IBM WebSphere Business Integration Adapters

Adapter for Web Services User Guide

Adapter Version 34.x

<|ll






IBM WebSphere Business Integration Adapters

Adapter for Web Services User Guide

Adapter Version 34.x

<|ll



Note!
FBefore using this information and the product it supports, read the information in|[“Notices” on page 245,

30September2004

This edition of this document applies to IBM WebSphere Business Integration Adapter for Web Services (5724-H09),
version 3.4.x.

To send us your comments about IBM WebSphere Business Integration documentation, email doc-
comments@us.ibm.com. We look forward to hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

About This Document. v
Audience . . B
Prerequisites for Thls Document. v
Related Documents . I ¢
Eclipse Technology . . . . . . . . . . . .vi
Typographic Conventions. . . . . . . . . .Vi

New in thisrelease. . . . . . . . . . iXx

New in release 3.4.x. . . . . . . . . . . .ix
New in release 3.3.x. . . . . . . . . . . .ix
New in release 3.2.x. . . . . . . . . . . .X
New in release 3.1.x. . . . . . . . . . . .xi
New in release 3.0x. . . . . . . . . . . .xi
Chapter 1. Overview of the connector . . 1
Adapter for Web Services environment .2
Terminology . .6
Components of connector for web services .8
Architecture of connector for web services . 12
Install, configure, and design checklist . . . . .13
Limitations . . . . . . . . . . . . . .14

Chapter 2. Installation and startup. . . 17

Overview of Installation Tasks . . . . . . . .17
Installing the connector and related files. . . . .17
Installed file structure . . . R V4
Overview of configuration tasks B L)
Running multiple instances of the adapter . . . .20
Starting and stopping the connector . . . . . .21

Chapter 3. Business object
requirements . . . . . . . . ... .25

Business object meta-data. . . . . . . . . .25
Connector business object structure . . . . . .25
Developing business objects . . . . . . . . .59

Chapter 4. Web services connector . . 61

Connector processing . . B Y
SOAP/HTTP(S) web services . . . . . . . .64
SOAP/JMS web services . . . . . . . . . .64
Event processing . . . . . . . . . . . .65
Request processing . . . . . . . . . . . .76
Connector and JMS. . . . . . . . . . . .84
SSsL . . . . . . . . . . . . . . . . .86
Configuring the connector . . . . . . . . .88
Connector at startup . . . . . . . . . . .108
Logging . . . . . . . . . . . . . . .109
Tracing . . . . . . . . . . . . . . .109

Chapter 5. SOAP data handler . . . . 111

Configuring the SOAP data handler. . . . . . 111
SOAP data handler processing. . . T V4
Using application-specific information funct1ona11ty 123
Specifying a pluggable name handler . . . . . 141

© Copyright IBM Corp. 2003, 2004

Limitations . . . . . . . . . . . . . .143

Chapter 6. Enabling collaborations for
request processing. . . . . . . . . 145
Request processing collaboration checklist. . . . 145

Chapter 7. Exposing collaborations as
web services . . . . . . . . . . . 147

Procedure checklist . . . .. 147
Identifying or developing Busmess Ob]ects ... 148
Choosing or developing a collaboration template 148
Binding the port of a new collaboration object . . 148
WSDL Configuration Wizard . . . . . . . . 150

Chapter 8. Using the WSDL ODA . . . 159

Starting the WSDL ODA . . . . ... 159
Running the WSDLODA . . . . . . . . .160
Configuring the agent . . e (10
Specifying the WSDL document .. . . . . .1e3
Confirming selections . . . . . . . . . . 164
Generating the objects . . . . . . . . . .165
Limitations . . . . . . . . . . . . . .166

Chapter 9. Troubleshootmg .. . . . 169
Start-up problems . . . ... .. 169
Run-time errors . . . . . . . . . . . .171

Appendix A. Standard configuration
properties for connectors . . . . . . 173

New properties. . . B V&S
Standard connector propertles overview . . . . 173
Standard properties quick-reference . . . . . . 175
Standard properties . . . . . . . . . . .181

Appendix B. Connector Configurator 197

Overview of Connector Configurator . . . . . 197
Starting Connector Configurator . . . .. . 198
Running Configurator from System Manager .. 199
Creating a connector-specific property template 199
Creating a new configuration file. . . . . . . 202
Using an existing file. . . . . . . . . . .203
Completing a configuration file . . . . . . .204
Setting the configuration file properties. . . . . 205
Saving your configuration file. . . . . . . .212
Changing a configuration file . . . . . . . .213
Completing the configuration . . . .. 213
Using Connector Configurator in a globahzed

environment. . . . . . . . . . . . . .213

Appendix C. Adapter for Web Services
tutorial . . . . . . . . . ... . .215

About the tutorial. . . . . . . . . . . .215
Before youstart . . . . . . . . . . . .216
iii



Installing and configuring .
Running the asynchronous scenario .
Running the synchronous scenario

Appendix D. Migrating to 3.0.x .
Backward compatibility .
Upgrade tasks .

Appendix E. Conflgurlng HTTPS/SSL
Keystore setup .

TrustStore setup

Generating a certificate 51gn1ng request (CSR) for
public key certificates

Appendix F. Common Event
Infrastructure

Required software .

Enabling Common Event Infrastructure
Obtaining Common Event Infrastructure adapter
events .

iv Adapter for Web Services User Guide

. 216
. 222
. 224

. 229
. 229
. 229

233

. 233
. 234

. 234

. 237
. 237
. 237

. 237

For more information.

Common Event Infrastructure event catalog
definitions .

XML format for “start adapter metadata .

XML format for "stop adapter” metadata .

XML format for “timeout adapter” metadata .
XML format for "request” or "delivery” metadata

Appendix G. Application Response
Measurement

Application Response Measurement
instrumentation support.

Notices . . e
Programming interface 1nformat10n .
Trademarks and service marks

Index .

. 238

. 238
. 238
. 240
. 240

241

. 243

. 243

. 245
. 246
. 247

. 249



About This Document

IBM® WebSphere® Business Integration Adapter portfolio supplies integration
connectivity for leading e-business technologies, enterprise applications, legacy
applications, and mainframe systems. The product set includes tools and templates
for customizing, creating, and managing components for business integration.

This document describes installation, connector property configuration, business
object development, and troubleshooting for the Adapter for Web Services.

This document does not describe deployment metrics and capacity planning issues,
such as server load balancing, number of adapter processing threads, maximum
and minimum throughputs, and tolerance thresholds.

Such issues are unique to each customer deployment and must be measured
within or close to the exact environment where the adapter is to be deployed.
Contact your IBM services representative to discuss the configuraton of your
deployment site, and for details on planning and evaluating these kinds of metrics,
given your specific configuration.

Audience

This document is for IBM WebSphere customers, consultants, developers, and
anyone who is implementing the WebSphere Business Integration Adapter for web
services.

Prerequisites for This Document

A variety of prerequisites are cited throughout this book. Many of these consist of
references to Web sites that contain information about, or resources for, web
services. You should also be familiar with implementing the WebSphere business
integration system. A good place to start is the Technical Introduction to IBM
WebSphere InterChange Server, which contains cross-references to more detailed
documentation.

Related Documents

The complete set of documentation available with this product describes the
features and components common to all WebSphere adapter installations, and
includes reference material on specific components.

You can install related documentation from the following sites:
* For general adapter information:
— http://www.ibm.com/websphere/integration/wbiadapters/infocenter
* For using adapters with InterChange Server:
- http://www.ibm.com/websphere/integration/wicserver/infocenter
— http://www.ibm.com/websphere/integration/wbicollaborations/infocenter

* For more information about message brokers (WebSphere MQ Integrator Broker,
WebSphere MQ Integrator, and WebSphere Business Integration Message
Broker):

- http://www.ibm.com/software/integration/mqfamily /library /manualsa/

© Copyright IBM Corp. 2003, 2004 \%



These sites contain simple directions for downloading, installing, and viewing the
documentation.

Note: Important information about this product may be available in Technical
Support Technotes and Flashes issued after this document was published.
These can be found on the WebSphere Business Integration Support Web
site, http://www.ibm.com/software/integration/websphere/support/.
Select the component area of interest and browse the Technotes and Flashes
sections. Additional information might also be available in IBM Redbooks at
http:/ /www.redbooks.ibm.com/.

Eclipse Technology

The WebSphere Business Integration Adapter for Web Services includes Eclipse
Technology. Eclipse is an award-winning, open-source framework for the
construction of powerful software development tools and rich desktop
applications. Leveraging the Eclipse plug-in framework to integrate technology on
the desktop saves technology providers time and money by enabling them to focus
their efforts on delivering differentiation and value for their offerings.

Eclipse is a multi-language, multi-platform, multi-vendor supported environment
that is built by an open-source community of developers and is provided royalty
free by the Eclipse Foundation. Eclipse is written in the Java'™ language, includes
extensive plug-in construction toolkits and examples, and can be deployed on a
range of desktop operating systems, including Windows", Linux, QNX and
Macintosh OS X. Full details on Eclipse and the Eclipse Foundation are available at
http:/ /eclipse.org.

Typographic Conventions

vi

This document uses the following conventions :

courier font Indicates a literal value, such as a command name, filename,
information that you type, or information that the system
prints on the screen.

bold Indicates a new term the first time that it appears.
italic, italic Indicates a variable name or a cross-reference.
blue outline A blue outline, which is visible only when you view the

manual online, indicates a cross-reference hyperlink. Click
inside the outline to jump to the object of the reference.

{} In a syntax line, curly braces surround a set of options from
which you must choose one and only one.

[1] In a syntax line, square brackets surround an optional
parameter.

In a syntax line, ellipses indicate a repetition of the previous
parameter. For example, option[,...] means that you can
enter multiple, comma-separated options.

< > In a naming convention, angle brackets surround individual
elements of a name to distinguish them from each other, as
in <server_name><connector_name>tmp.10g.

/, \ In this document, backslashes (\) are used as the convention
for directory paths. For UNIX® installations, substitute
slashes (/) for backslashes. All IBM product pathnames are
relative to the directory where the product is installed on
your system.

Adapter for Web Services User Guide



%Stext% and $text

ProductDir

”

Text within percent (%) signs indicates the value of the
Windows text system variable or user variable. The
equivalent notation in a UNIX environment is $text,
indicating the value of the text UNIX environment variable.
Represents the directory where the IBM WebSphere Business
Integration Adapters product is installed. The
CROSSWORLDS environment variable contains the
ProductDir directory path, which is IBM\ WebSphereAdapters
by default.

Indicates a choice from a menu such as: Choose File ”
Update ” SGML References

About This Document  Vii



viii Adapter for Web Services User Guide



New in this release

New in release 3.4.x

Updated in September 2004. The release of this document for adapter version 3.4.x
contains the following new or corrected information.

This release adds support for the processing of bidirectional script data.

This release adds support for the following platforms and platform updates:

Solaris 8 (2.8) with Solaris Patch Cluster dated February 11, 2004 or later

Solaris 9 (2.9) with Solaris Patch Cluster dated February 11, 2004 or later. This
adapter supports 32-bit JVM on a 64-bit platform

AIX® 5.1 with Maintenance Level 4

AIX 5.2 with Maintenance Level 1. This adapter supports 32-bit JVM on a 64-bit
platform

Microsoft® Windows 2000 (Professional, Server, or Advanced Server) with
Service Pack 4

Microsoft Windows 2003 (Standard Edition or Enterprise Edition)

Linux Red Hat AS 3.0 with Update 1, ES 3.0 with Update 1, and WS 3.0 with
Update 1

Note: The Tivoli® Monitoring for Transaction Performance (TMTP) component
of WebSphere Business Integration Adapter Framework V2.6 is not
supported on Linux Red Hat.

SuSE Linux Standard Server x86 8.1 with SP3 and Enterprise Server x86 8.1 with
SP3

HP-UX 11.i (11.11) with June 2003 GOLDBASE11i and June 2003 GOLDAPPS11i
bundles

Java compiler IBM JDK 1.4.2 for Windows 2000 for compiling custom adapters

These jar files have been omitted from the installed file structure: ibmjsse.jar,
xercesImpl.jar, and xmlParserAPIs jar.

This release supports the following new versions of APIs or API requirements, and
omits an APIL:

Required by Apache SOAP APIs: Java Activation Framework 1.0.2 (activation.jar)
and JavaMail™ API 1.3.1 (mail jar)

WSDLA4J 1.4

IBM JSSE 1.0.3

XML4J 4.3.0

Omitted API: Xerces Java parser

New in release 3.3.x

This release includes the following enchancements:

Compliance of the Adapter for Web Services (the connector, the WSDL ODA,
and the SOAP data handler) with the WS-I Basic Profile 1.0 specifications
released in August, 2003.

© Copyright IBM Corp. 2003, 2004 ix



* Support for SOAP version 1.2, a new SOAP data handler meta-object property
(see ["'MO_DataHandler_DefaultSOAPConfig” on page 112) and a new WSDL
ODA property (see [Table 47 on page 161) allow you to specify SOAP 1.2 or 1.1.

* The WSDL ODA allows you to reuse business object names based on the same
schema to reduce the total number of artifacts needed for deployment. For
further information, see [Table 47 on page 161}

* The WSDL ODA and SOAP data handler support all possible values for
maxOccurs on sequence, choice, and group. For further information, see
[“maxOccurs indicator on sequence, choice, group and all” on page 136

* If you have not specified a value for java.protocol.handler.pkgs, the connector
uses the default value during initialization. For further information, see |“JSSE”’

* The HTTP protocol listener supports requests with any Accept header values; if
necessary, the validation of the header can be delegated to the collaboration.

e The minimum value has changed for the connector-specific property
WorkerThreadCount. For further information, see [“WorkerThreadCount” on|

* The adapter supports TextMessage and BytesMessage payload types for inbound
and outbound messages in SOAP/JMS listeners and handlers.

¢ In the case of synchronous event processing by SOAP/HTTP(S) listeners, when a
response is not populated by a collaboration, the ContentType portion of the
Content-Type HTTP header of the response will be set to the ContentType of the
request.

As of version 3.3.x, the adapter is not supported on Solaris 7, so references to that
platform version have been deleted from this guide.

New in release 3.2.x

This release includes the following enchancements:
* Support for custom properties in all listeners and protocol handlers

* Support for propagating and reading standard headers in the SOAP/HTTP(S)
listeners and handlers

* Support for propagating and reading major JMS standard headers in the
SOAP/JMS listeners and handlers

* Support for customizing success return code in asynchronous HTTP processing
in the SOAP/HTTP and SOAP/HTTPS listeners

* Support for multiple acceptable success codes in asynchronous HITP processing
in the SOAP/HTTP-HTTPS handler

* Support for Bytes Messages in the SOAP/JMS listener

* Support for mime type and message charset customization in SOAP/HTTP and
SOAP/HTTPS listeners based on the request ContentType and Request URL

* Support for runtime mime type and message charset customization in the
SOAP/HTTP-HTTPS handler based on the response ContentType

* Ability to send and receive any ContentType messages in SOAP/HTTP and
SOAP/HTTPS listeners as well as the SOAP/HTTP-HTTPS handler

* Ability to specify at runtime the mime type and charset of outgoing messages in
the SOAP/HTTP and SOAP/HTTPS listeners and the SOAP/HTTP-HTTPS
handler

Beginning with the 3.2.x version, the adapter for web services does not run on
Microsoft Windows NT*.

X  Adapter for Web Services User Guide



The WSDL ODA has been enhanced: it can now read interface files to generate
event processing top-level business objects (TLOs).

Adapter installation information has been moved from this guide. For further
information, see[“Installing the connector and related files” on page 17

New in release 3.1.x

The web services connector has been enhanced. Among the new features and
components are:

* Support for HTTP credential propagation. For further information, see|”HTTi;|
credential propagation for event processing” on page 38 I“HTTP credentiall
propagation for request processing” on page 54,and [“ProxyServer” on page 100]

e The WSDL ODA and SOAP data handler support the following Style/Use
properties: rpc/literal, rpc/encoded, and document/literal. For further
information, see [“Style and Use impact on SOAP messages” on page 115

e The WSDL Configuration Wizard supports the Use attribute in SOAP Config
MOs. For more information on the Use attribute, see [‘SOAP configuration|
[meta-object: child of every SOAP business object” on page 113/ The WSDL
Configuration Wizard also support internationalized characters for some
elements. For more information see [“Processing requirements and exceptions” on|

* The JMS protocol listener has a new configuration property, SessionPoolSize. For
further information, see [Table 41 on page 97}

¢ The connector runs on the following platforms:
— Microsoft Windows NT 4.0 Service Pack 6A or Windows 2000
— Solaris 7, 8 or AIX 5.1, 5.2 or HP UX 11.i

New in release 3.0.x

The web services connector has been redesigned. Among the new features and
components are:

* The web services connector (replacing the SOAP connector and proxy class of
prior releases) with bi-directional support for SOAP/HTTP, SOAP/HTTPS, and
SOAP/JMS web services

* An enhanced WebSphere Business Integration Toolset capability to expose a
collaboration as a web service

* A Web Services Description Language (WSDL) Object Discovery Agent (ODA)

* A new business object structure that utilizes application-specific information
(ASI) capabilities

* A new SOAP data handler

Chapter 1 contains an overview of the new adapter. For information on backwards
compoatibility with prior releases of this product, see|[Appendix D, “Migrating to]
B.0.x,” on page 229,

The “CrossWorlds®” name is no longer used to describe an entire system or to
modify the names of components or tools, which are otherwise mostly the same as
before. For example “CrossWorlds System Manager” is now “System Manager,”
and “CrossWorlds InterChange Server” is now “WebSphere InterChange Server.”

New in this release X1



The connector has been globalized. For more information, see [“Locale-dependent|
data” on page 4 and |[Appendix A, “Standard configuration properties for|
connectors,” on page 173

This guide provides information about using this adapter with WebSphere
InterChange Server (ICS).

xii Adapter for Web Services User Guide



Chapter 1. Overview of the connector

« |”Adapter for Web Services environment” on page 2|

¢ |“Terminology” on page 6

+ |“Components of connector for web services” on page 8|

* [“Architecture of connector for web services” on page 12|

+ [“Install, configure, and design checklist” on page 13|

* [“Limitations” on page 14

The connector is a runtime component of the WebSphere Business Integration
Adapter for Web Services. The connector allows businesses to aggregate, publish,
and consume web services for use either within their organization or by trading
partners. The connector and other components described in this document provide
the functionality needed to exchange business object information in the body of a
Simple Object Access Protocol (SOAP) message.

The Adapter for Web Services supports SOAP 1. 1 and 1.2 in conformance with
Web Services-Interoperability Organization (WS-I). This adapter exposes
WebSphere InterChange Server business processes, in the form of collaborations, as
web services. You get a set of self-contained, dynamic applications that can be
described, published, located, or invoked over the network to create innovative
products, processes and value chains. This adapter can also communicate to
externally hosted web services with enhanced configurability.

The Adapter for Web Services enables true bidirectional support for event and
request processing from within the adapter. Event processing can be synchronous
or asynchronous, and listeners within the adapter provide support for SOAP over
HTTP, HTTPS, and JMS transports. Integration with the Web Services Gateway
product exposes/invokes external services on behalf of the adapter. A Web Services
Description Language (WSDL) Object Discovery Agent ( ODA) eases the
generation and deployment of business objects. The ODA can retrieve WSDL from
a local file or connect to a remote URL or Universal Description, Discovery and
Integration (UDDI) registry.

This chapter describes the scope, components, design tools, and architecture used
to implement the WebSphere Business Integration Adapter for Web Services. It also
provides an overview of tasks you must complete to install and configure the web
services components described in this document. For information about installing
and configuring the components, see [“Install, configure, and design checklist” on|

Note: The adapter for Web Services implements the standard Adapter Framework
APIL For this reason, the adapter can operate with any integration broker
that the Framework supports. However, the functionality provided by the
adapter has been designed specifically to support the IBM WebSphere
InterChange Server (ICS) integration broker. Accordingly, when you select
the Expose as Web Service option in System Manager, this refers to
InterChange Server, and not to any other integration broker.

© Copyright IBM Corp. 2003, 2004 1



Adapter for Web Services environment

Before installing, configuring, and using the adapter, you must understand its
environmental requirements:

“Broker compatibility”]

“Software prerequisites”|

“Adapter platforms’

“Standards and APIs” on page 3|

“Locale-dependent data” on page 4|

Broker compatibility

This adapter runs with the WebSphere Business Integration Adapter Framework,
version 2.6, which supports only the following versions of WebSphere InterChange
Server:

422
43

See the Release Notes for any exceptions.

Software prerequisites

Review the following assumptions and software requirements before you install
the connector for web services:

The design of the connector and other components is based on the specifications
published for SOAP 1.1 and 1.2.

If you are using SOAP/JMS web services, you must install your own JMS and
JNDI implementation.

If you are using HTTPS/SSL, you need your own third-party software for
creating keystore and truststore.

Adapter platforms

In addition to a broker, the adapter requires one of the following operating
systems:

Microsoft Windows 2000 (Professional, Server, or Advanced Server) with Service
Pack 4

Microsoft Windows 2003 (Standard Edition or Enterprise Edition)
Solaris 8 (2.8) with Solaris Patch Cluster dated Feb. 11, 2004 or later

Solaris 9 (2.9) with Solaris Patch Cluster dated Feb. 11, 2004 or later. This
adapter supports 32-bit JVM on a 64-bit platform

AIX 5.1 with Maintenance Level 4

AIX 5.2 with Maintenance Level 1.
This adapter supports 32-bit JVM on a 64-bit platform

HP-UX 11i (11.11) with June 2003 GOLDBASE11i and June 2003 GOLDAPPS11i
bundles

Red Hat Enterprise Linux AS 3.0 with Update 1, ES 3.0 with Update 1, or WS 3.0
with Update 1

SUSE Linux Enterprise Server x86 8.1 with SP3
SUSE Linux Standard Server x86 8.1 with SP3

All operating system environments require the Java compiler (IBM JDK 1.4.2 for
Windows 2000) for compiling custom adapters

2 Adapter for Web Services User Guide



Note: The Tivoli Monitoring for Transaction Performance (TMTP) component of
the WebSphere Business Integration Adapter Framework V2.6 is not
supported on Red Hat Linux.

Standards and APIs

The Adapter for Web Services (the connector, the WSDL ODA, and the SOAP data
handler) is in compliance with the WS-I Basic Profile 1.0 specifications released in
August 2003.

A variety of standards and technologies give web services access to their
functionality over a network.

The standards used by the adapter are as follows:
* SOAP versions 1.2 and 1.1

* WSDL 1.1 SOAP bindings

* HTTP 1.0

* JMS1.0.2

The APIs used by the adapter are as follows:

¢ Apache SOAP 2.3.1 APIs: The connector incorporates the SOAP APIs from
Apache Foundation. Apache SOAP APIs are an open source implementation of
the SOAP version 1.1. Apache SOAP APIs have the following requirements:

— Java Activation Framework 1.0.2 (activation.jar)
— JavaMail(TM) API 1.3.1 (mail jar)
* JMS API version 1.0.2

* WSDL4J 1.4 - The Web Service Description Language for Java API (WSDL4])
provides an object model for WSDL documents

« UDDI4J-WSDL 2.1.0 - The UDDI4J-WSDL API encapsulate classes present in the
UDDI4] API, as well as some defined by the WSDL4] API

- JNDI 1.2.1
« IBM JSSE 1.0.3
« XML4J 4.3.0

Depending on your configuration, you may need to install additional software. The
sections below discuss these contingencies.

JMS protocol

If you are using JMS protocol, you must install a JMS provider and create queues.
The queue creation really depends on your requirements. You may use JMS
Protocol for both exposing a collaboration as a web service and also for invoking
external web services. For further information, see [“Connector and JMS” on page|

JNDI: You must configure the JNDI and then enter appropriate parameters in the
JNDI configuration properties for the connector. You also must ensure that the
Connection factory and JMS destination (queue) object are made available in the
JNDL. If you want to use JNDI and do not have JNDI implementation, you can
download the reference implementation of File System JNDI from Sun
Microsystems. For further information, see [’Connector and JMS” on page 84/

Chapter 1. Overview of the connector 3



SSL

If you plan to use SSL, you must use third-party software for managing your
keystores, certificates, and key generation. No tooling is provided to set up
keystores, certificates, or for key generation. You may choose to use keytool
(shipped with IBM JRE) to create self-signed certificates and to manage keystores.
For further information, see |“SSL” on page 86]

Common Event Infrastructure

This adapter is compatible with Common Event Infrastructure from IBM, a
standard for event management that permits interoperability with other IBM
WebSphere event-producing applications. If Common Event Infrastructure support
is enabled, events produced by the adapter can be received (or used) by another
Common Event Infrastructure-compatible application.

For more information, see the Application Response Management appendix in this
guide.

Application Response Measurement

This adapter is compatible with the Application Response Measurement (ARM)
application programming interface (API), an API that enables applications to be
managed for availability, service level agreements, and capacity planning. An
ARM-instrumented application can participate in IBM Tivoli® Monitoring for
Transaction Performance, enabling collection and review of data concerning
transaction metrics.

For more information, see the Application Response Measurement appendix in this
guide.

Locale-dependent data

The connector has been globalized so that it can support double-byte character
sets. When the connector transfers data from a location that uses one character
code to a location that uses a different code set, it performs character conversion to
preserves the meaning of the data.

This adapter supports the processing of bidirectional script data for the Arabic and
Hebrew languages when the adapter is run in Windows environment. Bidirectional
processing is not supported in non-Windows environments. To use the
bidirectional capacity, you must configure the bidirectional standard properties. For
more information, refer to the standard configuration properties for connectors in
Appendix A.

The Java runtime environment within the Java Virtual Machine (JVM) represents
data in the Unicode character code set. Unicode contains encodings for characters
in most known character code sets (both single-byte and multibyte). Most
components in the WebSphere business integration system are written in Java.
Therefore, when data is transferred between most integration components, there is
no need for character conversion.

Note: The connector has not been internationalized. This means that the trace and
log messages are not translated.

Web services connector
This section discusses localization and the connector.

4 Adapter for Web Services User Guide



Event notification: The connector uses pluggable protocol listeners for event
notification. The protocol listeners extract the SOAP message from the transport
and invoke the SOAP data handler. This section describes how each of the listeners
encode SOAP messages over the transport:

* SOAP/HTTP and SOAP/HTTPS Listeners These listeners read the body of the
HTTP request message as bytes. The encoding of the body is given by the
charset parameter of the HTTP Content-Type header. If the charset parameter is
missing, ISO-8859-1(ISO Latin 1) is assumed. The listener uses this encoding to
convert the body of the request message into a Java String. This Java String is
used to invoke the SOAP data handler. For synchronous (request-response) web
services, the SOAP data handler is invoked using the business object returned by
the collaboration. The Java String returned by the SOAP data handler is
converted into bytes using the encoding from the HTTP request message.

* SOAP/JMS Listener This listener supports JMS text messages as well as JMS
byte messages.

Request processing: The connector uses pluggable protocol handlers for request
processing. The protocol handlers invoke the SOAP data handler. This section
describes how each of the handlers encodes SOAP message over the transport:

¢ SOAP/HTTP-HTTPS handlers These handlers invoke the SOAP data handler.
To compose the web services request, the string returned by the data handler is
converted into bytes using UTF 8 encoding. For synchronous (request-response)
web services, the protocol handler reads the body of the HTTP response
message. The encoding of the body is given by the charset parameter of HTTP
Content-Type header. If the charset parameter is missing, ISO-8859-1 is assumed.
The handler uses this encoding to convert the body of the response message into
Java String. The SOAP data handler is invoked using this String.

¢ SOAP/JMS handler This handler supports JMS text messages as well as JMS
byte messages.

SOAP data handler

This section discusses localization and the SOAP data handler.

SOAP character limitations: XML element names and attributes names must be
legal ascii characters that are allowed by either business object names, business
object attribute names or business object application-specific information.

Internationalized characters are not supported in business object names or business
object attribute names. Only attribute values can be internationalized.

SOAP data handler processing: When transforming a SOAP message into a
business object, the data handler can receive a string only. The data handler simply
populates the business object with string values and returns the business object.
Java strings are UCS2, and therefore double-byte enabled characters are transferred
without problem. Only XML element and attribute values can be non-ascii
characters (see character limitations). When transforming a business object to a
SOAP message, the data handler uses the XML4] parser to convert a business
object to a string. Java strings are UCS2, so double-byte enabled characters are
transferred without problem. Only XML element and attribute values can be
non-ascii characters (see character limitations).

WSDL ODA
This section discusses localization and the WSDL ODA.

Chapter 1. Overview of the connector 5



In the WSDL file, the WSDL ODA supports file names and URLs in any character
set. The WSDL file content must be in legal ASCII only, due to the restriction of
non-ASCII character sets in business object names and attributes.

Properties in the Configuring Agent table of the WSDL ODA are globalized as
follows:

WSDL_URL URL can be in native language
UDDI_InquiryAPI_URL Check UDDI registry support
WebServiceProvider Legal ASCII characters only
WebService Legal ASCII characters only

MimeType Legal ASCII characters only

BOPrefix Legal ASCII characters only

BOVerb Legal ASCII characters only

Collaboration Legal ASCII characters only
GenerateUniqueBOs Legal ASCII characters only
SOAPVersion Legal ASCII characters only
BiDi.ExtApplicationMetaData Legal ASCII characters only

Terminology

The following terms are used in this Guide:

ASI (Application-Specific Information) is code tailored to a particular
application or technology. ASI exists at both the attribute level and business
object level of a business object definition.

ASBO (Application-Specific Business Object) A business object that can have
ASL

Bidirectional (BiDi) languages are used mainly in the Middle East. They
include Arabic, Urdu, Farsi, Hebrew and Yiddish. In a bidirectional language,
the general flow of text proceeds horizontally from right to left, but numbers are
written from left to right, the same way as they are written in English. In
addition, if an English or another left-to-right language text is embedded (for
example, an address, acronym or quotation), that text is also written from left to
right.

BO (Business Object) A set of attributes that represent a business entity (such as
Customer) and an action on the data (such as a create or update operation).
Components of the IBM WebSphere system use business objects to exchange
information and trigger actions.

Content-Type The HTTP protocol header that includes the type/subtype and
optional parameters. For example, in the Content-Type

value text/xml;charset=1S0-8859-1, text/xml is the type/subtype and
charset=I150-8859-1 is the optional Charset parameter.

ContentType refers to the type/subtype portion of the Content-Type header value
only. For example, in the Content-Type valuetext/xml;charset=I1S0-8859-1,
text/xml is referred to in this document as the ContentType.
MO_DataHandler_DefaultSOAPConfig Child data handler meta-object
specifically for the SOAP data handler.

GBO (Generic Business Object) A business object with no ASI and not tied to
any application.

MO_DataHandler_Default Data handler meta-object used by the connector
agent to determine which data handler to instantiate. This is specified in the
DataHandlerMetaObjectName configuration property of the connector.

6 Adapter for Web Services User Guide



Non-Top Level Business Object (Non-TLO)A non-TLO is any business object
that does not adhere to the web services TLO structure.

Protocol Config MO During request processing, the SOAP/JMS,
SOAP/HTTP-HTTPS protocol handlers use a Protocol Config MO to determine
the destination of the target web service. If during event processing you are
exposing collaborations as SOAP/JMS web services, the connector uses the
Protocol Config MO to convey the JMS message header information from the
SOAP/JMS protocol listener to the collaboration.

SOAP (Simple Object Access Protocol) defines a model of using simple request
and response messages, written in XML, as the basic protocol for electronic
communication. SOAP messaging is a platform-neutral remote procedure call
(RPC) mechanism, but it can be used for the exchange of any kind of XML
information (document exchange).

SOAP Business Object A SOAP business object is a child of a TLO and can be a
SOAP Request, a SOAP Response or a SOAP Fault business object. SOAP
business objects contain information necessary for processing by the SOAP data
handler, including SOAP ConfigMOs, which are children of SOAP business
objects, and also contain SOAP header container business objects.

SOAP Config MO (Configuration Meta Object) The data handler requires an
object that contains configuration information about a single transformation, for
example, from a SOAP message to a SOAP business object. This information is
stored as meta-data in the child of a SOAP business object. This child object is
the SOAP Config MO

SOAP Header Child Business Object A business object that represents a single
header element in a SOAP message. The header element is an immediate child
of the SOAP-Env:Header element of the SOAP message. All attributes of a
header container business object must be of this type. These business objects
may have an actor and a mustUnderstand attribute. These attributes correspond
to the actor and mustUnderstand attributes of the SOAP header element.

SOAP Header Container Business Object A business object that contains
information about the headers in a SOAP message. This business object contains
one or more child business objects. Each child business object represents a
header entry in the SOAP message. The SOAP data handler business object may
have an attribute, which is of type SOAP header container business object. This
attribute is also referred to as the SOAP header attribute. Such an attribute has
special application-specific information requirements as described in

“SOAP data handler,” on page 111.| This attribute must be an immediate child of

a SOAP business object.

Top-Level Business Object (TLO) A web services top-level business object
contains a SOAP Request, a SOAP Response (optional) and one or more SOAP
Fault (optional) business objects. A TLO is used by the connector for both event
processing and request processing.

Web services are self-contained, modular, distributed, dynamic applications that
can be described, published, located, or invoked over the network to create
products, processes, and supply chains. They can be local, distributed, or
Web-based. Web services are built on top of open standards such as TCP/IP,
HTTP, Java, HTML, and XML. Web services use new standard technologies such
as SOAP (Simple Object Access Protocol) for messaging, and UDDI (Universal
Description, Discovery and Integration) and WSDL (Web Service Description
Language) for publishing.

UDDI (Universal Description, Discovery and Integration) is a specification that
defines a way to publish and discover information about web services. UDDI

Chapter 1. Overview of the connector 7



specification provides for XML-based interfaces (APIs) that allow programmatic
access to the UDDI registry information. SOAP is the underlying RPC
mechanism for these APIs.

* WSDL (Web Services Description Language) is an XML vocabulary that defines
the software interfaces for web services. It organizes all of the web service
technical details required for automatic integration at the programming level,
and is used to publish IBM WebSphere collaborations as web services. WSDL is
to web services as IDL is to CORBA objects.

For more information on WSDL, go to:
[http:/ / www.w3.org /TR /wsdl|

Components of connector for web services

illustrates the connector for web services, including its protocol handler
and listener frameworks and the SOAP data handler.

Note: The Web Services Adapter comes with a limited use license of the XML data
handler. The adapter, however, does not require the XML data handler to
function.

Connector for Web Services

Protocol handler Protocol listener
framework framework
SOAP/HTTP-HTTPS||SOAP/JMS ||| SOAP/HTTP || SOAP/HTTPS|| SOAP/JMS
protocol protocol protocol protocol protocol
handler handler listener listener listener
SOAP
data
handler

Figure 1. The connector for web services

The following components interact to enable data exchanges across the Internet:

* Web services connector, including the SOAP data handler and protocol listeners
and handlers

* Web services-enabled collaborations
* Business objects and SOAP messages
* WebSphere Business Integration InterChange Server

Web services connector

During request processing, the web services connector responds to collaboration
service calls by converting business objects to SOAP request messages and
conveying them to destination web services. Optionally (for synchronous request
processing) the connector converts SOAP response messages to SOAP Response
business objects and returns these to the collaboration.

8 Adapter for Web Services User Guide


http://www.w3.org/TR/wsdl

During event processing, the connector processes SOAP request messages from
client web services by converting them into SOAP Request business objects and
passing them on to collaborations (that have been exposed as web services) for
processing. The connector optionally receives SOAP Response business objects
from the collaboration, which are converted to SOAP response messages and then
returned to client web services.

For further information, see [Chapter 4, “Web services connector,” on page 61|

Note: In this document, any mention of a connector is a reference to the web
services connector, unless specified otherwise.

Protocol listeners and handlers
The connector includes the following protocol listeners and handlers:

* SOAP/HTTP protocol listener

* SOAP/HTTPS protocol listener

* SOAP/JMS protocol listener

e SOAP/HTTP-HTTPS protocol handler
* SOAP/JMS protocol handler

Protocol listeners detect events from internal or external web service clients in
SOAP/HTTP, SOAP/HTTPS, or SOAP/JMS formats. They notify the connector of
events that require processing by a collaboration that has been exposed as a web
service. Protocol listeners then read the business-object-level and attribute-level
ASI, connector properties, and transformation rules embedded in protocol
configuration objects to determine the collaboration, data handler, processing mode
(synchronous/asynchronous) and transport-specific aspects of the web services
transaction. For a detailed account of protocol listener processing, see
listeners” on page 65)

Protocol handlers invoke web services in SOAP/HTTP, SOAP/HTTPS, or
SOAP/JMS formats on behalf of a collaboration. Protocol handlers read TLO ASI
and transformation rules embedded in protocol configuration objects to determine
how to process the request (synchronously or asynchronously), which data handler
to use to convert SOAP messages to SOAP business objects and vice versa, and to
determine the target address of the web service (from the Destination attribute of
the SOAP Request business object Protocol Config MO). For synchronous
transactions, the protocol handler processes SOAP response messages, converting
them into SOAP Response business objects and passing them back to the
collaboration.

For further information on protocol handlers, see [“Protocol handlers” on page 77.|

SOAP data handler
The SOAP data handler converts SOAP business objects to SOAP messages and

vice versa. For further information on the SOAP data handler, see
[“SOAP data handler,” on page 111

Web services configuration tools

You can deploy web service solutions with collaborations that invoke, or are
exposed as, web services.

Chapter 1. Overview of the connector 9



When you enable a collaboration for request processing, you use the WSDL Object
Discovery Agent (ODA) to generate web service TLOs. For further information on
request processing and the WSDL ODA, see [Chapter 6, “Enabling collaborations for]
frequest processing,” on page 145

When you expose a collaboration as a web service, you use the WSDL
Configuration Wizard, which helps you generate a WSDL document for the
collaboration that you then publish, for example, via a UDDI registry. The
connector provides no tools for publishing this information. For information on
exposing collaborations as web services, see [Chapter 7, “Exposing collaborations as
fweb services,” on page 147

Deploying the connector
There are two ways to deploy the web services connector:

* Behind the firewall as an intranet-based solution (see within an
enterprise whose business processes communicate in SOAP/HTTP,
SOAP/HTTPS, or SOAP/JMS web service formats.

10 Adapter for Web Services User Guide



ICS

Web Web
. service
service .
client
\ 4 \ 4
Connector for web services
7\ X
\4

e

|

[

Web
service
client
QU
Web

service

Firewall

Figure 2. Web services adapter as an intranet solution

* Behind the firewall with a front-end or gateway server to process, filter, and
otherwise manage communications with web services that are external to the
enterprise.

Note: The web services connector does not include a gateway or front-end for
managing incoming or outgoing messages from or to external web services.
You must configure and deploy your own gateway. The connector must be
deployed within the enterprise only, not in the demilitarized zone (DMZ) or
outside of the firewall.

Chapter 1. Overview of the connector 11



Architecture of connector for web services

To illustrate the architecture of the components at a high level, this section
describes two data flows. illustrates the two scenarios. These two
scenarios are described below.

Client
ws1 ICS of
ws2

&

Oy © &

Connector for web services
1 =
E e

se gateway/web server Ws2

(o]

Ws1 Enterpr

Internet

HDD

I
LTI
=]

—

[

Client of web

service T

(WS1) Web
service
(WS2)

Figure 3. Flow of a web services message

Request processing illustrates the sequence of events that occurs when a
collaboration makes a service call request to the connector to invoke a web service.
In this scenario, the collaboration plays the role of a client, sending a request to a
server.

12 Adapter for Web Services User Guide



A The collaboration sends a service call request to the connector, which calls
the SOAP data handler to convert the business object to a SOAP request
message.

B The connector invokes the web service WS2 by sending the SOAP message.
If the destination is an external web service, the connector sends the SOAP
message to a gateway. The gateway sends the SOAP message to the
endpoint corresponding to the destination web service. This invokes the
web service.

C The invoked web service receives the SOAP request message and performs
the requested processing.

D The invoked web service sends a SOAP response (or fault) message. If the
web service is external to the enterprise, a gateway receives and routes the
SOAP response message.

E The SOAP response (or fault) message is routed back to the connector,
which calls the data handler to convert it to a response or fault business
object.

F The connector returns the SOAP response or fault business object to the
collaboration.

Event processing illustrates the sequence of events that occurs when a
collaboration is called as a web service. In this scenario, the collaboration, which is
exposed as a web service, plays the role of the server, accepting a request from a
client, external or internal, and responding as required.

1 The client web service (WS1) sends a SOAP request message to the
destination specified in the WSDL document generated for the
collaboration.

2 If the client web service is external, the gateway receives and routes the

message to the connector.

3 The connector sends the SOAP message to the SOAP data handler to
convert the SOAP message to a business object. The connector invokes the
collaboration exposed as a web service.

4 The collaboration returns a SOAP Response (or Fault) business object.

5 The connector calls the SOAP data handler to convert the SOAP Response
(or Fault) business object to a SOAP response message. The connector
returns the response to the gateway.

6 If the client web service is external, the gateway routes the SOAP response
message to the client web service (WS1).

Install, configure, and design checklist

This section summarizes the tasks you must perform to install, configure, and
design your web services solution. Each section briefly describes the tasks and then
provides links to sections in this document (and cross references to related
documents) that describe how to perform the task or provide background
information.

Installing the adapter

See [Chapter 2, “Installation and startup,” on page 17| for a description of what and
where you must install.

Chapter 1. Overview of the connector 13



Configuring connector properties

Connectors have two types of configuration properties: standard configuration
properties and connector-specific configuration properties. Some of these properties
have default values that you do not need to change. You may need to set the
values of some of these properties before running the connector. For more
information, see |Chapter 4, “Web services connector,” on page 61.|

Configuring protocol handlers and listeners

You configure protocol handlers and listeners when you assign values to connector
configuration properties that govern the behavior of these components. For more
information, see [Chapter 4, “Web services connector,” on page 61

Enabling collaborations for web services

When you enable collaborations for web services, you create collaborations that
can invoke, or be exposed as, web services. You also create or adapt business
objects. For an overview of the tasks involved, see [“Web services configuration|
ftools” on page 9.

Exposing collaborations as web services
For a step-by-step description see [Chapter 7, “Exposing collaborations as web|
lservices,” on page 147

Enabling collaborations to invoke web services
For a step-by-step description, see|Chapter 6, “Enabling collaborations for request]
[processing,” on page 145

Configuring the SOAP data handler

You configure information in data handler meta-objects after you install the
product files, but before startup. Unless you are adding a custom name handler,
you can use the default SOAP data handler configuration to save time. You must,
however, configure specific meta-object information for each data handler
transformation. This information is contained in SOAP Config MOs. You specify
SOAP Config MOs when you create business objects. Much of this work is
automated when you are developing collaborations that invoke web services
(request processing): when you use the WSDL ODA to generate business objects
for SOAP messages, the SOAP Config MOs are automatically generated for you.

For further information on configuring the data handler, see [Chapter 5, “SOAD|
(data handler,” on page 111

Limitations

* The WSDL ODA automatically generates business objects. If the results do not
meet your requirements, you must manually update or create business objects
using Business Object Designer.

See describes WSDL ODA support for various combinations of attributes style,
use, and part definitions using type and element.

¢ For XML limitations on style (rpc, document) use (literal, encoded), and how
parts are defined, see [Chapter 5, “SOAP data handler,” on page 111{and
[Chapter 6, “Enabling collaborations for request processing,” on page 145

* The connector supports SOAP/HTTP and SOAP/JMS bindings only.

* The connector’s SOAP/JMS protocol listener supports queue destinations only;
topics are not supported. JMS text and byte messages are supported.

14 Adapter for Web Services User Guide



e HTTP POST Request and Response are supported. No other HTTP method is
supported. HTTP 1.1 persistent connection is not supported.

Chapter 1. Overview of the connector 15



16 Adapter for Web Services User Guide



Chapter 2. Installation and startup

* [“Overview of Installation Tasks”]

+ [“Installing the connector and related files”]

+ |[“Overview of configuration tasks” on page 19

* [“Running multiple instances of the adapter” on page 20|

+ [“Starting and stopping the connector” on page 21|

This chapter describes how to install components for implementing the connector
for web services. For information regarding installation of a WebSphere
InterChange Server system generally, see the System Installation Guide appropriate
for your platform.

Overview of Installation Tasks

For information on broker compatibility, adapter framework, software
prerequisites, dependencies, and standards and APIs, see [“Adapter for Web|
Services environment” on page 2.|

To install the connector for web services, you must perform the following tasks:

Install WebSphere InterChange Server

This task, which includes installing the system and starting InterChange Server, is
described in the System Installation Guide. You must install WebSphere
InterChange Server, version 4.2.2 or 4.3.

To load files into the repository, consult the Implementation Guide for WebSphere
InterChange Server.

Install the connector and related files

This task includes installing the files for the connector (and related components)
from the software package onto your system. See ["Installing the connector and)

related files.”

Installing the connector and related files

For information on installing WebSphere Business Integration adapter products,
refer to the Installing WebSphere Business Integration Adapters guide located in the
WebSphere Business Integration Adapters Infocenter at the following site:

http:/ /www.ibm.com /websphere/integration/wbiadapters/infocenter

Installed file structure

The tables in this section show the installed file structure.

Windows connector file structure

The Installer copies the standard files associated with the connector into your
system.

© Copyright IBM Corp. 2003, 2004 17



The utility installs the connector and adds a shortcut for the connector agent to the

Start menu.

describes the Windows file structure used by the connector, and shows the
files that are automatically installed when you choose to install the connector

through Installer.

Table 1. Installed Windows file structure for the adapter

Subdirectory of ProductDir

connectors\WebServices\CWWebServices.jar
connectors\WebServices\start_WebServices.bat
DataHandlers\CwSOAPDataHandler.jar
repository\DataHandlers\MO_DataHandler_DefaultSOAPConfig.xsd
bin\Data\App\WebServicesConnectorTemplate
ODA\WSDL\WSDLODA. jar

ODA\WSDL\start_WSDLODA.bat
connectors\WebServices\dependencies\soap.jar

connectors\WebServices\dependencies\LICENSE
connectors\WebServices\dependencies\mail.jar
connectors\WebServices\dependencies\activation.jar
connectors\WebServices\dependencies\jms.jar
connectors\WebServices\dependencies\uddi4j-wsdl.jar
connectors\WebServices\dependencies\uddi4jv2.jar
connectors\WebServices\dependencies\IPL10.txt
connectors\WebServices\dependencies\wsd14j-1.4SR3.jar
connectors\WebServices\dependencies\CPL10.txt
connectors\WebServices\dependencies\gname.jar
connectors\WebServices\dependencies\j2ee.jar
connectors\WebServices\dependencies\wswb3.0\common. jar
connectors\WebServices\dependencies\wswh3.0\ecore.jar
connectors\WebServices\dependencies\wswbh3.0\xsd.jar
connectors\WebServices\dependencies\wswb3.0\xsd.resources.jar
connectors\WebServices\dependencies\IBMReadme.txt
connectors\WebServices\samples\WebSphereICS\WebServicesSample.jar
connectors\WebServices\samples\WebSphereICS\CLIENT_SYNCH_TLO_OrderStatus.bo

connectors\WebServices\samples\WebSphereICS\CLIENT_ASYNCH_TLO_Order.bo

connectors\messages\WebServicesConnector. txt
ODA\messages\WSDLODAAgent . txt

Description

The web services connector

The startup file for the connector
The SOAP data handler

SOAP data handler-related files
Web services connector template
The WSDL ODA

The WSDL ODA startup file

Apache SOAP API required by the SOAP
connector, SOAP data handler, WSDL
Configuration Wizard, and WSDL ODA.

Apache license file

The JavaMail APT

The Java Activation Framework

The Java Messaging Service
Required by WSDL ODA

Required by WSDL ODA

License file required by WSDL ODA
Required by WSDL ODA

License file required by WSDL ODA
Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

License

Repository file for samples

Sample (synchronous) business object for test
connector

Sample (asynchronous) business object for test
connector

Connector message file
Message file for WSDL ODA

Note: All product pathnames are relative to the directory where the product is

installed on your system.

UNIX connector file structure

The Installer copies the standard files associated with the connector into your

system.

describes the UNIX file structure used by the connector, and shows the files
that are automatically installed when you choose to install the connector through

Installer.

Table 2. Installed UNIX file structure for the adapter

Subdirectory of ProductDir
connectors/WebServices/CWebServices.jar

connectors/WebServices/start_WebServices.sh
DataHandlers/CwSOAPDataHandler. jar

Description

The web services connector
The startup file for the connector
The SOAP data handler

18 Adapter for Web Services User Guide



Table 2. Installed UNIX file structure for the adapter (continued)

Subdirectory of ProductDir

repository/DataHandlers/MO_DataHandler_DefaultSOAPConfig.xsd
bin/Data/App/WebServicesConnectorTemplate
ODA/WSDL/WSDLODA. jar

ODA/WSDL/start_WSDLODA. sh
connectors/WebServices/dependencies/soap.jar

connectors/WebServices/dependencies/LICENSE
connectors/WebServices/dependencies/mail.jar
connectors/WebServices/dependencies/activation.jar
connectors/WebServices/dependencies/jms.jar
connectors/WebServices/dependencies/uddi4j-wsdl.jar
connectors/WebServices/dependencies/uddi4jv2.jar
connectors/WebServices/dependencies/IPL10.txt
connectors/WebServices/dependencies/wsd14j-1.4SR3. jar
connectors/WebServices/dependencies/CPL10.txt
connectors/WebServices/dependencies/qname. jar
connectors/WebServices/dependencies/j2ee. jar
connectors/WebServices/dependencies/wswh3.0/common. jar
connectors/WebServices/dependencies/wswb3.0/ecore. jar
connectors/WebServices/dependencies/wswb3.0/xsd. jar
connectors/WebServices/dependencies/wswb3.0/xsd.resources.jar
connectors/WebServices/dependencies/IBMReadme. txt
connectors/WebServices/samples/WebSphereICS/WebServicesSample.jar
connectors/WebServices/samples/WebSphereICS/CLIENT_SYNCH_TLO OrderStatus.bo

connectors/WebServices/samples/WebSphereICS/CLIENT_ASYNCH_TLO_Order.bo

connectors/messages/WebServicesConnector.txt
0DA/messages/WSDLODAAgent . txt

Description

SOAP data handler-related files
Web services connector template
The WSDL ODA

The WSDL ODA startup file

Apache SOAP API required by the SOAP
connector, SOAP data handler, WSDL
Configuration Wizard, and WSDL ODA.

Apache license file

The JavaMail API

The Java Activation Framework

The Java Messaging Service
Required by WSDL ODA

Required by WSDL ODA

License file required by WSDL ODA
Required by WSDL ODA

License file required by WSDL ODA
Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

License

Repository file for samples

Sample (synchronous) business object for test

connector

Sample (asynchronous) business object for test

connector
Connector message file
Message file for WSDL ODA

Note: All product pathnames are relative to the directory where the product is

installed on your system.

Overview of configuration tasks

After installation and before startup, you must configure components as follows:

Configure the connector

This task includes setting up and configuring the connector. See [“Configuring the|

fconnector” on page 88|

Configure business objects

The steps for configuring business objects depend on how you elect to implement

the product suite:

* Request Processing You must create the business objects that correspond to:

— The request messages to be sent to each web service

— Each possible response, including faults

For further information, review [Chapter 3, “Business object requirements,” on|

page 25| and then see hhapter 6, “Enabling collaborations for request|

processing,” on page 145

Chapter 2. Installation and startup 19



* Event Processing You can use TLO or non-TLO business objects.
For further information, review [Chapter 3, “Business object requirements,” on|

Eaée 25! and then see [Chapter 7, “Exposing collaborations as web services,” on|
age 147.

Configure the data handler

The SOAP data handler meta-object must be configured after installation. In
addition, SOAP Config MOs must be configured for each SOAP business object. To
configure the data handler, see [Chapter 5, “SOAP data handler,” on page 111|

Configure collaborations

* Request processing For collaborations that invoke web services as part of their
processing, you generate business objects using the WSDL ODA and then bind
collaboration object ports to the connector. For further information including a
step-by-step procedure, see |Chapter 6, “Enabling collaborations for requesd
[processing,” on page 145

* Event processing For a collaboration that is exposed as a web service, you must
generate a WSDL document using the WSDL Configuration Wizard, make the
document available to potential clients, and then configure the ports of the
collaboration object so that clients can invoke the collaboration. For further
information including a step-by-step procedure, see [Chapter 7, “Exposing]
[collaborations as web services,” on page 147 |

Running multiple instances of the adapter

Creating multiple instances of a connector is in many ways the same as creating a
custom connector. You can set your system up to create and run multiple instances
of a connector by following the steps below. You must:

* Create a new directory for the connector instance
* Make sure you have the requisite business object definitions
* Create a new connector definition file

* Create a new start-up script

Create a new directory

You must create a connector directory for each connector instance. This connector
directory should be named:

ProductDir\connectors\connectorinstance
where connectorInstance uniquely identifies the connector instance.

If the connector has any connector-specific meta-objects, you must create a
meta-object for the connector instance. If you save the meta-object as a file, create
this directory and store the file here:

ProductDir\repository\connectorInstance

Create business object definitions

If the business object definitions for each connector instance do not already exist

within the project, you must create them.

1. If you need to modify business object definitions that are associated with the
initial connector, copy the appropriate files and use Business Object Designer to
import them. You can copy any of the files for the initial connector. Just rename
them if you make changes to them.

20 Adapter for Web Services User Guide



2. Files for the initial connector should reside in the following directory:
ProductDir\repository\initialConnectorInstance

Any additional files you create should be in the appropriate connectorInstance
subdirectory of ProductDir\repository.

Create a connector definition
You create a configuration file (connector definition) for the connector instance in
Connector Configurator. To do so:

1. Copy the initial connector’s configuration file (connector definition) and rename
it.

2. Make sure each connector instance correctly lists its supported business objects
(and any associated meta-objects).

3. Customize any connector properties as appropriate.

Create a start-up script
To create a startup script:

1. Copy the initial connector’s startup script and name it to include the name of
the connector directory:

dirname

2. Put this startup script in the connector directory you created in

[directory” on page 20.]

3. Create a startup script shortcut (Windows only).

4. Copy the initial connector’s shortcut text and change the name of the initial
connector (in the command line) to match the name of the new connector
instance.

You can now run both instances of the connector on your integration server at the
same time.

For more information on creating custom connectors, refer to the Connector
Development Guide for C++ or for Java.

Starting and stopping the connector

Important: As noted earlier in this chapter, the connector, business objects, the
SOAP data handler meta-objects, and collaborations must be
configured after installation and before starting the connector to assure
proper operation. For a summary of these tasks, see
[configuration tasks” on page 19)In addition, connector polling should
not be disabled (connector polling is enabled by default).

A connector must be explicitly started using its connector start-up script. On
Windows systems the startup script should reside in the connector’s runtime
directory:

ProductDir\connectors\connName
where connName identifies the connector.

On UNIX systems the startup script should reside in the ProductDir/bin directory.

The name of the startup script depends on the operating-system platform, as

shows.

Chapter 2. Installation and startup 21



Table 3. Startup scripts for a connector

Operating system Startup script
UNIX-based systems connector_manager
Windows start_connName .bat

When the startup script runs, it expects by default to find the configuration file in
the Productdir (see the commands below). This is where you place your
configuration file.

Note: You need a local configuration file if the adapter is using JMS transport.

You can invoke the connector startup script in any of the following ways:
¢ On Windows systems, from the Start menu
Select Programs>IBM WebSphere Business Integration
Adapters>Adapters>Connectors. By default, the program name is “IBM
WebSphere Business Integration Adapters”. However, it can be customized.
Alternatively, you can create a desktop shortcut to your connector.
* From the command line
— On Windows systems:
start_connName connName brokerName [-cconfigFile ]
— On UNIX-based systems:
connector_manager -start connName brokerName [-cconfigFile ]
where connName is the name of the connector and brokerName identifies your
integration broker, as follows:
— For WebSphere InterChange Server, specify for brokerName the name of the
ICS instance.

— For WebSphere message brokers (WebSphere MQ Integrator, WebSphere MQ
Integrator Broker, or WebSphere Business Integration Message Broker) or
WebSphere Application Server, specify for brokerName a string that identifies
the broker.

Note: For a WebSphere message broker or WebSphere Application Server on a
Windows system, you must include the -c option followed by the name of
the connector configuration file. For ICS, the -c is optional.

¢ From Adapter Monitor (available only when the broker is WebSphere
Application Server or InterChange Server), which is launched when you start
System Manager

You can load, activate, deactivate, pause, shutdown or delete a connector using
this tool.

* From System Manager (available for all brokers)

You can load, activate, deactivate, pause, shutdown or delete a connector using
this tool.

* On Windows systems, you can configure the connector to start as a Windows
service. In this case, the connector starts when the Windows system boots (for an
Auto service) or when you start the service through the Windows Services
window (for a Manual service).

For more information on how to start a connector, including the command-line
startup options, refer to one of the following documents:

* For WebSphere InterChange Server, refer to the System Administration Guide.

22 Adapter for Web Services User Guide



* For WebSphere message brokers, refer to Implementing Adapters with WebSphere
Message Brokers.

* For WebSphere Application Server, refer to Implementing Adapters with WebSphere
Application Server.

Chapter 2. Installation and startup 23



24 Adapter for Web Services User Guide



Chapter 3. Business object requirements

« |“Business object meta-data”|

+ [“Connector business object structure’]

+ |“Synchronous event processing TLOs” on page 26|

* [“Asynchronous event processing TLOs” on page 40|

* |“Event processing non-TLOs” on page 43

* |“Synchronous request processing TLOs” on page 44

* [“Synchronous request processing TLOs” on page 44

* |“Asynchronous request processing TLOs” on page 5§|

» [“Developing business objects” on page 59|

This chapter describes the structure, requirements, and attributes of connector
business objects.

Business object meta-data

The connector for web services is a meta-data-driven connector. In business objects,
meta-data is data about the application, which is stored in a business object
definition and which helps the connector interact with an application. A
meta-data-driven connector handles each business object that it supports based on
meta-data encoded in the business object definition rather than on instructions
hard-coded in the connector.

Business object meta-data includes the structure of a business object, the settings of
its attribute properties, and the content of its application-specific information.
Because the connector is meta-data-driven, it can handle new or modified business
objects without requiring modifications to the connector code. However, the
connector’s configured data handler makes assumptions about the structure of its
business objects, object cardinality, the format of the application-specific text, and
the database representation of the business object. Therefore, when you create or
modify a business object for web services, your modifications must conform to the
rules the connector is designed to follow, or the connector cannot process new or
modified business objects correctly.

For more information on meta-data, meta-objects, and their configuration and
interaction with business objects and SOAP messages, see |[Chapter 5, “SOAP data|
lhandler,” on page 111)

Connector business object structure

The connector processes two kinds of business objects:

¢ TLOs A web services top-level business object (TLO) contains a Request
business object and, optionally, Response and Fault business objects. These child
objects contain content data as well as SOAP Config MOs, and, optionally,
Protocol Config MOs. The TLO, Request, Response, and Fault objects as well as
application-specific information, attributes, and requirements with regard to
request versus event processing are described and illustrated in the sections
below.

Note: TLOs are used for request processing and event processing.

© Copyright IBM Corp. 2003, 2004 25



* Non-TLOs These are generic business objects (GBOs) and application-specific
business objects (ASBOs) that are not TLOs, but which have been used by the
WSDL Configuration Wizard in WSDL generation. The connector can process
non-TLOs during event processing. These objects are discussed below in[“Even{]
processing non-TLOs” on page 43.| For further information, see |”WSD! ]
Configuration Wizard” on page 150]

Note: Non-TLOs are used for event processing only.

Note: SOAP header container and header business objects, which are included in
Request, Response, and Fault business objects, are not discussed in this
chapter. For_information on SOAP header container and header business
objects, see |Chapter 5, “SOAP data handler,” on page 111.]

Synchronous event processing TLOs

For event processing the connector allows two kinds of TLOs—synchronous and
asynchronous. This section discusses synchronous event processing TLOs.

[Figure 4 on page 27 shows the business object hierarchy for synchronous event
processing. Request and Response objects are required, Fault objects are optional.

26 Adapter for Web Services User Guide



[ Web Services TLO ]

—[ Request BO required ]

_[ Header container optional J

Header BO ]

Header BO ]

—[ SOAP Config MO

)

—( Protocol Config MO optional ]

required ]

_[ Header container optional ]

Header BO ]

Header BO ]

—[ SOAP Config MO

] [ Protocol Config MO optional ]

—[ Fault BO optional ]

SOAP Config MO

] [ Protocol Config MO eptional ]

HeaderFault container optional }

L[ MimeType optional ]

HeaderFault BO ]

—[ Charset optional ]

HeaderFault BO ]

Figure 4. Business object hierarchy for synchronous event processing

The TLO contains object-level ASI as well as attributes with attribute-level ASI.

Both kinds of ASI are discussed below.

Object-level ASI for synchronous event processing TLOs
Object-level ASI provides fundamental information about the nature of a TLO and
the objects it contains. shows the object-level ASI for

SERVICE_SYNCH_OrderStatus, a sample TLO for synchronous event processing.

