredServerBound = false
[End]

[Attribute]

Name = Customer_Retrieve

Type = String

Cardinality = 1

MaxLength =1

IsKey = false

IsForeignkKey = false
IsRequired = false
AppSpecificInfo = QutputFormat=RETRIEVE;ResponseTimeout=10000
IsRequiredServerBound = false
[End]

[Attribute]

Name = ObjectEventId

Type = String

MaxLength = 255

IsKey = false

IsForeignkKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Verb]
Name = Create
[End]

[Verb]
Name = Delete
[End]

[Verb]

Name = Retrieve
[End]

30 Adapter for ACORD XML User Guide

[Verb]
Name = Update
[End]
[End]

Dynamic child metaobject

If it is difficult or unfeasible to specify the necessary metadata through a static
meta-object, the connector can optionally accept metadata specified at run-time for
each business object instance.

The connector recognizes and reads conversion properties from a dynamic
meta-object added as a child to the top-level business object passed to the
connector. The attribute values of the dynamic child meta-object duplicate the
conversion properties that you can specify via the static meta-object that is used to
configure the connector.

Since dynamic child meta object properties override those found in static
meta-objects, if you specify a dynamic child meta-object, you need not include a
connector property that specifies the static meta-object. Accordingly, you can use a
dynamic child meta-object independently of the static meta-object and vice-versa.

Note: The connector does not support use of a dynamic child meta-object to
supply a collaboration name during synchronous event delivery.

The table in the previous section and the table below show sample static and
dynamic child meta-objects, respectively, for business object Customer_Create. Note
that the application-specific information consists of semi-colon delimited
name-value pairs.

Property name Value

DataEncoding Text:UnicodeLittle
DataHandlerMimeType=* text/delimited
OutputFormat CUST_OuT
QutputQueue QueueA
ResponseTimeout 10000

TimeoutFatal False

*Assumes that DataHandlerConfigMO has been specified in either the connector
configuration properties or the static meta-object.

The connector checks the application-specific information of top-level business
object received to determine whether tag cw_mo_conn specifies a child meta-object.
If so, the dynamic child meta-object values override those specified in the static
meta-object.

Population of the dynamic child meta-object during polling

In order to provide collaborations with more information regarding messages
retrieved during polling, the connector populates specific attributes of the dynamic
meta-object, if already defined for the business object created.

The table below shows how a dynamic child meta-object might be structured for

polling.

Property name Sample Value
InputFormat CUST_IN
InputQueue MYInputQueue

Chapter 2. Installing and configuring the adapter 31

Property name Sample Value

OutputFormat CxIgnore
OutputQueue CxIgnore
ResponseTimeout CxIgnore
TimeoutFatal CxIgnore

As shown in the table above, you can define an additional attribute, InputQueue, in
a dynamic child meta-object. This attribute contains the name of the queue from
which a given message has been retrieved. If this property is not defined in the
child meta-object, it will not be populated.

Example scenario:

* The connector retrieves a message with the format CUST_IN from the queue
MyInputQueue.

¢ The connector converts this message to a Customer business object and checks
the application-specific text to determine if a meta-object is defined.

* If so, the connector creates an instance of this meta-object and populates the
InputQueue and InputFormat attributes accordingly, then publishes the business
object to available collaborations.

Sample dynamic child meta-object

[BusinessObjectDefinition]
Name = MO_Sample_Config
Version = 1.0.0

[Attribute]

Name = QutputFormat
Type = String
MaxLength =1

IsKey = true
IsForeignKey = false
IsRequired = false
DefaultValue = CUST
IsRequiredServerBound = false
[End]

[Attribute]

Name = QutputQueue
Type = String
MaxLength =1

IsKey = false
IsForeignKey = false
IsRequired = false
DefaultValue = OUT
IsRequiredServerBound = false
[End]

[Attribute]

Name = ResponseTimeout
Type = String
MaxLength = 1

IsKey = false
IsForeignKey = false
IsRequired = false
DefaultValue = -1
IsRequiredServerBound = false
[End]

[Attribute]

Name = TimeoutFatal
Type = String
MaxLength = 1

IsKey = false

32 Adapter for ACORD XML User Guide

IsForeignKey = false
IsRequired = false
DefaultValue = false
IsRequiredServerBound = false
[End]

[Attribute]

Name = InputFormat

Type = String

MaxLength = 1

IsKey = true

IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]

Name = InputQueue
Type = String
MaxLength =1

IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound
[End]

[Attribute]

Name = ObjectEventId
Type = String
MaxLength = 255

IsKey = false
IsForeignkKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

false

[Verb]
Name = Create
[End]

[Verb]
Name = Delete
[End]

[Verb]
Name = Retrieve
[End]

[Verb]

Name = Update

[End]

[End]

[BusinessObjectDefinition]

Name = Customer

Version = 1.0.0

AppSpecificInfo = cw_mo_conn=MyConfig

[Attribute]

Name = FirstName
Type = String
MaxLength =1

IsKey = true
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]

Name = LastName

Type = String
MaxLength =1

Chapter 2. Installing and configuring the adapter

33

IsKey = true

IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]

Name = Telephone

Type = String
MaxLength = 1

IsKey = false
IsForeignkKey = false
IsRequired = false
IsRequiredServerBound
[End]

[Attribute]

Name = MyConfig

Type = MO_Sample_Config
ContainedObjectVersion = 1.0.0
Relationship = Containment
Cardinality = 1

MaxLength = 1

IsKey = false

IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]

[Attribute]

Name = ObjectEventId
Type = String
MaxLength = 255

IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound
[End]

false

false

[Verb]
Name = Create
[End]

[Verb]
Name = Delete
[End]

[Verb]
Name = Retrieve
[End]

[verb]
Name = Update
[End]
[End]

JMS headers, WebSphere MQ message properties, and dynamic
child meta-object attributes

You can add attributes to a dynamic meta-object to gain more information about,
and more control over, the message transport. Adding such attributes allows you
to modify JMS properties, to control the ReplyToQueue on a per-request basis
(rather than using the default ReplyToQueue specified in the adapter properties),
and to re-target a message CorrelationID. This section describes these attributes
and how they affect event notification and request processing in both synchronous
and asynchronous modes.

The following attributes, which reflect J]MS and WebSphere MQ header properties,
are recognized in the dynamic meta-object.

34 Adapter for ACORD XML User Guide

Table 1. Dynamic meta-object header attributes

Header attribute name Mode Corresponding JMS header
CorrelationID Read /Write JMSCorrelationID
ReplyToQueue Read/Write JMSReplyTo
DeliveryMode Read/Write JMSDeliveryMode
Priority Read /Write JMSPriority
Destination Read JMSDestination
Expiration Read JMSExpiration
MessagelD Read JMSMessagelD
Redelivered Read JMSRedelivered
TimeStamp Read JMSTimeStamp

Type Read JMSType

UserID Read JMSXUserID

AppID Read JMSXAppID
DeliveryCount Read JMSXDeliveryCount
GroupID Read JMSXGroupID
GroupSeq Read JMSXGroupSeq
JMSProperties Read /Write

Read-only attributes are read from a message header during event notification and
written to the dynamic meta-object. These properties also populate the dynamic
MO when a response message is issued during request processing. Read /write
attributes are set on message headers created during request processing. During
event notification, read/write attributes are read from message headers to populate
the dynamic meta-object.

The interpretation and use of these attributes are described in the sections below.

Note: None of the above attributes are required. You may add any attributes to the
dynamic meta-object that relate to your business process.

JMS Properties: Unlike other attributes in the dynamic meta-object,

JMSProperties must define a single-cardinality child object. Every attribute in this

child object must define a single property to be read/written in the variable

portion of the J]MS message header as follows:

1. The name of the attribute has no semantic value.

2. The type of the attribute should always be String regardless of the J]MS
property type.

3. The application-specific information of the attribute must contain two
name-value pairs defining the name and format of the JMS message property to
which the attribute maps.

The table below shows application-specific information properties that you must
define for attributes in the JMSProperties object.

Chapter 2. Installing and configuring the adapter 35

Table 2. Application-specific information for JMS property attributes

Name

Possible values

Comments

Name

Any valid JMS property

name

This is the name of the JMS
property. Some vendors

reserve certain properties to
provide extended
functionality. In general,
users should not define
custom properties that begin
with JMS unless they are
seeking access to these
vendor-specific features.

This is the type of the J]MS
property. The JMS API
provides a number of
methods for setting values in
the JMS Message:
setIntProperty,
setLongProperty,
setStringProperty, etc. The
type of the JMS property
specified here dictates which
of these methods is used for
setting the property value in
the message.

String, Int, Boolean, Float,
Double, Long, Short

Type

The figure below shows attribute JYSProperties in the dynamic meta-object and
definitions for four properties in the J]MS message header: ID, GID, RESPONSE
and RESPONSE_PERSIST. The application-specific information of the attributes
defines the name and type of each. For example, attribute ID maps to J]MS
property 1D of type String).

@ ~0_MOSeries_DynConfig =18 x|
Geneal | Attibutes |
Purai Hame I Type Kep [Fie:r.i |Cad l #ypp Spec Info] =
1 |1 ©vsProperies] TeamCenter S Properies | T | T [1 |
11 la o String F | rame=IDtype=String
12 2 o String | nameo=Gtype=Strirg
315 reseonse String C | reme-RESEONSE type-Booisan
:ij_i_ sl = mié&ﬁ@ﬁéﬁsz}E"ﬁsyﬁf’;‘:‘s-ﬁﬁy-yéééb’h'W
15 |15]
2 Chitea #F ot Strina

Figure 3. JMS properties attribute in a dynamic meta-object

Asynchronous event notification: If a dynamic meta-object with header attributes
is present in the event business object, the connector performs the following steps
(in addition to populating the meta-object with transport-related data):

1. Populates the CorrelationId attribute of the meta-object with the value
specified in the JMSCorrelationID header field of the message.

2. Populates the ReplyToQueue attribute of the meta-object with the queue
specified in the JMSReplyTo header field of the message. Since this header field
is represented by a Java object in the message, the attribute is populated with
the name of the queue (often a URI).

3. Populates the DeliveryMode attribute of the meta-object with the value
specified in the JMSDeliveryMode header field of the message.

36 Adapter for ACORD XML User Guide

10.

11.

12.

13.

14.

15.

16.

Populates the Priority attribute of the meta-object with the JMSPriority
header field of the message.

Populates the Destination attribute of the meta-object with the name of the
JMSDestination header field of the message. Since the Destination is
represented by an object, the attribute is populated with the name of the
Destination object.

Populates the Expiration attribute of the meta-object with the value of the
JMSExpiration header field of the message.

Populates the MessagelD attribute of the meta-object with the value of the
JMSMessagelD header field of the message.

Populates the Redelivered attribute of the meta-object with the value of the
JMSRedelivered header field of the message.

