
IBM WebSphere Business Integration

Adapter for WebSphere Message Broker

User Guide

Adapter Version 2.8.x

���

IBM WebSphere Business Integration

Adapter for WebSphere Message Broker

User Guide

Adapter Version 2.8.x

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page 111.

13September2005

This edition of this document applies to IBM WebSphere Business Integration Adapter for WebSphere Message

Broker(5724-H37), version 2.8.x.

To send us your comments about WebSphere Business Integration documentation, e-mail doc-
comments@us.ibm.com. We look forward to hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document . v

What this document includes . v

What this document does not include . v

Audience . v

Prerequisites for this document . v

Related documents . v

Typographic conventions . vi

New in this release . vii

New in release 2.8.x . vii

New in release 2.7.x . vii

New in release 2.6.x . viii

New in release 2.5.x . viii

New in release 2.4.x . viii

New in release 2.3.x . ix

New in release 2.2.x . ix

New in release 2.1.x . ix

New in release 1.5.x . x

New in release 1.4.x . x

New in release 1.3.x . x

Chapter 1. Overview . 1

Task roadmap . 1

Terminology . 1

Overview of the adapter environment . 3

Overview of adapter processing . 4

Chapter 2. Installing the connector . 11

Overview of installation tasks . 11

Adapter environment . 11

Installing the adapter and related files . 13

Verifying installation . 13

Chapter 3. Configuring the connector . 17

Overview of Connector Configurator . 17

Starting Connector Configurator . 18

Running Configurator from System Manager . 19

Creating a connector-specific property template . 19

Creating a new configuration file . 22

Using an existing file . 23

Completing a configuration file . 24

Setting the configuration file properties . 25

Saving your configuration file . 32

Changing a configuration file . 33

Completing the configuration . 33

Using Connector Configurator in a globalized environment 33

Verifying a sample configuration . 34

Setting Queue Uniform Resource Identifiers (URI) . 34

Guaranteeing event delivery . 36

Chapter 4. Running the connector . 37

Overview of running the connector . 37

Starting the connector . 37

Stopping the connector . 39

© Copyright IBM Corp. 2000, 2005 iii

Running multiple instances of the adapter . 39

Overview of error handling . 40

Overview of tracing . 42

Chapter 5. Creating objects . 43

Overview of creating objects . 43

Creating business objects . 43

Modifying business objects . 45

Creating meta-objects . 47

Chapter 6. Configuring a data handler . 59

Overview of configuring the data handler . 59

Specifying the data handler . 59

Modifying a message flow . 60

Chapter 7. Troubleshooting . 63

Troubleshooting start-up problems . 63

Troubleshooting event processing . 63

Getting support . 64

Appendix A. Standard configuration properties for connectors 65

New properties . 65

Standard connector properties overview . 65

Standard properties quick-reference . 67

Standard properties . 73

Appendix B. Connector-specific properties for this adapter 89

Overview of connector-specific properties . 89

Appendix C. Tutorial . 95

Overview of the tutorial . 95

Before you begin . 96

Setting up your environment . 96

Running the scenarios . 99

Appendix D. Common Event Infrastructure . 101

Required software . 101

Enabling Common Event Infrastructure . 101

Obtaining Common Event Infrastructure adapter events . 101

For more information . 102

Common Event Infrastructure event catalog definitions . 102

XML format for “start adapter” metadata . 102

XML format for ″stop adapter″ metadata . 104

XML format for “timeout adapter” metadata . 104

XML format for ″request″ or ″delivery″ metadata . 105

Appendix E. Application Response Measurement 107

Application Response Measurement instrumentation support 107

Index . 109

Notices . 111

Programming interface information . 113

Trademarks and service marks . 113

iv Adapter for WebSphere Message Broker User Guide

About this document

The IBMR WebSphereR Business Integration Adapter portfolio supplies integration

connectivity for leading e-business technologies, enterprise applications, and legacy

and mainframe systems. The product set includes tools and templates for

customizing, creating, and managing components for business integration.

What this document includes

This document describes installation, connector property configuration, business

object development, and troubleshooting for this IBM WebSphere Business

Integration adapter.

What this document does not include

This document does not describe deployment metrics and capacity planning issues

such as server load balancing, number of adapter processing threads, maximum

and minimum throughputs, and tolerance thresholds.

Such issues are unique to every customer deployment and must be measured

within or close to the exact environment where the adapter is to be deployed. You

should contact your IBM services representative to discuss the configuration of

your deployment site, and for details on planning and evaluating these kinds of

metrics, given your specific configuration.

Audience

This document is for consultants, developers, and system administrators who

support and manage the WebSphere business integration product at customer sites.

Prerequisites for this document

Users of this document should be familiar with the WebSphere business integration

system, with business object and collaboration development, and with the

WebSphere Integration Message Broker application.

Related documents

The complete set of documentation available with this product describes the

features and components common to all WebSphere Business Integration Adapters

installations, and includes reference material on specific components.

You can install related documentation from the following sites:

v For general adapter information; for using adapters with WebSphere message

brokers (WebSphere MQ Integrator, WebSphere MQ Integrator Broker,

WebSphere Business Integration Message Broker); and for using adapters with

WebSphere Application Server, see the IBM WebSphere Business Integration

Adapters information center:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

v For using adapters with WebSphere InterChange Server, see the IBM WebSphere

InterChange Server information centers:

© Copyright IBM Corp. 2000, 2005 v

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

http://www.ibm.com/websphere/integration/wicserver/infocenter

http://www.ibm.com/websphere/integration/wbicollaborations/infocenter

v For more information about WebSphere message brokers:

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

v For more information about WebSphere Application Server:

http://www.ibm.com/software/webservers/appserv/library.html

These sites contain simple directions for downloading, installing, and viewing the

documentation.

Typographic conventions

This document uses the following conventions:

 courier font Indicates a literal value, such as a command name, filename,

information that you type, or information that the system

prints on the screen.

bold Indicates a new term the first time that it appears.

italic, italic Indicates a variable name or a cross-reference.

blue outline A blue outline, which is visible only when you view the

manual online, indicates a cross-reference hyperlink. Click

inside the outline to jump to the object of the reference.

{} In a syntax line, curly braces surround a set of options from

which you must choose one and only one.

[] In a syntax line, square brackets surround an optional

parameter.

... In a syntax line, ellipses indicate a repetition of the previous

parameter. For example, option[,...] means that you can

enter multiple, comma-separated options.

< > In a naming convention, angle brackets surround individual

elements of a name to distinguish them from each other, as

in <server_name><connector_name>tmp.log.

/, \ In this document, backslashes (\) are used as the convention

for directory paths. For UNIX

(R) installations, substitute

slashes (/) for backslashes. All product pathnames are

relative to the directory where the product is installed on

your system.

%text% and $text Text within percent (%) signs indicates the value of the

Windows

(R)text system variable or user variable. The

equivalent notation in a UNIX environment is $text,

indicating the value of the text UNIX environment variable.

ProductDir Represents the directory where the product is installed.

vi Adapter for WebSphere Message Broker User Guide

http://www.ibm.com/websphere/integration/wicserver/infocenter
http://www.ibm.com/websphere/integration/wbicollaborations/infocenter
http://www.ibm.com/software/integration/mqfamily/library/manualsa/
http://www.ibm.com/software/webservers/appserv/library.html

New in this release

New in release 2.8.x

This release adds support for the AIX 5.3 platform. For further information on this

and other hardware and software requirements, see

http://www.ibm.com/support/docview.wss?uid=swg27006249. Note that

information provided at this URL replaces that in found in the ″Broker

compatibility″ and ″Adapter platforms″ sections, which have been deleted from

this guide as of this release.

The adapter now supports IBM Tivoli License Manager (ITLM).

The adapter can now use multiple threads for event polling. You specify the

maximum number of threads in the WorkerThreadCount property in Connector

Configurator. For more information, see “WorkerThreadCount” on page 94.

A new connector-specific property, DataHandlerPoolSize, allows you create an

instance pool for each data handler type. This enhancement enables the adapter to

pool the instances of configured data handlers for reuse later. For further

information, see “DataHandlerPoolSize” on page 92.

You can now configure the adapter to invoke custom security exits using two new

connector-specific properties, SecurityExitClassName and SecurityExitInitParam.

For further information, see “SecurityExitClassName” on page 93 and

“SecurityExitInitParam” on page 93.

The adapter’s data encoding, which supports text , now also supports binary and

JMS object message types. You specify text (the default data encoding), binary, or

object in the DataEncoding property of the meta-object. For further information,

see “DataEncoding for binary and object messages” on page 50.

The adapter now has limited support for processing of bidirectional (bi-di) script

data for the Arabic and Hebrew languages when the adapter is run in a Windows

environment. For further information see “Locale-dependent data” on page 12.

New in release 2.7.x

Updated in September 2004. The release of this document for adapter version 2.7.x

contains the following new or corrected information.

This release adds support for the following platforms and platform updates:

v Solaris 8 (2.8) with Solaris Patch Cluster dated February 11, 2004 or later

v Solaris 9 (2.9) with Solaris Patch Cluster dated February 11, 2004 or later. This

adapter supports 32-bit JVM on a 64-bit platform

v AIX

(R) 5.1 with Maintenance Level 4

v AIX 5.2 with Maintenance Level 1. This adapter supports 32-bit JVM on a 64-bit

platform

v Microsoft(R) Windows 2000 (Professional, Server, or Advanced Server) with

Service Pack 4

v Microsoft Windows 2003 (Standard Edition or Enterprise Edition)

© Copyright IBM Corp. 2000, 2005 vii

http://www.ibm.com/support/docview.wss?uid=swg27006249

v Linux Red Hat AS 3.0 with Update 1, ES 3.0 with Update 1, and WS 3.0 with

Update 1

Note: The Tivoli(R) Monitoring for Transaction Performance (TMTP) component

of WebSphere Business Integration Adapter Framework V2.6 is not

supported on Linux Red Hat.

v SUSE Linux Standard Server x86 8.1 with SP3 and Enterprise Server x86 8.1 with

SP3

v HP-UX 11.i (11.11) with June 2003 GOLDBASE11i and June 2003 GOLDAPPS11i

bundles

v JavaTM compiler IBM JDK 1.4.2 for Windows 2000 for compiling custom adapters

The connector-specific property ReplyToQueuePollFrequency has been

documented.

This release supports use of tracing level 5 to dump the printStackTrace() on

exceptions caught by the adapter.

New in release 2.6.x

Two connector-specific properties have been added: EnableMessageProducerCache

and SessionPoolSizeForRequests. For more information, see Appendix B,

“Connector-specific properties for this adapter,” on page 89.

The adapter has been rebranded from the Adapter for WebSphere MQ Integrator

Broker to the Adapter for WebSphere Integration Message Broker.

As of version 2.6.x, the adapter is not supported on Solaris 7, so references to that

platform version have been deleted from this guide.

New in release 2.5.x

The connector now runs on the following platforms:

v Microsoft Windows 2000

v Solaris 7, 8 or AIX 5.1, 5.2 or HP UX 11.i

Beginning with the 2.5.0 version, the adapter for WebSphere MQ is no longer

supported on Microsoft Windows NT(R).

Adapter installation information has been moved from this guide. See Chapter 2

for the new location of that information.

New in release 2.4.x

The adapter can now use WebSphere Application Server as an integration broker.

For further information on this and other hardware and software requirements, see

http://www.ibm.com/support/docview.wss?uid=swg27006249.

The connector now runs on the following platforms:

v Microsoft Windows NT 4.0 Service Pack 6A or Windows 2000

v Solaris 7, 8 or AIX 5.1, 5.2 or HP UX 11.i

viii Adapter for WebSphere Message Broker User Guide

http://www.ibm.com/support/docview.wss?uid=swg27006249

New in release 2.3.x

Updated in March, 2003. The ″CrossWorlds(R)″ name is no longer used to describe

an entire system or to modify the names of components or tools, which are

otherwise mostly the same as before. For example ″CrossWorlds System Manager″

is now ″System Manager,″ and ″CrossWorlds InterChange Server″ is now

″WebSphere InterChange Server.″

You can now associate a data handler with an input queue. For further

information, see “Overview of mapping data handlers to input queues” on page

52.

The adapter now supports the WebSphere MQ Event Broker as well as the

WebSphere MQ Integrator Broker and the WebSphere InterChange Server

integration brokers.

The guaranteed event delivery feature has been enhanced. For further information,

see “Guaranteeing event delivery” on page 36.

New in release 2.2.x

The InProgress queue is no longer required and may be disabled.

The connector supports interoperability with applications via MQSeries(R) 5.1, 5.2,

and 5.3. For more information, see “Adapter dependencies” on page 12.

The connector now has a UseDefaults property for business object processing. For

more information, see “UseDefaults” on page 94.

The connector can now apply a default verb when the data handler does not

explicitly assign one to a business object. For more information, see “DefaultVerb”

on page 92.

The ReplyToQueue can now be dictated via the dynamic child meta-object rather

than by the ReplyToQueue connector property. For more information see “JMS

headers and dynamic child meta-object attributes” on page 55.

You can use a message selector to identify, filter and otherwise control how the

adapter identifies the response message for a given request. This JMS capability

applies to synchronous request processing only. For more information, see

“Synchronous delivery” on page 5.

New in release 2.1.x

The connector has been internationalized. For more information, see “Task

roadmap” on page 1 and Appendix A, “Standard configuration properties for

connectors,” on page 65.

This guide provides information about using this adapter with InterChange Server.

Note: To use the guaranteed event delivery feature, you must install release 4.1.1.2

of InterChange Server.

New in this release ix

New in release 1.5.x

The IBM WebSphere Business Integration Adapter for MQ Integrator includes the

connector for MQ Integrator. This adapter operates with the WebSphere

InterChange Server (ICS) integration broker. An integration broker, which is an

application that performs integration of heterogeneous sets of applications,

provides services that include data routing. The adapter includes:

v An application component specific to MQ Integrator

v Sample business objects

v IBM WebSphere Adapter Framework, which consists of:

– Connector Framework

– Development tools (including Business Object Designer and IBM CrossWorlds

System Manager)

– APIs (including CDK)

This manual provides information about using this adapter with InterChange

Server.

Important: Because the connector has not been internationalized, do not run it

against InterChange Server version 4.1.1 if you cannot guarantee that

only ISO Latin-1 data will be processed.

The connector has been enabled for the IBM CrossWorlds 4.1.x system.

New in release 1.4.x

In the 1.4.x release of this document, minor changes were made to fix defects and

to provide compatibility with IBM CrossWorlds infrastructure release version 4.0.0.

New in release 1.3.x

The 1.3.x release of this document contains information for the following new

features and product enhancements:

v Support for synchronous request and response handling to confirm Create,

Update and Delete operations.

v Support for Retrieve, Retrieve By Content, and Exist operations.

v Full archiving of messages, including successfully processed and unsubscribed

messages as well as those containing errors.

v Enhanced capability to assign the same message format to more than one

business object.

v The connector can now identify local queues without requiring a fully-qualified

URI. Accordingly, the ″URI″ suffix is no longer part of the following connector

properties: InputQueueURI, InProgressQueueURI, UnsubscribedURI, and

ErrorQueueURI.

v Additional default conversion properties in the connector meta-object.

Accordingly, the connector property DefaultOutputQueueURI has been removed.

x Adapter for WebSphere Message Broker User Guide

Chapter 1. Overview

v “Task roadmap”

v “Terminology”

v “Overview of the adapter environment” on page 3

This chapter provides an overview, explaining terms you need to know and

describing adapter processing. It is important that you understand the adapter

before installing, configuring, and using it.

Task roadmap

To use the Adapter for WebSphere Business Integration Message Broker, you must

perform the tasks described in Table 1.

 Table 1. Using the adapter: task roadmap

Task Associated procedure(s) (see...) For more information (see...)

Installing the

connector

Chapter 2, “Installing the

connector,” on page 11

Installing WebSphere Business

Integration Adapters

Configuring business

and meta- objects

Chapter 5, “Creating objects,” on

page 43

Business Object Development

Guide

Configuring a data

handler

Chapter 6, “Configuring a data

handler,” on page 59

Data Handler Guide

Configuring the

connector

Chapter 3, “Configuring the

connector,” on page 17

Appendix A, “Standard

configuration properties for

connectors,” on page

65,Appendix B,

“Connector-specific properties

for this adapter,” on page 89

Connector Development Guide

Running the

connector

Chapter 4, “Running the

connector,” on page 37

Troubleshooting the

connector

Chapter 7, “Troubleshooting,” on

page 63

Running the tutorial Appendix C, “Tutorial,” on page 95

Terminology

To understand the adapter, you must understand these terms:

adapter

The component in the WebSphere business integration system that

provides components to support communication between an integration

broker and either an application or a technology. An adapter always

includes a connector, message files, and configuration tools. It can also

include an Object Discovery Agent (ODA). Some adapters also may require

a data handler.

adapter framework

The software that IBM provides to configure and run an adapter. The

runtime components of the adapter framework include the Java runtime

environment, the connector framework, and the Object Discovery Agent

© Copyright IBM Corp. 2000, 2005 1

(ODA) runtime. This connector framework includes the connector libraries

(C++ and Java) needed to develop new connectors. The ODA runtime

includes the library in the Object Development Kit (ODK) needed to

develop new ODAs. The configuration components include the following

tools:

v Business Object Designer,

v Connector Configurator,

v Log Viewer,

v System Manager,

v Adapter Monitor,

v Test Connector

v and, optionally, any Object Discovery Agents (ODAs) associated with an

adapter.

Adapter Development Kit (ADK)

A development kit that provides some samples for adapter development,

including sample connectors and Object Discovery Agents (ODAs).

connector

The component of an adapter that uses business objects to send

information about an event to an integration broker (event notification) or

receive information about a request from the integration broker (request

processing). A connector consists of the connector framework and the

connector’s application-specific component.

connector framework

The component of a connector that manages interactions between a

connector’s application-specific component and the integration broker. This

component provides all required management services and retrieves the

meta-data that the connector requires from the repository. The connector

framework, whose code is common to all connectors, is written in Java and

includes a C++ extension to support application-specific components

written in C++.

connector controller

The subcomponent of the connector framework that interacts with

collaborations. A connector controller runs within InterChange Server and

initiates mapping between application-specific and generic business objects,

and manages collaboration subscriptions to business object definitions.

integration broker

The component in the WebSphere business integration system that

integrates data among heterogeneous applications. An integration broker

typically provides a variety of services that include: the ability to route

data, a repository of rules that govern the integration process, connectivity

to a variety of applications, and administrative capabilities that facilitate

integration. Examples of integration brokers: the WebSphere Business

Integration Message Broker; WebSphere Business InterChange Server.

WebSphere business integration system

An enterprise solution that moves information among diverse sources to

perform business exchanges, and that processes and routes information

among disparate applications in the enterprise environment. The business

integration system consists of an integration broker and one or more

adapters.

WebSphere Business Integration Message Broker, Version 2.2

A message broker product that transforms and routes messages between

2 Adapter for WebSphere Message Broker User Guide

WebSphere MQ queues. The technology enables applications to

communicate asynchronously by delivering messages to and receiving

messages from potentially remote queues. A major change with WebSphere

Integration Message Broker is the addition of message flows that add the

ability to format, store, and route messages based on user-defined logic.

Overview of the adapter environment

Figure 1 shows the adapter, its components, and their relationships within the

WebSphere business integration system. The illustration shows a typical

configuration. The adapter is configured to exchange messages with a legacy

application whose messages flow through the WebSphere Business Integration

Message Broker, and to exchange business objects with InterChange Server. The

connector is metadata-driven. Message routing and format conversion is initiated

by an event polling technique. The connector uses an MQ implementation of the

JavaTM Message Service (JMS), an API for accessing enterprise-messaging systems.

The connector allows collaborations to asynchronously exchange business objects

with applications that issue or receive WebSphere MQ messages when changes to

data occur.

The connector retrieves WebSphere MQ messages from queues, calls data handlers

to convert messages to their corresponding business objects, and then delivers

them to collaborations. In the opposite direction, the connector receives business

objects from collaborations, converts them into WebSphere MQ messages using the

same data handler, and then delivers the message to a WebSphere MQ queue.

Recommendation: You can configure the connector to use any data handler when

processing messages. However, since the WebSphere Integration Message Broker

can optionally convert any parsable message into XML format, it is highly

recommended that you configure the connector to deliver all messages in XML.

This means implementing the XML data handler for processing. For an overview

and procedure, see “Overview of configuring the data handler” on page 59.

WebSphere Business Integration
Message Broker

Node Node

Message flows

Legacy
A out
queue

Inbound
queue

Optional:
convert to

XML

Adapter for
WebSphere
Business
Integration
Message
Broker

Legacy A
in queue

Legacy

message
Legacy app

'A'
Legacy

message

Msg
router

Optional:
convert

from XML

message
Outbound

queueNode

P
ol

l f
or

 m
es

sa
ge

message Data
handler

busObj

busObj

InterC
hangeS

erver
integration broker

polling thread

Data
handler

Figure 1. Adapter in the WebSphere Business Integration environment

Chapter 1. Overview 3

Overview of adapter processing

The adapter makes use of IBM’s WebSphere MQ implementation of the Java

Message Service (JMS). The JMS is an open-standard API for accessing

enterprise-messaging systems. It is designed to allow business applications to

asynchronously send and receive business data and events.

The adapter does not directly interact with WebSphere Business Integration

Message Broker. As part of configuring the connector, you set up WebSphere MQ

queues as the input and output nodes for the WebSphere Business Integration

Message Broker message flows. The adapter communicates with a WebSphere MQ

queue manager that hosts the message broker to which the message flows are

deployed.

Message request

Figure 2 illustrates a message request communication for the connector, the

adapter’s runtime component. When the doVerbFor() method receives a business

object from a collaboration, the connector passes the business object to the data

handler. The data handler converts the business object into a suitable message and

issues it to a queue. There, the JMS layer makes the appropriate calls to open a

queue session and route the message. You can configure the connector to issue

requests asynchronously (fire and forget). Or you can configure connector

properties to enable synchronous request processing.

The connector processes business objects passed to it by a collaboration based on

the verb for each business object. The connector uses business object handlers and

the doVerbFor() method to process the business objects that the connector

supports. The connector supports the following business object verbs:

v Create

v Update

v Delete

v Retrieve

v Exists

v Retrieve by Content

Request
message Request BO

Adapter for
WebSphere
Integration
Message
Broker

Data
handler

Integration
brokerOutput queue

via JMS service
provider

doVerbFor()

Figure 2. Message request processing

4 Adapter for WebSphere Message Broker User Guide

Note: Business objects with Create, Update, and Delete verbs can be issued either

asynchronously or synchronously. The default mode is asynchronous. The

connector does not support asynchronous delivery for business objects with

the Retrieve, Exists, or Retrieve by Content verbs. Accordingly, for Retrieve,

Exists, or Retrieve by Content verbs, the default mode is synchronous.

Create, update, and delete

Processing of business objects with create, update and delete verbs depends on

whether the objects are issued asynchronously or synchronously.

Asynchronous delivery: This is the default delivery mode for business objects

with Create, Update, and Delete verbs. A message is created from the business

object using a data handler and then written to the output queue. If the message is

delivered, the connector returns SUCCESS, else FAIL.

Note: The connector has no way of verifying whether the message is received or if

action has been taken.

Synchronous delivery: If a ReplyToQueue has been defined in the

connector-specific properties and a responseTimeout exists in the meta-object

conversion properties for the business object, the connector issues a request in

synchronous mode. The connector then waits for a response to verify that

appropriate action was taken by the receiving application.

For WebSphere Integration Message Broker, the connector initially issues a message

with a header as shown in Table 2.

 Table 2. Request message descriptor header (MQMD)

Field Description Value

Format Format name Output format as defined in the meta-object conversion properties and

truncated to 8 characters to meet IBM requirements (example: MQSTR)

MsgType Message type MQMT_DATAGRAM*

Report Options for report

message requested.

When a response message is expected, this field is populated as

follows:MQRO_PAN* to indicate that a positive-action report is required if

processing is successful.MQRO_NAN* to indicate that a negative-action report is

required if processing fails.MQRO_COPY_MSG_ID_TO_CORREL_ID* to indicate that

the correlation ID of the report generated should equal the message ID of the

request originally issued.

ReplyToQ Name of reply queue When a response message is expected this field is populated with the value of

connector property ReplyToQueue.

Persistence Message persistence MQPER_PERSISTENT*

Expiry Message lifetime MQEI_UNLIMITED*

* Indicates constant defined by IBM.

The message header described in Table 2 is followed by the message body. The

message body is a business object that has been serialized using the data handler.

The Report field is set to indicate that both positive and negative action reports are

expected from the receiving application. The thread that issued the message waits

for a response message that indicates whether the receiving application was able to

process the request.

Chapter 1. Overview 5

When an application receives a synchronous request from the connector, it

processes the business object and issues a report message as described in 3, 4, and

5.

 Table 3. Response message descriptor header (MQMD)

Field Description Value

Format Format name Input format of busObj as defined in the conversion properties.

MsgType Message type MQMT_REPORT*

*Indicates constant defined by IBM.

 Table 4. Population of response message

Verb Feedback field Message body

Create, update, or

delete

SUCCESS

VALCHANGE

(Optional) A serialized business object

reflecting changes.

VALDUPES

FAIL

(Optional) An error message.

 Table 5. WebSphere Integration Message Broker feedback codes and WebSphere business integration system

response values

WebSphere Integration Message

Broker feedback code Equivalent WebSphere business integration system response*

MQFB_PAN or MQFB_APPL_FIRST SUCCESS

MQFB_NAN or MQFB_APPL_FIRST + 1 FAIL

MQFB_APPL_FIRST + 2 VALCHANGE

MQFB_APPL_FIRST + 3 VALDUPES

MQFB_APPL_FIRST + 4 MULTIPLE_HITS

MQFB_APPL_FIRST + 5 FAIL_RETRIEVE_BY_CONTENT

MQFB_APPL_FIRST + 6 BO_DOES_NOT_EXIST

MQFB_APPL_FIRST + 7 UNABLE_TO_LOGIN (results in immediate termination of connector agent)

MQFB_APPL_FIRST + 8 APP_RESPONSE_TIMEOUT

*See the Connector Development Guide for details.

If the business object can be processed, the application creates a report message

with the feedback field set to MQFB_PAN (or a specific WebSphere business

integration system value). Optionally the application populates the message body

with a serialized business object containing any changes. If the business object

cannot be processed, the application creates a report message with the feedback

field set to MQFB_NAN (or a specific WebSphere business integration system value)

and then optionally includes an error message in the message body. In either case,

the application sets the correlationID field of the message to the messageID of the

connector message and issues it to the queue specified by the ReplyToQueue field.

Upon retrieval of a response message, the connector by default matches the

correlationID of the response to the messageID of a request message. The

connector then notifies the thread that issued the request. Depending on the

feedback field of the response, the connector either expects a business object or an

6 Adapter for WebSphere Message Broker User Guide

error message in the message body. If a business object was expected but the

message body is not populated, the connector simply returns the same business

object that was originally issued by InterChange Server for the Request operation.