Chapter 3. Business object requirements

27



&l Business Dbject Designer - [SER¥ICE_SYNCH_TLD_OrderStatus:Local Project]
& File Edit Wiew Tools Window Help

[Pes@x|smm|s¢ (&=
GeneraIIAﬂributesI

Business Object Level Application-specific information;

|ws_mode=synch; ws_collab=SERVICE_SYMNCH_OrderStatus_Collab; ws_verb=R etieve; ws_eventtlo=tue;

Supported Yerbs:

Marme T Application-specific information
1 |create
2 |Delete
3 |Retrieve h
4 |Update
5

Figure 5. Top-level business object for synchronous event processing

below describes the object-level ASI for a synchronous event processing

TLO.

Table 4. Synchronous event processing TLO object AS/

Object-level ASI Description

ws_eventtlo=true If this ASI property is set to true, the connector

treats this object as a TLO for event processing only.

Note that the WSDL Configuration Wizard uses this
ASI to determine whether a business object is a
TLO. For more on this see["WSDL Configuration|
[Wizard” on page 150/

ws_collab=collabname This ASI tells the connector which collaboration to
invoke. Its value is the name of the collaboration.
(This ASI is also used during WSDL generation to
determine the TLO for a collaboration. For more on
this see [“WSDL Configuration Wizard” on page|
[150.) In the sample shown infFigure 5] the
collaboration name is
SERVICE_SYNCH_OrderStatus_Collab)

ws_verb=verb Before delivering the TLO to the collaboration, the
connector uses this ASI to set the verb on the TLO.

In the sample shown i the verb is

Retrieve.

ws_mode=synch During event notification, the connector uses this
ASI property to determine whether to invoke the
collaboration synchronously (synch) or
asynchronously (asynch). For synchronous
processing, this ASI must be set to synch.

The default is asynch.

Attribute-level ASI for synchronous event processing TLOs

Each synchronous event processing TLO has attributes and attribute-level ASL
shows the attributes of SERVICE_SYNCH_OrderStatus, a sample TLO. It
also shows the attribute-level ASI in the App Spec Info column.

28 Adapter for Web Services User Guide



& Business Dbject Designer - [SERYICE_SYNCH_TLD_OrderStatus:Local Project]
B File Edit Wiew Tools Window Help

jpes@x(smr|s ||z

General l Adtributes ]

Pos Matme: Type KeQ{ Fareign R:;;ui Card App Spec Info
1 1 H Reguest SERWICE_SYMCH_OrderStatus_Reguest Ird I -r 1 wes_hatype=regquest
2 |z M Response SERYICE_SYMCH_OrderStatus_Response| [ - - 1 we_botypesresponse
3 |z M Fautt SERWICE _SYMCH_OrderStatus_Fault - - - 1 we_botype=tault
4 |4 |OhjectEvertld String
5 s r r r

Figure 6. TLO attributes for synchronous event processing

summarizes the attribute-level ASI for the Request, Response, Fault,
MimeType, and Charset attributes of an synchronous event processing TLO.

Table 5. Synchronous event processing TLO attribute ASI
TLO attribute Attribute-level ASI Description

MimeType None Optional attribute; if
specified, its value is used as
the mime type of the data
handler to invoke for the
synchronous response. The
type is String and the default
is xm1/soap.

Charset None This optional parameter of
type String specifies the
charset to be set on the data
handler when transforming
an outgoing business object
to the message. NOTE: the
charset value specified in this
attribute will not be
propagated in the
Content-Type protocol
header of the response
message.

Request ws_botype=request This attribute corresponds to
a web service request. The
connector uses its ASI to
determine whether this TLO
attribute is of type SOAP
Request BO. This ASI, not
the attribute name,
determines the attribute type.
If there is more than one
request attribute, the
connector uses the ASI of the
first one.

This attribute is required for
synchronous event
processing TLOs.

Chapter 3. Business object requirements 29



Table 5. Synchronous event processing TLO attribute ASI (continued)

TLO attribute

Attribute-level ASI

Description

Response

ws_botype=response

This attribute corresponds to
the response returned by a
web service. The connector
uses this ASI to determine
whether this TLO attribute is
of type SOAP Response BO.
This ASI, not the attribute
name, determines the
attribute type. If there is
more than one response
attribute, the connector uses
the ASI of the first one.

This attribute is required for
synchronous event
processing TLOs.

Fault

ws_botype=fault
ws_botype=defaultfault

This attribute, optional for
synchronous event
processing, corresponds to a
fault message returned by a
collaboration when it cannot
successfully populate a
response. The connector uses
this ASI, not the attribute
name, to determine if the
attribute is of type SOAP
Fault BO.If
ws_botype=defaultfault,then
the WSDL Configuration
Wizard uses this Fault
business object for header
processing. For further

information, see |”Headeﬂ

fault processing” on page|

i22]

Request business object for synchronous event processing
A Request business object is a child of a TLO and is required for synchronous
event processing. A Request business object has object-level ASI. For example, if

you open SERVICE_SYNCH_OrderStatus_Request in Business Object Designer and
click the General tab, the object level ASI is displayed as shown in

30 Adapter for Web Services User Guide




=i SERYICE_SYMNCH_OrderStatus_Request:WebServicesSample *

General ] Aftributes ]

Businesz Dbject Level Application-specific information:

|cw_mo_soap=SDAPCngD; cw_mo_jms=50APJMSCigMO; ws_tloname=SERVICE_SYNCH_TLO_OrderStat.

Supported Werbs:

Mame \_ Application-specific information

Create

Delete

Retrieve Default’/erb=true;

Upcdate

| =] w| o] =

Figure 7. Object-level ASI for synchronous event processing request object

The object-level ASI for a Request business object for synchronous event processing
is described in As shown in you can specify a default verb for the
Request business object. You do so by specifying;:

DefaultVerb=true;

in the ASI field for the verb in the Supported Verbs list at the top-level of the
Request business object. If DefaultVerb ASI is not specified and the data handler
processes a business object with no verb set, the business object is returned

without a verb.

Table 6. Synchronous event processing: object-level ASI for Request business objects

Object-level ASI

Description

cw_mo_soap=SO0APCfgMo

The value of this ASI must match the name of the
attribute that corresponds to the SOAP Config
MO. This is the meta-object that defines the data
handler transformation for the Request business

object. For further information, see ['SOAP Config
[MO” on page 32.|

cw_mo_jms=SOAPJMSCfgMO
or
cw_mo_http=SOAPHTTPCfgMO

The value of this ASI must match the name of the
attribute that corresponds to the Protocol Config
MO. The first ASI designates the SOAP/JMS
protocol listener; the second designates the
SOAP/HTTP or SOAP/HTTPS protocol listener.
Both the ASI and the Protocol Config MO are

optional. For further information, see
[Config MO” on page 33/

ws_tloname=¢tloname

This ASI specifies the name of the web services
TLO that this object belongs to. During event
processing, the connector uses this ASI to
determine whether the Request business object
delivered by the data handler is a child of the
TLO. If so, the connector creates the specified
TLO, sets the Request business object as its child,
and uses the TLOs object-level ASI to deliver it to
the subscribing collaboration.

Response business object for synchronous event processing
A Response business object is a child of a TLO and is required for synchronous

event processing. The object-level ASI for a Response business object for
h

synchronous event processing is described in

Chapter 3. Business object requirements

31



Table 7. Synchronous event processing: object-level ASI for Response business objects

Object-level ASI

Description

cw_mo_soap=SOAPCfgMO

The value of this ASI must match the name of the
attribute that corresponds to the SOAP Config
MO. This is the SOAP Config MO that defines the
data handler transformation for the Response
business object. For further information, see
[“SOAP Config MO.”|

Note: You can optionally include a Protocol Config MO object-level ASI for the

Response BO.

Fault business object for synchronous event processing
A Fault business object is a child of a TLO and is optional for synchronous event
processing. The object-level ASI for a Fault business object for synchronous event

processing is described in

Table 8. Synchronous event processing: object-level ASI for Fault business objects

Object-level ASI

Description

cw_mo_soap=SOAPCfgMO

The value of this ASI must match the name of the
attribute that corresponds to the SOAP Config

MO. This is the SOAP Config MO that defines the
data handler transformation for the Fault business

object. For further information, see ['SOAP Config

Note: You can optionally include a Protocol Config MO object-level ASI for the

Fault BO.

SOAP Config MO

shows a sample SOAP Config MO, expanded in Business Object Designer.

32 Adapter for Web Services User Guide




Bl Business Object Designer - SERYICE_SYNCH_OrderStatus_Request:Local Project

File Edit Yiew Tools Window Help

[tez | @x|rer|s ¢ |8

General l Aftributes I

ReciLi e
Pos Mame Type Key |Foreign :;LUI Card E;:;Jr:n Defautt
L Orderld String ¥ r Ird 255
2 SERWICE_SYMCH_SOAP
4 | ESOAPMSCIMO  |"p e o stats e | T | T | T | 1
3 |5 |ObjectEvertid String
4
SERVICE_SYMCH_Order
2 B OrclerHeader Status_Request_Header r r r 1
5 SERWICE_SYMCH_Crder
B 5 =04F-faMO status_Request_crovo | I | T (A
N =5 Bclyhame String F|l O | 255 f;*orders
LS
S2 |33 Style String r r r 285 rpc
53 |34 Typelnfa String r r - 255 true
34 |35 TypeCheck String r r - 285 norE
35 |32 BOWerh String r r ] 255 Retrieve
58 |37 OhjectEvertld String
a7 it A
e Ty COM
3 BiockyhS String r r r 255 pary.com!
samples/o
rderstatus

Figure 8. SOAP Config MO attributes for synchronous event processing

The SOAP Config MO defines the formatting behavior for one data handler
transformation — either a SOAP-message-to-business-object or
business-object-to-SOAP-message transformation. Each Request, Response, and
Fault attribute has a SOAP Config MO. Its attributes, BodyName, BodyNS, Style,
Use, Typelnfo, TypeCheck and BOVerb, are always of type String. They
correspond to SOAP message elements and their values determine how messages
and objects are read and validated by the SOAP data handler. For more
information on SOAP Config MOs and attributes, see ['SOAP configuration|
Imeta-object: child of every SOAP business object” on page 113] All SOAP Config
MOs, whether for a request, response, or fault object, must have unique entries for
default values of BodyName and BodyNS.

Protocol Config MO

shows a JMS Protocol Config MO, whose attributes correspond to headers
in the inbound SOAP message.

Chapter 3. Business object requirements 33



&l Business Object Designer - [SERYICE_SYNCH_TLO_OrderStatus:Local Project]
& File Edit Yiew Tools ‘Window Help

joss|ax inels e aas]

General ] Aftributes I

Poz Mame Type Ke{ Fareign R;E:‘Ui Card

T h H Request SERWICE_SvMCH_OrderStatus_Request v - [ 1
11 |14 Croerld String =2 - =

12 s ObjectEvertld String

13 145 B S0APCTMO SERWICE_S¥MCH_OrderStatus _Request_Clgho r - - 1
144 B SOAPIMSCgMO | SERVICE_SYMNCH_SOAF_JIMS_OrderStatus_Reguest_Cfogho | [ r [ 1
140144 Messageld String v I [
14.1142 Pricrity String r r [
141143 Expiration String r r |l
141144 DeliveryMode  |String r r -
141145 ReplyTo String r r |l
141148 ObjectEvertld | String

Figure 9. JMS Protocol Config MO attributes for synchronous event processing

This MO is optionally included as a child of the request, response, or fault business
objects for event processing. Typically you specify it when you need to read (from
request messages) or propagate (to response or fault messages) the protocol
headers and custom properties. As noted above, the request business object
optionally declares the name of the Protocol Config MO as business-object-level
ASI:

e cw_mo_jms=JMSProtocolListenerConfigMOAttribute
e cw_mo_http=HTTPProtocollListenerConfigMOAttribute

During event processing, the connector uses protocol listeners (SOAP/HTTP,
SOAP/HTTPS or SOAP/JMS) to retrieve events from the transport. These events
are messages from internal or external web service clients requesting service from
collaborations that have been exposed as web services. Each transport has its own
header requirements. The connector uses the Protocol Config MO to convey the
protocol-specific header information from the protocol listener to the collaboration.
The Protocol Config MO attributes correspond to headers in the inbound
SOAP/JMS message. The connector sets the value of these attributes in the
business object using inbound SOAP message content. For SOAP/JMS protocol, the
Protocol Config MO attributes for event and request processing are as follows:

Table 9. SOAP JMS Protocol Config MO attributes:event and request processing

SOAP/JMS Protocol Config
MO attribute JMSHeaderName Description

CorrelationID JMSCorrelationID Inbound messages: this
atrribute will be populated
with the value from
JMSCorrelationID header.
Outbound messages: : the
value from this attribute will
be set as the
JMSCorrelationID header of
outgoing message.

34 Adapter for Web Services User Guide



Table 9. SOAP JMS Protocol Config MO attributes:event and request

processing (continued)

SOAP/JMS Protocol Config
MO attribute

JMSHeaderName

Description

Messageld

JMSMessageld

Inbound messages: this
atrribute will be populated
with the value from the
JMSMessageld header.
Outbound messages: this
attribute is not used for
outbound messages.

Priority

JMSPriority

Inbound messages: this
atrribute will be populated
with the value from the
JMSPriority header.
Outbound messages: the
value from this attribute will
be set in the JMSPriority
header of outgoing message.

Expiration

JMSExpiration

Inbound messages: this
atrribute will be populated
with the value from the
JMSExpiration header.
Outbound messages: the
value from this attribute will
be set in the JMSExpiration
header of outgoing message.

DeliveryMode

JMSDel1iveryMode

Inbound messages: : this
atrribute will be populated
with the value from the
JMSDeliveryMode header.
Outbound messages: the
value from this attribute will
be set in the
JMSDeliveryMode header of
outgoing message.

Destination

JMSDestination

Inbound messages: this
atrribute will be populated
with the value from the
JMSDestination header.
Outbound messages:
Request processing the
value from this attribute will
be used as the destination
queue name and will
indirectly be set in the
JMSDestination header of
outgoing messages to the
derived destination path.
Synchronous response in
event notification: this
attribute is not used.

Chapter 3. Business object requirements 35



Table 9. SOAP JMS Protocol Config MO attributes:event and request
processing (continued)

SOAP/JMS Protocol Config
MO attribute JMSHeaderName Description

Redelivered JMSRedelivered Inbound messages: this
atrribute will be populated
with the value from the
JMSRedelivered header.
Outbound messages: the
value from this attribute will
be set in the JMSRedelivered
header of outgoing message..

ReplyTo JMSReplyTo Inbound messages: this
atrribute will be populated
with the value from the
JMSReplyTo header.
Outbound messages: the
value from this attribute will
be set in the J]MSReplyTo
header of outgoing message

TimeStamp JMSTimeStamp Inbound messages: this
atrribute will be populated
with the value from the
JMSTimeStamp header.
Outbound messages: the
value from this attribute will
be set in the JMSTimeStamp
header of outgoing message..

Type JMSType Inbound messages: this
atrribute will be populated
with the value from the
JMSType header.

Outbound messages: the
value from this attribute will
be set in the JMSType header
of outgoing message.

UserDefinedProperties See|“User-defined propertieq | This optional read/write
for event processing” on| attribute will hold the
page 37| user-defined protocol

properties business object.
For further information,
sed‘User-defined properties|
for event processing” on|

page 37.|

Note: It is the responsibility of the collaboration to ensure that the header values
passed to the JMS Protocol Config MO are logically correct in the context of
a request-response event.

36 Adapter for Web Services User Guide



For SOAP/HTTP(S) protocol, the Protocol Config MO attributes are as follows:
Table 10. HTTP/HTTPS Protocol Config MO Attributes for Event Processing

Attribute Required Type Description

Content-Type No String The value of this attribute
defines the Content-Type
header of the outgoing message
(which includes message
ContentType and 0 or more
parameters --the charset-- for
the outgoing message). The
syntax is the same as that for
the Content-Type header in the
HTTP Protocol, for example:
text/html;
charset=150-8859-4. If there is
no Content-Type attribute
defined, the connector uses the
ContentType of the request as
the ContentType of the
response/fault message.

UserDefinedProperties No Business object | This attribute holds the
user-defined protocol properties
business object.

One or more HTTP No String This attribute allows the
headers handler to pass or retrieve the
value for the specified HTTP
header.

Authorization_UserID No String This attribute corresponds to
the userID of the HTTP basic
authentication.

Authorization_Password |No String This attribute corresponds to
the password of the HTTP basic
authentication

These attributes are described in:

* [“User-defined properties for event processing”|

* [“HTTP credential propagation for event processing” on page 38|

For further information on protocol listeners, see [“Protocol listeners” on page]
65 [For information describing the Protocol Config MO for request processing, see
“Synchronous request processing TLOs” on page 44)).

User-defined properties for event processing: You can optionally specify custom
properties in the HTTP(S) Protocol Config MO. You do so by including the
UserDefinedProperties attribute. This attribute corresponds to a business object that
has one or more child attributes with property values. Every attribute in this
business object must define a single property to be read (or, for synchronous
responses, written) in the variable portion of the message header as follows:

* The type of the attribute should always be String regardless of the protocol
property type. The application-specific information of the attribute can contain
two name-value pairs defining the name and format of the protocol message
property to which the attribute maps.

Chapter 3. Business object requirements 37



able 1lsummarizes the application-specific information for these attributes.

Table 11. Application-specific information for user-defined protocol property attributes:

name=value pair content

Name

Value

Description

Ws_prop_name
(case-insensitive; if not
specified the attribute name
will be used as the property
name

Any valid protocol property
name

This is the name of the
protocol property. Some
vendors reserve certain
properties to provide
extended functionality. In
general, you should not
define custom properties that
begin with JMS (for JMS
protocol) unless you are
seeking access to these
vendor-specific features.

ws_prop_type (case
insensitive, optional for JMS
- if not specified String is
assumed; irrelevant for
HTTP(S) since only String
types make sense)

String, Integer, Boolean,
Float, Double, Long, Short

The type of the protocol
property. For JMS protocol,
the JMS API provides a
number of methods for
setting property values in the
JMS Message: setIntProperty,

setLongProperty,
setStringProperty, etc. The
type of the JMS property
specified here dictates which
of these methods will be
used for setting the property
value in the message.

If the given custom property ASI (either the ws_prop_name or ws_prop_type) is
invalid and there is no logical way to process this header (such as ignoring the
property type for HTTP processing), the connector logs a warning and ignores this
property. If the value of the custom property can neither be set nor retrieved after
the necessary check against ws_prop_name or ws_prop_type has been performed,
the connector logs the error and fails the event.

If the UserDefinedProperties attribute is specified, the connector will create an
instance of a UserDefinedProperties business object. The connector then attempts
to extract property values from the message and store them in the business object.
If at least one property value is successfully retrieved, the connector will set a
modified UserDefinedProperties attribute in the Protocol Config MO.

For synchronous event processing, if a UserDefinedProperties attribute is specified
and its business object is instantiated, the connector will process each attribute of
this child business object and set the message property value accordingly.

HTTP credential propagation for event processing: For the purpose of credential
propagation, the connector supports the Authorization_UserID and
Authorization_Password attributes in the HTTP Protocol Config MO. The support
is limited to the propagation of these credentials as part of the HTTP Basic
authentication scheme.

If a SOAP/HTTP or SOAP/HTTPS protocol listener processes a SOAP/HTTP web

service request that includes an authorization header, the listener will parse the
header to determine whether it conforms to HTTP Basic authentication. If so, the

38 Adapter for Web Services User Guide



listener extracts and decodes (using Base64) the username and password. This
decoded string consists of a username and password separated by a colon. If the
protocol listener finds the Authorization_UserID and Authorization_Password
attributes in the Protocol Config MO, the listener sets these values with those
extracted from the event authorization header.

Header container business objects
shows the expanded header container attribute, OrderHeader.

Bl Business Dbject Designer - [SERYICE_SYNCH_TLO_OrderStatus:Local Projeckt]
& File Edit Wew Tools wWindow Help

[boas@x|sme|sr &= ]

General l Aftributes I

Pos Mame Type Ke\{ erc;w Card Anp Spec Info
1 1 H Reguest SERVICE_SYMNCH_CrilerStatus_| p r 1 wz_hotype=reguest
14144 Orderld String V| F
12 |14 H S04PIMSCTghO SERWICE_SYMCH_S08P_MS_ | [T - 1
13 115 OhjectEventld String
14 SERVICE_SYMNCH_OrderStatus .
12 B CrderHeader Recuest, Header I r 1 s0ap_location=S0APHeader
14 headetF autt=transactionF ault; elem
1 ) SERVICE_SYMNCH_OrderStatus _ns=http: Mhasnssy mycompany .Com
(Rl Eiransaction TransactionHesder Chid MOy fsamplestransaction;typs_name=
Tranzaction_HeaderChild
141121, Transactionld | String Ird r
141121, OhjectEvertld  |String
141121, actar Siring Il r attr_name=actor
141121, mustUncerstand | String - r attr_name=mustinderstand
141123 OhjectEventld String
1.4. headerF aut=affiliateF ault; elem_ns
3 - SERVICE_SYMNCH_OrderStatus_ =hittp: s My COMPENY COMIEE
U2 =|GHER TradingPartnerHeaderChild . ! mplesipartner;type_name=Trading
Partner _HeaderChild
1411232 partnerld Siring I r
1411232 OhjectEvertld  |String
1411232 routingMumber | String - r
15 |13 H SOAPCTGMO SERVICE_SYNCH_OrderStatus_| [T r 1
2 2 H RBSFIDI'ISE SERV|CE_SYNCH_OFdBFS’[a‘tUS_ r r 1 Wg_hotypezregpgnge
=) 3 H Fautt SERVICE_SYNCH_OrderStatus_| [T r 1 wE_botype=tautt

Figure 10. Header container and child business objects

The header container attribute, also known as the SOAP header attribute,
corresponds to a business object that contains only child business objects. Each
child represents a header entry in the SOAP message. In the example shown in

the request header container is OrderHeader. SOAP header attributes
have application-specific information (ASI) required by the SOAP data handler. For
example, a header container business object is identified by its ASI:
soap_location=SO0APHeader. For information on header processing, see
lhandler processing” on page 117

All SOAP business objects, whether a Request, Response, or Fault object, have one
and only one header container.

Header child business objects
In the example shown the two child attributes of the request header

container (OrderHeader) are 1) transaction of type
SERVICE_SYNCH_OrderStatus_TransactionHeaderChild and 2) affiliate of type

Chapter 3. Business object requirements 39



SERVICE_SYNCH_OrderStatus_TradingPartnerHeaderChild. These attributes
correspond to header child business objects. Each represents a single header
element in a SOAP message. The header element is an immediate child of the
SOAP-Env:Header element of the SOAP message. As shown the header
child business objects may have an actor and a mustUnderstand attribute. These
attributes correspond to the actor and mustUnderstand attributes of the SOAP
header element. For information on header processing, see [“SOAP data handler|
[processing” on page 117

There may be as many header child objects as are needed to represent the SOAP
header message elements.

Asynchronous event processing TLOs

shows the business object hierarchy for asynchronous event processing. A
request object only is required.

[ Web Services TLO ]

_{ Request BO required ]

—[ Header container optional ]

—[ Header BO ]
_[ Header BO ]

—[ SOAP Config MO ]

—[ Protocol Config MO optional ]

Figure 11. Business object hierarchy for asynchronous event processing

The TLO contains object-level ASI as well as attributes with attribute-level ASI.
Both kinds of ASI are discussed below. For information on the header container
and header child business objects, see [‘Header container business objects” on page|

Object-level ASI for asynchronous event processing TLOs
Object-level ASI provides fundamental information about the nature of a TLO and
the objects it contains. shows the object-level ASI for
SERVICE_ASYNCH_TLO_Order, a sample TLO for asynchronous event processing.

40 Adapter for Web Services User Guide



&l Business Object Designer - SERYICE_ASYNCH_TLO_Order:Local Project

File Edit Yiew Tools Window Help

[Pz EX|[s=als ¢

=,

=i SERYICE_ASYNCH_TLO_Order:Local Project
General I Aftributes I

Business Object Level Application-specific information:

st_mude=asynch, ws_verb=Create; ws_eventtio=tru

Supported Yerbs:

£

Maime Application-specific infarmstion

Create

Delete

Retrieve

Update

| & w] ] =

Figure 12. Top-level business

object for asynchronous event processing

below describes the object-level ASI for an asynchronous event processing

TLO.

Table 12. Asynchronous event processing TLO object ASI

Object-level ASI

Description

ws_eventtlo=true

If this ASI property is set to true, the connector
treats this object as a TLO for event processing.

Note that the WSDL Configuration Wizard uses this
ASI to determine whether a business object is a
TLO. For more on this see [“WSDL Configuration|
|Wizard" on page 150.|

ws_verb=verb

Before delivering the TLO to the collaboration, the
connector uses this ASI to set the verb on the TLO.
In the sample shown i the verb is
Create.

ws_mode=asynch

During event notification, the connector uses this
ASI property to determine whether to invoke the
collaboration synchronously (synch) or
asynchronously (asynch). For asynchronous
processing, this ASI must be set to asynch.

The default is asynch.

Note: Unlike synchronous
at the TLO level for

event processing, no collaboration name ASI is required
asynchronous event processing. Instead the integration

broker assures that application events reach all subscribing collaborations.

Attribute-level ASI for asynchronous event processing TLOs

Each asynchronous event |

:)rocessinf TLO has a single attribute that corresponds to

a Request business object.

Figure 13| shows the request attribute of

SERVICE_ASYNCH_TLO_Order, a sample TLO, and the attribute’s ASL

Chapter 3. Business object requirements 41



&l Business Object Designer - SERYICE_ASYNCH_TLO_Order:Local Project
File Edit WYiew Tools ‘Window Help

|[pes@x | rerlse &

= SERYICE_ASYNCH_TLO_Order:Local Projeck = |EI|1|

General l Aftributes I

Recui [ Maceimu

Pos hame Type Key |Foreign card n App Spec Info
L H Request SERWVICE_ASYMCH_Order | W - |1 ws_hotype=request
2 |2 |ChjectEventld String
I ] Il Il - 255

Figure 13. TLO attribute for asynchronous event processing

summarizes the attribute-level ASI for the request attribute of an
asynchronous event processing TLO.

Table 13. Asynchronous event processing TLO attribute ASI

TLO attribute Attribute-level ASI Description

Request ws_botype=request This attribute corresponds to
a web service request. The
connector uses its ASI to
determine whether this TLO
attribute is of type SOAP
Request BO. This ASI, not
the attribute name,
determines the attribute type.
If there is more than one
request attribute, the
connector uses the ASI of the
first one.

This attribute is required for
synchronous event
processing TLOs.

Request business object for asynchronous event processing
A Request business object is a child of a TLO and is required for asynchronous
event processing. You can specify a default verb for the Request business object.
You do so by specifying:

DefaultVerb=true;

in the ASI field for the verb in the Supported Verbs list at the top-level of the
Request business object. If DefaultVerb ASI is not specified and the data handler
processes a business object with no verb set, the business object is returned
without a verb. The object-level ASI for a Request business object for asynchronous

event processing is described in [Table 14

Table 14. Asynchronous event processing: object-level ASI for Request business objects

Object-level ASI Description

cw_mo_soap=SOAPCfgMO The value of this ASI must match the name of the
attribute that corresponds to the SOAP Config
MO. This is the SOAP Config MO that defines the
data handler transformation for the Request
business object. For further information, see
[“SOAP Config MO” on page 32

42 Adapter for Web Services User Guide



Table 14. Asynchronous event processing: object-level ASI for Request business
objects (continued)

Object-level ASI Description

cw_mo_jms=SOAPJMSCfgMO The value of this ASI must match the name of the
or attribute that corresponds to the Protocol Config
cw_mo_http=SOAPHTTPCfgMO MO. The first ASI designates the SOAP/JMS

protocol listener; the second designates the
SOAP/HTTP or SOAP/HTTPS protocol listener.
Both the ASI and the Protocol Config MO are

optional. For further information, see
|Config MO” on page 33|

ws_tloname=tloname This ASI specifies the name of the web services
TLO that this object belongs to. During event
processing, the connector uses this ASI to
determine whether the Request business object
delivered by the data handler is a child of the
TLO. If so, the connector creates the specified
TLO, sets the Request business object as its child,
and uses the TLOs object-level ASI to deliver it to
the subscribing collaboration.

In the sample shown in the Request attribute contains a SOAP Config
MO and header container (OrderHeader), as well as a content-related attribute
(OrderLineltems). The requirements and characteristics of the SOAP Config MO,
Protocol Config MO, SOAP header container, and header child business objects are
the same for asynchronous event processing as they are for synchronous event
processing. For further information, see these topics above in |”Synchronous evenﬂ
[processing TLOs” on page 26|

&l Business Object Designer - SERYICE_ASYNCH_TLO_Order:Local Project
File Edit Yiew Tools Window Help

[cos @ |i=r|s |8

= SER¥ICE_ASYNCH_TLO_Order:Local Project = |EI|5|
General l Aftributes I
- T

Pos Mame Type Key R:;u' Card Ma::mu App Spec Info
L H Request SERWICE_ASYMCH_Order | [ - |1 wz_botype=request
11 111 Orderly String v I~ 255
12 42 CrderDate Dste |l
13 |13 Customerld String Cl 255
1.4

14 A CrderLinetems = ] (Rl - - |n type_name=Order_Linetem

_Linstem
15 115 H OrderHeader S:RVCI!CE_ASYNCH_Order r Im soap_location=S04PHeadsr
Cader

16 SERWICE_ASYNCH_Order

16 SOAPCTGMO = = 1

2] o “cighto |

1.7 SERWICE_ASYNCH_SOAP)

17 H SOAPMSCTghis " MS_Order CfaMO r | ]
18 |1g ObjectEvertid String
2 |2 |ObjectEventid String
I - Il 255

Figure 14. Request attributes for asynchronous event processing

Event processing non-TLOs

If the object-level ASI ws_eventtlo=true is not present in a business object, the
connector concludes that the object is not a TLO. During event processing, the
connector can process non-TLOs—generic business objects and application specific
business objects. With non-TLOs, the same business object represents the Request
and Response business object.

Chapter 3. Business object requirements 43



Non-TLOs do not have SOAP Config MOs. When you expose a collaboration as a
web service, the WSDL Configuration Wizard configures the WSCollaborations
property of the connector. The connector uses the WSCollaborations property to
determine the BodyName and BodyNS of the request message. Note that for
non-TLOs, the WSCollaborations property is used for business object resolution.

The advantage to using non-TLOs is that you need not develop new,
TLO-structured business objects for use with your web services solution. TLOs,
however, allow a more precise and economical exposure of data—customer,
company, or otherwise. TLO business objects also lend themselves to more
customization than do non-TLOs.

For further information on requirements when using non-TLOs as input to the
WSDL Configuration Wizard, see|“Identifying or developing Business Objects” onl

Synchronous request processing TLOs

For request processing the connector allows two kinds of TLOs—synchronous and
asynchronous. This section discusses synchronous request processing TLOs.

shows the TLO business object hierarchy for synchronous request
processing. Request and Response objects are required, Fault objects are optional.
Unlike event processing, a Protocol Config MO is required for the Request objects,
and optional for the Response and Fault objects. For information on the header
container and header child business objects, see [“Header container business|
fobjects” on page 39.]

44 Adapter for Web Services User Guide



[

Web Services TLO ]

_[ Request BO required ]

_[ Header container optional J

Header BO ]

Header BO ]

—[ SOAP Config MO ]

—[ IMS Protocol Config MO ] [ HTTP Protocol Config Mo]

required ]

—{ Header container optional }

Header BO ]

Header BO ]

—[ SOAP Config MO ]

—[ IMS Protocol Config MO optional ] [HTTP Protocol Config MO oprianal]

_[ Fault BO optional ]

—[ HeaderFault container optional ]

Header BO ]

Header BO ]

—[ SOAP Config MO J

—[ JMS Protocol Config MO optional ] [HTTP Protocol Config MO optional]

—[ MimeType optional ]

_[ Charset optional ]

—[ BOPrefix optional ]

Figure 15. Business object hierarchy for synchronous request processing

Object-level ASI for synchronous request processing TLOs
Object-level ASI provides important information about the nature of a TLO and the
objects it contains. shows CLIENT_SYNCH_TLO_OrderStatus, a sample

TLO for synchronous request processing.

Chapter 3. Business object requirements

45



& Business Dbject Designer - CLIENT_SYNCH_TLO_OrderStatus:Local Project

File Edit Wiew Tools Window Help

[pas@xs=als+|a]=s]

= CLIENT_SYNCH_TLO_OrderStatus:Local Projeck

General ] Aftributes I

Buzinesz Object Level Application-specific infarmatior:

|ws_mode=synch;

Supported Verbs:

Matme

Application-specific information

Create

Delete

Retrieve

Uplate

| & w| ] =

Figure 16. Top-level business object for synchronous request processing

describes the object-level ASI for a synchronous request processing TLO.
Unlike the ASI for synchronous event processing TLOs, no ws_collab, ws_verb or
ws_eventtlo ASI is required at this level for request processing.

Table 15. Synchronous request processing TLO object ASI

Object-level ASI

Description

ws_mode=synch

During request processing, the connector uses this
ASI property to determine whether to invoke the
web service synchronously (synch) or
asynchronously (asynch). If synch is indicated, then
the connector expects a response, and the TLO must
include request and response business objects and,
optionally, one or more fault objects.

The default is asynch.

Attribute-level ASI for synchronous request processing TLOs

shows the attributes of the CLIENT_SYNCH_TLO_OrderStatus TLO as
well as attribute-level ASI.

&l Business Dbject Designer - CLIENT_SYNCH_TLO_OrderStatus:Local Project

File Edit Wiew Tools Window Help

Jpes @x|smms ¢ |&]|a 5]

= CLIENT_SYNCH_TLO_OrderStatus:Local Project

General ] Attributes I

Pos Mame Type Key Card mal_x;ﬁ;— Default App Spec Info
1 |7 |ObjectEvertld String
2 2 tditneType String I 255 wimlfsoap
3 |3 |BOPrefix String Il 255
4 Handler String I 255 soapitp
g CLIENT_SYNCH_Order
(3 H Fault Status_Fault I 1 ws_hotype=tautt
5} CLIENT_SYNCH_Order _
4 H Request Status_Request = 1 wys_hotypes=request
T CLIEMT_SYNCH_Oroer _
5 H Responze Stetus_Response I 1 wez_botypesresponse

Figure 17. TLO attributes for synchronous request processing

46 Adapter for Web Services User Guide




describes the attributes and ASI shown in [Figure 17}

Table 16. Request processing TLO attributes

TLO attribute

Attribute-level ASI

Description

MimeType

None

This attribute specifies the mime
type of the data handler that the
connector invokes for transforming
a Request business object into a
request message. This value may be
used for transforming synchronous
response/fault messages into
business objects, depending on the
Message Transformation Rules
configuration.

BOPrefix

None

This attribute of type String is
passed to the data handler.

Handler

None

This attribute specifies the protocol
handler to use to process the web
service request and is for request
processing only. It takes one of the
following values:

* soap/jms The connector uses the
SOAP/JMS protocol handler to
process the request

* soap/http The connector uses the
SOAP/HTTP, SOAP/HTTPS
protocol handler to process this
web service request.

The default is soap/http

Charset

None

This optional parameter of type
String specifies the charset to be set
on the data handler when
transforming the Request business
object to a message. NOTE: the
charset value specified in this
attribute will not be propagated in
the Content-Type protocol header of
the request message.

Request

ws_botype=request

This attribute corresponds to a web
service request business object. The
connector uses this attribute ASI to
determine whether this TLO
attribute is of type SOAP Request
BO. This ASI, not the attribute
name, determines the attribute type.
If there is more than one request
attribute, the connector uses the ASI
of the first populated attribute.

Response

ws_botype=response

This attribute corresponds to the
response returned to a collaboration
and is required for synchronous
request processing. The connector
uses this attribute ASI to determine
whether this TLO attribute is of type
SOAP Response BO. This ASI, not
the attribute name, determines the
attribute type.

Chapter 3. Business object requirements 47



Table 16. Request processing TLO attributes (continued)

TLO attribute | Attribute-level ASI

Description

Fault ws_botype=fault

or

ws_botype=defaultfault

This attribute, optional for
synchronous request processing,
corresponds to a fault message
returned by a web service when it
cannot successfully populate a
response.

The connector uses this ASI to
determine if the attribute of TLO is
of type SOAP Fault BO. This ASI,
not the attribute name, determines
the attribute type. A defaultfault
business object is returned if the
fault message is a detail element.
defaultfault is used in default
business object resolution. For
further information, seelChapter 5,|
['SOAP data handler,” on page 111/

Request business object for synchronous request processing
A Request business object is a child of a TLO and is required for synchronous
request processing. A Request business object has object-level ASI.

For example, if you open CLIENT_SYNCH_OrderStatus_Request and click the
General tab, the object-level ASI is displayed as shown in

Bl Business Dbject Designer - [CLIENT_SYNCH_OrderStatus_Request:Local Project]

& Fle Edit Wiew Tools Window Help

jpez@x|i=als < &z
General].ﬂ.rtrlbl,ntesl

Business Object Level Application-specific infarmation:

Icw_mn_snap:SDAF‘Eng 0: cw_ma_jms=504PIMS Clak0;: cve_ma_http=S04PHT TPCIaMO: SOAPACction=http:/ www mycompang. comdsamples/orderstatus:

Supported Yerbs:

hlame

Applicstion-specific information

Create

Dielete

Retrigve

Upilate

] B W] R =

Figure 18. Request object ASI for synchronous request processing

describes the object-level ASI for a Request business object for

synchronous request processing.

Table 17. Synchronous request processing: object-level ASI for Request business objects

Object-level ASI

Description

cw_mo_soap=SOAPCfgMO

The value of this ASI must match the name of the
attribute that corresponds to the SOAP Config

MO. This is the SOAP Config MO that defines the
data handler transformation for the Request
business object. For further information, see

[“SOAP Confie MO” on page 32

48 Adapter for Web Services User Guide




Table 17. Synchronous request processing: object-level ASI for Request business

objects (continued)

Object-level ASI

Description

cw_mo_jms=S0APJMSCfgMO

The value of this ASI must match the name of the
attribute that corresponds to the Protocol Config
MO. This is the Protocol Config MO that specifies
the destination web service for the JMS protocol
handler. For further information, see |"]MS|

Protocol Config MO of request business object for]

request processing” on page 50.f

cw_mo_http=SOAPHTTPCfgMO

The value of this optional ASI must match the
name of the attribute that corresponds to the
Protocol Config MO. This is a separate Protocol
Config MO that specifies the destination for the
SOAP/HTTP-HTTPS protocol handler. This ASI is
used by the SOAP/HTTP and SOAP/HTTPS
Protocol Handler. Note that the TLO request
attribute must have either a JMS or an HTTP
Protocol Config MO for request processing,
depending on the type of web service protocol
you are using. For further information, see |”HTTP|

Protocol Config MO for request processing” on|

page 51.|

SOAPAction=SOAPActionURI

The connector uses this ASI to determine whether
to set a SOAPAction header on the request
message. Specify this ASI only if the target web
service requires a SOAPAction header. Note that
this ASI is used for request processing but not for
event notification.

Response business object for synchronous request processing
A Response business object is a child of a TLO and is required for synchronous

request processing. The object-level ASI for a Response business object for
synchronous request processing is described in [Table 18

Table 18. Synchronous request processing: object-level ASI for response business objects

Object-level ASI

Description

cw_mo_soap=SOAPCfgMO

The value of this ASI must match the name of the
attribute that corresponds to the SOAP Protocol
Config MO. This is the SOAP Config MO that
defines the data handler transformation for the
Response business object. For further information,
see [‘SOAP Config MO” on page 32|

cw_mo_jms=S0APJMSCfg MO
or
cw_mo_http=SOAPHTTPCfgMO

The value of this ASI must match the name of the
attribute that corresponds to the Protocol Config
MO. This is the Protocol Config MO, optional for
a Response business object, that specifies the
headers in the response SOAP message for the
JMS or HTTP(s) protocol handler. For further
information, see[“Protocol Config MO” on page|

You can specify a default verb for the Response business object. You do so by

specifying:
DefaultVerb=true;

Chapter 3. Business object requirements 49



in the ASI field for the verb in the Supported Verbs list at the top-level of the
Response business object. If DefaultVerb ASI is not specified and the data handler
processes a business object with no verb set, the Response business object is
returned without a verb.

Fault business object for synchronous request processing
A Fault business object is a child of a TLO and is optional for synchronous request

processing. The object-level ASI for a Fault business object for synchronous request
processing is described in

Table 19. Synchronous request processing: object-level ASI for Fault business objects

Object-level ASI Description

cw_mo_soap=SOAPCfgMO The value of this ASI must match the name of the
attribute that corresponds to the SOAP Protocol
Config MO. This is the SOAP Config MO that
defines the data handler transformation for the
Fault business object. For further information, see
[“SOAP Confie MO” on page 32

cw_mo_jms=SO0APJMSCfg MO The value of this ASI must match the name of the
or attribute that corresponds to the Protocol Config
cw_mo_http=SOAPHTTPCfgMO MO. This is the Protocol Config MO, optional for

a Fault business object, that specifies the headers
in the response SOAP message for the JMS
protocol handler. For further information, see
[“Protocol Config MO” on page 33|

SOAP Config MO

The SOAP Config MO (SOAPCfgMO) has the same attributes as those for the
event processing SOAP Config MO. For further information, seel”SOAP Conﬁa
MO” on page 32.hs well as[*SOAP configuration meta-object: child of every SOAP|
business object” on page 113

JMS Protocol Config MO of request business object for request
processing

The JMS Protocol Config MO is required in a Request business object when you
are using JMS web services, and optional for Response and Fault objects.
describes the request processing JMS Protocol Config MO—Destination
is the most important and only required attribute. The JMS protocol handler uses
this attribute to locate the requested web service. In addition, all the attributes

described for the J]MS Config MO in [“Protocol Confie MO” on page 33 are
optional.

50 Adapter for Web Services User Guide



Table 20. JMS Protocol Config MO Attributes for Request Processing

Attribute

Required

Type

Description

Destination

Yes

String

The destination queue name of

the target web service. The JMS
Protocol Handler uses this
attribute to determine the
destination of the web service.
If the connector-specific JNDI
property
LookupQueuesUsing]NDI is set
to true, the JMS Protocol
Handler looks up this queue
using JNDI. Make sure that this
attribute gives the JNDI name
of the destination queue.

HTTP Protocol Config MO for request processing

During request processing, the SOAP/HTTP-HTTPS protocol handlers use the
HTTP Protocol Config MO to determine the destination of the target web service.
This Protocol Config MO is required for a Request business object. The
SOAP/HTTP-HTTPS protocol handlers support HTTP 1.0 POST request only. As
shown in the sole required attribute (Destination) is the full URL of the
target web service. The optional authorization attributes are described in the

sections below.

Table 21. HTTP Protocol Config MO Attributes for Request Processing

Attribute

Required

Type

Description

Destination

Yes

String

The destination URL of the target web service.
The SOAP/HTTP-HTTPS protocol handler uses
this attribute to determine the destination of the
web service.

Content-Type

Required for
the Request

otherwise
optional.

business object,

String

The value of this attribute defines the
Content-Type header of the outgoing message
(which includes message ContentType and
optionally charset for the outgoing message).
The syntax is the same as that for the
Content-Type header in the HTTP Protocol, for
example: text/html; charset=1S0-8859-4. If
there is no Content-Type attribute defined, the
connector uses text/xml as the ContentType of
the message.

Authorization_UserID

No

String

This attribute corresponds to the userID of the
HTTP basic authentication. For further
information, see[“HTTP credential propagation|
[for request processing” on page 54|

Authorization_Password

No

String

This attribute corresponds to the password of
the HTTP basic authentication. For further
information, see ["HTTP credential propagation|
[for request processing” on page 54|

One or more HTTP headers | No

String

This attribute allows the handler to pass or
retrieve the value for the specified HTTP
header.

Chapter 3. Business object requirements 51



Table 21. HTTP Protocol Config MO Attributes for Request Processing (continued)

Attribute Required Type Description

UserDefinedProperties No Business object This attribute holds the user-defined protocol
properties business object. For further
information, see[“User-defined properties for|
[request processing.”|

MessageTransformationMap | No Single cardinality | This is the attribute that points to business
business object object holding 0 or more message
transformation rules. The rules hold
information regarding the mime type and
charset to apply to the incoming message that
is specified in the rule. For further information,
see ["Message transformation maps” on page 53)

shows some of the HTTP Protocol Config MO attributes in Business
Object Designer.

General Adiriuies l

Pos l Mlaime Type [n:,. ]Fntz'gn R:‘:'" [ card |’“’:”‘“ | Detek l App Spet Infa
1 11 Crdens String 3 r I3 255
12 |z B Orrdarbe ader CLENT_SYMCH_OrdarStelus_Request_Heatier iJ r - 1
BHERE HTTPCigWO CLENT_SYMCH_OrderStalus_HTTRCIgD ® r (B 1 ‘
N 3 Cale -Strng [ r r 255
|32 |32 Carter.Typs Sting I r I 255
EENEE B MessageTranstormationiian HTTP_Croho_MsgTrrsiMes i r I 1
E 334 B Tranzfoemationfue HTTR_Ctghia_WsgTrrstRuie [ I I N ‘
E_-‘3; 331, Cantend-Type :Strng [ I =3 255 »
3—1- 331. MimeType String ]| r I |255
3-3-_ 331. Cherset String H r I 255
_3;?-_ 331, ChyjactEwaniid |String
_EE 332 ObjeciEventid |String
34 l3g B UserDeflinedProgetias HTTP_Ctghia_CustoeProgetias I r I 1
E 341 CuslamPropary1 Shing 2 || B 255
341382 CuslomFropery? String " r | 255 'wg_pmpjyceﬂnegar
|34 [223 CustomFroperyH |gtring m m| r 255 |vs_prop type=Baciean,
En-t ObjectEvertid :Sir'ng | |
35 las CljectEvertd String
¥ |a  |obeciEvensd |sting
5 |= ol oo |255

Figure 19. HTTP Protocol Config MO attributes for request processing

The HTTP Protocol Config MO attributes are described in:

+ |[“User-defined properties for request processing”|

* [“Message transformation maps” on page 53|

+ |“HTTP credential propagation for request processing” on page 54|

User-defined properties for request processing: You can optionally specify
custom properties in the HTTP Protocol Config MO. You do so by including the
UserDefinedProperties attribute. This attribute corresponds to a business object that
has one or more child attributes with property values. Every attribute in this
business object must define a single property to be read (or, for synchronous
responses, written) in the variable portion of the message header as follows:

* The type of the attribute should always be String regardless of the protocol
property type. The application-specific information of the attribute can contain
two name-value pairs defining the name and format of the protocol message
property to which the attribute maps.

52 Adapter for Web Services User Guide



summarizes the application-specific information for these attributes.

Table 22. Application-specific information for user-defined protocol property attributes:

name=value pair content

Name

Value

Description

WSs_prop_name
(case-insensitive; if not
specified the attribute name
will be used as the property
name

Any valid protocol property
name

This is the name of the
protocol property. Some
vendors reserve certain
properties to provide
extended functionality. In
general, you should not
define custom properties that
begin with JMS (for JMS
protocol) unless you are
seeking access to these
vendor-specific features.

ws_prop_type (case
insensitive, optional for JMS
- if not specified String is
assumed; irrelevant for
HTTP(S) since only String
types make sense)

String, Integer, Boolean,
Float, Double, Long, Short

The type of the protocol
property. For JMS protocol,
the JMS API provides a
number of methods for
setting property values in the
JMS Message: setIntProperty,
setLongProperty,
setStringProperty, etc. The
type of the JMS property
specified here dictates which
of these methods will be
used for setting the property
value in the message.

If the given custom property ASI (either the ws_prop_name or ws_prop_type) is
invalid and there is no logical way to process this header (such as ignoring the
property type for HTTP processing), the connector logs a warning and ignores this
property. If the value of the custom property can neither be set nor retrieved after
the necessary check against ws_prop_name or ws_prop_type has been performed,
the connector logs the error and fails the event.

If the UserDefinedProperties attribute is specified and its business object is
instantiated, the connector processes each attribute of this child business object and
sets the message properties values accordingly.

For synchronous request processing, upon receipt of a response message from the
web service/url, if the UserDefinedProperties attribute is specified, the connector
creates an instance of a UserDefinedProperties business object and attempts to
extract property values from the message and then stores them in the new business
object. If at least one property value was successfully retrieved, the connector will
set modified UserDefinedProperties business object in the Protocol Config MO.

Message transformation maps: The Message Transformation Map (MTM) feature
is supported for request processing HTTP(S) protocol handlers only.
MessageTransformationMap is an optional attribute in the Protocol Config MO that
points to a business object. The business object contains rules for transforming
messages with mime types and charsets that are specified in the rules. If it finds
the (case-sensitive) attribute name MessageTransformationMap and this attribute is
of the business object type (see , the connector uses the rules in that
object to transform a message.

Chapter 3. Business object requirements 53



As shown i the MTM attribute must have one cardinality N child
business object attribute that is named TransformationRule. When trying to find
TransformationRule for a message, the SOAP/HTTP(s) Protocol Handler first
attempts to match the message exactly by the ContentType specified in all
TransFormationRules. If unsuccessful, the connector attempts to find the rule that
applies to multiple types of messages. For further information on protocol handler
processing, see ["SOAP/HTTP-HTTPS protocol handler processing” on page 78]

Each instance of a TransformationRule business object must have attributes

specified as shown in [Table 23

Table 23. TransformationRule attributes for Message TransformationMaps in HTTP Protocol Config MO

Attribute name

Required

Default value Description

Type

TransformationRule

No Business object,

This is the attribute that holds 1
rule for message transformation.
There can be 0 or more instances of
this attribute under the
MessageTranformationMap
attribute.

None
cardinality N

+ContentType

Yes String

*[* The value of this property specifies
the HTTP ContentType of the
message for which this
transformation rule applies. The
default value */* for this attribute
enables the connector to apply this
rule to any ContentType. For
further information on protocol
handler processing, see
“SOAP/HTTP-HTTPS protocol
handler processing” on pagel
@Note that if Protocol Handler
finds more than one rule that has
the same ContentType as the other
rule, Protocol Handler will log the
warning and ignore all duplicate
rules, but will use unique rules

+MimeType

No String

None The mime type to use when calling
a data handler while processing
messages of the ContentType

specified in this business object.

+Charset

No String

The charset to use when
transforming a request of the
ContentType specified in this
business object.

None

HTTP credential propagation for request processing: For the purpose of
credential propagation, the connector supports the Authorization_UserID and
Authorization_Password attributes in the HTTP Protocol Config MO. The support
is limited to the propagation of these credentials as part of the HTTP Basic
authentication scheme.

If credential propagation is desired during request processing, you must manually
add the Authorization_UserID and Authorization_Password attributes to the
Protocol Config MO generated by the WSDL ODA. You do this in Business Object

54 Adapter for Web Services User Guide




Designer after generating the business object and meta-object definitions. (For
further information on the WSDL ODA, see [Chapter 6, “Enabling collaborations for]
frequest processing,” on page 145.)

The collaboration sets the values of the Authorization_UserID and
Authorization_Password attributes in the Protocol Config MO. If these attributes
are neither null nor empty, the connector creates an authorization header on the
request its sends to the to the target web service. The SOAP HTTP/HTTPS
protocol handler follows HTTP Authentication: Basic and Digest Access Authentication
(RFC 2617) when creating the authorization header.

Note: The digest authentication scheme is not be supported, nor is the optional
challenge-response mechanism for HTTP authentication defined in Rfc2617.
If the HTTP(s) protocol handler is invoking a server that requires a
credential, the connector does not wait for the challenge response from the
server. Instead, it sends the credentials continuously.

Asynchronous request processing TLOs

shows the business object hierarchy for asynchronous request processing.
A request object only is required, and this object contains a SOAP Config MO for
the SOAP data handler as well as two Protocol Config MOs, one each for the
SOAP/JMS and SOAP/HTTP/HTTPS protocol handlers. These are described in
the sections below.

[ Web Services TLO ]

_[ Request BO required ]

_[ SOAP Config MO }

_[ JMS Protocol Config MOJ

—[ HTTP Protocol Config MO]

_[ Header container optional J

—[ Header BO ]
—[ Header BO ]

Figure 20. Business object hierarchy for asynchronous request processing

The TLO contains object-level ASI as well as attributes with attribute-level ASI.
Both kinds of ASI are discussed below. For information on the header container
and header child business objects, see [“Header container business objects” on page|

Object-level ASI for asynchronous event processing TLOs
shows CLIENT_ASYNCH_Order_TLO, a sample TLO for asynchronous
request processing.

Chapter 3. Business object requirements 55



E! Business Object Designer - CLIENT_ASYNCH_TLO_Order:WebServicesSample

File Edit Wiew Tools Window Help

IEEEIEE ) EXE

General I Aftributes I

Buziness Object Level Application-specific information:

= CLIENT_ASYNCH_TLO_Order:WebServicesSample

|ws_mode=asynch;

Supported Yerbs:

Mame )

Application-zpecific information

Create

Delete

Retrieve

=] wf ] =

Update

Figure 21. Top-level business object for asynchronous request processing

below describes the object-level ASI for an asynchronous request

processing TLO.

Table 24. Asynchronous request processing TLO object ASI

Object-level ASI

Description

ws_mode=asynch

During request processing, the connector uses this
ASI property to determine whether to invoke the
collaboration synchronously (synch) or
asynchronously (asynch). For asynchronous request
processing, this ASI must be set to asynch.

The default is asynch.

Attribute-level ASI for asynchronous request processing TLOs

shows the attributes of the CLIENT_ASYNCH_TLO_Order, a sample
request processing TLO.

&l Business Dbject Designer - CLIENT_ASYNCH_TLO_Order:WebServicesSample

File Edit Wew Tools Window Help

IEEEICESE L et Ea

General l Attributes I

= CLIENT_ASYNCH_TLO_Order:WebServicesSample

Recjui [ Maximum
P [l T K Card Detault App S Inef
0z ame vpe S ) ar Length efaul pp Spec Info
T 1 Handler String Ird Ird 255 soaphttp
2 |2 imeType String I I 255 xmlizoap
3 |3 |BoPrefic String |l 255
4
4 H Request ::dL:NT—ASYNCH—O r |1 wes_hotype=regquest
5 |5 |OhjectEvertld String

Figure 22. TLO attributes for asynchronous request processing

summarizes the attribute-level ASI for the request attribute of an
asynchronous request processing TLO.

56 Adapter for Web Services User Guide




Table 25. Asynchronous request processing TLO attributes

TLO attribute | Attribute-level ASI

Description

MimeType None

This attribute specifies the mime
type of the data handler that the
connector invokes. Note that this
attribute is used only for Request
Processing. (For event processing,
protocol listeners use the
SOAPDHMimeType
connector-specific configuration
property.) The default is xm1/soap.

BOPrefix None

This attribute of type String is
reserved for future development and
not required.

Handler None

This attribute specifies the protocol
handler to use to process the web
service request and is for request
processing only. It takes one of the
following values:

* soap/jms The connector uses the
SOAP/JMS protocol handler to
process the request

* soap/http The connector uses the
SOAP/HTTP-HTTPS protocol
handler to process this web
service request.

The default is soap/http

Request ws_botype=request

This attribute corresponds to a web
service request business object. The
connector uses this attribute ASI to
determine whether this TLO
attribute is of type SOAP Request
BO. This ASI, not the attribute
name, determines the attribute type.
If there is more than one request
attribute, the connector uses the ASI
of the first one.

Request business object for asynchronous request processing
A Request business object is a child of a TLO and is required for asynchronous

request processing. The object-level ASI for a Request business object for
able 26

asynchronous request processing is described i

Table 26. Asynchronous request processing: object-level ASI for Request business objects

Object-level ASI

Description

cw_mo_soap=SOAPCfgMO

The value of this ASI must match the name of the
attribute that corresponds to the SOAP Config
MO. This is the SOAP Config MO that defines the
data handler transformation for the Request
business object. For further information, see
[“SOAP Config MO” on page 32

Chapter 3. Business object requirements 57



Table 26. Asynchronous request processing: object-level ASI for Request business
objects (continued)

Object-level ASI Description

cw_mo_jms=SO0APJIMSCfgMO The value of this ASI must match the name of the
attribute that corresponds to the Protocol Config
MO. This is the Protocol Config MO that specifies
the destination web service for the JMS protocol
handler. For further information, see |"]MS|
Protocol Config MO of request business object for]
request processing” on page 50.f

cw_mo_http=SOAPHTTPCfgMO The value of this ASI must match the name of the
attribute that corresponds to the Protocol Config
MO. This is a separate Protocol Config MO that
specifies the destination for the
SOAP/HTTP-HTTPS protocol handler. This ASI is
used by the SOAP/HTTP-HTTPS Protocol
Handler. Note that the TLO request attribute must
have both JMS and HTTP Protocol Config MOs
for request processing. For further information,
see ["HTTP Protocol Config MO for request|
[processing” on page 51

SOAPAction=SOAPActionURI The connector uses this ASI to determine whether
to set a SOAPAction header on the request
message. Specify this ASI only if the target web
service requires a SOAPAction header. Note that
this ASI is used for request processing but not for
event notification.

In the sample shown in the Request attribute contains a SOAP Config
MO and header container (OrderHeader), as well as a content-related attribute
(OrderLineltems). The requirements and characteristics of the SOAP Config MO,
Protocol Config MO, SOAP header container, and header child business objects are
the same for asynchronous request processing as they are for synchronous request
processing. For further information, see these topics above in [“Synchronous request]
fprocessing TLOs” on page 44/

& Business Object Designer - SERYICE_ASYNCH_TLO_Order:Local Project
File Edt Yiew Tools Window Help

[Pos EX|i=|se &

=i SERYICE_ASYNCH_TLO_Drder:Local Projeck =101 x|

General } Aftributes I
|

Pos Matme: Type Hey erc‘;ul Carrd Ma:;lmu App Spec Info
1 | B Request SERVICE_ASYMCH_Order | [ | wa_botype=request
11 144 Crderld String ¥ | F 255
12 |12 OrderDate Date ] |
13 113 Customerld String C|l 255
= 1.4 | Orderlinetems Gl ] I r r |w type_name=COrder_Linetem

_Linettem

15 115 M CrderHeader SE::DI’(;E_ASYNCH_Order - - |1 soap_location=S0APHeadder
16 SERVICE_ASYNCH_Order

16 H SOAPCIGMO S |
1.7 SERWVICE_ASYNCH_SOAP

1.7 HH SOAPJMSCTGhO "IME Order Cloo r | B
18 |18 OhjectEventld String
2 |z |ObjectEventid String
3 |3 r Il 255

Figure 23. Request attributes for asynchronous event processing

58 Adapter for Web Services User Guide



Config MOs for asynchronous request processing

The SOAP Config MO (SOAPCfgMO) has the same attributes as those for the
event processing SOAP Config MO. For further information, see["SOAP Config]
IMO” on page 32)as well as ['SOAP configuration meta-object: child of every SOAP)|
business object” on page 113

The JMS Protocol Config MO is required in a Request business object when you
are using JMS web services. For further information, see|“JMS Protocol Config Md
|of request business object for request processing” on page 50|

During request processing, the SOAP/HTTP-HTTPS protocol handlers use the
HTTP Protocol Config MO to determine the destination of the target web service.
This Protocol Config MO is required for a Request business object. For further
information, see [“HTTP Protocol Config MO for request processing” on page 51

Developing business objects

You use Business Object Designer to create business objects and Connector
Configurator to configure the connector to support them. For more information on
the Business Object Designer tool, see the Business Object Development Guide and
(Chapter 7, “Exposing collaborations as web services,” on page 147 For further
information on Connector Configurator, see [Appendix B, “Connector]|
(Configurator,” on page 197

Chapter 3. Business object requirements 59



60 Adapter for Web Services User Guide



Chapter 4. Web services connector

* |“Connector processing”|

+ ["SOAP/HTTP(S) web services” on page 64|
* [“SOAP/JMS web services” on page 64|

* |“Event processing” on page 65

+ [“Request processing” on page 76]
* |“SSL” on page 86
* |“Connector and JMS” on paw

« |“Configuring the connector” on page 88|

+ [“Connector at startup” on page 10§

* |"Logging” on page 109
* [“Tracing” on page 109|

This chapter describes the web services connector and how to configure it.

All WebSphere business integration connectors operate with an integration broker.
The web services connector operates with the IBM WebSphere InterChange Server
integration broker, which is described in the Technical Introduction to IBM WebSphere
InterChange Server.

A connector is a runtime component of an adapter. Connectors consist of an
application-specific component and the connector framework. The
application-specific component contains code tailored to a particular application.
The connector framework, whose code is common to all connectors, acts as an
intermediary between the integration broker and the application-specific
component. The connector framework provides the following services between the
integration broker and the application-specific component:

* Receives and sends business objects
* Manages the exchange of startup and administrative messages

This document contains information about the application-specific component and
connector framework. It refers to both of these components as the connector.

For more information about the relationship of the integration broker to the
connector, see the System Administration Guide.

Connector processing

The connector includes a protocol listener framework for event processing and a
protocol handler framework for request processing. This bi-directional functionality
enables the connector framework to:

* Expose collaborations as web services and then process calls from web service
clients

* Process a request by a collaboration that invokes a web service

For further information on the SOAP data handler, see [Chapter 5, “SOAP data|
lhandler,” on page 111/

Note: The connector supports SOAP/HTTP and SOAP/JMS bindings only.