Populates the TimeStamp attribute of the meta-object with the value of the
JMSTimeStamp header field of the message.

Populates the Type attribute of the meta-object with the value of the JMSType
header field of the message.

Populates the UserID attribute of the meta-object with the value of the
JMSXUserID property field of the message.

Populates the AppID attribute of the meta-object with the value of the
JMSXAppID property field of the message.

Populates the DeliveryCount attribute of the meta-object with the value of the
JMSXDeliveryCount property field of the message.

Populates the GroupID attribute of the meta-object with the value of the
JMSXGroupID property field of the message.

Populates the GroupSeq attribute of the meta-object with the value of the
JMSXGroupSeq property field of the message.

Examines the object defined for the JMSProperties attribute of the meta-object.
The adapter populates each attribute of this object with the value of the
corresponding property in the message. If a specific property is undefined in
the message, the adapter sets the value of the attribute to CxBlank.

Synchronous event notification: For synchronous event processing, the adapter
posts an event and waits for a response from the integration broker before sending
a response message back to the application. Any changes to the business data are
reflected in the response message returned. Before posting the event, the adapter
populates the dynamic meta-object just as described for asynchronous event
notification. The values set in the dynamic meta-object are reflected in the
response-issued header as described below (all other read-only header attributes in
the dynamic meta-object are ignored.):

* CorrelationID If the dynamic meta-object includes the attribute Correlationld,
you must set it to the value expected by the originating application. The

application uses the CorrelationID to match a message returned from the

connector to the original request. Unexpected or invalid values for a

CorrelationID will cause problems. It is helpful to determine how the
application handles correlating request and response messages before using this
attribute. You have four options for populating the CorrelationID in a
synchronous request.

. Leave the value unchanged. The CorrelationID of the response message will

be the same as the CorrelationID of the request message. This is equivalent
to the WebSphere MQ option MQRO_PASS_CORREL_ID.

Chapter 2. Installing and configuring the adapter 37

2. Change the value to CxIgnore. The connector by default copies the message
ID of the request to the CorrelationID of the response. This is equivalent to
the WebSphere MQ option MQRO_COPY_MSG_ID_TO_CORREL_ID.

3. Change the value to CxBlank. The connector will not set the CorrelationID
on the response message.

4. Change the value to a custom value. This requires that the application
processing the response recognize the custom value.

If you do not define attribute CorrelationID in the meta-object, the connector
handles the CorrelationID automatically.

* ReplyToQueue If you update the dynamic meta-object by specifying a different
queue for attribute ReplyToQueue, the connector sends the response message to
the queue you specify. This is not recommended. Having the connector send
response messages to different queues may interfere with communication
because an application that sets a specific reply queue in a request message is
assumed to be waiting for a response on that queue.

e JMS properties The values set for the JMS Properties attribute in the dynamic
meta-object when the updated business object is returned to the connector are
set in the response message.

Asynchronous request processing: The connector uses the dynamic meta-object,
if present, to populate the request message prior to issuing it. The connector
performs the following steps before sending a request message:

1. If attribute CorrelationID is present in the dynamic meta-object, the connector
sets the CorrelationID of the outbound request message to this value.

2. If attribute ReplyToQueue is specified in the dynamic meta-object, the connector
passes this queue via the request message and waits on this queue for a
response. This allows you to override the ReplyToQueuevalue specified in the
connector configuration properties. If you additionally specify a negative
ResponseTimeout (meaning that the connector should not wait for a response),
theReplyToQueue is set in the response message, even though the connector
does not actually wait for a response.

3. If attribute DeliveryMode is set to 2, the message is sent persistently. If
DeliveryMode is set to 1, the message is not sent persistently. Any other value
may fail the connector. If DeliveryMode is not specified in the MO, then the JMS
provider establishes the persistence setting.

4. If attribute Priority is specified, the connector sets the value in the outgoing
request. The Priority attribute can take values 0 through 9; any other value
may cause the connector to terminate.

5. If attribute JMSProperties is specified in the dynamic meta-object, the
corresponding JMS properties specified in the child dynamic meta-object are set
in the outbound message sent by the connector.

Note: If header attributes in the dynamic meta-object are undefined or specify
CxlIgnore, the connector follows its default settings.

Synchronous request processing: The connector uses the dynamic meta-object, if
present, to populate the request message prior to issuing it. If the dynamic
meta-object contains header attributes, the connector populates it with
corresponding new values found in the response message. The connector performs
the following steps (in addition to populating the meta-object with
transport-related data) after receiving a response message:

38 Adapter for ACORD XML User Guide

—_

10.

11.

12.

13.

14.

15.

16.

If attribute CorrelationID is present in the dynamic meta-object, the adapter
updates this attribute with the JMSCorrelationID specified in the response
message.

If attribute ReplyToQueue is defined in the dynamic meta-object, the adapter
updates this attribute with the name of the JMSReplyTo specified in the
response message.

If attribute DeliveryMode is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSDeliveryMode header field of
the message.

If attribute Priority is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSPriority header field of the
message.

If attribute Destination is defined in the dynamic meta-object, the adapter
updates this attribute with the name of the JMSDestination specified in the
response message.

If attribute Expiration is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSExpiration header field of the
message.

If attribute MessagelD is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSMessagelID header field of the
message.

If attribute Redelivered is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSRedelivered header field of the
message.

If attribute TimeStamp is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSTimeStamp header field of the
message.

If attribute Type is present in the dynamic meta-object, the adapter updates
this attribute with the value of the JMSType header field of the message.

If attribute UserID is present in the dynamic meta-object, the adapter updates
this attribute with the value of the JMSXUserID header field of the message.

If attribute AppID is present in the dynamic meta-object, the adapter updates
this attribute with the value of the JMSXAppID property field of the message.

If attribute DeliveryCount is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSXDeliveryCount header field of
the message.

If attribute GroupID is present in the dynamic meta-object, the adapter updates
this attribute with the value of the JMSXGroupID header field of the message.

If attribute GroupSeq is present in the dynamic meta-object, the adapter
updates this attribute with the value of the JMSXGroupSeq header field of the
message.

If attribute JMSProperties is defined in the dynamic meta-object, the adapter
updates any properties defined in the child object with the values found in
the response message. If a property defined in the child object does not exist
in the message, the value is set to CxBlank.

Note: Using the dynamic meta-object to change the CorrelationID set in the

request message does not affect the way the adapter identifies the response
message—the adapter by default expects that the CorrelationID of any
response message equals the message ID of the request sent by the adapter.

Chapter 2. Installing and configuring the adapter 39

Error Handling: If a JMS property cannot be read from or written to a message,
the connector logs an error and the request or event fails. If a user-specified
ReplyToQueue does not exist or cannot be accessed, the connector logs an error and
the request fails. If a CorrelationID is invalid or cannot be set, the connector logs
an error and the request fails. In all cases, the message logged is from the
connector message file.

Startup file configuration

Before you start the connector for ACORD XML, you must configure the startup
file.

Windows

To complete the configuration of the connector for Windows platforms, you must
modify the start_ACORD.bat file:

1. Open the start_ACORD.bat file.

2. Scroll to the section beginning with “Set the directory containing your
WebSphere MQ Java client Tibraries,” and specify the location of your
WebSphere MQ Java client libraries.

UNIX

To complete the configuration of the connector for UNIX platforms, you must
modify the start_ACORD. sh file:

1. Open the start_ACORD.sh file.

2. Scroll to the section beginning with “Set the directory containing your

WebSphere MQ Java client Tibraries,” and specify the location of your
WebSphere MQ Java client libraries.

Startup

For information on starting a connector, stopping a connector, and the connector’s
temporary startup log file, see the see the startup chapter in the System Installation
Guide for your platform.

40 Adapter for ACORD XML User Guide

Chapter 3. Creatlng or modifying business objects

« |”Adapter business object structure”]

* [“Error handling” on page 42|

* |“Tracing” on page 43

The connector comes with sample business objects only. The systems integrator,
consultant, or customer must build business objects.

The connector is a metadata-driven connector. In WebSphere business integration
system business objects, metadata is data about the application, which is stored in
a business object definition and which helps the connector interact with an
application. A metadata-driven connector handles each business object that it
supports based on metadata encoded in the business object definition rather than
on instructions hard-coded in the connector.

Business object metadata includes the structure of a business object, the settings of
its attribute properties, and the content of its application-specific information.
Because the connector is metadata-driven, it can handle new or modified business
objects without requiring modifications to the connector code. However, the
connector’s configured data handler makes assumptions about the structure of its
business objects, object cardinality, the format of the application-specific
information, and the database representation of the business object. Therefore,
when you create or modify a business object for ACORD XML, your modifications
must conform to the rules the connector is designed to follow, or the connector
cannot process new or modified business objects correctly.

This chapter describes how the connector processes business objects and describes
the assumptions the connector makes. You can use this information as a guide to
implementing new business objects.

Adapter business object structure

After installing the adapter, you must create business objects. There are no
requirements regarding the structure of the business objects other than those
imposed by the configured data handler. The business objects that the connector
processes can have any name allowed by InterChange Server.

The adapter retrieves messages from a queue and attempts to populate a business
object (defined by the meta-object) with the message contents. Strictly speaking, the
connector neither controls nor influences business object structure. Those are
functions of meta-object definitions as well as the connector’s data handler
requirements. In fact, there is no business-object level application information.
Rather, the connector’s main role when retrieving and passing business objects is
to monitor the message-to-business-object (and vice versa) process for errors.

Sample business object properties
This section describes sample business object properties for an ACORD XML
connector with the XML data handler.

[BusinessObjectDefinition]

Name = ACORD_TXLife_ VendorName

Version = 1.0.0

AppSpecificInfo = target_ns=http://ACORD.org/Standards/Life/2;

© Copyright IBM Corp. 2003 41

elem_fd=unqualified;attr_fd=unqualified
[Attribute]
Name = VendorCode
Type = String
Cardinality = 1
MaxLength = 255
IsKey = true
IsForeignKey = false
IsRequired = true
AppSpecificInfo = attr_name=VendorCode;type=attribute
IsRequiredServerBound = false
[End]
[Attribute]
Name = VendorName
Type = String
Cardinality =1
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = true
AppSpecificInfo = elem_name=VendorName;type=pcdata;notag
IsRequiredServerBound = false
[End]
[Attribute]
Name = ObjectEventId
Type = String
Cardinality = 1
MaxLength = 255
IsKey = false
IsForeignKey = false
IsRequired = false
IsRequiredServerBound = false
[End]
[Verb]
Name = Create
[End]
[Verb]
Name = Retrieve
[End]
[Verb]
Name = Delete
[End]
[Verb]
Name = Update
[End]
[End]

Error handling

All error messages generated by the connector are stored in a message file named
WebSphere MQConnector.txt. (The name of the file is determined by the
LogFileName standard connector configuration property.) Each error has an error
number followed by the error message:

Message number
Message text

The connector handles specific errors as described in the following sections.

