
IBM WebSphere  Business Integration Adapters

IBM  WebSphere Business Integration  

Adapter for  Portal Infranet 

User Guide  

Version 4.4.x  

   

���





IBM WebSphere  Business Integration Adapters

IBM  WebSphere Business Integration  

Adapter for  Portal Infranet 

User Guide  

Version 4.4.x  

   

���



Note! 

Before  using this information  and the product it supports, read the information  in “Notices”  on page 115.

13September2005  

This  edition  of this  document  applies  to IBM  WebSphere  Business  Integration  Adapter  for Portal  Infranet  

(5724-G99),  version  4.4.0.  

To send  us your  comments  about  this  document,  email  doc-comments@us.ibm.com.  We look  forward  to hearing  

from  you.  

When  you  send  information  to IBM,  you  grant  IBM  a nonexclusive  right  to use  or distribute  the  information  in any 

way  it believes  appropriate  without  incurring  any  obligation  to you.  

© Copyright  International  Business  Machines  Corporation  1999,  2005.  All rights  reserved.  

US  Government  Users  Restricted  Rights  – Use,  duplication  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.

 



Contents  

About this document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v  

What  this  document  includes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 

What  this  document  does  not  include   . . . . . . . . . . . . . . . . . . . . . . . . . . . v 

Audience   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 

Related  documents   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v  

Typographic  conventions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 

New in this release  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

Version  4.4.x   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii  

Prior  releases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii  

Chapter 1. Overview of the connector  . . . . . . . . . . . . . . . . . . . . . . . 1 

Connector  components   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  

How  the  connector  works   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  

Chapter 2. Installing and configuring the connector . . . . . . . . . . . . . . . . . 9  

Adapter  for Portal  Infranet  environment   . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Configuring  the  Infranet  application   . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Installing  the  Portal  Infranet  adapter  and  other  files   . . . . . . . . . . . . . . . . . . . . . . 11 

Configuring  the  adapter  in an Oracle  environment   . . . . . . . . . . . . . . . . . . . . . . 11 

Configuring  the  connector   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  

Customizing  the  event  mechanism  for  new  business  objects   . . . . . . . . . . . . . . . . . . . 16  

Declaring  Infranet  custom  attribute  optional  configurations   . . . . . . . . . . . . . . . . . . . 20  

Creating  multiple  connector  instances   . . . . . . . . . . . . . . . . . . . . . . . . . . 20  

Starting  the  connector   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  

Stopping  the  connector   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

Chapter 3. Understanding business objects . . . . . . . . . . . . . . . . . . . . 25 

Portal  Infranet  application  background   . . . . . . . . . . . . . . . . . . . . . . . . . . 25  

Meta-data-driven  connector   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  

Portal  Infranet  application-specific  business  object  structure   . . . . . . . . . . . . . . . . . . . 29 

Business  object  attribute  properties   . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  

Guidelines  for  defining  business  objects   . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

Business  object  application-specific  information   . . . . . . . . . . . . . . . . . . . . . . . 32  

Chapter 4. Generating business object definitions using PortalODA  . . . . . . . . . 49 

Installation  and  usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 

Using  PortalODA  in business  object  designer   . . . . . . . . . . . . . . . . . . . . . . . . 51  

Contents  of the  generated  definition   . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  

Adding  information  to  the  business  object  definition   . . . . . . . . . . . . . . . . . . . . . 61 

Appendix A. Standard connector properties . . . . . . . . . . . . . . . . . . . . 63 

New  properties   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

Standard  connector  properties  overview  . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

Standard  properties  quick-reference   . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

Standard  properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

Appendix B. Using Connector Configurator  . . . . . . . . . . . . . . . . . . . . 87 

Overview  of Connector  Configurator   . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  

Starting  Connector  Configurator   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

Running  Configurator  from  System  Manager   . . . . . . . . . . . . . . . . . . . . . . . . 89  

Creating  a connector-specific  property  template   . . . . . . . . . . . . . . . . . . . . . . . 89 

Creating  a new  configuration  file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  

Using  an existing  file   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  

 

© Copyright  IBM Corp. 1999, 2005 iii



Completing  a configuration  file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

Setting  the  configuration  file properties   . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