If an error message was expected but the message body is not populated, a generic

error message will be returned to InterChange Server along with the response

code. However, you can also use a message selector to identify, filter and otherwise

control how the adapter identifies the response message for a given request. This

message selector capability is a JMS feature. It applies to synchronous request

processing only and is described below.

Retrieve, exists and retrieve by content: Business objects with the Retrieve,

Exists, and Retrieve By Content verbs support synchronous delivery only. The

connector processes business objects with these verbs as it does for the

synchronous delivery defined for create, update and delete. However, when using

Retrieve, Exists, and Retrieve By Content verbs, the responseTimeout and

replyToQueue are required. Furthermore, for Retrieve By Content and Retrieve

verbs, the message body must be populated with a serialized business object to

complete the transaction.

Table 6 shows the response messages for these verbs.

 Table 6. Population of response message

Verb Feedback field Message body

Retrieve or

RetrieveByContent

FAIL

FAIL_RETRIEVE_BY_CONTENT

(Optional) An error message.

MULTIPLE_HITS SUCCESS A serialized business object.

Exist FAIL (Optional) An error message.

SUCCESS

Event processing

Figure 3 illustrates connector event processing. The pollForEvents() method

retrieves the next applicable message from the input queue. The message is staged

in the in-progress queue where it remains until processing is complete. Using the

connector meta-object, the connector first determines whether the message type is

supported. If so, the connector passes the message to the configured data handler,

which converts the message into a business object. The verb that is set reflects the

conversion properties established for the message type. The connector then

determines whether the business object is subscribed to by a collaboration. If so,

the gotApplEvents() method delivers the business object to the integration broker,

and the message is removed from the in-progress queue.

For event notification, the connector detects events written to a queue by an

application rather than a database trigger. An event occurs when an application or

other MQ-capable software generates WebSphere MQ messages and stores them on

the MQ message queue.

Chapter 1. Overview 7

Retrieval

The connector uses the pollForEvents() method to poll the MQ queue at regular

intervals for messages. When the connector finds a message, it retrieves it from the

MQ queue and examines it to determine its format. If the format has been defined

in the connector meta-object, the connector uses the data handler to generate an

appropriate business object with a verb. See “Overview of error handling” on page

40 for event failure scenarios.

The connector processes messages by first opening a transactional session to the

input queue. This transactional approach allows for a small chance that a business

object could be delivered to a collaboration twice due to the connector successfully

submitting the business object but failing to commit the transaction in the queue.

To avoid this problem, the connector moves all messages to an in-progress queue.

There, the message is held until processing is complete. If the connector shuts

down unexpectedly during processing, the message remains in the in-progress

queue instead of being reinstated to the original input queue.

Note: Transactional sessions with a JMS service provider require that every

requested action on a queue be performed and committed before events are

removed from the queue. Accordingly, when the connector retrieves a

message from the queue, it does not commit to the retrieval until three

things occur: 1) The message has been converted to a business object; 2) the

business object is delivered to InterChange Server by the gotApplEvents()

method, and 3) a return value is received.

Recovery

Upon initialization, the connector checks the in-progress queue for messages that

have not been completely processed, presumably due to a connector shutdown.

The connector configuration property InDoubtEvents allows you to specify one of

four options for handling recovery of such messages: fail on startup, reprocess,

ignore, or log error.

Fail on startup: With the fail on startup option, if the connector finds messages in

the in-progress queue during initialization, it logs an error and immediately shuts

Event
message

In-progress
queue

Event BOAdapter for
WebSphere
Integration
Message
Broker

Data
handler

Integration
broker

pollForEvents()
gotApplEvents()

Input queue via
JMS service
provider

Figure 3. Application-connector communication method: Message return

8 Adapter for WebSphere Message Broker User Guide

down. It is the responsibility of the user or system administrator to examine the

message and take appropriate action, either to delete these messages entirely or

move them to a different queue.

Reprocess: With the reprocessing option, if the connector finds any messages in

the in-progress queue during initialization, it processes these messages first during

subsequent polls. When all messages in the in-progress queue have been

processed, the connector begins processing messages from the input queue.

Ignore: With the ignore option, if the connector finds any messages in the

in-progress queue during initialization, the connector ignores them, but does not

shut down.

Log error: With the log error option, if the connector finds any messages in the

in-progress queue during initialization, it logs an error but does not shut down.

Archiving

If the connector-specific property ArchiveQueue is specified and identifies a valid

queue, the connector places copies of all successfully processed messages in the

archive queue. If ArchiveQueue is undefined, messages are discarded after

processing. For more information on archiving unsubscribed or erroneous

messages, see “Overview of error handling” on page 40.

Note: By JMS conventions, a retrieved message cannot be issued immediately to

another queue. To enable archiving and re-delivery of messages, the

connector first produces a second message that duplicates the body and the

header (as applicable) of the original. To avoid conflicts with the JMS service

provider, only JMS-required fields are duplicated. Accordingly, the format

field is the only additional message property that is copied for messages

that are archived or re-delivered.

Chapter 1. Overview 9

10 Adapter for WebSphere Message Broker User Guide

Chapter 2. Installing the connector

v “Adapter environment”

v “Overview of installation tasks”

v “Verifying installation” on page 13

This chapter describes how to install and configure the connector and how to

configure the message flows to work with the connector.

Overview of installation tasks

To install the adapter for WebSphere Integration Message Broker, you must

perform the following tasks:

v Install the integration broker This task, which includes installing the

WebSphere business integration system and starting the integration broker, is

described in the installation documentation for your broker and operating

system. For further information on brokers and installation, see

http://www.ibm.com/support/docview.wss?uid=swg27006249.

v Install the adapter and related files This task includes installing the files for the

adapter from the software package onto your system. See “Installing the adapter

and related files” on page 13.

v Install the adapter and adapter framework only For further information, see the

Installing WebSphere Business Integration Adapters guide located in the WebSphere

Business Integration Adapters information center at the following

site:http://www.ibm.com/websphere/integration/wbiadapters/infocenter

Before installing the adapter, you must understand the adapter environment. For

further information, see “Adapter environment.”

In this chapter

The tasks described in this chapter are as follows:

 Table 7. Installing the adapter: task roadmap

Task Associated procedure(s) (see...) For more information (see...)

Installing the adapter “Installing the adapter and related

files” on page 13

Installing WebSphere Business

Integration Adapters

Verifying installation “Verifying installation” on page 13

Adapter environment

Before installing, configuring, and using the adapter, you must understand its

environmental requirements:

v “Prerequisites” on page 12

v “Adapter dependencies” on page 12

v “Locale-dependent data” on page 12

v “Common Event Infrastructure” on page 12

v “Application Response Measurement” on page 13

© Copyright IBM Corp. 2000, 2005 11

http://www.ibm.com/support/docview.wss?uid=swg27006249
http://www.ibm.com/websphere/integration/wbiadapters/infocenter

Prerequisites

For information on broker compatibility, supported platforms, and more, see

http://www.ibm.com/support/docview.wss?uid=swg27006249.

Adapter dependencies

The adapter has the following dependencies:

v The connector supports interoperability with applications via WebSphere MQ, or

WebSphere MQ 5.1, 5.2,1 and 5.3. Accordingly, you must have one of these

software releases installed.

Note: The adapter does not support Secure Socket Layers (SSL) in WebSphere

MQ 5.3. For the WebSphere MQ software version appropriate to adapter

framework-integration broker communication, see the Installation Guide

for your platform (Windows/Unix).

v You must have the IBM WebSphere MQ Java client libraries (WebSphere MQ

classes for Java and JMS) version 5.x.

Locale-dependent data

The connector has been internationalized so that it can support double-byte

character sets, and deliver message text in the specified language. When the

connector transfers data from a location that uses one character code to a location

that uses a different code set, it performs character conversion to preserves the

meaning of the data.

This adapter supports the processing of bidirectional (bi-di) script data for the

Arabic and Hebrew languages when the adapter is run in a Windows environment.

Bidirectional processing is not supported in non-Windows environments. To use

the bidirectional capacity, you must configure the bidirectional standard properties.

For more information refer to the standard configuration properties for connectors

in Appendix A, “Standard configuration properties for connectors,” on page 65.

The Java runtime environment within the Java Virtual Machine (JVM) represents

data in the Unicode character code set. Unicode contains encoding for characters in

most known character code sets (both single-byte and multibyte). Most

components in the WebSphere business integration system are written in Java.

Therefore, when data is transferred between most integration components, there is

no need for character conversion.

To log error and informational messages in the appropriate language and for the

appropriate country or territory, configure the Locale standard configuration

property for your environment. For more information on configuration properties,

see Appendix A, “Standard configuration properties for connectors,” on page 65.

Common Event Infrastructure

This adapter is compatible with Common Event Infrastructure from IBM, a

standard for event management that permits interoperability with other IBM

WebSphere event-producing applications. If Common Event Infrastructure support

is enabled, events produced by the adapter can be received (or used) by another

Common Event Infrastructure-compatible application.

1. If your environment implements the convert-on-the-get methodology for character-set conversions you must download the latest

MA88 (JMS classes) from IBM. The patch level should be at least 5.2.2 (for WebSphere MQ version 5.2). Doing so may avoid

unsupported encoding errors.

12 Adapter for WebSphere Message Broker User Guide

http://www.ibm.com/support/docview.wss?uid=swg27006249

For more information, see the Application Response Management appendix in this

guide.

Application Response Measurement

This adapter is compatible with the Application Response Measurement (ARM)

application programming interface (API), an API that enables applications to be

managed for availability, service level agreements, and capacity planning. An

ARM-instrumented application can participate in IBM Tivoli(R) Monitoring for

Transaction Performance, enabling collection and review of data concerning

transaction metrics.

For more information, see the Application Response Measurement appendix in this

guide.

Installing the adapter and related files

Before you begin: Review the requirements, dependencies, and broker

compatibilities for the adapter. For further information see “Adapter environment”

on page 11.

For information on installing WebSphere Business Integration adapter products,

refer to the Installing WebSphere Business Integration Adapters guide located in the

WebSphere Business Integration Adapters Infocenter at the following site:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

Verifying installation

The sections below describe the paths and filenames of the product after

installation and how to verify your adapter installation.

Overview of verifying installation on a Windows system

Before you begin: Install the adapter. The Installer copies the standard files

associated with the adapter into your system. The utility installs the connector into

the ProductDir\connectors\WebSphereBIMessageBroker (WBIMB) directory, and

adds a shortcut for the connector to the Start menu.

Steps for verifying installation on a Windows system

Perform the following step to verify adapter installation on a Windows system:

v Change to the directory where you installed the adapter ProductDir\ and

compare the contents to those listed in Table 8.

Table 8 describes the Windows file structure used by the adapter, and shows the

files that are automatically installed when you choose to install the adapter

through Installer. Note, however, that the

WebSphereBIMessageBrokerConnectorTemplate file is not automatically installed

into the repository\WebSphereBIMessageBroker directory.

 Table 8. Installed Windows file structure for the adapter

Subdirectory of ProductDir Description

connectors\WebSphereBIMessageBroker\CWWebSphereBIMessageBroker.jar Contains classes used by the

WebSphere Business Integration

Message Broker connector agent only

connectors\WebSphereBIMessageBroker\start_WebSphereBIMessageBroker.bat The startup script for the connector

Chapter 2. Installing the connector 13

Table 8. Installed Windows file structure for the adapter (continued)

Subdirectory of ProductDir Description

connectors\messages\WebSphereBIMessageBrokerConnector.txt Message file for the connector

bin\Data\App\WebSphereBIMessageBrokerConnectorTemplate Template file for the adapter definition

connectors\WebSphereBIMessageBroker\samples\LegacyItem

\WebSphereBIMessageBrokerConnector.cfg

Sample WBIMB adapter configuration

file

connectors\WebSphereBIMessageBroker\samples\LegacyItem\PortConnector.cfg Sample port connector configuration

file

connectors\WebSphereBIMessageBroker\samples\LegacyItem

\Sample_WebSphereBIMessageBroker_LegacyItem.xsd

Sample business object repository file

connectors\WebSphereBIMessageBroker\samples\LegacyItem\

Sample_WebSphereBIMessageBroker_LegacyItem_XMLDoc.xsd

Sample business object repository file

connectors\WebSphereBIMessageBroker\samples\LegacyItem\

Sample_WebSphereBIMessageBroker_MO_Config.xsd

Sample connector agent meta-object

connectors\WebSphereBIMessageBroker\samples\LegacyItem\

Sample_WebSphereBIMessageBroker_MO_DataHandler.xsd

Sample data handler top level

meta-object

connectors\WebSphereBIMessageBroker\samples\LegacyItem\

Sample_WebSphereBIMessageBroker_MO_DataHandler_XMLConfig.xsd

Sample meta-object for xml

datahandler configuration

connectors\WebSphereBIMessageBroker\samples\LegacyItem\LegacyItem.txt Sample input file for using the

samples

connectors\WebSphereBIMessageBroker\samples\LegacyItem\mqsiput.exe Sample utility for WebSphere MQ to

use with the samples

connectors\WebSphereBIMessageBroker\samples\LegacyItem

\Sample_WebSphereBIMessageBroker_Project\.project

connectors\WebSphereBIMessageBroker\samples\LegacyItem

\Sample_WebSphereBIMessageBroker_Project\LocalDomain.configmgr

connectors\WebSphereBIMessageBroker\samples\LegacyItem

\Sample_WBIMB_Project\Sample_WebSphereBIMessageBroker_bar.bar

Sample WBIMB project

connectors\WebSphereBIMessageBroker\samples\LegacyItem \MSG_FLOW_RPOJECT\.project

connectors\WebSphereBIMessageBroker\samples\LegacyItem \MSG_FLOW_RPOJECT\

AdjustFormat.esql

connectors\WebSphereBIMessageBroker\samples\LegacyItem \MSG_FLOW_RPOJECT\

Check_Color.esql

connectors\WebSphereBIMessageBroker\samples\LegacyItem \MSG_FLOW_RPOJECT\

From_LegacyApplication_to_WBI.msgflow

connectors\WebSphereBIMessageBroker\samples\LegacyItem \MSG_FLOW_RPOJECT\

From_WBI_to_LegacyApplication.msgflow

connectors\WebSphereBIMessageBroker\samples\LegacyItem \MSG_FLOW_RPOJECT\

Loopback.msgflow

Sample Message Flow project

Note: All product pathnames are relative to the directory where the product is

installed on your system.

Overview of verifying installation on a UNIX system

Before you begin: Install the adapter. The Installer copies the standard files

associated with the adapter into your system. The utility installs the connector

agent into the ProductDir/connectors/WBIMB directory.

Steps for verifying installation on a UNIX system

Perform the following step to verify adapter installation on a UNIX system:

v Change to the directory where you installed the adapter ProductDir/ and

compare the contents to those listed in Table 9.

Table 9 describes the UNIX file structure used by the adapter, and shows the files

that are automatically installed when you choose to install the adapter through

Installer. Note that the following files are not automatically installed in the

appropriate places on UNIX systems:

v WebSphereBIMessageBrokerConnectorTemplate

14 Adapter for WebSphere Message Broker User Guide

v mqsiput.exe

 Table 9. Installed UNIX file structure for the connector

Subdirectory of ProductDir Description

connectors/WebSphereBIMessageBroker/CWWebSphereBIMessageBroker.jar Contains classes used by the

WebSphere Business Integration

Message Broker connector agent only

connectors/WebSphereBIMessageBroker/start_WebSphereBIMessageBroker.sh System startup script for the connector.

connectors/messages/WebSphereBIMessageBrokerConnector.txt Message file for the connector

bin/Data/App/WebSphereBIMessageBrokerConnectorTemplate Template file for the adapter definition

connectors/WebSphereBIMessageBroker/samples/LegacyItem

/WebSphereBIMessageBrokerConnector.cfg

Sample WBIMB adapter configuration

file

connectors/WebSphereBIMessageBroker/samples/LegacyItem/PortConnector.cfg Sample port connector configuration

file

connectors/WebSphereBIMessageBroker/samples/LegacyItem/

Sample_WebSphereBIMessageBroker_LegacyItem.xsd

Sample business object repository file

connectors/WebSphereBIMessageBroker/samples/LegacyItem/

Sample_WebSphereBIMessageBroker_LegacyItem_XMLDoc.xsd

Sample business object repository file

connectors/WebSphereBIMessageBroker/samples/LegacyItem/

Sample_WebSphereBIMessageBroker_MO_Config.xsd

Sample connector agent meta-object

connectors/WebSphereBIMessageBroker/samples/LegacyItem/

Sample_WebSphereBIMessageBroker_MO_DataHandler.xsd

Sample datahandler top level

meta-object

connectors/WebSphereBIMessageBroker/samples/LegacyItem/

Sample_WebSphereBIMessageBroker_MO_DataHandler_XMLConfig.xsd

Sample meta-object for xml

datahandler configuration

connectors/WebSphereBIMessageBroker/samples/LegacyItem/LegacyItem.txt Sample input file for using the

samples

connectors/WebSphereBIMessageBroker/samples/LegacyItem/mqsiput.exe Sample utility for WebSphere MQ to

use with the samples

connectors/WebSphereBIMessageBroker/samples/LegacyItem/

Sample_WebSphereBIMessageBroker_Project/.project

connectors/WebSphereBIMessageBroker/samples/LegacyItem

/Sample_WebSphereBIMessageBroker_Project/LocalDomain.configmgr

connectors/WebSphereBIMessageBroker/samples/LegacyItem

/Sample_WebSphereBIMessageBroker_Project/Sample_WBIMB_bar.bar

Sample WBIMB project

connectors/WebSphereBIMessageBroker/samples/LegacyItem/MSG_FLOW_RPOJECT /.project

connectors/WebSphereBIMessageBroker/samples/LegacyItem/MSG_FLOW_RPOJECT\

AdjustFormat.esql

connectors/WebSphereBIMessageBroker/samples/LegacyItem/MSG_FLOW_RPOJECT/

Check_Color.esql

connectors/WebSphereBIMessageBroker/samples/LegacyItem/MSG_FLOW_RPOJECT/

From_LegacyApplication_to_WBI.msgflow

connectors/WebSphereBIMessageBroker/samples/LegacyItem/MSG_FLOW_RPOJECT/

From_WBI_to_LegacyApplication.msgflow

connectors/WebSphereBIMessageBroker/samples/LegacyItem/MSG_FLOW_RPOJECT/

Loopback.msgflow

Sample Message Flow project

Note: All product pathnames are relative to the directory where the product is

installed on your system.

Chapter 2. Installing the connector 15

16 Adapter for WebSphere Message Broker User Guide

Chapter 3. Configuring the connector

v “Overview of Connector Configurator”

v “Starting Connector Configurator” on page 18

v “Running Configurator from System Manager” on page 19

v “Creating a connector-specific property template” on page 19

v “Creating a new configuration file” on page 22

v “Using an existing file” on page 23

v “Completing a configuration file” on page 24

v “Setting the configuration file properties” on page 25

v “Saving your configuration file” on page 32

v “Changing a configuration file” on page 33

v “Completing the configuration” on page 33

v “Using Connector Configurator in a globalized environment” on page 33

v “Verifying a sample configuration” on page 34

v “Setting Queue Uniform Resource Identifiers (URI)” on page 34

v “Guaranteeing event delivery” on page 36

This chapter describes how to use Connector Configurator to set configuration

property values for your adapter.

Overview of Connector Configurator

Connector Configurator allows you to configure the connector component of your

adapter for use with these integration brokers:

v WebSphere InterChange Server (ICS)

v WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere

Business Integration Message Broker, collectively referred to as the WebSphere

Message Brokers (WMQI)

v WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and

the DB2 II standard properties (see the Notes column in the Standard Properties

appendix.)

You use Connector Configurator to:

v Create a connector-specific property template for configuring your connector.

v Create a connector configuration file; you must create one configuration file for

each connector you install.

v Set properties in a configuration file.

You may need to modify the default values that are set for properties in the

connector templates. You must also designate supported business object

definitions and, with ICS, maps for use with collaborations as well as specify

messaging, logging and tracing, and data handler parameters, as required.

The mode in which you run Connector Configurator, and the configuration file

type you use, may differ according to which integration broker you are running.

© Copyright IBM Corp. 2000, 2005 17

For example, if WMQI is your broker, you run Connector Configurator directly,

and not from within System Manager (see “Running Configurator in stand-alone

mode” on page 18).

Connector configuration properties include both standard configuration properties

(the properties that all connectors have) and connector-specific properties

(properties that are needed by the connector for a specific application or

technology).

Because standard properties are used by all connectors, you do not need to define

those properties from scratch; Connector Configurator incorporates them into your

configuration file as soon as you create the file. However, you do need to set the

value of each standard property in Connector Configurator.

The range of standard properties may not be the same for all brokers and all

configurations. Some properties are available only if other properties are given a

specific value. The Standard Properties window in Connector Configurator will

show the properties available for your particular configuration.

For connector-specific properties, however, you need first to define the properties

and then set their values. You do this by creating a connector-specific property

template for your particular adapter. There may already be a template set up in

your system, in which case, you simply use that. If not, follow the steps in

“Creating a new template” on page 19 to set up a new one.

Running connectors on UNIX

Connector Configurator runs only in a Windows environment. If you are running

the connector in a UNIX environment, use Connector Configurator in Windows to

modify the configuration file and then copy the file to your UNIX environment.

Some properties in the Connector Configurator use directory paths, which default

to the Windows convention for directory paths. If you use the configuration file in

a UNIX environment, revise the directory paths to match the UNIX convention for

these paths. Select the target operating system in the toolbar drop-list so that the

correct operating system rules are used for extended validation.

Starting Connector Configurator

You can start and run Connector Configurator in either of two modes:

v Independently, in stand-alone mode

v From System Manager

Running Configurator in stand-alone mode

You can run Connector Configurator without running System Manager and work

with connector configuration files, irrespective of your broker.

To do so:

v From Start>Programs, click IBM WebSphere Business Integration

Adapters>IBM WebSphere Business Integration Toolset>Connector

Configurator.

v Select File>New>Connector Configuration.

v When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on

your broker.

18 Adapter for WebSphere Message Broker User Guide

You may choose to run Connector Configurator independently to generate the file,

and then connect to System Manager to save it in a System Manager project (see

“Completing a configuration file” on page 24.)

Running Configurator from System Manager

You can run Connector Configurator from System Manager.

To run Connector Configurator:

1. Open the System Manager.

2. In the System Manager window, expand the Integration Component Libraries

icon and highlight Connectors.

3. From the System Manager menu bar, click Tools>Connector Configurator. The

Connector Configurator window opens and displays a New Connector dialog

box.

4. When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on

your broker.

To edit an existing configuration file:

v In the System Manager window, select any of the configuration files listed in the

Connector folder and right-click on it. Connector Configurator opens and

displays the configuration file with the integration broker type and file name at

the top.

v From Connector Configurator, select File>Open. Select the name of the

connector configuration file from a project or from the directory in which it is

stored.

v Click the Standard Properties tab to see which properties are included in this

configuration file.

Creating a connector-specific property template

To create a configuration file for your connector, you need a connector-specific

property template as well as the system-supplied standard properties.

You can create a brand-new template for the connector-specific properties of your

connector, or you can use an existing connector definition as the template.

v To create a new template, see “Creating a new template” on page 19.

v To use an existing file, simply modify an existing template and save it under the

new name. You can find existing templates in your

\WebSphereAdapters\bin\Data\App directory.

Creating a new template

This section describes how you create properties in the template, define general

characteristics and values for those properties, and specify any dependencies

between the properties. Then you save the template and use it as the base for

creating a new connector configuration file.

To create a template in Connector Configurator:

1. Click File>New>Connector-Specific Property Template.

2. The Connector-Specific Property Template dialog box appears.

Chapter 3. Configuring the connector 19

v Enter a name for the new template in the Name field below Input a New

Template Name. You will see this name again when you open the dialog box

for creating a new configuration file from a template.

v To see the connector-specific property definitions in any template, select that

template’s name in the Template Name display. A list of the property

definitions contained in that template appears in the Template Preview

display.
3. You can use an existing template whose property definitions are similar to

those required by your connector as a starting point for your template. If you

do not see any template that displays the connector-specific properties used by

your connector, you will need to create one.

v If you are planning to modify an existing template, select the name of the

template from the list in the Template Name table below Select the Existing

Template to Modify: Find Template.

v This table displays the names of all currently available templates. You can

also search for a template.

Specifying general characteristics

When you click Next to select a template, the Properties - Connector-Specific

Property Template dialog box appears. The dialog box has tabs for General

characteristics of the defined properties and for Value restrictions. The General

display has the following fields:

v General:

Property Type

Property Subtype

Updated Method

Description

v Flags

Standard flags

v Custom Flag

Flag

The Property Subtype can be selected when Property Type is a String. It is an

optional value which provides syntax checking when you save the configuration

file. The default is a blank space, and means that the property has not been

subtyped.

After you have made selections for the general characteristics of the property, click

the Value tab.

Specifying values

The Value tab enables you to set the maximum length, the maximum multiple

values, a default value, or a value range for the property. It also allows editable

values. To do so:

1. Click the Value tab. The display panel for Value replaces the display panel for

General.

2. Select the name of the property in the Edit properties display.

3. In the fields for Max Length and Max Multiple Values, enter your values.

To create a new property value:

1. Right-click on the square to the left of the Value column heading.

20 Adapter for WebSphere Message Broker User Guide

2. From the pop-up menu, select Add to display the Property Value dialog box.

Depending on the property type, the dialog box allows you to enter either a

value, or both a value and a range.

3. Enter the new property value and click OK. The value appears in the Value

panel on the right.

The Value panel displays a table with three columns:

The Value column shows the value that you entered in the Property Value dialog

box, and any previous values that you created.

The Default Value column allows you to designate any of the values as the

default.

The Value Range shows the range that you entered in the Property Value dialog

box.

After a value has been created and appears in the grid, it can be edited from

within the table display.

To make a change in an existing value in the table, select an entire row by clicking

on the row number. Then right-click in the Value field and click Edit Value.

Setting dependencies

When you have made your changes to the General and Value tabs, click Next. The

Dependencies - Connector-Specific Property Template dialog box appears.

A dependent property is a property that is included in the template and used in

the configuration file only if the value of another property meets a specific

condition. For example, PollQuantity appears in the template only if JMS is the

transport mechanism and DuplicateEventElimination is set to True.

To designate a property as dependent and to set the condition upon which it

depends, do this:

1. In the Available Properties display, select the property that will be made

dependent.

2. In the Select Property field, use the drop-down menu to select the property

that will hold the conditional value.

3. In the Condition Operator field, select one of the following:

== (equal to)

!= (not equal to)

> (greater than)

< (less than)

>= (greater than or equal to)

<=(less than or equal to)

4. In the Conditional Value field, enter the value that is required in order for the

dependent property to be included in the template.

5. With the dependent property highlighted in the Available Properties display,

click an arrow to move it to the Dependent Property display.

6. Click Finish. Connector Configurator stores the information you have entered

as an XML document, under \data\app in the \bin directory where you have

installed Connector Configurator.