Application timeout
The error message ABON_APPRESPONSETIMEOQOUT is returned when:

* The connector cannot establish a connection to the JMS service provider during
message retrieval.

42 Adapter for ACORD XML User Guide

* The connector successfully converts a business object to a message but cannot
deliver it the outgoing queue due to connection loss.

* The connector issues a message but times out waiting for a response for a
business object with conversion property TimeoutFatal equal to True.

* The connector receives a response message with a return code equal to
APP_RESPONSE_TIMEOUT or UNABLE_TO_LOGIN.

Unsubscribed business object

If the connector retrieves a message that is associated with an unsubscribed
business object, the connector delivers a message to the queue specified by the
UnsubscribedQueue property.

Note: If the UnsubscribedQueue is not defined, unsubscribed messages will be
discarded.

When a NO_SUBSCRIPTION_FOUND code is returned by the gotApplEvent ()
method, the connector sends the message to the queue specified by the
UnsubscribedQueue property and continues processing other events.

Connector not active

When the gotApplEvent () method returns a CONNECTOR_NOT_ACTIVE code,
the pol1ForEvents() method returns an APP_RESPONSE_TIMEOUT code and the
event remains in the InProgress queue.

Data handler conversion

If the data handler fails to convert a message to a business object, or if a
processing error occurs that is specific to the business object (as opposed to the
JMS provider), the message is delivered to the queue specified by ErrorQueue. If
the ErrorQueue is not defined, messages that cannot be processed due to errors will
be discarded.

If the data handler fails to convert a business object to a message, BON_FAIL is
returned.

Tracing

Tracing is an optional debugging feature you can turn on to closely follow
connector behavior. Trace messages, by default, are written to STDOUT. See the
connector configuration properties in [Chapter 2, “Installing and configuring the|
ladapter,” on page 17| for more on configuring trace messages. For more
information on tracing, including how to enable and set it, see the Connector
Development Guide.

What follows is recommended content for connector trace messages.

Level 0 This level is used for trace messages that identify the connector
version.
Level 1 Use this level for trace messages that provide key information on

each business object processed or record each time a polling thread
detects a new message in an input queue.

Level 2 Use this level for trace messages that log each time a business
object is posted to InterChange Server, either from gotAppl1Event ()
or executeCollaboration().

Chapter 3. Creating or modifying business objects 43

Level 3

Level 4

Level 5

44 Adapter for ACORD XML User Guide

Use this level for trace messages that provide information
regarding message-to-business-object and business-object-to-
message conversions or provide information about the delivery of
the message to the output queue.

Use this level for trace messages that identify when the connector
enters or exits a function.

Use this level for trace messages that indicate connector
initialization, represent statements executed in the application,
indicate whenever a message is taken off of or put onto a queue,
or record business object dumps.

Chapter 4. Troubleshooting

The chapter describes problems that you may encounter when starting up or

running the connector.

Start-up problems

Problem

The connector shuts down unexpectedly during
initialization and the following message is reported:
Exception in thread "main"
java.lang.NoClassDefFoundError:
javax/jms/JMSException...

The connector shuts down unexpectedly during
initialization and the following message is reported:
Exception in thread "main"
java.lang.NoClassDefFoundError:
com/ibm/mq/jms/MQConnectionFactory...

The connector shuts down unexpectedly during
initialization and the following message is reported:
Exception in thread "main"
java.lang.NoClassDefFoundError:
javax/naming/Referenceable...

The connector shuts down unexpectedly during
initialization and the following exception is reported:
java.lang.UnsatisfiedLinkError: no mqjbnd0l in
shared Tibrary path

The connector reports MQIMS2005: failed to create
MQQueueManager for ':'

Potential solution / explanation

Connector cannot find file jms.jar from the IBM
WebSphere MQ Java client libraries. Ensure that variable
WebSphere MQ_JAVA_LIB in start_connector.bat points to
the IBM WebSphere MQ Java client library folder.

Connector cannot find file com.ibm.mgjms.jar from the
IBM WebSphere MQ Java client libraries. Ensure that
variable WebSphere MQ_JAVA_LIB in start_connector.bat
points to the IBM WebSphere MQ Java client library
folder.

Connector cannot find file jndi.jar from the IBM
WebSphere MQ Java client libraries. Ensure that variable
WebSphere MQ_JAVA_LIB in start_connector.bat points to
the IBM WebSphere MQ Java client library folder.

Connector cannot find a required run-time library
(mqjbnd01.d11 [NT] or Tibmgjbnd01.so [Solaris]) from the
IBM WebSphere MQ Java client libraries. Ensure that
your path includes the IBM WebSphere MQ Java client
library folder.

Explicitly set values for the following properties:
HostName, Channel, and Port.

Event processing

Problem

The connector delivers all messages with an MQRFH2
header.

The connector truncates all message formats to
8-characters upon delivery regardless of how the format
has been defined in the connector meta-object.

Potential solution / explanation

To deliver messages with only the MQMD WebSphere
MQ header, append ?targetClient=1 to the name of
output queue URIL For example, if you output messages
to queue queue://my.queue.manager/0UT, change the URI
to queue://my.queue.manager/0UT?targetClient=1. See

Chapter 2, “Installing and configuring the adapter,” on|

page 1Z] for more information.
This is a limitation of the WebSphere MQ MQMD
message header and not the connector.

© Copyright IBM Corp. 2003

45

46 Adapter for ACORD XML User Guide

Appendix A. Standard configuration properties for connectors

This appendix describes the standard configuration properties for WebSphere
Business Integration adapter connectors. The information covers connectors
running on the following brokers:

* WebSphere InterChange Server (ICS)
* WebSphere MQ Integrator Broker (WMQI)
* WebSphere Application Server (WAS)

Not every connector makes use of all these standard properties. When you select a
broker from Connector Configurator, you will see a list of the standard properties
that you need to configure for your adapter running with that broker.

For information about properties specific to the connector, see the relevant adapter
user guide.

Note: In this document, backslashes (\) are used as the convention for directory
paths. For UNIX installations, substitute slashes (/) for backslashes and
follow the conventions for each operating system.

New and deleted properties

These standard properties have been either added or deleted in the 2.3 release of
the adapters.

New properties

* RFH2Message Domain
* ListenerConcurrency
* RestartCount

* WsifSynchronousRequestTimeout
Deleted properties

None

Configuring standard connector properties

Adapter connectors have two types of configuration properties:
 Standard configuration properties

 Connector-specific configuration properties

This section describes the standard configuration properties. For information on
configuration properties specific to a connector, see its adapter user guide.

Using Connector Configurator

You configure connector properties from Connector Configurator, which you access
from System Manager. For more information on using Connector Configurator,
refer to the Connector Configurator appendix.

© Copyright IBM Corp. 2003 47

Note: Connector Configurator and System Manager run only on the Windows
system. If you are running the connector on a UNIX system, you must have
a Windows machine with these tools installed. To set connector properties
for a connector that runs on UNIX, you must start up System Manager on
the Windows machine, connect to the UNIX integration broker, and bring up
Connector Configurator for the connector.

Setting and updating property values
The default length of a property field is 255 characters.

The connector uses the following order to determine a property’s value (where the
highest number overrides other values):

1. Default

2. Repository (only if WebSphere InterChange Server is the integration broker)
3. Local configuration file
4.

Command line

A connector obtains its configuration values at startup. If you change the value of
one or more connector properties during a run-time session, the property’s Update
Method determines how the change takes effect. There are four different update
methods for standard connector properties:
* Dynamic
The change takes effect immediately after it is saved in System Manager. If the
connector is working in stand-alone mode (independently of System Manager),
for example with the WebSphere MQ Integrator Broker, you can only change
properties through the configuration file. In this case, a dynamic update is not
possible.

* Component restart
The change takes effect only after the connector is stopped and then restarted in
System Manager. You do not need to stop and restart the application-specific
component or the integration broker.

* Server restart
The change takes effect only after you stop and restart the application-specific
component and the integration broker.

* Agent restart (ICS only)
The change takes effect only after you stop and restart the application-specific
component.

To determine how a specific property is updated, refer to the Update Method
column in the Connector Configurator window, or see the Update Method column
in the Property Summary table below.

Summary of standard properties

[Table 3 on page 49| provides a quick reference to the standard connector
configuration properties. Not all the connectors make use of all these properties,
and property settings may differ from integration broker to integration broker.

You must set the values of some of these properties before running the connector.
See the following section for an explanation of each property.

48 Adapter for ACORD XML User Guide

Table 3. Summary of standard configuration properties

Update
Property name Possible values Default value method Notes
|AdminInQueug| Valid JMS queue name CONNECTORNAME /ADMININQUEUE Delivery
Transport is
JMS
|AdminOutQueue] Valid JMS queue name CONNECTORNAME / ADMINOUTQUEUE Delivery
Transport is
JMS
|AgentConnections| 1-4 1 Component | ICS: Delivery
restart Transport is
MQ or IDL
|AgentTraceLevel| 0-5 0 Dynamic
|ApplicationName| application name The value that is specified for Component | Value required
the connector application name restart
[BrokerType] ICS, WMQI, WAS
IICharacterEncodingI ascii7, ascii8, SJIS, ascii7 Component
Cp949, GBK, Big5, restart
Cp297, Cp273, Cp280,
Cp284, Cp037, Cp437
Note: This is a subset
of supported
values.
|ConcurrentEventTriggeredFlows| 1to 32,767 No value Component
restart
|ContainerManagedEvents| No value or JMS JMS Guaranteed
event delivery
[ControllerStoreAndForwardModd | true or false True Dynamic ICS only
iIControllerTraceLevelI 0-5 0 Dynamic ICS only
I|De1iveryQueua CONNECTORNAME /DELIVERYQUEUE Component | JMS transport
restart only
|DeliveryTransport] MQ, IDL, or JMS JMS Component | For WAS or
restart WMQI:
JMS only
IDuplicateEventElimination| True/False False Component |JMS transport
restart only: Container
Managed Events
must be
<NONE>
[FaultQueue] CONNECTORNAME / FAULTQUEUE Component
restart
ﬁms.FactorVCIassNameI CxCommon.Messaging.jms | CxCommon.Messaging. Server JMS transport
.IBMMQSeriesFactory or | jms.IBMMQSeriesFactory restart only
CxCommon.Messaging
.jms.SonicMQFactory
or any Java class name
ﬁms.MessageBrokerNamd If FactoryClassName is crossworlds.queue.manager Server JMS transport
IBM, use restart only
crossworlds.queue.
manager.
If FactoryClassName
is Sonic, use
Tocalhost:2506.
ﬁms.NumConcurrentRequestsI Positive integer 10 Component | JMS transport
restart only
Any valid password Server JMS transport
restart only

Appendix A. Standard configuration properties for connectors

49

Table 3. Summary of standard configuration properties (continued)

milliseconds
no (to disable polling)

key (to poll only when
the letter p is entered in
the connector’s
Command Prompt
window)