Saving  your  configuration  file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 

Changing  a configuration  file   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

Completing  the  configuration   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  

Using  Connector  Configurator  in a globalized  environment   . . . . . . . . . . . . . . . . . . . 103 

Appendix C. Application Response Measurement . . . . . . . . . . . . . . . . . 105 

Application  Response  Measurement  instrumentation  support   . . . . . . . . . . . . . . . . . . 105  

Appendix D. Common Event Infrastructure . . . . . . . . . . . . . . . . . . . . 107 

Required  software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  

Enabling  Common  Event  Infrastructure   . . . . . . . . . . . . . . . . . . . . . . . . . 107  

Obtaining  Common  Event  Infrastructure  adapter  events   . . . . . . . . . . . . . . . . . . . . 107 

For  more  information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 

Common  Event  Infrastructure  event  catalog  definitions   . . . . . . . . . . . . . . . . . . . . 108 

XML  format  for “start  adapter”  metadata   . . . . . . . . . . . . . . . . . . . . . . . . . 108  

XML  format  for ″stop  adapter″ metadata   . . . . . . . . . . . . . . . . . . . . . . . . . 110 

XML  format  for “timeout  adapter”  metadata   . . . . . . . . . . . . . . . . . . . . . . . . 110 

XML  format  for ″request″ or ″delivery″ metadata   . . . . . . . . . . . . . . . . . . . . . . 111 

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 

Programming  interface  information   . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 

Trademarks  and  service  marks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

 

iv Adapter  for Portal  Infranet  User Guide



About  this  document  

The  IBMR WebSphereR Business  Integration  Adapter  portfolio  supplies  integration  

connectivity  for  leading  e-business  technologies,  enterprise  applications,  and  legacy  

and  mainframe  systems.  The  product  set  includes  tools  and  templates  for  

customizing,  creating,  and  managing  components  for  business  integration.  

What this document includes 

This  document  describes  installation,  connector  property  configuration,  business  

object  development,  and  troubleshooting  for  this  IBM  WebSphere  Business  

Integration  adapter.  

What this document does not include 

This  document  does  not  describe  deployment  metrics  and  capacity  planning  issues  

such  as server  load  balancing,  number  of adapter  processing  threads,  maximum  

and  minimum  throughputs,  and  tolerance  thresholds.  

Such  issues  are  unique  to  every  customer  deployment  and  must  be  measured  

within  or  close  to  the  exact  environment  where  the  adapter  is to  be  deployed.  You 

should  contact  your  IBM  services  representative  to discuss  the  configuration  of  

your  deployment  site,  and  for  details  on  planning  and  evaluating  these  kinds  of 

metrics,  given  your  specific  configuration.  

Audience 

This  document  is  for  WebSphere  consultants  and  customers  who  are  implementing  

the  connector  as  part  of  a WebSphere  business-integration  system.  To use  the  

information  in this  document,  you  should  be  knowledgeable  in  the  following  areas:  

v   Connector  development  

v   Business  object  development  

v   Portal  Infranet  application  architecture

Related documents 

The  complete  set  of  documentation  available  with  this  product  describes  the  

features  and  components  common  to all  WebSphere  Business  Integration  Adapters  

installations,  and  includes  reference  material  on  specific  components.  

You can  install  related  documentation  from  the  following  sites:  

v   For  general  adapter  information;  for  using  adapters  with  WebSphere  message  

brokers  (WebSphere  MQ  Integrator,  WebSphere  MQ  Integrator  Broker,  

WebSphere  Business  Integration  Message  Broker);  and  for  using  adapters  with  

WebSphere  Application  Server,  see  the  IBM  WebSphere  Business  Integration  

Adapters  information  center:  

http://www.ibm.com/websphere/integration/wbiadapters/infocenter  

v   For  using  adapters  with  WebSphere  InterChange  Server,  see  the  IBM  WebSphere  

InterChange  Server  information  centers:  

http://www.ibm.com/websphere/integration/wicserver/infocenter  

http://www.ibm.com/websphere/integration/wbicollaborations/infocenter  

 

© Copyright  IBM Corp. 1999, 2005 v

http://www.ibm.com/websphere/integration/wbiadapters/infocenter
http://www.ibm.com/websphere/integration/wicserver/infocenter
http://www.ibm.com/websphere/integration/wbicollaborations/infocenter


v   For  more  information  about  WebSphere  message  brokers:  

http://www.ibm.com/software/integration/mqfamily/library/manualsa/  

v   For  more  information  about  WebSphere  Application  Server:  

http://www.ibm.com/software/webservers/appserv/library.html  

These  sites  contain  simple  directions  for  downloading,  installing,  and  viewing  the  

documentation.  