Chapter 3. Configuring the connector 21

Setting pathnames

Some general rules for setting pathnames are:

v The maximum length of a filename in Windows and UNIX is 255 characters.

v In Windows, the absolute pathname must follow the format

[Drive:][Directory]\filename: for example,

C:\WebSphereAdapters\bin\Data\Std\StdConnProps.xml

In UNIX the first character should be /.

v Queue names may not have leading or embedded spaces.

Creating a new configuration file

When you create a new configuration file, you must name it and select an

integration broker.

You also select an operating system for extended validation on the file. The toolbar

has a droplist called Target System that allows you to select the target operating

system for extended validation of the properties. The available options are:

Windows, UNIX, Other (if not Windows or UNIX), and None-no extended

validation (switches off extended validation). The default on startup is Windows.

To start Connector Configurator:

v In the System Manager window, select Connector Configurator from the Tools

menu. Connector Configurator opens.

v In stand-alone mode, launch Connector Configurator.

To set the operating system for extended validation of the configuration file:

v Pull down the Target System: droplist on the menu bar.

v Select the operating system you are running on.

Then select File>New>Connector Configuration. In the New Connector window,

enter the name of the new connector.

You also need to select an integration broker. The broker you select determines the

properties that will appear in the configuration file. To select a broker:

v In the Integration Broker field, select ICS, WebSphere Message Brokers or WAS

connectivity.

v Complete the remaining fields in the New Connector window, as described later

in this chapter.

Creating a configuration file from a connector-specific

template

Once a connector-specific template has been created, you can use it to create a

configuration file:

1. Set the operating system for extended validation of the configuration file using

the Target System: droplist on the menu bar (see “Creating a new configuration

file” above).

2. Click File>New>Connector Configuration.

3. The New Connector dialog box appears, with the following fields:

v Name

22 Adapter for WebSphere Message Broker User Guide

Enter the name of the connector. Names are case-sensitive. The name you

enter must be unique, and must be consistent with the file name for a

connector that is installed on the system.

Important: Connector Configurator does not check the spelling of the name

that you enter. You must ensure that the name is correct.

v System Connectivity

Click ICS or WebSphere Message Brokers or WAS.

v Select Connector-Specific Property Template

Type the name of the template that has been designed for your connector.

The available templates are shown in the Template Name display. When you

select a name in the Template Name display, the Property Template Preview

display shows the connector-specific properties that have been defined in

that template.

Select the template you want to use and click OK.
4. A configuration screen appears for the connector that you are configuring. The

title bar shows the integration broker and connector name. You can fill in all

the field values to complete the definition now, or you can save the file and

complete the fields later.

5. To save the file, click File>Save>To File or File>Save>To Project. To save to a

project, System Manager must be running.

If you save as a file, the Save File Connector dialog box appears. Choose *.cfg

as the file type, verify in the File Name field that the name is spelled correctly

and has the correct case, navigate to the directory where you want to locate the

file, and click Save. The status display in the message panel of Connector

Configurator indicates that the configuration file was successfully created.

Important: The directory path and name that you establish here must match

the connector configuration file path and name that you supply in

the startup file for the connector.

6. To complete the connector definition, enter values in the fields for each of the

tabs of the Connector Configurator window, as described later in this chapter.

Using an existing file

You may have an existing file available in one or more of the following formats:

v A connector definition file.

This is a text file that lists properties and applicable default values for a specific

connector. Some connectors include such a file in a \repository directory in

their delivery package (the file typically has the extension .txt; for example,

CN_XML.txt for the XML connector).

v An ICS repository file.

Definitions used in a previous ICS implementation of the connector may be

available to you in a repository file that was used in the configuration of that

connector. Such a file typically has the extension .in or .out.

v A previous configuration file for the connector.

Such a file typically has the extension *.cfg.

Although any of these file sources may contain most or all of the connector-specific

properties for your connector, the connector configuration file will not be complete

until you have opened the file and set properties, as described later in this chapter.

Chapter 3. Configuring the connector 23

To use an existing file to configure a connector, you must open the file in

Connector Configurator, revise the configuration, and then resave the file.

Follow these steps to open a *.txt, *.cfg, or *.in file from a directory:

1. In Connector Configurator, click File>Open>From File.

2. In the Open File Connector dialog box, select one of the following file types to

see the available files:

v Configuration (*.cfg)

v ICS Repository (*.in, *.out)

Choose this option if a repository file was used to configure the connector in

an ICS environment. A repository file may include multiple connector

definitions, all of which will appear when you open the file.

v All files (*.*)

Choose this option if a *.txt file was delivered in the adapter package for

the connector, or if a definition file is available under another extension.
3. In the directory display, navigate to the appropriate connector definition file,

select it, and click Open.

Follow these steps to open a connector configuration from a System Manager

project:

1. Start System Manager. A configuration can be opened from or saved to System

Manager only if System Manager has been started.

2. Start Connector Configurator.

3. Click File>Open>From Project.

Completing a configuration file

When you open a configuration file or a connector from a project, the Connector

Configurator window displays the configuration screen, with the current attributes

and values.

The title of the configuration screen displays the integration broker and connector

name as specified in the file. Make sure you have the correct broker. If not, change

the broker value before you configure the connector. To do so:

1. Under the Standard Properties tab, select the value field for the BrokerType

property. In the drop-down menu, select the value ICS, WMQI, or WAS.

2. The Standard Properties tab will display the connector properties associated

with the selected broker. The table shows Property name, Value, Type, Subtype

(if the Type is a string), Description, and Update Method.

3. You can save the file now or complete the remaining configuration fields, as

described in “Specifying supported business object definitions” on page 28..

4. When you have finished your configuration, click File>Save>To Project or

File>Save>To File.

If you are saving to file, select *.cfg as the extension, select the correct location

for the file and click Save.

If multiple connector configurations are open, click Save All to File to save all

of the configurations to file, or click Save All to Project to save all connector

configurations to a System Manager project.

Before you created the configuration file, you used the Target System droplist

that allows you to select the target operating system for extended validation of

the properties.

24 Adapter for WebSphere Message Broker User Guide

Before it saves the file, Connector Configurator checks that values have been

set for all required standard properties. If a required standard property is

missing a value, Connector Configurator displays a message that the validation

failed. You must supply a value for the property in order to save the

configuration file.

If you have elected to use the extended validation feature by selecting a value

of Windows, UNIX or Other from the Target System droplist, the system will

validate the property subtype s well as the type, and it displays a warning

message if the validation fails.

Setting the configuration file properties

When you create and name a new connector configuration file, or when you open

an existing connector configuration file, Connector Configurator displays a

configuration screen with tabs for the categories of required configuration values.

Connector Configurator requires values for properties in these categories for

connectors running on all brokers:

v Standard Properties

v Connector-specific Properties

v Supported Business Objects

v Trace/Log File values

v Data Handler (applicable for connectors that use JMS messaging with

guaranteed event delivery)

Note: For connectors that use JMS messaging, an additional category may display,

for configuration of data handlers that convert the data to business objects.

For connectors running on ICS, values for these properties are also required:

v Associated Maps

v Resources

v Messaging (where applicable)

v Security

Important: Connector Configurator accepts property values in either English or

non-English character sets. However, the names of both standard and

connector-specific properties, and the names of supported business

objects, must use the English character set only.

Standard properties differ from connector-specific properties as follows:

v Standard properties of a connector are shared by both the application-specific

component of a connector and its broker component. All connectors have the

same set of standard properties. These properties are described in Appendix A of

each adapter guide. You can change some but not all of these values.

v Application-specific properties apply only to the application-specific component

of a connector, that is, the component that interacts directly with the application.

Each connector has application-specific properties that are unique to its

application. Some of these properties provide default values and some do not;

you can modify some of the default values. The installation and configuration

chapters of each adapter guide describe the application-specific properties and

the recommended values.

Chapter 3. Configuring the connector 25

The fields for Standard Properties and Connector-Specific Properties are

color-coded to show which are configurable:

v A field with a grey background indicates a standard property. You can change

the value but cannot change the name or remove the property.

v A field with a white background indicates an application-specific property. These

properties vary according to the specific needs of the application or connector.

You can change the value and delete these properties.

v Value fields are configurable.

v The Update Method field is displayed for each property. It indicates whether a

component or agent restart is necessary to activate changed values. You cannot

configure this setting.

Setting standard connector properties

To change the value of a standard property:

1. Click in the field whose value you want to set.

2. Either enter a value, or select one from the drop-down menu if it appears.

Note: If the property has a Type of String, it may have a subtype value in the

Subtype column. This subtype is used for extended validation of the

property.

3. After entering all the values for the standard properties, you can do one of the

following:

v To discard the changes, preserve the original values, and exit Connector

Configurator, click File>Exit (or close the window), and click No when

prompted to save changes.

v To enter values for other categories in Connector Configurator, select the tab

for the category. The values you enter for Standard Properties (or any other

category) are retained when you move to the next category. When you close

the window, you are prompted to either save or discard the values that you

entered in all the categories as a whole.

v To save the revised values, click File>Exit (or close the window) and click

Yes when prompted to save changes. Alternatively, click Save>To File from

either the File menu or the toolbar.

To get more information on a particular standard property, left-click the entry in

the Description column for that property in the Standard Properties tabbed sheet.

If you have Extended Help installed, an arrow button will appear on the right.

When you click on the button, a Help window will open and display details of the

standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

If installed, the Extended Help files are located in

<ProductDir>\bin\Data\Std\Help\<RegionalSetting>\.

Setting connector-specific configuration properties

For connector-specific configuration properties, you can add or change property

names, configure values, delete a property, and encrypt a property. The default

property length is 255 characters.

26 Adapter for WebSphere Message Broker User Guide

1. Right-click in the top left portion of the grid. A pop-up menu bar will appear.

Click Add to add a property. To add a child property, right-click on the parent

row number and click Add child.

2. Enter a value for the property or child property.

Note: If the property has a Type of String, you can select a subtype from the

Subtype droplist. This subtype is used for extended validation of the

property.

3. To encrypt a property, select the Encrypt box.

4. To get more information on a particular property, left-click the entry in the

Description column for that property. If you have Extended Help installed, a

hot button will appear. When you click on the hot button, a Help window will

open and display details of the standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

5. Choose to save or discard changes, as described for “Setting standard connector

properties” on page 26.

If the Extended Help files are installed and the AdapterHelpName property is

blank, Connector Configurator will point to the adapter-specific Extended Help

files located in <ProductDir>\bin\Data\App\Help\<RegionalSetting>\. Otherwise,

Connector Configurator will point to the adapter-specific Extended Help files

located in

<ProductDir>\bin\Data\App\Help\<AdapterHelpName>\<RegionalSetting>\. See

the AdapterHelpName property described in the Standard Properties appendix.

The Update Method displayed for each property indicates whether a component or

agent restart is necessary to activate changed values.

Important: Changing a preset application-specific connector property name may

cause a connector to fail. Certain property names may be needed by

the connector to connect to an application or to run properly.

Encryption for connector properties

Application-specific properties can be encrypted by selecting the Encrypt check

box in the Connector-specific Properties window. To decrypt a value, click to clear

the Encrypt check box, enter the correct value in the Verification dialog box, and

click OK. If the entered value is correct, the value is decrypted and displays.

The adapter user guide for each connector contains a list and description of each

property and its default value.

If a property has multiple values, the Encrypt check box will appear for the first

value of the property. When you select Encrypt, all values of the property will be

encrypted. To decrypt multiple values of a property, click to clear the Encrypt

check box for the first value of the property, and then enter the new value in the

Verification dialog box. If the input value is a match, all multiple values will

decrypt.

Update method

Refer to the descriptions of update methods found in the Standard Properties

appendix, under “Configuration property values overview” on page 66.

Chapter 3. Configuring the connector 27

Specifying supported business object definitions

Use the Supported Business Objects tab in Connector Configurator to specify the

business objects that the connector will use. You must specify both generic business

objects and application-specific business objects, and you must specify associations

for the maps between the business objects.

Note: Some connectors require that certain business objects be specified as

supported in order to perform event notification or additional configuration

(using meta-objects) with their applications. For more information, see the

Connector Development Guide for C++ or the Connector Development Guide for

Java.

If ICS is your broker

To specify that a business object definition is supported by the connector, or to

change the support settings for an existing business object definition, click the

Supported Business Objects tab and use the following fields.

Business object name: To designate that a business object definition is supported

by the connector, with System Manager running:

1. Click an empty field in the Business Object Name list. A drop list displays,

showing all the business object definitions that exist in the System Manager

project.

2. Click on a business object to add it.

3. Set the Agent Support (described below) for the business object.

4. In the File menu of the Connector Configurator window, click Save to Project.

The revised connector definition, including designated support for the added

business object definition, is saved to an ICL (Integration Component Library)

project in System Manager.

To delete a business object from the supported list:

1. To select a business object field, click the number to the left of the business

object.

2. From the Edit menu of the Connector Configurator window, click Delete Row.

The business object is removed from the list display.

3. From the File menu, click Save to Project.

Deleting a business object from the supported list changes the connector definition

and makes the deleted business object unavailable for use in this implementation

of this connector. It does not affect the connector code, nor does it remove the

business object definition itself from System Manager.

Agent support: If a business object has Agent Support, the system will attempt to

use that business object for delivering data to an application via the connector

agent.

Typically, application-specific business objects for a connector are supported by

that connector’s agent, but generic business objects are not.

To indicate that the business object is supported by the connector agent, check the

Agent Support box. The Connector Configurator window does not validate your

Agent Support selections.

Maximum transaction level: The maximum transaction level for a connector is

the highest transaction level that the connector supports.

28 Adapter for WebSphere Message Broker User Guide

For most connectors, Best Effort is the only possible choice.

You must restart the server for changes in transaction level to take effect.

If a WebSphere Message Broker is your broker

If you are working in stand-alone mode (not connected to System Manager), you

must enter the business object name manually.

If you have System Manager running, you can select the empty box under the

Business Object Name column in the Supported Business Objects tab. A combo

box appears with a list of the business object available from the Integration

Component Library project to which the connector belongs. Select the business

object you want from the list.

The Message Set ID is an optional field for WebSphere Business Integration

Message Broker 5.0, and need not be unique if supplied. However, for WebSphere

MQ Integrator and Integrator Broker 2.1, you must supply a unique ID.

If WAS is your broker

When WebSphere Application Server is selected as your broker type, Connector

Configurator does not require message set IDs. The Supported Business Objects

tab shows a Business Object Name column only for supported business objects.

If you are working in stand-alone mode (not connected to System Manager), you

must enter the business object name manually.

If you have System Manager running, you can select the empty box under the

Business Object Name column in the Supported Business Objects tab. A combo box

appears with a list of the business objects available from the Integration

Component Library project to which the connector belongs. Select the business

object you want from this list.

Associated maps (ICS)

Each connector supports a list of business object definitions and their associated

maps that are currently active in WebSphere InterChange Server. This list appears

when you select the Associated Maps tab.

The list of business objects contains the application-specific business object which

the agent supports and the corresponding generic object that the controller sends

to the subscribing collaboration. The association of a map determines which map

will be used to transform the application-specific business object to the generic

business object or the generic business object to the application-specific business

object.

If you are using maps that are uniquely defined for specific source and destination

business objects, the maps will already be associated with their appropriate

business objects when you open the display, and you will not need (or be able) to

change them.

If more than one map is available for use by a supported business object, you will

need to explicitly bind the business object with the map that it should use.

The Associated Maps tab displays the following fields:

v Business Object Name

Chapter 3. Configuring the connector 29

These are the business objects supported by this connector, as designated in the

Supported Business Objects tab. If you designate additional business objects

under the Supported Business Objects tab, they will be reflected in this list after

you save the changes by choosing Save to Project from the File menu of the

Connector Configurator window.

v Associated Maps

The display shows all the maps that have been installed to the system for use

with the supported business objects of the connector. The source business object

for each map is shown to the left of the map name, in the Business Object

Name display.

v Explicit Binding

In some cases, you may need to explicitly bind an associated map.

Explicit binding is required only when more than one map exists for a particular

supported business object. When ICS boots, it tries to automatically bind a map

to each supported business object for each connector. If more than one map

takes as its input the same business object, the server attempts to locate and

bind one map that is the superset of the others.

If there is no map that is the superset of the others, the server will not be able to

bind the business object to a single map, and you will need to set the binding

explicitly.

To explicitly bind a map:

1. In the Explicit column, place a check in the check box for the map you want

to bind.

2. Select the map that you intend to associate with the business object.

3. In the File menu of the Connector Configurator window, click Save to

Project.

4. Deploy the project to ICS.

5. Reboot the server for the changes to take effect.

Resources (ICS)

The Resource tab allows you to set a value that determines whether and to what

extent the connector agent will handle multiple processes concurrently, using

connector agent parallelism.

Not all connectors support this feature. If you are running a connector agent that

was designed in Java to be multi-threaded, you are advised not to use this feature,

since it is usually more efficient to use multiple threads than multiple processes.

Messaging (ICS)

The Messaging tab enables you to configure messaging properties. The messaging

properties are available only if you have set MQ as the value of the

DeliveryTransport standard property and ICS as the broker type. These properties

affect how your connector will use queues.

Validating messaging queues

Before you can validate a messaging queue, you must:

v Make sure that WebSphere MQ Series is installed.

v Create a messaging queue with channel and port on the host machine.

v Set up a connection to the host machine.

30 Adapter for WebSphere Message Broker User Guide

To validate the queue, use the Validate button to the right of the Messaging Type

and Host Name fields on the Messaging tab.

Security (ICS)

You can use the Security tab in Connector Configurator to set various privacy

levels for a message. You can only use this feature when the DeliveryTransport

property is set to JMS.

By default, Privacy is turned off. Check the Privacy box to enable it.

The Keystore Target System Absolute Pathname is:

v For Windows:

<ProductDir>\connectors\security\<connectorname>.jks

v For UNIX:

opt/IBM/WebSphereAdapters/connectors/security/<connectorname>.jks

This path and file should be on the system where you plan to start the connector,

that is, the target system.

You can use the Browse button at the right only if the target system is the one

currently running. It is greyed out unless Privacy is enabled and the Target System

in the menu bar is set to Windows.

The Message Privacy Level may be set as follows for the three messages categories

(All Messages, All Administrative Messages, and All Business Object Messages):

v “” is the default; used when no privacy levels for a message category have been

set.

v none

Not the same as the default: use this to deliberately set a privacy level of none

for a message category.

v integrity

v privacy

v integrity_plus_privacy

The Key Maintenance feature lets you generate, import and export public keys for

the server and adapter.

v When you select Generate Keys, the Generate Keys dialog box appears with the

defaults for the keytool that will generate the keys.

v The keystore value defaults to the value you entered in Keystore Target System

Absolute Pathname on the Security tab.

v When you select OK, the entries are validated, the key certificate is generated

and the output is sent to the Connector Configurator log window.

Before you can import a certificate into the adapter keystore, you must export it

from the server keystore. When you select Export Adapter Public Key, the Export

Adapter Public Key dialog box appears.

v The export certificate defaults to the same value as the keystore, except that the

file extension is <filename>.cer.

When you select Import Server Public Key, the Import Server Public Key dialog

box appears.

Chapter 3. Configuring the connector 31

v The import certificate defaults to <ProductDir>\bin\ics.cer (if the file exists on

the system).

v The import Certificate Association should be the server name. If a server is

registered, you can select it from the droplist.

The Adapter Access Control feature is enabled only when the value of

DeliveryTransport is IDL. By default, the adapter logs in with the guest identity. If

the Use guest identity box is not checked, the Adapter Identity and Adapter

Password fields are enabled.

Setting trace/log file values

When you open a connector configuration file or a connector definition file,

Connector Configurator uses the logging and tracing values of that file as default

values. You can change those values in Connector Configurator.

To change the logging and tracing values:

1. Click the Trace/Log Files tab.

2. For either logging or tracing, you can choose to write messages to one or both

of the following:

v To console (STDOUT):

Writes logging or tracing messages to the STDOUT display.

Note: You can only use the STDOUT option from the Trace/Log Files tab for

connectors running on the Windows platform.

v To File:

Writes logging or tracing messages to a file that you specify. To specify the

file, click the directory button (ellipsis), navigate to the preferred location,

provide a file name, and click Save. Logging or tracing message are written

to the file and location that you specify.

Note: Both logging and tracing files are simple text files. You can use the file

extension that you prefer when you set their file names. For tracing

files, however, it is advisable to use the extension .trace rather than

.trc, to avoid confusion with other files that might reside on the

system. For logging files, .log and .txt are typical file extensions.

Data handlers

The data handlers section is available for configuration only if you have designated

a value of JMS for DeliveryTransport and a value of JMS for

ContainerManagedEvents. Not all adapters make use of data handlers.

See the descriptions under ContainerManagedEvents in Appendix A, Standard

Properties, for values to use for these properties. For additional details, see the

Connector Development Guide for C++ or the Connector Development Guide for Java.

Saving your configuration file

When you have finished configuring your connector, save the connector

configuration file. Connector Configurator saves the file in the broker mode that

you selected during configuration. The title bar of Connector Configurator always

displays the broker mode (ICS, WMQI or WAS) that it is currently using.

The file is saved as an XML document. You can save the XML document in three

ways:

32 Adapter for WebSphere Message Broker User Guide

v From System Manager, as a file with a *.con extension in an Integration

Component Library, or

v In a directory that you specify.

v In stand-alone mode, as a file with a *.cfg extension in a directory folder. By

default, the file is saved to \WebSphereAdapters\bin\Data\App.

v You can also save it to a WebSphere Application Server project if you have set

one up.

For details about using projects in System Manager, and for further information

about deployment, see the following implementation guides:

v For ICS: Implementation Guide for WebSphere InterChange Server

v For WebSphere Message Brokers: Implementing Adapters with WebSphere Message

Brokers

v For WAS: Implementing Adapters with WebSphere Application Server

Changing a configuration file

You can change the integration broker setting for an existing configuration file.

This enables you to use the file as a template for creating a new configuration file,

which can be used with a different broker.

Note: You will need to change other configuration properties as well as the broker

mode property if you switch integration brokers.

To change your broker selection within an existing configuration file (optional):

v Open the existing configuration file in Connector Configurator.

v Select the Standard Properties tab.

v In the BrokerType field of the Standard Properties tab, select the value that is

appropriate for your broker.

When you change the current value, the available tabs and field selections in the

properties window will immediately change, to show only those tabs and fields

that pertain to the new broker you have selected.

Completing the configuration

After you have created a configuration file for a connector and modified it, make

sure that the connector can locate the configuration file when the connector starts

up.

To do so, open the startup file used for the connector, and verify that the location

and file name used for the connector configuration file match exactly the name you

have given the file and the directory or path where you have placed it.

Using Connector Configurator in a globalized environment

Connector Configurator is globalized and can handle character conversion between

the configuration file and the integration broker. Connector Configurator uses

native encoding. When it writes to the configuration file, it uses UTF-8 encoding.

Connector Configurator supports non-English characters in:

v All value fields

v Log file and trace file path (specified in the Trace/Log files tab)

Chapter 3. Configuring the connector 33

The drop list for the CharacterEncoding and Locale standard configuration

properties displays only a subset of supported values. To add other values to the

drop list, you must manually modify the \Data\Std\stdConnProps.xml file in the

product directory.

For example, to add the locale en_GB to the list of values for the Locale property,

open the stdConnProps.xml file and add the line in boldface type below:

<Property name="Locale"

isRequired="true"

updateMethod="component restart">

 <ValidType>String</ValidType>

 <ValidValues>

 <Value>ja_JP</Value>

 <Value>ko_KR</Value>

 <Value>zh_CN</Value>

 <Value>zh_TW</Value>

 <Value>fr_FR</Value>

 <Value>de_DE</Value>

 <Value>it_IT</Value>

 <Value>es_ES</Value>

 <Value>pt_BR</Value>

 <Value>en_US</Value>

 <Value>en_GB</Value>

 <DefaultValue>en_US</DefaultValue>

 </ValidValues>

 </Property>

Verifying a sample configuration

To verify a sample configuration, do the following:

v See Appendix C, “Tutorial.” The tutorial uses samples that are shipped with the

adapter so you can configure and run a sample scenario quickly.

Setting Queue Uniform Resource Identifiers (URI)

You can use Uniform Resource Identifiers to designate queues and to establish or

modify values for those queues. You do this when specifying values for the

connector specific properties that define queues.

To set queue URIs, do the following:

v Using Connector Configurator, specify a connector-specific queue using the

syntax described below.

Queue URI syntax: The URI for a queue begins with the sequence queue://

followed by:

– The name of the queue manager on which the queue resides

– Another /

– The name of the queue

– Optionally, a list of name-value pairs to set the remaining queue properties.

For example, the following URI connects to queue IN on queue manager

crossworlds.queue.manager and causes all messages to be sent as WebSphere MQ

messages with priority 5.

queue://crossworlds.queue.manager/MQCONN.IN?targetClient=1&priority=5

34 Adapter for WebSphere Message Broker User Guide

The table below shows property names for queue URIs.

 Property name Description Values

expiry Lifetime of the message in

milliseconds.

0 = unlimited. positive

integers = timeout (in ms).

priority Priority of the message. 0-9, where 1 is the highest

priority. A value of -1 means

that the property should be

determined by the

configuration of the queue. A

value of -2 specifies that the

connector can use its own

default value.

persistence Whether the message should

be ‘hardened’ to disk.

1 = non-persistent 2 =

persistent A value of -1

means that the property

should be determined by the

configuration of the queue. A

value of -2 specifies that the

connector can use its own

default value.

CCSID Character set encoding of the

outbound message.

Integers - valid values listed

in base WebSphere MQ

documentation. This value

should match that of the

CCSID connector-specific

configuration property; see

“CCSID” on page 91

targetClient Whether the receiving

application is JMS compliant

or not.

0 = JMS (MQRFH2 header) 1

= MQ (MQMD header only)

encoding How to represent numeric

fields.

An integer value as described

in the base WebSphere MQ

documentation.

Note: The adapter has no control of the character set (CCSID) or encoding

attributes of data in MQMessages. Because data conversion is applied as the

data is retrieved from or delivered to the message buffer, the connector

relies upon the IBM WebSphere MQ implementation of JMS to convert data

(see the IBM WebSphere MQ Java client library documentation).

Accordingly, these conversions should be bi-directionally equivalent to those

performed by the native WebSphere MQ API using option MQGMO_CONVERT.

The connector has no control over differences or failures in the conversion

process. The connector can retrieve message data of any CCSID or encoding

supported by WebSphere MQ without additional modifications. To deliver a

message of a specific CCSID or encoding, the output queue must be a

fully-qualified URI and specify values for CCSID and encoding. The

connector passes this information to WebSphere MQ, which (via the JMS

API) uses the information when encoding data for MQMessage delivery.

Often, lack of support for CCSID and encoding can be resolved by

downloading the most recent version of the IBM WebSphere MQ Java client

library from IBM’s web site. If problems specific to CCSID and encoding

persist, contact WebSphere business integration system Technical Support to

discuss the possibility of using an alternate Java Virtual Machine to run the

connector.