© Copyright IBM Corp. 2003, 2004 61



Event processing overview

Connector event processing (or event notification) is used to handle requests from
web service clients. This event processing capability encompasses a protocol
listener framework, including the following components, which are discussed in
greater detail later in this chapter:

e SOAP/HTTP protocol listener
¢ SOAP/HTTPS protocol listener
* SOAP/JMS protocol listener

The connector uses the listeners to expose collaborations as web services, and to
listen on the transport for calls from web services clients to exposed collaborations.

The SOAP/HTTP and SOAP/HTTPS protocol listeners expose a collaboration as a
SOAP/HTTP web service. The SOAP/JMS protocol listener exposes a collaboration
as a SOAP/JMS web service.

When requests from web service clients arrive, the listener converts the SOAP
request message into a business object and invokes the collaboration. If it is a
synchronous request, the connector receives a Response business object of the same
type as the Request business object. The listener converts the Response business
object into a SOAP response message. The listener then transports the SOAP
response message to the web service client. Note that event sequencing is not a
requirement for this connector; the connector may deliver the events in any order.

The web services connector utilizes the SOAP data handler to convert incoming
SOAP request messages into business objects. To aid the data handler in
determining which business object to resolve for the incoming SOAP request
message, the connector provides meta information regarding its supported
business objects to the data handler. From its supported business objects, the
connector first makes a list of all business objects that are potential candidates for
the conversion. This list may be comprised of both TLOs and non-TLOs. Supported
TLO business objects are those that have object-level ASI ws_eventtlo=true.

If TLOs are used, the protocol listener reads the object-level ASI of the TLO as
follows:

* ws_collab= This determines which collaboration to invoke

* ws_mode= This determines how to invoke the collaboration, synchronously
(synch) or asynchronously (asynch)

If non-TLOs, are used, then the protocol listener reads the collaboration and
processing mode from the WSCollaborations configuration property values
generated by the WSDL Configuration Wizard.

The connector compares and attempts to match the BodyName and
BodyNamespace in the SOAP request to the names of potential business objects. In
the case of TLOs, this BodyName/BodyNamespace pair is found using the SOAP
Config MO properties of the SOAP Request business object. For non-TLOs, the
BodyName/BodyNamespace pair is found using the WSCollaborations connector
configuration property. (Note that the connector considers only those non-TLOs
that have an entry in the WSCollaborations property.) The data handler uses the
BodyName/BodyNamespace pair to determine the business object to use for the
SOAP request to business object conversion.

62 Adapter for Web Services User Guide



The connector inspects the Request business object returned by the SOAP data
handler. If this business object has ws_tToname ASI, the connector sets the Request
business object in this TLO. This TLO is used to invoke the collaboration.
However, if this ASI is not set, the connector invokes the collaboration using the
Request business object returned by the SOAP data handler.

For synchronous collaboration execution, the connector utilizes the SOAP data
handler to create a SOAP response or fault message to send back to the client. In
this case, the connector simply passes either a SOAP business object (child of TLO),
or a non-TLO to the data handler. The SOAP data handler returns a SOAP message
based on the business object that it is passed to it.

Request processing overview

On behalf of a collaboration, the connector can invoke web services over
SOAP/HTTP(S) and SOAP/JMS. This request processing functionality is supported
by a WSDL Object Discovery Agent (ODA) and by a protocol handler framework.
The WSDL ODA is a design-time tool you use to generate SOAP business objects
that include information about the target web services. For further information, see
(Chapter 6, “Enabling collaborations for request processing,” on page 145] The
protocol handler framework is a configurable run-time module that consists of the
following components, which are discussed in detail later in this chapter:

¢ SOAP/HTTP-HTTPS protocol handler
* SOAP/JMS protocol handler

Upon receipt of a collaboration Request business object, which is always (via the
WSDL ODA) set in a TLO, the protocol handler framework loads the appropriate
protocol handler. The protocol handlers manage transport-level details required for
invoking the web service and (optionally) securing a response, performing three
main tasks: converting a collaboration Request business object into a SOAP request
message, invoking the endpoint web service with the request message, and, if in
Request/Response (synchronous) mode, converting the SOAP response message
into a business object and returning that object to the collaboration. The connector
uses the SOAP/HTTP-HTTPS protocol handler to invoke SOAP/HTTP(S) web
services, and the SOAP/JMS protocol handler to invoke SOAP/JMS web services.

The web services connector is always called from a collaboration using TLOs. The
connector determines the SOAP Request business object from the TLO, and
invokes the SOAP data handler with this business object. The data handler returns
a request message which is sent on by the connector to the web service.

For synchronous web service execution, the connector utilizes the SOAP data
handler to convert SOAP response and fault messages into SOAP Response and
Fault business objects. To aid the data handler in determining which business
object to resolve for these SOAP response/faults to business object conversions, the
connector provides the data handler with specific meta information. Specifically,
the connector makes a list of all Response and Fault business objects that are
children of the invoking TLO. There should be only one response business object
and, optionally, many Fault business objects. There may also be one and only one
defaultfault business object. The connector attempts to match, and then map, the
SOAP BodyName and BodyNamespace to a business object name that appears in
the list of all Response business objects. In the case of SOAP Response business
objects, this pair is found using the SOAP Config MO properties of the SOAP
Response business object. In the case of SOAP Fault business objects, this pair is
found using the elem_name and elem_ns attribute-level ASI properties for the first
child of the detail element. For the defaultfault business object, the connector

Chapter 4. Web services connector 63



simply notifies the data handler of the name of the defaultfault business object.
The defaultfault business object should be resolved by the data handler as a last
resort if no other fault business objects are resolved for this transformation.

SOAP/HTTP(S) web services

Web services support the HTTP transport protocol. HTTP embodies a client-server
model in which an HTTP client opens a connection and sends a request message to
an HTTP server. The client request message is to invoke a web service. The HTTP
server dispatches the message containing the invocation and closes the connection.

The connector’s SOAP/HTTP and SOAP/HTTPS protocol listeners make use of the
HTTP client-server and the Request/Response models when handling client
requests to a collaboration exposed as a web service. However, the SOAP/HTTP
listener is not intended to function as an HTTP server— proxy, intermediary, or
otherwise. Rather the SOAP/HTTP listener functions as an endpoint for use within
an enterprise and behind a firewall. Accordingly, a separate web server or gateway
must be deployed in the firewall to route client requests to the listener. For further
information, see [Chapter 1, “Overview of the connector,” on page 1.

The SOAP/HTTP and SOAP/HTTPS protocol listeners expose a collaboration as a
SOAP/HTTP(S) web service. The connector uses the SOAP/HTTP-HTTPS protocol
handler to invoke SOAP/HTTP(S) web services.

Synchronous SOAP/HTTP(S) web service

From the perspective of connector processing, a synchronous HTTP web service is
one that follows a Request/Response path. If the SOAP/HTTP or SOAP/HTTPS
protocol listener successfully processes an HTTP request message, the body will
contain the web service response and an HTTP status code of 200 OK. If a fault is
returned, then the body contains the fault message and a status code of 500.

Asynchronous SOAP/HTTP(S) web service

From the perspective of connector processing, an asynchronous HTTP web service
is one that follows a request-only path. If the SOAP/HTTP or SOAP/HTTPS
protocol listener successfully receives and processes a request-only web service
operation, an HTTP status code of 202 Accepted is generated. You can also
configure the connector to generate an HTTP status code of 200 0K —for further
information see the HTTPAsyncResponseCode property i If a fault
occurs, an HTTP status code of 500 is generated. There is no response, although a
fault body may be returned.

SOAP/JMS web services

JMS is a transport level API that enterprises can combine with web service
solutions for messaging, data persistence, and access to Java-based applications. A
SOAP/JMS web service is a web service that implements a J]MS queue-based
transport.

A web service solution may implement a JMS destination for a queue or a topic.
The connector’s SOAP/JMS protocol listener supports queue destinations only;
topics are not supported. JMS text messages only are supported.

During event processing, a SOAP/JMS web service client wraps a request message
with a JMS message and publishes it to the queue whose JMS destination is a
connector. The JMS destination retrieves the JMS message containing the web

64 Adapter for Web Services User Guide



service request and extracts the SOAP request message from the JMS message. It
then processes the SOAP request message.

Synchronous SOAP/JMS web service
For synchronous connector processing (Request/Response), a response message is
wrapped with a JMS message (like that of the request message). The JMS message
containing the web service response is then sent to the JMSReplyTo queue from the
incoming request. JMS headers in the response message are set to the values of the
headers in the JMS request message as follows:

* The JMSCorrelationID of the response message must be set to the value of
JMSMessagelD from the JMS request message

* The JMS DeliveryMode of the response message is set to the JMSDeliveryMode
of the request.

e The JMSPriority of the response message is set to the JMSPriority of the request.
* JMSExpiration of the request message is set to the JMSExpiration of the request

This processing is discussed in detail in [‘SOAP /JMS protocol listener processing”|

Asynchronous SOAP/JMS web service

From the perspective of connector processing, an asynchronous SOAP/JMS web
service is one that follows a request-only path. If the SOAP/JMS protocol listener
successfully receives and processes a request-only web service message, no JMS
message containing a response is returned to the client. If a ReplyToQueue is
configured and a fault occurs upon receipt of a JMS message, a fault message is
returned to the web service client. In addition, if an ErrorQueue is specified in the
SOAP/]JMS listener, the fault message is archived there.

Event processing

The first step in implementing an event processing capability is exposing a
business process -- a collaboration -- as a web service. You then publish this web
service, in a UDDI registry, for example, and configure the connector to respond to
web service clients that invoke the collaboration.

During event processing, the connector uses protocol listeners and the SOAP data
handler to convert SOAP request messages from web service clients to business
objects that can be manipulated by collaborations that have been exposed as web
services. Protocol listeners play a crucial role in event processing.

Protocol listeners

Web Service requests may come over variety of transports, including HTTP,
HTTPS, and JMS. The Web Services protocol listener monitors the arrival of such
requests on its transport channel. There are three protocol listeners and
corresponding channels:

* SOAP/HTTP protocol listener
¢ SOAP/HTTPS protocol listener
* SOAP/JMS protocol listener

Each of these consists of a thread that listens on its transport. When it receives a
SOAP request message from a client, the listener registers the event with the
protocol listener framework.

Chapter 4. Web services connector 65



The protocol listener framework manages the protocol listeners, scheduling
requests as resources are available. You configure the listeners and aspects of the
protocol listener framework when you set values to connector-specific properties.
Among the protocol listener framework properties you can configure are the
following:

*  WorkerThreadCount Total number of threads available to the protocol listener
framework, which is the number of requests that it can process in parallel.

* RequestPoolSize Maximum number of requests that can be registered with the
protocol listener framework. If it receives more than this maximum requests, it
will no longer register new requests.

These two connector-specific properties control memory allocation in a way that
prevents protocol listeners from clogging the connector with infinite web service
events. The allocation algorithm is as follows: At any time, the connector can
receive a total number of events equal to WorkerThreadCount + RequestPoolSize.
It can process WorkerThreadCount number of requests in parallel.

You can plug additional protocol listeners into the protocol listener framework. For
further information, see [“Creating multiple protocol listeners” on page 107]
and]’Connector-specific configuration properties” on page 89

SOAP/HTTP and SOAP/HTTPS protocol listener processing

The SOAP/HTTP(S) protocol listener consists of a thread that continuously listens
for HTTP(S) requests from web service clients. The listener thread binds the host
and port that are specified in the Host and Port connector-specific configuration
(listener) properties. Another configuration
property—RequestWaitTimeout—defines the interval during which the listener
waits for a request before checking whether the connector has shut down.

illustrates SOAP/HTTP protocol listener processing for a synchronous

operation.
Connector HTTP or HTTPS
Request
| SOAP/HTTP| —
protocol 200 OK
v listener >
SOAP data Response
handler 4

(single connection)

Figure 24. SOAP/HTTP protocol listener: synchronous event processing

shows SOAP/HTTP protocol listener processing for an asynchronous
operation.

66 Adapter for Web Services User Guide



v

Connector HTTP or HTTPS
Request
| SOAP/HTTP
prOtOCO| 202 Accepted ) N
A 4 listener g
SOAP data
handler

(single connection)

Figure 25. SOAP/HTTP protocol listener: asynchronous event processing

When a web services client initiates a SOAP/HTTP or SOAP/HTTPS request, it
posts a SOAP request message to the URL of the SOAP/HTTP or SOAP/HTTPS
listener. The client should use the HTTP POST method to invoke the protocol

listener URL.

When an HTTP(S) request arrives, the listener registers the request with protocol
listener framework, which schedules the event for processing as resources become
available. The listener then extracts the protocol headers and the payload from the

request.

summarizes the order of precedence of rules used by the listener to
determine the Charset, MmeType, ContentType and Content-Type header for
inbound messages.

Table 27. SOAP/HTTP(s) protocol listener processing rules for inbound message

Order of Charset MimeType ContentType Content-Type
Precedence header
1 Charset parameter value | URLsConfiguration connector | Incoming HTTP Incoming HTTP
from the incoming HTTP | property value for this message message
message Content-Type listener type/subtype value |Content-Type header
header value from the
Content-Type header
value
2 URLsConfiguration SOAPDHMimeType
property value for this connector property value
listener
3 If the type of the request | Default to ContentType

message ContentType is
text with any subtype
(for example, text/xml,
text/plain, etc.), default
to ISO-8859-1. Otherwise,
charset will not be used.

As shown in

¢ The protocol listener determines the Charset of the inbound message according
to the following rules:

1. The listener attempts to extract the Charset from the charset parameter of
HTTP message Content-Type header value.

67

Chapter 4. Web services connector



2. If no Charset value is obtained from the Content-Type header, then the
protocol listener attempts to read the URLsConfiguration property value for
this listener.

3. If a Charset value is not obtained using methods described in the previous
steps, and if type of the message ContentType is text with any subtype (for
example, text/xml, text/plain, etc.), the listener uses a default Charset value
of ISO-8859-1. Otherwise, Charset value is not used.

¢ The listener determines the MimeType for the response message according to
these rules:

1. If you have configured the TransformationRules for the URL used by the
incoming request message, and if the request ContentType matches the
ContentType of a TransformationRule, then the listener uses the
TransformationRule to extract the MimeType for conversion of the request
message into a SOAP Request business object. The listener attempts to find
the exact TransformationRule match based on the ContentType value (for
example, text/xm1) in the URLsConfiguration property for the requested
URL.

2. If that fails, the listener attempts to find a TransformationRule that applies to
more than one ContentType under the request URL (for example */%).

3. If there is no TransformationRule match for the MimeType, then the listener
uses the SOAPDHMimeType connector configuration property as the
MimeType value.

4. If all previous steps fail to determine the MimeType, the value of

ContentType will be used as the MimeType to invoke the SOAP data handler
and convert the request message into a SOAP Request business object.

* The listener determines the ContentType by extracting type/subtype from the
incoming HTTP message Content-Type header.

* The listener determines the Content-Type header from that of the incoming
HTTP message Content-Type header.

If the collaboration is invoked asynchronously, the listener delivers the request
business object to the integration broker and responds to the web services client
with the HTTP status code 202 Accepted. This concludes listener processing.

If it is a synchronous invocation, the listener invokes the collaboration
synchronously. The collaboration responds with a SOAP Response business object.

summarizes the order of precedence for rules used by the listener when
determining the Charset, MimeType, ContentType, and Content-Type header for
response messages.

Table 28. SOAP/HTTP(s) protocol listener processing rules for outbound synchronous response message

the TLO

MimeType, but only if
the request and
response ContentType
match.

ContentType

Order of Charset MimeType ContentType Content-Type

Precedence header

1 Protocol ConfigMO MimeType property in | Protocol ConfigMO | Protocol ConfigMO
Content-Type Header the TLO Content-Type header | Content-Type header

2 The Charset property value in | The request message Request message Construct

Content-Type
Header using
ContentType and
Charset

68 Adapter for Web Services User Guide




Table 28. SOAP/HTTP(s) protocol listener processing rules for outbound synchronous response message (continued)

3 The request message Charset, | SOAPDHMimeType
but only if the request and connector property
response ContentType match. |value

4 If the ContentType is text/*, |Use ContentType value

default to ISO-8859-1. as the MimeType
Otherwise, charset will not be

used.

As shown in [Table 28

* The listener determines the Charset for the response message according to these
rules:

1.

2

If Charset is specified in the Response business object Protocol Config MO,
its value is used.

. If there is no Charset value specified in the Response business object Protocol
Config MO header and if the Request and Response business object are
children of TLOs, the listener checks if Charset is specified in the TLO.

If there is no Charset specified in the TLO, or if the Response business object
is not a TLO, then if the response has the same ContentType as the request,
the Charset of the request will be used for the response.

If the previous steps fail to determine the response Charset value, and if the
type portion of the message ContentType is text with a subtype of anything
(for example, text/xml, text/plain, etc.), the listener uses a default Charset
value of ISO-8859-1. Otherwise, the Charset value is not used.

* The listener determines the MimeType for the response message according to
these rules:

1.
2.

4.

The TLO’s MimeType attribute

If the TLO MimeType attribute is missing, and if the request and response
ContentType match, the listener uses the request MimeType for the response
message.

If the previous steps fail, then the listener uses the value of the
SOAPDHMimeType connector property.

Otherwise the listener uses the ContentType value as the MimeType.

* The listener determines the ContentType for the response message according to
these rules:

1.

If the Content-Type header is specified in the Response business object
Protocol Config MO, the type/subtype portion of the Content-Type header
will used as the ContentType.

2. If the Content-Type header is not specified in the Response business object

Protocol Config MO, the listener constructs a Content-Type header using the
determined ContentType and Charset (if the Charset was determined for the
response message).

The listener processes the HTTP Protocol Config MO. It is the responsibility of

coll

aboration to ensure that the header values passed in the HTTP Protocol Config

MO are correct in the context of the request-response event. The listener populates
standard headers and custom properties according to the following rules:

1.

2.

The listener will investigate each item of the HTTP Protocol Config MO in
order to ignore special attributes (such as ObjectEventld).

Each non-empty header will be put on the outgoing message and additional
processing (for example, the Content-Type header) may take place.

Chapter 4. Web services connector 69




3. Please note that with the above approach, the listener may set non-standard
headers on the message, but will not check that the message is logically or
semantically correct.

4. If there are one or more custom properties in the HTTP Protocol Config MO
UserDefinedProperties attribute, the listener will add them in the Entity
Headers Section (the last headers section). For more on custom properties, see
[“User-defined properties for event processing” on page 37.|

Note: Specifying any of the following headers in the HTTP Protocol Config MO is
very likely to result in an incorrect HTTP message: Connection, Trailer,
Transfer-Encoding, Content-Encoding, Content-Length, Content-MD5,
Content-Range.

The listener then invokes the SOAP data handler to convert the Response business
object returned by the Collaboration into a SOAP response message.

The listener delivers the response message to the web service client and includes a
200 OK HTTP status code. If the collaboration returns a SOAP Fault business object,
it is converted to a Fault message. This fault message is delivered to the web
service client with a 500 Internal Server Error HTTP code.

The listener then closes the connection and the thread that processed the event
becomes available.

Unsupported SOAP/HTTP protocol listener processing
features
The SOAP/HTTP protocol listener does not support the following:

* Caching: The protocol listener does not perform any caching functions as
defined in HTTP specifications (RFC2616)

¢ Proxy: The protocol listener does not perform any proxy functions as defined in
HTTP specifications (RFC2616).

* Persistent Connection: The protocol listener does not support persistent
connections as defined in HTTP specifications (RFC2616). Instead, the protocol
listener assumes that the scope of each HTTP connection is a single client
request. and closes the connection when the service request is completed. The
protocol listener does not attempt to reuse the connection across the service
invocations.

* Redirections: The protocol listener does not support redirections.

* Large file transfer: The protocol listener cannot be used for large file transfers.
Alternatively, you may consider passing large files by reference instead.

* State management: The protocol listener does not support the HTTP state
management mechanism described by RFC2965.

* Cookies: The protocol listener does not support cookies.

SOAP/HTTPS listener processing using secure sockets

SOAP/HTTPS protocol listener processing is the same as that described in the
SOAP/HTTP protocol listener processing section except that HTTPS uses secure
sockets. For further information, see [‘SSL” on page 86

SOAP/JMS protocol listener processing

The SOAP/JMS protocol listener consists of a thread that continuously listens on
the InputQueue, which is the JMS destination for requests from web service clients.

70 Adapter for Web Services User Guide



The RequestWaitTimeout connector configuration property defines how long the
listener will wait for a request before checking whether the connector has shut
down.

shows SOAP/JMS protocol listener processing for a synchronous
operation. The figure does not show JMS provider information.

Connector —— Request
—| soapums [+—=! =]
protocol InputQueu InputQueue
. |— =1 3
v listener = =T
SOAP data {} ReplyToQueue ReplyToQueue
handler Response ———

Optional JMS

Queues
Unsubscribed Archive Error

Queue Queue Queue

Figure 26. SOAP/JMS protocol listener: synchronous event processing

shows SOAP/JMS protocol listener processing for an asynchronous
operation.

v

Connector Request
1 soapMs [«+—=! | =]

protocol InputQueue InputQueue
listener

SOAP data {]/'

A

handler

Optional JMS
Queues

= = =

Unsubscribed Archive Error
Queue Queue Queue

Figure 27. SOAP/JMS protocol listener: asynchronous event processing

Note: If the LookupQueueUsing]NDI configuration property is set to true, the
SOAP/JMS protocol listener uses the JNDI to look up the queue. The JNDI
properties are specified in connector properties. For further information, see
“Connector and JMS” on page 84/ and the INDI-related properties in
“Connector-specific configuration properties” on page 89.
When a web service client initiates a SOAP/JMS request, it sends a SOAP request
message to the InputQueue on which the SOAP/JMS listener is listening. When it
receives the SOAP request message from the InputQueue, the SOAP/JMS protocol
listener registers the request with the protocol listener framework. The protocol
listener framework schedules the request as and when resources are available.

Chapter 4. Web services connector 71



Note: If the connector configuration property InDoubtEvents is set to Reprocess,
the protocol listener framework will schedule J]MS messages from the
InProgressQueue before scheduling messages from the InputQueue.

The listener then dispatches this message—the body as well as the required JMS
headers (JMSCorrelationID, JMSMessagelD, JMSPriority, JMSExpiration,
JMSDeliveryMode, JMSReplyTo, JMSTimeStamp, JMSType)— to the
InProgressQueue. The protocol listener framework then registers the event.

The listener then reads the JMS message from the InProgressQueue, extracting the
body of the message and the following headers:

* JMSDestination

* JMSRedelivered

* JMSCorrelationID

* JMSMessagelD

* JMSPriority

* JMSExpiration

* JMSDeliveryMode

e JMSReplyTo

e JMSTimeStamp

* JMSType

* JMS Message Payload Type (not a header, but information from the message)

JMS Message Payload Type The listener will determine the payload type of the
incoming message and store the information in the MessageType attribute of the
JMS Protocol Config MO. The payload can be a TextMessage or BytesMessage. In
TextMessage format, the listener invokes the data handler through String APIs with
the web service request message extracted as a String. In the case of BytesMessage,
the listener invokes the data handler via the Bytes Data Handler APIs with the
web service request message extracted as a byte array.

Using the SOAPDHMimeType connector configuration property, the listener
invokes the SOAP data handler to convert the request message into a SOAP
Request business object. If errors occur during conversion and the J]MSReplyTo JMS
header is specified, the listener responds with a SOAP fault message, setting the
faultcode to Client and the faultstring to Cannot Parse. The fault message
provides no other detail.

The listener uses the object-level cw_mo_jms ASI of the SOAP Request business
object returned by the data handler to determine the Protocol Config MO. Note
that both the ASI and the Protocol Config MO are optional for event processing. If
it finds a Protocol Config MO, the listener populates it with the JMS message
headers extracted earlier. shows the mapping between the attributes in the
Protocol Config MO and the JMS message headers.

Table 29. JMS header-Protocol Config MO attribute mapping

Protocol Config MO | JMS header name Description

attribute

CorrelationID JMSCorrelationID The JMSCorrelationID header from the
request message

Messageld JMSMessageld The JMSMessagelD header from the
request message

72 Adapter for Web Services User Guide



Table 29. JMS header-Protocol Config MO attribute mapping (continued)

Priority JMSPriority The JMSPriority header from the request
message

Expiration JMSExpiration The JMSExpiration header from the
request message

DeliveryMode JMSDeliveryMode The JMSDeliveryMode header from the
request message

ReplyTo JMSReplyTo The JMSReplyTo header from the request

message. The JMS API returns this
header as J]MSDestination, but the
SOAP/JMS protocol listener returns the
queue name.

Timestamp JMSTimestamp The JMSTimestamp header from the
request message

Redelivered JMSRedelivered The JMSRedelivered header from the
request message

Type JMSType The JMSType header from the request
message

Destination JMSDestination The JMSDestination header from the

request message

MessageType na The type of the request message
payload. The value of this attribute is
Text for TextMessage payloads, and
Bytes for BytesMessage payloads.

If there are one or more custom properties in the SOAP/JMS Protocol Config MO
UserDefinedProperties attribute, the listener will try to extract their values from

the message and populate the UserDefinedProperties business object. For more on
custom properties, see [“User-defined properties for event processing” on page 37

If the TLO (in the case of a non-TLO SOAP Request business object) is not
subscribed by the integration broker, the listener logs an error. If the JMSReplyTo
header is specified in the request message, the listener creates a SOAP fault
message and places it on the J]MSReplyTo queue. The faultcode is set to Client and
the faultString is set to Not subscribed to this message. No other detail is
provided in the fault message. If configured to do so, the listener also archives the
original JMS request message including its JMS headers to the UnsubscribedQueue.

If the collaboration is invoked asynchronously, the listener delivers the Request
business object to the integration broker. The listener then removes the message
from the InProgressQueue. If configured to do so, the listener also archives the
original JMS request message including its JMS headers to the ArchiveQueue.

If errors occur during asynchronous processing and JMSReplyTo is specified, the
listener responds with a fault message. Its faultcode is set to Server and its
faultstring is set to Internal Error. If configured to do so, the listener also
archives the original JMS request message, including its JMS headers, to
ErrorQueue.

If it is a synchronous invocation, the listener invokes the collaboration
synchronously. The collaboration responds with a SOAP Response business object.
The listener invokes the SOAP data handler to convert the Response business
object returned by the Collaboration into a SOAP/JMS response message. The type

Chapter 4. Web services connector 73



of the response payload depends on the value of the MessageType attribute in the
JMS Protocol Config MO of the SOAP Response business object. If the
MessageType is Text, the listener converts the SOAP Response business object into
a String through String data handler APIs. If the MessageType is Bytes, the listener
converts the SOAP Response business object into a bytes array via the Bytes data
handler APIs. (The default message payload type is that of the corresponding
synchronous request.) The listener delivers the response message to the ReplyTo
queue (this is provided by the JMSReplyTo header on the original request
message). The listener then sets the response message returned by the data handler

as a TextMessage or BytesMessage (depending on the MessageType determined
earlier), setting the headers shown in [Table 30

Table 30. Header values set by SOAP/JMS protocol listener in response message

JMS header name Value

JMSCorrelationId The JMSMessageld of the request message
JMSDeliveryMode The JMSDeliveryMode of the request message
JMSPriority The JMSPriority of the request message
JMSExpiration The JMSExpiration of the request message
JMSRedelivered The JMSRedelivered of the request message
JMSReplyTo The JMSReplyTo of the request message
JMSTimestamp The JMSTimestamp of the request message
JMSType The JMSType of the request message

The listener will set JMS Custom Properties in the response message if they are
present in the Response or Fault business objects” JMS Protocol Config MO
UserDefinedProperties attribute.

If configured to do so, the listener then moves the original J]MS message (request
from the web service client), including its headers, from the InProgressQueue to
the ArchiveQueue.

If errors occur and JMSReplyTo is specified, the listener responds with a fault
message, and, if configured to do so, also archives the original JMS request
message to the ErrorQueue.

Event persistence and delivery
Event persistence is protocol contingent:

* SOAP/HTTP protocol listener no persistence and therefore no guaranteed
delivery

* SOAP/HTTPS protocol listener no persistence and therefore no guaranteed
delivery

* SOAP/JMS protocol listener J]MS queue event persistence and at-least-once
guaranteed delivery. For more on the JMS queues, see [’Connector-specifid
[configuration properties” on page 89.|

Event sequencing

The connector may deliver events in any sequence.

74 Adapter for Web Services User Guide



Event triggering

The event triggering mechanism depends on how the protocol listener is
configured.

* SOAP/HTTP protocol listener Listening occurs over a ServerSocket for HTTP
connection requests

* SOAP/HTTPS protocol listener Listening occurs over a secure ServerSocket
layer for HTTPS connection requests

* SOAP/JMS protocol listener Listening occurs over the input queue for incoming
JMS messages carrying web service requests.For more on the JMS queues, see
[“Connector-specific configuration properties” on page 89,

Note: Connector does not distinguish between Create or Update or Retrieve or
Delete. All such events follow the same approach.

Event detection

Event detection is performed by each protocol listener. The event detection
mechanism depends utterly on the transport and how you configure the
connector-specific properties for each listener. For more on these properties, see
[“Connector-specific configuration properties” on page 89)

Event status

Event status is managed by the protocol listener and depends on the transport and

also on how you configure the listener.

¢ SOAP/HTTP protocol listener HTTP is inherently non-persistent and
synchronous in nature. Accordingly, event status is not maintained.

* SOAP/HTTPS protocol listener HTTP is inherently non-persistent and
synchronous in nature. Accordingly, event status is not maintained.

* SOAP/JMS protocol listener JMS is a persistent transport. Event status is

maintained using queues. For more on the JMS queues, see [“Connector-specifid|
[configuration properties” on page 89.|

Event retrieval

Event retrieval is managed by the protocol listener and depends on the transport
and also on how you configure the listener.

* SOAP/HTTP protocol listener Events are retrieved by extracting HTTP requests
from the socket.

* SOAP/HTTPS protocol listener Events are retrieved by extracting HTTP
requests from the socket.

* SOAP/JMS protocol listener Events are retrieved using the J]MS APIL The JMS
protocol listener retrieves events from the JMS input queue and moves them to
the in-progress queue. For more on the JMS queues, see |”C0nnect0r—speciﬁc|
[configuration properties” on page 89

Event archiving

Event archiving is managed by the protocol listener and depends on the transport
and also on how you configure the listener.

* SOAP/HTTP protocol listener Because of the non-persistent and synchronous
nature of the transport, archiving is not performed.

* SOAP/HTTPS protocol listener Because of the non-persistent and synchronous
nature of the transport, archiving is not performed.

Chapter 4. Web services connector 75



* SOAP/JMS protocol listener You can configure the connector to archive events
into a JMS queues including those for unsubscribed events, successful events,
and failed events. For more on the JMS queues, see [‘Connector-specifid
[configuration properties” on page 89.|

Event recovery

Event recovery is managed by the protocol listener and depends on the transport
and also on how you configure the listener.

* SOAP/HTTP protocol listener Because of the non-persistent nature of the
transport, event recovery is not performed.

* SOAP/HTTPS protocol listener Because of the non-persistent nature of the
transport, event recovery is not performed.

* SOAP/JMS protocol listener JMS is a persistent transport. If the connector shuts
down while events are being processed, they remain available in the
InProgressQueue. You can configure the connector to process these events at
startup, thereby enabling event recovery. The InDoubtEvents connector
configuration property determines the event recovery mechanism.

Note: The SOAP/JMS listener assures at-least once delivery to the integration
broker. The listener cannot assure once and only once delivery. Also,
events received by the listener may be delivered in any order to the
integration broker.

At startup, the JMS protocol listener first attempts to retrieve events from the

InProgressQueue. What happens next is determined by the value you assign to

the InDoubtEvents configuration property. The recovery scenarios are illustrated

in table. For more on the JMS queues, see |[“Connector-specific configuration|

[properties” on page 89|

Table 31. Header values set by SOAP/JMS protocol listener in response message

InDoubtEvents value Event recovery processing

FailOnStartup If it finds events in the InProgressQueue, the listener logs a
fatal error and immediately shuts down.

Reprocess If it finds events in the InProgressQueue, the listener processes
those events first. The listener can trace the number of
messages found in the InProgressQueue.

Ignore Events in the InProgressQueue are ignored. The listener can
trace the events found in the InProgressQueue and the ignoring
of those events by the listener.

LogError If it finds events in the InProgressQueue, the listener logs error
and continues processing.

Request processing

You use the request processing capability of the connector to enable a collaboration
to invoke a web service. The development tasks include using the WSDL ODA to
generate a web services top-level object (TLO) and configuring a collaboration to
deploy it. For further information, see [Chapter 6, “Enabling collaborations for]
frequest processing,” on page 145 You must also configure the connector and its
request processing components: the protocol handler framework and protocol
handlers.

At run time, the connector receives requests from the collaboration in the form of
business objects. The business objects— SOAP Request, and optionally SOAP

76 Adapter for Web Services User Guide



Response and SOAP Fault business objects— are contained by the TLO generated
by the WSDL ODA and issued by a collaboration that is configured to use web
services. The TLO and its child business objects contain attributes and ASI that
specify the processing mode (synchronous or asynchronous), the data handler
mime type, which protocol handler to use, as well as the address of the target web
service. The protocol handler uses this information to invoke an instance of the
SOAP data handler, convert the Request business object to a SOAP request
message, and invoke the target web service. If the mode is synchronous, the
protocol handler again invokes the data handler to convert the response message
into a SOAP Response business object and returns this to the collaboration.

In response to a SOAP request message, the connector can receive any of the
following from the remote trading partner:

* A SOAP response message that contains data
* A SOAP response message that contains fault information

Protocol handlers play a key role in request processing.

Protocol handlers

A collaboration can invoke a web service over HTTP, HTTPS, or JMS transports.
The connector has two protocol handlers and corresponding channels:

¢ A SOAP/HTTP-HTTPS protocol handler for invoking SOAP/HTTP and
SOAP/HTTPS web services

* A SOAP/JMS protocol handler for invoking SOAP/JMS web services

The protocol handler framework manages the protocol handlers, loading them at
startup time. When the connector receives a Request business object, the request
thread (note that each collaboration request comes in a thread of its own) invokes
the protocol handler framework to process the request.

The protocol handler framework reads the TLOs Handler attribute ASI to
determine which protocol handler to use. Applying a series of rules (see
“SOAP/HTTP-HTTPS protocol handler processing” on page 78| and [“SOAP/JMS
protocol handler processing” on page 81), the protocol handler invokes a data
handler to convert the Request business object into a SOAP request message. The
protocol handler packages the request message into the transport—HTTP(S) or
JMS— message. If it finds SOAPAction ASI in the Request business object, the
protocol handler adds this to the request message header.

The protocol handler then reads the Destination attribute of the Request business
object Protocol Config MO to determine the target address. The protocol handler
then invokes the target web service with the request message.

Reading the ws_mode TLO ASI, the protocol handler determines whether the
processing mode is synchronous or asynchronous. If this ASI is set to asynch, the
protocol handler processing is completed. Otherwise the protocol handler waits for
a response message. If a response message arrives, the protocol handler extracts
the protocol headers and the payload. It then invokes the data handler (indicated
by the MimeType TLO attribute) to convert the message into a Response or Fault
business object. Again using the Protocol Config MO, the protocol handler sets the
protocol headers in the business object. The protocol handler then returns the
Response or Fault business object to the collaboration.

Chapter 4. Web services connector 77



Depending on connector configuration, there may be one or more protocol
handlers plugged into the connector. Connector-specific properties allow you to
configure protocol handlers.

SOAP/HTTP-HTTPS protocol handler processing
The SOAP/HTTP(S) protocol handler performs as described in [“Protocol handlers”|
with exceptions noted in this section. |Eigure 28| shows the
SOAP/HTTP-HTTPS protocol handler for a synchronous operation.

Connector HTTP or HTTPS
Request
~ | SOAP/HTTP > %//
protocol ( ) i
handler 200 OK |
SOAP data Response
handler %

(single connection)

Figure 28. SOAP/HTTP-HTTPS protocol handler: synchronous request processing

shows the SOAP/HTTP-HTTPS protocol handler for an asynchronous
request process

v

Connector
Request

| SOAP/HTTP
brotocol HTTP or HTTPS /‘%/}//
handler 202 Accepted

Figure 29. SOAP/HTTP-HTTPS protocol handler: asynchronous request processing

v

SOAP data
handler

Note: This section describes SOAP/HTTP protocol handling only.

The SOAP/HTTP-HTTPS protocol handler uses the object-level ASI (cw_mo_http) of
the SOAP Request business object to determine the Protocol Config MO. The
SOAP/HTTP-HTTPS protocol handler determines the URL of the target web
service by reading the Destination attribute in the HTTP Protocol Config MO. If
the URL is missing or is incomplete, the protocol handler fails the service call. For
further information on the HTTP Protocol Config MO and its attributes, see
[Protocol Config MO for request processing” on page 51.

The SOAP/HTTP-HTTPS protocol handler invokes the web service using the
SOAP request message returned by the SOAP data handler. If HTTP Proxy
connector configuration properties are specified, the SOAP/HTTP(S) protocol
handler behaves accordingly. If a response is returned, the SOAP/HTTP(S) protocol
handler reads it.

78 Adapter for Web Services User Guide



summarizes the order of precedence of rules used by the
SOAP/HTTP-HTTPS protocol handler to determine the Charset, MimeType,
ContentType, and ContentType header for outgoing request messages.

Table 32. SOAP/HTTP-HTTPS protocol handler processing rules for outbound messages

Order of Charset MimeType ContentType ContentType header
Precedence
1 Protocol Config MO’s MimeType property in | Protocol Config MO’s | Protocol Config MO'’s
Content-Type Header TLO attribute Content-Type Header | Content-Type Header
2 Charset property in TLO | Default to ContentType |Default to text/xml Construct Content-Type
attribute header using
ContentType and
Charset
3 If the ContentType is
text/*, default to
ISO-8859-1. Otherwise,
charset will not be used.

As shown in [Table 32

* The SOAP/HTTP-HTTPS protocol handler determines the Charset for the

response message according to these rules:

1. If specified in the Request business object Protocol Config MO headers, the

Charset value is used.

2. If Charset is not determined by the previous step, the protocol handler

attempts to extract the Charset from the TLO attribute.

3. If the operation described in the previous step is unsuccessful, the table is

used to determine the Charset:

Table 33. Default request processing Charsets

ContentType Default Charset
text/* 1SO-8859-1
For further information, see RFC2616,
application/* No default
All others No default

4. If Charset was determined by the previous step, the Charset is set on the

data handler.

5. The data Handler is invoked with Stream or Byte array APIs, depending on

the data structure needed for writing out the request.

¢ The SOAP/HTTP-HTTPS protocol handler determines the MimeType for the

request according to these rules:
1. The TLO MimeType attribute.

2. If the TLO MimeType attribute is missing, the protocol handler uses the

ContentType to determine the MimeType.

¢ The SOAP/HTTP-HTTPS protocol handler determines the ContentType for the

request message according to these rules:

1. If the Content-Type header is specified in the Request business object
Protocol Config MO, the type/subtype of the header will be used as

ContentType.

2. Otherwise, the handler uses the default ContentType: text/xml.

Chapter 4. Web services connector 79



e The SOAP/HTTP-HTTPS protocol handler determines the Content-Type header
for the request message according to these rules:

1. If the Content-Type header is specified in the Request business object
Protocol Config MO, its value is set on the outgoing message.

2. If the Content-Type header is not specified in the Request business object
Protocol Config MO, the listener constructs a Content-Type header using the
ContentType and Charset parameter (if the Charset was determined for the
request message).

summarizes the order of precedence for rules used by the handler when
determining the Charset, MimeType, ContentType, and ContentType header for
response messages.

Table 34. SOAP/HTTP(s) protocol handler processing rules for inbound synchronous response message

Order of Charset MimeType ContentType ContentType header
Precedence
1 Charset parameter value |Message Incoming HTTP Incoming HTTP
from the incoming HTTP | TransformationMap message type/subtype |message Content-Type
message Content-Type child business object in | value from the header
header value the Request business Content-Type header
object’s Protocol Config | value
MO
2 Message The request message
TransformationMap child |MimeType, but only if
business object in the the request and
Request business object’s |response ContentType
Protocol Config MO match.
3 The request message MimeType property in
Charset, but only if the TLO
request and response
ContentType match.
4 Charset property in TLO. |Default to ContentType
5 If the Content-Type is

text/*, default to
1SO-8859-1. Otherwise,
Charset is not used.

As shown in [Table 34

* The protocol handler determines the Charset of the synchronous response
message according to the following rules:

1. If the Charset parameter is set in the Content-Type header of the incoming
response message, the protocol handler uses the Charset value to set on the
data handler.

2. If there is no Charset value in the response message header, then the protocol
handler attempts to read the collaboration-defined Charset from the TLO
Request Protocol Config MO MessageTranformationMap.

3. If there is no Charset value specified in the TLO, or if there is no TLO, then
if the response has the same ContentType as the request, the Charset of the
request will be used for the response.

4. If the previous step fails to yield a Charset value, then the protocol handler
attempts to read the TLO Charset attribute.

80 Adapter for Web Services User Guide



If a Charset value is not obtained using methods described in the previous
steps, and if type of the message ContentType is text with any subtype (for
example, text/xml, text/plain, etc.),default ISO-8859-1. Otherwise, charset
value is not used.

¢ The protocol handler determines the MimeType of the synchronous response
message according to the following rules:

1.

4.

The protocol handler first attempts to extract the MimeType from the TLO
Request Protocol Config MO’s MessageTransformationMap. Specifically, the
protocol handler tries to find an exact ContentType match in the MTM to
extract MessageTransformationRule and then use the MimeType property
value from it. Otherwise, the protocol handler looks for a
MessageTransformationRule that applies to more than one ContentType
(ContentType is */*).

If the MimeType is not determined by using a MessageTransformationMap,
the protocol handler uses the request MimeType for that of the response if
and only if the request and response ContentTypes match.

If the MimeType cannot be extracted using the previous steps, the protocol
handler uses the MimeType attribute of the TLO. or the default MimeType, if
available to the protocol handler.

If all previous steps fail, the protocol handler uses the ContentType to set the
MimeType.

* The handler determines the ContentType by extracting type/subtype from the
incoming HTTP message Content-Type header.

The handler processes the HTTP Protocol Config MO. It is the responsibility of the
collaboration to ensure that the header values passed in the HTTP Protocol Config
MO are correct in the context of the request-response event. The handler populates
standard headers and custom properties according to the following rules:

1. The handler will investigate each item of the HTTP Protocol Config MO in
order to ignore special attributes (such as ObjectEventld).

2. Each non-empty header will be put on the outgoing message and additional
processing (for example, the Content-Type header) may take place.

3. Please note that with the above approach, the handler may set non-standard
headers on the message, but will not guarantee that the message is logically or
semantically correct.

4. If there are one or more custom properties in the HTTP Protocol Config MO
UserDefinedProperties attribute, the handler will add them in the Entity
Headers Section (the last headers section). For more on custom properties, see

[“User-defined properties for request processing” on page 52.|

Note: Specifying any of the following headers in the HTTP Protocol Config MO is

SOAP/JMS protocol handler processing

very likely to result in incorrect HTTP messages: Connection, Trailer,
Transfer-Encoding, Content-Encoding, Content-Length, Content-MD5,
Content-Range.

The SOAP/JMS protocol handler performs as described in [“Protocol handlers” on|

with exceptions noted in this section.

Note: If the LookupQueueUsing]NDI configuration property is set to true, the

SOAP/JMS protocol handler uses the JNDI to look up the destination queue.
The JNDI properties are specified in connector properties. For further
information, see [“Connector and JMS” on page 84and the [NDI-related
properties in [“Connector-specific configuration properties” on page 89

Chapter 4. Web services connector 81



The SOAP/JMS protocol handler creates a JMS transport message using the body
of the web service request message returned by the SOAP data handler and with
JMS headers set as shown in . The type of the response payload depends
on the value of MessageType attribute in the JMS Protocol Config MO of the SOAP
Request business object. If the MessageType is Text, the handler converts the SOAP
Request business object into a String via the String data handler APIs. If the
MessageType is Bytes, the handler converts the SOAP Request business object into
a bytes array via the Bytes data handler APIs. (The default message payload type
is TextMessage.).

Table 35. Header values set by SOAP/JMS protocol handler in request message

JMS header name Default value if not set in SOAP/JMS Protocol Config
MO

JMSPriority 4

JMSExpiration 0

JMSDeliveryMode PERSISTENT

JMSReply

JMSCorrelationld

JMSRedelivered

JMSTimestamp

JMSType

If the target web service is invoked asynchronously, the JMSReplyTo header is not
set. Otherwise (for synchronous processing), the SOAP/JMS protocol handler sets
the JMSReplyTo header. Using the ReplyToQueue configuration property, the
SOAP/JMS protocol handler obtains the JMSDestination—the return destination for
a response or fault from the target web service— and sets it on the J]MSReplyTo
header on the JMS transport message.

shows SOAP/JMS protocol handler processing for a synchronous request

operation.
Connector Request
1 soapums [—= 1=,
protocol InputQueue InputQueue /E/
handler =] =]
SOAP data ReplyToQueue ReplyToQueue
handler +——— Response

Figure 30. SOAP/JMS protocol handler: synchronous request processing

shows SOAP/JMS protocol handler processing for an asynchronous
request operation.

82 Adapter for Web Services User Guide



v

Connector Request ———

—| soapiums [— = =,
protocol InputQueue InputQueue /E/
handler

Figure 31. SOAP/JMS protocol handler: asynchronous request processing

A

SOAP data
handler

The SOAP/JMS protocol handler uses object-level ASI (cw_mo_jms) of the SOAP
Request business object to determine the Protocol Config MO. The Destination
attribute of the Protocol Config MO gives the queue name of the target web
service. If JNDI is enabled, the SOAP/JMS protocol handler obtains the
JMSDestination for the SOAP request message by looking up the JNDI object.
Otherwise it uses the Destination attribute in the SOAP Protocol Config MO.

If the response does not arrive in the interval specified in the
ResponseWaitTimeout property, the SOAP/JMS protocol handler fails the
collaboration request. On arrival of the SOAP response (or fault) message, the
SOAP/JMS protocol handler extracts the JMS headers and payload for conversion
by the SOAP data handler. The handler determines the payload type of the
incoming message and stores the information in the MessageType attribute of JMS
Protocol Config MO. The payload can be a TextMessage or BytesMessage. In
TextMessage format, the handler invokes the data handler through the String APIs
with the web service response message extracted as a String. In the case of a
BytesMessage, the handler invokes the data handler via the Bytes data handler
APIs with the web service response message extracted as a byte array. The
SOAP/JMS protocol handler then sets the SOAP Response (or Fault) business
object in the TLO, using the Protocol Config MO in the Response (or Fault)
business object to map the JMS headers. shows this mapping.

Table 36. Protocol Config MO—JMS header attribute mapping for response during
synchronous request processing

Protocol Config MO | JMS header name Description

attribute

Destination JMSDestination The JMSDestination header from the
response message.

Messageld JMSMessageld The JMSMessageld header from the
response message

Priority JMSPriority The JMSPriority header from the
response message

Expiration JMSExpiration The JMSExpiration header from the
response message

DeliveryMode JMSDeliveryMode The JMSDeliveryMode header from the
response message

ReplyTo JMSReplyTo The JMSReplyTo header from the

response message. The J]MS API returns
this header as JMSDestination, but the
SOAP/JMS protocol listener returns the
queue name.

Chapter 4. Web services connector 83



Table 36. Protocol Config MO—JMS header attribute mapping for response during

synchronous request processing (continued)

Correlationld

JMSCorrelationld

The JMSCorrelationld header from the
response message

Redelivered

JMSRedelivered

The JMSRedelivered header from the
response message

TimeStamp

JMSTimeStamp

The JMSTimeStamp header from the
response message

Type

JMSType

The JMSType header from the response
message

MessageType

n/a

The type of the response message
payload. The value of this attribute is
Text for TextMessage payload; Bytes for
BytesMessage payload.

The SOAP/JMS protocol handler then returns the TLO to the collaboration.

Connector and JMS

Note: This section assumes that you are familiar with JMS and JNDI, especially
how JMS works. For further information, refer to your JMS and JNDI source

documentation.

The connector can expose collaborations as SOAP/JMS web services as well as
enable collaborations to invoke SOAP/JMS web services. The requirements for
using SOAP/JMS with the web services connector are as follows:

1. You have installed and configured your JMS service provider.

2. You have installed and configured your JNDI.
3. Your JMS provider supports JMS API version 1.0.2.
4

. All required jar files are in the classpath of the connector. (See your JMS
provider documentation to determine all required jar files.)

5. All required libraries are in the path of the connector. (See your JMS provider
documentation to determine all required libraries.)

JNDI

For SOAP/JMS, the connector uses JNDI to look up the connection factory using
the JNDI context. During initialization, the connector reads the JNDI
connector-specific property to connect to JNDI. If you do not configure a JNDI
property, you will be unable to use SOAP/JMS. You can specify the following
JNDI connector-specific properties:

* JNDIProviderURL

¢ InitialContextFactory

* JNDIConnectionFactoryName

* CTX_ObjectFactories
e (CTX_StateFactories

* CTX_URLPackagePrefixes

e CTX_DNS_URL
¢ CTX_Authoritative
e CTX_Batchsize

84 Adapter for Web Services User Guide




e CTX_ Referral

* CTX_SecurityProtocol

¢ CTX_SecurityAuthentication
* CTX_SecurityPrincipal

* CTX_SecurityCredentials

* CTX_Language

¢ LookupQueuesUsing]NDI

Refer to your JNDI documentation for guidance in specifying these properties. To
use SOAP/JMS with the connector, the following JNDI connector-specific
properties are required:

* JNDIProviderURL Set this property to the URL of the JNDI Service provider.
For the value of this property, refer to your JNDI provider documentation.

* InitialContextFactory Set this property to the fully qualified class name of the
factory class that will create the JNDI initial context. For the value of this
property, refer to your JNDI provider documentation. Make sure that this class
and its dependencies are in the classpath of the connector.

* JNDIConnectionFactoryName Set this property to the JNDI name of the

Connection factory to lookup (using JNDI context). Make sure that this name
can be looked up using the JNDIL

If you set LookupQueuesUsing]NDI to true, make sure all the queues used by the
connector can be looked up using JNDI.

Exposing collaborations as SOAP/JMS web services

To expose collaborations as SOAP/JMS web services, you must use the SOAP/JMS
protocol listener. Using the SOAP/JMS protocol listener requires that you specify
JNDI connector properties.

Your JMS provider configuration should reflect the requirements of the SOAP/JMS
protocol listener. Make sure all the queues required by the SOAP/JMS protocol
listener are defined by your JMS service provider. Be sure to check your JMS
provider documentation— the task of defining queues varies by provider. You
must define six queues for the SOAP/JMS protocol listener. You must set the
queue names in SOAP/JMS listener configuration properties and, if you have set
JNDI ” LookupQueuesUsing]NDI to true, you also must specify the JNDI names
of the queues in the SOAP/JMS listener configuration properties.

You should specify the queues names as the values of the following SOAP/JMS
Listener configuration properties:

* InputQueue

* InProgressQueue

* ArchiveQueue

* UnsubscribedQueue
* ErrorQueue

* ReplyToQueue

InputQueue and InProgressQueue are required properties. Make sure that you
have correctly configured these queues.

ArchiveQueue, UnsubscribedQueue and ErrorQueue are optional properties. These
queues are used to archive web service requests. If you plan to use any of these

Chapter 4. Web services connector 85



properties, make sure you have configured the corresponding JMS queues
correctly. When defining these queues with your JMS provider, you should
carefully specify the capacity of these queues.

Collaborations invoking SOAP/JMS web services

To enable collaborations to invoke SOAP/JMS web services, you use the
SOAP/JMS protocol handler. The SOAP/JMS protocol handler requires that you
specify JNDI connector properties. Work with your web service provider to
determine the JMS and JNDI requirements.

To invoke SOAP/JMS web services, the connector requires that the value of the
Destination attribute in the SOAP/JMS Protocol Config MO be set to the input
queue o f the target web service. If you have set JNDI ” LookupQueuesUsing]NDI
to true, you must specify the JNDI name of the input queue.

If you are invoking request-reply web services, you must work with your web
service provider to determine the requirements for the ReplyTo queue. Make sure
that the ReplyTo queue is defined. Also make sure that you have specified the
name of the ReplyTo queue in the ReplyToQueue configuration property of the
SOAP/JMS protocol handler. If JNDI ” LookupQueuesUsing]NDI is set to true, the
value of the ReplyToQueue configuration property should give the JNDI name of
this queue.

It is important to note that, unlike protocol listeners, protocol handlers are not
pluggable to the web services connector. As a result, the connector uses the same
ReplyTo queue for all the request-reply web services that the connector invokes.

SSL

This section discusses the how the connector implements an SSL capability. For
background information, see your SSL documentation. This section assumes a
familiarity with SSL technology.

JSSE

The connector can expose collaborations as SOAP/HTTPS web services and enable
collaborations to invoke SOAP/HTTPS web services. The connector uses JSSE to
provide support for HTTPS and SSL. IBM JSSE is shipped with the connector. To
enable this capability, make sure you have the following entry in the
java.security file that is among the files installed with the connector:

security.provider.5=com.ibm.jsse.IBMISSEProvider

Note that java.security is located in the $ProductDir\1ib\security directory of
your connector installation. The connector uses the value of the
JavaProtocolHandlerPackages connector property to set the system property
java.protocol.handler.pkgs. Note that for the IBM JSSE that is shipped with the
connector, the value of this property should be set to
com.ibm.net.ss1.internal.www.protocol. The JavaProtocolHandlerPackages
configuration property defaults to this value. However, if your system has a
java.protocol.handler.pkgs system property with a non-empty value, the connector
would overwrite it only if the JavaProtocolHandlerPackages connector property is
also set.

During initialization, the connector disables all anonymous cipher suites supported
by JSSE.

86 Adapter for Web Services User Guide



KeyStore and TrustStore

To use SSL with the connector, you must set up keystores and truststores. No tool
is provided to set up keystores, certificates, and key generation. You must use third
party software tools to complete these tasks.

SSL Properties

You can specify the following SSL connector-specific properties:

SSLVersion
SSLDebug
KeyStore
KeyStoreAlias
KeyStorePassword
TrustStore
TrustStorePassword

Note that these properties apply to a connector instance. The same set of SSL
property values are used by all of the SOAP/HTTPS protocol listeners plugged
into the connector and by the SOAP/HTTP-HTTPS protocol handler for each
connector instance. For further information on HTTPS/SSL setup, see

[“Configuring HTTPS/SSL,” on page 233

Exposing collaborations as SOAP/HTTPS web services
When you expose collaborations as SOAP/HTTPS web services, you use the
SOAP/HTTPS protocol listener. To use the SOAP/HTTPS protocol listener, you
must specify SSL connector-specific properties. The values you assign to these
properties should reflect your SSL requirements:

SSLVersion Make sure that the SSLVersion you want to use is supported by
JSSE.

KeyStore Because the SOAP/HTTPS protocol listener acts as a server in SSL
communications, you must specify the keystore. The listener uses the keystore
specified in the SSL ” KeyStore configuration property. The value of this
property must be the complete path to your keystore file. Make sure that the
keystore has key pair (private key and public key) for the connector. The alias of
the private key should be specified as the SSL ” KeyStoreAlias property. You
must specify the password required to access the keystore as the SSL ”
KeyStorePassword property. Also make sure that the password required to
access keystore and the private key (in the keystore) are same. Finally, you must
distribute the digital certificate of the connector to your web service clients so
that they can authenticate the connector.

TrustStore If you want the SOAP/HTTPS protocol listener to authenticate web
service clients, you must activate client authentication. You do this by setting the
SSL ” UseClientAuth property to true. You must also specify:

— the location of your truststore as the value of the SSL ” TrustStore
configuration property

— the password required to access the truststore as the value of the SSL ”
TrustStorePassword property

Make sure that your truststore contains the digital certificate of your web service
clients. Digital certificates used by your Web Service clients may be self-signed
or issued by CA. Note that if your truststore trusts the root certificate of the CA,
JSSE will authenticate all the digital certificates issued by that CA.

Chapter 4. Web services connector 87



For further information on HTTPS/SSL setup, see |Appendix E, “Configuring|
[HTTPS/SSL,” on page 233.|

Collaborations invoking SOAP/HTTPS web services

To enable collaborations to invoke SOAP/HTTPS web services, you use the
SOAP/HTTP-HTTPS protocol handler. If you are using SSL with the
SOAP/HTTP-HTTPS protocol handler, you must specify SSL connector-specific
properties. The values you assign to these properties should reflect the HTTPS/SSL
requirements of your web services provider:

* SSLVersion Make sure that the SSLVersion you want to use is supported by
your web service provider and by JSSE.

* TrustStore Because the SOAP/HTTP-HTTPS protocol handler acts as a client in
SSL communications, you must set up a truststore. The handler uses the
truststore specified in the SSL -> Truststore configuration property. The value of
this property must be the complete path to your truststore file. You must specify
the password required to access the truststore in the SSL -> TrustStorePassword
property. Make sure that your truststore contains the digital certificate of your
web service provider. Digital certificates used by your web service provider may
be self-signed or they may be issued by CA. Note that if your truststore trusts
the root certificate of the CA, JSSE will authenticate all the digital certificates
issued by that CA.

* KeyStore If your web service provider requires client authentication, you must
set up a keystore. The SOAP/HTTP-HTTPS protocol handler uses the keystore
specified in the SSL ” KeyStore configuration property. This value must be the
complete path to your keystore file. Make sure that keystore has a key pair
(private key and public key) configured for the connector. The alias of the
private key must be specified in the SSL ” KeyStoreAlias property. The password
required to access the keystore must be specified in the SSL. ” KeyStorePassword
property. Finally, make sure that the password required to access the keystore
and the private key (in the keystore) are the same. You must distribute the
connector’s digital certificate to your web service provider for authentication.

For further information on HTTPS/SSL setup, see|[Appendix E, “Configuring]
[HTTPS/SSL,” on page 233.|

Configuring the connector

After using the Installer to install the connector files to your system, you must set
the standard and application-specific connector configuration properties.

Setting configuration properties

Connectors have two types of configuration properties: standard configuration
properties and connector-specific configuration properties. You must set the values
of these properties using System Manager (SM) before running the connector.

Standard configuration properties

Standard configuration properties provide information that all connectors use. See
[Appendix A, “Standard configuration properties for connectors,” on page 173|for
documentation of these properties. The table below provides information specific
to this connector about configuration properties in the appendix.

Property Description

CharacterEncoding This connector does not use this property.

88 Adapter for Web Services User Guide



Property Description

Locale Because this connector has not been internationalized, you
cannot change the value of this property. See release notes
for the connector to determine currently supported locales.

Because this connector supports only InterChange Server (ICS) as the integration
broker, the only configuration properties relevant to it are for ICS.

You must set at least the following standard connector configuration properties:
* AgentTraceLevel

* ApplicationName

* ControllerTraceLevel

¢ DeliveryTransport

Connector-specific configuration properties

Connector-specific configuration properties provide information needed by the
connector agent at runtime. Connector-specific properties also provide a way of
changing static information or logic within the connector agent without having to
recode and rebuild the agent.

lists the connector-specific configuration properties. See the sections that
follow for explanations of the properties. Note that some of the properties contain
other properties. The + character indicates the entry’s position in the property
hierarchy.

Note: If you do not intend to use the SOAP/JMS protocol listener or SOAP/JMS
protocol handler with the connector, be sure to delete SOAP /JMS-related
connector-specific properties or to leave them blank.

Table 37. Connector-specific configuration properties

Name Possible values Default value Required
[ConnectorType] Any valid connector type WebService Yes
[DataHandlerMetaObjectName| Data handler meta-object name MO_DataHandler_ Default Yes
avaProtocolHandlerPackages| Valid Java protocol handler packages ~ com.ibm.net.ssT. No
internal.www.protocol
[ProtocolHandlerFramework] This is a hierarchical property and has None No
no value
HProtocolHandlers| This is a hierarchical property and has No
no value
++#SOAPHTTPHTTPSHandler| This is a hierarchical property. For Yes

information on its sub-properties, see
“SOAPHTTPHTTPSHandler” on|

page 91.|

+HSOAPJMSHandler| This is a hierarchical property. For
information on its sub-properties, see
[“SOAP]MSHandler” on page 92

[ProtocolListenerFramework] This is a hierarchical property and has No
no value.

H{WorkerThreadCount| An integer of 1 or greater that gives 10 No
the number of available listener
threads.

Integer greater than 20 No

WorkerThreadCount that gives the
resource pool size.

Chapter 4. Web services connector 89



Table 37. Connector-specific configuration properties (continued)

Name

ProtocolListener

++HListener
++HProtoco

+4
+4

+

SOAPDHMimeType|

++HListenerSpecific

HttpProxyHos
HttpProxylPor
ﬂHttpNonProvaostsl

HttpsProxyPor

HHttpsNonProxyHosts|

SocksProxiHosE
SocksProxyPort
HttpProxyUsername|
HttpProxyPassword|
HttpsProxyUsername|

HttpsProxyPassword)

+ 4

4+ o+ o+ 4 4

4
4

4

+{KeyStore]
+KeyStorePassword|
4

4

4

4

KeyStoreAlias|
TrustStore]
TrustStorePassword|

UseClientAuth|
[WSCollaborations|

Collaboration]|

+HCollaborationPort]|

+++4WebServiceOperation]]|

o
&
Z
D
3
o

+4+

+++

+++4HBONam

Possible values

This is a hierarchical property and has

no value

Uniquely named protocol listener
soap/http, soap/https, soap/jms
Any valid mime type of a SOAP data

handler

Properties unique to or required by the

listener See|”ListenerSpecific” on|

|Eage 94.|

This is a hierarchical property and has

no value

Host name for the HTTP proxy server
Port number for the HTTP proxy

seroer

HTTP host(s) requiring direct

connection

Host name for the HTTPS proxy

serover

Port number for the HTTPS proxy

server

HTTPS host(s) requiring direct

connection
Socks proxy server name
Socks proxy server port

Http proxy server username

Http proxy server password

Https proxy server username

Https proxy server password

This is a hierarchical property and has

no value

SSL, SSLv2, SSLv3, TLS, TLSv1

true, false
Any valid keystore type
Path to KeyStore file.