Typographic  conventions 

This  document  uses  the  following  conventions:  

 courier  font  Indicates  a literal  value,  such  as a command  name,  filename,  

information  that  you  type,  or information  that  the  system  

prints  on the  screen.  

bold  Indicates  a new  term  the  first  time  that  it appears.  

italic,  italic  Indicates  a variable  name  or a cross-reference.  

blue  outline  A blue  outline,  which  is visible  only  when  you  view  the 

manual  online,  indicates  a cross-reference  hyperlink.  Click  

inside  the  outline  to jump  to the  object  of the  reference.  

{ } In a syntax  line,  curly  braces  surround  a set  of options  from  

which  you  must  choose  one  and  only  one.  

[ ] In a syntax  line,  square  brackets  surround  an optional  

parameter.  

...  In a syntax  line,  ellipses  indicate  a repetition  of the  previous  

parameter.  For  example,  option[,...]  means  that  you  can 

enter  multiple,  comma-separated  options.  

< > In a naming  convention,  angle  brackets  surround  individual  

elements  of a name  to distinguish  them  from  each  other,  as 

in <server_name><connector_name>tmp.log. 

/, \ In this  document,  backslashes  (\) are used  as the  convention  

for directory  paths.  For  UNIX  installations,  substitute  slashes  

(/) for backslashes.  All WebSphere  business  integration  

system  product  pathnames  are  relative  to the  directory  

where  the  product  is installed  on your  system.  

%text% and  $text  Text within  percent  (%)  signs  indicates  the  value  of the 

Windows  text  system  variable  or user  variable.  The  

equivalent  notation  in a UNIX  environment  is $text, 

indicating  the  value  of the  text  UNIX  environment  variable.  

ProductDir  Represents  the  directory  where  the  product  is installed.
 

 

vi Adapter  for Portal  Infranet  User Guide

http://www.ibm.com/software/integration/mqfamily/library/manualsa/
http://www.ibm.com/software/webservers/appserv/library.html


New  in this  release  

Version 4.4.x 

Updated  in  September  2005.  The  release  of  this  document  for  adapter  version  4.4.x  

contains  the  following  new  or  corrected  information.  

Added  support  for  the  management  of  the  Portal  Infranet  adapter  by  the  IBM  

Tivoli  License  Manager  (ITLM).  

Error  handling  has  been  improved  to  capture  more  detailed  application-specific  

error  information.  

Support  for  IBM  WebSphere  Business  Integration  Adapter  Framework  V2.6.0  has  

been  added.  

Support  for  the  following  platforms  has  been  added:  

v   Windows  2000  SP6  

v   Solaris  9 

v   HP-UX  11i v1

Support  for  Sun  JDK  1.4.2  has  been  added.  

Support  for  IBM  JDK  1.4.2  has  been  added.  

Support  for  Oracle9i  Release  2 9.2.0.3  and  greater  has  been  added.  

Prior releases 

New  in  prior  releases:  

Version 4.3.x 

The  changes  made  in  version  4.3.x  of this  connector  to do  not  affect  the  content  of  

this  document.  

Version 4.2.x 

The  adapter  for  Portal  Infranet  is now  supported  on  HP-UX  11i. 

Beginning  with  the  4.2x  version,  the  adapter  for  Portal  Infranet  is no  longer  

supported  on  Microsoft  Windows  NT. 

Adapter  installation  information  has  been  moved  from  this  guide.  See  Chapter  2 

“Installing  the  Portal  Infranet  adapter  and  other  files”  on  page  11 for  the  new  

location  of  that  information.  

Version 4.1.x 

“A  complete  sample  Portal  Infranet  business  object  definition”  on  page  45has  been  

added  to  provide  a model  for  developing  custom  business  objects.  