Update
Property name Possible values Default value method Notes
Any valid name Server JMS transport
restart only
Heap size in megabytes | 128m Component | ICS only
restart
[[vmMaxNativeStackSize| Size of stack in kilobytes | 128k Component | ICS only
restart
Heap size in megabytes | 1m Component | ICS only
restart
|ListenerConcurrency| 1- 100 1 Component |ICS only:
restart Delivery
Transport must
be MQ
ILocal(_zI en_US, ja_JP, ko KR, en_US Component
zh_C, zh_T, fr_F, de_D, restart
it_I, es_E, pt_BR
Note: This is a
subset of the
supported
locales.
|Log AtInterchangeEnd)| True or False False Component | ICS only
restart
MaxEventCapacity] 1-2147483647 2147483647 Dynamic ICS:
Repository
Directory must
be <REMOTE>
MessageFileName path/filename Connectorname.txt or Component
| InterchangeSystem. txt restart
Any valid queue name CONNECTORNAME /MONITORQUEUE Component |JMS transport
restart only:
DuplicateEvent
Elimination
must be True
|IOADAutoRestartAgent| True or False False Dynamic ICS only:
Repository
Directory must
be <REMOTE>
|OADMaxNumRetry]| A positive number 1000 Dynamic ICS only:
Repository
Directory must
be <REMOTE>
[OADRetryTimelntervall A positive number in 10 Dynamic ICS only:
minutes Repository
Directory must
be <REMOTE>
[PollEnd Time] HH:MM HH:MM Component
restart
[PollFrequency] a positive integer in 16000 Dynamic

50 Adapter for ACORD XML User Guide

Table 3. Summary of standard configuration properties (continued)

Update
Property name Possible values Default value method Notes
[PollQuantity]| 1-500 1 Component |JMS transport
restart only:
DuplicateEvent
Elimination
must be True
IPollStartTime] HH:MM(HH is 0-23, MM is | HH:MM Component
0-59) restart
[RepositoryDirectory| Location of meta-data Component | For ICS: set to
repository restart <REMOTE>
For WMQI and
WAS: set to
<local directory>
[RequestQueue| Valid [MS queue name CONNECTORNAME /REQUESTQUEUE Component
restart
[ResponseQueud Valid [MS queue name CONNECTORNAME /RESPONSEQUEUE Component
restart
|RestartCounﬂ 0-100 Dynamic Connector must
be in polling
mode
[RestartRetryCount| 0-99 3 Dynamic
[RestartRetryIntervall A sensible positive value in |1 Dynamic
minutes
IRHF2MessageDomain| mrm, xml mrm Component | Only if
restart Delivery
Transport is
JMS and
WireFormat
is CwXML
|SourceQueue] Valid WebSphere MQ name | CONNECTORNAME / SOURCEQUEUE Component | Only if
restart Delivery
Transport is
JMS and
Container
Managed
Events is
specified
|SynchronousRequestQueue| CONNECTORNAME/ Component
SYNCHRONOUSREQUESTQUEUE restart
|SynchronousRequestTimeout| 0 - any number (millisecs) | 0 Component
restart
|SynchronousResponseQueug CONNECTORNAME/ Component
SYNCHRONOUSRESPONSEQUEUE restart
CwXML, CwBO CwXML Component [CwXML for
restart WMQI and
WAS;
CwBO if
Repository
Directory is
<REMOTE>
(ICS)
[WisfSynchronousRequest Timeout| | 0 - any number 0 Component | WAS only
(millisecs) restart

Appendix A. Standard configuration properties for connectors 51

Standard configuration properties

This section lists and defines each of the standard connector configuration
properties.

AdmininQueue

The queue that is used by the integration broker to send administrative messages
to the connector.

The default value is CONNECTORNAME /ADMININQUEUE.

AdminOutQueue

The queue that is used by the connector to send administrative messages to the
integration broker.

The default value is CONNECTORNAME/ADMINOUTQUEUE.

AgentConnections
WebSphere ICS only.

The AgentConnections property controls the number of ORB connections opened
by orb.init[].

By default, the value of this property is set to 1. There is no need to change this
default.

AgentTraceLevel

Level of trace messages for the application-specific component. The default is 0.
The connector delivers all trace messages applicable at the tracing level set or
lower.

ApplicationName

Name that uniquely identifies the connector’s application. This name is used by
the system administrator to monitor the WebSphere business integration system
environment. This property must have a value before you can run the connector.

BrokerType

Identifies the integration broker type that you are using. The options are ICS,
WMOQI or WAS.

CharacterEncoding

Specifies the character code set used to map from a character (such as a letter of
the alphabet, a numeric representation, or a punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. A C++ connector currently
uses the value ASCII for this property. If you previously configured the
value of this property to ascii7 or ascii8, you must reconfigure the
connector to use either ASCII or one of the other supported values.

Important: By default only a subset of supported character encodings display in
the drop list. To add other supported values to the drop list, you must

52 Adapter for ACORD XML User Guide

manually modify the \Data\Std\stdConnProps.xml file in the product
directory. For more information, see the appendix on Connector
Configurator.

The default value is ascii.

ConcurrentEventTriggeredFlows
WebSphere ICS only.

Determines how many business objects can be concurrently processed by the
connector for event delivery. Set the value of this attribute to the number of
business objects you want concurrently mapped and delivered. For example, set
the value of this property to 5 to cause five business objects to be concurrently
processed. The default value is 1.

Setting this property to a value greater than 1 allows a connector for a source
application to map multiple event business objects at the same time and deliver
them to multiple collaboration instances simultaneously. This speeds delivery of
business objects to the integration broker, particularly if the business objects use
complex maps. Increasing the arrival rate of business objects to collaborations can
improve overall performance in the system.

To implement concurrent processing for an entire flow (from a source application
to a destination application), you must:

* Configure the collaboration to use multiple threads by setting its Maximum number
of concurrent events property high enough to use multiple threads.

* Ensure that the destination application’s application-specific component can
process requests concurrently. That is, it must be multi-threaded, or be able to
use connector agent parallelism and be configured for multiple processes. Set the
Parallel Process Degree configuration property to a value greater than 1.

The ConcurrentEventTriggeredFlows property has no effect on connector polling,
which is single-threaded and performed serially.

ContainerManagedEvents

This property allows a JMS-enabled connector with a JMS event store to provide
guaranteed event delivery, in which an event is removed from the source queue
and placed on the destination queue as a single JMS transaction.

The default value is JMS. It can also be set to no value.

When ContainerManagedEvents is set to JMS, you must configure the following
properties to enable guaranteed event delivery:

* PollQuantity = 1 to 500
e SourceQueue = SOURCEQUEUE

You must also configure a data handler with the MimeType, DHClass, and
DataHandlerConfigMOName (optional) properties. To set those values, use the
Data Handler tab in Connector Configurator. The fields for the values under the
Data Handler tab will be displayed only if you have set ContainerManagedEvents to
JMS.

Note: When ContainerManagedEvents is set to JMS, the connector does not call its
pol1ForEvents() method, thereby disabling that method’s functionality.

Appendix A. Standard configuration properties for connectors 53

This property only appears if the DeliveryTransport property is set to the value
JMS.

ControllerStoreAndForwardMode
WebSphere ICS only.

Sets the behavior of the connector controller after it detects that the destination
application-specific component is unavailable.

If this property is set to true and the destination application-specific component is
unavailable when an event reaches ICS, the connector controller blocks the request
to the application-specific component. When the application-specific component
becomes operational, the controller forwards the request to it.

However, if the destination application’s application-specific component becomes
unavailable after the connector controller forwards a service call request to it, the
connector controller fails the request.

If this property is set to false, the connector controller begins failing all service
call requests as soon as it detects that the destination application-specific
component is unavailable.

The default is true.

ControllerTraceLevel
WebSphere ICS only.

Level of trace messages for the connector controller. The default is 0.

DeliveryQueue

The queue that is used by the connector to send business objects to the integration
broker.

The default value is DELIVERYQUEUE.

DeliveryTransport

Specifies the transport mechanism for the delivery of events. Possible values are MQ
for WebSphere MQ, IDL for CORBA IIOP, or JMS for Java Messaging Service.

* If ICS is the broker type, the value of the DeliveryTransport property can be
MQ, IDL, or JMS, and the default is IDL.

* If WMQI is the broker type, the value may only be JMS.
* If WAS is the broker type, the value may only be JMS.

The connector sends service call requests and administrative messages over
CORBA IIOP if the value configured for the DeliveryTransport property is MQ or
IDL.

WebSphere MQ and IDL
Use WebSphere MQ rather than IDL for event delivery transport, unless you must
have only one product. WebSphere MQ offers the following advantages over IDL:

* Asynchronous communication:
WebSphere MQ allows the application-specific component to poll and
persistently store events even when the server is not available.

54 Adapter for ACORD XML User Guide

* Server side performance:
WebSphere MQ provides faster performance on the server side. In optimized
mode, WebSphere MQ stores only the pointer to an event in the repository
database, while the actual event remains in the WebSphere MQ queue. This
saves having to write potentially large events to the repository database.

* Agent side performance:
WebSphere MQ provides faster performance on the application-specific
component side. Using WebSphere MQ, the connector’s polling thread picks up
an event, places it in the connector’s queue, then picks up the next event. This is
faster than IDL, which requires the connector’s polling thread to pick up an
event, go over the network into the server process, store the event persistently in
the repository database, then pick up the next event.

JMS

Enables communication between the connector and client connector framework
using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as
jms.MessageBrokerName, jms.FactoryClassName, jms.Password, and jms.UserName,
appear in Connector Configurator. The first two of these properties are required for
this transport.

Important: There may be a memory limitation if you use the JMS transport
mechanism for a connector in the following environment:

s AIX5.0
* WebSphere MQ 5.3.0.1
* When ICS is the integration broker

In this environment, you may experience difficulty starting both the connector
controller (on the server side) and the connector (on the client side) due to memory
use within the WebSphere MQ client. If your installation uses less than 768M of
process heap size, IBM recommends that you set:

e The LDR_CNTRL environment variable in the CWSharedEnv.sh script.

This script resides in the \bin directory below the product directory. With a text
editor, add the following line as the first line in the CWSharedEnv.sh script:

export LDR_CNTRL=MAXDATA=0x30000000

This line restricts heap memory usage to a maximum of 768 MB (3 segments *
256 MB). If the process memory grows more than this limit, page swapping can
occur, which can adversely affect the performance of your system.

e The IPCCBaseAddress property to a value of 11 or 12. For more information on
this property, see the System Installation Guide for UNIX.

DuplicateEventElimination

When you set this property to true, a JMS-enabled connector can ensure that
duplicate events are not delivered to the delivery queue. To use this feature, the
connector must have a unique event identifier set as the business object’s
ObjectEventld attribute in the application-specific code. This is done during
connector development.