Password for private key in KeyStore
Alias for key pair in KeyStore

Path to TrustStore file
Password for TrustStore
true false

This is a hierarchical property creating
by the WSDL Configuration Wizard

and has no value See

[“WSCollaborations” on page 104

This is a hierarchical property and has

no value

Name of the collaboration port
This is a hierarchical property and has

no value

Name of web service method; must be
valid XML element name

Namespace of web service method,
must be valid XML namespace
Name of Request business object for

operation

Default value

xml/soap

80

443

SSL
false
JKS

false

Required

Yes
Yes

Yes
Yes

Yes
Yes

Yes

90 Adapter for Web Services User Guide



Table 37. Connector-specific configuration properties (continued)

Name Possible values Default value Required

+++ synch asynch asynch No

This is a [MS-related hierarchical No
property and has no value

HLookupQueuesUsing]NDI| true false false No

+4JNDIProviderURL) Valid JNDI URL No

+|InitialContextFactory]| Name of factory class for initial No
context

4JNDIConnectionFactoryName| Name of connection factory to look up No

CTX Properties

+CTX_properties

using INDI context.

Properties specifying additional N
information about security and object

lookup in the [NDI context

ConnectorType: If this property is set to WebService, when binding the
collaboration port, System Manager displays the connector as a web services
connector. Otherwise it is displayed as a normal connector.

Default = WebService.

DataHandlerMetaObjectName: This is the name of the meta-object that the data
handler uses to set configuration properties.

Default = MO_DataHandler_Default.

JavaProtocolHandlerPackages: The value of this property gives the Java Protocol
Handler packages. The connector uses the value of this property to set the system
property java.protocol.handler.pkgs.

Default = com.ibm.net.ss1.internal.www.protocol.

ProtocolHandlerFramework: The Protocol Handler Framework uses this property
to load and configure its protocol handlers. This is a hierarchical property and has
no value.

Default = none.

ProtocolHandlers: This hierarchical property has no value. Its first-level children
represent discrete protocol handlers.

Default = none.

SOAPHTTPHTTPSHandler: The name of a SOAP/HTTP-HTTPS protocol
handler. Note that this is a hierarchical property. Unlike listeners, protocol handlers
may not be duplicated, and there can be only one handler for each protocol.

below shows the sub-properties for the SOAP/HTTP-HTTPS protocol
handler. The + character indicates the entry’s position in the property hierarchy.

Table 38. SOAP/HTTP-HTTPS protocol handler configuration properties

Name

Default
Possible values value Required

++SOAPHTTPHTTPSHandler This is a hierarchical property and has no value. Yes

Chapter 4. Web services connector 91



Table 38. SOAP/HTTP-HTTPS protocol handler configuration properties (continued)

Default
Name Possible values value Required
+++Protocol The kind of protocol the handler is implementing. For Yes
SOAP/HTTP and SOAP/HTTPS, the value is
soap/http.

Note: If you do not specify a value for this
property, the connector will not initialize this
protocol handler.
+++HTTPReadTimeout A SOAP/HTTP-specific property that specifies the 0 No
timeout interval (in milliseconds) while reading from
the remote host (web service).If this property is not
specified or if set to 0, the SOAP/HTTP protocol
handler blocks indefinitely while reading from the
remote host.

shows the properties as displayed in Connector Configurator.

Standard Properties | Application Config Propedies | Suppored Business Objects | Trace

Fropearty Walue Update Encrrpt
1 DataHandlertetaObjectMame MO _DataHandlier_Defautt agent restart [
2 |ConnectorType WiehService agent restart [
3 H ProxyServer agent restart [
4 H S50 agert restart [
5 H ProtocolliztenerFrameswork agert restart [
= B ProtocolHandlerFrameseark agert restart [
7 B ProtocolHandlers agert restart [
] B SOAPHTTPHTTPSHandler agent restart |
9 Protocol zoaphttp agent restart [
10 HTTPResd Timeout 0 agent restart |
11 H SCaAPJMEHandler agert restart [
12 | B JuD agert restart [
13 | B WECollaborations agert restart [

Figure 32. SOAP/HTTP-HTTPS protocol handler properties

SOAPJMSHandler: The name of a SOAP/JMS protocol handler. Note that this is
a hierarchical property. Unlike listeners, protocol handlers may not be duplicated,
and there can be only one handler for each protocol. below shows the
sub-properties for the SOAP/JMS protocol handler. The + character indicates the
entry’s position in the property hierarchy.

Table 39. SOAP/JMS protocol handler configuration properties

Default
Name Possible values value Required
++SOAPJMSHandler This is a hierarchical property and has no value. Yes
+++Protocol The kind of protocol the handler is implementing. For Yes

SOAP/IMS, the value is soap/jms.

Note: If you do not specify a value for this
property, the connector will not initialize this
protocol handler.

92 Adapter for Web Services User Guide



Table 39. SOAP/JMS protocol handler configuration properties (continued)

Default
Name Possible values value Required
+++ResponseWaitTimeout This is a [MS protocol handler-specific property that 0 No
specifies the timeout interval (in milliseconds) that the
protocol handler waits on ReplyToQueue for
synchronous request processing. If the response does
not arrive during this interval, the handler fails the
collaboration request. If this property is not specified or
if set to 0, the protocol handler waits on ReplyToQueue
indefinitely.
+++ReplyToQueue This is a required JMS protocol handler-specific none Yes
property that names the ReplyTo queue. For
synchronous request processing, the handler sets the
JMSReplyTo field to this JMS destination.
If LookupQueuesUsing][NDI = true, the SOAP/IMS
protocol handler looks up this queue using [NDI.
shows the properties as displayed in Connector Configurator.
Standard Properties | Application Config Properies | Supported Business Ohjects | TraceflLog Files | D
Froperty Walue Update Encrypt | Description
1 |DataHandlerMetatbjecthame MO _DataHandler_Detsutt agent restart -
2 | ConnectorType WWishService agent restart -
3 H ProxyServer agent restart -
4 B s5L agent restart -
5 H ProtocollistensrFramessark agent restart r
] B ProtocoHandlerFrameswvork agent restart -
7 B ProtocoHanders agent restart r
g H SCOLPHTTPHTTPSHandler agent restart -
9 B S0APJMIHandler agent restart r
10 Protocol zoaplims agent restart -
11 Responzevat Timeout ] agent restart r
12 ReplyToQueus agent restart -
13 || B Ju agent restart r
14 | B wsCollaborstions agent restart -

Figure 33. SOAP/JMS protocol handler properties

ProtocolListenerFramework: The protocol listener framework uses this property
to load protocol listeners. This is a hierarchical property and has no value.

WorkerThreadCount: This property, which must be an integer of 1 or greater,
establishes the number of protocol listener worker threads available to the protocol
listener framework. For further information, see [“Protocol listeners” on page]

@Default = 10.

RequestPoolSize: This property, which must be an integer greater than
WorkerThreadCount, sets the resource pool size of the protocol listener framework.
The framework can process a maximum of WorkerThreadCount + RequestPoolSize
requests concurrently.

Default = 20.

Chapter 4. Web services connector 93



ProtocolListeners: This is a hierarchical property and has no value. Each
first-level child of this property represents a discrete protocol listener.

Listenerl: The name of a protocol listener. There may be multiple protocol
listeners. Note that this is a hierarchical property. You can create multiple instances
of this property and create additional, uniquely named listeners. When doing so,
you can change the listener-specific properties but not the protocol property. The
names of multiple listeners must be unique. Possible names (not values):
SOAPHTTPListenerl, SOAPHTTPSListenerl, SOAPJMSListenerl

Protocol: This property specifies the protocol this listener is implementing.
Possible values: soap/http, soap/https, soap/jms.

Note: If you do not specify a value for this property, the connector will not
initialize this protocol listener.

SOAPDHMimeType: The SOAP data handler mime type to use for the requests
received by this listener.

Default = xm1/soap

ListenerSpecific: Listener specific properties are unique to, or required by, the
specified protocol listener. For example, the HTTP listener has a listener-specific
property Port, which represents the Port number on which Listener monitors
requests. summarizes the HTTP-HTTPS listener specific properties. The +
character indicates the entry’s position in the property hierarchy.

Table 40. SOAP/HTTP and SOAP/HTTPS protocol listener-specific configuration properties

Name Possible values Default value  Required

+++SOAPHTTPListenerl Unique name of an HTTP protocol listener. This is a Yes
child of the ProtocolListenerFramework ->
ProtocolListeners hierarchical property. There can be
multiple listeners: you may plug-in additional HTTP
listeners by creating another instance of this property
and its hierarchy.
++++Protocol soap/http if SOAP/HTTP protocol listener Yes
soap/https if SOAP/HTTPS protocol listener
Note: If you do not specify a value for this
property, the connector will not initialize this
protocol listener.

++++SOAPDHMimeType xml/soap xml/soap No
++++BOPrefix The value of this property is passed to the data handler. No
++++Host The listener will listen at the IP address specified by Tocalhost No

value of this property. If Host is not specified, it
defaults to localhost. Note that you may either specify a
host name (DNS name) or an IP address for the
machine on which the listener is running. A machine
may have multiple IP addresses or multiple names.
++++Port The port on which the listener listens for requests. If 80 for No
unspecified, the port defaults to 80 for SOAP/HTTP SOAP/HTTP
and 443 for SOAP/HTTPS.If you clone the listener listener
within a connector, then the combination of Host and 443 for
Port properties is unique or the listener may be unable SOAP/HTTPS
to bind to the port to accept requests. listener

94 Adapter for Web Services User Guide



Table 40. SOAP/HTTP and SOAP/HTTPS protocol listener-specific configuration properties (continued)

Name Possible values Default value  Required

++++SocketQueueLength Length of the queue (socket queue) for incoming 5 No
connection requests. Specifies how many incoming
connections can be stored at one time before the host
refuses connections. The maximum queue length is
operating system dependent.
++++RequestWaitTimeout The time interval in milli-seconds that the listener 60000 (ms) No
thread will block on the host and port while waiting for
web service requests to arrive. If it receives a web
service request before this interval, the listener will
process it. Otherwise the listener thread checks whether
the connector shutdown flag is set. If it is set, the
connector will terminate. Otherwise it will continue to
block for RequestWaitTimeout interval. If this property
is set to 0, it will block for ever. If unspecified, it
defaults to 60000ms.
++++HTTPReadTimeout The time interval in milli-seconds that the listener will 0 No
be blocked while reading a web service request from a
client. If this parameter is set to 0, the listener
indefinitely blocks until it receives the entire request

message.
++++HttpAsyncResponseCode The HTTP response code for asynchronous requests to 202 No
the listener: (ACCEPTED)
200 (OK)
202 (ACCEPTED)
++++URLsConfiguration This is a hierarchical property and has no value. It ContextPath: /  No

contains 1 or more configurations for URLs supported — Enabled: true
by this listener and, optionally, mime type and charset  Data handler
values. Note that this is child property of MimeType:
ProtocolListenerFramework->ProtocolListeners- equal to the
>SOAPHTTPListener1 hierarchical property. If this ContentType of
property is not specified, the listener assumes default the request
values. Charset:
NONE. For

further
information,

+++++URL1 This is a hierarchical property and has no value.
Its children provide the name of the URL supported
by this listener. There can be multiple supported URLs.
Note that you can plug in additional URLs by cloning
this property and its hierarchy.

Chapter 4. Web services connector



Table 40. SOAP/HTTP and SOAP/HTTPS protocol listener-specific configuration properties (continued)

Name

++++++ContextPath

++++++Enabled
++++++TransformationRules
+++++++TransformationRulel

++++++++ContentType

++++++++MimeType

++++++++Charset

Possible values Default value

The URI for the HTTP requests received by the listener.
This value must be unique among ContextPath values
under the URLsConfiguration property. Otherwise the
connector will log an error and fail to start.
ContextPath is case sensitive. However it may contain
protocol, host name and port which are case-insensitive.
If protocol is specified in ContextPath, it should be
http. If host is specified, it should be equal to the value
of the Host listener property. If port is specified, it
should be equal to the value of Port listener property.
This property is enabled for transformation of
bidirectional languages.

The value of this property determines if the parent URL True
hierarchical property is enabled for the connector.

This is a hierarchical property and has no value. It
holds one or more transformation rules.

This is a hierarchical property and has no value. It
holds the transformation rule.

The value of this property specifies the ContentType of
the incoming request for which special handling (data
handler mime type or charset) should be applied. If
ContentType is not specified by the
TransformationRuleN hierarchical property, the
connector logs a warning message and ignores the
TransformationRuleN property.

Specifying the special value */* for this property
enables the protocol listeners to apply this rule to any
ContentType. Note that if a listener finds more than
one rule for the same context path that shares a
ContentType, the listener logs an error and fails to
initialize.

The mime type to use when calling a data handler to
process requests of the specified ContentType.

Charset to use when transforming the request of the
specified ContentType into a business object.

Required
No

shows the properties as displayed in Connector Configurator.

96 Adapter for Web Services User Guide



Standard Froperties | Connector-Specific Properties I Supported Business Objects
Property o Yalue Encrypt | Update Method
1 ConnectarType WebhService Il agent restart
2 |DataHandlerMetaObjectiame MO _DataHandler_Defaul Il agent restart
3 | B JHCO [~ |agent restart
4 B ProtocolHandlerFramesnark r anent restart
5 B ProtocollistenerFramewwork Il agent restart
g Worker ThreadCount 10 [l agent restart
7 ReqguestPoolSize 20 Il agent restart
g B Protocollisteners Il agent restart
9 B S0APHTTPListener [l agent restart
10 Protocal soapuhittp Il agent restart
11 SOAPDHMImMeType wmlfznap Il agent restart
12 Hiost localhost [l agent restart
13 Piort 8050 Il agent restart
14 SocketQusuelendth 3 Il agent restart
15 HTTPReadTimeout ] [l agent restart
16 Reguestiait Timeout EO00a Il agent restart
17 BOPrefix Il agent restart
18 B URLsConfiguration - agent restart
18 B URL1 Il agent restart
20 ContextPath i Il agent restart
21 Enabled True [l agent restart
22 B TranzformationRulzs r anent restart
23 H TranzformationRulel Il agent restart
24 ContentType HE [l agent restart
25 MimeType wmlfzoap Il agent restart
26 Charzet UTFg Il agent restart
&7 A SO&PHTTPSListener [~ |agent restart
28 H SoAPMSListener r anent restart
29 | | ProxyServer Il agent restart
30 | H sEL [~ |agent restart
31 |UzeDetfaults true r anent restart

Figure 34. SOAP/HTTP protocol listener properties

able 41f summarizes the SOAP/JMS protocol listener-specific properties. The +
character indicates the entry’s position in the property hierarchy.

Table 41. SOAP/JMS protocol listener-specific configuration properties

Name

+++SOAPJMSListenerl

++++Protocol
++++SOAPDHMimeType
++++BOPrefix

Default
Possible values value Required
Unique name of a [MS protocol listener. This is a child Yes
of the ProtocolListenerFramework -> ProtocolListeners
hierarchical property. There can be multiple listeners:
you may plug-in additional [MS listeners by creating
another instance of this property and its hierarchy.
soap/jms Yes
xml/soap xml/soap No
The value of this property is passed to the data handler No

specified by SOAPDHMimeType property.

Chapter 4. Web services connector

97



Table 41. SOAP/JMS protocol listener-specific configuration properties (continued)

Default
Name Possible values value Required
++++RequestWaitTimeout This property sets the time interval that the 60000 No

SOAP/IMS listener thread blocks the InputQueue while milliseconds
waiting for a web service request. If it receives a web
service request within this interval, the listener
processes it. If it does not receive the request within
this interval, the listener thread first checks if the
connector shutdown flag is set. If the connector
shutdown flag is set, the connector will terminate.
Otherwise it will continue to block for
RequestWaitTimeout interval. If this property is set to
0, it will block indefinitely.
++++SessionPoolSize Maximum number of sessions that can be allocated for 2 No
a given listener and its worker threads. The minimum
number of sessions (and default) is 2. For larger session
pool sizes, the connector requires more memory.
++++InputQueue This property gives the name of the input queue that Yes
the listener polls for inbound messages from web
services. If LookupQueuesUsing[NDI = true, the
listener looks up this queue using JNDI and the value
of the InputQueue property is set to the
jndiDestinationName attribute of the jms:address
element of the SOAP/IMS binding. The jms:address
element is specified in the wsdl:port section of the
WSDL document. If during WSDL generation you
select the SOAP/IMS listener, System Manager
automatically creates the jndiDestinationName attribute
using the value of this property. If
LookupQueueUsing]NDI = false, then System
Manager creates the jmsProviderDestinationName
attribute instead.
++++InProgressQueue This property gives the name of the in-progress queue. Yes
The listener sends copies of inbound messages from the
InputQueue to InProgressQueue. If
LookupQueuesUsing]NDI = true, the listener looks up
this queue using JNDI.
++++ArchiveQueue This property gives the name of the archival queue. The No
listener sends copies of successfully processed messages
from the InProgressQueue to ArchiveQueue. If
LookupQueuesUsing]NDI = true, the listener looks up
this queue using JNDI.
++++UnsubscribedQueue This property gives the name of the unsubscribed No
queue. The listener sends copies of unsubscribed
messages from the InProgressQueue to
UnsubscribedQueue. If LookupQueuelsing][NDI =
true, the listener looks up this queue using JNDI.
++++ErrorQueue This property gives the name of the error queue. The No
listener sends copies of failed messages to the
ErrorQueue. If LookupQueuellsing]NDI = true, the
listener looks up this queue using [NDI.

98 Adapter for Web Services User Guide



Table 41. SOAP/JMS protocol listener-specific configuration properties (continued)

Name

++++InDoubtEvents

++++ReplyToQueue

++++ JMSVendorURI

Default
Possible values value Required

This property specifies how to handle messages in the ~ Ignore No
InProgressQueue that are not fully processed due to

unexpected connector termination. It can take one of

the following values:

+ FailOnStartup Log an error and immediately
shutdown

* Reprocess Process the remaining messages in the
InProgressQueue

* Ignore Disregard any messages in the in-progress
queue

* LogError Log an error but do not shutdown

This property gives the name of the ReplyTo queue. The
WSDL Configuration Wizard reads this property and
writes it to the WSDL document. If this property is not
specified, the utility does not create a ReplyTo JMS
header in the SOAP/JMS binding in the WSDL
document. (The listener does not use this property.) If
JNDI properties are specified and
LookupQueuelsing]NDI = false, the WSDL
Generation Ultility still create [NDI specific attributes
in the WSDL document. Note that these [NDI-specific
attributes are required because the SOAP/JMS binding
does not provide any way to specify a ReplyTo attribute
without JNDI. Though JNDI lookup for the
InputQueue is not required, [NDI-specific properties
are required for the ReplyTo queue. If the WSDL utility
does not find [NDI-specific properties, the utility
cannot create a ReplyTo attribute in the SOAP/IMS
binding.

A string that uniquely identifies the [MS No
implementation and that corresponds to the
jmsVendorURI attribute of the jms:address element of
the SOAP/IMS binding. The jms:address element is
specified in wsdl:port section of the WSDL document.
The listener does not use this property. This property is
enabled for transformation of bidirectional languages.

shows the properties as displayed in Connector Configurator.

Chapter 4. Web services connector

99



B8] connector Configurator - ICS - WebServicesConnector : Sample

File

Edit Wiew ‘Window Help

[osHa 5c8 5 6 »

Standard Proper... l Connector-Spe... I Supported Busi... ] Associated Maps l Resources ] TracelLog Files ] Messaging ] Ciata Handler I
Froperty Yalue Encrypt | Update Method
1 Connector Type WebService |l agent restart
2 B ProtocoHandlerFramessork | agent restart
3 |DataHandlerMetaOhjectMame  |MO_DataHandler_Default |l agent restart
4 B MO [ agent restart
E B PratocollistenerFramesork | agent restart
B Winrker ThreadCourt 10 | agent restart
7 RequestPoolSize 20 |l agent restart
g B ProtocolListeners | agent restart
<l B S0APHTTPListener |l agent restart
10 A SOAPHTTPSListener r agent restart
1 B =0&PMEListensr - agent restart
12 Protocol |l agent reztart
3] SOAPDHMImeType xmhizoap |l agent restart
14 InpLtcusUe ORDER_IMPUT |l agent restart
il InProgressdueus ORDER_INPROGRESS Il agent restart
16 ArchiveQueue ORCER_ARCHINE |l agent restart
17 UnzubscribedQuens  |ORDER_UNSUBSCRIBED |l agernt restart
18 ErrorQueus ORDER_ERROR |l agent restart
19 InCouktEvents Reprocess |l agent restart
20 ReplyToGueus ORDER_REPLYTO |l agent restart
| JMSvendarUR] |l agernt restart
22 RequestyaitTimeout  |G0000 |l agent restart
23 BOPrefix |l agent reztart
24 SezzionPoolSize 2 | agent restart
25 | B ProxyServer I agent restart
26 | B =sL [ agent restart

[ hm [ g

Figure 35. SOAP/JMS protocol listener properties

Note: Make sure that queue names specified in following properties are unique:

* InputQueue

¢ InProgressQueue

* ArchiveQueue

* UnsubscribedQueue

* ErrorQueue
ProxyServer: Configure the values under this property when the network uses a
proxy server. This is a hierarchical property and has no value. The values specified
under this property are used by the SOAP/HTTP/HTTPS protocol handlers.

shows the ProxyServer properties as displayed in Connector
Configurator and discussed below.

100 Adapter for Web Services User Guide



Etnnnectnr Configurator - [ICS - WebServicesConnector : Sample]
| Fil=  Edit

Wiew wWindomw  Help

=181 ]

=== - M=

Standard Prop... l Connector-Spe.. I Supported Bu.. ] Associated Maps | Resources | Trace/Log Files | Messaging ] Data Handlerl

Property Walue Encrypt | Update Method Description

1 ConnectorType WiehService I agent restart
2 B ProtocolHandlerFrameswark I agent restart
3 |DataHandlerbetaObjectiame (WO _DataHandler_Detau I agent restart
4 B Juoi I agent restart
5 H ProtocollistensrFramework I agent restart
=1 B ProxyServer I agent restart
7 HttpProxyHost proxyHostHtR I agent restart
i HttpPr ooy Port a0 Il agent restart
9 HttpklonProxyHosts I agent restart
10 HttpsMonProxyHosts I agent restart
11 HitpProxyHost proxyHostHtps I agent restart
12 HitpsProxyPort 443 I agent restart
13 SocksProxyHost Il agent restart
14 SocksProxyPort I agent restart
15 HttpProxyUsername hitpProxyUser I agent restart
16 HitpPr oy Pazsaard REARERER = agent restart
17 HttpeProxyllzername hitpsProxyllzer I agent restart
18 HttpeProxyPassward REARERRS I agent restart
19 | @ =50 I agent restart
x| Saving Supported Business Objects. .. ;I

- Saving Associated Maps ...

Saving Resource...

Saving Logging and Tracing...

Connector "WehServicesConnector' s saved successiully.

7]

B

[ w4

Figure 36. ProxyServer properties

HttpProxyHost: The host name for the HTTP proxy server. Specify this property if
the network uses a proxy server for HTTP protocol.

Default = none

HttpProxyPort: The port number that the connector uses to connect to the HTTP
proxy server.

Default = 80

HttpNonProxyHosts: The value of this property gives one or more hosts (for
HTTP) that must be connected not through the proxy server but directly. The value
can be a list of hosts, each separated by a " 1".

Default = none

HttpsProxyHost: The host name for the HTTPS proxy server.

Default = none

HttpsProxyPort: The port number that the connector uses to connect to the
HTTPS proxy server.

Chapter 4. Web services connector 101



Default = 443

HttpsNonProxyHosts: The value of this property gives one or more hosts (for
HTTPS) that must be connected not through the proxy server but directly. The
value can be a list of hosts, each separated by a " |".

Default = none

SocksProxyHost: The host name for the Socks Proxy server. Specify this property
when the network uses a socks proxy.

Note: The underlying JDK must support socks.
Default = none

SocksProxyPort: The port number to connect to the Socks Proxy server. Specify
this property when the network uses a socks proxy.

Default = none

HttpProxyUsername: The username for the HTTP proxy server. If the destination
for the web service request is an HTTP URL and you specify ProxyServer
->HttpProxyUsername, the SOAP HTTP/HTTPS protocol handler creates a
Proxy-Authorization header when authenticating with the proxy. The handler uses
the CONNECT method for authentication.

The proxy-authentication header is base64 encoded and has the following
structure:

Proxy-Authorization: Basic

Base64EncodedString

The handler concatenates the username and the password property values,
separated by a colon (:), to create the base64 encoded string.

Default = none

HttpProxyPassword: The password for the HTTP proxy server. For more on how
this value is used, see |"HttpProxyUsername.”|

Default = none

HttpsProxyUsername: The username for the HTTPS proxy server. If the
destination for the web service request is an HTTPS URL and you specify
ProxyServer ->HttpsProxyUsername, the SOAP HTTP/HTTPS protocol handler
creates a Proxy-Authorization header for authentication with the proxy. The
handler concatenates the HttpsProxyUsername and HttpsProxyPassword
configuration property values, separated by colon (:), to create the base64 encoded
string.

Default = none

HttpsProxyPassword: The password for the HTTPS proxy server. For more on
how this value is used, see [“HttpsProxyUsername.”|

Default = none

102 Adapter for Web Services User Guide



SSL: Specify values under this property to configure SSL for the connector. This is
a hierarchical property and has no value.

shows the SSL properties as displayed in Connector Configurator and
discussed below.

Standard Froperies | Application Config Properdies I Supported Business Ohjects ] TraceiLog Files | O

Properhy Value Updata Encrypt | Description
1 DataHandlerMetaCbjectiame WO _DataHandier_Default agent restart r
2 | ConnectorType VWishService agent restart -
3 H ProxyServer agent restart -
4 |8 550 agent restart r
5 SELYersion 5L agent restart r
G SSLDebuy Falze agent restart -
7 KeyStareType JES agent restart r
i Heystore agent restart r
El WeyStorePazswaord agent restart r
10 KeyStoreslias agent restart -
" TrustStore agent restart r
12 TrustStorePasswiord agent restart r
13 UseClientiuth Falze agent restart -
14 | B ProtocollistenerFramesvork agent restart -
15 | A ProtocoHandlerFramewark agent restart r
16 | B JuCI agent restart r
17 | B wsCollaborations agent restart -

Figure 37. SSL properties

SSLVersion: The SSL version to be used by the connector. For further information,
see IBM JSSE documentation for the supported SSL versions.

Default = SSL

SSLDebug: If value of this property is set to true, the connector sets the value of
thejavax.net.debug system property to true. IBM JSSE uses this property to turn
on the trace facility. For further information, refer to IBM JSSE documentation.

Default = false

KeyStoreType: The value of this property gives the type of the KeyStore and
TrustStore. For further information, see IBM JSSE documentation for valid keystore

types.

Default = JKS

KeyStore: This property gives the complete path to keystore file. If KeyStore
and/or KeyStoreAlias properties are not specified, KeyStorePassword,
KeyStoreAlias, TrustStore, TrustStorePassword properties are ignored. The
connector will fail to startup if it cannot load the keystore using the path specified
in this property. The path must be the complete path to the keystore file.

Default = None

Chapter 4. Web services connector 103



KeyStorePassword: This property gives the password for the private key in the
Keystore.

Default = None

KeyStoreAlias: This property gives the alias for the key pair in the KeyStore.
SOAP/HTTPS listeners use this private key from the KeyStore. Also, the
SOAP/HTTP-HTTPS protocol handler uses this alias from the KeyStore when
invoking web services that require client authentication. The property must be set
to a valid JSSE alias.

Default = None

TrustStore: This property gives the complete path to the TrustStore. TrustStore is
used for storing the certificates that are trusted by the connector. TrustStore must
be of the same type as KeyStore. You must specify the complete path to the
TrustStore file.

Default = None
TrustStorePassword: This property gives the password for the Truststore.
Default = None

UseClientAuth: This property specifies whether SSL client authentication is used.
When it is set to true, SOAP/HTTPS listeners use client authentication.

Default = false

WSCollaborations: This property is created automatically when you expose a
collaboration object as a web services and is used for non-TLOs. This is a
hierarchical property and has no value. Each first-level child of this property
represents a collaboration exposed as a web service. For information on the tools
used to automatically create these properties, see [Chapter 7, “Exposing|
fcollaborations as web services,” on page 147

Note: If you delete a collaboration or its port in System Manager, the connector
will not automatically delete the properties representing the collaboration.
You must delete these properties using Connector Configurator.

shows WSCollaborations properties as displayed in Connector
Configurator and discussed below.

104 Adapter for Web Services User Guide



Standard Properies | Application Config Properies | Supported Business Objects | TracefLog Files | D

Froperhy Walue Update Encrypt | Description
1 DataHandliertetatbjecthame WO _DataHandlier_Detaul agert restart r
2 |ConnectorType WishService agert restart r
3 H ProxyServer agent restart [
4 B s5L acent restart [
5 H ProtocolliztenetFramesark agent restart r
£ H ProtocolHandierFramesark agent restart r
v B JmCi acent restart [
g B wWiCollsborations acent restart [
3 B Collsboration agent restart r
10 B ColisborstionPort agent restart r
11 H WebZerviceQperation agent restart [
12 BodyMame agent restart [
13 Buoody s agert restart r
14 BOMame agent restart r
15 BOerk acent restart [
16 Synchronous agent restart [
Figure 38. WSCollaborations properties

Collaborationl: This property names the collaboration object that is exposed as
web service via this connector. This is a hierarchical property and has no value.
There can be multiple such properties, one for each of collaboration object that is
exposed as a web service. Each first-level child of this property represents a port of
this collaboration object.

CollaborationPortl: This property names the collaboration port. This is a
hierarchical property and has no value. There can be multiple such properties, one
for each of the ports of this collaboration that are bound to the connector. Each
first- level child of this property represents a web services operation.

WebServiceOperationl: This property represents a web services operation for the
collaboration object. This is a hierarchical property and has no value. There may be
one or more such properties, one for each of the web services operation defined by
the user at the time of WSDL document generation.

BodyName: This property gives the name of the web service method and must be
a valid XML element name.

Default = none

BodyNS: This property gives the namespace of the web service method and must
be a valid XML namespace.

Default = none

BOName: This property gives the name of the Request business object for this
operation.

Default = none

Mode: This property specifies the processing mode for the operation. It it is set to
synch, the connector synchronously invokes the collaboration. Otherwise and by
default, the connector asynchronously invokes the collaboration as a request only
operation.

Chapter 4. Web services connector 105



Default = asynch

JNDI: The connector maintains one set of JNDI (Java Naming and Directory
Interface) provider properties that are used by the SOAP/JMS protocol handler
and JMS protocol listener when connecting to JNDL This is a hierarchical property
and has no value. The connector uses JNDI to lookup the JMS connection factory
object. Note that the WSDL Configuration Wizard uses this property when
generating SOAP/JMS bindings.

shows JNDI properties as displayed in Connector Configurator and
discussed below.

Standard Propedies | Application Config Properies I Supported Business Objects ] TracefLog Files | D

Froperty Walue Update Encrypt | Description
1 DataHandleretaOhjectiame mO_DataHandler_Default agent restart [
2 |ConnectorType WiehService anert restart r
3 H ProxyServer agent restart [
4 B s5L agent restart [
5 H ProtocollistenerFrameswork agent restart r
] B ProtocolHandlerFramesvork agent restart [
i I= agent restart r
g Lookup@ueueszing MO Falze agent restart [
g InttialContextFactory anert restart r
10 JMDIConnectionFactoryMame agent restart [
11 CTH_OhjectFactories agent restart [
12 CT¥_StateFactories agert restart r
13 CTH_URLPackagePrefixes agent restart [
14 CT¥_DM=_LIREL agent restart r
13 CTH_Authoritative agent restart [
16 CT¥_Batchsizre anert restart r
17 CTH_Referral agent restart [
13 CTH_SecurityProtocol agent restart [
19 CTH_Security Authertication agert restart r
20 CTH_SecurityPrincipal agent restart [
21 CTH_SecurityCredertials anert restart r
22 CTH_Language agent restart [
23 | B wWsCollaborations agent restart [

Figure 39. JNDI properties

LookupQueuesUsingJNDI: If the value of this property is set to true, the
connector’s SOAP/JMS listeners and SOAP/JMS protocol handler will look up
queues using JNDI

Default = false

JNDIProviderURL: This property gives the URL of the JNDI service provider,
which corresponds to jndiProviderURL attribute of the jms:address element of the
SOAP/JMS binding. The jms:address element is specified in the wsdl:port section.
This is used as the default JNDI provider and must be a valid JNDI URL. For
further information, see JNDI specifications.

This property is enabled for transformation of bidirectional languages.

106 Adapter for Web Services User Guide



Default = none

InitialContextFactory: This property gives the fully qualified class name of the
factory class (for example, com.ibm.NamingFactory)that creates an initial context.
Note that this corresponds to the initialContextFactory attribute of the jms:address
element of the SOAP/JMS binding. The jms:address element is specified in the
wsdl:port section.

Default = none

JNDIConnectionFactoryName: This property gives the name of the connection
factory to look up using JNDI context. Note that this corresponds to the
jndiConnectionFactoryName attribute of the jms:address element of the SOAP/JMS
binding. The jms:address element is specified in the wsdl:port section.

Default = none

CTX Properties: Properties specifying additional information about security and
object lookup in the JNDI context. [Table 42 summarizes these properties. The +
character indicates the entry’s position in the property hierarchy.

The +CTX_DNS_URL property is enabled for transformation of bidirectional
languages.

Table 42. Java Naming and Directory Interface (JNDI) provider properties

Property Name Description

+CTX_ObjectFactories Properties specifying additional information about
+CTX_StateFactories security and object lookup in the JNDI context. See
+CTX_URLPackagePrefixes J2EE documentation for more information. These
+CTX_DNS_URL properties reflect those used by the Adapter for
+CTX_Authoritative JMS.

+CTX_Batchsize
+CTX_Referral
+CTX_SecurityProtocol
+CTX_Secutiry Authentication
+CTX_SecurityPrincipal
+CTX_SecurityCredentials
+CTX_Language

Creating multiple protocol listeners

You can create multiple instances of protocol listeners. Protocol listeners are
configured as child properties of the ProtocolListenerFramework ->
ProtocolListeners connector property. Each child (of ProtocolListenerFramework ->
ProtocolListeners) identifies a distinct protocol listener for the connector.
Accordingly, you can create additional protocol listeners by configuring new child
properties under the ProtocolListeners property. Make sure that you specify all of
the child properties of the newly created listener property. Each listener must be
uniquely named. However, you do not change the listener Protocol property
(soap/http, soap/https, or soap/jms), which remains the same for multiple
instances of a listener.

Note: The Protocol property is very important because it serves as a switch. If you
do not want to use a listener or a handler, leave this property empty.

Chapter 4. Web services connector 107



If you are creating multiple instances of a SOAP/HTTP or SOAP/HTTPS listener,
be sure to specify different Port and Host properties for each instance. If you are
specifying multiple SOAP/JMS listeners, be sure to use a different set of queues
for each instance.

You cannot create multiple instances of a handler. There can be only one handler
for each protocol.

Connector at startup

When you start the connector, the init() method reads the configuration
properties that were set using System Manager’s Connector Configurator. For
proper functioning, be sure not to disable connector polling (connector polling is
enabled by default). The sections below describe what occurs.

Proxy setup

If you specify the ProxyServer connector-specific property, the connector sets up
the proxy system properties. A proxy server is used with the SOAP/HTTP-HTTPS
protocol handler for request processing only. The connector also traces each of the
system properties it sets up. For more on the ProxyServer property, see
[“Connector-specific configuration properties” on page 89

JNDI initialization

The connector-specific property JNDI specifies the JNDI to be used by the
connector. The connector uses JNDI to lookup the JMS Connection Factory object.
If JNDI ” LookupQueuesUsing]NDI is set to true, the connector looks up JMS
queue objects using JNDI.

If you do not want to use SOAP/JMS (the SOAP/JMS protocol listener and
SOAP/JMS protocol handler), you need not specify JNDI properties. If you specify
JNDI properties and the connector cannot initialize JNDI, the connector terminates.
Note that the connector will not initialize JNDI unless all of the following
connector-specific JNDI properties are specified:

e JNDIProviderURL
* InitialContextFactory
* JNDIConnectionFactoryName

Note: JNDI implementation is not provided with the connector

Protocol listener framework initialization

During startup the connector instantiates the protocol listener framework and
initializes it. This framework reads the connector-specific property
ProtocolListenerFramework, The connector then reads the value of WorkerThreads
and RequestPoolSize connector properties. If the ProtocolListenerFramework
property is unspecified or missing, the connector cannot receive requests from web
service clients and logs a warning.

The connector next reads the ProtocolListenerFramework -> ProtocolListeners
property. All the first-level properties of the ProtocolListeners property represent
protocol listeners. The protocol listener framework attempts to load and initialize
each of the listeners and traces them. If persistent event capable, the listener
attempts an event recovery.

108 Adapter for Web Services User Guide



Protocol handler framework initialization

The connector reads the connector-specific property ProtocolHandlerFramework
and instantiates and initializes the protocol handler framework. If this property is
missing or not set properly, the connector cannot perform request processing and
logs a warning. Next the connector reads all the ProtocolHandlerFramework ”
ProtocolHandlers properties, which correspond to protocol handlers, and attempts
to load, initialize, and trace them. Note that the protocol handlers are loaded
during connector initialization and are not instantiated when a collaboration makes
a service request. The protocol handlers are multi-thread safe.

Logging

The connector logs a warning when:

* the ProtocolListenerFramework property is not specified. The connector warns
that it cannot perform event notification. (Collaborations exposed as web
services cannot be invoked by the connector.)

¢ the ProtocolHandlerFramework property is not specified. The connector warns
that it cannot perform (collaboration) request processing.

Tracing

Tracing is an optional debugging feature you can turn on to closely follow
connector behavior. Trace messages, by default, are written to STDOUT. See the
connector configuration properties for more on configuring trace messages. For
more information on tracing, including how to enable and set it, see the Connector
Development Guide for Java.

Connector trace levels are as follows:

Level 0 This level is used for trace messages that identify the connector
version.
Level 1 Trace each time the pollForEvents method is called. Trace the TLO

name created by listeners for delivery to ICS. Trace the Request
business object name and the corresponding attribute name in the
TLO.

Level 2 Use this level for trace messages that log each time a business
object is posted to InterChange Server, either from gotAppl1Event ()
or executeCollaboration(). Also, trace which protocol handler is
processing the request.

Level 3 Trace the ASI of the business object being processed. Trace
attributes of the business object being processed. Trace the TLO of
the SOAP Request business object during event notification. Trace
the business object returned by the data handler.

Level 4 Trace the transport headers associated with:

* a SOAP request message retrieved by the protocol listener from
the transport

* a response message sent to the client by the protocol listener.

Trace the spawning of threads, all ASI that is processed, and all
entries and exits of important functions.

Level 5 Trace the following:
* the entries and exits for each important method

Chapter 4. Web services connector 109



110 Adapter for Web Services User Guide

all of the configuration-specific properties
the loading of each of the protocol listeners

the request message retrieved by the protocol listener from the
transport

the response message sent on the transport to the client by the
protocol listener

the loading of each protocol handler

the messages returned by the SOAP data handler

business object dumps of the TLO sent to the collaboration
dumps of the business objects returned by the data handler.



Chapter 5. SOAP data handler
« |"Configuring the SOAP data handler”]
+ [“SOAP data handler processing” on page 117

* |“SOAP style and use guidelines” on page 143

* ["XML limitations” on page 144|

The SOAP data handler is a data-conversion module whose primary roles are to
convert business objects into SOAP messages and SOAP messages into business
objects. The SOAP data handler performs the following functions:

* Request Processing
— SOAP request business object to SOAP request message
— SOAP response message to SOAP response business object
— SOAP fault message to SOAP fault business object

¢ Event Processing
— SOAP request message to SOAP request business object
— SOAP response business object to SOAP response message
— SOAP fault business object to SOAP fault message

This chapter describes how to configure the SOAP data handler, how the SOAP
data handler processes messages and objects, and how to customize the data
handler.

Configuring the SOAP data handler

The SOAP data handler is a pivotal component in the connector for web services.
The connector calls the SOAP data handler to transform business objects into web
services-compliant SOAP messages.

When collaborations are exposed as web services, the connector also calls the
SOAP data handler. The data handler then transforms SOAP messages sent from a
remote trading partner (or internal client) into business objects. The connector
passes the business objects to collaborations that have been configured for web
services.

The information in data handler meta-objects plays a crucial role in these
transformations. You configure this information after you install the product files,
but before startup. Unless you are adding a custom name handler, you can use the
default SOAP data handler configuration to save time. You must, however,
configure specific meta-object information for each data handler transformation.
Data handler meta-objects are discussed in the sections below.

Meta-object requirements

Meta-objects are business objects that contain configuration information. The
connector uses meta-objects at runtime to configure the data handler and create
instances of it. The SOAP data handler also uses meta-objects to locate the body of
a SOAP message, to determine the business object and verb that the body
corresponds to, to encode a business object in a SOAP message, and to perform a
number of other tasks discussed in this chapter. This section describes
requirements for these meta-objects.

© Copyright IBM Corp. 2003, 2004 111



Meta-object hierarchy and terminology
shows the meta-object structure for the adapter for web services product.
The meta-objects are named in bold in the illustration and discussed below.

MO_DataHandler_Default

MO_DataHandler_DefaultSOAPConfig

ClassName

SOAPNameHandler

DefaultNameResolution

SOAPVersion

Figure 40. Meta-object structure

The following terminology is used throughout this document when discussing

meta-objects:

* MO_DataHandler_Default Data handler meta-object used by the connector agent
to determine which data handler to instantiate. This is specified in the
DataHandlerMetaObjectName property of the connector.

* MO_DataHandler_DefaultSOAPConfig Child data handler meta-object specifically
for the SOAP data handler.

* SOAP Configuration Meta-Object (SOAP Config MO) A meta-object specified as
child of each SOAP business object and that contains the configuration
information for a single transformation from business object to SOAP message or
vice-versa.

MO_DataHandler_Default

The MO_DataHandler_Default is the top-level meta-object for all data handlers
that are called from connectors. The MIME type contained in these meta-objects
determines which data handler to use. The connector agent uses this meta-object to
create instances of the SOAP data handler. Accordingly, the
MO_DataHandler_Default object must include an attribute named xm1_soap that is
of type MO_DataHandler_DefaultSOAPConfig.

You can configure the MO_DataHandler_Default object after installing it. You must
add xm1_soap of type MO_DataHandler_DefaultSOAPConfig.

MO_DataHandler_DefaultSOAPConfig

The connector agent uses this meta-object to create and configure the SOAP data
handler at runtime. The MO_DataHandler_DefaultSOAPConfig has two attributes
of type string that designate:

* The class name for the SOAP data handler

* The SOAP name handler

e A default name resolution when the custom name handler fails
* The SOAP version (1.1 or 1.2)

These attributes are shown in [Table 43

Unless you wish to implement a custom name handler, which is discussed later in
this chapter, you can use the MO_DataHandler_DefaultSOAPConfig as delivered

112 Adapter for Web Services User Guide



and installed. No configuration is needed.

Table 43. Meta-object attributes for MO_DataHandler_Default SOAPConfig

Name Type Default value Description
ClassName String com.ibm.adapters Standard attribute used by the
.dataHandlers.xml. soap data handler base class to find

the class name based on a MIME
type passed into the
createHandler method.

SOAPName String Name of the SOAP name handler

Handler to use.

DefaultName  String false Determines whether default

Resolution name resolution is used if the
custom name handler fails.

SOAPVersion  String 1.1 Determines the SOAP standard

(1.1 or 1.2) that the data handler
uses to read and write SOAP
messages.

SOAP configuration meta-object: child of every SOAP business
object

A SOAP Config MO defines the data formatting behavior for one data handler
transformation — either a SOAP-message-to-business-object or
business-object-to-SOAP-message transformation. A SOAP Config MO is a child of
a SOAP business object. These child SOAP Config MOs are critical for default
business object resolution. When using default business object resolution, all child
SOAP Config MOs, whether for a request, response, or fault object, must have
unique entries for default values of BodyName and BodyNS. shows these
and other attributes of a SOAP Config MO.

Table 44. Attributes for SOAP Config MOs

Name Required Description

BodyNS Yes Namespace to be used for SOAP body.

BodyName Yes Name of the body of the SOAP message. For SOAP fault,
set the default value to soap:fault.

BOVerb Yes Verb of the business object that contains the SOAP Config
MO.

Typelnfo No True or false attribute that dictates whether type

information (xsi:type) is written to and read from a SOAP
element. Default = false

TypeCheck No This property is read only if Typelnfo is set to true.
Possible values are none and strict. If none, type
validation is skipped when reading SOAP messages into
this business object. If strict, the data handler will
strictly validate all SOAP type names and namespaces
against the business object’s application-specific
information. Default = none

Style No This property dictates the SOAP message style and has
implications for other attributes such as BodyName and
BodyNS. The possible values for this attribute are rpc and
document. Default = rpc

Use No This property dictates the SOAP message’s use and affects
how the SOAP body is constructed from a business object.
The possible values are 1iteral and encoded. The default
is Titeral.

Chapter 5. SOAP data handler 113



|Ei§ure 41: shows the relationship between a SOAP business object and a SOAP
Config MO.

SOAP Business Object

BO Level ASI
cw_mo_soap = SOAPCfgMO
cw_mo_jms = SOAPJMSCfgMO
Orderld string
OrderNum string
SOAPCfgMO  SOAP Config MO

SOAPCfgMO

BodyName
BodyNS
BOVerb
Typelnfo
TypeCheck

Style
Use

Figure 41. SOAP configuration meta-object

shows a SOAP response business object and its child business object. The
child business object, SOAPCfgMO, is a SOAP Config MO that specifies the
behavior for the SOAP data handler for a transformation from a business object
response to a SOAP response message. The attribute indicating the child SOAP
Config MO must use the name-value pair beginning cw_mo_soap.

By convention, when reading business object level application-specific information
beginning with cw_mo_, the data handler recognizes that the child object specified
in the name-value pair contains transformation meta-object information and
therefore does not include this child as content in the body of the message it is
transforming. In the example, the child objects indicated by the name-value pairs
cw_mo_jms and cw_mo_soap are recognized as meta-objects and not written into the
SOAP response message. In addition, the SOAP data handler ignores all business
object level application-specific information beginning with cw_mo_ except for
cw_mo_soap. Accordingly, the SOAP data handler ignores the application-specific
information such as cw_mo_tpi. But the SOAP data handler reads and uses the
SOAP Config MO specified in cw_mo_soap to execute the SOAP response
transformation from business object to SOAP message.

All SOAP business objects must have child SOAP Config MOs and these must be
specified as application-specific information at the business object level. Much of
this is automated: when you use the WSDL ODA to generate business objects for
SOAP messages, the SOAP Config MOs are automatically generated for you.

114 Adapter for Web Services User Guide



Style and Use impact on SOAP messages

The SOAP Config MO optional properties, Style and Use, affect the way that SOAP
messages are created. The possible values for Style are rpc and document, and for
Use are Titeral and encoded. The sections below discuss how the Style and Use
combinations impact SOAP message creation.

rpc/literal: When the Style property is set to rpc and the Use property to Titeral,
the Body Name and Body Namespace for a SOAP Message are read from the
SOAP ConfigMO'’s BodyName and BodyNS properties, respectively.

The following is an example of an rpc/literal style message where the Body
Name and Body Namespace have been resolved to getOrderStatus and
OrderStatusNS respectively:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=Thttp://schemas.xmlsoap.org/soap/envelope/i
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<SOAP-ENV:Body>
<nsl:getOrderStatus xmlns:nsl="http://www.ibm.com/">
<Partl>
<ns2:Eleml xmins:ns2="http://www.ibm.com/eleml">
<Child1>1</Childl>
<Child2>2</Child2>
</ns2:Eleml>
<ns3:Eleml xmins:ns3="http://www.ibm.com/eleml">
<Child1>3</Childl>
<Child2>4</Child2>
</ns2:Eleml>
<Elem2>10</ETem2>
</Partl>
</nsl:getOrderStatus>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

shows the corresponding business object for this rpc/Titeral message.

Mame Type Key |Card Default App Spec Info
= Part1 SOAP_Part] Type ¥ |1
B Elem SOAP_MaxType F | f?f::ffﬁ:;iﬂ:&ﬂfhﬂp
Chile1 String =l
Chilei2 String |l
ObjectEventld | String
Elzm2 String -
ObjectEvertld String
B SOAPCONfigMO  |SOAP Reg Cfg MO | [ |1
BodyMame String I~ getOrderStatus
BodyhNS String - hittp: S jbm.com
BOVerh String - Retrieve
Typelnfo String - falze
TypeCheck String Il none
Style String I rpc
Use String | literal

Figure 42. rpc/literal SOAP Config MO

Note: You must configure these properties and business object attributes
appropriately so that a corresponding SOAP message is created.

Chapter 5. SOAP data handler 115



rpc/encoded: When the Style property is set to rpc and Use is set to encoded, the
Body Name and Body Namespace for a SOAP Message are read from the Child
ConfigMO’s BodyName and BodyNS properties respectively. Also, the
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" attribute
is added to the Body tag.

The following is an example of an rpc/encoded message where the Body Name
and Body Namespace have been resolved to getOrderStatus and OrderStatusNS
respectively.

<?xml version='1.0"' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">
<SOAP-ENV:Body SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">
<nsl:getOrderStatus xmlns:nsl="http://www.ibm.com/">
<Partl xsi:type="ns1:SOAP_PartlType">
<ns2:Eleml SOAP-ENC:arrayType="ns2:SOAP_MaxType[2]"
xsi:type="SOAP-ENC:Array" xmIns:ns2="http://www.ibm.com/eleml">
<item>
<Childl xsi:type="xsd:string">1</Childl>
<Child2 xsi:type="xsd:string">2</Child2>
</item>
<item>
<Childl xsi:type="xsd:string">3</Childl>
<Child2 xsi:type="xsd:string">4</Child2>
</item>
</ns2:Eleml>
<Elem2 xsi:type="xsd:string">10</Elem2>
</Partl>
</nsl:getOrderStatus>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

shows the corresponding business object for this rpc/encoded message.

Mame Type K Card Default App Spec Info |
H Part1 SOAP_Part! Type 1
B Elem SOAP_MaxType N I S R (e,
ibm.cotmielem?
Chiled1 String
Chilel2 String
ObjectEventld  String
Elemz2 String

ObjectEventid | String
B S0aPConfighO  |SOAP_Req_Cfg_MO

o | | e 5 o e | et W | 4

BodyMame String getOrderStatus
BodyMNS String hittp: e ibm com
BOVerk String Retrieve

Typelnfo String true

TypeCheck String none

Style String rpc

Use String encoded

Figure 43. rpc/encoded SOAP Config MO

document/literal: When the Style property is set to document and the Use
property is set to Titeral, an all encompassing Body Name tag will not exist. This
is an example of a document style SOAP message based on the above BO:

116 Adapter for Web Services User Guide



<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<SOAP-ENV:Body>
<nsl:Eleml xmlns:nsl="http://www.ibm.com/eleml">
<Child1>1</Childl>
<Chi1d2>2</Child2>
</nsl:Eleml>
<ns2:Eleml xmlns:ns2="http://www.ibm.com/eleml">
<Child1>3</Child1l>
<Child2>4</Child2>
</ns2:Eleml>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

shows the corresponding business object for this document/1iteral
message.

Matme Type Key |Card Default App Spec Info
5 Elemi SOAP_Flem P 1 maxoccqrs:S;elem_ns:hﬂp
ey im .comielemt
Chilett String Ird
Chilei2 String r
ObjectEverntid String
B SOAPConfigMO  |SOAP_Req_Cfg_ Mo | [T |1
BodyMame String I getOrderstatus
BodyNS String | ttg: S jlam com
BOVerh String - Retrieve
Typelnfao String Il falze
TypeCheck String - none
Style String Il document
Use String |l literal

Figure 44. document/literal SOAP Config MO

Note that the encodingStyle attribute in the XML code fragment has not been set.

document/encoded: This Style/Use combination is not supported. The data
handler fails if it encounters a SOAP ConfigMO with Style set to document and Use
set to encoded.

SOAP data handler processing

The SOAP data handler performs transformations between SOAP messages and
business objects in the following ways:

* SOAP message to business object processing

— Request-message-to-SOAP-request-business-object data handling occurs at that
stage in event processing when web service clients make calls to
collaborations exposed as web services

- Response-message-to-SOAP-response-business-object data handling occurs
during request processing when a web service returns a SOAP response
message to a collaboration that had invoked it. Alternatively,
fault-message-to-SOAP-business-object data handling may occur at this phase.

For a detailed description of this processing, see [‘SOAP-body-message-to-|
[pusiness-object processing” on page 118|later in this section.

* Business object to SOAP message processing

Chapter 5. SOAP data handler 117



— Business-object-to-SOAP-response-message data handling occurs during event
processing when a response business object is returned by the collaboration
that is exposed as a web service. Alternatively, fault business
object-to-SOAP-fault-message data handling may occur at this phase.

— Business-object-to-SOAP-request-message data handling occurs at that phase
of request processing when a collaboration makes a service call to the
connector to convert a business object to a SOAP request message.

For a detailed description of this processing, see [“Business-object-to-SOAP-|
[message-body processing” on page 120|later in this section.

SOAP-body-message-to-business-object processing

This section provides a step-by-step description of the SOAP-body-message-to-
business-object transformation.

1.
2.
3.

The SOAP data handler receives a SOAP message.
Using Apache SOAP APIs, the data handler parses the SOAP message.

The data handler extracts the components of the SOAP message: envelope,
header, and body.

Header processing For more, see [“SOAP-header-message-to-business-obiject]
[processing” on page 119

Body processing The data handler reads the first element of the SOAP body to
determine if it carries a fault or data. If the body content is not a fault, the data
handler does the following;:

a. Performs business object resolution to determine which business object will
be used in the transformation. If you have configured a custom name
handler, the default business object resolution discussed below may not
apply. For more on specifying a pluggable name handler, see
[plugeable name handler” on page 141.|

b. The data handler also resolves the SOAP Config MO (a child of the SOAP
business object that the data handler is creating) that will be used for the
transformation. If an instance of the SOAP Config MO does not exist, the
data handler creates an instance and reads its default values. From the
ConfigMO attribute values, the data handler reads the business object verb.
The data handler instantiates the SOAP business object and sets the verb

accordingly. This is the business object into which the data handler will
attempt to write the SOAP message.

c. The data handler continues parsing the SOAP message one element at a
time. For rpc, the data handler expects the first element to be the parent.

d. The data handler expects that the attributes of the business object (or its
application-specific information: for further information, see [*ASI iﬁ]
[business-object-to-SOAP-message transformations” on page 125) should
have the same name as the child elements. If the attribute is not found in
the business object, the data handler throws an exception. Child elements
may be of simple type or they may be of complex type. Complex elements
are those which have child elements.

e. Simple element If a child element is a simple element, by default, the data
handler expects a business object attribute with the same name (or ASI) as
that of a simple element. The data handler reads the value of the simple
element and sets it in the business object.

f. Complex element If a child element is of complex type, the data handler
expects the business object to have an attribute with the same name (or ASI)
and of type child business object. This attribute may be of single cardinality
or of multiple-cardinality depending on if there will be a complex SOAP

118 Adapter for Web Services User Guide



6.

element or SOAP array. Next the data handler instantiates the child business
object (by default, the type of the attribute gives the name of the child
business object) and reads all the child elements of this complex element,
setting their values in the child business object. The data handler sets this
child business object into the parent business object attribute after verifying
the cardinality of this attribute. If the attribute is cardinality n, the data
handler appends this business object to the container. The complex element
can have either simple or complex child elements. These are also handled in
the same way: if it is simple element, the data handler sets the value in the
child BO; if it is a complex element, the data handler instantiates a child
business object.

Fault processing The data handler reads the name of the first element of the
SOAP body to determine if it is a fault. If the name of the first element is
Fault, the data handler concludes that this is a fault message. Fault business
object resolution occurs to determine into which business object this fault
message should be transformed. The data handler then follows the same
processing as that for body processing. The data handler expects that the
business object specified in the child business object should have the following
attributes:

a. faultcode: Required. String attribute

b. faultstring: Required. String attribute
c. faultactor: Not required String attribute
d. detail: Not required. Child BO

If fault processing fails for any reason, the exception thrown will contain the
text from the faultcode, faultstring and faultactor elements in the SOAP fault
message

Note: According to SOAP specifications for fault messages, faultcode, faultstring,

and faultactor are simple elements whereas detail is a complex element (an
element with child elements). In addition, faultcode, faultstring, faultactor,
and detail belong to the SOAP envelope namespace, whereas detail child
elements may belong to user-defined namespaces.

SOAP-header-message-to-business-object processing

This section describes how the data handler converts the header of a SOAP
message into a business object.

1.

2.

3.

The SOAP data handler processes the body of a SOAP message. Body
processing creates a SOAP business object.

If the SOAP message has a SOAP header element, the SOAP data handler
expects a SOAP header attribute in the business object obtained from body
processing. The SOAPHeader attribute is the child attribute of a business object
and has soap_location=S0APHeader as its application-specific information. If
there is no such attribute, the SOAP data handler throws an error.

The SOAPHeader attribute must be of type SOAP Header Container business
object. The SOAP data handler creates an instance of this attribute in the SOAP
business object obtained in step 1.

For each immediate child of the SOAP-Env:Header element:

a. The data handler expects a child attribute in the SOAP Header Container
Business Object. The name of this attribute must be the same as that of the
header element and conform to the SOAP Header Child business object. If
the data handler cannot find such an attribute, it throws an error.
Additionally, the namespace of this element should be the same as specified

Chapter 5. SOAP data handler 119



in the elem_ns application-specific information of this attribute. If it is not
the same, the data handler throws an error.

b. The data handler creates an instance of the SOAP Header Child business
object and places it in the instance of SOAP Header Container business
object created in step 2.

c. If this header element has an actor attribute, the data handler expects an
actor attribute to exist in the child business object created above. If it
cannot find an actor attribute, the data handler throws an error.

Note: If you want to add an actor attribute, see [“Specifying SOAP|
attributes” on page 128)

d. If this header element has a mustUnderstand attribute, the data handler
expects a mustUnderstand attribute to exist in the child business object
created above. If it cannot find a mustUnderstand attribute, the data handler
throws an error.

Note: If you want to add a mustUnderstand attribute, see [“Specifying SOAP]
lattributes” on page 128

e. For each child element of this header element, the data handler expects an
attribute in the child business object with the same name. These elements
will be processed in same way as the child elements of SOAP-Env:Body
element.

Business-object-to-SOAP-message-body processing

The following is a step-by-step description of the business-object-to

SOAP-body-message transformation. For special cases involving

application-specific-information, see[“ASI in business-object-to-SOAP-message|

ftransformations” on page 125

1. The SOAP data handler looks for a SOAP ConfigMO that corresponds to the
SOAP business object it is transforming.

2. The data handler composes the envelope and header of the SOAP message.

3. The data handler resolves the SOAP ConfigMO. If an instance of the SOAP
ConfigMO does not exist, the data handler will create an instance and read
from the default values. By default, the data handler reads the value of the
BodyName attribute in the SOAP ConfigMO to determine whether it is
processing a fault business object. If it is set to soap:fault the business object is
considered a SOAP fault business object. If it is not a fault business object, the
data handler performs the processing described under composing body below,
else that described under composing fault.

4. Composing body The following steps detail the processing performed by the
data handler to compose the body of the SOAP message from a business object:

* The data handler obtains the BodyName and BodyNS from the SOAP
ConfigMO attributes and then composes the first (parent) element of the
body of the SOAP message. The name of first element is, by default, the
value for the BodyName. In this document, it is also referred to as the body
element. The namespace of the body element is, by default, the value
determined for BodyNS. If the Style attribute of the SOAP ConfigMO is set
to document, this step (creating the first body element) is skipped.

* The data handler then reads the attributes of the business object and
processes them by type. The processing for each type of attribute is described
below.

— Simple attributes If the attribute is of type simple, the data handler
creates a child element from the body element, with the same name as the

120 Adapter for Web Services User Guide



attribute (unless otherwise specified by special application-specific
information). The data handler sets the value of this element to the value
of the attribute in the business object.

— Cardinality 1 child business object attributes

If the attribute is a single cardinality child business object, the data
handler creates a child element of the body element. This is referred to as
a child business object element. The name of the child element created is
the same as that of the attribute (unless otherwise specified by special ASI
properties). The data handler then traverses the attributes of the child
business object, creating the child elements for the attributes in the same
way it processes the attributes of the incoming business object. However,
the child elements are made children not of the body element but of the
child business object element

— Cardinality n child business object attributes If an attribute is a
cardinality n child business object, the data handler creates a SOAP array.
Each attribute is handled the same way that a single cardinality child
business object is handled.