 

© Copyright  IBM Corp. 1999, 2005 vii



The  adapter  can  now  use  WebSphere  Application  Server  as  an  integration  broker.  

For  further  information,  see  “Adapter  for  Portal  Infranet  environment”  on  page  9.  

The  adapter  now  runs on  the  following  platforms:  

v    Solaris  7, 8 

v   AIX  5.x

Version  4.0.x 

Updated  in  March,  2003.  The  “CrossWorlds”  name  is  no  longer  used  to  describe  an  

entire  system  or  to  modify  the  names  of components  or  tools,  which  are  otherwise  

mostly  the  same  as  before.  For  example  “CrossWorlds  System  Manager”  is now  

“System  Manager,”  and  “CrossWorlds  InterChange  Server”  is now  “WebSphere  

InterChange  Server.”  

The  connector  has  replaced  the  CWSAPGEN  utility  with  PORTALODA.  For  more  

information,  see  Chapter  4,  “Generating  business  object  definitions  using  

PortalODA,”  on  page  49.  

Version  3.1.x 

The  internationalized  connector  is delivered  with  IBM  WebSphere  Business  

Integration  Adapter  for  Portal  Infranet.  

Version  3.0.x 

This  release  of  the  connector  contains  the  following  new  features:  The  connector  

has  been  internationalized.  For  more  information,  see  “Processing  locale-dependent  

data”  on  page  8 and  Appendix  A,  “Standard  connector  properties,”  on  page  63.  

The  connector  supports  the  following  software  on  AIX  4.3.3:  

v   Oracle  8.1.7  and  Portal  Infranet  6.2  SP1  

v   DB2  7.1.0  and  Portal  Infranet  6.2  SP1

Version  2.5.x 

The  IBM  WebSphere  Business  Integration  Adapter  for  Portal  Infranet  includes  the  

connector  for  Portal  Infranet.  This  adapter  operates  with  both  the  InterChange  

Server  (ICS)  and  WebSphere  MQ  Integrator  integration  brokers.  An  integration  

broker,  which  is an  application  that  performs  integration  of  heterogeneous  sets  of  

applications,  provides  services  that  include  data  routing.  This  adapter  includes:  

v   An  application-component  specific  to Portal  Infranet  

v   A sample  business  object  

v   IBM  WebSphere  Adapter  Framework,  which  consists  of:  

–   Development  tools  (including  Business  Object  Designer  and  Connector  

Configurator)  

–   APIs  (including  ODK,  JCDK,  and  CDK)

This  manual  provides  information  about  using  this  adapter  with  both  integration  

brokers:  InterChange  Server  (ICS)  and  WebSphere  MQ  Integrator.  

Note:   The  connector  now  supports  Portal  Infranet  6.2.0.  

Important:   Because  the  connector  has  not  been  internationalized,  do  not  run it 

against  InterChange  Server  version  4.1.1  if you  cannot  guarantee  that  

only  ISO  Latin-1  data  will  be  processed.

 

viii Adapter  for Portal Infranet  User Guide



Version 2.4.x 

The  changes  made  in  version  2.4.x  of this  connector  to do  not  affect  the  content  of  

this  document.  

Version 2.3.x 

Minor  changes  were  made  to  fix  defects  and  to provide  compatibility  with  IBM  

CrossWorlds  infrastructure  version  4.0.0.  

Version 2.2.x 

The  connector  version  now  supports  Portal  Infranet  6.1.0.  

Version 2.1.x 

v   The  connector  version  now  supports  Portal  Infranet  6.0.1.  

v   The  connector  can  be  installed  and  run on  a UNIX  system.  

v   This  document  has  been  substantially  reorganized  and  rewritten.