Chapter 3. Configuring the connector 35

Guaranteeing event delivery

The guaranteed-event-delivery feature enables the connector framework to ensure

that events are never lost and never sent twice between the connector’s event store,

the JMS event store, and the destination’s JMS queue. To become JMS-enabled, you

must configure the connectorDeliveryTransport standard property to JMS. Thus

configured, the connector uses the JMS transport and all subsequent

communication between the connector and the integration broker occurs through

this transport. The JMS transport ensures that the messages are eventually

delivered to their destination. Its role is to ensure that once a transactional queue

session starts, the messages are cached there until a commit is issued; if a failure

occurs or a rollback is issued, the messages are discarded.

Note: Without use of the guaranteed-event-delivery feature, a small window of

possible failure exists between the time that the connector publishes an

event (when the connector calls the gotApplEvent() method within its

pollForEvents() method) and the time it updates the event store by deleting

the event record (or perhaps updating it with an ″event posted″ status). If a

failure occurs in this window, the event has been sent but its event record

remains in the event store with an ″in progress″ status. When the connector

restarts, it finds this event record still in the event store and sends it,

resulting in the event being sent twice.

You can configure the guaranteed-event-delivery feature for a JMS-enabled

connector with, or without, a JMS event store. To configure the connector for

guaranteed event delivery, see instructions in the Connector Development Guide

for Java.

If connector framework cannot deliver the business object to the WebSphere

InterChange Server integration broker, then the object is placed on a FaultQueue

(instead of UnsubscribedQueue and ErrorQueue) and generates a status indicator

and a description of the problem. FaultQueue messages are written in MQRFH2

format.

36 Adapter for WebSphere Message Broker User Guide

Chapter 4. Running the connector

v “Overview of running the connector”

v “Starting the connector”

v “Stopping the connector” on page 39

v “Overview of error handling” on page 40

v “Overview of tracing” on page 42

This chapter describes how to configure connector startup files and how to start

and stop the connector.

Overview of running the connector

You are ready to run the connector if you have done the following:

v Installed the connector and related files

v Configured business objects and meta-objects

v Configured a data handler

v Configured the connector

In this chapter

This chapter covers the following tasks.

 Table 10. Running the adapter: task roadmap

Task Associated procedure(s) (see...) For more information (see...)

Starting the

connector

“Starting the connector”

Stopping the

connector

“Stopping the connector” on page

39

“Overview of mapping data

handlers to input queues” on

page 52

Running multiple

instances of the

adapter

“Running multiple instances of the

adapter” on page 39

Starting the connector

A connector must be explicitly started using its connector start-up script. On

Windows systems the startup script should reside in the connector’s runtime

directory:

ProductDir\connectors\connName

where connName identifies the connector.

On UNIX systems the startup script should reside in the UNIX ProductDir/bin

directory.

The name of the startup script depends on the operating-system platform, as

Table 11 shows.

© Copyright IBM Corp. 2000, 2005 37

Table 11. Startup scripts for a connector

Operating system Startup script

UNIX-based systems connector_manager

Windows start_connName.bat

When the startup script runs, it expects by default to find the configuration file in

the Productdir (see the commands below). This is where you place your

configuration file.

Note: You need a local configuration file if the adapter is using JMS transport.

You can invoke the connector startup script in any of the following ways:

v On Windows systems, from the Start menu

Select Programs>IBM WebSphere Business Integration

Adapters>Adapters>Connectors. By default, the program name is “IBM

WebSphere Business Integration Adapters”. However, it can be customized.

Alternatively, you can create a desktop shortcut to your connector.

v From the command line

– On Windows systems:

start_connName connName brokerName [-cconfigFile]

– On UNIX-based systems:

connector_manager -start connName brokerName [-cconfigFile]

where connName is the name of the connector and brokerName identifies your

integration broker, as follows:

– For WebSphere InterChange Server, specify for brokerName the name of the

ICS instance.

– For WebSphere message brokers (WebSphere MQ Integrator, WebSphere MQ

Integrator Broker, or WebSphere Business Integration Message Broker) or

WebSphere Application Server, specify for brokerName a string that identifies

the broker.

Note: For a WebSphere message broker or WebSphere Application Server on a

Windows system, you must include the -c option followed by the name of

the connector configuration file. For ICS, the -c is optional.

v From Adapter Monitor, which is launched when you start System Manager

running with the WebSphere Application Server or InterChange Server broker:

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v From System Manager (available for all brokers):

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v On Windows systems, you can configure the connector to start as a Windows

service. In this case, the connector starts when the Windows system boots (for an

Auto service) or when you start the service through the Windows Services

window (for a Manual service).

For more information on how to start a connector, including the command-line

startup options, refer to one of the following documents:

v For WebSphere InterChange Server, refer to the System Administration Guide.

38 Adapter for WebSphere Message Broker User Guide

v For WebSphere message brokers, refer to Implementing Adapters with WebSphere

Message Brokers.

v For WebSphere Application Server, refer to Implementing Adapters with WebSphere

Application Server.

Stopping the connector

The way to stop a connector depends on the way that the connector was started,

as follows:

v If you started the connector from the command line, with its connector startup

script:

– On Windows systems, invoking the startup script creates a separate “console”

window for the connector. In this window, type “Q” and press Enter to stop

the connector.

– When using InterChange Server on UNIX-based systems, connectors run in

the background so they have no separate window. Instead, run the following

command to stop the connector:

connector_manager_connName -stop

where connName is the name of the connector.
v From Adapter Monitor (WebSphere Business Integration Adapters product only),

which is launched when you start System Manager:

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v From System Monitor (WebSphere InterChange Server product only):

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v On Windows systems, you can configure the connector to start as a Windows

service. In this case, the connector stops when the Windows system shuts down.

Running multiple instances of the adapter

Creating multiple instances of a connector is in many ways the same as creating a

custom connector. You can set your system up to create and run multiple instances

of a connector by following the steps below. You must:

v Create a new directory for the connector instance

v Make sure you have the requisite business object definitions

v Create a new connector definition file

v Create a new start-up script

Create a new directory

You must create a connector directory for each connector instance. This connector

directory should be named:

ProductDir\connectors\connectorInstance

where connectorInstance uniquely identifies the connector instance.

If the connector has any connector-specific meta-objects, you must create a

meta-object for the connector instance. If you save the meta-object as a file, create

this directory and store the file here:

ProductDir\repository\connectorInstance

Chapter 4. Running the connector 39

Create business object definitions

If the business object definitions for each connector instance do not already exist

within the project, you must create them.

1. If you need to modify business object definitions that are associated with the

initial connector, copy the appropriate files and use Business Object Designer to

import them. You can copy any of the files for the initial connector. Just rename

them if you make changes to them.

2. Files for the initial connector should reside in the following directory:

ProductDir\repository\initialConnectorInstance

Any additional files you create should be in the appropriate connectorInstance

subdirectory of ProductDir\repository.

Create a connector definition

You create a configuration file (connector definition) for the connector instance in

Connector Configurator. To do so:

1. Copy the initial connector’s configuration file (connector definition) and rename

it.

2. Make sure each connector instance correctly lists its supported business objects

(and any associated meta-objects).

3. Customize any connector properties as appropriate.

Create a start-up script

To create a startup script:

1. Copy the initial connector’s startup script and name it to include the name of

the connector directory:

dirname

2. Put this startup script in the connector directory you created in “Create a new

directory” on page 39.

3. Create a startup script shortcut (Windows only).

4. Copy the initial connector’s shortcut text and change the name of the initial

connector (in the command line) to match the name of the new connector

instance.

You can now run both instances of the connector on your integration server at the

same time.

For more information on creating custom connectors, refer to the Connector

Development Guide for C++ or for Java.

Overview of error handling

All error messages generated by the connector are stored in a message file named

MQSIV2Connector.txt. (The name of the file is determined by the LogFileName

standard connector configuration property.) Each error has an error number

followed by the error message:

Message number

Message text

The connector handles specific errors as described in the following sections.

Application timeout

The error message ABON_APPRESPONSETIMEOUT is returned when:

40 Adapter for WebSphere Message Broker User Guide

v The connector cannot establish a connection to the JMS service provider during

message retrieval.

v The connector successfully converts a business object to a message but cannot

deliver it the outgoing queue due to connection loss.

v The connector issues a message but times out waiting for a response for a

business object with conversion property TimeoutFatal equal to True.

v The connector receives a response message with a return code equal to

APP_RESPONSE_TIMEOUT or UNABLE_TO_LOGIN.

Unsubscribed business object

The connector delivers a message to the queue specified by the UnsubscribedQueue

property if:

v The connector retrieves a message that is associated with an unsubscribed

business object or when a NO_SUBSCRIPTION_FOUND code is returned by the

gotApplEvent() method.

v The connector retrieves a message but cannot associate the text in the FORMAT

field with a business object name.

Note: If the UnsubscribedQueue is not defined, unsubscribed messages will be

discarded.

Connector not active

When the gotApplEvent() method returns a CONNECTOR_NOT_ACTIVE code,

the pollForEvents() method returns an APP_RESPONSE_TIMEOUT code and the

event remains in the InProgress queue.

Data handler conversion

If the data handler fails to convert a message to a business object, or if a

processing error occurs that is specific to the business object (as opposed to the

JMS provider), the message is delivered to the queue specified by ErrorQueue. If

the ErrorQueue is not defined, messages that cannot be processed due to errors will

be discarded.

If the data handler fails to convert a business object to a message, BON_FAIL is

returned.

JMS properties

If a JMS property cannot be read from or written to a message, the connector logs

an error and the request or event fails. If a you do not specify a ReplyToQueue or it

cannot be accessed, the connector logs an error and the request fails. If a

CorrelationID is invalid or cannot be set, the connector logs an error and the

request fails.

In all cases, the message logged is from the connector message file.

Overloading input formats

When retrieving a message, the connector normally matches the input format to

one specific business object and verb combination. The connector then passes the

business object name and the contents of the message to the data handler. This

allows the data handler to verify that the message contents correspond to the

business object that the user expects.

Chapter 4. Running the connector 41

If, however, the same input format is defined for more than one business object,

the connector will be unable to determine which business object the data

represents before passing it to the data handler. In such cases, the connector passes

the message contents only to the data handler and then looks up conversion

properties based on the business object that is generated. Accordingly, the data

handler must determine the business object based on the message content alone.

If the verb on the generated business object is not set, the connector searches for

conversion properties defined for this business object with any verb. If only one set

of conversion properties is found, the connector assigns the specified verb. If more

properties are found, the connector fails the message because it is unable to

distinguish among the verbs.

Overview of tracing

Tracing is an optional debugging feature you can turn on to closely follow

connector behavior. Trace messages, by default, are written to STDOUT. See the

connector configuration properties in Chapter 2 for more on configuring trace

messages. For more information on tracing, including how to enable and set it, see

the Connector Development Guide for Java.

What follows is recommended content for connector trace messages.

Level 0 This level is used for trace messages that identify the connector

version.

Level 1 Use this level for trace messages that provide key information on

each business object processed or record each time a polling thread

detects a new message in an input queue.

Level 2 Use this level for trace messages that log each time a business

object is posted to InterChange Server, either from gotApplEvent()

or executeCollaboration().

Level 3 Use this level for trace messages that provide information

regarding data-format (for example, XML)-to-business-object and

business-object-to-data-format conversions or provide information

about the delivery of the message to the output queue.

Level 4 Use this level for trace messages that identify when the connector

enters or exits a function.

Level 5 Use this level for trace messages that indicate connector

initialization, represent statements executed in the application,

indicate whenever a message is taken off of or put onto a queue,

or record business object dumps.

 Use this level to dump the printStackTrace() on exceptions caught

by the adapter.

42 Adapter for WebSphere Message Broker User Guide

Chapter 5. Creating objects

v “Overview of creating objects”

v “Creating business objects”

v “Modifying business objects” on page 45

v “Creating meta-objects” on page 47

This chapter describes what you must do to create and modify business objects

and meta-objects. Both are required for the connector to function properly.

Overview of creating objects

You must create definitions for two kinds of objects:

v business objects These represent business entities (an employee or catalog item)

or data transactions (create, update, delete) and also contain the

application-specific instructions to process the data. The connector comes with

sample business objects only and these are for use with the tutorial. You must

build business object definitions for the connector.

v meta-objects A configuration meta-object defines the data formats, queues,

mapping, message header information, and response times that govern how the

connector exchanges business objects and messages. The connector comes with a

sample meta-object only. You can modify this sample for use with your adapter,

or you can create your own meta-objects. You must configure a meta-object with

one or more properties or the connector will not function properly.

In this chapter

The tasks described in this chapter are as follows:

 Table 12. Creating objects: task roadmap

Task Associated procedure(s) (see...) For more information (see...)

Creating business

objects

“Creating business objects” Business Object Development

Guide

Modifying business

objects

“Modifying business objects” on

page 45

Business Object Development

Guide

Creating meta-

objects

“Creating meta-objects” on page 47 “Overview of creating static

meta-objects” on page 51;

“Overview of creating dynamic

child meta-objects” on page 53

Mapping data

handlers to input

queues

“Steps for mapping data handlers

to input queues” on page 52

“Overview of mapping data

handlers to input queues” on

page 52

Creating business objects

This topic contains an overview and a procedure for creating definitions for

business objects.

Overview of creating business objects

After installing the connector, you must create definitions for business objects.

There are no requirements regarding the structure of the business objects other

© Copyright IBM Corp. 2000, 2005 43

than those imposed by the configured data handler and by attributes in the

meta-object. When you decide on the data format for your connector, you must

configure a suitable data handler and generate conforming business objects.

The WebSphere Business Integration Message Broker provides native support for

XML messages. In fact, the Adapter for WebSphere Business Integration Message

Broker is configured, by default, for an XML data handler. This means that the

adapter uses the XML data handler for business object-to-message and

message-to-business object conversion.

Note: You can use any available non-XML data handler, or build a custom data

handler, to support message and business object requirements. You then

configure the data handler for use with the connector, and modify the

message flows accordingly. For further information on available and custom

data handlers, see the Data Handler Guide. For further information on

configuring a data handler for use with the adapter and modifying the

message flows, see Chapter 6, “Configuring a data handler,” on page 59.

To construct business objects for use with the XML data handler, you use the XML

Object Discovery Agent (ODA). The XML ODA generates business object

definitions for an XML document based on either its DTD or schema document.

These business objects can then be used with the adapter. Samples shipped with

the WebSphere Business Integration Message Broker adapter provide files that are

configured to use the XML data handler for business object conversion.

Note: The business objects that the connector processes can have any name

allowed by the integration broker. For more on naming conventions for

InterChange Server, see Naming IBM WebSphere InterChange Server

Components. This document is available at the following site:

http://www-
306.ibm.com/software/integration/wbiadapters/library/infocenter/index.html

Steps for creating business objects

Before you begin: You must identify the data format (XML, for example) for the

messages and business objects that the connector will exchange.

To create business objects for the connector perform the following steps:

1. Use an Object Discovery Agent (ODA) (if available) to generate the business

object definitions. For example, to create business objects for a connector

configured to exchange XML messages, you would use the XML ODA. For

further information, see the Data Handler Guide.

2. Use Business Object Designer, as needed, to modify or add to information

generated by the ODA. You can also use Business Object Designer to run and

configure the XML ODA. For further information, see the Business Object

Development Guide.

Note: If an ODA is not available for your data format, you can create definitions

for business objects by using Business Object Designer. For further

information, see the Business Object Development Guide.

After creating business object definitions, you then use Connector Configurator to

add them to the list of those supported by the connector. For further information

on using Connector Configurator, see Chapter 6, “Configuring a data handler,” on

page 59.

44 Adapter for WebSphere Message Broker User Guide

http://www-306.ibm.com/software/integration/wbiadapters/library/infocenter/index.html
http://www-306.ibm.com/software/integration/wbiadapters/library/infocenter/index.html

Modifying business objects

You can modify business objects to take advantage of processing capabilities. When

you modify business objects, you use Business Object Designer. For further

information, see the Business Object Development Guide.

This topic contains an overview and procedure for modifying a business object to

enable a synchronous request processing feature.

Overview of filtering response messages with a message

selector

Upon receiving a business object for synchronous request processing, the connector

checks for the presence of a response_selector string in the application-specific

information of the verb. If the response_selector is undefined, the connector

identifies response messages using the correlation ID as described in “Retrieve,

exists and retrieve by content” on page 7.

If response_selector is defined, the connector expects a name-value pair with the

following syntax:

response_selector=JMSCorrelationID LIKE ’selectorstring’

The message selectorstring must uniquely identify a response and its values be

enclosed in single quotes as shown in the example below:

response_selector=JMSCorrelationID LIKE ’Oshkosh’

In the above example, after issuing the request message, the adapter would

monitor the ReplyToQueue for a response message with a correlationID equal to

″Oshkosh.″ The adapter would retrieve the first message that matches this message

selector and then dispatch it as the response.

Steps for filtering response messages with a message

selector

To filter a response message with a message selector, do the following:

1. Launch Business Object Designer

2. Open the business object that you want to convert for synchronous message

delivery.

3. In the application-specific information of the verb, specify

response_selector=JMSCorrelationID LIKE ’selectorstring’

where selectorstring uniquely identifies a response. When the application returns

a response with the selectorstring you specified as a CorrelationID, the connector

identifies it as the response to the synchronous request. The connector then

calls the data handler to convert it to a response business object, and returns it

to the requesting collaboration.

Note: You can specify multiple selectorstrings. You can also specify special

characters, reference attributes in (static and dynamic) meta-objects, and

enable swapping of selectorstrings. For illustration, see the examples

below.

Examples: Optionally, the adapter performs run-time substitutions enabling you to

generate unique message selectors for each request. Instead of a message selector,

Chapter 5. Creating objects 45

you specify a placeholder in the form of an integer surrounded by curly braces, for

example: ’{1}’. You then follow with a colon and a list of comma-separated

attributes to use for the substitution. The integer in the placeholder acts as an

index to the attribute to use for the substitution. For example, the following

message selector:

response_selector=JMSCorrelationID LIKE ’{1}’: MyDynamicMO.CorrelationID

would inform the adapter to replace {1} with the value of the first attribute

following the selector (in this case the attribute named CorrelationId of the

child-object named MyDynamicMO. If attribute CorrelationID had a value of 123ABC,

the adapter would generate and use a message selector created with the following

criteria:

JMSCorrelation LIKE ’123ABC’

to identify the response message.

You can also specify multiple substitutions such as the following:

response_selector=PrimaryId LIKE ’{1}’ AND AddressId LIKE ’{2}’ :

PrimaryId, Address[4].AddressId

In this example, the adapter would substitute {1} with the value of attribute

PrimaryId from the top-level business object and {2} with the value of AddressId

from the 5th position of child container object Address. With this approach, you

can reference any attribute in the business object and meta-object in the response

message selector. For more information on how deep retrieval is performed using

Address[4].AddressId, see JCDK API manual (getAttribute method)

An error is reported at run-time when any of the following occurs:

v If you specify a non-integer value between the ’{}’ symbols

v If you specify an index for which no attribute is defined

v If the attribute specified does not exist in the business or meta-object

v If the syntax of the attribute path is incorrect

For example, if you include the literal value ’{’ or ’}’ in the message selector, you

can use ’{{’ or ″{}″ respectively. You can also place these characters in the attribute

value, in which case the first ″{″ is not needed. Consider the following example

using the escape character: response_selector=JMSCorrelation LIKE ’{1}’ and

CompanyName=’A{{P’: MyDynamicMO.CorrelationID

The connector would resolve this message selector as follows:

 JMSCorrelationID LIKE ’123ABC’ and CompanyName=’A{P’

When the connector encounters special characters such as ’{’, ’}’, ’:’ or ’;’ in

attribute values, they are inserted directly into the query string. This allows you to

include special characters in a query string that also serve as application-specific

information delimiters.

The next example illustrates how a literal string substitution is extracted from the

attribute value:

46 Adapter for WebSphere Message Broker User Guide

response_selector=JMSCorrelation LIKE ’{1}’ and CompanyName=’A{{P’:

MyDynamicMO.CorrelationID

If MyDynamicMO.CorrelationID contained the value {A:B}C;D, the connector would

resolve the message selector as follows: JMSCorrelationID LIKE ’{A:B}C;D’ and

CompanyName=’A{P’

For more information on the response selector code, see JMS 1.0.1 specifications.

Creating meta-objects

This topic contains an overview and procedures for creating meta-objects.

The connector uses meta-object entries to determine which business object to

associate with a message. The type of business object and verb used in processing

an event message is based on the FORMAT field contained in the WebSphere MQ

message header. You construct a meta-object attribute to store the business object

name and verb to associate with the WebSphere MQ message header FORMAT field

text. Meta-object attributes also contain message processing guidelines.

When a message is retrieved from the input queue, the connector looks up the

business object name associated with the FORMAT text field. The message, along

with the business object name, is then passed to the data handler. If a business

object is successfully populated with message content, the connector checks to see

if it is subscribed, and then delivers it to the integration broker using the

gotApplEvents() method.

The connector for WebSphere Business Integration Message Broker can recognize

and read two kinds of meta-objects:

v a static connector meta-object

v a dynamic child meta-object

The attribute values of the dynamic child meta-object duplicate and override those

of the static meta-object.

When deciding upon which meta-object will work best for your implementation,

consider the following:

v Static meta-object

– Useful if all meta-data for different messages is fixed and can be specified at

configuration time.

– Limits you to specifying values by business-object type. For example, all

Customer-type objects must be sent to the same destination.
v Dynamic meta-object

– Gives business processes access to information in message headers

– Allows business processes to change processing of messages at run-time,

regardless of business type. For example, a dynamic meta-object would allow

you to specify a different destination for every Customer-type object sent to

the adapter.

– Requires changes to the structure of supported business objects—such

changes may require changes to maps and business processes.

– Requires changes to custom data handlers.

Chapter 5. Creating objects 47

Meta-object properties

Table 13 provides a complete list of properties supported in meta-objects. Refer to

these properties when implementing meta-objects. Your meta object should have

one or more of the properties shown in Table 13.

Not all properties are available in both static and dynamic meta-objects. Nor are all

properties are readable from or writable to the message header. See the appropriate

sections on event and request processing in Chapter 1, “Overview,” on page 1, to

determine how a specific property is interpreted and used by the connector.

 Table 13. WebSphere Business Integration Message Broker adapter meta-object properties

Property name

Definable in

static meta-object

Definable in

dynamic

meta-object Description

DataHandlerConfigMO Yes Yes Meta-object passed to data handler to provide

configuration information. If specified in the static

meta-object, this will override the value specified in

the DataHandlerConfigMO connector property. Use this

meta-object property when different data handlers

are required for processing different business object

types. Use the dynamic child meta-object for request

processing when the data format may be dependent

on the actual business data. The specified business

object must be supported by the connector agent. See

the description in Appendix B, “Connector-specific

properties for this adapter,” on page 89.

DataHandlerMimeType Yes Yes Allows you to request a data handler based on a

particular MIME type. If specified in the meta-object,

this will override the value specified in the

DataHandlerMimeType connector property. Use this

meta-object property when different data handlers

are required for processing different business object

types. Use the dynamic child meta-object for request

processing when the data format might be dependent

on the actual business data. The business object

specified in DataHandlerConfigMO should have an

attribute that corresponds to the value of this

property. See the description in Appendix B,

“Connector-specific properties for this adapter,” on

page 89.

DataHandlerClassName Yes Yes See the description in Appendix B,

“Connector-specific properties for this adapter,” on

page 89.

InputFormat Yes Yes Format or type of inbound (event) message to

associate with the given business object. This value

helps identify the message content and is specified by

the application that generated the message. When a

message is retrieved and is in this format, it is

converted to the given business object, if possible. If

this format is not specified for a business object, the

connector does not handle subscription deliveries for

the given business object. Do not set this property

using default meta-object conversion properties; its

value is used to match incoming messages to

business objects. The field that the connector

considers as defining the format in the message can

be user-defined via the connector-specific property

MessageFormatProperty.

48 Adapter for WebSphere Message Broker User Guide

Table 13. WebSphere Business Integration Message Broker adapter meta-object properties (continued)

Property name

Definable in

static meta-object

Definable in

dynamic

meta-object Description

OutputFormat Yes Yes Format to be populated in outbound messages. If the

OutputFormat is not specified, the input format is

used, if available.

InputQueue Yes Yes The input queue that the connector polls to detect

new messages. This property is used to match

incoming messages to business objects only. Do not

set this property using default conversion properties;

its value is used to match incoming messages to

business objects.

Note: The InputQueue property in the

connector-specific properties defines which queues

the adapter polls. This is the only property that the

adapter uses to determine which queues to poll. In

the static MO, the InputQueue property and the

InputFormat property can serve as criteria for the

adapter to map a given message to a specific

business object. To implement this feature, you would

use connector-specific properties to configure

multiple input destinations and optionally map

different data handlers to each one based on the

input formats of incoming messages. For information,

see “Overview of mapping data handlers to input

queues” on page 52

OutputQueue Yes Yes Queue to which messages derived from the given

business object are delivered.

ResponseTimeout Yes Yes Indicates the length of time in milliseconds to wait

before timing out when waiting for a response in

synchronous request processing. The connector

returns SUCCESS immediately without waiting for a

response if this is left undefined or with a value less

than zero.

TimeoutFatal Yes Yes Used in synchronous request processing to trigger the

connector to return an error message if a response is

not received. If this property is True, the connector

returns APPRESPONSETIMEOUT to the broker when

a response is not received within the time specified

by ResponseTimeout. If this property is undefined or

set to False, then on a response timeout the

connector fails the request but does not terminate.

Default = False.

DataEncoding Yes Yes Specifies the type of the message and the encoding to

be used by the adapter for business object

conversions.Possible values: text, binary, or object.

Default = text. The format for the value of this

attribute is messageType[:enc]. For example:

Text:ISO8859_1, Text:UnicodeLittle, Text, Binary, or

Object. This property is related internally to the

InputFormat property: specify one and only one

DataEncoding per InputFormat.

Below are fields mapping specifically to the JMS message header. For specific explanations, interpretation of values, and more, see

the JMS API specification. JMS providers may interpret some fields differently so also check your JMS provider documentation

for any deviations.

ReplyToDestination Yes Destination to which a response message for a

request is to be sent.

Chapter 5. Creating objects 49

Table 13. WebSphere Business Integration Message Broker adapter meta-object properties (continued)

Property name

Definable in

static meta-object

Definable in

dynamic

meta-object Description

Type Yes Type of message. Generally user-definable,

depending on JMS provider.

MessageID Yes Unique ID for message (JMS provider specific).

CorrelationID Yes Yes Used in response messages to indicate the ID of the

request message that initiated this response.

Delivery Mode Yes Yes Specifies whether the message is persisted or not in

the MOM system. Acceptable values:

1=non-persistent

2=persistent

Other values, depending on the JMS provider, may

be available.

Priority Yes Numeric priority of message. Acceptable values: 0

through 9 inclusive (low to high priority).

Destination Yes Current or last (if removed) location of message in

MOM system.

Expiration Yes Time-to-live of message.

Redelivered Yes Indicates that the JMS provider most likely attempted

to deliver the message to the client earlier but receipt

was not acknowledged.