5. Composing fault The following section walks through the process by which
the data handler composes a fault message.
¢ The data handler expects the following attributes in the business object:
— faultcode: Required, String attribute
— faultstring: Required, String attribute
— faultactor: Not required. String attribute
— detail: Not required. Child BO attribute.

If any required attributes are missing, the data handler errors out.

¢ The data handler creates an element for faultcode. It sets the value given by
the faultcode attribute of the business object.

* The data handler creates an element for faultstring. It sets the value given
by the faultstring attribute of the business object.

* The data handler creates the faultactor. It sets the value given by the
faultactor attribute of the business object.

* If the detail attribute is present in the business object, the attribute should
be of child business object type. Otherwise the data handler errors out. It
handles the attributes of each detail business object as highlighted in the
section on Composing body above.

6. CxIgnore processing If the data handler finds out that the value of an attribute
is set to CxIgnore, the data handler does not create an element for this
attribute.

7. CxBlank processing If the data handler determines that the value of an

attribute is set to CxBlank, the data handler creates an element for this attribute
but does not set its value.

Business-object-to-SOAP-message-header processing

This section describes the processing of the SOAP header attribute only. All other
attributes are processed as described in [“Business-object-to-SOAP-message-body|
[processing” on page 120}
1. From the business object, the SOAP data handler obtains the SOAPHeader
attribute. This attribute has soap_location=S0APHeader as its application-specific
information. The SOAP data handler creates a SOAP-Env:Header element if and

Chapter 5. SOAP data handler 121



only if the value of this attribute is not null. If a business object contains more
than one SOAPHeader attribute, the first one is processed and the rest are treated
as part of the body.

2. The SOAP data handler expects that the SOAPHeader attribute is a single
cardinality child representing a SOAP Header Container business object. The
data handler processes the child attributes of the SOAP Header Container
business object that are of type SOAP Header Child business object.

3. For each attribute of the SOAP Header Container business object, the data

handler does the following;:

a. Checks the cardinality: if this attribute is NOT a 1 or n cardinality child
object, it is ignored.

b. Checks the value: if the value of this attribute is NULL, it will be ignored.

c. If the attribute is a 1 or n cardinality child object, the SOAP data handler
creates a header element that is the immediate child of the SOAP-Env:Header
element created in step 1. The name of this header element is same as that
of the attribute. The namespace of this element is given by the elem_ns
application-specific information of this attribute.

d. If the attribute is a SOAP Header Child business object, all of the attributes
of this business object are processed. This attribute may have an actor and
a mustUnderstand attribute.

Note: If you want to add a mustUnderstand or actor attribute, see
[‘Specifying SOAP attributes” on page 128
e. If a SOAP Header Child business object has a non-null actor attribute, the
data handler creates an actor attribute in the header element that was
created in step c.

f. If a SOAP Header Child business object has a non-null mustUnderstand
attribute, the data handler will create a mustUnderstand attribute in the
header element created in step c.

g. All other non-null attributes of the SOAP Header Child business object
become child elements of this header element. They are composed in the
same manner as the child elements of the SOAP-Env:Body element.

Header fault processing

The SOAP specification states that errors pertaining to headers must be returned in
headers. These headers are returned in the SOAP fault message. Just as message
headers are specified in the SOAPHeader attribute of request and response business
objects, fault headers are specified in the SOAPHeader attribute of fault business
objects.

Each of the possible headers of request or response business objects may cause an
error. Such errors are reported in the headers of the fault message.

WSDL documents have a SOAP binding header fault element that allows you to
specify the fault header. For more information, see the SOAP and WSDL
specifications listed in Chapter 1.

The application-specific information of headerfault allows you to specify header
faults for each of your headers. You may specify headerfault application-specific
information for each of the attributes of the SOAP Header Container business
object. The list of attributes in the SOAP Header Container business object for the
fault business object is as follows:

headerfault=attrl, attr2, attr3...

122 Adapter for Web Services User Guide



If the WSDL Configuration Wizard finds headerfault application-specific
information in the SOAP Header Child business objects of request or response
objects, the utility creates headerfault elements in the WSDL generated for these
headers. Note that WSDL allows you to specify multiple header faults for each of
your request (input) and response (output) headers. Therefore the value of this
application-specific information is a comma-delimited list of attributes.

Using application-specific information functionality

extend and enhance SOAP data handler functionality. shows these
attributes, which are discussed in the sections below. All of the entries in the table
are attribute-level ASI unless otherwise noted.

You can specify object- and attribute-level application-specific information (ASI) to
Table 4

Table 45. SOAP object ASI summary

ASI Possible values Description

soap_location SOAPHeader Specifies this business object
attribute as the header
attribute

headerfault String Identifies the BO attribute

name of the corresponding
SOAP header in the fault BO

elem_name String Specifies the name for the
SOAP element corresponding
to this BO attribute

elem_ns String Specifies the namespace for
the SOAP element
corresponding to this BO
attribute

type_name String Specifies the type for the
SOAP element corresponding
to this BO attribute

type_ns String Specifies the type namespace
for the element
corresponding to this BO
attribute

xsdtype true Specifies xsd as the
namespace for the element
corresponding to this BO
attribute, overriding older
xsd versions (such as 1999,
2000, etc.) with the latest
version of xsd (for example,
2001).

attr_name String Specifies the name for the
SOAP attribute
corresponding to this BO
attribute

attr_ns String Specifies the namespace for
the SOAP attribute
corresponding to this BO
attribute

Chapter 5. SOAP data handler 123



Table 45. SOAP object ASI summary (continued)

ASI Possible values Description

arrayof String Specifies the name of the n
cardinality child business
object attribute that must be
used as a placeholder for the
simple type array items

dh_mimetype String Specifies the mimeType of
the data handler that will be
used to transform this
attribute of complex type

cw_mo_* String This business object level ASI
specifies the name of a child
config MO that is interpreted
as meta-data, not content, by
the SOAP data handler. Only
cw_mo_soap specifies a child
config MO that is processed
as meta-data; all other
cw_mo_* indicate a different
component and are therefore
excluded from SOAP data
handler processing. All other
cw_mo* is ignored.

CW_mo_soap String This business object level ASI
specifies the name of the
Child Config MO attribute
that should be used when
transforming this business
object

cw_mo_jms String This business-object level ASI
specifies the name of the JMS
Protocol Config MO to use

cw_mo_http String This business-object level ASI
specifies the name of the
HTTP Protocol Config MO to
use

wrapper true Specifies the attribute name
of the wrapper object within
this business object. Wrapper
objects are used for certain
schema indicators, and must
not be serialized

maxoccurs Integer Specifies this business object
attribute’s maximum
occurrence possibility.
Depending on the value of
maxoccurs, the business
object may or may not have
a wrapper.

minoccurs Integer Specifies this business object
attribute’s minimum
occurrence possibility.
Depending on the value of
minoccurs, the object may or
may not have a wrapper.

124 Adapter for Web Services User Guide



Table 45. SOAP object ASI summary (continued)

ASI Possible values Description

all

String Specifies the child attribute
that represents the all
indicator in the schema.

choice String Specifies the child attribute

that represents the choice
indicator in the schema.

ASI in business-object-to-SOAP-message transformations

The SOAP data handler uses a business object’s ASI to determine how to construct
a SOAP message. Unless otherwise stated, all ASI discussed in the sections below
refers to attribute level ASI and all string-based comparisons are performed
without regard to case.

elem_name and elem_ns processing
The examples discussed in this section assume that the attribute name is OrderId
and the SOAP element namespace prefix ns0.

1.

When neither elem_name nor elem_ns are specified, the elem_name defaults to
the attribute name, and the elem_ns defaults to the namespace of the element’s
parent.The ASI is not specified.

<OrderId>1</OrderId>

When the elem_name is specified and the elem_ns is not specified, the
elem_name will be set to the ASI elem_name value, and the elem_ns will be
defaulted to the namespace of the SOAP Body. The ASI is as follows:
elem_name=CustOrderld

<CustOrderId>2</CustOrderId>

When elem_ns is specified and elem_name is not, elem_name defaults to the
attribute name and elem_ns is set to the ASI elem_ns value. The xmlns attribute
is explicitly written if and only if the element namespace is not found
elsewhere in the scope of this element. If the element namespace is found, the
already defined namespace prefix is used. Otherwise (if the element namespace
is no found), a unique prefix for the elem_ns is generated. Consider the
following example, which presumes that a prefix is already defined in scope
(nsl represents a prefix corresponding to a namespace already defined in the
scope of this element). The ASI is as follows:

elem_ns= http://www.w3.0rg/2001/XMLSchema
<nsl:0rderId>3</nsl:0OrderId>

The following example presumes that prefix is not found (ns2 represents a
unique prefix). The ASI is as follows:

elem_ns=CustOrderIdNamespace

<ns2:0rderId xmlins:ns2="CustOrderIdNamespace">3</ns2:0rderld>

When both elem_name and elem_ns are specified, elem_name and elem_ns are
set to the ASI values. The same check that is performed in case 3 above
regarding already defined namespaces applies. Just as in case 3, if the

namespace is not already defined, a unique prefix for the elem_ns is generated.
The ASI is as follows:

elem name=CustOrderId;elem ns=CustOrderIdNamespace
<ns2:CustOrderId xmins:ns2="CustOrderIdNamespace">1</ns2:0rderld>

Chapter 5. SOAP data handler 125



type_name and type_ns processing for simple attributes
For the examples in this section, the attribute name is OrderId, the SOAP element
namespace prefix is ns@, and the attribute type is String.

Note: type_name and type_ns processing takes place only when the Config MO
attribute Typelnfo is true.

1. When neither type_name nor type_ns are specified, type_name defaults to the
simple type and the type_ns defaults to the xml schema-defined namespace
(xsd). The ASI is not specified

<OrderlId xsi:type="xsd:string">1</OrderId>

2. When type_name is specified and type_ns is not, type_name is set to the ASI
type_name value and type_ns defaults to the namespace of the element. The
ASI is as follows:
type_name=CustString
<OrderId xsi:type="ns0:CustString">2</0OrderId>

3. When type_ns is specified and type_name is not, the type_ns defaults to the
simple type name and type_name is set to the ASI type_ns value. The prefix is
handled in a way that is comparable to elem_ns creation. A unique prefix for
the type namespace is generated unless the namespace already exists in the
element scope. The ASI is as follows:
type_ns=CustStringNamespace
<OrderId xmIns:ns2="CustStringNamespace" xsi:type=
"ns2:String">3</0rderld>

4. When both type_name and type_ns are specified, they are set to the assigned
ASI values. A unique prefix for the type namespace is generated. The ASI is as
follows:
type_name=CustString;type_ns=CustStringNamespace

<OrderId xmIns:ns2="CustStringNamespace" xsi:type=
"ns2:CustString">1</0OrderId>

type_name and type_ns processing for single cardinality
attributes

For the examples in this section, the attribute name is OrderStaus, the SOAP
element namespace prefix is ns0, and the attribute type is OrderStatus.

Note: type_name and type_ns processing takes place only when the Config MO
attribute Typelnfo is true.

1. When neither type_name nor type_ns are specified, type_name defaults to the
business object name and the type namespace defaults to the namespace of the
element. The ASI is not specified:
<OrderStatus xsi:type="ns0:0rderStatus">1</OrderStatus>

2. When type_name is specified and type_ns is not, the type_name is set to the
assigned ASI value and type_ns defaults to the namespace of the element. The
ASI is as follows:
type_name=CustOrderStatus
<OrderStatus xsi:type="ns0:CustOrderStatus">1</0OrderStatus>

3. When type_ns is specified and type_name is not, type_name defaults to the
business object name and type_ns is set to the assigned type_ns value. A
unique prefix for the type namespace is generated. The ASI is as follows:
type_ns=CustTypeNS

<OrderStatus xsi:type="ns2:SOAP_OrderStatusLine
" xmins:ns2="CustTypeNS">1</OrderStatus>

126 Adapter for Web Services User Guide



4. When both type_name and type_ns are specified, they are set to the assigned
ASI values. A unique prefix for the type namespace is generated. The ASI is as
follows:
type_name=CustOrderStatus;type_ns=CustTypeNS

<OrderStatus
xsi:type="ns2:CustOrderStatus" xmlins:ns2="CustTypeNS">1</OrderStatus>

type_name and type_ns processing for multiple cardinality
attributes

For all the examples given in this section assume the attribute name to be
MultiLines and the SOAP element namespace prefix to be ns0. Assume the
attribute type to be OrderStatus.

Note: type_name and type_ns processing takes place only when the Config MO
attribute Typelnfo is true.

1. When neither type_name nor type_ns are specified, type_name defaults to the
business object name and type_ns defaults to the namespace of the element.
The ASI is as follows:
<Multilines SOAP-ENC:arrayType="nsO:0rderStatus[2]"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="SOAP-ENC:Array">

2. When type_name is specified and type_ns is not, type_name is set to the
assigned ASI type_name value and type_ns defaults to the namespace of the
element. The ASI is as follows:
type_name=CustOrderStatus
<MuTltilines SOAP-ENC:arrayType="ns0O:CustOrderStatus[2]"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="SOAP-ENC:Array">

3. When type_ns is specified and type_name is not, type_name defaults to the
business object name, and the type_ns is set to the assigned ASI type_ns value.
A unique prefix for the type namespace is generated. The ASI is as follows:
type_ns=CustTypeNS
<MultilLines SOAP-ENC:arrayType="ns2:0rderStatus[2]"
xmins:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/

" xmIns:ns2="CustTypeNS" xsi:type="SOAP-ENC:Array">

4. When both type_name and type_ns are specified, they are set to the assigned
ASI values. A unique prefix for the type namespace is generated. The ASI is as
follows:
type_name=CustOrderStatus;type _ns=CustTypeNS
<MultilLines SOAP-ENC:arrayType="ns2:CustOrderStatus[2

1" xmlins:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns2="CustTypeNS" xsi:type="SOAP-ENC:Array">

Note: The item element representing the parent for each Array element has the
same type and namespace as the arrayType.

xsdtype for simple, single, and multiple cardinality types

For simple, single. and multiple cardinality types, set the xsdtype ASI attribute to
true for the type name to adhere to the current XSD for the SOAP message. The
xsdtype property is read only when both the type_name and type_ns properties
are set. Given the type_name and type_ns, the SOAP data handler first attempts to
map the pair to a Java type using the SOAP API Then the data handler attempts
to convert the Java type back to a SOAP element type using the current XSD for
the SOAP Message. For example, if the current XSD is

http://www.w3.0rg/2001/XMLSchema

Chapter 5. SOAP data handler 127



and the following ASI:
type_name=timeInstant;type_ns=http://www.w3.0rg/1999/XMLSchema;xsdtype=true

The SOAP message type name is written as:
<OrderDate xsi:type="xsd:dateTime">

because dateTime is the 2001 XSD equivalent of the timeInstant in the 1999 XSD.

xsdtype and simple type arrays

For multiple cardinality objects, you can create a simple type array such as the
following:

<Multilines SOAP-ENC:arrayType="xsd:string[4]"

xmins:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="SOAP-ENC:Array">

To achieve this, set the type_name property to the desired simple type (for
example, string) and set the type_ns property to the appropriate XSD
specification. Then, set the xsdtype property to true so that the type is converted
to the current XSD type. Finally, the arrayOf property should be set to the name of
the attribute in the container which should hold the simple type value. This is an
example of what the ASI would look like for a string array:

arrayof=size;type_name=string;type_ns=http://www.w3.0rg/2001/XMLSchema;xsdtype=true

ASI effects on fault processing
The faultcode, faultactor, faultstring, and detail elements adhere to the following
rules:
1. Any elem_name, elem_ns, type_name and type_ns ASI in these attributes is
ignored.

2. All children of the detail elements are written exactly as described in body
processing.

ASI effects on header processing

You can use all ASI properties (see[Table 45) at the header child object level and
below.

Specifying SOAP attributes

attr_name processing for simple types

There is an XML schema case in which complexTypes with simpleContent
extensions or restrictions have have both values and attributes. For example,
consider the following SOAP tag:

<size system="us">10</size>

It is based on the following schema:

<complexType name="SizeType">
<simpleContent>
<extension base="int">
<attribute name="system" type="string"/>
</extension>
</simpleContent>
</complexType>
<element name="size" type="ns:SizeType"/>

The business object corresponding to the complex type, with simple content
extension or restriction, must contain one additional attribute besides other

128 Adapter for Web Services User Guide



attributes that correspond to the complex type attributes. The additional attribute
must contain the simple content value (in the example above, 10— the value of
element size). The business object attribute, having the business object
corresponding to such a complex type as its type, will have
elem_value=simpleContentValue as its attribute-level ASIL

shows the corresponding business object.

Mame Type ey |Card | Application Specific Infarmatio
H Fequest SOAP_getGuote_MOS218329332_Request [ 1 wa_batypesrequest
) : elem_value=zimpleContert' alue;
B size SOAP getCuote_CO9215329332_SizeType T 18T i e R
simpleCortertalue | String v
system String B attr_name=system

Figure 45. attr_name business object for simple types

attr_name processing for single and multiple cardinality types
You can specify ASI that translates business object attributes into soap attributes
instead of into soap elements. The data handler supports adding SOAP attributes
to complex single and n-card types only. Consider the following sample:
<CustInfo City="4" State="5" Street="2" Zip="6">

<Name xsi:type="xsd:string">1</Name>

<Street2 xsi:type="xsd:string">3</Street2>
</CustInfo>

Given this business object definition structure (with the attribute level ASI
specified to the right of each attribute in Figure 46), the data handler follows these
processing steps:

Mame Type App Spec Info |
B Custinfo Customerinfo

Mame String

Streett String attr_name=Street
Street2 String

City String attr_name=City
State String attr_name==State

Zip String attr_name=7ip

Figure 46. attr_name business object

1. When traversing a complex attribute, the data handler first generates a
corresponding tag for this complex business object attribute. In this example,
CustInfo represents the complex business object attribute.

2. The data handler iterates through the children of the complex business object.
Only simple type attributes are considered for attribute creation. If a simple
type has an ASI property named attr_name, the data handler writes this simple
type as an attribute to the SOAP element. In this example, the element
(CustInfo) will have four attributes; Street, City, State and Zip.

3. The rest of the attributes of the business object are written using standard
BODY processing. This means that all relevant ASI will also be evaluated for
the business object attributes that do not have attr_name ASI.

Chapter 5. SOAP data handler 129



The logic for processing multiple cardinality types is identical to that for
processing single cardinality types. Specifically, each <item> tag corresponds to
each business object instance in the multiple cardinality object, and will be
processed using ASI. For example, given this multiple cardinality business object
definition structure with corresponding ASI:

Matme Type Card App Spec Info
B Custinfa Customerinfa il

Mame String

Street String attr_name=Street
Street? String

City String attr_name=City
State String attr_name=5State
Zip String attr_name=Zip

Figure 47. attr_name multiple cardinality business object

If the event sent to the data handler had two instances of this multiple cardinality
object, the SOAP message created may look like this:

<CustInfo>
<item City="Armonk" Street="Main Street">
<Name>IBM</Name>
<Street2>None</Street2>
</item>
<item City="Burlingame" State="Ca" Street="577 Airport Blvd" Zip="94010">
<Name>Burlingame Labs</Name>
<Street2>Suite 600</Street2>
</item>
</CustInfo>

Notice that the item tags are treated as the complex element type. Any attributes in
the BO definition will become SOAP attributes of the corresponding item tag.

arrayof processing for simple type arrays
The arrayof ASI property should only be used in the case of SOAP encoded simple
type arrays. For example, a serialization such as the following:

<CustomerNames SOAP-ENC:arrayType="xsd:string[4]" xmlns:SOAP-ENC=
"http://schemas.xmlsoap.org/soap/encoding/" xsi:type="SOAP-ENC:Array">
<item xsi:type="xsd:string">valuel</item>

<item xsi:type="xsd:string">value2</item>

<item xsi:type="xsd:string">value3</item>

<item xsi:type="xsd:string">valued</item>

</CustomerNames>

would require a business object definition such as that shown i :

SOAP echoStringdrray N

H Reguest 0562468530 _Renuest 1 ws_botype=request

SOAF' ecﬁc-u-‘alt.ri'ng'ﬂ'.rrav -N : i
= = arrayof=iemiype_name=stringtype_ns

D5652455530_MN11585926546

B Custneaiones = f =hittyy (e w3 org/2001 ML Schema

............................................. t-\,; be_name=' —— Q;type_nsé'ﬁﬁb:-fi‘.\-vﬁ;

A3 orgi 2001 AL Schema

ftem Siring

Figure 48. arrayof business object

130 Adapter for Web Services User Guide



(The business object is shown from the Request level for clarity. )

Note: Although not shown, the SOAP Config MO’s Typelnfo property must be set
to true in this example to derive the above SOAP serialization from the
business object structure.

Also, the arrayof property can be used to create array items with a name other

than item. Using the example above, the <item> tags can be replaced with <name>

tags if both the BO attribute name and the "arrayof” asi property value is name.

This would be the serialization:

<CustomerNames SOAP-ENC:arrayType="xsd:string[4]"

xmIns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xsi:type="SOAP-ENC:Array">

<name xsi:type="xsd:string">valuel</name>

<name xsi:type="xsd:string">value2</name>

<name xsi:type="xsd:string">value3</name>

<name xsi:type="xsd:string">valued</name>

</CustomerNames>

attr_name and attr_ns processing

You may need to provide a namespace that corresponds to the SOAP attribute
created. You do this by specifying the attr_ns ASI property for a simple type. The
data handler processes the attr_ns property if and only if attr_name exists in the
same attribute’s ASI. The following rules are followed with attr_name and attr_ns:

1. When neither attr_name nor attr_ns exist, the business object attribute is
translated to a SOAP element.

2. When only attr_name is set, the SOAP attribute’s namespace defaults to the
element’s namespace:

<CustInfo Street="577 Airport"></CustomerInfo>

3. When only attr_ns is set, the property is ignored and the business object
attribute is translated to a SOAP element.

4. When both attr_name and attr_ns exist, the SOAP attribute is created like the
following:

<CustInfo ns2:Street="577 Airport" xmlns:ns2=
"AttrNS"></CustomerInfo>

dh_mimetype: calling a data handler

The SOAP data handler can call another data handler to write business objects into
any format for which a data handler exists. You do this by adding encoded text to
a SOAP message when transferring a SOAP child business object into a SOAP
String.

An RNIF document is one of the formats in which a SOAP element’s value may be
encoded. To make use of this functionality, add an RNIF BO at any level of a
SOAP child business object. To signal the SOAP data handler to call another data
handler when transforming this RNIF business object to a string, add the
dh_mimetype property to the attribute’s ASI. The value of the dh_mimetype ASI
property must be a legal mimeType specified in the MO_DataHandler_Default
meta-object. The mimeType is used to determine which data handler is called to
process the business object.

shows a SOAP child business object in which CustomerInfo is a complex
child and RNET_Pip3A2PriceAndAvailabilityQuery is an RNIF business object:

Chapter 5. SOAP data handler 131



Mame Type App Spec Info
H Customerinfa Customerinfo
Iarme String
CustiD String
elem_name=RMIFexample; dh_mimetype=applicationsx_ros
H RMIFhizg RMET _Pip3a2PricedndSvailabilty Guery [ettanst_aoerttype_name=hasebdBinarytype_na=hitp: i

Figure 49. RNIF business object with dh_mimetype

sy 3 orgi2001 SMLSchema; xsdtype=true

The SOAP message created from this business object may look like this:

<CustomerInfo>

<Name>IBM Corporation</Name>
<CustID>95626</CustID>
<RNIFexample
xsi:type="xsd:base64Binary">1AWERYER238W98EYR9238728374871892787ASRIK23423
JKAWERJ234AWERTJHI423488RAHASF1AWERYER238WI8EYR9238728374871892787ASRIK234
34JKAWERJ234AWERIJHI423488RA4HASF1AWERYER238WI8EYR9238728374871892787ASRIK2
4234JKAWERJI234AWERTJHIA423488RAHASF1AWERYER238W9BEYR9238728374871892787ASRJ
234234JKAWERJI234AWERTIJHIA23488RAHASFWR234

</RNIFexample>
</CustomerInfo>

Note that the RNIF example element contains an RNIF encoded string that has
been base64 binary encoded as its element value. Also, note that elem_name,
elem_ns, type_name, type_ns, and xsdtype ASI properties remain relevant for this
business object attribute. In this example, the specified elem_name dictates the
name of the SOAP element upon message creation.

Note: If the element value returned by the called data handler is encoded text, the
type_name property must be set to base64Binary, the type_ns must
correspond to an xsd namespace, and xsdtype must be set to true.

xsd:base64Binary: When you set the type_name and type_ns to resolve to
xsd:base64Binary, the SOAP data handler encodes the value from the business
object before setting the value for the corresponding element. Using the Apache
API, the data handler queries the registry for a base64Binary serializer, serializes
the string returned from the called data handler, and sets the element’s value.

Schema complexType indicators
The following sections discuss the effects of schema complexType Indicators on
business objects. The indicators include:

maxQOccurs
minOccurs
all
sequence
choice

maxOccurs and minOccurs indicators for simple types: The maxOccurs indicator
specifies the maximum number of times an element can occur within a complex
type. The minOccurs indicator specifies the minimum number of times an element
should occur within a complexType.

Consider this Schema:

<xs:element name="Address" type="Address">
<xs:complexType name="Address">

<xs:sequence>

132 Adapter for Web Services User Guide



<xs:element name="AddressLine" type="xsd:string" maxOccurs="10"/>
<xs:element name="SuiteNumber" type="xsd:string" minOccurs="3"
maxoccurs="unbounded" />
<xs:element name="City" type="xsd:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

The example above indicates that the AddressLine element can occur at most ten
times in an Address element, while the SuiteNumber element must occur at least
three times. The business object that corresponds to this schema must have an N
cardinality wrapper object for each maxoccurs/minoccurs indicator that has the
following ASI:

maxOccurs=N;wrapper=true

or
minOccurs=3;wrapper=true;

The wrapper=true ASI indicates that this object is a wrapper, and therefore not
explicitly written to the SOAP message. Instead, there must be one child of simple
type in this wrapper object. At runtime, for SOAP to business object
transformations, the data handler reads the N child objects of the wrapper and
creates a corresponding element for each one. When performing
business-object-to-SOAP-message transformations, the data handler creates child
objects in the N cardinality wrapper for every element it encounters.

The corresponding SOAP business object resembles that shown in

Poz Marme Type Key | Card App Spec Info |
1 B sddress Address |1

1.1 B AddressLine Addrezzline_wrap | [ | N maxoccurs=1 0 wrapper=true
114 AddressLine String ™

11.2 OhbjectEventld String

12 B SuteMumber SuiteMumber_wrap | W | N MiNOCCUrE=3 wapper=true
121 Suitehumber String I~

122 OhjectEventld String

1.3 City String r

1.4 OhjectEventld String

2 OhbjectEventid String

Figure 50. minOccurs and maxQOccurs of simple type ASI in a SOAP business object

The SOAP message that corresponds to the business object shown in is as
follows:

<Address xsi:type="ns0:Address">
<AddressLine xsi:type="xsd:string">Linel</AddressLine>
<AddressLine xsi:type="xsd:string">Line2</AddressLine>
<SuiteNumber xsi:type="xsd:string">600</SuiteNumber>
<SuiteNumber xsi:type="xsd:string">650</SuiteNumber>
<SuiteNumber xsi:type="xsd:string">700</SuiteNumber>
<City xsi:type="xsd:string">San Francisco</City>

</Address>

Note: The SOAP data handler processes maxOccurs and minOccurs indicators in
the same way, without validating the maximum or minimum occurrences of

Chapter 5. SOAP data handler 133



elements. The data handler simply provides a container structure to hold
multiple instances of a particular element with the maxOccurs and
minOccurs indicators. This applies to simple and complex types.

maxOccurs and minOccurs indicators for complex types: The <maxOccurs>
indicator specifies the maximum number of times an element can occur within a
complex type. The <minOccurs> indicator specifies the minimum number of times
an element should occur within a complexType. Consider the maxOccurs indicator
in the following schema:
<xs:element name="Address" type="Address">
<xs:complexType name="Address">
<xs:sequence>
<xs:element name="AddressInfo" type="AddressInfo" maxOccurs="3"/>
<xs:element name="City" type="xsd:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:complexType name="AddressInfo">
<xs:sequence>
<xs:element name="StreetLine" type="xsd:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

The example above indicates that the AddressInfo complex type element can occur
at most three times in an Address element. The corresponding business object for
this schema will not have a wrapper object, since the complexType AddressInfo
itself can be of N cardinality. The following ASI will be placed at the N cardinality
attribute: maxoccurs=3

shows the corresponding SOAP business object.

Pos Marme Type Key | Card | App Spec Info
1 B Address Address W |1

141 B Addreszinfo Addreszinfo ™ il MEX0CCUrs=3
111 Streetline String ™

14.2 OhjectEvent|d String

1.2 ity String I

13 ObjectEventld String

2 OhbjectEventld String

Figure 51. minOccurs and maxOccurs of complex type ASI in a SOAP business object

134

The SOAP message that corresponds to the business object shown in is as
follows:
<Address xsi:type="ns0:Address">
<AddressInfo xsi:type="ns0:AddressInfo">
<StreetlLine xsi:type="xsd:string">100 Market St.</ StreetlLine>
<StreetlLine xsi:type="xsd:string">Apt 15</ StreetLine>
</AddressInfo>
<City xsi:type="xsd:string">San Francisco</City>
</Address>

all indicator: The all indicator specifies by default that the child elements for this
complexType can appear in any order and that each child element must occur zero
or one times. Consider the following Schema:

Adapter for Web Services User Guide



<complexType name="Item">
<all>
<element name="quantity" type="xsd:int"/>
<element name="product" type="xsd:string"/>
</all>
</complexType>

The example above indicates that the elements quantity and product, can occur in
any order in the SOAP message. The quantity element may occur first and the
product element second, or vice versa.

shows the business object that corresponds to this schema fragment.

Pos Marme Type Card | App Spec nfo

1 H liem tem 1 all=kem_wrapper
14 H tem_wrapper tem_wwrapper ] wrapper=true
141 cuantity String

14.2 product String

143 OhjectEventld String

1.2 OhjectEventld String

2 ObjectEventld String

Figure 52. all indicator ASI in a SOAP business object

The corresponding SOAP message fragment is as follows:

<Item xsi:type="ns0O:Item">
<quantity xsi:type="xsd:string">12</quantity>
<product xsi:type="xsd:string">2</product>
</Item>

Handling array content with ‘all” content model: The SOAP data handler processes
complex-type array content with the “all” content model as described in this
section. In the example, ArrayOfSOAPStruct contains SOAPStruct, which has the “all’
content model.

<complexType name="SOAPStruct">
<all>
<element name="varString" type="string" />
<element name="varInt" type="int" />
<element name="varFloat" type="float" />
</all>
</complexType>
<complexType name ="ArrayOfSOAPStruct'">
<complexContent>
<restriction base='SOAP-ENC:Array'>
<attribute ref='SOAP-ENC:arrayType'
wsdl:arrayType="'typens:SOAPStruct[]'/>
</restriction>
</complexContent>
</complexType>

The SOAP data handler must generate the following SOAP data on serialization:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV = "http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<SOAP-ENV:Body>
<ns0:echoStructArray xmins:ns0="http://soapinterop.org/">

Chapter 5. SOAP data handler 135



<inputStructArray SOAP-ENC:arrayType="ns1:SOAPStruct[2]"
xmins:nsl="http://soapinterop.org/xsd" xsi:type="SOAP-ENC:Array">
<item>
<nsl:varFloat xsi:type="xsd:string">1.1</nsl:varFloat>
<nsl:varInt xsi:type="xsd:string">1</nsl:varInt>
<nsl:varString xsi:type="xsd:string">hi</nsl:varString>
<item>
<item>
<nsl:varString xsi:type="xsd:string">hello</nsl:varString>
<nsl:varInt xsi:type="xsd:string">1</nsl:varlnt>
<nsl:varFloat xsi:type="xsd:string">1.1</nsl:varFloat>
</item>
</inputStructArray>
</ns0:echoStructArray>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In this example, echoStructArray is the name of the operation, and
inputStructArray is the parameter name with type ArrayOfSOAPStruct.

sequence indicator: The sequence indicator specifies that child elements must
appear in the order specified in the complexType.
<complexType name="Item">
<sequence>
<element name="quantity" type="int"/>
<element name="product" type="string"/>
</sequence>
</complexType>

The SOAP data handler does not require special ASI or wrapper objects for this
indicator. By default, the data handler reads and writes SOAP elements in the
order specified in the business object.

choice indicator: The choice indicator specifies that one and only one of the
elements in a complexType can appear in the SOAP message. Consider the
following schema:
<complexType name="Item">
<choice>
<element name="quantity" type="int"/>
<element name="product" type="string"/>
</choice>
</complexType>

The SOAP data handler does not require special ASI or wrapper objects for this
indicator. When converting a business object to a SOAP message, the data handler
defers to your choice of which elements should appear in the SOAP message.
When converting a SOAP message to a business object, the data handler reads the
existing element and populates the attribute to which it corresponds.

maxOccurs indicator on sequence, choice, group and all: Model Groups
(sequence, choice, group, and all) have minOccurs and maxOccurs attributes. The
default value for minOccurs and maxOccurs is one. For the all group, the
maxOccurs can take a value of one only. The WSDL ODA and SOAP data handler
support all possible values for maxOccurs on sequence, choice and group.

ASI in SOAP-to-business object transformations

The SOAP data handler uses a business object’s ASI to read and validate an
incoming SOAP message. The following rules apply to ASI validation by the SOAP
data handler:

136 Adapter for Web Services User Guide



* Header and body processing are the same.

* The SOAP ConfigMO property, TypeCheck, must be set to strict and Typelnfo
set to true for the data handler to perform the validation described in the
sections below.

* type_name and type_ns validation are performed concurrently since type
validation is generally dependent on both properties.

Note: Unless otherwise stated, all ASI discussed in the following sections is
attribute-level ASI

elem_name validation
The following rules apply to validation for simple, cardinality 1 and cardinality n
attributes:

1. When encountering an element while parsing a SOAP message, the data
handler first searches all of the ASI at the business object level, attempting to
match the element’s name against the elem_name value.

2. If a match is not found, the data handler attempts to match the element’s
name against each of the attribute names at that business object level.

3. If neither search succeeds, the data handler fails.

elem_ns validation
The following cases apply to validation for simple, cardinality 1 and cardinality n
attributes:

1. When neither elem_ns ASI nor xmlns from the SOAP message for this element
exist, the element is properly validated.

2. When elem_ns ASI does not exist and the corresponding element from the
SOAP message does have an xmlins specified, the data handler defaults the
elem_ns to the last elem_ns read from the business object that was in the scope.
The data handler compares this value with the xmlns value from the SOAP
message. If there is no match, validation fails.

3. When elem_ns ASI does exist and the corresponding element from the SOAP
message does not have xmlns specified, the data handler verifies that the
elem_ns specified in ASI matches one of the namespaces in the current scope of
the SOAP message. If there is no match, validation fails.

type_name and type_ns validation
The sections below discuss type_name and type_ns validation.

Simple attributes: The following rules apply to type_name and type_ns
validation when xsdType is true:

* Both type_name and type_ns are specified Using the type_name and type_ns
pair, the data handler creates a corresponding java Class object. Using the
incoming SOAP message typename and typenamespace, another java Class
object is queried. It the two java Class objects match, validation succeeds.
Otherwise, validation fails.

* Neither type_name nor type_ns are specified The data handler maps the simple
business object attribute to a java Class object. Using the incoming SOAP
message typename and typenamespace, another java Class object is queried. If
the two java Class objects match, validation succeeds. Otherwise, validation fails.

* type_name only is specified Simple Type Validation fails. Both type_name and
type_ns or neither should be specified when xsdType is true.

* type_ns only is specified Simple Type Validation fails. Both type_name and
type_ns or neither should be specified when xsdType is true

Chapter 5. SOAP data handler 137



The following rules apply to type_name and type_ns validation when xsdType is
false:

* Both type_name and type_ns are specified The data handler performs a direct
comparison between the SOAP message typename and typenamespace pair and
the type_name and type_ns values specified in ASIL If the pairs are exactly alike,
validation succeeds. Otherwise, validation fails.

* Neither type_name nor type_ns are specified The data handler maps the simple
business object attribute to a java Class object. Using the incoming SOAP
message typename and typenamespace, another java Class object is queried. If
the two java Class objects match, validation succeeds. Otherwise, validation fails.

* type_name only is specified The type_ns value defaults to the element
namespace found in the business object ASI. Using this default type_ns and the
type_name specified in ASI, the data handler performs a direct comparison
between these values and the SOAP message typename and typenamespace. If
the pairs are exactly alike, validation succeeds. Otherwise, validation fails.

* type_ns only is specified The type_name value defaults to the business object
attribute type. Using this default type_name and the type_ns specified in ASI,
the data handler performs a direct comparison between these values and the
SOAP message typename and typenamespace. If the pairs are exactly alike,
validation succeeds. Otherwise, validation fails.

Complex attributes (cardinality 1 and n): The following rules apply to
type_name and type_ns validation when xsdType is true:

* Both type_name and type_ns are specified xsdType is ignored. The data
handler processes as if xsdType is false.

* Neither type_name nor type_ns are specified xsdType is ignored. The data
handler processes as if xsdType is false.

* type_name only is specified xsdType is ignored. The data handler processes as
if xsdType is false.

* type_ns only is specified xsdType is ignored. The data handler processes as if
xsdType is false.

The following rules apply to type_name and type_ns validation when xsdType is
false:

* Both type_name and type_ns are specified The data handler performs a direct
comparison between the SOAP message typename and typenamespace pair and
the type_name and type_ns values specified in ASIL If the pairs are exactly alike,
validation succeeds. Otherwise, validation fails.

* Neither type_name nor type_ns are specified The type_name value defaults to
the business attribute type. The type_ns value defaults to the element namespace
found in the business object ASI. Using this default behavior, the data handler
performs a direct comparison between these values and the SOAP message
typename and typenamespace pair. If the pairs are exactly alike, validation
succeeds. Otherwise, validation fails.

 type_name only is specified The type_ns value defaults to the element
namespace found in the business object ASI. Using this default type_ns and the
type_name specified in ASI, the data handler performs a direct comparison
between these values and the SOAP message typename and typenamespace. If
the pairs are exactly alike, validation succeeds. Otherwise, validation fails.

* type_ns only is specified The type_name value defaults to the business object
attribute type. Using this default type_name and the type_ns specified in ASI,
the data handler performs a direct comparison between these values and the

138 Adapter for Web Services User Guide



SOAP message typename and typenamespace. If the pairs are exactly alike,
validation succeeds. Otherwise, validation fails.

attr_name and attr_ns validation
While reading SOAP message into a business object, each SOAP element is
searched for SOAP attributes. If found, these attributes are compared to the
attr_name property values from the corresponding BO. For example, consider this
SOAP message:
<CustInfo City="4" State="5" Street="2" Zip="6">

<Name xsi:type="xsd:string">1</Name>

<Street2 xsi:type="xsd:string">3</Street2>
</CustInfo>

Now consider the business object definition structure (with the attribute level ASI
specified to the right of each attribute) shown i

Mame Type App Spec Info
B Custinfo Customerinfo

Maime String
Streett String attr_name=Street
Street2 String
City String attr_name=City
State String attr_name==State
Zip String attr_name=7ip

Figure 53. attr_name and attr_ns validation

The data handler would follow these processing steps:
1. Read the element name CustInfo.
2. Resolve the business object attribute that corresponds to this element name.

3. Read the attributes of the SOAP element and attempt to match them against
the ASI of the child attributes. In this case, the SOAP message Street matches
the business object attribute Streetl, City matches the business object attribute
City and so on.

4. The child elements for CustInfo are read and processed in the same manner as
the rest of the body.

Note: attr_ns is not validated.

The data handler loops through the SOAP attributes for a given element. For each
attribute encountered, the data handler searches the business object for a
corresponding attribute. If found, the business object attribute is populated with
the value of the SOAP attribute. If a corresponding business object attribute is not
found, the data handler continues to the next SOAP attribute.

Calling a data handler from within the SOAP data handler

The SOAP data handler can read an encoded element value from a SOAP message
into a business object using another data handler. For example, an RNIF document
may be one of the formats in which a SOAP element value is encoded. To make
use of this functionality, an RNIF business object can be added at any level of a
SOAP Child business object. To signify to the SOAP data handler that another data
handler must be used when transforming this RNIF encoded String to an RNIF
business object, you must add the dh_mimetype property to the attribute’s ASIL. The

Chapter 5. SOAP data handler 139



value of the dh_mimetype ASI should be a legal mimeType specified in the
MO_DataHandler_Default business object. The mimeType is used to determine
which data handler to use on the String. For example, given the following SOAP
message where RNIFExample is the SOAP element that contains an RNIF encoded
String:

<CustInfo>

<Name>IBM Corporation</Name>

<CustID>95626</CustID>

<RNIFexample xsi:type="xsd:base64Binary">
1AWERYER238W98EYR9238728374871892787ASRIK234234JKAWER
J234AWERIJHIA23488RAHASF1AWERYER238WI8EYR923872837487
1892787ASRIK234234JKAWERI234AWERTJHI423488R4HASFIAWER
YER238W98EYR9238728374871892787ASRIK234234JKAWERJIZ34A
WERIJHI423488R4HASF1AWERYER238WI8EYR92387283748718927
87ASRJIK234234JKAWERI234AWERTJHI423488R4HASFWR234

</RNIFexample>

</CustomerInfo>

The SOAP business object would look like that shown in

Mame Type Anp Spec Info
B Custinfo Customerinfo

Mame String
Streett String attr_name=Street
Street2 String
City String attr_name=City
State String attr_name==State
Zip String attr_name=7ip

Figure 54. RNIFExample business object

Note that the RNIFExample element contains an RNIF encoded String as its
element value. Also, note that elem_name, elem_ns, type_name, type_ns and
xsdtype ASI properties still remain relevant for this business object attribute.

Note: If the element value returned by the called data handler is encoded text, the
type_name property must be set to base64Binary, the type_ns must
correspond to an xsd namespace, and xsdtype must be set to true.

Default business object resolution

For SOAP to business object transformations, the SOAP data handler and web
services connector adhere to a special contract of exchanging information to resolve
business object names. The connector provides the SOAP data handler with a list
of business object names mapped to BodyName and BodyNamespace pairs. In
addition, if there is a defaultfault business object set in the TLO, this information is
passed to the data handler. Given this information, the SOAP data handler
processes using the following steps:

1. The data handler receives a SOAP message

2. The data handler determines if this is a SOAP request, response or fault
message.

a. If a SOAP request or response message, the data handler reads the
BodyName and BodyNamespace from the first child element of the
SOAP-ENV:Body element.

b. If a SOAP fault message, the data handler reads the BodyName and
BodyNamespace from the first child element of the detail element in the

140 Adapter for Web Services User Guide



fault message. If there is no detail element in the fault message, the data
handler uses the defaultfault business object for this transformation

3. If a defaultfault business object has not already been chosen, the data handler
attempts to match the BodyName and BodyNamespace found in step 2 to the
pairs found in the list provided by the connector. If a match is made, business
object resolution is successful. If no match is made, the data handler fails with
a meaningful error message.

Specifying a pluggable name handler

With default business object resolution, you can specify a pluggable name handler
to determine the business object to be used in SOAP-message-to-business-object
transformations. You do this by changing an
MO_DataHandler_DefaultSOAPConfig attribute.

The MO_DataHandler_DefaultSOAPConfig has, among others, two attributes of
type string that designate:

¢ ClassName The class name for the SOAP data handler base class. You do not
change this attribute value when specifying a pluggable name handler.

* SOAPNameHandler The SOAPNameHandler attribute dictates which name
handler is called. You can specify a value for a pluggable name handler. The
value of this property should be a class name. The SOAPNameHandler class is
an abstract class with the following signature:

public abstract String getBOName(Envelope msgEnv, SOAPProperty prop)

If the SOAPNameHandler attribute has a value, the SOAP data handler calls the
specified name handler. If the value does not exist, or if the specified name handler
fails to get a business object name, the SOAP data handler is called by default to
perform default business object resolution.

The SOAP DataHandler uses the SOAPNameHandler property specified in the MO
to instantiate the custom-name-handler class. It then calls the getBOName to
resolve the business object name. The SOAP DataHanlder passes the
SOAPProperty object it received from the connector to the custom-name-handler
implementation class.

This SOAPProperty object contains a structured list of potential candidate BOs for
resolution. Contained in the list are BodyName, BodyNamespace and BOName
triplets. These triplets are based on the SOAP Config MO configuration
information. The Default Name Handler uses this object to resolve the BO. A
custom name handler developer may use this object at their discretion.

Using the SOAPProperty object

You use the SOAPPropertyUtils class to extract the business object name from the
SOAPProperty. To do so, use the following method:
[x%
* Retrieve the business object name based on the body name and the body
namespace

*

*.

* @param soapProp top level SOAPProperty object that is passed by the

* connector

* @param name body name from the SOAP message

* @param uri body namespace from the SOAP message

* @return business object name from the SOAPProperty object with the body

Chapter 5. SOAP data handler 141



* name and body namespace.
*/
java.lang.String findBOName (SOAPProperty soapProp, String name, String uri);

Sample NameHandler
The following is a sample NameHandler:package

com.ibm.adapters.datahandlers.soap.namehandlers;

// DOM and Parsers

import javax.xml.parsers.DocumentBuilder;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.xml.sax.InputSource;

// Apache SOAP

import org.apache.soap.Envelope;

import org.apache.soap.Header;

import org.apache.soap.Body;

import org.apache.soap.Constants;

import org.apache.soap.util.xml.DOMUtils;

import org.apache.soap.util.xml.XMLParserUtils;

import org.apache.soap.util.xml.QName;

import org.apache.soap.encoding.soapenc.SoapEncUtils;

import org.apache.soap.encoding.soapenc.Base64;

/1 java

import java.util.Vector;

// SOAP data handler

import com.ibm.adapters.datahandlers.soap.*;

import com.ibm.adapters.datahandlers.soap.exceptions.*;

public class MyCustomNameHandler extends SOAPNameHandler {
private static final String BOPREFIX = "MyCustomBOPrefix";
private static final char UNDERSCORE '
private static final char EMPTY_STRING = "";

public String getBOName(Envelope msgEnv, SOAPProperty prop)
throws SOAPNameHandlerException

// Initialize a String Buffer
StringBuffer boName = new StringBuffer();
// Determine the "MyCustomBOPrefix" SOAP data handler
// MO property. If it exists, and is populated append
// this prefix to the front of the BOName.
String pref = dh.getOption(BOPREFIX);
if (pref != null) {
boName.append (pref.equals(EMPTY_STRING)
? EMPTY_STRING : pref + UNDERSCORE);

// Begin parsing the SOAP msg envelope.
Element bodyEl, requestEl;
Body msgBody = msgEnv.getBody();
Vector bodyEntries = msgBody.getBodyEntries();
if((bodyEntries == null) || (bodyEntries.size() <= 0))
throw new SOAPNameHandlerException("No Body Entries exist
for this SOAP message. Cannot determine BOName to use.");
// Grab the first <SOAP-ENV:Body> Element
bodyE1l = (ETement) bodyEntries.elementAt(0);
// Grab the first Child Element of the <SOAP-ENV:Body>
// Element
requestEl = (Element) DOMUtils.getFirstChildElement (bodyET);
// Read the name and namespace of this first child
String name = bodyEl.getLocalName();
String uri = bodyEl.getNamespaceURI();
if (uri == null)
uri = Constants.NS_URI_SOAP_ENV;
// Use the SOAPPropertyUtils findBOName() method to search
// the SOAPProperty object for this messages first element
// name and namespace. If no match is found, a
// SOAPDataHandlerException will be thrown. If a match is

142 Adapter for Web Services User Guide



// found, and it's not an empty string, append to the boname.
String returnedBOName = SOAPPropertyUtils.findBOName(prop, name, uri);
if (returnedBOName != null &&

IreturnedBOName.equals (EMPTY_STRING))
boName.append(returnedBOName) ;
return boName.toString()
}

}

Limitations

The sections below discuss data handler limitations.

SOAP style and use guidelines

SOAP messages are created using a style and use defined by the web service. The
SOAP data handler provides the levels of support shown in [Table 46

Table 46. Style and use guidelines

Data handler
Style Use Parts defined using |support
document literal element full
document literal type limited (see below)
document encoded element none
document encoded type limited (see below)
rpc literal element none
rpc literal type full
rpc encoded element none
rpc encoded type full

Part and part element order

When the SOAP data handler is transforming a SOAP message into a business
object and the SOAP message follows either the document/literal/type or
document/encoded/type formats, the message parts must be in the order
described in the WSDL. For example, consider the following WSDL:

<operation name="GetQuote"

style="document" ...>
<input>
<soap:body parts="Partl Part2 Part3 Part4" use="literal'>
</input>

</operation>

<definitions
xmins:stns="(SchemaTNS)"

xmlns:wtns="(Wsd1TNS)"

targetNamespace="(Wsd1TNS) ">

<schema targetNamespace="(SchemaTNS)"
elementFormDefault="qualified">
<element name="SimpleElement" type="xsd:int"/>
<element name="CompositETlement" type="stns:CompositeType"/>
<complexType name="CompositeType">
<all>
<element name='elem a' type="xsd:int"/>
<element name='elem b' type="xsd:string"/>
</all>
</complexType>
</schema>

Chapter 5. SOAP data handler 143



<message...>

<part name='Partl' type="stns:CompositeType"/>

<part name='Part2' type="xsd:int"/>

<part name='Part3' element="stns:SimpleElement"/>
<part name='Part4' element="stns:CompositeElement"/>
</message>

0

</definitions>

The SOAP message must adhere to the order defined by the parts. In the SOAP
example below, notice that Partl elements precede Part2, Part3, and Part4 elements.
This order must be maintained for proper BO resolution.
<soapenv:body... xmlns:mns="(MessageNS)"
xmlns:stns="(SchemaTNS) ">
<stns:elem_a>123</stns:elem_a>
<stns:elem b>hello</stns:elem b>
<soapenc:int>123</soapenc:int>123</soapenc:int>123</soapenc:int>
<stns:SimpleElement>123</stns:SimpleETement>
<stns:CompositeElement>
<stns:elem a>123</stns:elem a>
<stns:elem _b>hello</stns:elem_b>
</stns:CompositeElement>
</soapenv:body>

When the SOAP message follows either the document/literal /type or
document/encoded/type formats, part elements must be in order, too. In Partl of
the example above, the elem_a tag must precede the elem_b tag. This limitation is
dictated by the data handler’s business object resolution process. Since default
business object resolution for document style makes use of the first element’s body
name and namespace, these must be the same element in all SOAP messages of
this particular request, response, or fault so that the same business object is
resolved in each case.

Note: When the SOAP message follows either the document/literal /type or
document/encoded/type formats, elements must not be optional.

XML limitations
The following XML structures, features, and notation are not supported:

* Multi-dimensional arrays

* Partially transmitted arrays
* Sparse arrays

* Mixed content

* Sequence, group, and choice model group components with maxOccurs greater
than one

144 Adapter for Web Services User Guide



Chapter 6. Enabling collaborations for request processing

« |"Request processing collaboration checklist”]

This chapter describes the steps you must follow to enable collaborations for
request processing. Collaborations use the connector to invoke web services.

Request processing collaboration checklist

Using Business Object Designer to generate business objects is part of the process
of developing collaborations. You must perform the following tasks, described in
sections below, to generate business objects that a collaboration can use to invoke
web services:

1. Identify the WSDL document either from a URL, UDDI or a file system. You
use third-party tools for this task—the web services connector provides no tools
for this task.

2. Open Business Object Designer and launch the WSDL ODA. For further
information, see [‘Starting the WSDL ODA” on page 159.]

3. Configure the ODA.
4. Confirm your selections.

5. Generate a top-level business object that includes Request and (for synchronous
requests) Response and Fault business objects as well as SOAP Config MOs,
Protocol Config MOs, header container and child objects and
application-specific information appropriate to each object and attribute. The
WSDL ODA automates this process.

After you generate business objects, you must perform tasks to enable a
collaboration to invoke a web service using the connector and the SOAP data
handler. For steps on developing a collaboration, including creating a collaboration
template and object and binding its ports, see IBM WebSphere InterChange Server
Collaboration Development Guide. For further information on creating maps between
generic business objects and the application-specific business objects generated by
the WSDL ODA, see IBM WebSphere InterChange Server Map Development Guide.

© Copyright IBM Corp. 2003, 2004 145



146 Adapter for Web Services User Guide



Chapter 7. Exposmg collaborations as web services

“Procedure checklist”|

+ [“Identifying or developing Business Objects” on page 14§

+ |[“Choosing or developing a collaboration template” on page 148|

+ [“Binding the port of a new collaboration object” on page 148|
* ["WSDL Configuration Wizard” on page 150

* [“WSDL Configuration Wizard processing of business objects in TLO format” on|
page 152|

* [“Processing requirements and exceptions” on page 155

This chapter describes the design-time procedure of exposing a collaboration as a
web service. This enables the connector to process events when a web service
client invokes a collaboration.

Integrated design tools simplify the task of exposing a collaboration as a web
service. After configuring the collaboration and business objects for web services,
you use the WSDL Configuration Wizard. The wizard creates a WSDL document
and XML schema that represent the collaboration as a web service. The WSDL
outputs not only describe the collaboration but form the basis for its invocation by
a web service client.

Procedure checklist

You must perform the following tasks, described in the sections below, to expose a
collaboration as a web service:

1. Identify or, as needed, develop the business objects for use as request and
optionally (for synchronous event processing) response and fault SOAP
messages. There are two ways to generate these objects: 1) manually, using
Business Object Designer, or 2) if a WSDL interface file exists for your web
service, you can use the WSDL ODA to generate the Request and other
(Response or Fault) business objects. If you are following the second approach:
a. Specify the name of the collaboration in the Collaboration WSDL ODA
configuration property. This value dictates the ws_collab ASI in the TLO.

b. Specify either a WSDL_URL or UDDI_InquiryAP
I_URL WSDL ODA configuration property for the WSDL interface file (you
can also specify a directory path to this file, if it resides on your network or
locally).

For further information, see [“Starting the WSDL ODA” on page 159.|

2. Develop a collaboration template or choose an existing one to use the business
objects.

3. Create the collaboration object and its ports for the web service.

You first must ensure that the collaboration object properly populates business
objects. For more information and a step-by-step procedure for creating a
collaboration object, see the Implementation Guide for WebSphere InterChange
Server.

Note: The collaboration object must have its maps configured for the

appropriate transformations. Maps convert the business object received
in the SOAP request message to the business object used by the

© Copyright IBM Corp. 2003, 2004 147



collaboration. Maps also convert the business object returned by the
collaboration to the business object that is embedded in the SOAP
response message. For more information about mapping and mapping
procedures, see the Map Development Guide.
4. Use the WSDL Configuration Wizard to create the WSDL document. The utility
also configures the web services connector.

Note: The WSDL Configuration Wizard creates implementation, interface, and
one or more schema files. This document refers to these outputs
collectively as the WSDL document.

5. Publish the WSDL document as required.

Note: The connector provides neither tools nor support for publishing WSDL
documents.

Identifying or developing Business Objects

You use Business Object Designer to create business objects and Connector
Configurator to configure the connector to support them.

For more information on Business Object Designer, see the Business Object Designer.
For detailed information on web services business objects, see (Chapter 3, “Business|
fobject requirements,” on page 25,

Choosing or developing a collaboration template

The collaboration template you choose or develop must have one or more
scenarios to expose as a web service. For further information on collaboration
templates, see Collaboration Development Guide.

Binding the port of a new collaboration object

After you have configured the port of a collaboration template for a business object
type you must create the collaboration object and bind its port to an instance of a
web services connector.

To create a new collaboration object and bind its port to an instance of the web
services connector:

1. Right click the Collaboration Objects folder and select Create New
Collaboration Object. This displays the Create New Collaboration window,

which displays the list of templates (as shown in [Figure 55).

148 Adapter for Web Services User Guide



Create New Collaboration

Create Mew Collaboration Rl
Specify howy to bind ports to connectors and collaboration objects. ﬁ
Finet Fr
Template name | Description I

Cliert Collaboaration to invoke Order Veb Service asynch...
Client Caollaborstion to invoke OrderStatus Web Service ..

Order collaborstion will be exposed s Web Service for .
OrderStatus collaboration will be exposed as Web Servi...

CLIENT _ASYNCH_Order_Caollab_Template
CLIENT_S%MNCH_OrderStatus_Collab_Template
SERWICE_ASYMNCH_Ordder_Collab_Template
SERWICE_SYMNCH_Order Status_Collab_Templste
WiehServiceConnTemplate

Selected Collahoration template: I CLIEMT _SYMCH_OrderStatus_Collab_Template

Collaboration object name: I OrderSta‘tuSSynch[_Collab

= Hack I et = I Eimizk Cancel

Figure 55. Create New Collaboration window

2. Select a collaboration template from the Template Name and enter a name for
the collaboration object in Collaboration object name field. This displays the

Bind Ports window as shown in

select collaboration template

Bind ports
Specify how to bind ports to connectors and collaborstion objects.

Binclith |

Port Buziness Object Defintion Type
1 From CLIEMT_SYMCH_TLO_OrderStatus  Wieb Service Mone ;I
2 Tao CLIEMT_SYMCH_TLO_OrderStatus  |Connector Mone

Collaboration

A viCE

Figure 56. Bind Ports window

3. Select a port, click the Type arrow to display the pull down menu for the port
and choose WebSerivce (as shown in [Figure 56)
All instances of the web services connector have a ConnectorType
application-specific property. By default, this property is set to WebService. The

149

Chapter 7. Exposing collaborations as web services



Bind Collaborations Port window in System Manager uses the value of the
ConnectorType property to determine which connectors are web service
connectors.

4. Click the BindWith arrow to display a list of connector instances. System
Manager displays instances of connectors whose ConnectorType properties
have values set to WebService. Choose an instance of the web services
connector. (An example is shown in .

Select collaboration template

Bind ports L
Specify how to bind ports to connectors and collaboration objects. ﬁ
Port Buzinezz Object Definition Type I Binchith
1 From CLIEMT_SYMCH_TLO_OrderStatus  Web Service ;I Mone -
2 To CLIEMT_SYMCH_TLO_OrderStatus — Connector rone

MiehServicesConnectar

Figure 57. Selecting an instance of the web services connector

5. Click Finish.

You are now ready to run the WSDL Configuration Wizard.

WSDL Configuration Wizard

After you have created the collaboration object and bound its triggering port to an
instance of a web services connector, you are ready to use the WSDL Configuration
Wizard. Using binding, port name, operation and other data you specified for the
collaboration, business object definition, and connector, the utility produces the a
WSDL implementation file (*.imp1.wsd1), a WSDL interface file (*.wsd1), and an
xml schema file (*.xsd). These files are a composite of the collaboration exposed as
a web service, and the utility allows you to specify whether to generate these as
separate files or as one file. The utility supports SOAP over HTTP, HTTPS, and
JMS protocols. Configuration information for the protocol listener framework is
retrieved from the connector-specific property ProtocolListenerFramework. This
property also makes the list of listeners available.

Running the wizard
To run the WSDL Configuration Wizard:

1. Right-click a collaboration object that you have configured for web services and
choose Expose as a web service in the popup menu. The WSDL Configuration
Wizard displays as shown in Eiéure 58

150 Adapter for Web Services User Guide



4]

~Ta User Projects e
[=-12# Integration Component Lit Web Services Configuration %

1= WehServicesSample  wWSDL Configuration Wizard

[#]-{== Business Ohjects
== Collaboration Okji Service Mame I SERWICE_SYNCH_OrderStatus_Collab

[=-{= Connectors

[#]-{== Relationships

[#-{= Collaboration Tem

— o vk arvicer ann T ammlatary

Web Services Configurat

{22 Benchimatk

----- @ CLENT_ASY
----- @ CLIENT_S'ha
""" b oo CLIENT £ Target NameSpace I
----- @ OrderStatuss
----- @ SERVICE_AS
""" i SERVICE_SY | PorttConnector) | Operation Busziness Ohject | TLO |
""" { WebServicel | FromiebServi. oetOrderStatus | SERVICE_S¥M...  TLO

Directary Mame I CADWEapphire'DevelopmentiitziWebServices J

Collahoration Ports

----- L Samplesapc
----- =JL SampleSiebel
----- L wiehServiced
----- L wiehServices
{7 Databaze Connet
(22 Maps

{72 Schedules

WebSphe

re Business Integration

4L InterChange Servers

SErVers

Serve

Status
Schema and YWSDL Callak fMode far fMon-TLo
tInstances .
f+ Same File {* Synchronous
€~ Differert File © Azynchronous

Einizh I Cancel

Figure 58. WSDL Configuration Wizard

As shown in the columns are as follows:

Port (Connector) The triggering port on the collaboration object that is
bound to a web services connector. The wizard gets this information from
the collaboration object.

Operation If the business object is a TLO, the wizard gets this information
from the Request business object’s SOAP Config Mo BodyName attribute. If
the business object is a non-TLO, then the wizard combines the business
object name and the port name.

Business Object Used to create the schema. The wizard gets this information
from the connector’s supported business objects for this triggering port.