This property can also be set to false.

Note: When DuplicateEventETlimination is set to true, you must also configure
the MonitorQueue property to enable guaranteed event delivery.

Appendix A. Standard configuration properties for connectors 55

FaultQueue

If the connector experiences an error while processing a message then the
connector moves the message to the queue specified in this property, along with a
status indicator and a description of the problem.

The default value is CONNECTORNAME/FAULTQUEUE.

JvmMaxHeapSize

The maximum heap size for the agent (in megabytes). This property is applicable
only if the RepositoryDirectory value is <REMOTE>.

The default value is 128m.

JvmMaxNativeStackSize

The maximum native stack size for the agent (in kilobytes). This property is
applicable only if the RepositoryDirectory value is <REMOTE>.

The default value is 128k.

JvmMinHeapSize

The minimum heap size for the agent (in megabytes). This property is applicable
only if the RepositoryDirectory value is <REMOTE>.

The default value is 1m.

jms.FactoryClassName

Specifies the class name to instantiate for a JMS provider. You must set this
connector property when you choose JMS as your delivery transport mechanism
(DeliveryTransport).

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.MessageBrokerName

Specifies the broker name to use for the JMS provider. You must set this connector
property when you choose JMS as your delivery transport mechanism
(DeliveryTransport).

The default is crossworlds.queue.manager.

jms.NumConcurrentRequests

Specifies the maximum number of concurrent service call requests that can be sent
to a connector at the same time. Once that maximum is reached, new service calls
block and wait for another request to complete before proceeding.

The default value is 10.

jms.Password
Specifies the password for the JMS provider. A value for this property is optional.

There is no default.

56 Adapter for ACORD XML User Guide

jms.UserName

Specifies the user name for the JMS provider. A value for this property is optional.

There is no default.

ListenerConcurrency

This property supports multi-threading in MQ Listener when ICS is the integration
broker. It enables batch writing of multiple events to the database, thus improving
system performance. The default value is 1.

This property applies only to connectors using MQ transport. The
DeliveryTransport property must be set to MQ.

Locale

Specifies the language code, country or territory, and, optionally, the associated
character code set. The value of this property determines such cultural conventions
as collation and sort order of data, date and time formats, and the symbols used in
monetary specifications.

A locale name has the following format:
Ul TT.codeset

where:

Il a two-character language code (usually in lower
case)

T a two-letter country or territory code (usually in
upper case)

codeset the name of the associated character code set; this

portion of the name is often optional.

By default, only a subset of supported locales appears in the drop list. To add
other supported values to the drop list, you must manually modify the
\Data\Std\stdConnProps.xml file in the product directory. For more information,
see the appendix on Connector Configurator.

The default value is en_US. If the connector has not been globalized, the only valid
value for this property is en_US. To determine whether a specific connector has
been globalized, see the connector version list on these websites:

http:/ /www.ibm.com/software/websphere /wbiadapters/infocenter, or
http:/ /www.ibm.com/websphere/integration/wicserver/infocenter

LogAtinterchangeEnd

Specifies whether to log errors to the integration broker’s log destination. Logging
to the broker’s log destination also turns on e-mail notification, which generates
e-mail messages for the MESSAGE_RECIPIENT specified in the InterchangeSystem.cfg
file when errors or fatal errors occur.

For example, when a connector loses its connection to its application, if

LogAtInterChangeEnd is set to true, an e-mail message is sent to the specified
message recipient. The default is false.

Appendix A. Standard configuration properties for connectors 57

MaxEventCapacity

The maximum number of events in the controller buffer. This property is used by
flow control and is applicable only if the value of the RepositoryDirectory
property is <REMOTE>.

The value can be a positive integer between 1 and 2147483647. The default value is
2147483647.

MessageFileName

The name of the connector message file. The standard location for the message file
is \connectors\messages. Specify the message filename in an absolute path if the
message file is not located in the standard location.

If a connector message file does not exist, the connector uses
InterchangeSystem.txt as the message file. This file is located in the product
directory.

Note: To determine whether a specific connector has its own message file, see the
individual adapter user guide.

MonitorQueue

The logical queue that the connector uses to monitor duplicate events. It is used
only if the DeliveryTransport property value is JMS and
DupTicateEventETimination is set to TRUE.

The default value is CONNECTORNAME /MONITORQUEUE

OADAutoRestartAgent

Valid only when the integration broker is ICS and the Repository Directory is
<REMOTE>.

Specifies whether the Object Activation Daemon (OAD) automatically attempts to
restart the application-specific component after an abnormal shutdown. This
property is required for automatic restart.

The default value is false.

OADMaxNumRetry

Valid only when the integration broker is ICS and the Repository Directory is
<REMOTE>.

Specifies the maximum number of times that the OAD automatically attempts to
restart the application-specific component after an abnormal shutdown.

The default value is 1000.

OADRetryTimelnterval

Valid only when the integration broker is ICS and the Repository Directory is
<REMOTE>.

Specifies the number of minutes for the interval during which the OAD
automatically attempts to restart the application-specific component after an

58 Adapter for ACORD XML User Guide

abnormal shutdown. If the application-specific component does not start within the
specified interval, the OAD repeats the attempt as many times as specified in
[‘OADMaxNumRetry” on page 58|

The default is 10.

PollEndTime

Time to stop polling the event queue. The format is HH:MM, where HH represents
0-23 hours, and MV represents 0-59 seconds.

You must provide a valid value for this property. The default value is HH:MM, but
must be changed.

PollFrequency

The amount of time between polling actions. Set Po11Frequency to one of the
following values:

e The number of milliseconds between polling actions.

¢ The word key, which causes the connector to poll only when you type the letter
p in the connector’'s Command Prompt window. Enter the word in lowercase.

¢ The word no, which causes the connector not to poll. Enter the word in
lowercase.

The default is 10000.

Important: Some connectors have restrictions on the use of this property. To
determine whether a specific connector does, see the installing and
configuring chapter of its adapter guide.

PollQuantity

Designates the number of items from the application that the connector should poll
for. If the adapter has a connector-specific property for setting the poll quantity, the
value set in the connector-specific property will override the standard property
value.

PollStartTime

The time to start polling the event queue. The format is HH: MM, where HH represents
0-23 hours, and MM represents 0-59 seconds.

You must provide a valid value for this property. The default value is HH:MM, but
must be changed.

RequestQueue

The queue that is used by the integration broker to send business objects to the
connector.

The default value is REQUESTQUEUE.

RepositoryDirectory

The location of the repository from which the connector reads the XML schema
documents that store the meta-data for business object definitions.

Appendix A. Standard configuration properties for connectors 59

When the integration broker is ICS, this value must be set to <REMOTE> because
the connector obtains this information from the InterChange Server repository.

When the integration broker is WMQI or WAS, this value must be set to <local
directory>.

ResponseQueue

Designates the JMS response queue, which delivers a response message from the
connector framework to the integration broker. When the integration broker is
IICS, the server sends the request and waits for a response message in the JMS
response queue.

RestartCount

Causes the connector to shut down and restart automatically after it has processed
a set number of events. You set the number of events in RestartCount. The
connector must be in polling mode (set Po11Frequency to “p”) for this property to
take effect.

Once the set number of events has passed through request processing, the
connector is shut down and restarted the next time it polls.

RestartRetryCount

Specifies the number of times the connector attempts to restart itself. When used
for a parallel connector, specifies the number of times the master connector
application-specific component attempts to restart the slave connector
application-specific component.

The default is 3.

RestartRetryinterval

Specifies the interval in minutes at which the connector attempts to restart itself.
When used for a parallel connector, specifies the interval at which the master
connector application-specific component attempts to restart the slave connector
application-specific component.

The default is 1.

RHF2MessageDomain
WebSphere MQ Integrator Broker only.

This property allows you to configure the value of the field domain name in the
JMS header. When data is sent to WebSphere MQ Integrator Broker over JMS
transport, the connector framework writes JMS header information, with a domain
name and a fixed value of mrm. A configurable domain name enables users to track
how WebSphere MQ Integrator Broker processes the message data.

A sample header would look like this:
<mcd><Msd>mrm</Msd><Set>3</Set><Type>

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

The default value is mrm, but it may also be set to xm1. This property only appears
when DeliveryTransport is set to JMS and WireFormat is set to CwXML.

60 Adapter for ACORD XML User Guide

SourceQueue

Designates the JMS source queue for the connector framework in support of
guaranteed event delivery for JMS-enabled connectors that use a JMS event store.
For further information, see [’ContainerManagedEvents” on page 53]

The default value is SOURCEQUEUE.

SynchronousRequestQueue

Delivers request messages that require a synchronous response from the connector
framework to the broker. This queue is necessary only if the connector uses
synchronous execution. With synchronous execution, the connector framework
sends a message to the SynchronousRequestQueue and waits for a response back
from the broker on the SynchronousResponseQueue. The response message sent to
the connector bears a correlation ID that matches the ID of the original message.

SynchronousResponseQueue

Delivers response messages sent in reply to a synchronous request from the broker
to the connector framework. This queue is necessary only if the connector uses
synchronous execution.

SynchronousRequestTimeout

Specifies the time in minutes that the connector waits for a response to a
synchronous request. If the response is not received within the specified time, then
the connector moves the original synchronous request message into the fault queue
along with an error message.

The default value is 0.

WireFormat
Message format on the transport.
e If the integration broker is WMQI or WAS, the setting is CwXML.

* if the integration broker is ICS and the value of RepositoryDirectory is
<REMOTE>, the setting isCwBO.

WisfSynchronousRequest Timeout
WAS integration broker only.
Specifies the time in minutes that the connector waits for a response to a
synchronous request. If the response is not received within the specified, time then
the connector moves the original synchronous request message into the fault queue

along with an error message.

The default value is 0.

Appendix A. Standard configuration properties for connectors 61

62 Adapter for ACORD XML User Guide

Appendix B. Connector Configurator

This appendix describes how to use Connector Configurator to set configuration
property values for your adapter.

You use Connector Configurator to:

* Create a connector-specific property template for configuring your connector
* Create a configuration file

* Set properties in a configuration file

Note:
In this document, backslashes (\) are used as the convention for directory
paths. For UNIX installations, substitute slashes (/) for backslashes and
follow the conventions for each operating system.

The topics covered in this appendix are:

+ [“Overview of Connector Configurator” on page 63|

* [“Starting Connector Configurator” on page 64|

+ |“Creating a connector-specific property template” on page 65

* |“Creating a new configuration file” on page 67|

+ |“Setting the configuration file properties” on page 70|

+ |“Using Connector Configurator in a globalized environment” on page 78

Overview of Connector Configurator

Connector Configurator allows you to configure the connector component of your
adapter for use with these integration brokers:

* WebSphere InterChange Server (ICS)
* WebSphere MQ Integrator Broker (WMQI)
* WebSphere Application Server (WAS)

The mode in which you run Connector Configurator, and the configuration file
type you use, may differ according to which integration broker you are running.
For example, if WMQI is your broker, you run Connector Configurator directly,
and not from within System Manager (see [‘Running Configurator in stand-alone]

fmode” on page 64).