Timestamp Yes Time message was handed off to JMS provider.

UserID Yes Identity of the user sending the message.

AppID Yes Identity of the application sending the message.

DeliveryCount Yes Number of delivery attempts.

GroupID Yes Identity of the message group.

GroupSeq Yes Sequence of this message in the message group

specified in GroupID.

JMSProperties Yes See “JMS properties” on page 55.

DataEncoding for binary and object messages

You can use a meta-object property, DataEncoding, to change the message type.

This property accepts one of three values: text, binary, or object.

By default, the adapter assumes all messages are of type text. If it receives a

binary message, the adapter converts the binary content to text using the default

encoding of the Java Virtual Machine (JVM) before passing the content to the

configured data handler. This behavior changes when you explicitly specify a

binary or object message type in the DataEncoding property of the meta-object.

v If you use the DataEncoding property in the meta-object to specify binary, the

adapter performs as follows:

1. During request processing, the adapter passes the business object to the

binary methods of the data handler and delivers a bytes message.

2. During event notification, the adapter retrieves the bytes from the binary

message and passes them to the data handler as a Java InputStream instance

(bytes).

3. If it receives a text message, the adapter converts the text body to binary

using the default encoding of the JVM before passing the content to the data

handler.
v If you specify an object DataEncoding value in the meta-object, the adapter

performs as follows:

50 Adapter for WebSphere Message Broker User Guide

1. During request processing, the adapter passes the buisness object to the

getStreamFromBO() method of the data handler to obtain an

ObjectInputStream.

2. During event notification, the adapter retrieves the Java objects from the

object message and passes them to the data handler as Java

ObjectInputStream instances (bytes).

Note: Not all data handlers support binary and object data. Be sure to check your

configured data handler for support.

Overview of creating static meta-objects

The WebSphere Business Integration Message Broker configuration meta-object

consists of a list of conversion properties defined for different business objects. To

view a sample static meta-object, launch Business Object Designer and open the

following sample that is shipped with the adapter:

connectors\WebSphereBIMessageBroker\samples\LegacyItem\

Sample_WBIMB_MO_Config.xsd

The connector supports at most one static meta-object at any given time. You

implement a static meta-object by specifying its name for connector property

ConfigurationMetaObject

The structure of the static meta-object is such that each attribute represents a single

business object and verb combination and all the meta-data associated with

processing that object. The name of each attribute should be the name of the

business object type and verb separated by an underscore, such as

Customer_Create. The attribute application-specific information should consist of

one or more semicolon-delimited name-value pairs representing the meta-data

properties you want to specify for this unique object-verb combination.

 Table 14. Static meta-object structure

Attribute name Application-specific text

<business object type>_<verb> property=value;property=value;...

<business object type>_<verb> property=value;property=value;...

For example, consider the following meta-object:

 Table 15. Sample static meta-object structure

Attribute name Application-specific information

Customer_Create OutputFormat=CUST;OutputDestination=QueueA

Customer_Update OutputFormat=CUST;OutputDestination=QueueB

Order_Create OutputFormat=ORDER;OutputDestination=QueueC

The meta-object in this sample informs the connector that when it receives a

request business object of type Customer with verb Create, to convert it to a

message with format CUST and then to place it in destination QueueA. If the

customer object instead had verb Update, the message would be placed in QueueB.

If the object type was Order and had verb Create, the connector would convert and

deliver it with format ORDER to QueueC. Any other business object passed to the

connector would be treated as unsubscribed.

Optionally, you may name one attribute Default and assign to it one or more

properties in the ASI. For all attributes contained in the meta-object, the properties

Chapter 5. Creating objects 51

of the default attribute are combined with those of the specific object-verb

attributes. This is useful when you have one or more properties to apply

universally (regardless of object-verb combination). In the following example, the

connector would consider object-verb combinations of Customer_Create and

Order_Create as having OutputDestination=QueueA in addition to their individual

meta-data properties:

 Table 16. Sample static meta-object structure

Attribute name Application-specific information

Default OutputDestination=QueueA

Customer_Update OutputFormat=CUST

Order_Create OutputFormat=ORDER

Table 13 on page 48 describes the properties that you can specify as

application-specific information in the static meta-object.

Note: If a static meta object is not specified, the connector is unable to map a

given message format to a specific business object type during polling.

When this is the case, the connector passes the message text to the

configured data handler without specifying a business object. If the data

handler cannot create a business object based on the text alone, the

connector reports an error indicating that this message format is

unrecognized.

Steps for creating static meta-objects

To implement a static meta-object, do the following:

1. Launch Business Object Designer. For further information, see the Business

Object Development Guide.

2. Open the sample meta-object

connectors\WebSphereBIMessageBroker\samples\LegacyItem\Sample_WBIMB_MO_Config.xsd.

3. Edit the attributes and ASI to reflect your requirements, referring to Table 13 on

page 48, and then save the meta-object file.

4. Specify the name of this meta-object file as the value of the connector-specific

property, ConfigurationMetaObject.

Overview of mapping data handlers to input queues

You can use the InputQueue property in the application-specific information of the

static meta-object to associate a data handler with an input queue. This feature is

useful when dealing with multiple trading partners who have different formats

and conversion requirements.

Steps for mapping data handlers to input queues

To map a data handler to an InputQueue, do the following:

1. Use connector-specific properties (see “InputQueue” on page 92) to configure

one or more input queues.

2. Open the static meta-object in Business Object Designer.

3. For each input queue in the static meta-object, specify the queue manager and

input queue name as well as data handler class name and mime type in the

application-specific information.

For example, the following attribute in a static meta-object associates a data

handler with an InputQueue named CompReceipts:

52 Adapter for WebSphere Message Broker User Guide

[Attribute]

Name = Cust_Create

Type = String

Cardinality = 1

MaxLength = 1

IsKey = false

IsForeignKey = false

IsRequired = false

AppSpecificInfo =

InputQueue=//queue.manager/CompReceipts;DataHandlerClassName=

com.crossworlds.DataHandlers.WBIMB.disposition_notification;DataHandlerMime

Type=

message/

disposition_notification

IsRequiredServerBound = false

[End]

Overview of creating dynamic child meta-objects

If it is difficult or unfeasible to specify the necessary metadata through a static

meta-object, the connector can optionally accept meta-data delivered at run-time

for each business object instance.

Dynamic meta-objects allow you to change the meta-data used by the connector to

process a business object on a per-request basis during request processing, and to

retrieve information about an event message during event processing.

The connector recognizes and reads conversion properties from a dynamic

meta-object that is added as a child to the top-level business object passed to the

connector. The attribute values of the dynamic child meta-object duplicate the

conversion properties that you can specify via the static meta-object that is used to

configure the connector.

Since dynamic child meta object properties override those found in static

meta-objects, if you specify a dynamic child meta-object, you need not include a

connector property that specifies the static meta-object. Accordingly, you can use a

dynamic child meta-object independently of the static meta-object and vice-versa.

Table 13 on page 48 describes the properties that you can specify as

application-specific information in the dynamic meta-object.

The following attributes, which reflect JMS and WebSphere MQ header properties,

are recognized in the dynamic meta-object.

 Table 17. Dynamic meta-object header attributes

Header attribute name Mode Corresponding JMS header

CorrelationID

Read/Write JMSCorrelationID

ReplyToQueue Read/Write JMSReplyTo

DeliveryMode Read/Write JMSDeliveryMode

Priority Read/Write JMSPriority

Destination Read JMSDestination

Expiration Read JMSExpiration

MessageID Read JMSMessageID

Redelivered Read JMSRedelivered

TimeStamp Read JMSTimeStamp

Chapter 5. Creating objects 53

Table 17. Dynamic meta-object header attributes (continued)

Header attribute name Mode Corresponding JMS header

Type Read JMSType

UserID Read JMSXUserID

AppID Read JMSXAppID

DeliveryCount Read JMSXDeliveryCount

GroupID Read JMSXGroupID

GroupSeq Read JMSXGroupSeq

JMSProperties Read/Write

Read-only attributes are read from a message header during event notification and

written to the dynamic meta-object. These properties also populate the dynamic

MO when a response message is issued during request processing. Read/write

attributes are set on message headers created during request processing. During

event notification, read/write attributes are read from message headers to populate

the dynamic meta-object.

The structure of the dynamic meta-object is such that each attribute represents a

single metadata property and value: meta-object property name =meta-object

property value

Note: All standard IBM WebSphere data handlers are designed to ignore this

dynamic meta-object attribute by recognizing the cw_mo_ tag. You must do

the same when developing custom data handlers for use with the adapter.

Population of the dynamic child meta-object during polling

In order to provide collaborations with more information regarding messages

retrieved during polling, the connector populates specific attributes of the dynamic

meta-object, if already defined for the business object created.

Table 18 shows how a dynamic child meta-object might be structured for polling.

 Table 18. Dynamic child meta-object structure for polling

Property name Sample value

InputFormat CUST_IN

InputQueue MYInputQueue

OutputFormat CxIgnore

OutputQueue CxIgnore

ResponseTimeout CxIgnore

TimeoutFatal CxIgnore

As shown in Table 18, you can define additional attributes, InputFormat and

InputQueue, in a dynamic child meta-object. The InputFormat is populated with the

format of the message retrieved, while the InputQueue attribute contains the name

of the queue from which a given message has been retrieved. If these properties

are not defined in the child meta-object, they will not be populated.

Example scenario:

v The connector retrieves a message with the format CUST_IN from the queue

MyInputQueue.

54 Adapter for WebSphere Message Broker User Guide

v The connector converts this message to a Customer business object and checks

the application-specific text to determine if a meta-object is defined.

v If so, the connector creates an instance of this meta-object and populates the

InputQueue and InputFormat attributes accordingly, then publishes the business

object to available collaborations.

JMS headers and dynamic child meta-object attributes

You can add attributes to a dynamic meta-object to gain more information about,

and more control over, the message transport. This section describes these

attributes and how they affect event notification and request processing.

JMS properties: Unlike other attributes in the dynamic meta-object,

JMSProperties must define a single-cardinality child object. Every attribute in this

child object must define a single property to be read/written in the variable

portion of the JMS message header as follows:

1. The name of the attribute has no semantic value.

2. The type of the attribute should always be String regardless of the JMS

property type.

3. The application-specific information of the attribute must contain two

name-value pairs defining the name and format of the JMS message property to

which the attribute maps. The name is user-definable. The value type must be

one of the following:

v Boolean

v String

v Int

v Float

v Double

v Long

v Short

v Byte

The table below shows application-specific information properties that you must

define for attributes in the JMSProperties object.

 Table 19. Application-specific information for JMS property attributes

Attribute Possible values ASI Comments

Name Any valid JMS

property name

(valid =

compatible with

type defined in

ASI)

name=<JMS property

name>;type=<JMS property type>

Some vendors reserve

certain properties to

provide extended

functionality. In

general, users should

not define custom

properties that begin

with JMS unless they

are seeking access to

these vendor-specific

features.

Chapter 5. Creating objects 55

Table 19. Application-specific information for JMS property attributes (continued)

Attribute Possible values ASI Comments

Type String type=<see comments> This is the type of the

JMS property. The

JMS API provides a

number of methods

for setting values in

the JMS Message:

setIntProperty,

setLongProperty,

setStringProperty,

etc. The type of the

JMS property

specified here dictates

which of these

methods is used for

setting the property

value in the message.

In the example below, a JMSProperties child object is defined for the Customer

object to allow access to the user-defined fields of the message header:

Customer (ASI = cw_mo_conn=MetaData)

 |-- Id

 |-- FirstName

 |-- LastName

 |-- ContactInfo

 |-- MetaData

 |-- OutputFormat = CUST

 |-- OutputDestination = QueueA

 |-- JMSProperties

 |-- RoutingCode = 123 (ASI= name=RoutingCode;type=Int)

 |-- Dept = FD (ASI= name=RoutingDept;type=String)

To illustrate another example, Figure 4 shows attribute JMSProperties in the

dynamic meta-object and definitions for four properties in the JMS message

header: ID, GID, RESPONSE and RESPONSE_PERSIST. The application-specific

information of the attributes defines the name and type of each. For example,

attribute ID maps to JMS property ID of type String.

56 Adapter for WebSphere Message Broker User Guide

Steps for creating a dynamic meta-object

To implement a dynamic meta-object, do the following:

1. Launch Business Object Designer. For further information, see the Business

Object Development Guide.

2. Open the top-level business object whose processing you want to the dynamic

meta-object to influence.

3. Add the dynamic meta-object as a child to your top-level object and include the

name-value pair cw_mo_conn=<MO attribute> in your top-level object ASI where

<MO attribute> is the name of the attribute in your top-level object

representing the dynamic meta-object. For example:

Customer (ASI = cw_mo_conn=MetaData)

 |-- Id

 |-- FirstName

 |-- LastName

 |-- ContactInfo

 |-- MetaData

 |-- OutputFormat = CUST

 |-- OutputDestination = QueueA

Upon receipt of a request populated as shown above, the connector would

convert the Customer object to a message with format CUST and then put the

message in queue QueueA.

4. Save the top-level business object.

Note: Business objects can use the same or different dynamic meta-object or none

at all.

Figure 4. JMS properties attribute in a dynamic meta-object

Chapter 5. Creating objects 57

58 Adapter for WebSphere Message Broker User Guide

Chapter 6. Configuring a data handler

v “Overview of configuring the data handler”

v “Specifying the data handler”

v “Modifying a message flow” on page 60

This chapter describes how to configure a data handler.

Overview of configuring the data handler

The data handler is a pivotal component in the connector. The connector calls the

data handler to transform business objects into messages and to transform

messages into business objects.

The information in the connector-specific data handler properties plays a crucial

role in these transformations. You configure this information after you install the

product files, but before startup of the adapter.

Note: You can also map configured data handlers to input queues. For further

information and a procedure, see “Overview of mapping data handlers to

input queues” on page 52.

In this chapter

The tasks described in this chapter are as follows:

 Table 20. Configuring the data handler: task roadmap

Task Associated procedure(s) (see...) For more information (see...)

Specifying a data

handler

“Specifying the data handler”

Modifying a message

flow

“Modifying a message flow” on

page 60

Your message broker

documentation

Specifying the data handler

This topic contains an overview and procedure for specifying the data handler.

Overview of specifying the data handler

You configure a data handler by specifying values for the following

connector-specific configuration properties:

v DataHandlerClassName

v DataHandlerConfigMO

v DataHandlerMimeType

For further information on these properties, see Appendix B, “Connector-specific

properties for this adapter,” on page 89.

Steps for specifying the data handler

Before you begin: If you are using an XML data handler, you can simply use the

default values for the data handler connector configuration properties. All three of

© Copyright IBM Corp. 2000, 2005 59

these properties—DataHandlerClassName, DataHandlerConfigMO, and

DataHandlerMimeType—are, by default, configured for use with an XML data

handler.

To configure a data handler, do the following:

1. Using Connector Configurator, click the Connector-Specific Properties tab.

2. Specify a property for DataHandlerClassName that corresponds to the data

handler you wish to configure.

3. Specify a property for DataHandlerConfigMO that corresponds to the data

handler you wish to configure.

4. Specify a property for DataHandlerMimeType that corresponds to the data

handler you wish to configure.

5. Apply the properties in Connector Configurator.

Note: Specifying values for these properties in a static or dynamic meta-object

takes precedence over values specified in these connector-specific properties.

For further information, see “Meta-object properties” on page 48.

Modifying a message flow

This topic contains an overview and procedure for modifying a message flow.

Overview of modifying a message flow

When a WebSphere Business Integration adapter uses a message broker, the

adapter uses WebSphere MQ message flows to process and route data. A single

message flow, defined for each queue, processes all messages placed on that queue.

Using the Message Brokers Toolkit, you can configure a message flow to specify

different processing steps for each type of message it is expected to handle.

You must modify the message flow so that each incoming message is converted to

the format that corresponds to the configured data handler. This conversion must

occur before the message is issued to the input queue of the connector. The

procedure below shows how to modify a message flow for an XML configuration.

To modify a message flow for other data formats, substitute the formats mime type

for XML in the third bullet of step 2.

Steps for modifying a message flow for an XML configuration

Before you begin: Configure the XML data handler.

To modify a message flow for XML, do the following:

1. Launch Message Brokers Toolkit.

2. Add a compute node to the end of a message flow.

3. Enter fields in the ESQL text region as follows:

Set OutputRoot = InputRoot;

This copies the message for output.

Set OutputRoot.MQHRF2.Format = ’SO-CR’;

This assures that the connector will check this format and convert the message

appropriately.

SET OutputRoot.Properties.MessageFormat = ’XML’;

60 Adapter for WebSphere Message Broker User Guide

This indicates to WebSphere Business Integration Message Broker that the

message should be converted to XML upon delivery.

4. Click Apply to enable the compute node.

Figure 5 shows a sample view of a compute node configured to translate an

incoming message to a format that the connector can understand. Once this

compute node is enabled, an XML document representing the original message is

issued to the connector input queue.

Note: If you have defined a custom format in the WebSphere Business Integration

Message Broker Repository Manager, you can convert the legacy format to

XML by simply setting the message format to XML. This format is different

from the MQHRF2. The OutputRoot.Properties.MessageFormat relates to the

MRM, while OutputRoot.MQHRF2.Format is used to specify a message format

for an application that is receiving messages.

Figure 5. Setting the message format to XML

Chapter 6. Configuring a data handler 61

62 Adapter for WebSphere Message Broker User Guide

Chapter 7. Troubleshooting

v “Troubleshooting start-up problems”

v “Troubleshooting event processing”

v “Getting support” on page 64

This chapter describes problems that you may encounter when starting up or

running the connector. It also describes how to get support from IBM.

Troubleshooting start-up problems

 Problem Potential Solution / Explanation

The connector shuts down unexpectedly during

initialization and the following message is reported:

Exception in thread "main"

java.lang.NoClassDefFoundError:

javax/jms/JMSException...

Connector cannot find file jms.jar from the WebSphere

MQ Java client libraries. Ensure that variable

MQSERIES_JAVA_LIB in start_connector.bat points to the

WebSphere MQ Java client libraries folder.

The connector shuts down unexpectedly during

initialization and the following message is reported:

Exception in thread "main"

java.lang.NoClassDefFoundError:

com/ibm/mq/jms/MQConnectionFactory...

Connector cannot find file com.ibm.mqjms.jar from the

WebSphere MQ Java client libraries. Ensure that variable

MQSERIES_JAVA_LIB in start_connector.bat points to the

WebSphere MQ Java client libraries folder.

The connector shuts down unexpectedly during

initialization and the following message is reported:

Exception in thread "main"

java.lang.NoClassDefFoundError:

javax/naming/Referenceable...

Connector cannot find file jndi.jar from the WebSphere

MQ Java client libraries. Ensure that variable

MQSERIES_JAVA_LIB in start_connector.bat points to the

WebSphere MQ Java client libraries folder.

The connector shuts down unexpectedly during

initialization and the following exception is reported:

java.lang.UnsatisfiedLinkError: no mqjbnd01 in

shared library path

Connector cannot find a required run-time library

(mqjbnd01.dll [Windows] or libmqjbnd01.so [UNIX])

from the IBM MQSeries Java client libraries. Ensure that

your path includes the WebSphere MQ Java client

libraries folder.

The connector reports MQJMS2005: failed to create

MQQueueManager for ‘:’

Explicitly set values for the following properties:

HostName, Channel, and Port.

Troubleshooting event processing

 Problem Potential solution / explanation

The connector delivers all messages with an

MQRFH2 header.

To deliver messages with only the MQMD WebSphere MQ

header, append ?targetClient=1 to the name of output queue

URI. For example, if you output messages to queue queue:

//my.queue.manager/OUT, change the URI to queue:

//my.queue.manager/OUT?targetClient=1. See Chapter 2,

“Installing the connector,” on page 11 for more information.

The connector truncates all message formats to

8-characters upon delivery regardless of how the

format has been defined in the connector

meta-object.

This is a limitation of the WebSphere MQ MQMD message

header and not the connector.

© Copyright IBM Corp. 2000, 2005 63

Problem Potential solution / explanation

During pollForEvents, the connector shuts down

after the following JMS exception is reported:

MQJMS1000: Failed to create JMS message

This error appears to relate to the MQ Java API and not the

connector itself. It often occurs when running the connector on

the same machine as the WebSphere Business Integration

Message Broker product itself. To remedy the problem, you

need to perform the following:

1. Unzip the file Product_Dir\Dependencies\JRE_122_4.zip to

folder Product_Dir\connectors\WBIMB\Dependencies\

jre_122_Rel4.

2. Open Product_Dir\connectors\WBIMB\start_MQSIV2.bat

and un-comment the following two lines:oset

PATH=%CONNDIR%\Dependencies\jre_122_Rel4\bin...oset

JAVA=%CONNDIR%\Dependencies\jre_122_Rel4\lib\rt.jar

3. Restart the connector.

During pollForEvents, the connector shuts down

after the following JMS exception is reported:

MQJMS1052: Unrecognised [sic] JMS Message class

This error can result from modifications made by WebSphere

Business Integration Message Broker to a message originating

from a JMS-compliant application. To correct this, remove

remaining JMS information from problematic messages by

adding the following SQL statement to a WebSphere Business

Integration Message Broker compute node: SET

OutputRoot.MQRFH2.jms = null;

Getting support

Before you begin: Important information about this product may be available in

Technical Support Technotes and Flashes issued after this document was published.

These can be found on the WebSphere Business Integration Support Web site.

Perform the following steps to access the WebSphere Business Integration Support

Web site:

1. Go to http://www.ibm.com/software/integration/websphere/support/

2. Select the component area of interest and browse or search the Technotes and

Flashes sections.

64 Adapter for WebSphere Message Broker User Guide

Appendix A. Standard configuration properties for connectors

This appendix describes the standard configuration properties for the connector

component of WebSphere Business Integration adapters. The information covers

connectors running with the following integration brokers:

v WebSphere InterChange Server (ICS)

v WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere

Business Integration Message Broker, collectively referred to as the WebSphere

Message Brokers (and shown as WMQI in the Connector Configurator).

v Information Integrator (II)

v WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and

the DB2 II standard properties (see the Notes column in Table 21 on page 67.)

The properties you set for the adapter depend on which integration broker you

use. You choose the integration broker using Connector Configurator. After you

choose the broker, Connector Configurator lists the standard properties you must

configure for the adapter.

For information about properties specific to this connector, see the relevant section

in this guide.

New properties

This standard property was added in this release:

v BOTrace

Standard connector properties overview

Connectors have two types of configuration properties:

v Standard configuration properties, which are used by the framework

v Application, or connector-specific, configuration properties, which are used by

the agent

These properties determine the adapter framework and the agent run-time

behavior.

This section describes how to start Connector Configurator and describes

characteristics common to all properties. For information on configuration

properties specific to a connector, see its adapter user guide.

Starting Connector Configurator

You configure connector properties from Connector Configurator, which you access

from System Manager. For more information on using Connector Configurator,

refer to the sections on Connector Configurator in this guide.

Connector Configurator and System Manager run only on the Windows system. If

you are running the connector on a UNIX system, you must have a Windows

machine with these tools installed.

© Copyright IBM Corp. 2000, 2005 65

To set connector properties for a connector that runs on UNIX, you must start up

System Manager on the Windows machine, connect to the UNIX integration broker,

and bring up Connector Configurator for the connector.

Configuration property values overview

The connector uses the following order to determine a property’s value:

1. Default

2. Repository (valid only if WebSphere InterChange Server (ICS) is the integration

broker)

3. Local configuration file

4. Command line

The default length of a property field is 255 characters. There is no limit on the

length of a STRING property type. The length of an INTEGER type is determined

by the server on which the adapter is running.

A connector obtains its configuration values at startup. If you change the value of

one or more connector properties during a run-time session, the property’s update

method determines how the change takes effect.

The update characteristics of a property, that is, how and when a change to the

connector properties takes effect, depend on the nature of the property.

There are four update methods for standard connector properties:

v Dynamic

The new value takes effect immediately after the change is saved in System

Manager. However, if the connector is in stand-alone mode (independently of

System Manager), for example, if it is running with one of the WebSphere

message brokers, you can change properties only through the configuration file.

In this case, a dynamic update is not possible.

v Agent restart (ICS only)

The new value takes effect only after you stop and restart the connector agent.

v Component restart

The new value takes effect only after the connector is stopped and then restarted

in System Manager. You do not need to stop and restart the agent or the server

process.

v System restart

The new value takes effect only after you stop and restart the connector agent

and the server.

To determine how a specific property is updated, refer to the Update Method

column in the Connector Configurator window, or see the Update Method column

in Table 21 on page 67.

There are three locations in which a standard property can reside. Some properties

can reside in more than one location.

v ReposController

The property resides in the connector controller and is effective only there. If

you change the value on the agent side, it does not affect the controller.

v ReposAgent

The property resides in the agent and is effective only there. A local

configuration can override this value, depending on the property.

66 Adapter for WebSphere Message Broker User Guide

v LocalConfig

The property resides in the configuration file for the connector and can act only

through the configuration file. The controller cannot change the value of the

property, and is not aware of changes made to the configuration file unless the

system is redeployed to update the controller explicitly.

Standard properties quick-reference

Table 21 provides a quick-reference to the standard connector configuration

properties. Not all connectors require all of these properties, and property settings

may differ from integration broker to integration broker.

See the section following the table for a description of each property.

Note: In the Notes column in Table 21, the phrase “RepositoryDirectory is set to

<REMOTE>” indicates that the broker is InterChange Server. When the

broker is WMQI or WAS, the repository directory is set to

<ProductDir>\repository

 Table 21. Summary of standard configuration properties

Property name Possible values Default value

Update

method Notes

AdapterHelpName One of the valid

subdirectories in

<ProductDir>\bin\Data

\App\Help\ that

 contains a valid

<RegionalSetting>

directory

Template name, if valid,

or blank field

Component

restart

Supported regional

settings.

Include chs_chn,

cht_twn, deu_deu,

esn_esp, fra_fra,

ita_ita, jpn_jpn,

kor_kor, ptb_bra,

and enu_usa (default).

AdminInQueue Valid JMS queue name <CONNECTORNAME>

/ADMININQUEUE

Component

restart

This property is valid

 only when the value

of DeliveryTransport

is JMS

AdminOutQueue Valid JMS queue name <CONNECTORNAME>

/ADMINOUTQUEUE

Component

restart

This property is valid

only when the value

of DeliveryTransport

is JMS

AgentConnections 1 through 4 1 Component

restart

This property is valid

only when the value

of DeliveryTransport

is MQ or IDL, the value

of Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

AgentTraceLevel 0 through 5 0 Dynamic

if broker is

ICS;

otherwise

Component

restart

ApplicationName Application name The value specified for

the connector

application name

Component

restart

Appendix A. Standard configuration properties for connectors 67

Table 21. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

BiDi.Application Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value

of BiDi.Transforma tion

is true

BiDi.Broker Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true. If the value of

BrokerType is

ICS, the property

is read-only.

BiDi.Metadata Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true.

BiDi.Transformation true or false false Component

restart

This property is valid

only if the value of

BrokerType is not WAS.