2. Enter the following as needed:

Service Name By default, the name you used to describe the collaboration
object

Directory Name Where the adapter for web services and collaboration
templates and objects reside

Target NameSpace The URL for the collaboration being exposed as a web
service.

Collaboration Ports The information in these fields are as specified in the
Bind Ports window of the collaboration object configuration procedure.

Collaboration Mode for Non-TLO This does not apply if you are using
TLOs. Otherwise, if you using a non-TLO object as input, you must specify
synchronous or asynchronous.

Chapter 7. Exposing collaborations as web services 151



* Schema and WSDL Specify whether you want these outputs in a single file
or in separate files.

3. Click Finish. The utility generates outputs based on the inputs and
specifications you entered, all of which are summarized in the next section.

WSDL Configuration Wizard processing of business objects in
TLO format

The configuration wizard creates a WSDL operation for each triggering port of a
collaboration object that is bound to a web services connector. The creation of the
operation is based on the business objects that are associated with the invocation of
this collaboration.

The configuration wizard determines that a business object is in the TLO format by
reading the object-level ASI ws_eventtlo. If the ASI property is set to true, the
business object is a TLO. Using the TLO, the following WSDL properties are found:

* Operation Name and BodyNS When the wizard finds business objects in TLO
format, it creates an operation name using the BodyName property of the SOAP
Config MO within the SOAP Request business object of the TLO. Similarly, the
wizard determines the message namespace to be the BodyNS property in the
same SOAP Config MO

* Execution Mode By inspecting the ws_mode property from the business object
level ASI of the TLO, the wizard determines that the mode is either synchronous
or asynchronous, and creates a REQUEST_RESPONSE or ONE_WAY WSDL,

respectively.

To create WSDL operations based on TLOs, a collaboration can be configured in
two ways, with and without maps.

TLOs with maps: A collaboration is generally configured to accept Generic
Business Object (GBO) requests. That is, the collaboration template triggering ports
subscribe to GBOs. To use TLOs in this case, the collaboration must be bound to a
web services connector, and the connector must support the transformation of the

GBO to TLOs via maps. shows this scenario.

GBO TLO |:>

Collaboration Web services
connector

Figure 59. TLO with map

When the collaboration and connector are configured in this way, the wizard
determines that the TLO business object will be used to create the operations
described in the WSDL document. This determination is made by inspecting the
connector-supported business objects and associated maps. It is important for the
run-time processing of the web services connector that the configured maps always
transform the collaboration’s GBO to one and only one TLO. Also, it is important
that the source and destination business objects of the inbound map translate to
the destination and source business objects of the outbound map, respectively.

TLOs without maps: The wizard also supports processing TLOs without maps. In
this case, the collaboration template’s triggering ports subscribe to TLOs directly.

152 Adapter for Web Services User Guide



Because the web services connector supports the TLOs, maps are not required.

illustrates this scenario.

TLO |:>

Collaboration Web services
connector

Figure 60. TLO without map

When the collaboration and connector have been configured in this way, the
wizard uses the TLO business object found in the collaboration to create the
operations described in the WSDL document. The wizard determines that no maps
are configured for this port.

WSDL Configuration Wizard processing of business objects in
non-TLO format

Support for non-TLO business objects allows you to use pre-existing collaborations
and maps for exposing as web services. For this reason the wizard also supports
creating WSDL operations using business objects that are not in TLO format.

Similar to the TLO process, the wizard determines that a business object is in
non-TLO format by reading the object-level ASI ws_eventtlo. If the ASI property
does not exist or exists but is set to something other than true, this business object
is a non-TLO. A non-TLO is any business object that does not adhere to the web
services TLO structure. Using the non-TLO, the wizard discovers the following
properties:

* Operation Name and BodyNS When the wizard finds business objects in
non-TLO format, it creates an operation name using a combination of the
collaboration name, the business object name, and the port name. The Body
Namespace for the WSDL operation is configured using the Target Namespace
entry in the WSDL Configuration Wizard.

¢ WSCollaborations The wizard creates a hierarchy of properties in the web
services connector that includes a BO Name, a SOAP Body Name, a SOAP Body
Namespace, and a Mode for each WSDL operation in a port of a collaboration
that is exposed as a web service. |Ei§ure 61f{shows a sample WSCollaborations

property:

Chapter 7. Exposing collaborations as web services 153



Etonnectur Configurator - [ICS - WebServicesGBONonTLO : QAProject] =131
| File Edit View ‘Window Help =1=]x
IEET- ICE IR

Standard Propetties 1 Connector-Specifi... I Supported Busine... ] Ascociated Maps | Resources  Tracel/Log Files | Messaging ] Data Hand\er]
Property alue Encrypt | Update he
1 ConnectorType WiebhService [] agent restar
i | JrDl [ agert restar
3 B ProtocolListenerFramework [ anent restar
4 B WsCaollaborations [] agert restar
= B webhServicesFB0OMonTLOCollabOhject [ agent restar
B B From [ agert restar
7 B Cperstiond [ agent restar
t=4 BOMatne CUSTOMERZ-GBO [] agent restar
te] Bodyhame WebServicesGBOMNonTLOCollak Chject CUSTOMER2-GBOFrom [ agent restar
10 BodyM3 WebServicesGEONonTLOCollahOhject TargetNSiveb ServicesGBONon TLO CollabDbject [ anent restar
11 Maile synch [] agert restar
1 | |

A

Figure 61. WSCollaborations

* Execution Mode The Execution mode for the WSDL operation is configured
using the Collab Mode for Non-TLO selection button in the WSDL
Configuration Wizard.

To create WSDL operations based on non-TLOs, a collaboration can be configured
in two ways, with and without maps.

Non-TLOs with maps: Collaborations are generally configured to accept Generic
Business Object (GBO) requests. At the same time, there may be pre-existing maps
that transform the GBO from the collaboration to a non-TLO business object.

Figure 62| shows this scenario.

TS

Collaboration Web Services
Connector

Figure 62. Non-TLO with map

In this case, the wizard uses the non-TLO business object to create WSDL
operations described in the WSDL document. It is important for the run-time
processing of the web services connector that the configured maps always
transform the collaboration’s GBO to one and only one non-TLO. Also, it is
important that the source and destination business objects of the inbound map
translate exactly to the destination and source business objects of the outbound
map respectively.

Non-TLOs without maps: In highly specialized cases, collaborations may be
configured to accept requests from business objects other than GBOs. In this case,

154 Adapter for Web Services User Guide



the non-TLO is a direct business object for the collaboration, and no maps exist.

Figure 63[shows this scenario.

nonTLO :>

Collaboration Web Services
Connector

Figure 63. Non-TLO without map

In this case, the wizard determines that no maps are configured for this port, so it
uses the non-TLO business object to create WSDL operations described in the
WSDL document.

Processing requirements and exceptions

The sections below discuss requirements of the WSDL Configuration Wizard that
apply to all types of objects (TLOs and non-TLOs) unless otherwise explicitly
mentioned. For further information on business object requirements for web
services TLOs, see [Chapter 3, “Business object requirements,” on page 25

Note: Among the business object ASI that the WSDL tool reads, only the following
can have internationalized characters:

* elem_name
* elem_ns

e attr_name
e attr_ns

* BodyName
* BodyNS

* type_name

* type_ns

Support for Use property in SOAP Config MO: The WSDL Configuration
Wizard supports the Use property in SOAP Config MOs, but throws an error if the
Use value in a SOAP Request BO and the corresponding SOAP Response BO are
different. You can set the Use value to literal or encoded to generate a WSDL
document. For more information on the Use property and its values, see
[Use impact on SOAP messages” on page 115/

Support for Style in SOAP Config MO: Only rpc style is supported for exposing
collaborations as web services. If the Style is specified as document in the SOAP
Config MO, the wizard will throw an error.

Fault processing: The details attribute inside a SOAP Fault business object can
have one child attribute only. Otherwise, the utility generates an error.

The utility accepts Fault business objects. If it encounters multiple Fault business
objects, the utility processes the header container of the first or default fault
business object. Processing is as follows:

* No Namespace is specified for the soap:fault element inside the binding section.
* Fault is always specified using the document style and use literal.

Chapter 7. Exposing collaborations as web services 155



* Message parts are specified using the element attribute.

Header fault processing: A header fault is processed as soap:headerfault, a child
element of soap:header inside the WSDL document binding section. The header
fault is processed using the headerfault ASI specified in the header child business
object as follows:

* No Namespace is specified for the soap:headerfault element.
* A header fault is always specified using the document style and use literal.

* Message parts are specified using the element attribute instead of the type
attribute.

Header Processing: Multiple header attributes are specified as SOAP header child
business objects inside a SOAP header container business object. A Header
container business object is identified by its ASI: soap_Tocation=S0APHeader.
During utility processing, a soap:header element is created inside binding section
for each of the attributes inside the header container business object and the
following rules apply:

* The header is always specified using document style and use literal.

* Message parts are specified using the element attribute instead of the type
attribute.

* If no elem_ns is specified, headers are written to the Body Namespace.

Note: The header container business object can be a child of SOAP Request,
Response or Fault business objects. The namespace attribute is not specified
for the soap:header element.

elem_ns ASI processing: The utility ignores elem_ns ASI at the message part
level. Instead, elem_ns is used in second- and lower-level attributes. Second- level
business object attributes can be defined in a separate namespace if elem_ns is
specified.

JMS protocol processing: SOAP/JMS binding in the port section of the WSDL
document contains the jms:address element. The following is an example of
jms:address element. (Attributes suffixed with "?” are optional).
<jms:address
destinationStyle = "queue"

jmsVendorURI = "http://ibm.com/ns/mgseries"?
initialContextFactory = "com.ibm.NamingFactory"?
jndiProviderURL = "iiop://something:900/wherever"?

jndiConnectionFactoryName = "orange"

jndiDestinationName = "fred"

jmsProviderDestinationName="trash" />

If the LookupQueuesUsing]NDI connector property is set to true, the value of
InputQueue property corresponds to the jndiDestinationName attribute of the
jms:address element of the SOAP/JMS binding. The jms:address element is
specified in the wsdl:port section. If LookupQueueUsing]NDI is set to false, then
the jmsProviderDestinationName attribute is set to InputQueue. InputQueue is the
connector property available under the Listener_JMS hierarchical property. The
initialContextFactory, jndiProviderURL and jndiConnectionFactoryName properties
will be specified only for synchronous processing.

HTTP protocol processing: A sample port section from a WSDL document is
shown below:

156 Adapter for Web Services User Guide



<service name="StockQuoteWebService">

<port name="StockQuoteWebServicePort" binding="intf:StockQuoteBinding">
<soap:address location="http://Tocalhost:8080/whia/webservices/stockquoteservice"/>
</port>

</service>

The WSDL Configuration Wizard uses the value of host name and the port from
the context path. If the context path contains only the relative path without the
host name and port, then the value of host name and port property located under
the Listener HTTP configuration property will be used to specify the location
attribute in soap:address xml element.

Chapter 7. Exposing collaborations as web services 157



158 Adapter for Web Services User Guide



Chapter 8. Usmg the WSDL ODA

* |“Starting the WSDL ODA”"]
* [“Running the WSDL ODA” on page 160|
* |“Configuring the agent” on page 160

» [“Specifying the WSDL document” on page 163

* |“Confirming selections” on page 164

* |“Generating the objects” on page 165

+ [“Limitations” on page 16§

Note: The Web Services Description Language (WSDL) Object Discovery Agent
(ODA) is used for generating business objects for request processing and,
when a WSDL Interface file is available, for event processing.

Collaborations use the connector to invoke web services. Or you can expose

collaborations as web services. Web services are described using WSDL (Web

Services Description Language). This chapter describes how to use the Web

Services Description Language (WSDL) Object Discovery Agent (ODA) to generate

business objects. The connector and SOAP data handler use these business objects

when collaborations invoke a web service and when exposing collaborations as
web services.

You use the WSDL ODA to generate business objects for two purposes:
1. The WSDL ODA can take a WSDL implementation file and generate business
objects for a collaboration to invoke an external web service.

2. The WSDL ODA can take a WSDL interface file and generate business objects
for a collaboration that is exposed as a web service.

You can launch the WSDL ODA when you use the Business Object Designer. The
WSDL ODA reads a WSDL document and creates the business objects required by
the connector and SOAP data handler. The WSDL ODA simplifies the job of
business object development.

Note: The WSDL ODA handles SOAP/HTTP and SOAP/JMS bindings in a WSDL.

Starting the WSDL ODA

You can start the WSDL ODA using one of the following scripts:
* Windows
— start WSDLODA bat

Note: You can also start the WSDL ODA using the shortcut that the Installer
automatically creates for Windows environments.
+ UNIX
— start WSDLODA .sh

You select, configure, and run the WSDL ODA using Business Object Designer.
Business Object Designer locates each ODA by the name specified in the
AGENTNAME variable of each UNIX script file (start WSDLODA.sh) or Windows
batch file (start. WSDLODA .bat).

© Copyright IBM Corp. 2003, 2004 159



Running the WSDL ODA

An Object Discovery Agent (ODA) simplifies the work of building business objects
for request processing. Business Object Designer provides a graphical interface to
all available ODAs, and helps you find the agent you need. The WSDL ODA is
named, by default, WSDLODA. The name as it appears in the WSDL Wizard
depends on the value of the AGENTNAME variable in the start_WSDLODA.bat or
start_WSDLODA.sh file. For more on ODAs and business object definitions and
how to configure, start and use ODAs, see the IBM WebSphere Business Object
Development Guide. You are encouraged to consult that document as needed while
following the procedures below.

After starting the Object Discovery Agent, follow these steps to launch the WSDL
ODA:

1. Open Business Object Designer.

2. From the File menu, select the New Using ODA... submenu. Business Object

Designer displays the Select Agent dialog box in the Business Object Wizard.
illustrates this window.

3. Click the Find Agents button to display all running agents and select the WSDL
ODA.

Business Object Wizard - Step 1 of 6 - Select Age o =] 54

Press "Find Lgents" to locate ODAS Located agents:
in wour subnet (9.26 237 xxx). You
will be given an estimste of the time WEDLODA [9.26 245 35:57037]

required to complete the operation
and a means to cancel the search.

If wou hawve an QDA that is
running on a machine outside
subnet 9.26 257 xxx press

"Configure Discovery" to include
that maching in the search.

Configure Discovery |
Find Agents 4 | | _;I

Agent's name: To be discovered

Agent's host: I
Part: I

= Back | MERt= Cancel

Figure 64. Select Agent window
If Business Object Designer does not locate your WSDL ODA, check the setup
of the ODA.

4. Select the WSDL ODA in the Located Agents pane list and click Next.

This displays the Configure Agent wizard window, which shows the
configuration properties you need to specify.

Configuring the agent

shows the Configure Agent window of the WSDL ODA Business Object
Wizard.

160 Adapter for Web Services User Guide



Business Dbject Wizard - Step 2 of 6 - Configure Agent - |E| 5[
[~ Profiles
Current profile: I \ -
Save. | hlenwe | Remave |
Property Walue Type Description

1 SDL_LURL String WSDL location URL or Absolute file path

2 LDDI_Incpuiry AP1_URL String UDD! Incuiry AP URL

3 ebServiceProvider String Mame of the Web Service Provider

4 YiebService String Mame of the YWeb Service inWSDL file

5 MimeType xmlfsoap String The mime type for the DataHandier to invoke

B BOPrefix SOAP_ String Default prefix for the generated business object
7 BOYerb Create String Default business ohject verk

8 Collaboration String Collshoration to invoke for synchronous Inboune
g GeneratelnigueBOs String ‘Whether names of the BOs, corresponding to ty
10 Soapkersion Sring SOAP Yersion tor which the BOs will be geners
11 TraceFileName WSDLODArace txt String MName of the trace file

12 TracelLevel 5 Irteger Trace level for the agent

13 MezsaceFile WEDLODAAent txt Sring Mame of the error and message file, relstive to C
J | Bl

= Back I et = I Cancel |

Figure 65. Configure Agent window

lists the properties you must configure for the WSDL ODA.

Note: The first time you use the WSDL ODA, you must specify values for each
configuration properties. After doing so, you can save the property values in
a profile by clicking the Save button. The next time you use the WSDL
ODA, you can select the saved profile from the “Current profile” box.

Table 47. WSDL ODA configuration properties

Property Type Required |Default |Description
WSDL_URL String Yes, when | None The URL of the WSDL
not document. This value
specifying can also be set to the
a UDDI absolute path to a local

WSDL file. You can
specify the URL in a
native language. This
property is enabled for
transformation of
bidirectional languages.

UDDI_InquiryAP String Yes for None The URL of the UDDI

I_URL UDDI inquiry APIL

WebServiceProvider String | Yes for None The name of the target
UDDI web service provider.

This is normally the
Business name as
published on the UDDI
registry. This entry is
case sensitive and
requires English
characters only.

WebService String Yes for None The name of the web
UDDI service. This entry is
case sensitive and
requires English
characters only.

Chapter 8. Using the WSDL ODA 161



Table 47. WSDL ODA configuration properties (continued)

Property

Type

Required

Default

Description

MimeType

String

No

xml/soap

The mime type of the
data handler that the
connector invokes. This
is set in the business
object TLO as the
default value and must
be in English characters
only.

BOPrefix

String

SOAP_

This is appended to the
front of every business
object created. User
configurable (English
characters only) up to
eight characters.

BOVerb

String

Yes

Create

The verb set in the
SOAP Config MO of the
Request, and, optionally,
Response, and Fault
business objects.

Collaboration

String

None

This value dictates the
ws_collab ASI in the
TLO and is mandatory
when generating objects
for event processing.

GenerateUniqueBOs

String

None

If this property is true,
the business object
names will be unique
among all web services.
If this property is false,
you can reuse the
business objects among
operations with the
same part types.

SOAPVersion

String

No

None

Determines the SOAP
standard used to

generate BOs. Possible
values are 1.1 and 1.2.

BiDi.ExtApplicationMetaData

String

Yes

ILYNN

Specifies the
bidirectional format of
the WSDL_URL
property, if needed;
otherwise, the use of the
default value will not
activate any bi-di
processing on the
WSDL_URL.

The next section describes how to specify the WSDL document in the Configure

Agent window.

162 Adapter for Web Services User Guide




Specifying the WSDL document

Web service business objects are generated from WSDL documents. This section
shows you how to select and specify the source of a WSDL document in the
Configure Agent window of the ODA.

The WSDL document may reside on the local file system or at a URL location on
the web or in a UDDI registry—you specify where the WSDL document resides
and the WSDL ODA retrieves it. (A complete WSDL service description may
consist of more than one document.)

Getting a WSDL document from a URL location
As shown in above:

1. Specify the URL for the WSDL document in the configuration property
WSDL_URL

The ODA then retrieves the list of web services from the WSDL document,
resolving the URLs of imported documents. The WSDL_URL property also
allows you to specify the location of the WSDL file on the local file system
using URL syntax (for example: file:///C:/test.wsdl) or an absolute path (for
example: C:\test.wsdl). You must ensure that the ODA has access to this
document and its dependencies (all the imported documents).

The WSDL_URL property is enabled for transformation of bidirectional
languages.

2. Click Next.
The ODA queries the URL for the web service provider and retrieves the list of

services defined in the WSDL at this URL location and then displays the list of
operations for the expanded port, as shown in

Note: The WSDL ODA displays the ports that have SOAP/JMS or
SOAP/HTTP bindings only and excludes other types of bindings.

Business Object Wizard - Step 3 of b - Select Source Y =1 B

From the tree below, zelect the zource nodes from which the Dezsigner will generate Business Objects.
Click "Mexst" to continue.

Uze thiz object instead I

M ame Diezcription
=1 SimpletddressB ook ervice twieb Service
=1 Diemo Service Port
= AddressBook_ServiceBinding Part Binding
2 e T e
c InaddEnteRequest Binding Input Meszage
o woidR esparse Binding Output
=1 getAddressFromM ame Binding Operation
- IngetdddrezsFromt ameR equest Binding Input Meszage
- DutgettddressFramM ameR esponzse Eindirg O utput
[+ getAllListings Binding Operation
[+ putListings Binding Operation
[ removeEntry Binding Operation
- removeAll Binding Dperation
[ SR Service Port
< Back Mext » Cancel

Figure 66. Select Source window

Chapter 8. Using the WSDL ODA 163



3. Select one and only one of the operations from the list for the port (the
selectable operations are highlighted). You cannot select the service or port
nodes, which are for display purposes only. Note that WSDL operations may be
of several types: ONE_WAY, REQUEST_RESPONSE, SOLICIT_RESPONSE, and
NOTIFICATION. The WSDL ODA supports and displays only
REQUEST_RESPONSE and ONE_WAY operations.

4. Click Next and go to[“Confirming selections.”|

Getting a WSDL document from a UDDI registry

The ODA can also retrieve a WSDL document from a UDDI registry instead of a
URL location. For this to occur:

1. Specify the following properties in the Configure Agent window for your
“search key”:

e UDDI_InquiryAPI_URL (for example: https://uddi.ibm.com/ubr/inquiryapi)
* WebServiceProvider (for example: IBM Corporation)
* WebService (for example: StockQuoteService)

¢ The WSDL ODA uses exact name match (findQualifier) for inquiry within
the UDDI registry. Ensure that you are entering the right values for the
parameters. You can use a regular UDDI browser to find services provided
by the service provider.

The WSDL ODA uses these properties, which are described in [Table 47} to
connect to the UDDI registry.

2. Click Next.

The ODA queries the UDDI registry for the web service provider and retrieves
the list of services matching the web service parameter you specified. The
WSDL ODA displays the list of services offered by the web service provider in
a window like that shown in When the UDDI query returns more
than one match, the WSDL ODA displays them appended with an underscore
(L) and a sequence number. For example: StockQuoteService_1,
StockQuoteService_2, and so on.

Note: The WSDL ODA displays the ports that have SOAP/JMS or
SOAP/HTTP bindings only.

3. Select one and only one of the operations from the list for the port. You cannot
select the service or port nodes, which are for display purposes only. Note that
WSDL operations may be of several types: ONE_WAY, REQUEST_RESPONSE,
SOLICIT_RESPONSE, and NOTIFICATION. The WSDL ODA supports and
displays only REQUEST_RESPONSE and ONE_WAY operations.

4. Click Next and go to[‘Confirming selections”]

Note: The connector supports the UDDI Version 2 API only. Accordingly, you
cannot retrieve WSDL from UDDI registries that do not support UDDI
Version 2.

Confirming selections

After selecting a web service operation source, the WSDL ODA Business Object
Wizard displays a confirmation screen like that shown in

1. Confirm your selections.

2. Click Next and go to [“Generating the objects” on page 165

164 Adapter for Web Services User Guide



Business Object Wizard - Step 4 of 6 - Confirm source nodes F — =]

Buzinezsz objectz are about to be generated uging the zource nodes summarized below. Click 'Mest' o
ztart generating the objects or click "Back' to change vour selection.

MHame D ezcription
[SiZmF Service Provider
= SimpletddressB ook S ervice 'w'eb Service
= Dema Service Port
=l AddressBook_ServiceBinding Fart Binding
“ addEntiy Binding Operation

< Back I Mest > I Cancel

Figure 67. Confirm window

Generating the objects

After you confirm your WSDL document sources, the WSDL ODA generates the
business objects and meta-objects for the web service you wish to invoke or for the
collaboration you want to expose as a web service. See [Figure 68 on page 166|and
follow the steps below for saving objects.

Note: The WSDL ODA cannot automatically select a key attribute for the top-level
business object. For business objects at all other levels, the WSDL ODA sets
the first attribute as the key. Accordingly, when you save WSDL
ODA-generated objects in Business Object Designer, an error message
informs you that the top-level object is missing a key attribute. Assign a key
attribute that reflects your business data and business object requirements,
then re-save the objects. Use caution when selecting the key attribute; it is
used in event sequencing and may lead to performance issues if not selected
carefully.

1. Check Save business objects to a file, or check Open the business objects in
separate windows. The latter choice launches the Business Object Designer and
opens the business objects in that application.

2. If you do not want the ODA to continue to run, check Shutdown ODA and
click Finish. Otherwise, just click Finish, and the ODA will be ready for the
next business object generation.

Chapter 8. Using the WSDL ODA 165



Business Object Wizard - Step 6 of b - Save business ubfj: — ==

Busneszs objectz were succeszfully created. v'ou can zawve their definition to the
zarver now of do it later if pou wizh to inspect them first,

™ Save business objects to the semer

™ Save business objectz to a file

[ Open the new BOz in separate windows

< Back I Firizh I Cancel

Figure 68. Save window

For request processing, the call to the web service must have a request and, if
synchronous, a response and fault messages. For event processing, the
collaboration exposed must have a request and, if synchronous, a response and
fault messages. The WSDL ODA generates business objects for each of these
including the application-specific information (ASI) at every level as well as SOAP
data handler, and protocol Config MOs. The SOAP bindings in WSDL document
determine the structure of SOAP message. For more on business object structure,
see [Chapter 3, “Business object requirements,” on page 25.|

Limitations

describes WSDL ODA support for various combinations of style, use, and
part definitions, using either type or element in the WSDL and XML Schema.

Table 48. WSDL ODA limitations

Style/Use/Parts Description
rpc/encoded/type Supported
rpc/encoded/element Supported
rpc/literal /type Supported
rpc/literal /element Supported
doc/encoded/type Not supported
doc/encoded/element Not supported
doc/literal/type Supported
doc/literal/element Supported

The WSDL ODA can retrieve WSDL files that are completely self-contained (in one
file) or are separated into an implementation file containing the service element, an
interface file containing all the other WSDL elements including types, messages,
portTypes, and bindings, and one or more files for the schemas. The WSDL ODA is
not able to successfully retrieve WSDL files that have more than one interface file,
for example, with messages and portTypes in one file and bindings in another file.

166 Adapter for Web Services User Guide




The <schema> element in the WSDL document must be self-contained in terms of
namespace prefixes. You cannot use a namespace prefix that is defined in the
<definitions><types>...</types></definitions> element of the WSDL document
in the <schema> element that is a child of the <types> element. You need to
re-define the namespace prefix on the <schema> element if it is to be used in the
sub-elements of the <schema> element. The following example shows a schema that
is incorrect because it is not self-contained:
<definitions xmins="http://schemas.xmlsoap.org/wsd1/" xmlns:NS="NS">
<types>
<schema xmIns="http://www.w3.0rg/1999/XMLSchema">
<element name="NSElem" type="NS:NSType"/>
</schema>
</types>
</definitions>

Namespace prefix NS is defined on the <definitions> element and is used without
re-definition on the <schema> element. Hence the WSDL ODA will throw an error.
To work around this limitation, re-define the namespace prefix NS on the <schema>
element as shown below:

<definitions xmIns="http://schemas.xmlsoap.org/wsd1/" xmlns:NS="NS">
<types>
<schema xmIns="http://www.w3.0rg/1999/XMLSchema" xmlns:NS="NS">
<element name="NSElem" type="NS:NSType"/>
</schema>
</types>
</definitions>

Chapter 8. Using the WSDL ODA 167



168 Adapter for Web Services User Guide



Chapter 9. Troubleshooting

The chapter describes problems that you may encounter when starting up or

running the connector.

Start-up problems

Problem

Algorithm Not Supported/Algorithm "SSL’ not available

Error loading keystore:Keystore file path:"<path>"
incorrectly specified:KeyStore not found

KeyManagementError: KeyStore is tampered with,
KeyManagement error

Error loading certificates from keystore

Error creating the server socket, terminating: error

KeyManagementError:UnrecoverableKeyException, Keys
could not be recovered

Potential solution / explanation

This error occurs when the SSL version specified in the
connector configurator is not supported by your JSSE
provider. Solution: check JSSE provider’s documentation
for the supported SSL versions. For IBM JSSE make sure
your java.security file in the ProductDir/lib/security
directory has the following entry

security.provider.<number>=com.ibm. jsse.
IBMJSSEProvider

where <number> is the preference order for loading the
security provider.

This error occurs if you specify an incorrect path for the
keystore and/or truststore files. Solution: check the
keystore file path specified in the SSL->KeyStore property
in the Connector configurator. Also, if you are using
truststore, check the truststore file path specified in
SSL->TrustStore property in the Connector configurator.
This error occurs if your keystore and/or truststore have
been tampered with or otherwise corrupted. This error
may also occur if you have specified an incorrect value
for the password. Solution: ensure that the keystore has
not been tampered. Try recreating the keystore. Also
make sure you have entered a correct password in the
SSL->KeyStorePassword and SSL->TrustStorePassword
connector properties.

This error occurs if your certificates and/or keystore,
truststore have been tampered with. This error may also
occur if you have specified an incorrect value for the
password. Solution: check to see if the certificate, keystore
or truststore have been tampered with. Also, ensure that
you have specified a correct password in the
SSL->KeyStorePassword and SSL->TruststorePassword
connector properties.

This error occurs if the SOAP/HTTP or SOAP/HTTPS
protocol listener cannot bind to the port specified in
connector properties. Solution: check the ports specified
for all of the SOAP/HTTP and SOAP/HTTPS protocol
listeners. If the same port is specified for more than one
listener, only one of the listeners can start up.
Additionally, check if you have any other service running
on that port. If so, then you may want to choose a
different port for the protocol listeners.

This error occurs if the keystore or truststore cannot be
used. Solution: create a new keystore.

© Copyright IBM Corp. 2003, 2004

169



Problem
SSL Handshake Exception: Unknown CA

You notice excessive JSSE logging in your log file.

You have specified a protocol listener but the listener is
not getting initialized; you see the following warning
message in the connector:

Skipping Protocol Listener Property Set
"SOME_LISTENER_NAME" with protocol property "":
unable to determine the protocol Tistener

class.]

You have specified a protocol handler, but it is not
getting initialized; you see following warning
message in the connector.

Unable to determine the type of the
handler; skipping initializing of current
handler. Handler property details:
Name: <Handler Name>;
Value:

Name: Protocol; Value:

Name: ResponseWaitTimeout; Value:

Name: ReplyToQueue; Value: .]
java.lang.NoClassDefFoundError:
Javax/jms/JMSException...
Fail to Tookup, queue: "InProgressQueue"
for specified queue name: "<queue name>"
queue using JNDI "<queue name>""
javax.naming.NameNotFoundException:
<queue name>

Error in initializing, JNDI Context is not initialized, user
can not use JMS protocol

Error in getting initial context

Potential solution / explanation

This occurs if you do not have a CA certificate in your
truststore. Solution: check whether the CA’s certificate, as
well as its self-signed certificates, reside in the truststore.
Also, ensure that the DN of the certificate has the host
name (preferably the IP address).

If you do not want to see all of the underlying JSSE
details on your console, set the value of SSL->SSLDebug
property in the connector configurator to false.

The connector was unable to extract a valid value for the
Protocol property of the protocol listener. Valid values are
soap/http, soap/https, or soap/jms. Solution: this is not
an error condition. However, if you want the connector to
use this listener, specify a valid Protocol property value.

The connector was unable to extract a valid value for the
Protocol property of the handler. Valid values are
soap/http or soap/jms. Solution: This is not an error
condition. However, if you want connector to use this
handler, specify a valid Protocol property value.

The connector cannot find jms.jar Solution: make sure
that jms.jar is in the connector classpath.

If you are using SOAP/JMS web services with the
connector, then this problem occurs when you do not
create queues. This error may also occur, if you have set
JNDI->LookupQueuesUsing]NDI to true and the
connector is not able to look up the queues using JNDI.
Solution: create the queues required by the connector. If
JNDI->LookupQueuesUsing]NDI is set to true, make sure
queues required by the connector can be looked up using
JNDL

If you have configured the connector to use a SOAP/JMS
protocol listener or SOAP/JMS protocol handler, you
must specify JNDI properties. Solution: make sure that
you have specified required JNDI connector-specific
properties. Refer to your JNDI provider documentation to
determine the libraries and jar files required to connect to
your JNDI provider. Make sure all of the required jar files
are in the classpath of the connector. Also, make sure all
of the required libraries are in the path of the connector.
If you have configured the connector to use a SOAP/JMS
protocol listener or a SOAP/JMS protocol handler, you
must specify JNDI properties. This error may also occur if
you have not specified JNDI properties correctly. Solution:
check the JNDI properties. Make sure your JNDI is
configured properly. Refer to your JNDI provider
documentation to determine the libraries and jar files
required to connect to your JNDI provider. Make sure all
of the required jar files are in the classpath of the
connector. Also, make sure all of the required libraries are
in the path of the connector.

170 Adapter for Web Services User Guide



Run-time errors

Problem

Error parsing HTTP response:Reached end of stream
while reading HTTP response header

Error in the url mentioned , unable to extract host
and port details ,destination is wrong <destination
URL>

Failure in sending event business object <BO Name> with
verb <Verb> to the broker. Received execution status "-1"
and error message:

MapException: Unable to find the map to map
business objects <BO Name> for the connector
controller WebServicesConnector

Failed to transform a soap request into a request business
object. Soap Fault:

Failure in generating request object -
no verb could be set on the request bo

Potential solution / explanation

This error occurs when the connector invokes a
SOAP/HTTP web service. It occurs because your target
web service sent an incorrect HTTP response. Solution:
make sure your target SOAP/HTTP web service end
point address is correct.

This error occurs when the connector invokes an
SOAP/HTTP Web Service. It occurs because you have
specified an incorrect end point address for the
SOAP/HTTP web service. Solution: make sure you have
specified the correct end point address for the web
service.

This error occurs when the integration broker fails to
process the event because the collaboration to which the
connector is sending the event synchronously either does
not exist or does not accept the business object verb.
Solution: if you are using a web services TLO for event
notification, examine the ws_col1lab object-level ASI of the
TLO. (The name of the TLO is given in the error
message.) Check the value of the ws_collab ASI. Make
sure this collaboration exists and is running. If ws_mode
BO level ASI is set to synch, ws_collab ASI is required.
Check the value of ws_verb object-level ASI. Make sure
the collaboration specified by the ws_collab ASI can be
triggered by the verb specified in the ws_verb ASI. If you
are using a non-TLO for event notification, examine the
WSCollaborations connector property. Find the
collaboration that will be invoked synchronously by this
business object. Make sure this collaboration exists and is
running.

This error occurs during event notification when the
connector is unable to determine the verb of the business
object that the connector is attempting to send to the
integration broker. Solution: if you are using a web
services TLO for event notification, make sure you have
specified ws_verb object-level ASI for this TLO. Specify
the verb as the value of this ASI. If you are using a
non-TLO for event notification, the SOAP message sent
by your web service client must contain the verb element.
The SOAP data handler sets the verb of the business
object using the value of the verb element in the SOAP
message.If the web service client does not send the verb
in the SOAP message, the SOAP data handler cannot set
the verb on the business object. In this case, the connector
cannot deliver the business object to the integration
broker. If you suspect that your web service clients may
not include a verb element in the SOAP message, you
may provide a DefaultVerb verb-level ASI for this
business object. If you do so, the connector sets this verb
on the business object before sending it to the integration
broker.

Chapter 9. Troubleshooting 171



172 Adapter for Web Services User Guide



Appendix A. Standard configuration properties for connectors

This appendix describes the standard configuration properties for the connector
component of WebSphere Business Integration adapters. The information covers
connectors running with the following integration brokers:

* WebSphere InterChange Server (ICS)

* WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere
Business Integration Message Broker, collectively referred to as the WebSphere
Message Brokers (and shown as WMQI in the Connector Configurator).

* Information Integrator (II)
* WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and
the DB2 II standard properties (see the Notes column in [Table 49 on page 1751)

The properties you set for the adapter depend on which integration broker you
use. You choose the integration broker using Connector Configurator. After you
choose the broker, Connector Configurator lists the standard properties you must
configure for the adapter.

For information about properties specific to this connector, see the relevant section
in this guide.

New properties

These standard properties have been added in this release:
* AdapterHelpName

 BiDi.Application

* BiDi.Broker

* BiDi.Metadata

* BiDi.Transformation

* CommonEventInfrastructure

* CommonEventInfrastructureContextURL
* ControllerEventSequencing

* jms.ListenerConcurrency

¢ jms.TransportOptimized

* ResultsSetEnabled

* ResultsSetSize

* TivoliTransactionMonitorPerformance

Standard connector properties overview

Connectors have two types of configuration properties:
+ Standard configuration properties, which are used by the framework

* Application, or connector-specific, configuration properties, which are used by
the agent

© Copyright IBM Corp. 2003, 2004 173



These properties determine the adapter framework and the agent run-time
behavior.

This section describes how to start Connector Configurator and describes
characteristics common to all properties. For information on configuration
properties specific to a connector, see its adapter user guide.

Starting Connector Configurator

You configure connector properties from Connector Configurator, which you access
from System Manager. For more information on using Connector Configurator,
refer to the sections on Connector Configurator in this guide.

Connector Configurator and System Manager run only on the Windows system. If
you are running the connector on a UNIX system, you must have a Windows
machine with these tools installed.

To set connector properties for a connector that runs on UNIX, you must start up
System Manager on the Windows machine, connect to the UNIX integration broker,
and bring up Connector Configurator for the connector.

Configuration property values overview

The connector uses the following order to determine a property’s value:

1. Default
2. Repository (valid only if WebSphere InterChange Server (ICS) is the integration
broker)

3. Local configuration file
4. Command line

The default length of a property field is 255 characters. There is no limit on the
length of a STRING property type. The length of an INTEGER type is determined
by the server on which the adapter is running.

A connector obtains its configuration values at startup. If you change the value of
one or more connector properties during a run-time session, the property’s update
method determines how the change takes effect.

The update characteristics of a property, that is, how and when a change to the
connector properties takes effect, depend on the nature of the property.

There are four update methods for standard connector properties:

* Dynamic
The new value takes effect immediately after the change is saved in System
Manager. However, if the connector is in stand-alone mode (independently of
System Manager), for example, if it is running with one of the WebSphere
message brokers, you can change properties only through the configuration file.
In this case, a dynamic update is not possible.

» Agent restart (ICS only)
The new value takes effect only after you stop and restart the connector agent.

* Component restart
The new value takes effect only after the connector is stopped and then restarted
in System Manager. You do not need to stop and restart the agent or the server
process.

174 Adapter for Web Services User Guide



¢ System restart

The new value takes effect only after you stop and restart the connector agent

and the server.

To determine how a specific property is updated, refer to the Update Method
column in the Connector Configurator window, or see the Update Method column

in [Table 49 on page 175,

There are three locations in which a standard property can reside. Some properties
can reside in more than one location.

* ReposController

The property resides in the connector controller and is effective only there. If
you change the value on the agent side, it does not affect the controller.

* ReposAgent

The property resides in the agent and is effective only there. A local
configuration can override this value, depending on the property.

* LocalConfig

The property resides in the configuration file for the connector and can act only
through the configuration file. The controller cannot change the value of the
property, and is not aware of changes made to the configuration file unless the
system is redeployed to update the controller explicitly.

Standard properties quick-reference

provides a quick-reference to the standard connector configuration
properties. Not all connectors require all of these properties, and property settings
may differ from integration broker to integration broker.

See the section following the table for a description of each property.

Note: In the Notes column in the phrase “RepositoryDirectory is set to
<REMOTE>" indicates that the broker is InterChange Server. When the
broker is WMQI or WAS, the repository directory is set to
<ProductDir>\repository

Table 49. Summary of standard configuration properties

Update
Property name Possible values Default value method Notes
AdapterHelpName One of the valid Template name, if valid, | Component Supported regional
subdirectories in or blank field restart settings.
<ProductDir>\bin\Data Include chs_chn,
\App\Help\ that cht_twn, deu_deu,
contains a valid esn_esp, fra_fra,
<RegionalSetting> ita_ita, jpn_jpn,
directory kor_kor, ptb_bra,
and enu_usa (default).
AdminInQueue Valid JMS queue name <CONNECTORNAME> Component This property is valid
/ADMININQUEUE restart only when the value
of DeliveryTransport
is JMS
AdminOutQueue Valid JMS queue name <CONNECTORNAME> Component This property is valid
/ADMINOUTQUEUE restart only when the value
of DeliveryTransport
is JMS

Appendix A. Standard configuration properties for connectors 175



Table 49. Summary of standard configuration properties (continued)

ascii7, ascii8, SJIS,
Cp949, GBK, Big5,
Cp297, Cp273, Cp280,
Cp284, Cp037, Cpa37

Update
Property name Possible values Default value method Notes
AgentConnections 1 through 4 1 Component This property is valid
restart only when the value
of DeliveryTransport
is MQ or IDL, the value
of Repository Directory
is set to <REMOTE>
and the value of
BrokerType is ICS.
AgentTraceLevel 0 through 5 0 Dynamic
if broker is
ICS;
otherwise
Component
restart
ApplicationName Application name The value specified for | Component
the connector restart
application name
BiDi.Application Any valid combination ILYNN (five letters) Component This property is valid
of these bidirectional restart only if the value
attributes: of BiDi.Transforma tion
is true
Ist letter: I,V
2nd letter: L,R
3rd letter: Y, N
4th letter: S, N
5th letter: H, C, N
BiDi.Broker Any valid combination ILYNN (five letters) Component This property is valid
of these bidirectional restart only if the value of
attributes: BiDi.Transformation
is true. If the value of
1st letter: I,V BrokerType is
2nd letter: L,R ICS, the property
3rd letter: Y, N is read-only.
4th letter: S, N
5th letter: H, C, N
BiDi.Metadata Any valid combination ILYNN (five letters) Component This property is valid
of these bidirectional restart only if the value of
attributes: BiDi.Transformation
is true.
1st letter: I,V
2nd letter: L,R
3rd letter: Y, N
4th letter: S, N
5th letter: H, C, N
BiDi.Transformation true or false false Component This property is valid
restart only if the value of
BrokerType is
not WAS
BrokerType ICS, WMQI, WAS ICS Component
restart
CharacterEncoding Any supported code. ascii7 Component This property is valid
The list shows this subset: restart only for C++ connectors.

176 Adapter for Web Services User Guide




Table 49. Summary of standard configuration properties (continued)

Update
Property name Possible values Default value method Notes
CommonEventInfrastruc true or false false Component
ture restart
CommonEventInfrastruc A URL string, for No default value. Component This property is valid
tureURL example, restart only if the value of
corbaloc:iiop: CommonEvent
host:2809. Infrastructure is true.
ConcurrentEventTrig 1 through 32,767 1 Component This property is valid
geredFlows restart only if the value of
RepositoryDirectory
is set to <REMOTE>
and the value of
BrokerType is ICS.
ContainerManagedEvents | Blank or JMS Blank Component This property is valid
restart only when the value
of Delivery Transport
is JMS.
ControllerEventSequenc true or false true Dynamic This property is valid
ing only if the value of
Repository Directory
is set to <REMOTE>
and the value of
BrokerType is ICS.
ControllerStoreAndFor true or false true Dynamic This property is valid
wardMode only if the value of
Repository Directory
is set to <REMOTE>
and the value of
BrokerType is ICS.
ControllerTraceLevel 0 through 5 0 Dynamic This property is valid
only if the value of
RepositoryDirectory
is set to <REMOTE>
and the value of
BrokerType is ICS.
DeliveryQueue Any valid JMS <CONNECTORNAME> Component This property is valid
queue name /DELIVERYQUEUE restart only when the value
of Delivery Transport
is JMS.
DeliveryTransport MQ, IDL, or JMS IDL when the value of Component If the value of
RepositoryDirectory is restart RepositoryDirectory is
<REMOTE>, otherwise not <REMOTE>,
JMS the only valid value for
this property is JMS.
DuplicateEventElimina true or false false Component This property is valid
tion restart only if the value of
DeliveryTransport is JMS.
EnableOidForFlowMoni true or false false Component This property is valid
toring restart only if the value of
BrokerType is ICS.
FaultQueue Any valid queue name. <CONNECTORNAME> Component This property is
/FAULTQUEUE restart valid only if the value
of DeliveryTransport
is JMS.
jms.FactoryClassName CxCommon.Messaging.jms CxCommon.Messaging. Component This property is
. IBMMQSeriesFactory, jms.IBMMQSeriesFactory |restart valid only if the value

CxCommon.Messaging
.jms.SonicMQFactory,
or any Java class name

of DeliveryTransport
is JMS.

Appendix A. Standard configuration properties for connectors

177



Table 49. Summary of standard configuration properties (continued)

en_US, ja_JP, ko KR,
zh_CN, zh_TW, fr_FR,
de DE, it_IT,
es_ES, pt_BR

Update
Property name Possible values Default value method Notes
jms.ListenerConcurrency 1 through 32767 1 Component This property is
restart valid only if the value of
jms.TransportOptimized
is true.
jms.MessageBrokerName If the value of crossworlds.queue. Component This property is valid
jms.FactoryClassName manager restart only if the value of
is IBM, use DeliveryTransport
crossworlds.queue. is JMS
manager.
jms.NumConcurrent Positive integer 10 Component This property is valid
Requests restart only if the value of
DeliveryTransport
is JMS
jms.Password Any valid password Component This property is valid
restart only if the value of
DeliveryTransport
is JMS
jms.TransportOptimized true or false false Component This property is valid
restart only if the value of
DeliveryTransport
is JMS and the value of
BrokerType is ICS.
jms.UserName Any valid name Component This property is valid
restart only if the value of
Delivery Transport is JMS.
JvmMaxHeapSize Heap size in megabytes 128m Component This property is valid
restart only if the value of
Repository Directory
is set to <REMOTE>
and the value of
BrokerType is ICS.
JvmMaxNativeStackSize Size of stack in kilobytes 128k Component This property is valid
restart only if the value of
Repository Directory
is set to <REMOTE>
and the value of
BrokerType is ICS.
JvmMinHeapSize Heap size in megabytes Im Component This property is valid
restart only if the value of
Repository Directory
is set to <REMOTE>
and the value of
BrokerType is ICS.
ListenerConcurrency 1 through 100 1 Component This property is valid
restart only if the value of
DeliveryTransport is MQ.
Locale This is a subset of the en_US Component
supported locales: restart

178 Adapter for Web Services User Guide




Table 49. Summary of standard configuration properties (continued)

Update
Property name Possible values Default value method Notes
LogAtInterchangeEnd true or false false Component This property is valid
restart only if the value of
Repository Directory
is set to <REMOTE>
and the value of
BrokerType is ICS.
MaxEventCapacity 1 through 2147483647 2147483647 Dynamic This property is valid
only if the value of
Repository Directory
is set to <REMOTE>
and the value of
BrokerType is ICS.
MessageFileName Valid file name InterchangeSystem. txt Component
restart
MonitorQueue Any valid queue name <CONNECTORNAME> Component This property is valid
/MONITORQUEUE restart only if the value of
DuplicateEventElimination
is true and
ContainerManagedEvents
has no value.
OADAutoRestartAgent true or false false Dynamic This property is valid
only if the value of
Repository Directory
is set to <REMOTE>
and the value of
BrokerType is ICS.
OADMaxNumRetry A positive integer 1000 Dynamic This property is valid
only if the value of
Repository Directory
is set to <REMOTE>
and the value of
BrokerType is ICS.
OADRetryTimelnterval A positive integer 10 Dynamic This property is valid
in minutes only if the value of
Repository Directory
is set to <REMOTE>
and the value of
BrokerType is ICS.
PollEndTime HH = 0 through 23 HH:MM Component
MM = 0 through 59 restart
PollFrequency A positive integer 10000 Dynamic
(in milliseconds) if broker is
ICS;
otherwise
Component
restart
PollQuantity 1 through 500 1 Agent restart | This property is valid
only if the value of
ContainerManagedEvents
is JMS.
PollStartTime HH = 0 through 23 HH:MM Component
MM = 0 through 59 restart
RepositoryDirectory <REMOTE> if the broker |For ICS, the value is set | Agent restart

is ICS; otherwise any
valid local directory.

to <REMOTE>

For WMQI and WAS,
the value is
<ProductDir
\repository

Appendix A. Standard configuration properties for connectors

179




Table 49. Summary of standard configuration properties (continued)

Update
Property name Possible values Default value method Notes
RequestQueue Valid JMS queue name <CONNECTORNAME> Component This property is valid
/REQUESTQUEUE restart only if the value of
DeliveryTransport
is JMS
ResponseQueue Valid JMS queue name <CONNECTORNAME> Component This property is valid
/RESPONSEQUEUE restart only if the value of
DeliveryTransport is JMS.
RestartRetryCount 0 through 99 3 Dynamic
if ICS;
otherwise
Component
restart
RestartRetryInterval A value in minutes 1 Dynamic
from 1 through if ICS;
2147483647 otherwise
Component
restart
ResultsSetEnabled true or false false Component Used only by connectors
restart that support DB2II.
This property is valid
only if the value of
DeliveryTransport
is JMS, and the value of
BrokerType is WMQI.
ResultsSetSize Positive integer 0 (means the results Component Used only by connectors
set size is unlimited) restart that support DB2II.
This property is valid
only if the value of
ResultsSetEnabled
is true.
RHF2MessageDomain mrm or xml mrm Component This property is valid
restart only if the value
of DeliveryTransport
is JMS and the value of
WireFormat is CwXML.
SourceQueue Any valid WebSphere <CONNECTORNAME> Agent restart | This property is valid
MQ queue name /SOURCEQUEUE only if the value of
ContainerManagedEvents
is JMS.
SynchronousRequest Any valid queue name. <CONNECTORNAME> Component This property is valid
Queue /SYNCHRONOUSREQUEST restart only if the value
QUEUE of DeliveryTransport
is JMS.
SynchronousRequest 0 to any number 0 Component This property is valid
Timeout (milliseconds) restart only if the value
of DeliveryTransport
is JMS.
SynchronousResponse Any valid queue name <CONNECTORNAME> Component This property is valid
Queue /SYNCHRONOUSRESPONSE restart only if the value
QUEUE of DeliveryTransport
is JMS.
TivoliMonitorTransaction true or false false Component
Performance restart

180 Adapter for Web Services User Guide




Table 49. Summary of standard configuration properties (continued)

Update
Property name Possible values Default value method Notes

WireFormat CwXML or CwBO CwXML Agent restart | The value of this
property must be CwXML
if the value

of RepositoryDirectory

is not set to <REMOTE>.
The value must

be CwBO if the value of
RepositoryDirectory is set
to <REMOTE>.

WsifSynchronousRequest | 0 to any number 0 Component This property is valid
Timeout (milliseconds) restart only if the value of
BrokerType is WAS.

XMLNameSpaceFormat short or Tong short Agent restart | This property is valid
only if the value of
BrokerType is

WMQI or WAS

Standard properties

This section describes the standard connector configuration properties.

AdapterHelpName

The AdapterHelpName property is the name of a directory in which
connector-specific extended help files are located. The directory must be located in
<ProductDir>\bin\Data\ App\Help and must contain at least the language
directory enu_usa. It may contain other directories according to locale.

The default value is the template name if it is valid, or it is blank.

AdmininQueue

The AdminInQueue property specifies the queue that is used by the integration
broker to send administrative messages to the connector.

The default value is <CONNECTORNAME>/ADMININQUEUE

AdminOutQueue

The AdminOutQueue property specifies the queue that is used by the connector to
send administrative messages to the integration broker.

The default value is <CONNECTORNAME>/ADMINOUTQUEUE

AgentConnections

The AgentConnections property controls the number of ORB (Object Request
Broker) connections opened when the ORB initializes.

It is valid only if the value of the RepositoryDirectory is set to <REMOTE> and the
value of the DeliveryTransport property is MQ or IDL.

The default value of this property is 1.

Appendix A. Standard configuration properties for connectors 181



AgentTraceLevel

The AgentTraceLevel property sets the level of trace messages for the
application-specific component. The connector delivers all trace messages
applicable at the tracing level set and lower.

The default value is 0.

ApplicationName

The ApplicationName property uniquely identifies the name of the connector
application. This name is used by the system administrator to monitor the
integration environment. This property must have a value before you can run the
connector.

The default is the name of the connector.

BiDi.Application
The BiDi.Application property specifies the bidirectional format for data coming
from an external application into the adapter in the form of any business object

supported by this adapter. The property defines the bidirectional attributes of the
application data. These attributes are:

* Type of text: implicit or visual (I or V)

* Text direction: left-to-right or right-to-left (L or R)

* Symmetric swapping: on or off (Y or N)

* Shaping (Arabic): on or off (S or N)

* Numerical shaping (Arabic): Hindi, contextual, or nominal (H, C, or N)

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Broker

The BiDi.Broker property specifies the bidirectional format for data sent from the
adapter to the integration broker in the form of any supported business object. It
defines the bidirectional attributes of the data, which are as listed under
BiDi.Application above.

This property is valid only if the BiDi.Transformation property value is set to true.
If the BrokerType property is ICS, the property value is read-only.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Metadata

The BiDi.Metadata property defines the bidirectional format or attributes for the
metadata, which is used by the connector to establish and maintain a link to the
external application. The attribute settings are specific to each adapter using the
bidirectional capabilities. If your adapter supports bidirectional processing, refer to
section on adapter-specific properties for more information.

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

182 Adapter for Web Services User Guide



BiDi.Transformation

The BiDi.Transformation property defines whether the system performs a
bidirectional transformation at run time.

If the property value is set to true, the BiDi.Application, BiDi.Broker, and
BiDi.Metadata properties are available. If the property value is set to false, they
are hidden.

The default value is false.

BrokerType

The BrokerType property identifies the integration broker type that you are using.
The possible values are ICS, WMQI (for WMQI, WMQIB or WBIMB), or WAS.

CharacterEncoding

The CharacterEncoding property specifies the character code set used to map from
a character (such as a letter of the alphabet, a numeric representation, or a
punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. C++ connectors use the
value ascii7 for this property.

By default, only a subset of supported character encodings is displayed. To add
other supported values to the list, you must manually modify the

\Data\Std \stdConnProps.xml file in the product directory (<ProductDir>). For
more information, see the Connector Configurator appendix in this guide.

CommonEventinfrastructure

The Common Event Infrastructure (CEI) is a simple event management function
handling generated events. The CommonEventInfrastructure property specifies
whether the CEI should be invoked at run time.

The default value is false.

CommonEventinfrastructureContextURL

The CommonEventInfrastructureContextURL is used to gain access to the WAS
server that executes the Common Event Infrastructure (CEI) server application.
This property specifies the URL to be used.

This property is valid only if the value of CommonEventInfrastructure is set to
true.

The default value is a blank field.

ConcurrentEventTriggeredFlows

The ConcurrentEventTriggeredFlows property determines how many business
objects can be concurrently processed by the connector for event delivery. You set
the value of this attribute to the number of business objects that are mapped and
delivered concurrently. For example, if you set the value of this property to 5, five
business objects are processed concurrently.

Setting this property to a value greater than 1 allows a connector for a source
application to map multiple event business objects at the same time and deliver

Appendix A. Standard configuration properties for connectors 183



them to multiple collaboration instances simultaneously. This speeds delivery of
business objects to the integration broker, particularly if the business objects use
complex maps. Increasing the arrival rate of business objects to collaborations can
improve overall performance in the system.

To implement concurrent processing for an entire flow (from a source application
to a destination application), the following properties must configured:

* The collaboration must be configured to use multiple threads by setting its
Maximum number of concurrent events property high enough to use multiple
threads.

* The destination application’s application-specific component must be configured
to process requests concurrently. That is, it must be multithreaded, or it must be
able to use connector agent parallelism and be configured for multiple processes.
The Parallel Process Degree configuration property must be set to a value larger
than 1.

The ConcurrentEventTriggeredFlows property has no effect on connector polling,
which is single-threaded and is performed serially.

This property is valid only if the value of the RepositoryDirectory property is set
to <REMOTE>.

The default value is 1.

ContainerManagedEvents

The ContainerManagedEvents property allows a JMS-enabled connector with a
JMS event store to provide guaranteed event delivery, in which an event is
removed from the source queue and placed on the destination queue as one JMS
transaction.

When this property is set to JMS, the following properties must also be set to
enable guaranteed event delivery:

¢ PollQuantity = 1 to 500
* SourceQueue = /SOURCEQUEUE

You must also configure a data handler with the MimeType and DHClass (data
handler class) properties. You can also add DataHandlerConfigMOName (the
meta-object name, which is optional). To set those values, use the Data Handler
tab in Connector Configurator.

Although these properties are adapter-specific, here are some example values:
* MimeType = text\xml

* DHClass = com.crossworlds.DataHandlers.text.xml

* DataHandlerConfigMOName = MO_DataHandler_Default

The fields for these values in the Data Handler tab are displayed only if you have
set the ContainerManagedEvents property to the value JMS.

Note: When ContainerManagedEvents is set to JMS, the connector does not call its
pollForEvents() method, thereby disabling that method’s functionality.

The ContainerManagedEvents property is valid only if the value of the
DeliveryTransport property is set to JMS.

184 Adapter for Web Services User Guide



There is no default value.

ControllerEventSequencing

The ControllerEventSequencing property enables event sequencing in the connector
controller.

This property is valid only if the value of the RepositoryDirectory property is set
to set to <REMOTE> (BrokerType is ICS).

The default value is true.

ControllerStoreAndForwardMode

The ControllerStoreAndForwardMode property sets the behavior of the connector
controller after it detects that the destination application-specific component is
unavailable.

If this property is set to true and the destination application-specific component is
unavailable when an event reaches ICS, the connector controller blocks the request
to the application-specific component. When the application-specific component
becomes operational, the controller forwards the request to it.

However, if the destination application’s application-specific component becomes
unavailable after the connector controller forwards a service call request to it, the
connector controller fails the request.

If this property is set to false, the connector controller begins failing all service
call requests as soon as it detects that the destination application-specific

component is unavailable.

This property is valid only if the value of the RepositoryDirectory property is set
to <REMOTE> (the value of the BrokerType property is ICS).

The default value is true.

ControllerTraceLevel

The ControllerTraceLevel property sets the level of trace messages for the
connector controller.

This property is valid only if the value of the RepositoryDirectory property is set
to set to <REMOTE>.

The default value is 0.

DeliveryQueue

The DeliveryQueue property defines the queue that is used by the connector to
send business objects to the integration broker.

This property is valid only if the value of the DeliveryTransport property is set to
JMS.

The default value is <CONNECTORNAME>/DELIVERYQUEUE.

Appendix A. Standard configuration properties for connectors 185



DeliveryTransport

The DeliveryTransport property specifies the transport mechanism for the delivery
of events. Possible values are MQ for WebSphere MQ, IDL for CORBA IIOP, or JMS
for Java Messaging Service.

e If the value of the RepositoryDirectory property is set to <REMOTE>, the value
of the DeliveryTransport property can be MQ, IDL, or JMS, and the default is IDL.

* If the value of the RepositoryDirectory property is a local directory, the value
can be only JMS.

The connector sends service-call requests and administrative messages over
CORBA 1IIOP if the value of the RepositoryDirectory property is MQ or IDL.

The default value is JMS.

WebSphere MQ and IDL

Use WebSphere MQ rather than IDL for event delivery transport, unless you must
have only one product. WebSphere MQ offers the following advantages over IDL:

* Asynchronous communication:
WebSphere MQ allows the application-specific component to poll and
persistently store events even when the server is not available.

* Server side performance:
WebSphere MQ provides faster performance on the server side. In optimized
mode, WebSphere MQ stores only the pointer to an event in the repository
database, while the actual event remains in the WebSphere MQ queue. This
prevents writing potentially large events to the repository database.

* Agent side performance:
WebSphere MQ provides faster performance on the application-specific
component side. Using WebSphere MQ, the connector polling thread picks up an
event, places it in the connector queue, then picks up the next event. This is
faster than IDL, which requires the connector polling thread to pick up an event,
go across the network into the server process, store the event persistently in the
repository database, then pick up the next event.

JMS

The JMS transport mechanism enables communication between the connector and
client connector framework using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as
jms .MessageBrokerName, jms.FactoryClassName, jms.Password, and jms.UserName
are listed in Connector Configurator. The properties jms.MessageBrokerName and
jms.FactoryClassName are required for this transport.

There may be a memory limitation if you use the JMS transport mechanism for a
connector in the following environment:

* AIX 5.0
* WebSphere MQ 5.3.0.1
* ICS is the integration broker

In this environment, you may experience difficulty starting both the connector
controller (on the server side) and the connector (on the client side) due to memory
use within the WebSphere MQ client. If your installation uses less than 768MB of
process heap size, set the following variable and property:

* Set the LDR_CNTRL environment variable in the CWSharedEnv.sh script.

186 Adapter for Web Services User Guide



This script is located in the \bin directory below the product directory
(<ProductDir>). Using a text editor, add the following line as the first line in the
CWSharedEnv.sh script:

export LDR_CNTRL=MAXDATA=0x30000000

This line restricts heap memory usage to a maximum of 768 MB (3 segments *
256 MB). If the process memory grows larger than this limit, page swapping can
occur, which can adversely affect the performance of your system.

* Set the value of the IPCCBaseAddress property to 11 or 12. For more
information on this property, see the System Installation Guide for UNIX.

DuplicateEventElimination

When the value of this property is true, a JMS-enabled connector can ensure that
duplicate events are not delivered to the delivery queue. To use this feature, during
connector development, the connector must have a unique event identifier set as
the business object ObjectEventld attribute in the application-specific code.

Note: When the value of this property is true, the MonitorQueue property must
be enabled to provide guaranteed event delivery.

The default value is false.

EnableOidForFlowMonitoring

When the value of this property is true, the adapter runtime will mark the
incoming ObjectEventID as a foreign key for flow monitoring.

This property is only valid if the BrokerType property is set to ICS.

The default value is false.

FaultQueue

If the connector experiences an error while processing a message, it moves the
message (and a status indicator and description of the problem) to the queue
specified in the FaultQueue property.