Each time you install a new adapter, you need to set up a configuration file for
the connector. This file:

* Sets the standard and application-specific properties for the connector

* Designates which business objects and meta-objects it supports

* Sets the logging and tracing values that the connector will use at run time

* Sets the property values used by messaging and data handlers in the adapter
* Allows you to modify connector properties for an existing connector

You use Connector Configurator to create this configuration file and to modify its
settings.

© Copyright IBM Corp. 2003 63

Connector configuration properties include both standard configuration properties
(the properties that all connectors have) and connector-specific properties
(properties that are needed by the connector for a specific application or
technology).

Because standard properties are used by all connectors, you do not need to define
those properties from scratch; Connector Configurator incorporates them into your
configuration file as soon as you create the file. However, you do need to set the
value of each standard property in Connector Configurator.

The range of standard properties may not be the same for all brokers and all
configurations. Some properties are available only if other properties are given a
specific value. The Standard Properties window in Connector Configurator will
show the properties available for your particular configuration.

For connector-specific properties, however, you need first to define the properties
and then set their values. You do this by creating a connector-specific property
template for your particular adapter. There may already be a template set up in
your system, in which case, you simply use that. If not, follow the steps in
[“Creating a new template” on page 65| to set up a new one.

Note: Connector Configurator runs only in a Windows environment. If you are
running the connector in a UNIX environment, use Connector Configurator
in Windows to modify the configuration file and then copy the file to your
UNIX environment.

Starting Connector Configurator

You can start and run Connector Configurator in either of two modes:
* Independently, in stand-alone mode (all brokers).
¢ From System Manager (ICS and WAS only).

Running Configurator in stand-alone mode

You can run Connector Configurator independently and work with connector
configuration files, irrespective of your broker. However, if WMQI is your
integration broker, you can only use Connector Configurator in stand-alone mode.

To do so:

* From Start>Programs, click IBM WebSphere InterChange Server>IBM
WebSphere Business Integration Toolset>Development>Connector
Configurator.

* Select File>New>Configuration File.

* When you click the pull-down menu next to System Connectivity: Integration
Broker, you can select ICS Connectivity, WMQI Connectivity, or WAS
Connectivity, depending on your broker.

If you are creating a configuration file for use with ICS or WAS as the broker, you
may prefer to run Connector Configurator independently to generate the file, and
then connect to System Manager to save it in a System Manager project (see
[“Completing a configuration file” on page 69)

64 Adapter for ACORD XML User Guide

Running Configurator from System Manager

If ICS or WAS is your integration broker, you can run Connector Configurator
from System Manager.

To run Connector Configurator:
1. Open the System Manager.

2. In the System Manager window, expand the Integration Component Libraries
icon and highlight Connectors.

3. From the System Manager menu bar, click Tools>Connector Configurator. The
Connector Configurator window opens and displays a New Connector dialog
box.

4. When you click the pull-down menu next to System Connectivity: Integration
Broker, you can select ICS Connectivity or WAS Connectivity, depending on
your broker.

To edit an existing configuration file:

1. In the System Manager window, select any of the configuration files listed in
the Connector folder and right-click on it. Connector Configurator opens and
displays the configuration file with the integration broker type and file name at
the top.

2. C(lick the Standard Properties tab to see which properties are included in this
configuration file.

Creating a connector-specific property template

To create a configuration file for your connector, you need a connector-specific
property template as well as the system-supplied standard properties.

You can create a brand-new template for the connector-specific properties of your
connector, or you can use an existing file as the template.

* To create a new template, see [‘Creating a new template” on page 65|

* To use an existing file, simply modify an existing template and save it under the
new name.

Creating a new template

This section describes how you create properties in the template, define general
characteristics and values for those properties, and specify any dependencies
between the properties. Then you save the template and use it as the base for
creating a new connector configuration file.

To create a template:
1. Click File>New>Connector-Specific Property Template.

2. The Connector-Specific Property Template dialog box appears, with the
following fields:

¢ New Template, and Name

Enter a unique name that identifies the connector, or type of connector, for
which this template will be used. You will see this name again when you
open the dialog box for creating a new configuration file from a template.

¢ Old Template, and Select the existing template to modify

The names of all currently available templates are displayed in the Template
Name display.

Appendix B. Connector Configurator 65

* To see the connector-specific property definitions in any template, select that
template’s name in the Template Name display. A list of the property
definitions contained in that template will appear in the Template Preview
display. You can use an existing template whose property definitions are
similar to those required by your connector as a starting point for your
template.

3. Select a template from the Template Name display, enter that template name in
the Find Name field (or highlight your selection in Template Name), and click
Next.

If you do not see any template that displays the connector-specific properties used
by your connector, you will need to create one. Connector Configurator provides a
template named None, containing no property definitions, as a default choice.

Specifying general characteristics

When you click Next to select a template, the Properties - Connector-Specific
Property Template dialog box appears. The dialog box has tabs for General
characteristics of the defined properties and for Value restrictions. The General
display has the following fields:

 Edit properties
Use the buttons provided (or right-click within the Edit properties display) to

add a new property to the template, to edit or delete an existing property, or to
add a child property to an existing property.

A child property is an attribute of another property, the parent property. The
parent property can obtain simple values, or child properties, or both. These
property relationships are hierarchical. When you create a configuration file from
these properties, Connector Configurator will identify hierarchical property sets
with a plus sign in a box at the left of any parent property.

* Property type
Choose one of these property types: Boolean, String, Integer, or Time.

 Flags
You can set Standard Flags (IsRequired, IsDeprecated, IsOverridden) or Custom
Flags (for Boolean operators) to apply to this property.

After you have made selections for the general characteristics of the property, click
the Value tab.

Specifying values
The Value tab enables you to set the maximum length, the maximum multiple
values, a default value, or a value range for the property. To do so:

1. Click the Value tab. The display panel for Value replaces the display panel for
General.

2. Select the name of the property in the Edit properties display.

3. In the fields for Max Length and Max Multiple Values, make any changes. The
changes will not be accepted unless you also open the Property Value dialog
box for the property, described in the next step.

4. Right-click the box in the left-hand corner of the adapter display panel. A
Property Value dialog box appears. Depending on the property type, the dialog
box allows you to enter either a value, or both a value and range. Enter the
appropriate value or range, and click OK.

5. The Value panel refreshes to display any changes you made in Max Length
and Max Multiple Values. It displays a table with three columns:

66 Adapter for ACORD XML User Guide

The Value column shows the value that you entered in the Property Value
dialog box, and any previous values that you created.

The Default Value column allows you to designate any of the values as the
default.

The Value Range shows the range that you entered in the Property Value
dialog box.

After a value has been created and appears in the grid, it can be edited from
within the table display. To make a change in an existing value in the table,
select an entire row by clicking on the row number. Then right-click in the
Value field and click Edit Value.

Setting dependencies
When you have made your changes to the General and Value tabs, click Next. The
Dependencies dialog box appears.

A dependent property is a property that is included in the template and used in
the configuration file only if the value of another property meets a specific
condition. For example, Pol1Quantity appears in the template only if JMS is the
transport mechanism and DuplicateEventETimination is set to True.

To designate a property as dependent and to set the condition upon which it
depends, do this:

1. In the Available Properties display, select the property that will be made
dependent.

2. In the Select Property field, use the drop-down menu to select the property
that will hold the conditional value.

3. In the Condition Operator field, select one of the following;:
== (equal to)
!= (not equal to)
> (greater than)
< (less than)
>= (greater than or equal to)
<=(less than or equal to)

4. In the Conditional Value field, enter the value that is required in order for the
dependent property to be included in the template.

5. With the dependent property highlighted in the Available Properties display,
click an arrow to move it to the Dependent Property display.

6. Click Finish. Connector Configurator stores the information you have entered
as an XML document, under \data\app in the\bin directory where you have
installed Connector Configurator.

Creating a new configuration file

When you create a new configuration file, your first step is to select an integration
broker. The broker you select determines the properties that will appear in the
configuration file.

To select a broker:

* In the Connector Configurator home menu, click File>New>Connector
Configuration. The New Connector dialog box appears.

* In the Integration Broker field, select ICS, WMQI or WAS connectivity.

Appendix B. Connector Configurator 67

Note: To get the choice of WMQI, Connector Configurator must be launched
from the Start menu, not from System Manager.

* Complete the remaining fields in the New Connector window, as described later
in this chapter.

To create a new file for ICS or WAS, you can also do this:

* In the System Manager window, right-click on the Connectors folder and select
Create New Connector. Connector Configurator opens and displays the New
Connector dialog box.

Creating a configuration file from a connector-specific
template

Once a connector-specific template has been created, you can use it to create a
configuration file:

1. Click File>New>Connector Configuration.
2. The New Connector dialog box appears, with the following fields:
* Name

Enter the name of the connector. Names are case-sensitive. The name you
enter must be unique, must end with the word “connector”, and must be
consistent with the file name for a connector that is installed on the system.
For example, enter PeopleSoftConnector if the connector file name is
PeopleSoft.jar.

Important: Connector Configurator does not check the spelling of the name
that you enter. You must ensure that the name is correct.

* System Connectivity
Click ICS or WMQI or WAS connectivity.
* Select Connector-Specific Property Template

Type the name of the template that has been designed for your connector.
The available templates are shown in the Template Name display. When you
select a name in the Template Name display, the Property Template Preview
display shows the connector-specific properties that have been defined in
that template.

Select the template you want to use and click OK.

3. A configuration screen appears for the connector that you are configuring. The
title bar shows the integration broker and connector names. You can fill in all
the field values to complete the definition now, or you can save the file and
complete the fields later.

4. To save the file, click File>Save>to File or File>Save>Save to the project. To
save to a project, you must be using ICS or WAS as the broker, and System
Manager must be running.

If you save as a file, the Save File Connector dialog box appears. Choose *.cfg
as the file type, verify in the File Name field that the name is spelled correctly
and has the correct case, navigate to the directory where you want to locate the
file, and click Save. The status display in the message panel of Connector
Configurator indicates that the configuration file was successfully created.

Important: The directory path and name that you establish here must match
the connector configuration file path and name that you supply in
the startup file for the connector.

5. To complete the connector definition, enter values in the fields for each of the
tabs of the Connector Configurator window, as described later in this chapter.

68 Adapter for ACORD XML User Guide

Using an existing file

You may have an existing file available in one or more of the following formats:

* A connector definition file.
This is a text file that lists properties and applicable default values for a specific
connector. Some connectors include such a file in a \repository directory in
their delivery package (the file typically has the extension .txt; for example,
CN_XML.txt for the XML connector).