BOTrace none or keys or full none Agent

restart

This property is valid

only if the value of

AgentTraceLevel is

lower than 5.

BrokerType ICS, WMQI, WAS ICS Component

restart

CharacterEncoding Any supported code.

The list shows this subset:

ascii7, ascii8, SJIS,

Cp949, GBK, Big5,

Cp297, Cp273, Cp280,

Cp284, Cp037, Cp437

.

ascii7 Component

restart

This property is valid

only for C++ connectors.

CommonEventInfrastruc

ture

true or false false Component

restart

CommonEventInfrastruc

tureURL

A URL string, for

example,

corbaloc:iiop:

host:2809.

No default value. Component

restart

This property is valid

only if the value of

CommonEvent

Infrastructure is true.

ConcurrentEventTrig

geredFlows

1 through 32,767 1 Component

restart

This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ContainerManagedEvents Blank or JMS Blank Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

68 Adapter for WebSphere Message Broker User Guide

Table 21. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

ControllerEventSequenc

ing

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerStoreAndFor

wardMode

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerTraceLevel 0 through 5 0 Dynamic This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

DeliveryQueue Any valid JMS

queue name

<CONNECTORNAME>

/DELIVERYQUEUE

Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

DeliveryTransport MQ, IDL, or JMS IDL when the value of

RepositoryDirectory is

<REMOTE>, otherwise

JMS

Component

restart

If the value of

RepositoryDirectory is

not <REMOTE>,

the only valid value for

this property is JMS.

DuplicateEventElimina

tion

true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

EnableOidForFlowMoni

toring

true or false false Component

restart

This property is valid

only if the value of

BrokerType is ICS.

FaultQueue Any valid queue name. <CONNECTORNAME>

/FAULTQUEUE

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.FactoryClassName CxCommon.Messaging.jms

.IBMMQSeriesFactory,

CxCommon.Messaging

.jms.SonicMQFactory,

or any Java class name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.ListenerConcurrency 1 through 32767 1 Component

restart

This property is

valid only if the value of

jms.TransportOptimized

is true.

jms.MessageBrokerName If the value of

jms.FactoryClassName

is IBM, use

crossworlds.queue.

manager.

crossworlds.queue.

manager

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.NumConcurrent

Requests

Positive integer 10 Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

Appendix A. Standard configuration properties for connectors 69

Table 21. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

jms.Password Any valid password Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.TransportOptimized true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS and the value of

BrokerType is ICS.

jms.UserName Any valid name Component

restart

This property is valid

only if the value of

Delivery Transport is JMS.

JvmMaxHeapSize Heap size in megabytes 128m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMaxNativeStackSize Size of stack in kilobytes 128k Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMinHeapSize Heap size in megabytes 1m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ListenerConcurrency 1 through 100 1 Component

restart

This property is valid

only if the value of

DeliveryTransport is MQ.

Locale This is a subset of the

supported locales:

en_US, ja_JP, ko_KR,

 zh_CN, zh_TW, fr_FR,

de_DE, it_IT,

es_ES, pt_BR

en_US Component

restart

LogAtInterchangeEnd true or false false Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MaxEventCapacity 1 through 2147483647 2147483647 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MessageFileName Valid file name InterchangeSystem.txt Component

restart

70 Adapter for WebSphere Message Broker User Guide

Table 21. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

MonitorQueue Any valid queue name <CONNECTORNAME>

/MONITORQUEUE

Component

restart

This property is valid

only if the value of

DuplicateEventElimination

is true and

ContainerManagedEvents

has no value.

OADAutoRestartAgent true or false false Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADMaxNumRetry A positive integer 1000 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADRetryTimeInterval A positive integer

in minutes

10 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

PollEndTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

PollFrequency A positive integer

(in milliseconds)

10000 Dynamic

if broker is

ICS;

otherwise

Component

restart

PollQuantity 1 through 500 1 Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

PollStartTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

RepositoryDirectory <REMOTE> if the broker

is ICS; otherwise any

valid local directory.

For ICS, the value is set

to <REMOTE>

 For WMQI and WAS,

the value is

<ProductDir

\repository

Agent restart

RequestQueue Valid JMS queue name <CONNECTORNAME>

/REQUESTQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

ResponseQueue Valid JMS queue name <CONNECTORNAME>

/RESPONSEQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

RestartRetryCount 0 through 99 7 Dynamic

if ICS;

otherwise

Component

restart

Appendix A. Standard configuration properties for connectors 71

Table 21. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

RestartRetryInterval A value in minutes

from 1 through

2147483647

1 Dynamic

if ICS;

otherwise

Component

restart

ResultsSetEnabled true or false false Component

restart

Used only by connectors

that support DB2II.

 This property is valid

only if the value of

DeliveryTransport

is JMS, and the value of

BrokerType is WMQI.

ResultsSetSize Positive integer 0 (means the results

set size is unlimited)

Component

restart

Used only by connectors

that support DB2II.

 This property is valid

only if the value of

ResultsSetEnabled

is true.

RHF2MessageDomain mrm or xml mrm Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS and the value of

WireFormat is CwXML.

SourceQueue Any valid WebSphere

MQ queue name

<CONNECTORNAME>

/SOURCEQUEUE

Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

SynchronousRequest

Queue

Any valid queue name. <CONNECTORNAME>

/SYNCHRONOUSREQUEST

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousResponse

Queue

Any valid queue name <CONNECTORNAME>

/SYNCHRONOUSRESPONSE

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

TivoliMonitorTransaction

Performance

true or false false Component

restart

WireFormat CwXML or CwBO CwXML Agent restart The value of this

property must be CwXML

if the value

of RepositoryDirectory

is not set to <REMOTE>.

The value must

be CwBO if the value of

RepositoryDirectory is set

to <REMOTE>.

WsifSynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value of

BrokerType is WAS.

72 Adapter for WebSphere Message Broker User Guide

Table 21. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

XMLNameSpaceFormat short or long or no short Agent restart This property is valid

only if the value of

BrokerType is

WMQI or WAS

Standard properties

This section describes the standard connector configuration properties.

AdapterHelpName

The AdapterHelpName property is the name of a directory in which

connector-specific extended help files are located. The directory must be located in

<ProductDir>\bin\Data\App\Help and must contain at least the language

directory enu_usa. It may contain other directories according to locale.

The default value is the template name if it is valid, or it is blank.

AdminInQueue

The AdminInQueue property specifies the queue that is used by the integration

broker to send administrative messages to the connector.

The default value is <CONNECTORNAME>/ADMININQUEUE

AdminOutQueue

The AdminOutQueue property specifies the queue that is used by the connector to

send administrative messages to the integration broker.

The default value is <CONNECTORNAME>/ADMINOUTQUEUE

AgentConnections

The AgentConnections property controls the number of ORB (Object Request

Broker) connections opened when the ORB initializes.

It is valid only if the value of the RepositoryDirectory is set to <REMOTE> and the

value of the DeliveryTransport property is MQ or IDL.

The default value of this property is 1.

AgentTraceLevel

The AgentTraceLevel property sets the level of trace messages for the

application-specific component. The connector delivers all trace messages

applicable at the tracing level set and lower.

The default value is 0.

Appendix A. Standard configuration properties for connectors 73

ApplicationName

The ApplicationName property uniquely identifies the name of the connector

application. This name is used by the system administrator to monitor the

integration environment. This property must have a value before you can run the

connector.

The default is the name of the connector.

BiDi.Application

The BiDi.Application property specifies the bidirectional format for data coming

from an external application into the adapter in the form of any business object

supported by this adapter. The property defines the bidirectional attributes of the

application data. These attributes are:

v Type of text: implicit or visual (I or V)

v Text direction: left-to-right or right-to-left (L or R)

v Symmetric swapping: on or off (Y or N)

v Shaping (Arabic): on or off (S or N)

v Numerical shaping (Arabic): Hindi, contextual, or nominal (H, C, or N)

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Broker

The BiDi.Broker property specifies the bidirectional script format for data sent from

the adapter to the integration broker in the form of any supported business object.

It defines the bidirectional attributes of the data, which are as listed under

BiDi.Application above.

This property is valid only if the BiDi.Transformation property value is set to true.

If the BrokerType property is ICS, the property value is read-only.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Metadata

The BiDi.Metadata property defines the bidirectional format or attributes for the

metadata, which is used by the connector to establish and maintain a link to the

external application. The attribute settings are specific to each adapter using the

bidirectional capabilities. If your adapter supports bidirectional processing, refer to

the section on adapter-specific properties for more information.

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Transformation

The BiDi.Transformation property defines whether or not the system performs a

bidirectional transformation at run time.

If the property value is set to true, the BiDi.Application, BiDi.Broker, and

BiDi.Metadata properties are available. If the property value is set to false, they

are hidden.

74 Adapter for WebSphere Message Broker User Guide

The default value is false.

BOTrace

The BOTrace property specifies whether or not business object trace messages are

enabled at run time.

Note: It applies only when the AgentTraceLevel property is set to less than 5.

When the trace level is set to less than 5, you can use these command line

parameters to reset the value of BOTrace.

v Enter -xBOTrace=Full to dump all the business object’s attributes.

v Enter -xBOTrace=Keys to dump only the business object’s keys.

v Enter -xBOTrace=None to disable business object attribute dumping.

The default value is false.

BrokerType

The BrokerType property identifies the integration broker type that you are using.

The possible values are ICS, WMQI (for WMQI, WMQIB or WBIMB), or WAS.

CharacterEncoding

The CharacterEncoding property specifies the character code set used to map from

a character (such as a letter of the alphabet, a numeric representation, or a

punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. C++ connectors use the

value ascii7 for this property.

By default, only a subset of supported character encodings is displayed. To add

other supported values to the list, you must manually modify the

\Data\Std\stdConnProps.xml file in the product directory (<ProductDir>). For

more information, see the Connector Configurator appendix in this guide.

CommonEventInfrastructure

The Common Event Infrastructure (CEI) is a simple event management function

handling generated events. The CommonEventInfrastructure property specifies

whether the CEI should be invoked at run time.

The default value is false.

CommonEventInfrastructureContextURL

The CommonEventInfrastructureContextURL is used to gain access to the WAS

server that executes the Common Event Infrastructure (CEI) server application.

This property specifies the URL to be used.

This property is valid only if the value of CommonEventInfrastructure is set to

true.

The default value is a blank field.

Appendix A. Standard configuration properties for connectors 75

ConcurrentEventTriggeredFlows

The ConcurrentEventTriggeredFlows property determines how many business

objects can be concurrently processed by the connector for event delivery. You set

the value of this attribute to the number of business objects that are mapped and

delivered concurrently. For example, if you set the value of this property to 5, five

business objects are processed concurrently.

Setting this property to a value greater than 1 allows a connector for a source

application to map multiple event business objects at the same time and deliver

them to multiple collaboration instances simultaneously. This speeds delivery of

business objects to the integration broker, particularly if the business objects use

complex maps. Increasing the arrival rate of business objects to collaborations can

improve overall performance in the system.

To implement concurrent processing for an entire flow (from a source application

to a destination application), the following properties must configured:

v The collaboration must be configured to use multiple threads by setting its

Maximum number of concurrent events property high enough to use multiple

threads.

v The destination application’s application-specific component must be configured

to process requests concurrently. That is, it must be multithreaded, or it must be

able to use connector agent parallelism and be configured for multiple processes.

The Parallel Process Degree configuration property must be set to a value larger

than 1.

The ConcurrentEventTriggeredFlows property has no effect on connector polling,

which is single-threaded and is performed serially.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1.

ContainerManagedEvents

The ContainerManagedEvents property allows a JMS-enabled connector with a

JMS event store to provide guaranteed event delivery, in which an event is

removed from the source queue and placed on the destination queue as one JMS

transaction.

When this property is set to JMS, the following properties must also be set to

enable guaranteed event delivery:

v PollQuantity = 1 to 500

v SourceQueue = /SOURCEQUEUE

You must also configure a data handler with the MimeType and DHClass (data

handler class) properties. You can also add DataHandlerConfigMOName (the

meta-object name, which is optional). To set those values, use the Data Handler

tab in Connector Configurator.

Although these properties are adapter-specific, here are some example values:

v MimeType = text\xml

v DHClass = com.crossworlds.DataHandlers.text.xml

v DataHandlerConfigMOName = MO_DataHandler_Default

76 Adapter for WebSphere Message Broker User Guide

The fields for these values in the Data Handler tab are displayed only if you have

set the ContainerManagedEvents property to the value JMS.

Note: When ContainerManagedEvents is set to JMS, the connector does not call its

pollForEvents() method, thereby disabling that method’s functionality.

The ContainerManagedEvents property is valid only if the value of the

DeliveryTransport property is set to JMS.

There is no default value.

ControllerEventSequencing

The ControllerEventSequencing property enables event sequencing in the connector

controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE> (BrokerType is ICS).

The default value is true.

ControllerStoreAndForwardMode

The ControllerStoreAndForwardMode property sets the behavior of the connector

controller after it detects that the destination application-specific component is

unavailable.

If this property is set to true and the destination application-specific component is

unavailable when an event reaches ICS, the connector controller blocks the request

to the application-specific component. When the application-specific component

becomes operational, the controller forwards the request to it.

However, if the destination application’s application-specific component becomes

unavailable after the connector controller forwards a service call request to it, the

connector controller fails the request.

If this property is set to false, the connector controller begins failing all service

call requests as soon as it detects that the destination application-specific

component is unavailable.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE> (the value of the BrokerType property is ICS).

The default value is true.

ControllerTraceLevel

The ControllerTraceLevel property sets the level of trace messages for the

connector controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE>.

The default value is 0.

Appendix A. Standard configuration properties for connectors 77

DeliveryQueue

The DeliveryQueue property defines the queue that is used by the connector to

send business objects to the integration broker.

This property is valid only if the value of the DeliveryTransport property is set to

JMS.

The default value is <CONNECTORNAME>/DELIVERYQUEUE.

DeliveryTransport

The DeliveryTransport property specifies the transport mechanism for the delivery

of events. Possible values are MQ for WebSphere MQ, IDL for CORBA IIOP, or JMS

for Java Messaging Service.

v If the value of the RepositoryDirectory property is set to <REMOTE>, the value

of the DeliveryTransport property can be MQ, IDL, or JMS, and the default is IDL.

v If the value of the RepositoryDirectory property is a local directory, the value

can be only JMS.

The connector sends service-call requests and administrative messages over

CORBA IIOP if the value of the RepositoryDirectory property is MQ or IDL.

If the value of the DeliveryTransport property is MQ, you can set the command-line

parameter WhenServerAbsent in the adapter start script to indicate whether the

adapter should pause or shut down when the InterChange Server is shut down.

v Enter WhenServerAbsent=pause to pause the adapter when ICS is not available.

v Enter WhenServerAbsent=shutdown to shut down the adapter when ICS is not

available.

WebSphere MQ and IDL

Use WebSphere MQ rather than IDL for event delivery transport, unless you must

have only one product. WebSphere MQ offers the following advantages over IDL:

v Asynchronous communication:

WebSphere MQ allows the application-specific component to poll and

persistently store events even when the server is not available.

v Server side performance:

WebSphere MQ provides faster performance on the server side. In optimized

mode, WebSphere MQ stores only the pointer to an event in the repository

database, while the actual event remains in the WebSphere MQ queue. This

prevents writing potentially large events to the repository database.

v Agent side performance:

WebSphere MQ provides faster performance on the application-specific

component side. Using WebSphere MQ, the connector polling thread picks up an

event, places it in the connector queue, then picks up the next event. This is

faster than IDL, which requires the connector polling thread to pick up an event,

go across the network into the server process, store the event persistently in the

repository database, then pick up the next event.

JMS

The JMS transport mechanism enables communication between the connector and

client connector framework using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as

jms.MessageBrokerName, jms.FactoryClassName, jms.Password, and jms.UserName

78 Adapter for WebSphere Message Broker User Guide

are listed in Connector Configurator. The properties jms.MessageBrokerName and

jms.FactoryClassName are required for this transport.

There may be a memory limitation if you use the JMS transport mechanism for a

connector in the following environment:

v AIX 5.0

v WebSphere MQ 5.3.0.1

v ICS is the integration broker

In this environment, you may experience difficulty starting both the connector

controller (on the server side) and the connector (on the client side) due to memory

use within the WebSphere MQ client. If your installation uses less than 768MB of

process heap size, set the following variable and property:

v Set the LDR_CNTRL environment variable in the CWSharedEnv.sh script.

This script is located in the \bin directory below the product directory

(<ProductDir>). Using a text editor, add the following line as the first line in the

CWSharedEnv.sh script:

export LDR_CNTRL=MAXDATA=0x30000000

This line restricts heap memory usage to a maximum of 768 MB (3 segments *

256 MB). If the process memory grows larger than this limit, page swapping can

occur, which can adversely affect the performance of your system.

v Set the value of the IPCCBaseAddress property to 11 or 12. For more

information on this property, see the System Installation Guide for UNIX.

DuplicateEventElimination

When the value of this property is true, a JMS-enabled connector can ensure that

duplicate events are not delivered to the delivery queue. To use this feature, during

connector development, the connector must have a unique event identifier set as

the business object ObjectEventId attribute in the application-specific code.

Note: When the value of this property is true, the MonitorQueue property must

be enabled to provide guaranteed event delivery.

The default value is false.

EnableOidForFlowMonitoring

When the value of this property is true, the adapter runtime will mark the

incoming ObjectEventID as a foreign key for flow monitoring.

This property is only valid if the BrokerType property is set to ICS.

The default value is false.

FaultQueue

If the connector experiences an error while processing a message, it moves the

message (and a status indicator and description of the problem) to the queue

specified in the FaultQueue property.

The default value is <CONNECTORNAME>/FAULTQUEUE.

Appendix A. Standard configuration properties for connectors 79

jms.FactoryClassName

The jms.FactoryClassName property specifies the class name to instantiate for a

JMS provider. This property must be set if the value of the DeliveryTransport

property is JMS.

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.ListenerConcurrency

The jms.ListenerConcurrency property specifies the number of concurrent listeners

for the JMS controller. It specifies the number of threads that fetch and process

messages concurrently within a controller.

This property is valid only if the value of the jms.OptimizedTransport property is

true.

The default value is 1.

jms.MessageBrokerName

The jms.MessageBrokerName specifies the broker name to use for the JMS

provider. You must set this connector property if you specify JMS as the delivery

transport mechanism (in the DeliveryTransport property).

When you connect to a remote message broker, this property requires the following

values:
QueueMgrName:Channel:HostName:PortNumber

where:

QueueMgrName is the name of the queue manager.

Channel is the channel used by the client.

HostName is the name of the machine where the queue manager is to reside.

PortNumberis the port number used by the queue manager for listening

For example:

jms.MessageBrokerName = WBIMB.Queue.Manager:CHANNEL1:RemoteMachine:1456

The default value is crossworlds.queue.manager. Use the default when connecting

to a local message broker.

jms.NumConcurrentRequests

The jms.NumConcurrentRequests property specifies the maximum number of

concurrent service call requests that can be sent to a connector at the same time.

Once that maximum is reached, new service calls are blocked and must wait for

another request to complete before proceeding.

The default value is 10.

jms.Password

The jms.Password property specifies the password for the JMS provider. A value

for this property is optional.

There is no default value.

80 Adapter for WebSphere Message Broker User Guide

jms.TransportOptimized

The jms.TransportOptimized property determines if the WIP (work in progress) is

optimized. You must have a WebSphere MQ provider to optimize the WIP. For

optimized WIP to operate, the messaging provider must be able to:

1. Read a message without taking it off the queue

2. Delete a message with a specific ID without transferring the entire message to

the receiver’s memory space

3. Read a message by using a specific ID (needed for recovery purposes)

4. Track the point at which events that have not been read appear.

The JMS APIs cannot be used for optimized WIP because they do not meet

conditions 2 and 4 above, but the MQ Java APIs meet all four conditions, and

hence are required for optimized WIP.

This property is valid only if the value of DeliveryTransport is JMS and the value of

BrokerType is ICS.

The default value is false.

jms.UserName

the jms.UserName property specifies the user name for the JMS provider. A value

for this property is optional.

There is no default value.

JvmMaxHeapSize

The JvmMaxHeapSize property specifies the maximum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128m.

JvmMaxNativeStackSize

The JvmMaxNativeStackSize property specifies the maximum native stack size for

the agent (in kilobytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128k.

JvmMinHeapSize

The JvmMinHeapSize property specifies the minimum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1m.

Appendix A. Standard configuration properties for connectors 81

ListenerConcurrency

The ListenerConcurrency property supports multithreading in WebSphere MQ

Listener when ICS is the integration broker. It enables batch writing of multiple

events to the database, thereby improving system performance.

This property valid only with connectors that use MQ transport. The value of the

DeliveryTransport property must be MQ.

The default value is 1.

Locale

The Locale property specifies the language code, country or territory, and,

optionally, the associated character code set. The value of this property determines

cultural conventions such as collation and sort order of data, date and time

formats, and the symbols used in monetary specifications.

A locale name has the following format:

ll_TT.codeset

where:

ll is a two-character language code (in lowercase letters)

TT is a two-letter country or territory code (in uppercase letters)

codeset is the name of the associated character code set (may be optional).

By default, only a subset of supported locales are listed. To add other supported

values to the list, you modify the \Data\Std\stdConnProps.xml file in the

<ProductDir>\bin directory. For more information, refer to the Connector

Configurator appendix in this guide.

If the connector has not been internationalized, the only valid value for this

property is en_US. To determine whether a specific connector has been globalized,

refer to the user guide for that adapter.

The default value is en_US.

LogAtInterchangeEnd

The LogAtInterchangeEnd property specifies whether to log errors to the log

destination of the integration broker.

Logging to the log destination also turns on e-mail notification, which generates

e-mail messages for the recipient specified as the value of MESSAGE_RECIPIENT

in the InterchangeSystem.cfg file when errors or fatal errors occur. For example,

when a connector loses its connection to the application, if the value of

LogAtInterChangeEnd is true, an e-mail message is sent to the specified message

recipient.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

MaxEventCapacity

The MaxEventCapacity property specifies maximum number of events in the

controller buffer. This property is used by the flow control feature.

82 Adapter for WebSphere Message Broker User Guide

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The value can be a positive integer between 1 and 2147483647.

The default value is 2147483647.

MessageFileName

The MessageFileName property specifies the name of the connector message file.

The standard location for the message file is \connectors\messages in the product

directory. Specify the message file name in an absolute path if the message file is

not located in the standard location.

If a connector message file does not exist, the connector uses

InterchangeSystem.txt as the message file. This file is located in the product

directory.

Note: To determine whether a connector has its own message file, see the

individual adapter user guide.

The default value is InterchangeSystem.txt.

MonitorQueue

The MonitorQueue property specifies the logical queue that the connector uses to

monitor duplicate events.

It is valid only if the value of the DeliveryTransport property is JMS and the value

of the DuplicateEventElimination is true.

The default value is <CONNECTORNAME>/MONITORQUEUE

OADAutoRestartAgent

the OADAutoRestartAgent property specifies whether the connector uses the

automatic and remote restart feature. This feature uses the WebSphere

MQ-triggered Object Activation Daemon (OAD) to restart the connector after an

abnormal shutdown, or to start a remote connector from System Monitor.

This property must be set to true to enable the automatic and remote restart

feature. For information on how to configure the WebSphere MQ-triggered OAD

feature. see the Installation Guide for Windows or for UNIX.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

OADMaxNumRetry

The OADMaxNumRetry property specifies the maximum number of times that the

WebSphere MQ-triggered Object Activation Daemon (OAD) automatically attempts

to restart the connector after an abnormal shutdown. The OADAutoRestartAgent

property must be set to true for this property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

Appendix A. Standard configuration properties for connectors 83

The default value is 1000.

OADRetryTimeInterval

The OADRetryTimeInterval property specifies the number of minutes in the

retry-time interval for the WebSphere MQ-triggered Object Activation Daemon

(OAD). If the connector agent does not restart within this retry-time interval, the

connector controller asks the OAD to restart the connector agent again. The OAD

repeats this retry process as many times as specified by the OADMaxNumRetry

property. The OADAutoRestartAgent property must be set to true for this

property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is 10.

PollEndTime

The PollEndTime property specifies the time to stop polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

PollFrequency

The PollFrequency property specifies the amount of time (in milliseconds) between

the end of one polling action and the start of the next polling action. This is not

the interval between polling actions. Rather, the logic is as follows:

v Poll to obtain the number of objects specified by the value of the PollQuantity

property.

v Process these objects. For some connectors, this may be partly done on separate

threads, which execute asynchronously to the next polling action.

v Delay for the interval specified by the PollFrequency property.

v Repeat the cycle.

The following values are valid for this property:

v The number of milliseconds between polling actions (a positive integer).

v The word no, which causes the connector not to poll. Enter the word in

lowercase.

v The word key, which causes the connector to poll only when you type the letter

p in the connector Command Prompt window. Enter the word in lowercase.

The default is 10000.

Important: Some connectors have restrictions on the use of this property. Where

they exist, these restrictions are documented in the chapter on

installing and configuring the adapter.

84 Adapter for WebSphere Message Broker User Guide

PollQuantity

The PollQuantity property designates the number of items from the application

that the connector polls for. If the adapter has a connector-specific property for

setting the poll quantity, the value set in the connector-specific property overrides

the standard property value.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the ContainerManagedEvents property has a value.

An e-mail message is also considered an event. The connector actions are as

follows when it is polled for e-mail.

v When it is polled once, the connector detects the body of the message, which it

reads as an attachment. Since no data handler was specified for this mime type,

it will then ignore the message.

v The connector processes the first BO attachment. The data handler is available

for this MIME type, so it sends the business object to Visual Test Connector.

v When it is polled for the second time, the connector processes the second BO

attachment. The data handler is available for this MIME type, so it sends the

business object to Visual Test Connector.

v Once it is accepted, the third BO attachment should be transmitted.

PollStartTime

The PollStartTime property specifies the time to start polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

RepositoryDirectory

The RepositoryDirectory property is the location of the repository from which the

connector reads the XML schema documents that store the metadata for business

object definitions.

If the integration broker is ICS, this value must be set to set to <REMOTE>

because the connector obtains this information from the InterChange Server

repository.

When the integration broker is a WebSphere message broker or WAS, this value is

set to <ProductDir>\repository by default. However, it may be set to any valid

directory name.

RequestQueue

The RequestQueue property specifies the queue that is used by the integration

broker to send business objects to the connector.

This property is valid only if the value of the DeliveryTransport property is JMS.

Appendix A. Standard configuration properties for connectors 85

The default value is <CONNECTORNAME>/REQUESTQUEUE.

ResponseQueue

The ResponseQueue property specifies the JMS response queue, which delivers a

response message from the connector framework to the integration broker. When

the integration broker is ICS, the server sends the request and waits for a response

message in the JMS response queue.

This property is valid only if the value of the DeliveryTransport property is JMS.

The default value is <CONNECTORNAME>/RESPONSEQUEUE.

RestartRetryCount

The RestartRetryCount property specifies the number of times the connector

attempts to restart itself. When this property is used for a connector that is

connected in parallel, it specifies the number of times the master connector

application-specific component attempts to restart the client connector

application-specific component.