The default value is <CONNECTORNAME>/FAULTQUEUE.

jms.FactoryClassName

The jms.FactoryClassName property specifies the class name to instantiate for a
JMS provider. This property must be set if the value of the DeliveryTransport
property is JMS.

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.ListenerConcurrency

The jms.ListenerConcurrency property specifies the number of concurrent listeners
for the JMS controller. It specifies the number of threads that fetch and process
messages concurrently within a controller.

This property is valid only if the value of the jms.OptimizedTransport property is
true.

The default value is 1.

Appendix A. Standard configuration properties for connectors 187



jms.MessageBrokerName

The jms.MessageBrokerName specifies the broker name to use for the J]MS
provider. You must set this connector property if you specify JMS as the delivery
transport mechanism (in the DeliveryTransport property).

When you connect to a remote message broker, this property requires the following
values:

QueueMgrName : Channel : Hos tName : PortNumber

where:

QueueMgrhame is the name of the queue manager.

Channel is the channel used by the client.

HostName is the name of the machine where the queue manager is to reside.
PortNumberis the port number used by the queue manager for listening

For example:
jms.MessageBrokerName = WBIMB.Queue.Manager:CHANNEL1:RemoteMachine:1456

The default value is crossworlds.queue.manager. Use the default when connecting
to a local message broker.

jms.NumConcurrentRequests

The jms.NumConcurrentRequests property specifies the maximum number of
concurrent service call requests that can be sent to a connector at the same time.
Once that maximum is reached, new service calls are blocked and must wait for
another request to complete before proceeding.

The default value is 10.

jms.Password

The jms.Password property specifies the password for the JMS provider. A value
for this property is optional.

There is no default value.

jms.TransportOptimized

The jms.TransportOptimized property determines if the WIP (work in progress) is
optimized. You must have a WebSphere MQ provider to optimize the WIP. For
optimized WIP to operate, the messaging provider must be able to:

1. Read a message without taking it off the queue

2. Delete a message with a specific ID without transferring the entire message to
the receiver’s memory space

3. Read a message by using a specific ID (needed for recovery purposes)

4. Track the point at which events that have not been read appear.

The JMS APIs cannot be used for optimized WIP because they do not meet
conditions 2 and 4 above, but the MQ Java APIs meet all four conditions, and

hence are required for optimized WIP.

This property is valid only if the value of DeliveryTransport is JMS and the value of
BrokerType is ICS.

The default value is false.

188 Adapter for Web Services User Guide



jms.UserName

the jms.UserName property specifies the user name for the J]MS provider. A value
for this property is optional.

There is no default value.

JvmMaxHeapSize

The JvmMaxHeapSize property specifies the maximum heap size for the agent (in
megabytes).

This property is valid only if the value for the RepositoryDirectory property is set
to <REMOTE>.

The default value is 128m.

JvmMaxNativeStackSize

The JvmMaxNativeStackSize property specifies the maximum native stack size for
the agent (in kilobytes).

This property is valid only if the value for the RepositoryDirectory property is set
to <REMOTE>.

The default value is 128k.

JvmMinHeapSize
The JvmMinHeapSize property specifies the minimum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set
to <REMOTE>.

The default value is 1m.

ListenerConcurrency

The ListenerConcurrency property supports multithreading in WebSphere MQ
Listener when ICS is the integration broker. It enables batch writing of multiple
events to the database, thereby improving system performance.

This property valid only with connectors that use MQ transport. The value of the
DeliveryTransport property must be MQ.

The default value is 1.

Locale

The Locale property specifies the language code, country or territory, and,
optionally, the associated character code set. The value of this property determines
cultural conventions such as collation and sort order of data, date and time
formats, and the symbols used in monetary specifications.

A locale name has the following format:
l1_TT.codeset

Appendix A. Standard configuration properties for connectors 189



where:

Il is a two-character language code (in lowercase letters)

TT is a two-letter country or territory code (in uppercase letters)

codeset is the name of the associated character code set (may be optional).

By default, only a subset of supported locales are listed. To add other supported
values to the list, you modify the \Data\Std\stdConnProps.xml file in the
<ProductDir>\bin directory. For more information, refer to the Connector
Configurator appendix in this guide.

If the connector has not been internationalized, the only valid value for this
property is en_US. To determine whether a specific connector has been globalized,
refer to the user guide for that adapter.

The default value is en_US.

LogAtinterchangeEnd

The LogAtInterchangeEnd property specifies whether to log errors to the log
destination of the integration broker.

Logging to the log destination also turns on e-mail notification, which generates
e-mail messages for the recipient specified as the value of MESSAGE_RECIPIENT
in the InterchangeSystem.cfg file when errors or fatal errors occur. For example,
when a connector loses its connection to the application, if the value of
LogAtInterChangeEnd is true, an e-mail message is sent to the specified message
recipient.

This property is valid only if the value of the RespositoryDirectory property is set
to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

MaxEventCapacity

The MaxEventCapacity property specifies maximum number of events in the
controller buffer. This property is used by the flow control feature.

This property is valid only if the value of the RespositoryDirectory property is set
to <REMOTE> (the value of BrokerType is ICS).

The value can be a positive integer between 1 and 2147483647.

The default value is 2147483647.

MessageFileName

The MessageFileName property specifies the name of the connector message file.
The standard location for the message file is \connectors\messages in the product
directory. Specify the message file name in an absolute path if the message file is
not located in the standard location.

If a connector message file does not exist, the connector uses

InterchangeSystem.txt as the message file. This file is located in the product
directory.

190 Adapter for Web Services User Guide



Note: To determine whether a connector has its own message file, see the
individual adapter user guide.

The default value is InterchangeSystem.txt.

MonitorQueue

The MonitorQueue property specifies the logical queue that the connector uses to
monitor duplicate events.

It is valid only if the value of the DeliveryTransport property is JMS and the value
of the DuplicateEventElimination is true.

The default value is <CONNECTORNAME>/MONITORQUEUE

OADAutoRestartAgent

the OADAutoRestartAgent property specifies whether the connector uses the
automatic and remote restart feature. This feature uses the WebSphere
MQ-triggered Object Activation Daemon (OAD) to restart the connector after an
abnormal shutdown, or to start a remote connector from System Monitor.

This property must be set to true to enable the automatic and remote restart
feature. For information on how to configure the WebSphere MQ-triggered OAD
feature. see the Installation Guide for Windows or for UNIX.

This property is valid only if the value of the RespositoryDirectory property is set
to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

OADMaxNumRetry

The OADMaxNumRetry property specifies the maximum number of times that the
WebSphere MQ-triggered Object Activation Daemon (OAD) automatically attempts
to restart the connector after an abnormal shutdown. The OADAutoRestartAgent
property must be set to true for this property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set
to <REMOTE> (the value of BrokerType is ICS).

The default value is 1000.

OADRetryTimelnterval

The OADRetryTimelnterval property specifies the number of minutes in the
retry-time interval for the WebSphere MQ-triggered Object Activation Daemon
(OAD,). If the connector agent does not restart within this retry-time interval, the
connector controller asks the OAD to restart the connector agent again. The OAD
repeats this retry process as many times as specified by the OADMaxNumRetry
property. The OADAutoRestartAgent property must be set to true for this
property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set
to <REMOTE> (the value of BrokerType is ICS).

The default value is 10.

Appendix A. Standard configuration properties for connectors 191



PollEndTime

The PollEndTime property specifies the time to stop polling the event queue. The
format is HH: MM, where HH is 0 through 23 hours, and MM represents 0 through 59
minutes.

You must provide a valid value for this property. The default value is HH:MM
without a value, and it must be changed.

If the adapter runtime detects:
e PollStartTime set and PollEndTime not set, or
¢ PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

PollFrequency

The PollFrequency property specifies the amount of time (in milliseconds) between
the end of one polling action and the start of the next polling action. This is not
the interval between polling actions. Rather, the logic is as follows:

* DPoll to obtain the number of objects specified by the value of the PollQuantity
property.

* Process these objects. For some connectors, this may be partly done on separate
threads, which execute asynchronously to the next polling action.

* Delay for the interval specified by the PollFrequency property.
* Repeat the cycle.

The following values are valid for this property:
* The number of milliseconds between polling actions (a positive integer).

e The word no, which causes the connector not to poll. Enter the word in
lowercase.

* The word key, which causes the connector to poll only when you type the letter
p in the connector Command Prompt window. Enter the word in lowercase.

The default is 10000.

Important: Some connectors have restrictions on the use of this property. Where
they exist, these restrictions are documented in the chapter on
installing and configuring the adapter.

PollQuantity

The PollQuantity property designates the number of items from the application
that the connector polls for. If the adapter has a connector-specific property for
setting the poll quantity, the value set in the connector-specific property overrides
the standard property value.

This property is valid only if the value of the DeliveryTransport property is JMS,
and the ContainerManagedEvents property has a value.

An e-mail message is also considered an event. The connector actions are as
follows when it is polled for e-mail.

¢ When it is polled once, the connector detects the body of the message, which it
reads as an attachment. Since no data handler was specified for this mime type,
it will then ignore the message.

192 Adapter for Web Services User Guide



¢ The connector processes the first BO attachment. The data handler is available
for this MIME type, so it sends the business object to Visual Test Connector.

¢ When it is polled for the second time, the connector processes the second BO
attachment. The data handler is available for this MIME type, so it sends the
business object to Visual Test Connector.

* Once it is accepted, the third BO attachment should be transmitted.

PollStartTime

The PollStartTime property specifies the time to start polling the event queue. The
format is HH:MM, where HH is O through 23 hours, and MY represents 0 through 59
minutes.

You must provide a valid value for this property. The default value is HH:MM
without a value, and it must be changed.

If the adapter runtime detects:
e PollStartTime set and PollEndTime not set, or
e PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

RepositoryDirectory

The RepositoryDirectory property is the location of the repository from which the
connector reads the XML schema documents that store the metadata for business
object definitions.

If the integration broker is ICS, this value must be set to set to <REMOTE>
because the connector obtains this information from the InterChange Server
repository.

When the integration broker is a WebSphere message broker or WAS, this value is

set to <ProductDir>\repository by default. However, it may be set to any valid
directory name.

RequestQueue

The RequestQueue property specifies the queue that is used by the integration
broker to send business objects to the connector.

This property is valid only if the value of the DeliveryTransport property is JMS.

The default value is <CONNECTORNAME>/REQUESTQUEUE.

ResponseQueue

The ResponseQueue property specifies the JMS response queue, which delivers a
response message from the connector framework to the integration broker. When
the integration broker is ICS, the server sends the request and waits for a response
message in the JMS response queue.

This property is valid only if the value of the DeliveryTransport property is JMS.

The default value is <CONNECTORNAME>/RESPONSEQUEUE.

Appendix A. Standard configuration properties for connectors 193



RestartRetryCount

The RestartRetryCount property specifies the number of times the connector
attempts to restart itself. When this property is used for a connector that is
connected in parallel, it specifies the number of times the master connector
application-specific component attempts to restart the client connector
application-specific component.

The default value is 3.

RestartRetrylnterval

The RestartRetryInterval property specifies the interval in minutes at which the
connector attempts to restart itself. When this property is used for a connector that
is linked in parallel, it specifies the interval at which the master connector
application-specific component attempts to restart the client connector
application-specific component.

Possible values for the property range from 1 through 2147483647.

The default value is 1.

ResultsSetEnabled

The ResultsSetEnabled property enables or disables results set support when
Information Integrator is active. This property can be used only if the adapter
supports DB2 Information Integrator.

This property is valid only if the value of the DeliveryTransport property is JMS,
and the value of BrokerType is WMQI.

The default value is false.

ResultsSetSize

The ResultsSetSize property defines the maximum number of business objects that
can be returned to Information Integrator. This property can be used only if the
adapter supports DB2 Information Integrator.

This property is valid only if the value of the ResultsSetEnabled property is true.

The default value is 0. This means that the size of the results set is unlimited.

RHF2MessageDomain

The RHF2MessageDomain property allows you to configure the value of the field
domain name in the J]MS header. When data is sent to a WebSphere message
broker over JMS transport, the adapter framework writes JMS header information,
with a domain name and a fixed value of mrm. A configurable domain name lets
you track how the WebSphere message broker processes the message data.

This is an example header:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>
Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

This property is valid only if the value of BrokerType is WMQI or WAS. Also, it is

valid only if the value of the DeliveryTransport property is JMS, and the value of
the WireFormat property is CwXML.

194 Adapter for Web Services User Guide



Possible values are mrm and xml. The default value is mrm.

SourceQueue

The SourceQueue property designates the JMS source queue for the connector
framework in support of guaranteed event delivery for [MS-enabled connectors

that use a JMS event store. For further information, see |“ContainerManagedEvents”l
i

This property is valid only if the value of DeliveryTransport is JMS, and a value for
ContainerManagedEvents is specified.

The default value is <CONNECTORNAME>/SOURCEQUEUE.

SynchronousRequestQueue

The SynchronousRequestQueue property delivers request messages that require a
synchronous response from the connector framework to the broker. This queue is
necessary only if the connector uses synchronous execution. With synchronous
execution, the connector framework sends a message to the synchronous request
queue and waits for a response from the broker on the synchronous response
queue. The response message sent to the connector has a correlation ID that
matches the ID of the original message.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is <CONNECTORNAME>/SYNCHRONOUSREQUESTQUEUE

SynchronousRequestTimeout

The SynchronousRequestTimeout property specifies the time in milliseconds that
the connector waits for a response to a synchronous request. If the response is not
received within the specified time, the connector moves the original synchronous
request message (and error message) to the fault queue.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is 0.

SynchronousResponseQueue
The SynchronousResponseQueue property delivers response messages in reply to a
synchronous request from the broker to the connector framework. This queue is
necessary only if the connector uses synchronous execution.

This property is valid only if the value of DeliveryTransport is JMS.

The default is <CONNECTORNAME=>/SYNCHRONOUSRESPONSEQUEUE

TivoliMonitorTransactionPerformance

The TivoliMonitorTransactionPerformance property specifies whether IBM Tivoli
Monitoring for Transaction Performance (ITMTP) is invoked at run time.

The default value is false.

WireFormat

The WireFormat property specifies the message format on the transport:

Appendix A. Standard configuration properties for connectors 195



* If the value of the RepositoryDirectory property is a local directory, the value is
CwXML.

¢ If the value of the RepositoryDirectory property is a remote directory, the value
is CwBO.

WsifSynchronousRequestTimeout
The WsifSynchronousRequestTimeout property specifies the time in milliseconds
that the connector waits for a response to a synchronous request. If the response is
not received within the specified time, the connector moves the original
synchronous request message (and an error message) to the fault queue.
This property is valid only if the value of BrokerType is WAS.

The default value is 0.

XMLNameSpaceFormat

The XMLNameSpaceFormat property specifies short or long namespaces in the
XML format of business object definitions.

This property is valid only if the value of BrokerType is set to WMQI or WAS.

The default value is short.

196 Adapter for Web Services User Guide



Appendix B. Connector Configurator

This appendix describes how to use Connector Configurator to set configuration
property values for your adapter.

You use Connector Configurator to:

* Create a connector-specific property template for configuring your connector
* Create a configuration file

* Set properties in a configuration file

The topics covered in this appendix are:

* [“Overview of Connector Configurator” on page 197

* [“Starting Connector Configurator” on page 19—8|

+ [“Creating a connector-specific property template” on page 199

* [“Creating a new configuration file” on page 202]

* [“Setting the configuration file properties” on page 205|

* [“Using Connector Configurator in a globalized environment” on page 213

Overview of Connector Configurator

Connector Configurator allows you to configure the connector component of your
adapter for use with these integration brokers:

* WebSphere InterChange Server (ICS)

* WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere
Business Integration Message Broker, collectively referred to as the WebSphere
Message Brokers (WMQI)

* WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and
the DB2 II standard properties (see the Notes column in the Standard Properties
appendix.)

You use Connector Configurator to:
* Create a connector-specific property template for configuring your connector.

* Create a connector configuration file; you must create one configuration file for
each connector you install.

* Set properties in a configuration file.
You may need to modify the default values that are set for properties in the
connector templates. You must also designate supported business object
definitions and, with ICS, maps for use with collaborations as well as specify
messaging, logging and tracing, and data handler parameters, as required.

The mode in which you run Connector Configurator, and the configuration file
type you use, may differ according to which integration broker you are running.
For example, if WMQI is your broker, you run Connector Configurator directly,
and not from within System Manager (see [“Running Configurator in stand-alone]

ode” on page 198)).
pag

© Copyright IBM Corp. 2003, 2004 197



Connector configuration properties include both standard configuration properties
(the properties that all connectors have) and connector-specific properties
(properties that are needed by the connector for a specific application or
technology).

Because standard properties are used by all connectors, you do not need to define
those properties from scratch; Connector Configurator incorporates them into your
configuration file as soon as you create the file. However, you do need to set the
value of each standard property in Connector Configurator.

The range of standard properties may not be the same for all brokers and all
configurations. Some properties are available only if other properties are given a
specific value. The Standard Properties window in Connector Configurator will
show the properties available for your particular configuration.

For connector-specific properties, however, you need first to define the properties
and then set their values. You do this by creating a connector-specific property
template for your particular adapter. There may already be a template set up in
your system, in which case, you simply use that. If not, follow the steps in
[“Creating a new template” on page 199 to set up a new one.

Running connectors on UNIX

Connector Configurator runs only in a Windows environment. If you are running
the connector in a UNIX environment, use Connector Configurator in Windows to
modify the configuration file and then copy the file to your UNIX environment.

Some properties in the Connector Configurator use directory paths, which default
to the Windows convention for directory paths. If you use the configuration file in
a UNIX environment, revise the directory paths to match the UNIX convention for
these paths. Select the target operating system in the toolbar drop-list so that the
correct operating system rules are used for extended validation.

Starting Connector Configurator

You can start and run Connector Configurator in either of two modes:
* Independently, in stand-alone mode
e From System Manager

Running Configurator in stand-alone mode

You can run Connector Configurator without running System Manager and work
with connector configuration files, irrespective of your broker.

To do so:

* From Start>Programs, click IBM WebSphere Business Integration
Adapters>IBM WebSphere Business Integration Toolset>Connector
Configurator.

* Select File>New>Connector Configuration.

¢ When you click the pull-down menu next to System Connectivity Integration
Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on
your broker.

You may choose to run Connector Configurator independently to generate the file,
and then connect to System Manager to save it in a System Manager project (see
[“Completing a configuration file” on page 2041)

198 Adapter for Web Services User Guide



Running Configurator from System Manager

You can run Connector Configurator from System Manager.

To run Connector Configurator:
1. Open the System Manager.

2. In the System Manager window, expand the Integration Component Libraries
icon and highlight Connectors.

3. From the System Manager menu bar, click Tools>Connector Configurator. The
Connector Configurator window opens and displays a New Connector dialog
box.

4. When you click the pull-down menu next to System Connectivity Integration
Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on
your broker.

To edit an existing configuration file:

* In the System Manager window, select any of the configuration files listed in the
Connector folder and right-click on it. Connector Configurator opens and
displays the configuration file with the integration broker type and file name at
the top.

* From Connector Configurator, select File>Open. Select the name of the
connector configuration file from a project or from the directory in which it is
stored.

¢ Click the Standard Properties tab to see which properties are included in this
configuration file.

Creating a connector-specific property template

To create a configuration file for your connector, you need a connector-specific
property template as well as the system-supplied standard properties.

You can create a brand-new template for the connector-specific properties of your
connector, or you can use an existing connector definition as the template.

* To create a new template, see [‘Creating a new template” on page 199

* To use an existing file, simply modify an existing template and save it under the
new name. You can find existing templates in your
\WebSphereAdapters\bin\Data\App directory.

Creating a new template

This section describes how you create properties in the template, define general
characteristics and values for those properties, and specify any dependencies
between the properties. Then you save the template and use it as the base for
creating a new connector configuration file.

To create a template in Connector Configurator:
1. Click File>New>Connector-Specific Property Template.
2. The Connector-Specific Property Template dialog box appears.

¢ Enter a name for the new template in the Name field below Input a New
Template Name. You will see this name again when you open the dialog box
for creating a new configuration file from a template.

Appendix B. Connector Configurator 199



* To see the connector-specific property definitions in any template, select that
template’s name in the Template Name display. A list of the property
definitions contained in that template appears in the Template Preview
display.

3. You can use an existing template whose property definitions are similar to
those required by your connector as a starting point for your template. If you
do not see any template that displays the connector-specific properties used by
your connector, you will need to create one.

 If you are planning to modify an existing template, select the name of the
template from the list in the Template Name table below Select the Existing
Template to Modify: Find Template.

¢ This table displays the names of all currently available templates. You can
also search for a template.

Specifying general characteristics

When you click Next to select a template, the Properties - Connector-Specific
Property Template dialog box appears. The dialog box has tabs for General
characteristics of the defined properties and for Value restrictions. The General
display has the following fields:

* General:
Property Type
Property Subtype
Updated Method
Description

* Flags
Standard flags

* Custom Flag
Flag

The Property Subtype can be selected when Property Type is a String. It is an
optional value which provides syntax checking when you save the configuration
file. The default is a blank space, and means that the property has not been
subtyped.

After you have made selections for the general characteristics of the property, click
the Value tab.

Specifying values

The Value tab enables you to set the maximum length, the maximum multiple
values, a default value, or a value range for the property. It also allows editable
values. To do so:

1. Click the Value tab. The display panel for Value replaces the display panel for
General.

2. Select the name of the property in the Edit properties display.
3. In the fields for Max Length and Max Multiple Values, enter your values.

To create a new property value:
1. Right-click on the square to the left of the Value column heading.

2. From the pop-up menu, select Add to display the Property Value dialog box.
Depending on the property type, the dialog box allows you to enter either a
value, or both a value and a range.

3. Enter the new property value and click OK. The value appears in the Value
panel on the right.

200 Adapter for Web Services User Guide



The Value panel displays a table with three columns:

The Value column shows the value that you entered in the Property Value dialog
box, and any previous values that you created.

The Default Value column allows you to designate any of the values as the
default.

The Value Range shows the range that you entered in the Property Value dialog
box.

After a value has been created and appears in the grid, it can be edited from
within the table display.

To make a change in an existing value in the table, select an entire row by clicking
on the row number. Then right-click in the Value field and click Edit Value.

Setting dependencies
When you have made your changes to the General and Value tabs, click Next. The
Dependencies - Connector-Specific Property Template dialog box appears.

A dependent property is a property that is included in the template and used in
the configuration file only if the value of another property meets a specific
condition. For example, Pol1Quantity appears in the template only if JMS is the
transport mechanism and DuplicateEventETimination is set to True.

To designate a property as dependent and to set the condition upon which it
depends, do this:

1. In the Available Properties display, select the property that will be made
dependent.

2. In the Select Property field, use the drop-down menu to select the property
that will hold the conditional value.

3. In the Condition Operator field, select one of the following:
== (equal to)
!= (not equal to)
> (greater than)
< (less than)
>= (greater than or equal to)
<=(less than or equal to)

4. In the Conditional Value field, enter the value that is required in order for the
dependent property to be included in the template.

5. With the dependent property highlighted in the Available Properties display,
click an arrow to move it to the Dependent Property display.

6. Click Finish. Connector Configurator stores the information you have entered
as an XML document, under \data\app in the \bin directory where you have
installed Connector Configurator.

Setting pathnames
Some general rules for setting pathnames are:

* The maximum length of a filename in Windows and UNIX is 255 characters.

¢ In Windows, the absolute pathname must follow the format
[Drive:][Directory]\filename: for example,
C:\WebSphereAdapters\bin\Data\Std \StdConnProps.xml
In UNIX the first character should be /.

Appendix B. Connector Configurator 201



* Queue names may not have leading or embedded spaces.

Creating a new configuration file

When you create a new configuration file, you must name it and select an
integration broker.

You also select an operating system for extended validation on the file. The toolbar
has a droplist called Target System that allows you to select the target operating
system for extended validation of the properties. The available options are:
Windows, UNIX, Other (if not Windows or UNIX), and None-no extended
validation (switches off extended validation). The default on startup is Windows.

To start Connector Configurator:

* In the System Manager window, select Connector Configurator from the Tools
menu. Connector Configurator opens.

* In stand-alone mode, launch Connector Configurator.

To set the operating system for extended validation of the configuration file:
* Pull down the Target System: droplist on the menu bar.
* Select the operating system you are running on.

Then select File>New>Connector Configuration. In the New Connector window,
enter the name of the new connector.

You also need to select an integration broker. The broker you select determines the
properties that will appear in the configuration file. To select a broker:

* In the Integration Broker field, select ICS, WebSphere Message Brokers or WAS
connectivity.

e Complete the remaining fields in the New Connector window, as described later
in this chapter.

Creating a configuration file from a connector-specific
template

Once a connector-specific template has been created, you can use it to create a
configuration file:

1. Set the operating system for extended validation of the configuration file using
the Target System: droplist on the menu bar (see “Creating a new configuration
file” above).

2. Click File>New>Connector Configuration.
3. The New Connector dialog box appears, with the following fields:
* Name

Enter the name of the connector. Names are case-sensitive. The name you
enter must be unique, and must be consistent with the file name for a
connector that is installed on the system.

Important: Connector Configurator does not check the spelling of the name
that you enter. You must ensure that the name is correct.

e System Connectivity
Click ICS or WebSphere Message Brokers or WAS.
* Select Connector-Specific Property Template

202 Adapter for Web Services User Guide



Type the name of the template that has been designed for your connector.
The available templates are shown in the Template Name display. When you
select a name in the Template Name display, the Property Template Preview
display shows the connector-specific properties that have been defined in
that template.

Select the template you want to use and click OK.

4. A configuration screen appears for the connector that you are configuring. The
title bar shows the integration broker and connector name. You can fill in all
the field values to complete the definition now, or you can save the file and
complete the fields later.

5. To save the file, click File>Save>To File or File>Save>To Project. To save to a
project, System Manager must be running.
If you save as a file, the Save File Connector dialog box appears. Choose *.cfg
as the file type, verify in the File Name field that the name is spelled correctly
and has the correct case, navigate to the directory where you want to locate the
file, and click Save. The status display in the message panel of Connector
Configurator indicates that the configuration file was successfully created.

Important: The directory path and name that you establish here must match
the connector configuration file path and name that you supply in
the startup file for the connector.

6. To complete the connector definition, enter values in the fields for each of the
tabs of the Connector Configurator window, as described later in this chapter.

Using an existing file

You may have an existing file available in one or more of the following formats:

* A connector definition file.
This is a text file that lists properties and applicable default values for a specific
connector. Some connectors include such a file in a \repository directory in
their delivery package (the file typically has the extension .txt; for example,
CN_XML.txt for the XML connector).

* An ICS repository file.
Definitions used in a previous ICS implementation of the connector may be
available to you in a repository file that was used in the configuration of that
connector. Such a file typically has the extension .in or .out.

* A previous configuration file for the connector.
Such a file typically has the extension *.cfg.

Although any of these file sources may contain most or all of the connector-specific
properties for your connector, the connector configuration file will not be complete
until you have opened the file and set properties, as described later in this chapter.

To use an existing file to configure a connector, you must open the file in
Connector Configurator, revise the configuration, and then resave the file.

Follow these steps to open a *.txt, *.cfg, or *.in file from a directory:
1. In Connector Configurator, click File>Open>From File.

2. In the Open File Connector dialog box, select one of the following file types to
see the available files:

* Configuration (*.cfg)
* ICS Repository (*.1in, *.out)

Appendix B. Connector Configurator 203



Choose this option if a repository file was used to configure the connector in
an ICS environment. A repository file may include multiple connector
definitions, all of which will appear when you open the file.

o All files (*.%)
Choose this option if a *.txt file was delivered in the adapter package for
the connector, or if a definition file is available under another extension.

3. In the directory display, navigate to the appropriate connector definition file,

select it, and click Open.

Follow these steps to open a connector configuration from a System Manager
project:

1.

Start System Manager. A configuration can be opened from or saved to System
Manager only if System Manager has been started.

2. Start Connector Configurator.

3. Click File>Open>From Project.

Completing a configuration file

When you open a configuration file or a connector from a project, the Connector
Configurator window displays the configuration screen, with the current attributes
and values.

The title of the configuration screen displays the integration broker and connector
name as specified in the file. Make sure you have the correct broker. If not, change
the broker value before you configure the connector. To do so:

1.

Under the Standard Properties tab, select the value field for the BrokerType
property. In the drop-down menu, select the value ICS, WMQI, or WAS.

The Standard Properties tab will display the connector properties associated
with the selected broker. The table shows Property name, Value, Type, Subtype
(if the Type is a string), Description, and Update Method.

You can save the file now or complete the remaining configuration fields, as
described in [‘Specifying supported business object definitions” on page 207.

When you have finished your configuration, click File>Save>To Project or
File>Save>To File.

If you are saving to file, select *.cfg as the extension, select the correct location
for the file and click Save.

If multiple connector configurations are open, click Save All to File to save all
of the configurations to file, or click Save All to Project to save all connector
configurations to a System Manager project.

Before you created the configuration file, you used the Target System droplist
that allows you to select the target operating system for extended validation of
the properties.

Before it saves the file, Connector Configurator checks that values have been
set for all required standard properties. If a required standard property is
missing a value, Connector Configurator displays a message that the validation
failed. You must supply a value for the property in order to save the
configuration file.

If you have elected to use the extended validation feature by selecting a value
of Windows, UNIX or Other from the Target System droplist, the system will
validate the property subtype s well as the type, and it displays a warning
message if the validation fails.

204 Adapter for Web Services User Guide



Setting the configuration file properties

When you create and name a new connector configuration file, or when you open
an existing connector configuration file, Connector Configurator displays a
configuration screen with tabs for the categories of required configuration values.

Connector Configurator requires values for properties in these categories for
connectors running on all brokers:

 Standard Properties

* Connector-specific Properties
* Supported Business Objects
* Trace/Log File values

¢ Data Handler (applicable for connectors that use JMS messaging with
guaranteed event delivery)

Note: For connectors that use JMS messaging, an additional category may display;,
for configuration of data handlers that convert the data to business objects.

For connectors running on ICS, values for these properties are also required:
* Associated Maps

* Resources

* Messaging (where applicable)

* Security

Important: Connector Configurator accepts property values in either English or
non-English character sets. However, the names of both standard and
connector-specific properties, and the names of supported business
objects, must use the English character set only.

Standard properties differ from connector-specific properties as follows:

* Standard properties of a connector are shared by both the application-specific
component of a connector and its broker component. All connectors have the
same set of standard properties. These properties are described in Appendix A of
each adapter guide. You can change some but not all of these values.

* Application-specific properties apply only to the application-specific component
of a connector, that is, the component that interacts directly with the application.
Each connector has application-specific properties that are unique to its
application. Some of these properties provide default values and some do not;
you can modify some of the default values. The installation and configuration
chapters of each adapter guide describe the application-specific properties and
the recommended values.

The fields for Standard Properties and Connector-Specific Properties are
color-coded to show which are configurable:

* A field with a grey background indicates a standard property. You can change
the value but cannot change the name or remove the property.

* A field with a white background indicates an application-specific property. These
properties vary according to the specific needs of the application or connector.
You can change the value and delete these properties.

* Value fields are configurable.

Appendix B. Connector Configurator 205



* The Update Method field is displayed for each property. It indicates whether a
component or agent restart is necessary to activate changed values. You cannot
configure this setting.

Setting standard connector properties
To change the value of a standard property:
1. Click in the field whose value you want to set.

2. Either enter a value, or select one from the drop-down menu if it appears.

Note: If the property has a Type of String, it may have a subtype value in the
Subtype column. This subtype is used for extended validation of the
property.

3. After entering all the values for the standard properties, you can do one of the
following:

* To discard the changes, preserve the original values, and exit Connector
Configurator, click File>Exit (or close the window), and click No when
prompted to save changes.

* To enter values for other categories in Connector Configurator, select the tab
for the category. The values you enter for Standard Properties (or any other
category) are retained when you move to the next category. When you close
the window, you are prompted to either save or discard the values that you
entered in all the categories as a whole.

* To save the revised values, click File>Exit (or close the window) and click
Yes when prompted to save changes. Alternatively, click Save>To File from
either the File menu or the toolbar.

To get more information on a particular standard property, left-click the entry in
the Description column for that property in the Standard Properties tabbed sheet.
If you have Extended Help installed, an arrow button will appear on the right.
When you click on the button, a Help window will open and display details of the
standard property.

Note: If the hot button does not appear, no Extended Help was found for that
property.

If installed, the Extended Help files are located in
<ProductDir>\bin\Data\Std\Help\ <RegionalSetting>\.

Setting connector-specific configuration properties

For connector-specific configuration properties, you can add or change property
names, configure values, delete a property, and encrypt a property. The default
property length is 255 characters.

1. Right-click in the top left portion of the grid. A pop-up menu bar will appear.
Click Add to add a property. To add a child property, right-click on the parent
row number and click Add child.

2. Enter a value for the property or child property.

Note: If the property has a Type of String, you can select a subtype from the
Subtype droplist. This subtype is used for extended validation of the

property.
3. To encrypt a property, select the Encrypt box.

206 Adapter for Web Services User Guide



4. To get more information on a particular property, left-click the entry in the
Description column for that property. If you have Extended Help installed, a
hot button will appear. When you click on the hot button, a Help window will
open and display details of the standard property.

Note: If the hot button does not appear, no Extended Help was found for that
property.
5. Choose to save or discard changes, as described for |“Setting standard connector]
[properties” on page 206

If the Extended Help files are installed and the AdapterHelpName property is
blank, Connector Configurator will point to the adapter-specific Extended Help
files located in <ProductDir>\bin\Data\ App\Help\ <RegionalSetting>\. Otherwise,
Connector Configurator will point to the adapter-specific Extended Help files
located in
<ProductDir>\bin\Data\ App \Help\ <AdapterHelpName>\<RegionalSetting>\. See
the AdapterHelpName property described in the Standard Properties appendix.

The Update Method displayed for each property indicates whether a component or
agent restart is necessary to activate changed values.

Important: Changing a preset application-specific connector property name may
cause a connector to fail. Certain property names may be needed by
the connector to connect to an application or to run properly.

Encryption for connector properties

Application-specific properties can be encrypted by selecting the Encrypt check
box in the Connector-specific Properties window. To decrypt a value, click to clear
the Encrypt check box, enter the correct value in the Verification dialog box, and
click OK. If the entered value is correct, the value is decrypted and displays.

The adapter user guide for each connector contains a list and description of each
property and its default value.

If a property has multiple values, the Encrypt check box will appear for the first
value of the property. When you select Encrypt, all values of the property will be
encrypted. To decrypt multiple values of a property, click to clear the Encrypt
check box for the first value of the property, and then enter the new value in the
Verification dialog box. If the input value is a match, all multiple values will
decrypt.

Update method
Refer to the descriptions of update methods found in the Standard Properties
appendix, under [“Configuration property values overview” on page 174/

Specifying supported business object definitions

Use the Supported Business Objects tab in Connector Configurator to specify the
business objects that the connector will use. You must specify both generic business
objects and application-specific business objects, and you must specify associations
for the maps between the business objects.

Note: Some connectors require that certain business objects be specified as
supported in order to perform event notification or additional configuration

Appendix B. Connector Configurator 207



(using meta-objects) with their applications. For more information, see the
Connector Development Guide for C++ or the Connector Development Guide for
Java.

If ICS is your broker

To specify that a business object definition is supported by the connector, or to
change the support settings for an existing business object definition, click the
Supported Business Objects tab and use the following fields.

Business object name: To designate that a business object definition is supported
by the connector, with System Manager running:

1. Click an empty field in the Business Object Name list. A drop list displays,
showing all the business object definitions that exist in the System Manager
project.

2. Click on a business object to add it.

3. Set the Agent Support (described below) for the business object.

4. In the File menu of the Connector Configurator window, click Save to Project.
The revised connector definition, including designated support for the added
business object definition, is saved to an ICL (Integration Component Library)
project in System Manager.

To delete a business object from the supported list:

1. To select a business object field, click the number to the left of the business
object.

2. From the Edit menu of the Connector Configurator window, click Delete Row.
The business object is removed from the list display.

3. From the File menu, click Save to Project.

Deleting a business object from the supported list changes the connector definition
and makes the deleted business object unavailable for use in this implementation
of this connector. It does not affect the connector code, nor does it remove the
business object definition itself from System Manager.

Agent support: If a business object has Agent Support, the system will attempt to
use that business object for delivering data to an application via the connector
agent.

Typically, application-specific business objects for a connector are supported by
that connector’s agent, but generic business objects are not.

To indicate that the business object is supported by the connector agent, check the
Agent Support box. The Connector Configurator window does not validate your
Agent Support selections.

Maximum transaction level: The maximum transaction level for a connector is
the highest transaction level that the connector supports.

For most connectors, Best Effort is the only possible choice.

You must restart the server for changes in transaction level to take effect.

If a WebSphere Message Broker is your broker
If you are working in stand-alone mode (not connected to System Manager), you
must enter the business object name manually.

208 Adapter for Web Services User Guide



If you have System Manager running, you can select the empty box under the
Business Object Name column in the Supported Business Objects tab. A combo
box appears with a list of the business object available from the Integration
Component Library project to which the connector belongs. Select the business
object you want from the list.

The Message Set ID is an optional field for WebSphere Business Integration
Message Broker 5.0, and need not be unique if supplied. However, for WebSphere
MQ Integrator and Integrator Broker 2.1, you must supply a unique ID.

If WAS is your broker

When WebSphere Application Server is selected as your broker type, Connector
Configurator does not require message set IDs. The Supported Business Objects
tab shows a Business Object Name column only for supported business objects.

If you are working in stand-alone mode (not connected to System Manager), you
must enter the business object name manually.

If you have System Manager running, you can select the empty box under the
Business Object Name column in the Supported Business Objects tab. A combo box
appears with a list of the business objects available from the Integration
Component Library project to which the connector belongs. Select the business
object you want from this list.

Associated maps (ICS)

Each connector supports a list of business object definitions and their associated
maps that are currently active in WebSphere InterChange Server. This list appears
when you select the Associated Maps tab.

The list of business objects contains the application-specific business object which
the agent supports and the corresponding generic object that the controller sends
to the subscribing collaboration. The association of a map determines which map
will be used to transform the application-specific business object to the generic
business object or the generic business object to the application-specific business
object.

If you are using maps that are uniquely defined for specific source and destination
business objects, the maps will already be associated with their appropriate
business objects when you open the display, and you will not need (or be able) to
change them.

If more than one map is available for use by a supported business object, you will
need to explicitly bind the business object with the map that it should use.

The Associated Maps tab displays the following fields:
* Business Object Name

These are the business objects supported by this connector, as designated in the
Supported Business Objects tab. If you designate additional business objects
under the Supported Business Objects tab, they will be reflected in this list after
you save the changes by choosing Save to Project from the File menu of the
Connector Configurator window.

* Associated Maps

Appendix B. Connector Configurator 209



The display shows all the maps that have been installed to the system for use
with the supported business objects of the connector. The source business object
for each map is shown to the left of the map name, in the Business Object
Name display.

* Explicit Binding
In some cases, you may need to explicitly bind an associated map.

Explicit binding is required only when more than one map exists for a particular
supported business object. When ICS boots, it tries to automatically bind a map
to each supported business object for each connector. If more than one map
takes as its input the same business object, the server attempts to locate and
bind one map that is the superset of the others.

If there is no map that is the superset of the others, the server will not be able to

bind the business object to a single map, and you will need to set the binding

explicitly.

To explicitly bind a map:

1. In the Explicit column, place a check in the check box for the map you want
to bind.

2. Select the map that you intend to associate with the business object.

3. In the File menu of the Connector Configurator window, click Save to
Project.

4. Deploy the project to ICS.
5. Reboot the server for the changes to take effect.

Resources (ICS)

The Resource tab allows you to set a value that determines whether and to what
extent the connector agent will handle multiple processes concurrently, using
connector agent parallelism.

Not all connectors support this feature. If you are running a connector agent that
was designed in Java to be multi-threaded, you are advised not to use this feature,
since it is usually more efficient to use multiple threads than multiple processes.

Messaging (ICS)

The Messaging tab enables you to configure messaging properties. The messaging
properties are available only if you have set MQ as the value of the
DeliveryTransport standard property and ICS as the broker type. These properties
affect how your connector will use queues.

Validating messaging queues
Before you can validate a messaging queue, you must:

* Make sure that WebSphere MQ Series is installed.
* Create a messaging queue with channel and port on the host machine.
* Set up a connection to the host machine.

To validate the queue, use the Validate button to the right of the Messaging Type
and Host Name fields on the Messaging tab.

Security (ICS)

You can use the Security tab in Connector Configurator to set various privacy
levels for a message. You can only use this feature when the DeliveryTransport
property is set to JMS.

210 Adapter for Web Services User Guide



By default, Privacy is turned off. Check the Privacy box to enable it.

The Keystore Target System Absolute Pathname is:

e For Windows:
<ProductDir>\connectors\security\<connectorname>.jks

e For UNIX:
opt/IBM/WebSphereAdapters/connectors/security/<connectorname>. jks

This path and file should be on the system where you plan to start the connector,
that is, the target system.

You can use the Browse button at the right only if the target system is the one
currently running. It is greyed out unless Privacy is enabled and the Target System
in the menu bar is set to Windows.

The Message Privacy Level may be set as follows for the three messages categories
(All Messages, All Administrative Messages, and All Business Object Messages):

nrr

. is the default; used when no privacy levels for a message category have been
set.

* none
Not the same as the default: use this to deliberately set a privacy level of none
for a message category.

* integrity

* privacy

* integrity_plus_privacy

The Key Maintenance feature lets you generate, import and export public keys for
the server and adapter.

* When you select Generate Keys, the Generate Keys dialog box appears with the
defaults for the keytool that will generate the keys.

¢ The keystore value defaults to the value you entered in Keystore Target System
Absolute Pathname on the Security tab.

* When you select OK, the entries are validated, the key certificate is generated
and the output is sent to the Connector Configurator log window.

Before you can import a certificate into the adapter keystore, you must export it
from the server keystore. When you select Export Adapter Public Key, the Export
Adapter Public Key dialog box appears.

* The export certificate defaults to the same value as the keystore, except that the
file extension is <filename>.cer.

When you select Import Server Public Key, the Import Server Public Key dialog

box appears.

e The import certificate defaults to <ProductDir>\bin\ics.cer (if the file exists on
the system).

¢ The import Certificate Association should be the server name. If a server is
registered, you can select it from the droplist.

The Adapter Access Control feature is enabled only when the value of
DeliveryTransport is IDL. By default, the adapter logs in with the guest identity. If
the Use guest identity box is not checked, the Adapter Identity and Adapter
Password fields are enabled.

Appendix B. Connector Configurator 211



Setting trace/log file values

When you open a connector configuration file or a connector definition file,
Connector Configurator uses the logging and tracing values of that file as default
values. You can change those values in Connector Configurator.

To change the logging and tracing values:
1. Click the Trace/Log Files tab.

2. For either logging or tracing, you can choose to write messages to one or both
of the following:

* To console (STDOUT):
Writes logging or tracing messages to the STDOUT display.

Note: You can only use the STDOUT option from the Trace/Log Files tab for
connectors running on the Windows platform.

¢ To File:
Writes logging or tracing messages to a file that you specify. To specify the
file, click the directory button (ellipsis), navigate to the preferred location,
provide a file name, and click Save. Logging or tracing message are written
to the file and location that you specify.

Note: Both logging and tracing files are simple text files. You can use the file
extension that you prefer when you set their file names. For tracing
files, however, it is advisable to use the extension .trace rather than
.trc, to avoid confusion with other files that might reside on the
system. For logging files, .1og and .txt are typical file extensions.

Data handlers

The data handlers section is available for configuration only if you have designated
a value of JMS for DeliveryTransport and a value of JMS for
ContainerManagedEvents. Not all adapters make use of data handlers.

See the descriptions under ContainerManagedEvents in Appendix A, Standard
Properties, for values to use for these properties. For additional details, see the
Connector Development Guide for C++ or the Connector Development Guide for Java.

Saving your configuration file

When you have finished configuring your connector, save the connector
configuration file. Connector Configurator saves the file in the broker mode that
you selected during configuration. The title bar of Connector Configurator always
displays the broker mode (ICS, WMQI or WAS) that it is currently using.

The file is saved as an XML document. You can save the XML document in three

ways:

* From System Manager, as a file with a *.con extension in an Integration
Component Library, or

* In a directory that you specify.

¢ In stand-alone mode, as a file with a *.cfg extension in a directory folder. By
default, the file is saved to \WebSphereAdapters\bin\Data\App.

* You can also save it to a WebSphere Application Server project if you have set
one up.

212 Adapter for Web Services User Guide



For details about using projects in System Manager, and for further information
about deployment, see the following implementation guides:

* For ICS: Implementation Guide for WebSphere InterChange Server

* For WebSphere Message Brokers: Implementing Adapters with WebSphere Message
Brokers

e For WAS: Implementing Adapters with WebSphere Application Server

Changing a configuration file

You can change the integration broker setting for an existing configuration file.
This enables you to use the file as a template for creating a new configuration file,
which can be used with a different broker.

Note: You will need to change other configuration properties as well as the broker
mode property if you switch integration brokers.

To change your broker selection within an existing configuration file (optional):

¢ Open the existing configuration file in Connector Configurator.

* Select the Standard Properties tab.

* In the BrokerType field of the Standard Properties tab, select the value that is
appropriate for your broker.
When you change the current value, the available tabs and field selections in the

properties window will immediately change, to show only those tabs and fields
that pertain to the new broker you have selected.

Completing the configuration

After you have created a configuration file for a connector and modified it, make
sure that the connector can locate the configuration file when the connector starts

up.

To do so, open the startup file used for the connector, and verify that the location
and file name used for the connector configuration file match exactly the name you
have given the file and the directory or path where you have placed it.

Using Connector Configurator in a globalized environment

Connector Configurator is globalized and can handle character conversion between
the configuration file and the integration broker. Connector Configurator uses
native encoding. When it writes to the configuration file, it uses UTF-8 encoding.

Connector Configurator supports non-English characters in:

+ All value fields

* Log file and trace file path (specified in the Trace/Log files tab)

The drop list for the CharacterEncoding and Locale standard configuration
properties displays only a subset of supported values. To add other values to the

drop list, you must manually modify the \Data\Std\stdConnProps.xml file in the
product directory.

For example, to add the locale en_GB to the list of values for the Locale property,
open the stdConnProps.xml file and add the line in boldface type below:

Appendix B. Connector Configurator 213



<Property name="Locale"

isRequired="true"

updateMethod="component restart">

<ValidType>String</ValidType>
<ValidValues>

<Value>ja_JP</Value>
<Value>ko_KR</Value>
<Value>zh_CN</Value>
<Value>zh_TW</Value>
<Value>fr FR</Value>
<Value>de_DE</Value>
<Value>it_IT</Value>
<Value>es_ES</Value>
<Value>pt_BR</Value>
<Value>en_US</Value>
<Value>en_GB</Value>

<DefaultValue>en_US</DefaultValue>
</ValidValues>
</Property>

214 Adapter for Web Services User Guide



Appendix C. Adapter for Web Services tutorial
« |”About the tutorial”|
* |“Before you start” on page 216|

+ |“Installing and configuring” on page 216|

* |“Running the asynchronous scenario” on page 222|

* [“Running the synchronous scenario” on page 224

This appendix contains step-by-step procedures that:

* demonstrate asynchronous and synchronous event transmission for both request
and event processing

* illustrate how to configure the web services connector for a SOAP/HTTPS
sample

e illustrate how to configure the web services connector for a SOAP/HTTP sample
¢ illustrate how to configure the web services connector for a SOAP/JMS sample

About the tutorial

This tutorial is intended to demonstrate asynchronous and synchronous event
transmission for both the request and event processing facets of the Adapter for
Web Services with each of the supported protocols: SOAP/HTTP, SOAP/HTTPS
and SOAP/JMS. In each scenario, the adapters act as:

* a web service client for collaborations that invoke a web service

* a proxy that exposes a WebSphere InterChange Server collaboration as a web
service

The tutorial is designed to show the basic functionality of the adapter in sample
scenarios:

* An asynchronous scenario that illustrates an asynchronous (request-only) web
service and its client with the connector. There are two samples in this
scenario—for configuration simplicity, the same Web Services connector is used
to expose a collaboration as a Web Service and invoke a Web Service as a client.

— A collaboration that is exposed as a web service In this sample, the web
service is simply a collaboration SERVICE_ASYNCH_Order_Collab within
WebSphere InterChange Server that is being exposed as a web service by the
connector. The web service is referred to as Asynch Order Service. If the
connector is properly configured, this Web Service can be invoked using any
(one) of the Web Services protocols: SOAP/HTTP, SOAP/HTTPS or
SOAP/JMS. SERVICE_ASYNCH_Order_Collab is a simple pass-through
collaboration that takes SERVICE_ASYNCH_TLO_Order. The triggering port (From)
of this collaboration is bound to the Web Services connector. The service port
(To) is bound to SampleSiebelConnector.

— A collaboration that is invoked by a web services client In this sample, the
web service client is another collaboration CLIENT_ASYNCH_Order_Collab
within WebSphere InterChange Server that will invoke the Web Service
Asynch Order Service using the Web Services connector. If the connector is
configured properly, this web service client can invoke the Web Service over
any (one) of the Web Services protocols: SOAP/HTTP, SOAP/HTTPS or
SOAP/JMS. CLIENT_ASYNCH_Order_Collab is a simple pass-through
collaboration which takes CLIENT_ASYNCH_TLO_Order. The triggering port

© Copyright IBM Corp. 2003, 2004 215



(From) of this collaboration is bound to SampleSAPConnector. The service
port (To) is bound to the Web Services connector.

Both samples in the asynchronous scenario involve two applications:
— SampleSiebel: Creates an order for its clients.
— SampleSAP: Creates an order

* A synchronous scenario that illustrates a synchronous (request-response) web
service and its client with the connector. There are two samples in this
scenario—for configuration simplicity, the same Web Services connector is used
to expose a collaboration as a Web Service and invoke a Web Service as a client.

— A collaboration that is exposed as a web service In this sample, the Web
Service is simply a collaboration SERVICE_SYNCH_OrderStatus_Collab within
WebSphere InterChange Server that is being exposed as a web service by the
connector. In this sample, this web service is referred to as Synch OrderStatus
Service. If the connector is properly configured, the web service can be
invoked using any of the web services protocols: SOAP/HTTP, SOAP/HTTPS
or SOAP/JMS. SERVICE_SYNCH_OrderStatus_Collab is a simple pass-through
collaboration which takes SERVICE_SYNCH_TLO OrderStatus. The triggering
port (From) of this collaboration is bound to the Web Services connector. The
service port (To) is bound to SampleSiebelConnector.

— A collaboration that is invoked by a web services client In this sample, the
web service client is another collaboration CLIENT _SYNCH OrderStatus Collab
within WebSphere InterChange Server that will invoke the web service Synch
OrderStatus Service using the Web Services connector. If the connector is
properly configured, this web service client can invoke the web service over
any of the web services protocols: SOAP/HTTP, SOAP/HTTPS or
SOAP/JMS. CLIENT_SYNCH_OrderStatus_Collab is a simple pass-through
collaboration which takes CLIENT_SYNCH_TLO_OrderStatus. The triggering port
(From) of this collaboration is bound to SampleSAPConnector. The service
port (To) is bound to the Web Services connector.

Both samples in the synchronous scenario involve two applications:
— SampleSiebel: Retrieves the status of orders for its clients.
— SampleSAP: Requests the status of the order

Both scenarios involve simulating the SampleSiebel Connector and
SampleSAPConnector using two Test Connectors.

Before you start

Before you start the tutorial, be sure that:

* You have installed, and are experienced with, WebSphere InterChange Server
4.2.x or later.

* You have installed the WebSphere Business Integration Adapter For Web
Services in the WebSphere InterChange Server home directory.

* You are experienced with Web Services technology.
* You are experienced with SOAP technology.

Installing and configuring

In the sections that follow, WBI_folder refers to the folder containing your current
WebSphere InterChange Server installation. All environment variables and file
separators are specified in the Windows NT/2000 format. Please make the
appropriate changes if running on AIX or Solaris. (for example,
WBI_folder\connectors would be WBI_folder/connectors).

216 Adapter for Web Services User Guide



Start server and tool
1. Start WebSphere InterChange Server (ICS) from the shortcut.

2. Start the WebSphere Business Integration System Manager and open the
Component Navigator Perspective.

3. Register and connect your server as a Server Instance in the Interchange Server
view.

Load the sample content
From the Component Navigator Perspective:
1. Create a new Integration Component Library.

2. Import the repos file named WebServicesSample.jar located in:
WBI_folder\connectors\WebServices\samples\WebSphereICS\

Compile the collaboration templates
Using WebSphere Business Integration System Manager:

* Compile All of the Collaboration Templates that were imported from the
WebServicesSample. jar repos file.

Configure the connector
1. If you have not done so already, configure the connector as described in this
guide and according to your system.
2. Using WebSphere Business Integration System Manager, open
WebServicesConnector in Connector Configurator.
3. You must also configure WebServicesConnector for the protocol you want to
use with the sample:
+ If you want to use SOAP/HTTP, see [‘Configuring for the SOAP/HTTP)
[protocol scenario”|to configure the connector for SOAP/HTTP.
« If you want to use SOAP/HTTPS, see|’Configuring for the SOAP/HTTPS|
[protocol scenario” on page 218 to configure the connector for SOAP/HTTPS.

+ If you want to use SOAP/JMS, see|“Configuring for the SOAP /JMS protocoll
[scenario” on page 220| to configure the connector for SOAP/JMS.

Configuring for the SOAP/HTTP protocol scenario

This section shows you how to configure the connector for the SOAP/HTTP
sample scenario. As described in the body of this document, the connector includes
a SOAP/HTTP protocol listener and SOAP/HTTP-HTTPS protocol handler. The
sample scenario exposes SERVICE_ASYNCH_Order_Collab and
SERVICE_SYNCH_OrderStatus_Collab collaborations as SOAP/HTTP web services. To
expose a collaboration as a SOAP/HTTP web service, the connector uses the
SOAP/HTTP protocol listener. The sample scenario comes with the
CLIENT_ASYNCH_Order_Collab and CLIENT_SYNCH_OrderStatus_Collab collaborations,
which are SOAP/HTTP clients of SOAP/HTTP web services. To invoke a
SOAP/HTTP web service, the connector uses SOAP/HTTPHTTPS Protocol
Handler.

In the steps and descriptions that follow, hierarchical connector configuration
properties are represented with the ” symbol. For example, A” B implies A is a

hierarchical property, and B is child property of A.

To configure the SOAP/HTTP protocol listener for this sample:

Appendix C. Adapter for Web Services tutorial 217



1. In Connector Configurator, click on Connector-Specific Properties for the
WebServicesConnector.

2. Expand the ProtocolListenerFramework property to display the
ProtocolListeners child property.

3. Expand the ProtocolListeners child property to display the
SOAPHTTPListenerl1 child property.

4. Check the value of SOAPHTTPListener1”Host and SOAPHTTPListenerl”Port
property. Make sure there is no other process running on your host and
listening on this TCP/IP port. Optionally, you may want to set the value of
SOAHTTPListener1”Host to the machine name on which you will run the
connector.

You need not configure the SOAP/HTTP-HTTPS protocol handler for the sample.

Configuring for the SOAP/HTTPS protocol scenario

This section shows you how to configure the connector for the SOAP/HTTPS
sample scenario. The connector includes a SOAP/HTTPS protocol listener and
SOAP/HTTP-HTTPS protocol handler. The sample scenario exposes the
SERVICE_ASYNCH_Order_Collab and SERVICE_SYNCH OrderStatus_Collab
collaborations as SOAP/HTTPS web services. To expose a collaboration as a
SOAP/HTTPS web service, the connector uses the SOAP/HTTPS protocol listener.
The sample scenario comes with the CLIENT_ASYNCH_Order_Collab and
CLIENT_SYNCH OrderStatus_Collab collaborations, which are SOAP/HTTPS clients
of SOAP/HTTPS web services. To invoke a SOAP/HTTPS web service, the
connector uses the SOAP/HTTPHTTPS protocol handler.

In the steps and descriptions that follow, hierarchical connector configuration
properties are represented with the ” symbol. For example, A” B implies A is a
hierarchical property, and B is child property of A.

Note: In addition to the pre-install items listed above ir{"Before you start” on page|
you should also have created and tested your keystore and truststore
using your Key and Certificate management software.

Configure SSL connector-specific properties: For SOAP/HTTPS, the connector
requires that you configure the SSL connector-specific hierarchical property.

1. In Connector Configurator, click on the Connector-Specific Properties tab for
the WebServicesConnector.

2. Expand the SSL hierarchical property to view all of its children properties.
Additionally, check or change the following child properties of the hierarchical
SSL connector-specific property.

¢ SSL” KeyStore Set to the complete path to your keystore file, which you
must create using your Key and Certificate management software.

* SSL”KeyStorePassword Set to the password required to access your
KeyStore.

* SSL”KeyStoreAlias Set to the alias of the private key in your KeyStore.

¢ SSL”TrustStore Set to the complete path of your truststore file which you
have created using your Key and Certificate management software.

¢ SSL”TrustStorePassword Set to the password required to access your
TrustStore.

Note: Do not forget to save the changes in Connector Configurator.

Configure the SOAP/HTTPS protocol listener:

218 Adapter for Web Services User Guide



1. In Connector Configurator, click on Connector-Specific Properties for the
WebServicesConnector.

2. Expand the ProtocolListenerFramework property to display the
ProtocolListeners child property.

3. Expand the ProtocolListeners child property to display the
SOAPHTTPSListenerl child property. Check the value of the
SOAPHTTPSListener1”Host and SOAPHTTPSListenerl”Port properties. Make
sure no other processes are running on your host and listening on this TCP/IP
port. Optionally, you may want to set the value of SOAHTTPSListener1”Host
to the machine name on which you are running the connector.

You need not configure the SOAP/HTTP-HTTPS protocol handler for the sample.

Setting up KeyStore and TrustStore: You can quickly set up KeyStore and
TrustStore to use with the sample scenario. For production systems, you must use
third-party software for to set up and manage keystores as well as certificate and
key generation. No tool is provided as part of the Adapter for Web Services to set
up and manage these resources.

This section assumes that Java Virtual Machine is installed on your system and
that you are familiar with the keytool shipped with your JVM (Java Virtual
Machine). For more information or for troubleshooting problems with the keytool,
please see the documentation that accompanies your JVM.

To set up KeyStore:

1. You create KeyStore using keytool. You must create a key pair in the KeyStore.
To do so, enter the following at the command line:

keytool -genkey -alias wsadapter -keystore c:\security\keystore

2. keytool immediately prompts for a password. Specify the password that you

entered for the value of SSL”KeyStorePassword connector property.
Note that in the above example if you specified -keystore
c:\security\keystore in the command line, you would enter
c:\security\keystore as the value of the SSL”"KeyStore property. Also, if you
specified -alias wsadapter in the command line, you would enter wsadapter as
the value of the SSL”KeyStoreAlias connector property. keytool would then
prompt you for the details of the certificate. The following illustrates what you
may enter at each of the prompts, but is an example only: always refer, and
defer, to keytool documentation.
What is your first and Tast name?

[Unknown] :  HostName
What is the name of your organizational unit?

[Unknown]: myunit
What is the name of your organization?

[Unknown]: myorganization
What is the name of your City or Locality?

[Unknown]: mycity
What is the name of your State or Province?

[Unknown]: mystate
What is the two-letter country code for this unit?

[Unknown]: mycountryls <CN=HostName, OU=myunit, O=myorganization,

L=mycity, ST=mystate, C=mycountry> correct?

[no]: yes

3. Note that for What is your first and last name?, you should enter the name

of the machine on which you are running the connector. keytool then prompts
you:

Enter key password for <wsadapter> (RETURN if same as keystore password):

Appendix C. Adapter for Web Services tutorial 219



4. Press Return to use the same password. If you want to use a self-signed
certificate, you may want to export the certificate created above. To do so, enter
following on the command line:

C:\security>keytool -export -alias wsadapter -keystore c:\security\keystore
-file c:\security\wsadapter.cer

5. keytool now prompts for the keystore password. Enter the password that you

entered above

To set up TrustStore:

1. To import the trusted certificates into the TrustStore, enter the following
command:
keytool -import -alias trustedl -keystore c:\security\truststore
-file c:\security\wsadapter.cer

2. keytool now prompts for the keystore password. If you entered -keystore
c:\security\truststore, make sure that SSL"TrustStore property is set to
c:\security\truststore. Also, set the value of the SSL”TrustStorePassword
property to the password you entered above.

Configuring for the SOAP/JMS protocol scenario

This section shows you how to configure the connector for the SOAP/JMS sample
scenario. The sample scenario exposes the SERVICE_ASYNCH_Order_Collab and
SERVICE_SYNCH OrderStatus Collab collaborations as SOAP/JMS web services. To
expose a collaboration as a SOAP/JMS web service, the connector uses the
SOAP/JMS protocol listener. The sample scenario comes with the
CLIENT_ASYNCH_Order_Collab and CLIENT_SYNCH_OrderStatus_Collab collaborations,
which are SOAP/JMS clients of SOAP/JMS web services. To invoke a SOAP/JMS
web service, the connector uses the SOAP/JMS protocol handler.

In the steps and descriptions that follow, hierarchical connector configuration
properties are represented with the ” symbol. For example, A” B implies A is a
hierarchical property, and B is child property of A.