* An ICS repository file.
Definitions used in a previous ICS implementation of the connector may be
available to you in a repository file that was used in the configuration of that
connector. Such a file typically has the extension .in or .out.

* A previous configuration file for the connector.
Such a file typically has the extension *.cfg.

Although any of these file sources may contain most or all of the connector-specific
properties for your connector, the connector configuration file will not be complete
until you have opened the file and set properties, as described later in this chapter.

To use an existing file to configure a connector, you must open the file in
Connector Configurator, revise the configuration, and then save the file as a
configuration file (*.cfg file).

Follow these steps to open a *.txt, *.cfg, or *.in file from a directory:
1. In Connector Configurator, click File>Open>From File.

2. In the Open File Connector dialog box, select one of the following file types to
see the available files:

* Configuration (x.cfg)
* ICS Repository (*.1in, *.out)

Choose this option if a repository file was used to configure the connector in
an ICS environment. A repository file may include multiple connector
definitions, all of which will appear when you open the file.

« All files (*.%)
Choose this option if a *.txt file was delivered in the adapter package for
the connector, or if a definition file is available under another extension.

3. In the directory display, navigate to the appropriate connector definition file,
select it, and click Open.

Follow these steps to open a connector configuration from a System Manager

project:

1. Start System Manager. A configuration can be opened from or saved to System
Manager only if System Manager has been started.

2. Start Connector Configurator.

3. Click File>Open>From Project.

Completing a configuration file

When you open a configuration file or a connector from a project, the Connector
Configurator window displays the configuration screen, with the current attributes
and values.

Appendix B. Connector Configurator 69

The title of the configuration screen displays the integration broker and connector
name as specified in the file. Make sure you have the correct broker. If not, change
the broker value before you configure the connector. To do so:

1. Under the Standard Properties tab, select the value field for the BrokerType
property. In the drop-down menu, select the value ICS, WMQI, or WAS.

2. The Standard Properties tab will display the properties associated with the
selected broker. You can save the file now or complete the remaining
configuration fields, as described in [“Specifying supported business object]
[definitions” on page 72,

3. When you have finished your configuration, click File>Save>To Project or
File>Save>To File.

If you are saving to file, select *.cfg as the extension, select the correct location
for the file and click Save.

If multiple connector configurations are open, click Save All to File to save all
of the configurations to file, or click Save All to Project to save all connector
configurations to a System Manager project.

Before it saves the file, Connector Configurator checks that values have been
set for all required standard properties. If a required standard property is
missing a value, Connector Configurator displays a message that the validation
failed. You must supply a value for the property in order to save the
configuration file.

Setting the configuration file properties

When you create and name a new connector configuration file, or when you open
an existing connector configuration file, Connector Configurator displays a
configuration screen with tabs for the categories of required configuration values.

Connector Configurator requires values for properties in these categories for
connectors running on all brokers:

 Standard Properties

* Connector-specific Properties
¢ Supported Business Objects
* Trace/Log File values

» Data handlers (applicable for connectors that use J]MS messaging with
guaranteed event delivery)

Note: For connectors that use JMS messaging, an additional category may display,
for configuration of data handlers that convert the data to business objects.

For connectors running on ICS, values for these properties are also required:

* Associated Maps

* Resources

* Messaging (where applicable)

Important: Connector Configurator accepts property values in either English or
non-English character sets. However, the names of both standard and
connector-specific properties, and the names of supported business
objects, must use the English character set only.

Standard properties differ from connector-specific properties as follows:

70 Adapter for ACORD XML User Guide

Standard properties of a connector are shared by both the application-specific
component of a connector and its broker component. All connectors have the
same set of standard properties. These properties are described in Appendix A of
each adapter guide. You can change some but not all of these values.
Application-specific properties apply only to the application-specific component
of a connector, that is, the component that interacts directly with the application.
Each connector has application-specific properties that are unique to its
application. Some of these properties provide default values and some do not;
you can modify some of the default values. The installation and configuration
chapters of each adapter guide describe the application-specific properties and
the recommended values.

The fields for Standard Properties and Connector-Specific Properties are
color-coded to show which are configurable:

A field with a grey background indicates a standard property. You can change
the value but cannot change the name or remove the property.

A field with a white background indicates an application-specific property. These
properties vary according to the specific needs of the application or connector.
You can change the value and delete these properties.

Value fields are configurable.

The Update Method field is informational and not configurable. This field
specifies the action required to activate a property whose value has changed.

Setting standard connector properties
To change the value of a standard property:

1.
2.
3.

Click in the field whose value you want to set.
Either enter a value, or select one from the drop-down menu if it appears.

After entering all the values for the standard properties, you can do one of the
following:

* To discard the changes, preserve the original values, and exit Connector
Configurator, click File>Exit (or close the window), and click No when
prompted to save changes.

* To enter values for other categories in Connector Configurator, select the tab
for the category. The values you enter for Standard Properties (or any other
category) are retained when you move to the next category. When you close
the window, you are prompted to either save or discard the values that you
entered in all the categories as a whole.

* To save the revised values, click File>Exit (or close the window) and click
Yes when prompted to save changes. Alternatively, click Save>To File from
either the File menu or the toolbar.

Setting application-specific configuration properties
For application-specific configuration properties, you can add or change property
names, configure values, delete a property, and encrypt a property. The default
property length is 255 characters.

1.

Right-click in the top left portion of the grid. A pop-up menu bar will appear.
Click Add to add a property or Add Child to add a child property to a

property.
Enter a value for the property or child property.
To encrypt a property, select the Encrypt box.

Appendix B. Connector Configurator 71

4. Choose to save or discard changes, as described for [“Setting standard connector|
[properties” on page 71.|

The Update Method displayed for each property indicates whether a component or
agent restart is necessary to activate changed values.

Important: Changing a preset application-specific connector property name may
cause a connector to fail. Certain property names may be needed by
the connector to connect to an application or to run properly.

Encryption for connector properties

Application-specific properties can be encrypted by selecting the Encrypt check
box in the Edit Property window. To decrypt a value, click to clear the Encrypt
check box, enter the correct value in the Verification dialog box, and click OK. If
the entered value is correct, the value is decrypted and displays.

The adapter user guide for each connector contains a list and description of each
property and its default value.

If a property has multiple values, the Encrypt check box will appear for the first
value of the property. When you select Encrypt, all values of the property will be
encrypted. To decrypt multiple values of a property, click to clear the Encrypt
check box for the first value of the property, and then enter the new value in the
Verification dialog box. If the input value is a match, all multiple values will
decrypt.

Update method

Connector properties are almost all static and the Update Method is COmponent
restart. For changes to take effect, you must restart the connector after saving the
revised connector configuration file.

Specifying supported business object definitions

Use the Supported Business Objects tab in Connector Configurator to specify the
business objects that the connector will use. You must specify both generic business
objects and application-specific business objects, and you must specify associations
for the maps between the business objects.

For you to specify a supported business object, the business objects and their maps
must exist in the system.

* Business object definitions and map definitions should be saved into System
Manager projects if ICS or WAS is your integration broker.

* Business object definitions and MQ message set files should exist if WMQI is
your integration broker.

Note: Some connectors require that certain business objects be specified as
supported in order to perform event notification or additional configuration
(using meta-objects) with their applications. For more information, see the
Connector Development Guide for C++ or the Connector Development Guide for
Java.

If ICS is your broker

To specify that a business object definition is supported by the connector, or to
change the support settings for an existing business object definition, click the
Supported Business Objects tab and use the following fields.

72 Adapter for ACORD XML User Guide

Business object name: To designate that a business object definition is supported
by the connector, with System Manager running:

1. Click an empty field in the Business Object Name list. A drop-down list
displays, showing all the business object definitions that exist in the System
Manager project.

2. Click on a business object to add it.
3. Set the Agent Support (described below) for the business object.

4. In the File menu of the Connector Configurator window, click Save to Project.
The revised connector definition, including designated support for the added
business object definition, is saved to the project in System Manager.

To delete a business object from the supported list:

1. To select a business object field, click the number to the left of the business
object.

2. From the Edit menu of the Connector Configurator window, click Delete Row.
The business object is removed from the list display.

3. From the File menu, click Save to Project.

Deleting a business object from the supported list changes the connector definition
and makes the deleted business object unavailable for use in this implementation
of this connector. It does not affect the connector code, nor does it remove the
business object definition itself from System Manager.

Agent support: If a business object has Agent Support, the system will attempt to
use that business object for delivering data to an application via the connector
agent.

Typically, application-specific business objects for a connector are supported by
that connector’s agent, but generic business objects are not.

To indicate that the business object is supported by the connector agent, check the
Agent Support box. The Connector Configurator window does not validate your
Agent Support selections.

Maximum transaction level: The maximum transaction level for a connector is
the highest transaction level that the connector supports.

For most connectors, Best Effort is the only possible choice, because most
application APIs do not support the Stringent level.

You must restart the server for changes in transaction level to take effect.

If WMQI is your broker

The MQ message set files (*.set files) contain message set IDs that Connector
Configurator requires for designating the connector’s supported business objects.
See Implementing Adapters with WebSphere MQ Integrator Broker for information
about creating the MQ message set files.

Each time that you add business object definitions to the system, you must use

Connector Configurator to designate those business objects as supported by the
connector.

Appendix B. Connector Configurator 73

Important: If the connector requires meta-objects, you must create message set files
for each of them and load them into Connector Configurator, in the
same manner as for business objects.

To specify supported business objects:

1. Select the Supported Business Objects tab and click Load. The Open Message
Set ID File(s) dialog box displays.

2. Navigate to the directory where you have placed the message set file for the
connector and select the appropriate message set file (x.set) or files.

3. Click Open. The Business Object Name field displays the business object
names contained in the *.set file. The numeric message set ID for each
business object is listed in its corresponding Message Set ID field.

Do not change the message set IDs. These names and numeric IDs are saved
when you save the configuration file.

4. When you add business objects to the configuration, you must load their
message set files. If you attempt to load a message set that contains a business
object name that already exists in the configuration, or if you attempt to load a
message set file that contains a duplicate business object name, Connector
Configurator detects the duplicate and displays the Load Results dialog box.
The dialog box shows the business object name or names for which there are
duplicates. For each duplicate name shown, click in the Message Set ID field,
and select the Message Set ID that you wish to use.

If WAS is your broker

When WebSphere Application Server is selected as your broker type, Connector
Configurator does not require message set IDs. The Supported Business Objects
tab shows a Business Object Name column only for supported business objects.

If you are working in stand-alone mode (not connected to System Manager), you
must enter the business object name manually.

If you have System Manager running, you can select the empty box under the
Business Object Name column in the Supported Business Objects tab. A combo box
appears with a list of the business objects available from the Integration
Component Library project to which the connector belongs. Select the business
object you want from this list.