The default value is 7.

RestartRetryInterval

The RestartRetryInterval property specifies the interval in minutes at which the

connector attempts to restart itself. When this property is used for a connector that

is linked in parallel, it specifies the interval at which the master connector

application-specific component attempts to restart the client connector

application-specific component.

Possible values for the property range from 1 through 2147483647.

The default value is 1.

ResultsSetEnabled

The ResultsSetEnabled property enables or disables results set support when

Information Integrator is active. This property can be used only if the adapter

supports DB2 Information Integrator.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the value of BrokerType is WMQI.

The default value is false.

ResultsSetSize

The ResultsSetSize property defines the maximum number of business objects that

can be returned to Information Integrator. This property can be used only if the

adapter supports DB2 Information Integrator.

This property is valid only if the value of the ResultsSetEnabled property is true.

The default value is 0. This means that the size of the results set is unlimited.

86 Adapter for WebSphere Message Broker User Guide

RHF2MessageDomain

The RHF2MessageDomain property allows you to configure the value of the field

domain name in the JMS header. When data is sent to a WebSphere message

broker over JMS transport, the adapter framework writes JMS header information,

with a domain name and a fixed value of mrm. A configurable domain name lets

you track how the WebSphere message broker processes the message data.

This is an example header:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

This property is valid only if the value of BrokerType is WMQI or WAS. Also, it is

valid only if the value of the DeliveryTransport property is JMS, and the value of

the WireFormat property is CwXML.

Possible values are mrm and xml. The default value is mrm.

SourceQueue

The SourceQueue property designates the JMS source queue for the connector

framework in support of guaranteed event delivery for JMS-enabled connectors

that use a JMS event store. For further information, see “ContainerManagedEvents”

on page 76.

This property is valid only if the value of DeliveryTransport is JMS, and a value for

ContainerManagedEvents is specified.

The default value is <CONNECTORNAME>/SOURCEQUEUE.

SynchronousRequestQueue

The SynchronousRequestQueue property delivers request messages that require a

synchronous response from the connector framework to the broker. This queue is

necessary only if the connector uses synchronous execution. With synchronous

execution, the connector framework sends a message to the synchronous request

queue and waits for a response from the broker on the synchronous response

queue. The response message sent to the connector has a correlation ID that

matches the ID of the original message.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is <CONNECTORNAME>/SYNCHRONOUSREQUESTQUEUE

SynchronousRequestTimeout

The SynchronousRequestTimeout property specifies the time in milliseconds that

the connector waits for a response to a synchronous request. If the response is not

received within the specified time, the connector moves the original synchronous

request message (and error message) to the fault queue.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is 0.

Appendix A. Standard configuration properties for connectors 87

SynchronousResponseQueue

The SynchronousResponseQueue property delivers response messages in reply to a

synchronous request from the broker to the connector framework. This queue is

necessary only if the connector uses synchronous execution.

This property is valid only if the value of DeliveryTransport is JMS.

The default is <CONNECTORNAME>/SYNCHRONOUSRESPONSEQUEUE

TivoliMonitorTransactionPerformance

The TivoliMonitorTransactionPerformance property specifies whether IBM Tivoli

Monitoring for Transaction Performance (ITMTP) is invoked at run time.

The default value is false.

WireFormat

The WireFormat property specifies the message format on the transport:

v If the value of the RepositoryDirectory property is a local directory, the value is

CwXML.

v If the value of the RepositoryDirectory property is a remote directory, the value

is CwBO.

WsifSynchronousRequestTimeout

The WsifSynchronousRequestTimeout property specifies the time in milliseconds

that the connector waits for a response to a synchronous request. If the response is

not received within the specified time, the connector moves the original

synchronous request message (and an error message) to the fault queue.

This property is valid only if the value of BrokerType is WAS.

The default value is 0.

XMLNameSpaceFormat

The XMLNameSpaceFormat property specifies short or long namespaces in the

XML format of business object definitions.

This property is valid only if the value of BrokerType is set to WMQI or WAS.

The default value is short.

88 Adapter for WebSphere Message Broker User Guide

Appendix B. Connector-specific properties for this adapter

This appendix describes connector-specific properties for the Adapter for

WebSphere Business Integration Message Broker. Refer to these properties when

using Connector Configurator to configure the adapter.

Overview of connector-specific properties

Connector-specific configuration properties provide information needed by the

connector agent at runtime. Connector-specific properties also provide a way of

changing static information or logic within the connector agent without having to

recode and rebuild the agent.

The following properties determine the communications between the adapter and

the WebSphere Business Integration Message Broker:

v ArchiveQueue

v ErrorQueue

v InputQueue

v InProgressQueue

v ReplyToQueue

v UnsubscribedQueue

Properties that determine the communications between the InterChange Server

integration broker and the adapter are found in Appendix A, “Standard

configuration properties for connectors,” on page 65.

Connector-specific properties

Table 22 lists the connector-specific configuration properties for the connector. See

the sections that follow for explanations of the properties.

© Copyright IBM Corp. 2000, 2005 89

Table 22. Connector-specific configuration properties

Name Possible values Default value Required

ApplicationPassword Login password No

ApplicationUserName Login user ID No

ArchiveQueue Queue to which copies of successfully

processed messages are sent

queue://crossworlds.queue.

manager/WBIMBConnector/ARCHIVE

No

CCSID Character set for queue manager

connection

Yes

Channel MQ server connector channel Yes

ConfigurationMetaObject Name of configuration meta-object Yes

DataHandlerClassName Data handler class name com.crossworlds.DataHandlers.

text.xml

Yes

DataHandlerConfigMO Data handler meta-object MO_DataHandler_Default Yes

DataHandlerMimeType MIME type of file text/xml Yes

DataHandlerPoolSize Number of data handler instances

to cache for resuse

30 No

DefaultVerb Any verb supported by the connector.

EnableMessageProducerCache true or false true No

ErrorQueue Queue for unprocessed messages queue://crossworlds.queue.

manager/WBIMBConnector/ERROR

No

HostName WebSphere MQ server Connects to the local queue

manager in bindings mode.

No

InputQueue Poll queue queue://crossworlds.queue.

manager/WBIMBConnector/IN

Yes

PollQuantity Number of messages to retrieve from

each queue specified in the InputQueue

property

1 No

Port Port established for the WebSphere MQ

listener

1414 No

ReplyToQueue Queue to which response messages are

delivered when the connector issues

requests

queue://crossworlds.queue.

manager/WBIMBConnector/REPLY

No

ReplyToQueuePollFrequency Polling interval in number of

milliseconds for receiver during

synchronous request processing

No

SecurityExitClassName The fully qualified class name of the

security exit being used.

No

SecurityExitInitParam Specifies a value to configure with the

initialization string that is used to

invoke a secure exit.

No

SessionPoolSizeForRequests Maximum pool size for caching the

sessions used during request processing

10 No

UnsubscribedQueue Queue to which unsubscribed messages

are sent

queue://crossworlds.queue.

manager/WBIMBConnector/

UNSUBSCRIBED

No

UseDefaults true or false false

WorkerThreadCount Maximum number of parallel threads

for polling.

1 No

ApplicationPassword

Password used with UserID to log in to WebSphere Business Integration Message

Broker.

Default = None.

90 Adapter for WebSphere Message Broker User Guide

If the ApplicationPassword is left blank or removed, the connector uses the default

password provided by WebSphere Business Integration Message Broker.

ApplicationUserName

User ID used with Password to log in to WebSphere Business Integration Message

Broker.

Default = None.

If the ApplicationUserName is left blank or removed, the connector uses the default

user ID provided by WebSphere Business Integration Message Broker.

ArchiveQueue

Queue to which copies of successfully processed messages are sent.

Default = queue://crossworlds.queue.manager/WBIMBConnector/ARCHIVE

CCSID

The character set for the queue manager connection. The value of this property

should match that of the CCSID property in the queue URI. See “Setting Queue

Uniform Resource Identifiers (URI)” on page 34.

Default = none.

Channel

MQ server connector channel through which the connector communicates with

WebSphere Business Integration Message Broker.

Default = none.

If the Channel is left blank or removed, the connector uses the default server

channel provided by WebSphere Business Integration Message Broker.

ConfigurationMetaObject

Name of meta-object containing configuration information for the connector

Default = none.

DataHandlerClassName

Data handler class to use when converting messages to and from business objects.

Default = com.crossworlds.DataHandlers.text.xml

DataHandlerConfigMO

Meta-object passed to data handler to provide configuration information.

Default = MO_DataHandler_Default

DataHandlerMimeType

Allows you to request a data handler based on a particular MIME type.

Default = text/xml

Appendix B. Connector-specific properties for this adapter 91

DataHandlerPoolSize

Allows you to specify a maximum number of data handler instances to cache for a

particular type of data handler.

Default = 30

DefaultVerb

Specifies the verb to be set within an incoming business object, if it has not been

set by the data handler during polling.

Default= none

EnableMessageProducerCache

Boolean property to specify that the adapter should enable a message producer

cache for sending request messages.

Default= true

ErrorQueue

Queue to which messages that could not be processed are sent.

Default = queue://crossworlds.queue.manager/WBIMBConnector/ERROR

HostName

The name of the server hosting WebSphere Business Integration Message Broker.

Default = When a value is not provided, the adapter will connect to the local

queue manager in bindings mode.

InputQueue

Message queues that will be polled by the connector for new messages. The

connector accepts multiple semi-colon delimited queue names. For example, to poll

the following three queues: MyQueueA, MyQueueB, and MyQueueC, the value for

connector configuration property InputQueue would equal:

MyQueueA;MyQueueB;MyQueueC.

The connector polls the queues in a round-robin manner and retrieves up to

pollQuantity number of messages from each queue. For example, if pollQuantity

equals 2, and MyQueueA contains 2 messages, MyQueueB contains 1 message and

MyQueueC contains 5 messages, the connector retrieves messages in the following

manner:

Since we have a pollQuanity of 2, the connector will retrieve at most 2 messages

from each queue per call to pollForEvents. For the first cycle (1 of 2), the connector

retrieves the first message from each of MyQueueA, MyQueueB, and MyQueueC.

That completes the first round of polling and if we had a pollQuantity of 1, the

connector would stop. Since we have a pollQuanity of 2, the connector starts a

second round of polling (2 of 2) and retrieves one message each from MyQueueA

and MyQueueC--it skips MqQueueB since it is now empty. After polling all queues

2x each, the call to the method pollForEvents is complete. Here’s the sequence of

message retrieval:

1. 1 message from MyQueueA

92 Adapter for WebSphere Message Broker User Guide

2. 1 message from MyQueueB

3. 1 message from MyQueueC

4. 1 message from MyQueueA

5. Skip MyQueueB since it’s now empty

6. 1 message from MyQueueC

Default = queue://crossworlds.queue.manager/WBIMBConnector/IN

PollQuantity

Number of messages to retrieve from each queue specified in the InputQueue

property during a pollForEvents scan.

Default =1

Port

Port established for the WebSphere Business Integration Message Broker listener.

Default = The WebSphere MQ environment’s default port, which is 1414.

ReplyToQueue

Queue to which response messages are delivered when the connector issues

requests.

Default = queue://crossworlds.queue.manager/WBIMBConnector/REPLY

ReplyToQueuePollFrequency

Specifies the polling interval for the receiver during synchronous request

processing. The value is the number of milliseconds.

Default = none.

SecurityExitClassName

The fully qualified class name of the security exit being used.

Default = none.

SecurityExitInitParam

Specifies a value to configure with the initialization string that is used to invoke a

secure exit.

Default = none.

SessionPoolSizeForRequests

Maximum pool size for caching the sessions used during request processing.

Default = 10

UnsubscribedQueue

Queue to which messages that are not subscribed are sent.

Default = queue://crossworlds.queue.manager/WBIMBConnector/UNSUBSCRIBED

Appendix B. Connector-specific properties for this adapter 93

Note: *Always check the values WebSphere Business Integration Message Broker

provides since they may be incorrect or unknown. If so, please implicitly

specify values.

UseDefaults

On a Create operation, if UseDefaults is set to true, the connector checks whether

a valid value or a default value is provided for each isRequired business object

attribute. If a value is provided, the Create operation succeeds. If the parameter is

set to false, the connector checks only for a valid value and causes the Create

operation to fail if it is not provided. The default is false.

WorkerThreadCount

Maximum number of parallel threads for polling. While concurrently processing

the events, the adapter will not be able to submit events to the broker in the order

it received. If the sequence needs to be maintained WorkerThreadCount should

always be set to 1.

94 Adapter for WebSphere Message Broker User Guide

Appendix C. Tutorial

v “Overview of the tutorial”

v “Before you begin” on page 96

v “Setting up your environment” on page 96

v “Running the scenarios” on page 99

This tutorial is designed to show you the following:

v How the Adapter for WebSphere Business Integration Message Broker can be

integrated with WebSphere Business Integration Message Broker’s message

flows.

v How the adapter sends and receives messages to and from a legacy application.

The tutorial’s scenarios are designed to show the basic points of the adapter’s

functionality.

See the Preface of this document for a guide to notational conventions.

Overview of the tutorial

The tutorial involves a legacy application (simulated, using a utility) that sends an

XML message to the adapter via a message broker. The message conveys changes

in the status of various catalog items. In place of the data warehousing flows and

message conversions associated with WebSphere Business Integration Message

Broker, the legacy message instead passes through a simple color-check flow. Then

the message is sent to the adapter.

The adapter receives the color-processed message from the WebSphere Business

Integration Message Broker. Using the XML data handler, the adapter converts the

message into business object Sample_WBIMB_LegacyItem_XMLDoc and passes this

object to the integration broker. In the tutorial, you simulate the Port connector

(using the Visual Test Connector), retrieve the newly created business object, and

confirm its contents.

In the opposite direction, you issue the business object from the Visual Test

Connector. The Adapter for WebSphere Business Integration Message Broker

converts the object to a legacy message. The adapter delivers the message to the

WebSphere Business Integration Message Broker application where it is processed

(its message format is updated to LI_UP) and redirected to the (simulated) legacy

application. This scenario is demonstrated with the adapter configured for WMQI.

Everything you need to run this scenario is installed with the adapter and adapter

framework:

v The WebSphere Business Integration Message Broker projects (Message Flow

project and Server project) that contain the sample message flows, sample

domain configuration manager file, and a deployable bar file.

v The Port connector repository and Visual Test Connector (included with

installation of the ADK). The Port Connector is comprised of an adapter

definition with no underlying code and as such is well-suited for simulation

scenarios. The Visual Test Connector is a tool for testing interfaces.

© Copyright IBM Corp. 2000, 2005 95

In this appendix

This appendix covers the following tasks:

 Table 23. Demonstrating the adapter: task roadmap

Task Associated procedure (see...)

Reviewing an installation checklist “Before you begin”

Setting up your environment “Setting up your environment”

Running the scenarios “Running the scenarios” on page 99

Before you begin

Before proceeding with this tutorial, make sure that you have performed the

following tasks:

v You installed and are experienced with the IBM WebSphere product.

v You installed WebSphere MQ 5.1 or later.

v You installed WebSphere Business Integration Message Broker 5.0 or later.

v You installed the WebSphere MQ client libraries for Java.

v You installed the Adapter for WebSphere Business Integration Message Broker

(configuration instructions are provided in this tutorial).

v Your WebSphere MQ adapter queue manager is named

crossworlds.queue.manager(the default value during installation). Otherwise,

substitute your queue manager name whenever this document refers to

crossworlds.queue.manager In addition, you must do the following:

1. Open the Message Brokers Toolkit and change the QueueManagerName

attribute of all MQOutput nodes in the sample message flows to

crossworlds.queue.manager.

2. Open the LocalDomain.configmgr file in the server project (this project is in

the samples you installed with the adapter) and then change the queue

manager name (that your broker is configured for) to

crossworlds.queue.manager.

3. Open Business Object Designer and change the output queue manager

specified in sample meta-object Sample_WBIMB_MO_Config

to crossworlds.queue.manager

v You performed a full installation (not the basic installation) of WebSphere MQ,

including WebSphere MQ explorer. Although not necessary, WebSphere MQ

explorer makes it easier to establish queues and examine messages.

v You installed the WebSphere MQ client libraries for Java.

Setting up your environment

This topic contains an overview and procedure for setting up your environment.

Overview of setting up your environment

This section describes how to prepare your environment to work with the tutorial.

In what follows, sample_folder refers to the ConnName/sample/LegacyItem folder in

the installed file structure. For further information, see “Verifying installation” on

page 13. The business object repository is provided in the sample_folder as .xsd

files.

96 Adapter for WebSphere Message Broker User Guide

The tutorial depicts a simple business object exchange between the WebSphere

Business Integration Message Broker adapter and the Visual Test Connector. The

exchange occurs in a WebSphere Business Integration Message Broker

environment.

Steps for setting up your environment

To set up for the tutorial, please configure the following:

1. Define the queues The tutorial requires that eight queues be defined in your

queue manager. To create the necessary queues, type RUNMQSC from a command

line and issue the following commands:

v DEFINE QL(’Samples/WBIMB/Item/LegacyApp’)

v DEFINE QL(’Samples/WBIMB/Item/WBIMBConnector’)

v DEFINE QL(’Samples/LegacyApp/Item/WBIMB’)

v DEFINE QL(’Samples/WBIMBConnector/Item/WBIMB’)

v DEFINE QL(’Samples/WBIMB/FAIL’)

v DEFINE QL(’Samples/WBIMBConnector/UNSUBSCRIBED’)

v DEFINE QL(’Samples/WBIMBConnector/ERROR’)

v DEFINE QL(’Samples/WBIMBConnector/ARCHIVE’)

Next you define the queues required by the WebSphere Business Integration

Message Broker adapter and Port Connector for the WebSphere Business

Integration Message Broker configuration as follows:

v DEFINE QL(’WBIMBConnector/ADMININQUEUE’)

v DEFINE QL(’WBIMBConnector/ADMINOUTQUEUE’)

v DEFINE QL(’WBIMBConnector/DELIVERYQUEUE’)

v DEFINE QL(’WBIMBConnector/FAULTQUEUE’)

v DEFINE QL(’WBIMBConnector/REQUESTQUEUE’)

v DEFINE QL(’WBIMBConnector/RESPONSEQUEUE’)

v DEFINE QL(’WBIMBConnector/SYNCHRONOUSREQUESTQUEUE’)

v DEFINE QL(’WBIMBConnectorSYNCHRONOUSRESPONSEQUEUE’)

v DEFINE QL(’WBIMBConnectorMONITORQUEUE’)

v DEFINE QL(’PortConnector/ADMININQUEUE’)

v DEFINE QL(’PortConnector/ADMINOUTQUEUE’)

v DEFINE QL(’PortConnector/DELIVERYQUEUE’)

v DEFINE QL(’PortConnector/FAULTQUEUE’)

v DEFINE QL(’PortConnector/REQUESTQUEUE’)

v DEFINE QL(’PortConnector/RESPONSEQUEUE’)

v DEFINE QL(’PortConnector/SYNCHRONOUSREQUESTQUEUE’)

v DEFINE QL(’PortConnector/SYNCHRONOUSRESPONSEQUEUE’)

2. Configure the adapter Using Connector Configurator, select

File->Open->From File and load the WBIMBConnector.cfg in the sample_folder.

Check or change the adapter configuration properties to match the values listed

below. For further information on using Connector Configurator, see Chapter 6,

“Configuring a data handler,” on page 59; for more on connector-specific

properties, see Appendix B, “Connector-specific properties for this adapter,” on

page 89.
Set the following standard properties:

v Broker Type Set this property to WMQI.

v Repository Directory Set this property to the sample_folder directory.

Appendix C. Tutorial 97

v DuplicateEventElimination Set this property to true.

v MonitorQueue Set this property to WBIMBConnector/MONITORQUEUE

. Set the following connector-specific properties:

v ConfigurationMetaObject Set this property to Sample_WBIMB_MO_Config.

v DataHandlerConfigMO Set this property to Sample_WBIMB_MO_DataHandler.

v DataHandlerMimeType Set this property to text/xml.

v ErrorQueue Set this property to

queue://crossworlds.queue.manager/Samples/WBIMBConnector/ERROR.

v InputQueue Set this property to

queue://crossworlds.queue.manager/Samples/WBIMB/Item/WBIMBConnector.

v UnsubscribedQueue Set this property to

queue://crossworlds.queue.manager/Samples/WBIMBConnector/UNSUBSCRIBED.

v ArchiveQueue Set this property to

queue://crossworlds.queue.manager/Samples/WBIMBConnector/ARCHIVE

3. Configure the Port Connector Using Connector Configurator, set the following

standard properties:

v Broker Type Set this property to WMQI.

v Repository Directory Set this property to the sample_folder directory.

v RequestQueue Set this property to WBIMBConnector/DELIVERYQUEUE (the

DeliveryQueue property value for the WebSphere Business Integration

Message Broker adapter).

v DeliveryQueue Set this property to WBIMBConnector/REQUESTQUEUE (the

RequestQueue property value for the WebSphere Business Integration

Message Broker adapter).
4. Configure supported business objects In order to use business objects,

adapters must first support them. Using Connector Configurator, click the

Supported Business Objects tab for the WebSphere Business Integration

Message Broker adapter, add the business objects shown in Table 24 and set the

Message Set ID to a unique value for each supported business object.

 Table 24. Supported sample business objects for JMS adapter

Business object name Message ID

Sample_WBIMB_MO_Config 1

Sample_WBIMB_MO_DataHandler 2

Sample_WBIMB_LegacyItem 3

Sample_WBIMB_LegacyItem_XMLDoc 4

Using Connector Configurator, open the Port connector definition

PortConnector.cfg provided in the sample_folder, and add the supported

business objects and Message IDs shown in Table 25.

 Table 25. Supported sample business objects for Port connector

Business object name Message ID

Sample_WBIMB_LegacyItem 1

Sample_WBIMB_LegacyItem_XMLDoc 2

5. Create a new message flow project

a. Open the Message Brokers Toolkit and create a new Message Flow Project.

Import all the message flows and ESQL files from the

sample_folder/MSG_FLOW_PROJECT directory to your Message Flow Project.

98 Adapter for WebSphere Message Broker User Guide

b. Create a new Server Project and import all the files from the

sample_folder/Sample_WBIMB_Project to your server project.

c. Connect to the domain displayed under the Domains view in your Broker

Administration perspective. Deploy the bar file Sample_WBIMB_bar.bar from

the Broker Administration Navigator panel in your Broker Administration

perspective to the default execution group of your broker.
6. Configure connector start scripts

Windows:

a. Open the properties of the shortcut for the adapter for WebSphere Business

Integration Message Broker.

b. As the last argument in the target, add -c followed by the <full path and

filename for the WBIMBConnector.cfg file> For example:

-cProduct_Dir\connectors\WBIMB\LegacyItem\

WBIMBConnector.cfg

UNIX:

a. Open the file:

Product_Dir/bin/connector_manager_WebSphereBIMessageBroker. Set the

value of the AGENTCONFIG_FILE property to -c followed by the <full path and

filename for the WBIMBConnector.cfg file>. For example:

AGENTCONFIG_FILE=Product_Dir/connectors/

WebSphereBusinessIntegrationMessageBroker/

samples/LegacyItem/WBIMBConnector.cfg

Running the scenarios

This topic contains an overview and procedures for running the scenarios.

Overview of running the scenarios

The tutorial includes a request processing and an event processing scenario. To run

the scenarios, you must configure the samples as described in “Setting up your

environment” on page 96.

Steps for running the scenarios

To run the scenarios, do the following:

1. Start the Adapter for WebSphere Business Integration Message Broker if it is

not already running. For further information, see “Starting the connector” on

page 37.

2. Start the Visual Test Connector if it is not already running. For further

information, see Implementing Adapters with WebSphere Message Brokers.

3. Start the WebSphere Business Integration Message Broker application broker

if not already running.For further information, see Implementing Adapters with

WebSphere Message Brokers.

4. Simulate the Port connector Using Visual Test Connector, define a profile for

the Port connector:

a. Select File->Create/Select Profile from the Visual Test Connector menu,

then select File-> New Profile from the Connector Profile menu.

b. Select the Port Connector configuration file PortConnector.cfg in the

sample_folder, then configure the Connector Name and Broker Type and click

OK.

c. Select the profile you created and click OK.

Appendix C. Tutorial 99

5. Test the request processing scenario Using Visual Test Connector, create a

new instance of a business object and send it:

a. Create a new instance of business object Sample_WBIMB_LegacyItem_XMLDoc

by selecting the business object in the BoType drop-down box and then

selecting Create for the BOInstance. This business object is merely an XML

wrapper required by the XML data handler; you will need to create a new

instance of child-object LegacyItem in your test object to contain actual

data. Change the default values if desired

b. Send the message by clicking Send BO.
6. Confirm message delivery Using WebSphere MQ Explorer or a similar

application, open queue

queue://crossworlds.queue.manager/Samples/WBIMB/Item/LegacyApp to see if a

new legacy item message with format LI_UP has arrived from the adapter. This

indicates a successful delivery of the business object payload as a legacy

message via the WebSphere Business Integration Message Broker application. If

no message can be found, check in queue

queue://crossworlds.queue.manager/Samples/WBIMB/FAIL to see if the message

could not be processed by the WebSphere Business Integration Message Broker

application. If this is the case, see Implementing Adapters with WebSphere Message

Brokers to enable tracing. Then you can determine where the error occurred in

the WebSphere Business Integration Message Broker application.

7. Test the event processing scenario Use utility sample_folder\mqsiput.exe to

deliver a legacy item message to the adapter via the WebSphere Business

Integration Message Broker application. The mqsiput utility has the following

syntax:
mqsiput [queue] [queue manager] < [message file].

The sample delivery message LegacyItem.txt resides in the sample_folder

directory. For this tutorial, enter
mqsiput Samples/LegacyApp/Item/WBIMB crossworlds.queue.manager <

LegacyItem.txt

at the command line. If successful, a sample item message is delivered to the

WebSphere Business Integration Message Broker application that is simulating a

legacy application.

Note: Optionally you may add the loopback message flow to your broker

execution group. (This flow is provided with the IBM WebSphere

Business Integration Message Broker adapter sample message flows.)

Adding the loopback message flow will loop any message sent from the

adapter back to the adapter after being processed by the WebSphere

Business Integration Message Broker application.

Once the WebSphere Business Integration Message Broker application delivers a

message to the input queue, the adapter retrieves it and attempts to convert it

into a Sample_WBIMB_LegacyItem_XMLDoc business object. The key to having the

adapter poll the message is to ensure that the message format equals the value

associated with the Sample_WBIMB_LegacyItem_XMLDoc business object in

meta-object Sample_WBIMB_MO_Config. If it identifies the message format as

LI_UP, the adapter then calls the data handler to convert the message to

business object Sample_WBIMB_LegacyItem_XMLDoc with verb Update. The newly

created business object is subsequently delivered to the WebSphere Business

Integration Broker and then re-delivered to the Visual Test Connector.