Note: In addition to the pre-install items listed above ir{"Before you start” on page|
you should also have installed a JMS service provider and installed and
configured your JNDIL.

Configuring JNDI properties: For SOAP/JMS, you must configure JNDI
connector configuration properties:

1. In Connector Configurator, click Connector-Specific Properties for the
WebServicesConnector.
2. Expand the JNDI hierarchical property to display its child properties. Then
check or change the child properties to match the values listed below.
* JNDI”JNDIProviderURL Set this property to the URL of the JNDI Service
provider. Refer to your JNDI provider documentation.

* JNDI”InitialContextFactory Set this property to fully qualified class name of
the factory class that will create the JNDI initial context. Refer to your JNDI
provider documentation.

* JNDI”JNDIConnectionFactoryName Set this property to the JNDI name of
the connection factory to lookup using JNDI context. Make sure that this
name can be looked up using the JNDI.

* Refer to your JNDI documentation to see if any of the following properties
are required by your JNDI provider:

— JNDI”CTX_ObjectFactories

220 Adapter for Web Services User Guide



— JNDI”CTX_ObjectFactories
— JNDI”CTX_StateFactories
— JNDI”CTX_URLPackagePrefixes
— JNDI”CTX_DNS_URL
— JNDI”CTX_Authoritative
— JND”CTX_Batchsize
— JNDI”CTX_Referral
— JNDI”CTX_SecurityProtocol
— JND”CTX_SecurityAuthentication
— JNDI”CTX_SecurityPrincipal
— JNDI”CTX_SecurityCredentials
— JNDI”CTX_Language
3. Save the changes in Connector Configurator.

Configure the JMS queues and SOAP/JMS protocol listener: The scenario
requires that six queues be defined with your JMS service provider. Before doing
so, check your JMS provider documentation; defining queues varies between
providers.

1. Define (or make available via JNDI lookup) the following queues:
* ORDER_INPUT
e ORDER_INPROGRESS

ORDER_ERROR

ORDER_ARCHIVE

ORDER_UNSUBSCRIBED

* ORDER_REPLYTO

2. From CSM open WebServicesConnector in Connector Configurator. If you have
not done so already, configure the connector as described in the installation
guide for your system.

3. Click Application Config Properties in Connector Configurator.

4. Expand the ProtocolListenerFramework property to display the
ProtocolListeners child property.

5. Expand ProtocolListeners property to display the SOAPJMSListener1 child
property.

6. Check or change the values of the SOAPJMSListner1 child properties to
match those listed below:

* SOAPJMSListener”Protocol Set to soap/jms
* SOAPJMSListener1”Protocol Set to soap/jms
* SOAPJMSListenerl”InputQueue Set to ORDER_INPUT
* SOAPJMSListenerl”InProgressQueue Set to ORDER_INPROGRESS
* SOAPJMSListenerl” ArchiveQueue Set to ORDER_ARCHIVE
* SOAPJMSListenerl”UnsubscribedQueue Set to ORDER_UNSUBSCRIBED
* SOAPJMSListenerl”ErrorQueue Set to ORDER_ERROR
* SOAPJMSListenerl”ReplyToQueue Set to ORDER_REPLYTO
7. Save the changes in Connector Configurator.

Configure the SOAP/JMS protocol handler:

Appendix C. Adapter for Web Services tutorial 221



1. From System Manager open WebServicesConnector in Connector Configurator.
If you have not done so already, configure the connector as described in the
installation guide for your system.

2. Click Connector-Config Properties in Connector Configurator.

3. Expand the ProtocolHandlerFramework property to display the
ProtocolHandlers child property.

4. Expand the ProtocolHandlers child property to display the SOAPJMSHandler
child property. Check or change the values of SOAPJMSHandler child
properties to match the those below:

* SOAPJMSHandler”Protocol Set to soap/jms
* SOAPJMSHandler”ReplyToQueue Set to value ORDER_REPLYTO_HANDLER
5. Save the changes in Connector Configurator.

Create user project

* Using WebSphere Business Integration System Manager, create a new User
Project. Select all of the components from the Integration Component Library
that was created in [“Load the sample content” on page 217

Add and deploy the project

1. From the Server Instance view, add the User Project created in
0 WebSphere ICS

2. Deploy all of the components from this User Project to the ICS.

Reboot InterChange Server

1. Reboot InterChange Server to ensure that all changes take effect.

2. Use the System Monitor tool to ensure that all of the collaboration objects,
connector controllers, and maps are in a green state.

Running the asynchronous scenario

This scenario invokes the Asynch Order Service web service. Before running the
scenario, review this step-by-step synopsis of its data flow.

1. A CLIENT_ASYNCH_TLO_Order.Create event originates in the application
Samp1eSAP running in one instance of the Test Connector.

2. The event is sent from Samp1eSAP to the collaboration
CLIENT_ASYNCH_Order_Collab.

3. The event is then sent from the collaboration to the Web Services connector.

4. The Web Services connector finds the CLIENT_ASYNCH_Order object that is a child
of the CLIENT_ASYNCH_TLO_Order object.

5. The Request business object is converted into a SOAP message using the SOAP
data handler.

6. The Web Services connector sends the SOAP Message to the end-point
(Destination) of the web service Asynch Order Service. The end-point is
provided by the Destination attribute of the Protocol Config Meta-Object (MO).
The Protocol Config MO used by the connector depends on the value of the
Handler attribute of CLIENT _ASYNCH _TLO Order. If it is set to soap/http, the
Destination attribute of CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO will give the
end-point as the URL of the web service. Otherwise if the Handler attribute is
set to soap/jms, the Destination attribute of
CLIENT_ASYNCH_Order_SOAP_JMS_CfgMO gives the end-point as a destination
queue name.

222 Adapter for Web Services User Guide



7. The Asynch Order Service web service receives the SOAP request. As
mentioned earlier, the Web Services connector is the end-point for this web
service. The connector’s protocol listener, listening on the end-point (to which
the request was sent), receives the SOAP message.

8. The connector converts the SOAP message into SERVICE_ASYNCH_Order and

then creates a SERVICE_TLO_Order object. The SERVICE_ASYNCH_Order object is set
as a child of the SERVICE_TLO_Order object.

9. The Web Services connector now asynchronously posts the SERVICE_TLO_Order
object to ICS. This completes the asynchronous web service invocation.

Because this is an asynchronous web service (request-only), no response is sent
back to the web service client. When SERVICE_ASYNCH_Order_Collab receives this
object, the collaboration then sends the business object to the application
namedSampleSiebel, which is running as the second instance of Test Connector.
The object is displayed in the Test Connector. When Reply Success is selected from
theSampTleSiebel application, the event will be sent back to
SERVICE_ASYNCH_Order_Col1ab.

To run the asynchronous scenario:
1. Start your InterChange Server integration broker, if it is not already running.
2. Start the Web Services connector.
3. Start two instances of the Test Connector.
4

. Using the Test Connector, define a profile for the SampTeSAPConnector and the
SampleSiebelConnector.

5. Select FILE"CONNECT AGENT from each Test Connector menu to begin
simulating agents.

6. While simulating the SampTleSAPConnector using the Test Connector, select
EDIT”LOAD BO from the menu. Load the following file:

WBI folder\connectors\WebServices\samples\WebSphereICS\OrderStatus
\CLTENT_ASYNCH_TLO_Order.bo

The Test Connector should show that the CLIENT_ASYNCH_TLO_Order is loaded.
7. Verify the web services end-point address:
* For SOAP/HTTP web service If you want to use SOAP/HTTP:

a. Make sure you have configured the Web Services connector for
SOAP/HTTP. In your Test Connector, make sure that the value of the
Handler attribute for the CLIENT_ASYNCH_TLO_Order business object is set
to soap/http. No quotes are allowed in this value.

b. Expand the Request attribute of CLIENT_ASYNCH_TLO_Order. This attribute
is of type CLIENT_ASYNCH_Order business object.

c. Expand the SOAPHTTPCfgMO attribute of CLIENT_ASYNCH_Order. This
attribute is of type CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO.

d. Make sure the value of the Destination attribute of
CLIENT_ASYNCH Order SOAP_HTTP_CfgMO is set to
http://localhost:8080/wbhia/webservices/samples. No quotes are
allowed in this value.

* For SOAP/HTTPS web service If you want to use SOAP/HTTPS:

a. Make sure that you have configured the Web Services connector for
SOAP/HTTPS. In your Test Connector, make sure that the value of the
Handler attribute for the CLIENT_ASYNCH_TLO_Order business object is set
to soap/http. No quotes are allowed in this value.

Appendix C. Adapter for Web Services tutorial 223



10.
11.

12.

b. Expand the Request attribute of CLIENT_ASYNCH_TLO_Order. This attribute
is of type CLIENT_ASYNCH_Order business object.

c. Expand the SOAPHTTPCfgMO attribute of CLIENT_ASYNCH_Order. This
attribute is of type CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO.

d. Make sure the value of the Destination attribute of
CLIENT_ASYNCH_Order SOAP_HTTP_CfgMO is set to
https://localhost:8443/wbia/webservices/samples. No quotes are
allowed in this value.

* For SOAP/JMS web service If you want to use SOAP/JMS:

a. Make sure you have configured the Web Services connector for
SOAP/JMS. In your Test Connector, make sure that the value of the
Handler attribute of the CLIENT_ASYNCH_TLO_Order business object is set
to soap/jms. No quotes are allowed in this value.

b. Expand the Request attribute of CLIENT_ASYNCH_TLO_Order. This attribute
is of type CLIENT_ASYNCH_Order business object.

c. Expand the SOAPJMSCfgMO attribute of CLIENT_ASYNCH_Order. This
attribute is of type CLIENT_ASYNCH_Order_SOAP_JMS_CfgMO.

d. Make sure the value of the Destination attribute of
CLIENT_ASYNCH_Order_SOAP_JMS_CfgMO is set to ORDER_INPUT. No quotes
are allowed in this value.

While simulating the SampleSAPConnector with the Test Connector, click on the
loaded Test BO. Select REQUEST”SEND from the menu. See the step-by-step
synopsis earlier in this section for more details regarding the flow of the
event.

While simulating the SampTeSiebelConnector with the Test Connector, select
REQUEST”ACCEPT REQUEST. An Event Labeled
SERVICE_ASYNCH_TLO_Order.Create is displayed in the right panel of the Test
Connector.

Double-click the business object. The business object opens up in a window.

Expand the Request attribute of the business object. The Request attribute is of
type SERVICE_ASYNCH_Order. Inspect the Orderld, Customarily and other
attributes of SERVICE_ASYNCH_Order to verify the Order received. This
completes the execution of asynchronous scenario.

Once you have inspected the business object, close the window. Select
REQUEST "REPLY” SUCCESS.

Running the synchronous scenario

This scenario invokes the Synch OrderStatus Service web service. Before running
the scenario, review this step-by-step synopsis of its data flow.

1.

A CLIENT_SYNCH_TLO_OrderStatus.Retrieve event originates in the application
SampTeSAP running in one instance of the Test Connector.

The event is sent from Samp1eSAP to the collaboration named
CLIENT _SYNCH OrderStatus_Collab.

The event is then sent from the collaboration to the Web Services connector.

The Web Services connector finds the CLIENT_SYNCH_OrderStatus_Request
object, which is a child of the CLIENT_SYNCH_TLO_OrderStatus object.

The Web Services connector invokes the SOAP data handler to convert the
CLIENT_SYNCH_OrderStatus_Request business object into a SOAP message.

The Web Services connector sends the SOAP message to the end-point
(Destination) of the web service Synch OrderStatus Service. The end-point is

224 Adapter for Web Services User Guide



provided by the Destination attribute of the Protocol Config MO. The Protocol
Config MO used by the connector depends on the value of the Handler
attribute of CLIENT_SYNCH_TLO OrderStatus. If it is set to soap/http, the
Destination attribute of CLIENT_SYNCH_OrderStatus_Request SOAP_HTTP_CfgMO
will give the end-point as the URL of a web service. Otherwise, if the Handler
attribute is set to soap/jms, the Destination attribute of
CLIENT_SYNCH_OrderStatus_Request_SOAP_JMS_CfgMO will give the end-point as
the destination queue name of the web service).

7. The Web Service Synch OrderStatus Service receives the SOAP request. As
mentioned earlier, the Web Services connector is the target end-point. The
connector’s protocol listener, listening on the end-point (to which request was
sent), receive the SOAP message.

8. The connector invokes the SOAP data handler with the SOAP message. The
SOAP message is converted into a SERVICE_SYNCH_OrderStatus_Request object
by the SOAP data handler. The Web Services connector then creates a
SERVICE_TLO OrderStatus object. The SERVICE_SYNCH_OrderStatus_Request
object is set as the child of the SERVICE_TLO_OrderStatus object.

9. The Web Services connector now synchronously posts the
SERVICE_TLO_OrderStatus object to the SERVICE_SYNCH_OrderStatus_Collab
collaboration running in WebSphere InterChange Server. Since this is a
synchronous execution, the Web Services connector remains blocked until the
collaboration executes and returns the response.

10. SERVICE_SYNCH_OrderStatus_Collab receives the SERVICE_TLO_OrderStatus
object. The collaboration then sends the business object to the application
SampleSiebel, which is running as the second instance of the Test Connector.

11. When you select Reply Success from the SampleSiebel application, the event is
sent back to the SERVICE_SYNCH_OrderStatus_Collab collaboration.

12. SERVICE_SYNCH_OrderStatus_Collab receives the SERVICE_TLO_OrderStatus
object. The collaboration then sends the business object to Web Services
connector.

13. The Web Services connector finds the SERVICE_SYNCH OrderStatus_Response
business object (or SERVICE_SYNCH_OrderStatus_Fault, if it is populated) that
is a child of the SERVICE_SYNCH_OrderStatus_TLO. This business object will be
converted into a SOAP response message (or SOAP fault message) by the
SOAP data handler.

14. The Web Services connector returns the SOAP response message (or SOAP
fault message) to the web service client.

15. The web service client, which in this case is the connector, receives the
response. The connector invokes the SOAP data handler with the response
message.

16. The SOAP data handler converts the response message into either a
CLIENT_SYNCH_ OrderStatus_Response or CLIENT_SYNCH_OrderStatus_Fault
business object, depending on what was returned by the Order Synch Service.
The Web Services connector sets this object as the child of
CLIENT_SYNCH_OrderStatus_TLO. CLIENT_SYNCH_OrderStatus_TLO is returned to
the CLIENT_SYNCH_OrderStatus_Collab collaboration.

17) CLIENT_SYNCH OrderStatus_Collab then sends CLIENT _SYNCH OrderStatus_TLO
to the SampleSAP application, which is running as the first instance of the Test
Connector. The Test Connector displays this object.

To run the synchronous scenario:
1. Start your InterChange Server integration broker, if it is not already running.

Appendix C. Adapter for Web Services tutorial 225



2. Start the Web Services connector.
3. Start two instances of the Test Connector.

4. Using the Test Connector, define a profile for the SampTeSAPConnector and the
SampTleSiebelConnector.

5. Select FILE"CONNECT AGENT from each Test Connector menu to begin
simulating agents.

6. While simulating the SampleSAPConnector using the Test Connector, select
EDIT”LOAD BO from the menu. Load the following file:

WBI_folder\connectors\WebServices\samples\WebSphereICS\OrderStatus
\CLIENT_SYNCH_TLO OrderStatus.bo

The Test Connector should show that the CLIENT_SYNCH_TLO_OrderStatus is
loaded.

7. Verify the web services end-point address:
* For SOAP/HTTP web service If you want to use SOAP/HTTP:

a. Make sure you have configured the Web Services connector for
SOAP/HTTP. In your Test Connector, make sure that the value of the
Handler attribute for the CLIENT_SYNCH_TLO_OrderStatus business object
is set to soap/http. No quotes are allowed in this value.

b. Expand the Request attribute of CLIENT_SYNCH_TLO_OrderStatus. This
attribute is of type CLIENT_SYNCH_OrderStatus business object.

c. Expand SOAPHTTPCfgMO attribute of CLIENT_SYNCH_OrderStatus. This
attribute is of type CLIENT_SYNCH_OrderStatus_SOAP_HTTP_CfgMO.

d. Make sure the value of the Destination attribute of
CLIENT _SYNCH OrderStatus_SOAP_HTTP CfgMO is set to
http://localhost:8080/wbhia/webservices/samples. No quotes are
allowed in this value.

¢ For SOAP/HTTPS web service If you want to use SOAP/HTTPS:

a. Make sure that you have configured the Web Services connector for
SOAP/HTTPS. In your Test Connector, make sure that the value of the
Handler attribute for the CLIENT_SYNCH_TLO_OrderStatus business object
is set to soap/http. No quotes are allowed in this value.

b. Expand the Request attribute of CLIENT_SYNCH_TLO_OrderStatus. This
attribute is of type CLIENT_SYNCH_OrderStatus business object.

c. Expand the SOAPHTTPCfgMO attribute of CLIENT_SYNCH_OrderStatus. This
attribute is of type CLIENT_SYNCH_OrderStatus_SOAP_HTTP_CfgMO.

d. Make sure value of Destination attribute of
CLIENT SYNCH OrderStatus SOAP_HTTP_CfgMO is set to
https://localhost:8443/wbia/webservices/samples. No quotes are
allowed in this value.

* For SOAP/JMS web service If you want to use SOAP/JMS:

a. Make sure you have configured the Web Services connector for
SOAP/JMS. In your Test Connector, make sure that the value of the
Handler attribute of the CLIENT_SYNCH_TLO_OrderStatus business object
is set to soap/jms. No quotes are allowed in this value.

b. Expand the Request attribute of CLIENT_SYNCH_TLO_OrderStatus. This
attribute is of type CLIENT_SYNCH_OrderStatus business object.

c. Expand the SOAPJMSCfgMO attribute of CLIENT_SYNCH_OrderStatus.
This attribute is of type CLIENT_SYNCH_OrderStatus_SOAP_JMS_CfgMO.

226 Adapter for Web Services User Guide



8.

10.

1.

12.

13.

d. Make sure the value of the Destination attribute of
CLIENT_SYNCH OrderStatus_SOAP_JMS CfgMO is set to ORDER INPUT. No
quotes are allowed in this value.

While simulating the SampleSAPConnector with the Test Connector, click on the
loaded Test BO. Select REQUEST”SEND from the menu. See the step-by-step
synopsis earlier in this section for more details regarding the data flow.

An event labeled SERVICE_SYNCH_TLO_OrderStatus.Retrieve is displayed in
the right panel of the Test Connector instance that is simulating
SampleSiebelConnector. Double-click the business object to display it in a
window.

Expand the Request attribute of the business object. The Request attribute is of
type SERVICE_SYNCH_OrderStatus_Request. Inspect the Orderld, attribute of
SERVICE_ASYNCH_Order to verify that this is the order for which status is
required.

* If you know the status of the order:

a. Click the Response attribute of SERVICE_SYNCH_TLO_OrderStatus. The
Response attribute is of type CLIENT_SYNCH_OrderStatus_Response.

b. Right-click the Response attribute.

c. Click the Add Instance option. A new instance for the
CLIENT_SYNCH_OrderStatus_Response business object is created.

d. Enter values for Orderld, Customerld and all other details you know
about this order. Once you have entered all the details for this order,
close this window.

* If you do not know the status of the order:

a. Click the Fault attribute of SERVICE_SYNCH _TLO OrderStatus. The Fault
attribute is of type CLIENT_SYNCH_OrderStatus_Fault.

b. Right-click the Fault attribute.

c. Click the Add Instance option. A new instance of
CLIENT_SYNCH_ OrderStatus_Fault is created.

d. Enter values for faultcode, faultstring and all other details you want to
send in the SOAP fault message. Once you have entered all the values
for this fault, close this window.

Select REQUEST”REPLY”SUCCESS.An event labeled

SERVICE_SYNCH_TLO_OrderStatus.Retrieve is displayed in the right panel of
the Test Connector that is simulating SampleSAPConnector.

Double-click the SERVICE_SYNCH_TLO_OrderStatus.Retrieve business object,
which is then displayed in a window.

 If your SampleSiebelConnector returned an order status, you should see the
Response attribute of the business object populated. Expand the Response
attribute to verify the order status.

* If your SampleSiebelConnector returned a fault, you should see the Fault
attribute of the business object populated. Expand the Fault attribute to
determine the fault.

Once you have inspected the business object, close the window. Select
REQUEST”REPLY”SUCCESS.

This completes the execution of synchronous scenario.

Appendix C. Adapter for Web Services tutorial 227



228 Adapter for Web Services User Guide



Appendix D. Mlgratlng to 3.0.x

“Backward compatibility”|

“Upgrade tasks”|

“Web Services Generation Utility”]

“SOAP data handler” on page 230|

“SOAP connector” on page 230

“Web services connector” on page 23()

This appendix describes the backwards compatibility of the 3.0.x release of the
Adapter for Web Services as well as how to migrate from Web Services Adapter 1.x
and 2.x releases.

Backward compatibility

The Adapter for Web Services, version 3.0.x, is not backward compatible:

* None of the new components (web services connector, SOAP data handler,

WSDL ODA) can be used, either jointly or individually, with components
released in prior versions of this product.

None of the components (SOAP connector, SOAP data handler, Web Services
Generation Ultility) released in prior versions of this product can be used either
jointly or individually with version 3.0.x.

Artifacts created or used with the prior versions of this product solution may
not be usable with the version 3.0.x.

The 3.0.x version of this product cannot be used with a release of WebSphere
InterChange Server that is prior to version 4.2

Upgrade tasks

The sections below describe how to upgrade components from versions 1.x and 2.x
of this product.

Web Services Generation Utility

The Web Services Generation Utility is no longer available. Instead, you use
System Manager tools to expose collaborations as web services. None of the
artifacts generated by the Web Services Generation Utility can be used with this
release:

* Proxy class The web services connector now supports event notification.

Therefore proxy classes are no longer required to expose a collaborations as a
web service. A proxy class generated with the Web Services Generation Utility
cannot invoke a collaboration that has been exposed as a web service using
System Manager version 4.2 tools.

WSDL documents The Web Services Generation Utility cannot be used to
generate WSDL documents for InterChange Server version 4.2 collaborations.
Instead System Manager tools must be used to generate WSDL documents. For
more information see ['Running the wizard” on page 150.]

When you enable a collaboration for request processing, WSDL documents that
you generated using the Web Services Generation Utility may not be usable with
the WSDL ODA that is available with the 3.0.x release of the connector.

© Copyright IBM Corp. 2003, 2004 229



SOAP data handler

You can use the SOAP data handler with the web services connector only. This
data handler cannot be used by any other connector nor by Server Access Interface.
The sections below discuss additional support issues.

Meta-objects

The top-level SOAP data handler meta-object used with prior releases is no longer
supported. Instead you must create a new top-level meta-object for use with the
3.0.x release SOAP data handler. This meta-object must have Classname and
SOAPNameHandler attributes only.

The new meta-object no longer requires child meta objects for SOAP
message-to-business-object and business-object -to-SOAP-message transformations.
Accordingly, make sure that your top-level meta-object does not have
SOAPToBOConfigMO and BOToSOAPConfigMO attributes.

The child meta-objects that previously described SOAP message-to-business-object
and business-object -to-SOAP-message transformations must now be added as
children of the SOAP Request, SOAP Response and SOAP Fault business objects.
For further information, see [Chapter 5, “SOAP data handler,” on page 111|and
[Chapter 3, “Business object requirements,” on page 25]

Application-Specific Information

The new SOAP data handler features new application-specific information (ASI)
functionality. You can take advantage of this enhancement by adding specific ASI
to SOAP business objects, but doing so is not required. With the exception of
adding child SOAP Config MOs to business objects, you can deploy SOAP
business objects that you created with prior releases of the connector for use with
the 3.0.x version.

Connector compatibility

You can use the new SOAP data handler with the 3.0.x web services connector
only. The new SOAP data handler cannot be used with components from prior
releases such as the SOAP connector or Server Access Interface.

You cannot use the old SOAP data handler with the 3.0.x web services connector.

SOAP connector

The SOAP connector is not supported with release 3.0.x. Instead, you must use the
web services connector to invoke web services.

Web services connector

With release 3.0.x, you use the web services connector for both exposing
collaborations as web services and invoking web services. New event notification
functionality is used to expose collaborations as web services. New request
processing features are now used to invoke web services. The sections below
highlight the migration tasks that you must complete to use the web services
connector.

Note: The migration tasks discussed below may not be exhaustive. Also, you can
complete the tasks in any order.

Event notification
The 3.0.x connector can invoke collaborations synchronously or asynchronously
with no requirement for creating and deploying a proxy class on a web server. The

230 Adapter for Web Services User Guide



connector now has a listener framework that notifies the connector of events. The
listener framework supports SOAP/HTTP, SOAP/HTTPS and SOAP/JMS
bindings. If you configure the listeners properly, the connector can detect and
respond to web service clients on behalf of collaborations that have been exposed
as web services. For further information on the listener framework and how to
configure it, see [“Protocol listeners” on page 65.|

Business objects for event notification: You must create an event notification
top-level object (TLO). The TLO is a container for a SOAP Request business object
and, optionally (for synchronous request processing), a SOAP Response and SOAP
Fault business object. The TLO's structural components anticipate a single web
services operation: the SOAP Request business object corresponds to a SOAP
request message, the SOAP Response business object corresponds to a SOAP
response message, and the SOAP Fault business object corresponds to a SOAP
fault message. For further information, see ['Synchronous event processing TLOs”|
En Eaée 26.

Event notification and SOAP business objects: The SOAP business objects used
with Server Access Interface in prior releases may be used, with modifications
described in [‘SOAP data handler” on page 230 above, with the 3.0.x release. Note
that you must specify SOAP business objects as children in the event notification
TLO.

Request Processing

Like the SOAP connector in prior releases, the 3.0.x web services connector can
invoke web services. In addition, the new connector supports invocation of web
services with SOAP/JMS bindings. The sections below discuss further the changes
in connector request processing.

Top-level objects request processing: You must create a request processing TLO.
The TLO is a container for a SOAP Request business object and, optionally (for
synchronous request processing), a SOAP Response and SOAP Fault business
object. The TLO’s structural components anticipate a single web services operation:
the SOAP Request business object corresponds to a SOAP request message, the
SOAP Response business object corresponds to a SOAP response message, and the
SOAP Fault business object corresponds to a SOAP fault message. In this sense the
3.0.x request processing TLO corresponds to the TLO used with the SOAP
connector from prior releases. For further information on request processing TLOs,
see [“Synchronous request processing TLOs” on page 44

SOAP business objects: The SOAP business objects used with the SOAP
connector of prior releases may be used with modifications as described i
(data handler” on page 230.| You must specify these business objects as children of a
request processing TLO. Note that in previous releases these business objects were
children of a TLO used with SOAP connector.

The 3.0.x web services connector has an additional requirement for SOAP Request
business objects. Each SOAP Request business object must have an attribute of
type Protocol Config MO (meta-object). The connector uses the Protocol Config
MO to determine the destination of the request message. Each Protocol Config MO
has a Destination attribute that gives the address of the target web service. If you
are using SOAP/HTTP or SOAP/HTTPS to invoke the target web service, then the
Destination attribute corresponds to the URL attribute of the TLO used with the
SOAP connector from prior releases.For further information, see [“Protocol Config]
IMO” on page 33

Appendix D. Migrating to 3.0.x 231



232 Adapter for Web Services User Guide



Appendix E. Configuring HTTPS/SSL

“Keystore setup”]

* [“TrustStore setup” on page 234|

* |“Generating a certificate signing request (CSR) for public key certificates” on|

[page 234|

If you are planning to use SSL, you must use third-party software to manage your
keystores, certificates, and key generation. The web services connector does not

come with tooling for these tasks. However, you may choose to use keytool, which
ships with IBM JRE, to create self-signed certificates and to manage your keystores.

A key and certificate management utility, keytool enables you to administer your
own public/private key pairs and associated certificates. These are intended for
use in self-authentication (where you authenticate yourself to other users or
services) or data integrity and authentication services that use digital signatures.
The keytool utility also allows you to store the public keys (in the form of
certificates) of peers with whom you communicate.

This appendix describes how to set up keystores using keytool. Note that this
appendix is intended for illustration purposes only; it is not intended as a
substitute for documentation for keytool or related products. Always refer to
source documentation for the tools you use to set up keystores. For further
information on keytool, see:

* http://java.sun.com/j2se/1.3/docs/tooldocs/tools.html#security

Keystore setup

To create KeyStore using keytool, you first must create a key pair in the KeyStore.
For example, if you enter the following command line:

keytool -genkey -alias wsadapter -keystore c:\security\keystore

keytool immediately prompts you for a password. You may enter the password of
your choice (within keytool parameters), but you should specify the password
entered in keytool as the value of the SSL ” KeyStorePassword connector property.
For further information, see ["KeyStorePassword” on page 104

The sample command creates the keystore named keystore in the
c:\security\keystore directory. Accordingly, you would enter
c:\security\keystore as the value of the SSL ” KeyStore connector hierarchical
property. Also from the command line example above, you would enter -alias
wsadapter as the value of the SSL ” KeyStoreAlias connector hierarchical property.
The keytool utility then prompts you for the details of the certificate. The following
illustrates what you may enter for each of the prompts. (Refer to keytool
documentation.)
What is your first and Tast name?

[Unknown]: HostName
What is the name of your organizational unit?

[Unknown] :  wbi
What is the name of your organization?

[Unknown]: IBM
What is the name of your City or Locality?

[Unknown]: Burlingame
What is the name of your State or Province?

© Copyright IBM Corp. 2003, 2004 233



[Unknown]: CA
What is the two-letter country code for this unit?
[Unknown]: US
Is <CN=HostName, OU=wbi, 0=IBM, L=Burlingame,
ST=CA, C=US> correct?
[no]: yes

keytool then prompts you for a password:
Enter key password for <wsadapter> (RETURN if same as keystore password):

Press Return to use the same password. If you want to use a self-signed certificate,
you may want to export the certificate created above. In that case, enter following
on the command line:

keytool -export -alias wsadapter -keystore c:\security\keystore -file wsadapter.cer

keytool now prompts you for the keystore password. Enter the password that you
entered above.

TrustStore setup

You may want to set up TrustStore for the following: If you want the
SOAP/HTTPS protocol listener to authenticate the web service client, set the SSL ”
UseClientAuth connector configuration property to true . In this case, the
SOAP/HTTPS protocol listener expect s TrustStore to contain certificates for all
trusted web service clients. Note that the connector uses the JSSE default
mechanism to trust clients. If you are invoking SOAP/HTTPS web services, the
SOAP/HTTP-HTTPS protocol handler requires that TrustStore trust the web
service. This means that TrustStore must contain the certificates of all trusted web
services. Note that the connector uses the JSSE default mechanism to trust clients.
To import the trusted certificates into the TrustStore, enter a command such as the
following:

keytool -import -alias trustedl -keystore c:\security\truststore -file
c:\security\trustedl.cer

keytool now prompts for the keystore password. If you enter -keystore
c:\security\truststore, make sure that the SSL ” TrustStore hierarchical property
is set to c:\security\truststore. Also you must set the value of the SSL ”
TrustStorePassword hierarchical property to the password you entered previously.

Generating a certificate signing request (CSR) for public key

certificates

If the SSL data exchange is among already trusted partners who trust your identity,
self-signed certificates may be adequate. However, a certificate is more likely to be
trusted by others when it is signed by a certifying authority (CA).

To get a certificate signed by the CA using the keytool utility, you first must
generate a Certificate Signing Request (CSR), then give the CSR to a CA. The CA
then signs the certificate and returns it to you.

You generate a CSR by entering the following command:

keytool -certreq -alias wsadapter -file wsadapter.csr
-keystore c:\security\keystore

In the command, alias is the keystore alias that you created for the private key.
The keytool utility generates the CSR file, which you provide to your CA. Your CA

234 Adapter for Web Services User Guide



then provides you with the signed certificate. You will have to import this
certificate into your keystore. To do so, you would enter the following command:

keytool -import -alias wsadapter -keystore c:\security\keystore -trustcacerts
-file casignedcertificate.cer

Once you import, the self-signed certificate in keystore is replaced by the
CA-signed certificate.

Appendix E. Configuring HTTPS/SSL 235



236 Adapter for Web Services User Guide



Appendix F. Common Event Infrastructure

WebSphere Business Integration Server Foundation includes the Common Event
Infrastructure Server Application, which is required for Common Event
Infrastructure to operate. The WebSphere Application Server Foundation can be
installed on any system (it does not have to be the same machine on which the
adapter is installed.)

The WebSphere Application Server Application Client includes the libraries
required for interaction between the adapter and the Common Event Infrastructure
Server Application. You must install WebSphere Application Server Application
Client on the same system on which you install the adapter. The adapter connects
to the WebSphere Application Server (within the WebSphere Business Integration
Server Foundation) by means of a configurable URL.

Common Event Infrastructure support is available using any integration broker
supported with this release.

Required software

In addition to the software prerequisites required for the adapter, you must have
the following installed for Common Event Infrastructure to operate:

* WebSphere Business Integration Server Foundation 5.1.1
* WebSphere Application Server Application Client 5.0.2, 5.1, or 5.1.1.

(WebSphere Application Server Application Client 5.1.1 is provided with
WebSphere Business Integration Server Foundation 5.1.1. )

Note: Common Event Infrastructure is not supported on any HP-UX or Linux
platform.

Enabling Common Event Infrastructure

Common Event Infrastructure functionality is enabled with the standard properties
CommonEventInfrastructure and CommonEventInfrastructureContextURL, configured
with Connector Configurator. By default, Common Event Infrastructure is not
enabled. The CommonEventInfrastructureContextURL property enables you to
configure the URL of the Common Event Infrastructure server.(Refer to the
“Standard Properties” appendix of this document for more information.)

Obtaining Common Event Infrastructure adapter events

If Common Event Infrastructure is enabled, the adapter generates Common Event
Infrastructure events that map to the following adapter events:

* Starting the adapter

* Stopping the adapter

* An application response to a timeout from the adapter agent
* Any doVerbFor call issued from the adapter agent

* A gotApplEvent call from the adapter agent

For another application (the “consumer application”) to receive the Common Event
Infrastructure events generated by the adapter, the application must use the

© Copyright IBM Corp. 2003, 2004 237



Common Event Infrastructure event catalog to determine the definitions of
appropriate events and their properties. The events must be defined in the event
catalog for the consumer application to be able to consume the sending
application’s events.

The “Common Event Infrastructure event catalog definitions” appendix of this
document contains XML format metadata showing, for WebSphere Business
Information adapters, the event descriptors and properties the consumer
application should search for.

For more information

For more information about Common Event Infrastructure, refer to the Common
Event Infrastructure information in the WebSphere Business Integration Server
Foundation documentation, available at the following URL:

http:/ /publib.boulder.ibm.com/infocenter /ws51help
For sample XML metadata showing the adapter-generated event descriptors and

properties a consumer application should search for, refer tof’Common Event|
[nfrastructure event catalog definitions.”]

Common Event Infrastructure event catalog definitions

The Common Event Infrastructure event catalog contains event definitions that can
be queried by other applications. The following are event definition samples, using
XML metadata, for typical adapter events. If you are writing another application,
your application can use event catalog interfaces to query against the event
definition. For more information about event definitions and how to query them,
refer to the Common Event Infrastructure documentation that is available from the
online IBM WebSphere Server Foundation Information Center.

For WebSphere Business Integration adapters, the extended data elements that
need to be defined in the event catalog are the keys of the business object. Each
business object key requires an event definition. So for any given adapter, various
events such as start adapter, stop adapter, timeout adapter, and any doVerbFor
event (create, update, or delete, for example) must have a corresponding event
definition in the event catalog.

The following sections contain examples of the XML metadata for start adapter,
stop adapter, and event request or delivery.

XML format for “start adapter” metadata

<eventDefinition name="startADAPTER"
parent="event">
<property name ="creationTime" //Comment: example value would be
"2004-05-13T17:00:16.3192"
required="true" />
<property name="globalInstanceId" //Comment: Automatically generated
by Common Event Infrastructure
required="true"/>
<property name="sequenceNumber" //Comment: Source defined number
for messages to be sent/sorted logically
required="false"/>
<property name="version" //Comment: Version of the event
required="false"
defaultValue="1.0.1"/>

238 Adapter for Web Services User Guide



<property name="sourceComponentId"
path="sourceComponentId"
required="true"/>
<property name="application" //Comment: The name#version of the
source application generating the event. Example is "SampleConnector#3.0.0"
path="sourceComponentId/application" required="false"/>
<property name="component" //Comment: This will be the name#version
of the source component.
path="sourceComponentId/component"
required="true"
defaultValue="ConnectorFrameWorkVersion#4.2.2"/>
<property name="componentIdType" //Comment: specifies the format
and meaning of the component
path="sourceComponentId/componentIdType"
required="true"
defaultValue="Application"/>
<property name="executionEnvironment"
//Comment: Identifies the environment the application is running
in...example is "Windows 2000#5.0"
path="sourceComponentId/executionEnvironment"
required="false" />
<property name="location" //Comment: The value of this is the
server name...example is "WQMI"
path="sourceComponentId/location"
required="true"/>
<property name="locationType" //Comment specifies the format and
meaning of the location
path="sourceComponentId/TocationType"
required="true"
defaultValue="Hostname" />
<property name="subComponent" //Comment: further distinction
of the logical component
path="sourceComponentId/subComponent"
required="true"
defaultValue="AppSide_Connector.AgentBusinessObjectManager"/>
<property name="componentType" //Comment: well-defined name
used to characterize all instances of this component
path="sourceComponentId/componentType"
required="true"
defaultValue="ADAPTER"/>
<property name="situation" //Comment: Defines the type of
situation that caused the event to be reported
path="situation"
required="true"/>
<property name="categoryName=" //Comment: Specifies the type
of situation for the event
path="situation/categoryName"
required="true"
defaultValue="StartSituation"/>
<property name="situationType" //Comment: Specifies the type
of situation and disposition of the event
path="situation/situationType"
required="true"
<property name="reasoningScope" //Comment: Specifies the scope
of the impact of the event
path="situation/situationType/reasoningScope"
required="true"
permittedValue="INTERNAL"
permittedValue="EXTERNAL"/>
<property name="successDisposition" //Comment: Specifies the
success of event
path="situation/situationType/successDisposition"
required="true"
permittedValue="SUCCESSFUL"
permittedValue="UNSUCCESSFUL" />
<property name="situationQualifier" //Comment: Specifies the
situation qualifiers for this event

Appendix F. Common Event Infrastructure

239



path="situation/situationType/situationQualifier"

required="true"

permittedValue="START INITIATED"

permittedValue="RESTART_INITIATED"

permittedValue="START_COMPLETED" />
</eventDefinition>

XML format for "stop adapter’ metadata

The metadata for “stop adapter” is the same as that for “start adapter” with the
following exceptions:

* The default value for the categoryName property is StopSituation:

<property name="categoryName="
//Comment: Specifies the type
of situation for the event

path="situation/categoryName"
required="true"
defaultValue="StopSituation"/>

e The permitted values for the situationQualifier property differ and are as
follows for “stop adapter”:

<property name="situationQualifier"
//Comment: Specifies the situation qualifiers for this event

path="situation/situationType/situationQualifier"
required="true"
permittedValue="STOP_INITIATED"
permittedValue="ABORT_INITIATED"
permittedValue="PAUSE_INITIATED"
permittedValue="STOP_COMPLETED"

/>

XML format for “timeout adapter”’ metadata

The metadata for “timeout adapter” is the same as that for “start adapter” and
“stop adapter” with the following exceptions:

* The default value for the categoryName property is ConnectSituation:

<property name="categoryName="
//Comment: Specifies the type
of situation for the event
path="situation/categoryName"
required="true"
defaultValue="ConnectSituation"/>

* The permitted values for the situationQualifier property differ and are as
follows for “timeout adapter”:

<property name="situationQualifier" //Comment: Specifies
the situation qualifiers for this event

path="situation/situationType/situationQualifier"
required="true"
permittedValue="IN_USE"
permittedValue="FREED"
permittedValue="CLOSED"
permittedValue="AVAILABLE"

/>

240 Adapter for Web Services User Guide



XML format for "request” or "delivery” metadata

At the end of this XML format are the extended data elements. The extended data
elements for adapter request and delivery events represent data from the business
object being processed. This data includes the name of the business object, the key
(foreign or local) for the business object, and business objects that are children of
parent business objects. The children business objects are then broken down into
the same data as the parent (name, key, and any children business objects). This
data is represented in an extended data element of the event definition. This data
will change depending on which business object, which keys, and which child
business objects are being processed. The extended data in this event definition is
just an example and represents a business object named Employee with a key
EmpToyeeld and a child business object EmployeeAddress with a key Employeeld.
This pattern could continue for as much data as exists for the particular business
object.

<eventDefinition name="createEmployee" //Comment: This
extension name is always the business object verb followed by the business
object name
parent="event">
<property name ="creationTime" //Comment: example value would be
"2004-05-13T717:00:16.319Z"
required="true" />
<property name="globalInstanceId" //Comment: Automatically generated
by Common Event Infrastructure
required="true"/>
<property name="localInstanceld" //Comment: Value is business
object verb+business object namet#+app name+ business object identifier
required="false"/>
<property name="sequenceNumber" //Comment: Source defined number
for messages to be sent/sorted logically
required="false"/>
<property name="version" //Comment: Version of the event...value is
set to 1.0.1
required="false"
defaultvalue="1.0.1"/>
<property name="sourceComponentId"
path="sourceComponentId"
required="true"/>
<property name="application" //Comment: The name#version of the
source application generating the event...example is
"SampleConnector#3.0.0"
path="sourceComponentId/application"
required="false"/>
<property name="component" //Comment: This will be the name#version
of the source component.
path="sourceComponentId/component"
required="true"
defaultValue="ConnectorFrameWorkVersion#4.2.2"/>
<property name="componentIdType" //Comment: specifies the format
and meaning of the component
path="sourceComponentId/componentIdType"
required="true"
defaultValue="Application"/>
<property name="executionEnvironment" //Comment: Identifies the
environment#version the app is running in...example is "Windows 2000#5.0"
path="sourceComponentId/executionEnvironment"
required="false" />
<property name="instanceld" //Comment: Value is business object
verb+business object name+#+app name+ business object identifier
path="sourceComponentId/instanceld"
required="false"
<property name="location" //Comment: The value of this is the
server name...example is "WQMI"
path="sourceComponentId/Tocation"

Appendix F. Common Event Infrastructure 241



required="true"/>
<property name="locationType" //Comment specifies the format and
meaning of the location
path="sourceComponentId/TocationType"
required="true"
defaultValue="Hostname" />
<property name="subComponent" //Comment:further distinction of the
logical component-in this case the value is the name of the business
object
path="sourceComponentId/subComponent"
required="true"/>
<property name="componentType" //Comment: well-defined name used
to characterize all instances of this component
path="sourceComponentId/componentType"
required="true"
defaultValue="ADAPTER"/>
<property name="situation" //Comment: Defines the type of
situation that caused the event to be reported
path="situation"
required="true"/>
<property name="categoryName" //Comment: Specifies the type
of situation for the event
path="situation/categoryName"
required="true"
permittedValue="CreateSituation"
permittedValue="DestroySituation"
permittedValue="0therSituation" />
<property name="situationType" //Comment: Specifies the type
of situation and disposition of the event
path="situation/situationType"
required="true"
<property name="reasoningScope" //Comment: Specifies the scope
of the impact of the event
path="situation/situationType/reasoningScope"
required="true"
permittedValue="INTERNAL"
permittedValue="EXTERNAL"/>
<property name="successDisposition" //Comment: Specifies the
success of event
path="situation/situationType/successDisposition"
required="true"
permittedValue="SUCCESSFUL"
permittedValue="UNSUCCESSFUL" />
<extendedDataElements name="Employee" //Comment: name of business
object itself
type="noValue"
<children name="Employeeld"
type="string"/> //Comment: type is one of the
permitted values within Common Event Infrastructure documentation
<children name="EmployeeAddress"
type="noValue"/>
<children name="EmployeeId"
type="string"/>

</extendedDataElements
</eventDefinition>

242 Adapter for Web Services User Guide



Appendix G. Application Response Measurement

This adapter is compatible with the Application Response Measurement
application programming interface (API), an API that allows applications to be
managed for availability, service level agreements, and capacity planning. An
ARM-instrumented application can participate in IBM Tivoli Monitoring for
Transaction Performance, allowing collection and review of data concerning
transaction metrics.

Application Response Measurement instrumentation support

This adapter is compatible with the Application Response Measurement
application programming interface (API), an API that allows applications to be
managed for availability, service level agreements, and capacity planning. An
ARM-instrumented application can participate in IBM Tivoli Monitoring for
Transaction Performance, allowing collection and review of data concerning
transaction metrics.

Required software

In addition to the software prerequisites required for the adapter, you must have
the following installed for ARM to operate:

¢ WebSphere Application Server 5.0.1 (contains the IBM Tivoli Monitoring for
Transaction Performance server). This does not have to be installed on the same
system as the adapter.

 IBM Tivoli Monitoring for Transaction Performance v. 5.2 Fixpack 1. This must
be installed on the same system on which the adapter is installed and
configured to point to the system on which the IBM Tivoli Monitoring for
Transaction Performance server resides.

Application Response Measurement support is available using any integration
broker supported with this release.

Note: Application Response Measurement instrumentation is supported on all
operating systems supported with this IBM WebSphere Business Integration
Adapters release except HP-UX (any version) and Red Hat Linux 3.0.

Enabling Application Response Measurement

ARM instrumentation is enabled via by setting the standard property
TivoliMonitorTransactionPerformance in Connector Configurator to “True.” By
default ARM support is not enabled. (Refer to the "Standard Properties” appendix
of this document for more information.)

Transaction monitoring

When ARM is enabled, the transactions that are monitored are service events and
event deliveries. The transaction is measured from the start of a service request or
event delivery to the end of the service request or event delivery. The name of the
transaction displayed on the Tivoli Monitoring for Transaction Performance console
will start with either SERVICE REQUEST or EVENT DELIVERY. The next part of the
name will be the business object verb (such as CREATE, RETRIEVE, UPDATE or DELETE).
The final part of the name will be the business object name such as “EMPLOYEE.”

© Copyright IBM Corp. 2003, 2004 243



For example, the name of a transaction for an event delivery for creation of an
employee might be EVENT DELIVERY CREATE EMPLOYEE. Another might be SERVICE
REQUEST UPDATE ORDER.

The following metrics are collected by default for each type of service request or
event delivery:

* Minimum transaction time
¢ Maximum transaction time
¢ Average transaction time

e Total transaction runs

You (or the system administrator of the WebSphere Application Server) can select
which of these metrics to display, for which adapter events, by configuring
Discovery Policies and Listener Policies for particular transactions from within the
Tivoli Monitoring for Transaction Performance console. (Refer to

nformation.”)

For more information

Refer to the IBM Tivoli Monitoring for Transaction Performance documentation for
more information. In particular, refer to the IBM Tivoli Monitoring for Transaction
Performance User’s Guide for information about monitoring and managing the
metrics generated by the adapter.

244 Adapter for Web Services User Guide



Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service. IBM may have patents or
pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you. This
information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated
in new editions of the publication. IBM may make improvements and/or changes
in the product(s) and/or the program(s) described in this publication at any time
without notice. Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an endorsement
of those Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk. IBM may use or
distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you. Licensees of this program who wish to
have information about it for the purpose of enabling: (i) the exchange of
information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been
exchanged, should contact:

© Copyright IBM Corp. 2003, 2004 245



IBM Corporation

577 Airport Blvd., Suite 800
Burlingame, CA 94010
Us.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee. The licensed program described in this
document and all licensed material available for it are provided by IBM under
terms of the IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us. Any performance data
contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some
measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available
systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment. Information concerning non-IBM
products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM
products should be addressed to the suppliers of those products. All statements
regarding IBM’s future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only. This information contains
examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is
entirely coincidental. COPYRIGHT LICENSE: This information contains sample
application programs in source language, which illustrate programming techniques
on various operating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of developing,
using, marketing or distributing application programs conforming to the
application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. If you are viewing this information softcopy, the
photographs and color illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create
application software using this program. General-use programming interfaces
allow you to write application software that obtain the services of this program’s
tools. However, this information may also contain diagnosis, modification, and
tuning information. Diagnosis, modification and tuning information is provided to
help you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

246 Adapter for Web Services User Guide



Trademarks and service marks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States or other countries, or both:
i5/0S

IBM

the IBM logo

AIX

CICS

CrossWorlds

DB2

DB2 Universal Database

Domino

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MQSeries

MVS

0S/400

Passport Advantage

SupportPac

WebSphere

z/0S

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both. MMX,
Pentium, and ProShare are trademarks or registered trademarks of Intel
Corporation in the United States, other countries, or both. Java and all Java-based
trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both. Linux is a trademark of Linus Torvalds in the United States,
other countries, or both. Other company, product or service names may be
trademarks or service marks of others.

JAYA.
IBM WebSphere Business Integration Adapter Framework,V2.6.0

Notices 247



248 Adapter for Web Services User Guide



Index
A

adapter environment 2
Application Response Measurement 4
Application Response Measurement
instrumentation, support for 243
application-specific information 123
architecture of the connector 12
ASI effects
on fault processing 128
on header processing 128
ASI in business-object-to-SOAP-message
transformations 125
ASI in SOAP-to-business object
transformations 136
asynchronous event processing
request business object 42
TLOs 40
attribute-level ASI 41
object-level ASI 40, 55
asynchronous request processing
Config MOs 59
request business object 57
TLOs 55
attribute-level ASI 56

bidirectional script data 4
bidirectional support for event and
request processing 1
broker compatibility 2
business object
meta-data 25
requirements 25
business objects
developing 59
header container 39
identifying or developing 148
business-object-to-SOAP-message-body
processing 120
business-object-to-SOAP-message-header
processing 121

C

certificate signing request (CSR) 234
collaboration object
binding the port 148
collaboration template
choosing or developing 148
collaborations
enabling for request processing 145
exposing as SOAP/HTTPS web
services 87
exposing as SOAP/JMS web
services 85
exposing as web services 147
for web services
enabling 14

© Copyright IBM Corp. 2003, 2004

collaborations (continued)

invoking SOAP/HTTPS web

services 88

invoking SOAP/JMS web services 86
Common Event Infrastructure 4

event catalog 238

metadata 238
Config MOs

for asynchronous request

processing 59

configuration properties

connector-specific 89

setting 88

standard 173
configuration tasks

overview 19
configuring the connector 88
connector

at startup 108

overview 1

processing 61

properties

configuring 14

connector and JMS 84
connector business object structure 25
Connector Configurator 197
connector for web services

components 8

D

data handler

SOAP 9
DataHandlerConfigMO 91
deploying the connector 10
double-byte character sets 4

E

Eclipse technology vi

elem_name and elem_ns processing 125

event catalog, for Common Event
Infrastructure 238

event persistence and delivery 74

event processing 65

non-TLOs 43
overview 62
TLOs

asynchronous 40
synchronous 26

F

fault processing
ASI effects on 128
flow monitoring 237, 243

H

header child business objects 39
header container business objects 39
header fault processing 122
header processing

ASI effects on 128
HTTP Protocol Config MO 51
HTTPS/SSL

configuring 233

keystore setup 233

TrustStore setup 234

IBM Tivoli Monitoring for Transaction
Performance 243
identifying or developing business
objects 148
install, configure, and design
checklist 13
installation and startup 17
installation tasks
overview 17
installed file structure
UNIX 18
Windows 17
installing the adapter 13
installing the connector and related
files 17

J

JMS protocol 3
JMS Protocol Config MO 50
JNDI 84
configure 3
initialization 108
JSSE 86

K

KeyStore and TrustStore 87

L

locale-dependent data 4
logging 109

M

meta-object

hierarchy and terminology 112

requirements 111

SOAP configuration 113
migrating to 3.0.x version 229
monitoring, of transactions 243
multiple instances of the adapter 20

249



multiple protocol listeners
creating 107

N

NameHandler
sample 142

(0

operating system requirements 2

P

pluggable name handler
specifying 141
properties
connector-specific 89
standard 88
Protocol Config MO 33
protocol handler framework
initialization 109
protocol handler processing
SOAP/HTTP-HTTPS 78
SOAP/JMS 81
protocol handlers 77
protocol listener framework
initialization 108
protocol listeners 65
protocol listeners and handlers 9
proxy setup 108
public key certificates
generating a CSR 234

R

related documents v
request processing 76
overview 63
TLOs
synchronous 44
request processing TLOs
asynchronous 55
run-time errors 171
running multiple instances of the
adapter 20

S

Secure Sockets Layer 4
SOAP
data handler 9
configuring 14
SOAP attributes
specifying 128
SOAP Config MO 32, 50
SOAP data handler 111
configuring 111
processing 117
SOAP HTTP(S) protocol listener
processing 66
SOAP messages
style and use impact on 115

SOAP style and use guidelines 143

SOAP versions supported 1

SOAP-body-message-to-business-object
processing 118
SOAP-header-message-to-business-object
processing 119
SOAP/HTTP
protocol listener processing 66
unsupported features 70
SOAP/HTTP-HTTPS
protocol handler processing 78
SOAP/HTTP(S) web services 64
asynchronous 64
synchronous 64
SOAP/HTTPS listener processing
using secure sockets 70
SOAP/HTTPS web services
exposing collaborations as 87
SOAP/JMS
protocol handler processing 81
SOAP/JMS protocol listener
processing 70
SOAP/JMS web services 64
asynchronous 65
exposing collaborations as 85
synchronous 65
SOAPProperty object
using 141
software prerequisites 2
SSL 4, 86
properties 87
standard configuration properties 88,
173
standards and APIs 3
start-up problems 169
starting and stopping the connector 21
synchronous event processing
fault business object 32
request process object 30
response business object 31
TLOs
attribute-level ASI 28
object-level ASI 27
synchronous event processing TLOs 26
synchronous request processing
fault business object 50
request business object 48
response business object 49
TLOs 44
attribute-level ASI 46
object-level ASI 45

T

terminology 6
Tivoli Monitoring for Transaction
Performance 243
tracing 109
transaction monitoring 243
troubleshooting 169
run-time errors 171
start-up problems 169
tutorial 215
installing and configuring 216
running the asynchronous
scenario 222
running the synchronous
scenario 224

250 Adapter for Web Services User Guide

type_name and type_ns processing
for multiple cardinality
attributes 127
for simple attributes 126
for single cardinality attributes 126

w

web services configuration tools 9
web services connector 61
Web Services Generation Utility 229
WSDL Configuration Wizard 150
processing business objects in
non-TLO format 153
processing business objects in TLO
format 152
processing requirements and
exceptions 155
running 150
WSDL document
getting from a UDDI registry 164
getting from a URL location 163
specifying 163
WSDL ODA
configuration properties 161
configuring the agent 160
generating objects 165
limitations 166
running 160
starting 159
using 159

X

xsdtype
and simple type arrays 128
for simple, single, and multiple
cardinality types 127






Printed in USA



	Contents
	About This Document
	Audience
	Prerequisites for This Document
	Related Documents
	Eclipse Technology
	Typographic Conventions

	New in this release
	New in release 3.4.x
	New in release 3.3.x
	New in release 3.2.x
	New in release 3.1.x
	New in release 3.0.x

	Chapter 1. Overview of the connector
	Adapter for Web Services environment
	Broker compatibility
	Software prerequisites
	Adapter platforms
	Standards and APIs
	Common Event Infrastructure
	Application Response Measurement
	Locale-dependent data

	Terminology
	Components of connector for web services
	Web services connector
	SOAP data handler
	Web services configuration tools
	Deploying the connector

	Architecture of connector for web services
	Install, configure, and design checklist
	Installing the adapter
	Configuring connector properties
	Enabling collaborations for web services
	Configuring the SOAP data handler

	Limitations

	Chapter 2. Installation and startup
	Overview of Installation Tasks
	Install WebSphere InterChange Server
	Install the connector and related files

	Installing the connector and related files
	Installed file structure
	Windows connector file structure
	UNIX connector file structure

	Overview of configuration tasks
	Configure the connector
	Configure business objects
	Configure the data handler
	Configure collaborations

	Running multiple instances of the adapter
	Create a new directory

	Starting and stopping the connector

	Chapter 3. Business object requirements
	Business object meta-data
	Connector business object structure
	Synchronous event processing TLOs
	Asynchronous event processing TLOs
	Event processing non-TLOs
	Synchronous request processing TLOs
	Asynchronous request processing TLOs

	Developing business objects

	Chapter 4. Web services connector
	Connector processing
	Event processing overview
	Request processing overview

	SOAP/HTTP(S) web services
	Synchronous SOAP/HTTP(S) web service
	Asynchronous SOAP/HTTP(S) web service

	SOAP/JMS web services
	Synchronous SOAP/JMS web service
	Asynchronous SOAP/JMS web service

	Event processing
	Protocol listeners
	SOAP/HTTP and SOAP/HTTPS protocol listener processing
	Unsupported SOAP/HTTP protocol listener processing features
	SOAP/HTTPS listener processing using secure sockets
	SOAP/JMS protocol listener processing
	Event persistence and delivery
	Event sequencing
	Event triggering
	Event detection
	Event status
	Event retrieval
	Event archiving
	Event recovery

	Request processing
	Protocol handlers

	Connector and JMS
	JNDI
	Exposing collaborations as SOAP/JMS web services
	Collaborations invoking SOAP/JMS web services

	SSL
	JSSE
	KeyStore and TrustStore
	SSL Properties
	Exposing collaborations as SOAP/HTTPS web services
	Collaborations invoking SOAP/HTTPS web services

	Configuring the connector
	Setting configuration properties
	Creating multiple protocol listeners

	Connector at startup
	Proxy setup
	JNDI initialization
	Protocol listener framework initialization
	Protocol handler framework initialization

	Logging
	Tracing

	Chapter 5. SOAP data handler
	Configuring the SOAP data handler
	Meta-object requirements

	SOAP data handler processing
	SOAP-body-message-to-business-object processing
	SOAP-header-message-to-business-object processing
	Business-object-to-SOAP-message-body processing
	Business-object-to-SOAP-message-header processing
	Header fault processing

	Using application-specific information functionality
	ASI in business-object-to-SOAP-message transformations
	ASI effects on fault processing
	ASI effects on header processing
	Specifying SOAP attributes
	ASI in SOAP-to-business object transformations

	Specifying a pluggable name handler
	Using the SOAPProperty object
	Sample NameHandler

	Limitations
	SOAP style and use guidelines


	Chapter 6. Enabling collaborations for request processing
	Request processing collaboration checklist

	Chapter 7. Exposing collaborations as web services
	Procedure checklist
	Identifying or developing Business Objects
	Choosing or developing a collaboration template
	Binding the port of a new collaboration object
	WSDL Configuration Wizard
	Running the wizard


	Chapter 8. Using the WSDL ODA
	Starting the WSDL ODA
	Running the WSDL ODA
	Configuring the agent
	Specifying the WSDL document
	Getting a WSDL document from a URL location
	Getting a WSDL document from a UDDI registry

	Confirming selections
	Generating the objects
	Limitations

	Chapter 9. Troubleshooting
	Start-up problems
	Run-time errors

	Appendix A. Standard configuration properties for connectors
	New properties
	Standard connector properties overview
	Starting Connector Configurator
	Configuration property values overview

	Standard properties quick-reference
	Standard properties
	AdapterHelpName
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BiDi.Application
	BiDi.Broker
	BiDi.Metadata
	BiDi.Transformation
	BrokerType
	CharacterEncoding
	CommonEventInfrastructure
	CommonEventInfrastructureContextURL
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerEventSequencing
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	jms.FactoryClassName
	jms.ListenerConcurrency
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.TransportOptimized
	jms.UserName
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RepositoryDirectory
	RequestQueue
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	ResultsSetEnabled
	ResultsSetSize
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousRequestTimeout
	SynchronousResponseQueue
	TivoliMonitorTransactionPerformance
	WireFormat
	WsifSynchronousRequestTimeout
	XMLNameSpaceFormat


	Appendix B. Connector Configurator
	Overview of Connector Configurator
	Running connectors on UNIX

	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting connector-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS)
	Resources (ICS)
	Messaging (ICS)
	Security (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment

	Appendix C. Adapter for Web Services tutorial
	About the tutorial
	Before you start
	Installing and configuring
	Start server and tool
	Load the sample content
	Compile the collaboration templates
	Configure the connector
	Create user project
	Add and deploy the project
	Reboot InterChange Server

	Running the asynchronous scenario
	Running the synchronous scenario

	Appendix D. Migrating to 3.0.x
	Backward compatibility
	Upgrade tasks
	Web Services Generation Utility
	SOAP data handler
	SOAP connector
	Web services connector


	Appendix E. Configuring HTTPS/SSL
	Keystore setup
	TrustStore setup
	Generating a certificate signing request (CSR) for public key certificates

	Appendix F. Common Event Infrastructure
	Required software
	Enabling Common Event Infrastructure
	Obtaining Common Event Infrastructure adapter events
	For more information
	Common Event Infrastructure event catalog definitions
	XML format for “start adapter” metadata
	XML format for "stop adapter" metadata
	XML format for “timeout adapter” metadata
	XML format for "request" or "delivery" metadata

	Appendix G. Application Response Measurement
	Application Response Measurement instrumentation support
	Required software
	Enabling Application Response Measurement
	Transaction monitoring
	For more information


	Notices
	Programming interface information
	Trademarks and service marks

	Index