Associated maps (ICS only)

Each connector supports a list of business object definitions and their associated
maps that are currently active in WebSphere InterChange Server. This list appears
when you select the Associated Maps tab.

The list of business objects contains the application-specific business object which
the agent supports and the corresponding generic object that the controller sends
to the subscribing collaboration. The association of a map determines which map
will be used to transform the application-specific business object to the generic
business object or the generic business object to the application-specific business
object.

If you are using maps that are uniquely defined for specific source and destination
business objects, the maps will already be associated with their appropriate
business objects when you open the display, and you will not need (or be able) to
change them.

74 Adapter for ACORD XML User Guide

If more than one map is available for use by a supported business object, you will
need to explicitly bind the business object with the map that it should use.

The Associated Maps tab displays the following fields:
* Business Object Name

These are the business objects supported by this connector, as designated in the
Supported Business Objects tab. If you designate additional business objects
under the Supported Business Objects tab, they will be reflected in this list after
you save the changes by choosing Save to Project from the File menu of the
Connector Configurator window.

* Associated Maps
The display shows all the maps that have been installed to the system for use
with the supported business objects of the connector. The source business object
for each map is shown to the left of the map name, in the Business Object
Name display.

* Explicit
In some cases, you may need to explicitly bind an associated map.
Explicit binding is required only when more than one map exists for a particular
supported business object. When ICS boots, it tries to automatically bind a map
to each supported business object for each connector. If more than one map
takes as its input the same business object, the server attempts to locate and
bind one map that is the superset of the others.
If there is no map that is the superset of the others, the server will not be able to
bind the business object to a single map, and you will need to set the binding
explicitly.
To explicitly bind a map:
1. In the Explicit column, place a check in the check box for the map you want

to bind.

2. Select the map that you intend to associate with the business object.

3. In the File menu of the Connector Configurator window, click Save to
Project.

4. Deploy the project to ICS.
5. Reboot the server for the changes to take effect.

Resources (ICS)

The Resource tab allows you to set a value that determines whether and to what
extent the connector agent will handle multiple processes concurrently, using
connector agent parallelism.

Not all connectors support this feature. If you are running a connector agent that
was designed in Java to be multi-threaded, you are advised not to use this feature,
since it is usually more efficient to use multiple threads than multiple processes.

Configuring messaging (ICS)
The messaging properties are available only if you have set MQ as the value of the

DeliveryTransport standard property and ICS as the broker type. These properties
affect how your connector will use queues.

Setting trace/log file values

When you open a connector configuration file or a connector definition file,
Connector Configurator uses the logging and tracing values of that file as default
values. You can change those values in Connector Configurator.

Appendix B. Connector Configurator 75

To change the logging and tracing values:
1. Click the Trace/Log Files tab.

2. For either logging or tracing, you can choose to write messages to one or both
of the following:

* To console (STDOUT):
Writes logging or tracing messages to the STDOUT display.

Note: You can only use the STDOUT option from the Trace/Log Files tab for
connectors running on the Windows platform.

* To File:
Writes logging or tracing messages to a file that you specify. To specify the
file, click the directory button (ellipsis), navigate to the preferred location,
provide a file name, and click Save. Logging or tracing message are written
to the file and location that you specify.

Note: Both logging and tracing files are simple text files. You can use the file
extension that you prefer when you set their file names. For tracing
files, however, it is advisable to use the extension .trace rather than
.trc, to avoid confusion with other files that might reside on the
system. For logging files, .1og and .txt are typical file extensions.

Data handlers

The data handlers section is available for configuration only if you have designated
a value of JMS for DeliveryTransport and a value of JMS for
ContainerManagedEvents. Not all adapters make use of data handlers.

See the descriptions under ContainerManagedEvents in Appendix A, Standard
Properties, for values to use for these properties. For additional details, see the
Connector Development Guide for C++ or the Connector Development Guide for Java.

Saving your configuration file

When you have finished configuring your connector, you save the connector
configuration file. Connector Configurator will save it in the broker mode that you
selected during configuration. The title bar of Connector Configurator always
displays the broker mode (ICS, WMQI or WAS) that it is currently using.

The file is saved as an XML document. You can save the XML document in three
ways:

For ICS:

* From System Manager, as a file with a *.con extension in a an ICS User Project,
or

¢ In a directory that you specify.

* In stand-alone mode, as a file with a *.cfg extension in a directory folder, if you
are using the file as a local configuration file.

For WMQI:

* In stand-alone mode, as a file with a *.cfg extension in a directory folder.

For WAS:
* From System Manager, as a file with a *.con extension in a WAS User Project, or
* In a directory that you specify.

76 Adapter for ACORD XML User Guide

* In stand-alone mode, as a file with a *.cfg extension in a directory folder.

After you have created the configuration file and set its properties, you need to
deploy it to the correct location for your connector.

* If you are using ICS as your integration broker, save the configuration in a
System Manager project, and use System Manager to load the file into ICS.

* If you are using WMQI as your integration broker, copy the configuration file to
the correct location, which must match exactly the configuration file location
specified in the startup file for your connector.

* If you are using WAS as your integration broker, save the file in a WAS user
project. Use File>Export to create .wsd1 files that you can then import into

WSAD-IE.
You can also export the configuration file as a .jar file to a specified directory.

For details about using projects in System Manager, and for further information
about deployment, see the following implementation guides:

 For ICS: Implementation Guide for WebSphere InterChange Server
* For WMQI: Implementing Adapters with WebSphere MQ Integrator Broker
* For WAS: Implementing Adapters with WebSphere Application Server

Changing a configuration file

You can change the integration broker setting for an existing configuration file.
This enables you to use the file as a template for creating a new configuration file,
which can be used with a different broker.

Note: You will need to change other configuration properties as well as the broker
mode property if you switch integration brokers.

To change your broker selection within an existing configuration file (optional):
* Open the existing configuration file in Connector Configurator.
* Select the Standard Properties tab.
* In the BrokerType field of the Standard Properties tab, select the value that is
appropriate for your broker.
When you change the current value, the available tabs and field selections on

the properties screen will immediately change, to show only those tabs and
fields that pertain to the new broker you have selected.

Completing the configuration

After you have created a configuration file for a connector and modified it, make
sure that the connector can locate the configuration file when the connector starts

up.
To do so, open the startup file used for the connector, and verify that the location

and file name used for the connector configuration file match exactly the name you
have given the file and the directory or path where you have placed it.

Appendix B. Connector Configurator 77

Using Connector Configurator in a globalized environment

Connector Configurator is globalized and can handle character conversion between
the configuration file and the integration broker. Connector Configurator uses
native encoding. When it writes to the configuration file, it uses UTF-8 encoding.

Connector Configurator supports non-English characters in:
* All value fields
* Log file and trace file path (specified in the Trace/Log files tab)

The drop list for the CharacterEncoding and Locale standard configuration
properties displays only a subset of supported values. To add other values to the
drop list, you must manually modify the \Data\Std\stdConnProps.xml file in the
product directory.

For example, to add the locale en_GB to the list of values for the Locale property,
open the stdConnProps.xml file and add the line in boldface type below:

<Property name="Locale"

isRequired="true"

updateMethod="component restart">

<ValidType>String</ValidType>
<ValidValues>

<Value>ja_JP</Value>
<Value>ko KR</Value>
<Value>zh_CN</Value>
<Value>zh_TW</Value>
<Value>fr_FR</Value>
<Value>de_DE</Value>
<Value>it_IT</Value>
<Value>es_ES</Value>
<Value>pt BR</Value>
<Value>en_US</Value>
<Value>en_GB</Value>

<DefaultValue>en_US</DefaultValue>
</ValidValues>
</Property>

78 Adapter for ACORD XML User Guide

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Burlingame Laboratory Director
IBM Burlingame Laboratory
577 Airport Blvd., Suite 800

© Copyright IBM Corp. 2003 79

Burlingame, CA 94010
US.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not necessarily tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

Programming interface information

Programming interface information, if provided, is intended to help you create
application software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States or other countries, or both:

80 Adapter for ACORD XML User Guide

IBM

the IBM logo
AIX
CrossWorlds
DB2

DB2 Universal Database
Domino
Lotus

Lotus Notes
MQIntegrator
MQSeries
Tivoli
WebSphere

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product or service names may be trademarks or service marks of
others.

W

JAVA,
WebSphere Business Integration Adapter Framework V2.4.0

Notices 81

	Contents
	About this document
	Audience
	Prerequisites for this document
	Related documents
	Typographic conventions

	New in this release
	New in release 1.0.x

	Chapter 1. Overview
	Overview of the ACORD standards
	XML for Life
	ACORD XML for Property & Casualty

	Adapter for ACORD XML environment
	Broker compatibility
	Adapter standards
	Adapter platforms
	Adapter dependencies
	Limitations on business object generation from ACORD XML schemas
	Locale-dependent data

	Connector architecture
	Connector for ACORD XML
	XML and business objects

	Application-connector communication
	Message request
	Event delivery
	Guaranteed event delivery

	Event handling
	Retrieval
	Recovery
	Archiving

	Business object requests
	Verb processing
	Create, update, and delete

	Processing locale-dependent data
	Common configuration tasks
	Installing the adapter
	Configuring connector properties
	Configuring the connector to send requests without notification
	Configuring the connector to send requests and get notifications
	Configuring a static meta-object
	Configuring a dynamic meta-object
	Configuring MQMD formats
	Configuring queue URIs
	Configuring data handlers
	Modifying the startup script

	Chapter 2. Installing and configuring the adapter
	Overview of installation tasks
	Installing the adapter and related files
	Installed file structure
	Windows file structure
	UNIX file structure

	Connector configuration
	Standard connector properties
	Connector-specific properties

	Queue Uniform Resource Identifiers (URI)
	Meta-object attributes configuration
	Static meta-objects
	Dynamic child metaobject

	Startup file configuration
	Windows
	UNIX

	Startup

	Chapter 3. Creating or modifying business objects
	Adapter business object structure
	Sample business object properties

	Error handling
	Application timeout
	Unsubscribed business object
	Connector not active
	Data handler conversion

	Tracing

	Chapter 4. Troubleshooting
	Start-up problems
	Event processing

	Appendix A. Standard configuration properties for connectors
	New and deleted properties
	Configuring standard connector properties
	Using Connector Configurator
	Setting and updating property values

	Summary of standard properties
	Standard configuration properties
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BrokerType
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	FaultQueue
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	jms.FactoryClassName
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.UserName
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RequestQueue
	RepositoryDirectory
	ResponseQueue
	RestartCount
	RestartRetryCount
	RestartRetryInterval
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousResponseQueue
	SynchronousRequestTimeout
	WireFormat
	WisfSynchronousRequest Timeout

	Appendix B. Connector Configurator
	Overview of Connector Configurator
	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting application-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS only)
	Resources (ICS)
	Configuring messaging (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment

	Notices
	Programming interface information
	Trademarks and service marks