8. Confirm message delivery If you’ve performed all the above steps successfully,

you should have a working scenario that enables the WebSphere Business

Integration Message Broker adapter to retrieve messages and convert them to

Sample_WBIMB_LegacyContact business objects, and to convert

Sample_WBIMB_LegacyContact business objects to messages.

100 Adapter for WebSphere Message Broker User Guide

Appendix D. Common Event Infrastructure

WebSphere Business Integration Server Foundation includes the Common Event

Infrastructure Server Application, which is required for Common Event

Infrastructure to operate. The WebSphere Application Server Foundation can be

installed on any system (it does not have to be the same machine on which the

adapter is installed.)

The WebSphere Application Server Application Client includes the libraries

required for interaction between the adapter and the Common Event Infrastructure

Server Application. You must install WebSphere Application Server Application

Client on the same system on which you install the adapter. The adapter connects

to the WebSphere Application Server (within the WebSphere Business Integration

Server Foundation) by means of a configurable URL.

Common Event Infrastructure support is available using any integration broker

supported with this release.

Required software

In addition to the software prerequisites required for the adapter, you must have

the following installed for Common Event Infrastructure to operate:

v WebSphere Business Integration Server Foundation 5.1.1

v WebSphere Application Server Application Client 5.0.2, 5.1, or 5.1.1.

(WebSphere Application Server Application Client 5.1.1 is provided with

WebSphere Business Integration Server Foundation 5.1.1.)

Note: Common Event Infrastructure is not supported on any HP-UX or Linux

platform.

Enabling Common Event Infrastructure

Common Event Infrastructure functionality is enabled with the standard properties

CommonEventInfrastructure and CommonEventInfrastructureContextURL, configured

with Connector Configurator. By default, Common Event Infrastructure is not

enabled. The CommonEventInfrastructureContextURL property enables you to

configure the URL of the Common Event Infrastructure server.(Refer to the

“Standard Properties” appendix of this document for more information.)

Obtaining Common Event Infrastructure adapter events

If Common Event Infrastructure is enabled, the adapter generates Common Event

Infrastructure events that map to the following adapter events:

v Starting the adapter

v Stopping the adapter

v An application response to a timeout from the adapter agent

v Any doVerbFor call issued from the adapter agent

v A gotApplEvent call from the adapter agent

For another application (the “consumer application”) to receive the Common Event

Infrastructure events generated by the adapter, the application must use the

© Copyright IBM Corp. 2000, 2005 101

Common Event Infrastructure event catalog to determine the definitions of

appropriate events and their properties. The events must be defined in the event

catalog for the consumer application to be able to consume the sending

application’s events.

The “Common Event Infrastructure event catalog definitions” appendix of this

document contains XML format metadata showing, for WebSphere Business

Information adapters, the event descriptors and properties the consumer

application should search for.

For more information

For more information about Common Event Infrastructure, refer to the Common

Event Infrastructure information in the WebSphere Business Integration Server

Foundation documentation, available at the following URL:

http://publib.boulder.ibm.com/infocenter/ws51help

For sample XML metadata showing the adapter-generated event descriptors and

properties a consumer application should search for, refer to“Common Event

Infrastructure event catalog definitions.”

Common Event Infrastructure event catalog definitions

The Common Event Infrastructure event catalog contains event definitions that can

be queried by other applications. The following are event definition samples, using

XML metadata, for typical adapter events. If you are writing another application,

your application can use event catalog interfaces to query against the event

definition. For more information about event definitions and how to query them,

refer to the Common Event Infrastructure documentation that is available from the

online IBM WebSphere Server Foundation Information Center.

For WebSphere Business Integration adapters, the extended data elements that

need to be defined in the event catalog are the keys of the business object. Each

business object key requires an event definition. So for any given adapter, various

events such as start adapter, stop adapter, timeout adapter, and any doVerbFor

event (create, update, or delete, for example) must have a corresponding event

definition in the event catalog.

The following sections contain examples of the XML metadata for start adapter,

stop adapter, and event request or delivery.

XML format for “start adapter” metadata

<eventDefinition name="startADAPTER"

 parent="event">

 <property name =”creationTime" //Comment: example value would be

 "2004-05-13T17:00:16.319Z"

 required="true" />

 <property name="globalInstanceId" //Comment: Automatically generated

 by Common Event Infrastructure

 required="true"/>

 <property name="sequenceNumber" //Comment: Source defined number

for messages to be sent/sorted logically

 required="false"/>

 <property name="version" //Comment: Version of the event

 required="false"

 defaultValue="1.0.1"/>

102 Adapter for WebSphere Message Broker User Guide

<property name="sourceComponentId"

 path="sourceComponentId"

 required="true"/>

 <property name="application" //Comment: The name#version of the

source application generating the event. Example is "SampleConnector#3.0.0"

 path="sourceComponentId/application" required="false"/>

 <property name="component" //Comment: This will be the name#version

 of the source component.

 path="sourceComponentId/component"

 required="true"

 defaultValue="ConnectorFrameWorkVersion#4.2.2"/>

 <property name="componentIdType" //Comment: specifies the format

and meaning of the component

 path="sourceComponentId/componentIdType"

 required="true"

 defaultValue="Application"/>

 <property name="executionEnvironment"

 //Comment: Identifies the environment the application is running

 in...example is "Windows 2000#5.0"

 path="sourceComponentId/executionEnvironment"

 required="false" />

 <property name="location" //Comment: The value of this is the

 server name...example is "WQMI"

 path="sourceComponentId/location"

 required="true"/>

 <property name="locationType" //Comment specifies the format and

 meaning of the location

 path="sourceComponentId/locationType"

 required="true"

 defaultValue="Hostname"/>

 <property name="subComponent" //Comment:further distinction

of the logical component

 path="sourceComponentId/subComponent"

 required="true"

 defaultValue="AppSide_Connector.AgentBusinessObjectManager"/>

 <property name="componentType" //Comment: well-defined name

used to characterize all instances of this component

 path="sourceComponentId/componentType"

 required="true"

 defaultValue="ADAPTER"/>

 <property name="situation" //Comment: Defines the type of

 situation that caused the event to be reported

 path="situation"

 required="true"/>

 <property name="categoryName=" //Comment: Specifies the type

of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="StartSituation"/>

 <property name="situationType" //Comment: Specifies the type

of situation and disposition of the event

 path="situation/situationType"

 required="true"

 <property name="reasoningScope" //Comment: Specifies the scope

 of the impact of the event

 path="situation/situationType/reasoningScope"

 required="true"

 permittedValue="INTERNAL"

 permittedValue="EXTERNAL"/>

 <property name="successDisposition" //Comment: Specifies the

 success of event

 path="situation/situationType/successDisposition"

 required="true"

 permittedValue="SUCCESSFUL"

 permittedValue="UNSUCCESSFUL" />

 <property name="situationQualifier" //Comment: Specifies the

 situation qualifiers for this event

Appendix D. Common Event Infrastructure 103

path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="START_INITIATED"

 permittedValue="RESTART_INITIATED"

 permittedValue="START_COMPLETED" />

</eventDefinition>

XML format for ″stop adapter″ metadata

The metadata for “stop adapter” is the same as that for “start adapter” with the

following exceptions:

v The default value for the categoryName property is StopSituation:

<property name="categoryName="

 //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="StopSituation"/>

v The permitted values for the situationQualifier property differ and are as

follows for “stop adapter”:

<property name="situationQualifier"

 //Comment: Specifies the situation qualifiers for this event

 path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="STOP_INITIATED"

 permittedValue="ABORT_INITIATED"

 permittedValue="PAUSE_INITIATED"

 permittedValue="STOP_COMPLETED"

 />

XML format for “timeout adapter” metadata

The metadata for “timeout adapter” is the same as that for “start adapter” and

“stop adapter” with the following exceptions:

v The default value for the categoryName property is ConnectSituation:

<property name="categoryName="

 //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="ConnectSituation"/>

v The permitted values for the situationQualifier property differ and are as

follows for “timeout adapter”:

<property name="situationQualifier" //Comment: Specifies

 the situation qualifiers for this event

 path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="IN_USE"

 permittedValue="FREED"

 permittedValue="CLOSED"

 permittedValue="AVAILABLE"

 />

104 Adapter for WebSphere Message Broker User Guide

XML format for ″request″ or ″delivery″ metadata

At the end of this XML format are the extended data elements. The extended data

elements for adapter request and delivery events represent data from the business

object being processed. This data includes the name of the business object, the key

(foreign or local) for the business object, and business objects that are children of

parent business objects. The children business objects are then broken down into

the same data as the parent (name, key, and any children business objects). This

data is represented in an extended data element of the event definition. This data

will change depending on which business object, which keys, and which child

business objects are being processed. The extended data in this event definition is

just an example and represents a business object named Employee with a key

EmployeeId and a child business object EmployeeAddress with a key EmployeeId.

This pattern could continue for as much data as exists for the particular business

object.

<eventDefinition name="createEmployee" //Comment: This

 extension name is always the business object verb followed by the business

 object name

 parent="event">

 <property name ="creationTime" //Comment: example value would be

"2004-05-13T17:00:16.319Z"

 required="true" />

 <property name="globalInstanceId" //Comment: Automatically generated

 by Common Event Infrastructure

 required="true"/>

 <property name="localInstanceId" //Comment: Value is business

 object verb+business object name+#+app name+ business object identifier

 required="false"/>

 <property name="sequenceNumber" //Comment: Source defined number

for messages to be sent/sorted logically

 required="false"/>

 <property name="version" //Comment: Version of the event...value is

 set to 1.0.1

 required="false"

 defaultValue="1.0.1"/>

 <property name="sourceComponentId"

 path="sourceComponentId"

 required="true"/>

 <property name="application" //Comment: The name#version of the

 source application generating the event...example is

 "SampleConnector#3.0.0"

 path="sourceComponentId/application"

 required="false"/>

 <property name="component" //Comment: This will be the name#version

of the source component.

 path="sourceComponentId/component"

 required="true"

 defaultValue="ConnectorFrameWorkVersion#4.2.2"/>

 <property name="componentIdType" //Comment: specifies the format

 and meaning of the component

 path="sourceComponentId/componentIdType"

 required="true"

 defaultValue="Application"/>

 <property name="executionEnvironment" //Comment: Identifies the

 environment#version the app is running in...example is "Windows 2000#5.0"

 path="sourceComponentId/executionEnvironment"

 required="false" />

 <property name="instanceId" //Comment: Value is business object

 verb+business object name+#+app name+ business object identifier

 path="sourceComponentId/instanceId"

 required="false"

 <property name="location" //Comment: The value of this is the

server name...example is "WQMI"

 path="sourceComponentId/location"

Appendix D. Common Event Infrastructure 105

required="true"/>

 <property name="locationType" //Comment specifies the format and

 meaning of the location

 path="sourceComponentId/locationType"

 required="true"

 defaultValue="Hostname"/>

 <property name="subComponent" //Comment:further distinction of the

 logical component-in this case the value is the name of the business

 object

 path="sourceComponentId/subComponent"

 required="true"/>

 <property name="componentType" //Comment: well-defined name used

 to characterize all instances of this component

 path="sourceComponentId/componentType"

 required="true"

 defaultValue="ADAPTER"/>

 <property name="situation" //Comment: Defines the type of

situation that caused the event to be reported

 path="situation"

 required="true"/>

 <property name="categoryName" //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 permittedValue="CreateSituation"

 permittedValue="DestroySituation"

 permittedValue="OtherSituation" />

 <property name="situationType" //Comment: Specifies the type

of situation and disposition of the event

 path="situation/situationType"

 required="true"

 <property name="reasoningScope" //Comment: Specifies the scope

of the impact of the event

 path="situation/situationType/reasoningScope"

 required="true"

 permittedValue="INTERNAL"

 permittedValue="EXTERNAL"/>

 <property name="successDisposition" //Comment: Specifies the

 success of event

 path="situation/situationType/successDisposition"

 required="true"

 permittedValue="SUCCESSFUL"

 permittedValue="UNSUCCESSFUL" />

 <extendedDataElements name="Employee" //Comment: name of business

 object itself

 type="noValue"

 <children name="EmployeeId"

 type="string"/> //Comment: type is one of the

 permitted values within Common Event Infrastructure documentation

 <children name="EmployeeAddress"

 type="noValue"/>

 <children name="EmployeeId"

 type="string"/>

 -

 -

 -

 </extendedDataElements

</eventDefinition>

106 Adapter for WebSphere Message Broker User Guide

Appendix E. Application Response Measurement

This adapter is compatible with the Application Response Measurement

application programming interface (API), an API that allows applications to be

managed for availability, service level agreements, and capacity planning. An

ARM-instrumented application can participate in IBM Tivoli Monitoring for

Transaction Performance, allowing collection and review of data concerning

transaction metrics.

Application Response Measurement instrumentation support

This adapter is compatible with the Application Response Measurement

application programming interface (API), an API that allows applications to be

managed for availability, service level agreements, and capacity planning. An

ARM-instrumented application can participate in IBM Tivoli Monitoring for

Transaction Performance, allowing collection and review of data concerning

transaction metrics.

Required software

In addition to the software prerequisites required for the adapter, you must have

the following installed for ARM to operate:

v WebSphere Application Server 5.0.1 (contains the IBM Tivoli Monitoring for

Transaction Performance server). This does not have to be installed on the same

system as the adapter.

v IBM Tivoli Monitoring for Transaction Performance v. 5.2 Fixpack 1. This must

be installed on the same system on which the adapter is installed and

configured to point to the system on which the IBM Tivoli Monitoring for

Transaction Performance server resides.

Application Response Measurement support is available using any integration

broker supported with this release.

Note: Application Response Measurement instrumentation is supported on all

operating systems supported with this IBM WebSphere Business Integration

Adapters release except HP-UX (any version) and Red Hat Linux 3.0.

Enabling Application Response Measurement

ARM instrumentation is enabled via by setting the standard property

TivoliMonitorTransactionPerformance in Connector Configurator to “True.” By

default ARM support is not enabled. (Refer to the ″Standard Properties″ appendix

of this document for more information.)

Transaction monitoring

When ARM is enabled, the transactions that are monitored are service requests and

event deliveries. The transaction is measured from the start of a service request or

event delivery to the end of the service request or event delivery. The name of the

transaction displayed on the Tivoli Monitoring for Transaction Performance console

will start with either SERVICE REQUEST or EVENT DELIVERY. The next part of the

name will be the business object verb (such as CREATE, RETRIEVE, UPDATE or DELETE).

The final part of the name will be the business object name such as “EMPLOYEE.”

© Copyright IBM Corp. 2000, 2005 107

For example, the name of a transaction for an event delivery for creation of an

employee might be EVENT DELIVERY CREATE EMPLOYEE. Another might be SERVICE

REQUEST UPDATE ORDER.

The following metrics are collected by default for each type of service request or

event delivery:

v Minimum transaction time

v Maximum transaction time

v Average transaction time

v Total transaction runs

You (or the system administrator of the WebSphere Application Server) can select

which of these metrics to display, for which adapter events, by configuring

Discovery Policies and Listener Policies for particular transactions from within the

Tivoli Monitoring for Transaction Performance console. (Refer to “For more

information.”)

For more information

Refer to the IBM Tivoli Monitoring for Transaction Performance documentation for

more information. In particular, refer to the IBM Tivoli Monitoring for Transaction

Performance User’s Guide for information about monitoring and managing the

metrics generated by the adapter.

108 Adapter for WebSphere Message Broker User Guide

Index

Special characters
(object verb) Retrieve 4

A
ABON_APPRESPONSETIMEOUT 40

adapter 1

dependencies 12

installing 11

installing the adapter and related

files 13

interaction with WBI Message

Broker 4

overview of processing 4

starting 37

stopping 39

WebSphere MQ compatible

versions 12

WebSphere MQ Java client libraries

requirement 12

Adapter Development Kit (ADK) 2

adapter environment 11

adapter framework 1

APP_RESPONSE_TIMEOUT 41

AppID 54

Application Response Measurement

instrumentation, support for 107

application timeout 40

ApplicationPassword property 90

ApplicationUserName property 91

ArchiveQueue 9

ArchiveQueue property 91

archiving 9

asynchronous
message request 4, 5

verbs supported 5

B
Business Object Designer 44

business objects 43

creating 43

modifying 45

supported verbs 4

C
CCSID property 91

Channel property 91

collaboration
request processing 4

Common Event Infrastructure
event catalog 102

metadata 102

configuration
typical with WBI Message Broker and

InterChange Server 3

ConfigurationMetaObject property 91

configuring
data handler 59

for a sample scenario 97

the connector 17

connector
configuration 17

distinct from adapter 2

running 37

supported verbs 4

connector controller 2

connector framework 2

connector not active 41

CONNECTOR_NOT_ACTIVE 41

connector-specific properties 89

correlationID 6, 45

Create (object verb) 4

Creating objects
task roadmap 43

D
data handler

and message request 4

configuring 59

mapping to input queues 52

specifying 59

task roadmap for configuring 59

DataHandlerClassName 48

DataHandlerClassName property 91

DataHandlerConfigMO 48

DataHandlerConfigMO property 91

DataHandlerMimeType 48

DataHandlerMimeType property 91

DefaultVerb property 92

Delete (object verb) 4

DeliveryCount 54

DeliveryMode 53

Destination 53

doVerbFor() method 4

dynamic meta-object 47

dynamic meta-object header

attributes 53

dynamic meta-objects
creating 53

E
EnableMessageProducerCache

property 92

ErrorQueue property 92

errors
application timeout 40

connector not active 41

data handler conversion 41

handling 40

JMS properties 41

overloading input formats 41

unsubscribed business object 41

event 7

event catalog, for Common Event

Infrastructure 102

event polling 8

Event processing
overview 7

Exists (object verb) 4

Expiration 53

F
fail on startup 8

feedback codes
in response message 6

flow monitoring 101, 107

format
conversion initiated by event

polling 3

G
gotApplEvents() method 7, 8, 47

GroupID 54

GroupSeq 54

H
HostName property 92

I
IBM Tivoli Monitoring for Transaction

Performance 107

ignore 9

in-progress queue 7, 8

InDoubtEvents 8

input queues
mapping to data handlers 52

InputFormat 48

InputQueue 49

InputQueue property 92

installed UNIX file structure for the

connector 15

installed Windows file structure for the

adapter 13

installing
task roadmap 11

the integration broker 11

verifying 13

integration broker 2

J
Java TM Message Service (JMS) 4

Java Virtual Machine 12

JavaTM Message Service (JMS) 3

JMS
meta-object properties 49

© Copyright IBM Corp. 2000, 2005 109

JMS headers
and dynamic meta-object

attributes 55

JMS properties 55

errors with 41

JMSProperties 54

L
Locale-dependent data 12

localized data 12

log error 9

M
mapping data handlers to input

queues 52

message
routing initiated by event polling 3

message descriptor header.
See MQMD

message flow
modifying 60

message request
and data handler 4

asynchronous 4

asynchronous processing 5

overview 4

processing 4

synchronous 4

synchronous processing 5

message selector 45

MessageID 53

meta-object attributes
read versus rite 54

meta-objects 43

and JMS headers in dynamic 55

creating 47

creating dynamic 53

creating static 51

difference between static and

dynamic 47

dynamic
population during polling 54

header attributes in dynamic 53

properties 48

steps for creating dynamic 57

modifying a message flow 60

monitoring, of transactions 107

MQMD
Expiry 5

Format 5

message request field values 5

MsgType 5

Persistence 5

ReplyToQ 5

Report 5

response message descriptor

header 6

N
NO_SUBSCRIPTION_FOUND 41

O
Object Discovery Agent 44

OutputFormat 49

OutputQueue 49

overloading input formats 41

P
pollForEvents() 8

pollForEvents() method 7

Port property 93

Priority 53

Q
queue uniform resource identifiers 34

queues
defining for a sample scenario 97

R
recovery 8

Redelivered 53

ReplyToQueue 6, 53

synchronous processing 5

ReplyToQueue property 93

ReplyToQueuePollFrequency

property 93

reprocess 9

request message
MQMD field values 5

requests.
See message message request, request

processing

response messages
filtering with a message selector 45

response_selector 45

ResponseTimeout 49

synchronous processing 5

retrieval 8

Retrieve by Content (object verb) 4

running the adapter
task roadmap 37

running the connector 37

S
SecurityExitClassName 93

SecurityExitInitParam 93

selectorstring 45

SessionPoolSizeForRequests property 93

starting the connector 37

static meta-object 47

static meta-objects
creating 51

steps for modifying a message flow 60

stopping the connector 39

synchronous
message request 4, 5

verbs supported 5

T
task roadmap 1

tasks
configuring the data handler 59

creating objects 43

installing 11

running the computer 37

terminology 1

TimeoutFatal 41, 49

TimeStamp 53

Tivoli Monitoring for Transaction

Performance 107

tracing 42

transaction monitoring 107

Type 54

U
unsubscribed business object 41

UnsubscribedQueue 41

UnsubscribedQueue property 93

Update (object verb) 4

URI 34

UseDefaults property 94

UserID 54

V
verbs

supported 4

supported for asynchronous

request 5

supported for synchronous request 5

verifying installation 13

W
WBI Message Broker

interaction with adapter 4

native support for XML 44

WebSphere business integration

system 2

WebSphere Integration Message Broker,

Version 2.2 2

WebSphere MQ
adapter compatible versions 12

WebSphere MQ Java client libraries 12

WebSphere MQ queue manager 4

WorkerThreadCount 94

X
XML

and WBI Message Broker support 44

recommended format for use with

adapter 3

steps for modifying a message

flow 60

XML data handler 59

XML ODA 44

110 Adapter for WebSphere Message Broker User Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2005 111

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

112 Adapter for WebSphere Message Broker User Guide

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

i5/OS

IBM

the IBM logo

AIX

AIX 5L

CICS

CrossWorlds

DB2

DB2 Universal Database

Domino

HelpNow

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MQSeries

MVS

Notes

OS/400

Passport Advantage

pSeries

Redbooks

SupportPac

WebSphere

z/OS

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Notices 113

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org/).

WebSphere Business Integration Adapter Framework, version 2.6.0.3

114 Adapter for WebSphere Message Broker User Guide

����

Printed in USA

	Contents
	About this document
	What this document includes
	What this document does not include
	Audience
	Prerequisites for this document
	Related documents
	Typographic conventions

	New in this release
	New in release 2.8.x
	New in release 2.7.x
	New in release 2.6.x
	New in release 2.5.x
	New in release 2.4.x
	New in release 2.3.x
	New in release 2.2.x
	New in release 2.1.x
	New in release 1.5.x
	New in release 1.4.x
	New in release 1.3.x

	Chapter 1. Overview
	Task roadmap
	Terminology
	Overview of the adapter environment
	Overview of adapter processing
	Message request
	Event processing

	Chapter 2. Installing the connector
	Overview of installation tasks
	In this chapter

	Adapter environment
	Prerequisites
	Adapter dependencies
	Locale-dependent data
	Common Event Infrastructure
	Application Response Measurement

	Installing the adapter and related files
	Verifying installation
	Overview of verifying installation on a Windows system
	Steps for verifying installation on a Windows system
	Overview of verifying installation on a UNIX system
	Steps for verifying installation on a UNIX system

	Chapter 3. Configuring the connector
	Overview of Connector Configurator
	Running connectors on UNIX

	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting connector-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS)
	Resources (ICS)
	Messaging (ICS)
	Security (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment
	Verifying a sample configuration
	Setting Queue Uniform Resource Identifiers (URI)
	Guaranteeing event delivery

	Chapter 4. Running the connector
	Overview of running the connector
	In this chapter

	Starting the connector
	Stopping the connector
	Running multiple instances of the adapter
	Create a new directory

	Overview of error handling
	Application timeout
	Unsubscribed business object
	Connector not active
	Data handler conversion
	JMS properties
	Overloading input formats

	Overview of tracing

	Chapter 5. Creating objects
	Overview of creating objects
	In this chapter

	Creating business objects
	Overview of creating business objects
	Steps for creating business objects

	Modifying business objects
	Overview of filtering response messages with a message selector
	Steps for filtering response messages with a message selector

	Creating meta-objects
	Meta-object properties
	Overview of creating static meta-objects
	Steps for creating static meta-objects
	Overview of mapping data handlers to input queues
	Steps for mapping data handlers to input queues
	Overview of creating dynamic child meta-objects
	Steps for creating a dynamic meta-object

	Chapter 6. Configuring a data handler
	Overview of configuring the data handler
	In this chapter

	Specifying the data handler
	Overview of specifying the data handler
	Steps for specifying the data handler

	Modifying a message flow
	Overview of modifying a message flow
	Steps for modifying a message flow for an XML configuration

	Chapter 7. Troubleshooting
	Troubleshooting start-up problems
	Troubleshooting event processing
	Getting support

	Appendix A. Standard configuration properties for connectors
	New properties
	Standard connector properties overview
	Starting Connector Configurator
	Configuration property values overview

	Standard properties quick-reference
	Standard properties
	AdapterHelpName
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BiDi.Application
	BiDi.Broker
	BiDi.Metadata
	BiDi.Transformation
	BOTrace
	BrokerType
	CharacterEncoding
	CommonEventInfrastructure
	CommonEventInfrastructureContextURL
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerEventSequencing
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	jms.FactoryClassName
	jms.ListenerConcurrency
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.TransportOptimized
	jms.UserName
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RepositoryDirectory
	RequestQueue
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	ResultsSetEnabled
	ResultsSetSize
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousRequestTimeout
	SynchronousResponseQueue
	TivoliMonitorTransactionPerformance
	WireFormat
	WsifSynchronousRequestTimeout
	XMLNameSpaceFormat

	Appendix B. Connector-specific properties for this adapter
	Overview of connector-specific properties
	Connector-specific properties
	ApplicationPassword
	ApplicationUserName
	ArchiveQueue
	CCSID
	Channel
	ConfigurationMetaObject
	DataHandlerClassName
	DataHandlerConfigMO
	DataHandlerMimeType
	DataHandlerPoolSize
	DefaultVerb
	EnableMessageProducerCache
	ErrorQueue
	HostName
	InputQueue
	PollQuantity
	Port
	ReplyToQueue
	ReplyToQueuePollFrequency
	SecurityExitClassName
	SecurityExitInitParam
	SessionPoolSizeForRequests
	UnsubscribedQueue
	UseDefaults
	WorkerThreadCount

	Appendix C. Tutorial
	Overview of the tutorial
	In this appendix

	Before you begin
	Setting up your environment
	Overview of setting up your environment
	Steps for setting up your environment

	Running the scenarios
	Overview of running the scenarios
	Steps for running the scenarios

	Appendix D. Common Event Infrastructure
	Required software
	Enabling Common Event Infrastructure
	Obtaining Common Event Infrastructure adapter events
	For more information
	Common Event Infrastructure event catalog definitions
	XML format for “start adapter” metadata
	XML format for "stop adapter" metadata
	XML format for “timeout adapter” metadata
	XML format for "request" or "delivery" metadata

	Appendix E. Application Response Measurement
	Application Response Measurement instrumentation support
	Required software
	Enabling Application Response Measurement
	Transaction monitoring
	For more information

	Index
	Notices
	Programming interface information
	Trademarks and service marks