 

New in this release ix



x Adapter  for Portal  Infranet  User Guide



Chapter  1.  Overview  of  the  connector  

This  chapter  provides  an  overview  of  the  connector  component  of  the  IBM  

WebSphere  Business  Integration  Adapter  for  Portal  Infranet  and  includes  the  

following  sections:  

v   “Connector  components”  

v   “How  the  connector  works”  on  page  2 

v   “Meta-data-driven  connector  behavior”  on  page  2 

v   “Business  object  processing”  on  page  3 

v   “Event  notification”  on  page  6 

v   “Event  retrieval”  on  page  7 

v   “Connecting  to  the  Infranet  application”  on  page  8 

v   “Processing  locale-dependent  data”  on  page  8 

Connectors  consist  of  two  parts:  the  connector  framework  and  the  

application-specific  component.  The  connector  framework,  whose  code  is common  

to  all  connectors,  acts  as  an  intermediary  between  the  integration  broker  and  the  

application-specific  component.  The  application-specific  component  contains  code  

tailored  to  a particular  application.  The  connector  framework  provides  the  

following  services  between  the  integration  broker  and  the  application-specific  

component:  

v   Receives  and  sends  business  objects  

v   Manages  the  exchange  of  startup  and  administrative  messages

This  document  contains  information  about  the  connector  framework  and  the  

application-specific  component,  which  it refers  to  as  the  connector.  

The  connector  enables  WebSphere  MQ  Integrator  Broker  or  IBM  WebSphere  

InterChange  Server  (ICS)  to communicate  with  Portal  Infranet  through  the  

exchange  of  business  objects.  The  Infranet  application  is  a set  of  software  programs  

developed  by  Portal  Infranet  software  for  managing  customer  accounts.  Customer  

information,  such  as  account  numbers  and  billing  information,  is stored  in the  

Infranet  database.  

The  connector  and  the  Portal  Infranet  application  communicate  using  the  Infranet  

socket-based  API.  The  connector  handles  transactions  using  the  functions  provided  

by  the  Infranet  API,  and  the  Infranet  application  notifies  the  integration  broker  

(WebSphere  MQ  Integrator  Broker  or  ICS)  through  the  event  module  when  changes  

occur.  

Connector components 

The  connector  for  Portal  Infranet  includes  the  following  components:  

v   Connector:  a Java  .jar  file  that  implements  the  business  object  verb  support  and  

the  event  polling  mechanism.  

v   WebSphere  Business  Integration  Adapter  event  facilities  module:  a C++  DLL  on  

Windows  and  SO  files  on  UNIX,  that  implements  the  event  notification  

mechanism  in  the  Infranet  application.  This  module  selects  the  Infranet  events  

relevant  to  the  integration  broker  and  stores  them  in  a table  in  the  Infranet  

database.  The  connector  polls  this  table  regularly.

 

© Copyright  IBM Corp. 1999, 2005 1



The  connector  generates  business  objects  that  it  sends  to  the  integration  broker.  The  

connector  also  responds  to business  object  requests  from  the  integration  broker.  It  

generates  logging  and  tracing  messages  that  it writes  to  a file  or  the  connector  

console,  or  sends  to  the  integration  broker.  

Figure  1 illustrates  the  architecture  of the  connector  and  its  event  mechanism  in the  

Infranet  application.  

 

The  connector  uses  the  Portal  Communications  Module  (PCM)  Java  Class  library  

as  the  API  to  interact  with  the  Portal  Infranet  connection  managers.  The  advantage  

of  this  architecture  is that  Portal  Infranet  supports  the  PCM  Java  class  library  on  

the  Java  virtual  machines  for  both  Windows  and  UNIX.  This  enables  the  connector  

to  run on  both  platforms.  This  API  is used  by  the  business  object  handler  in the  

connector  to  exchange  information  between  the  integration  broker  and  Portal.  The  

WebSphere  Business  Integration  Adapter  event  facilities  module  uses  the  C++  PCM  

Library.  

How the connector works 

The  following  sections  describe  how  the  connector  processes  business  object  

requests  and  describe  how  the  connector  handles  event  notification.  

Meta-data-driven connector behavior 

The  connector  is meta-data  driven.  It is  designed  to  handle  the  retrieval  and  

submission  of  any  business  object  regardless  of  the  type  of  business  object  or  the  

Portal
infranet

application

Portal Oracle instance

Connector controller

Event table

Archive table

Archive trigger

PCM Java
class library

Intra-connector
communication

Transport

Event message interface

Poll
for events
notification

Global
functions

Business
object

handler

Java

PCM libraries

Connection managers

Data managers

IBM
event facilities

module (C/C++)

Write
events

Connector agent

Poll for
events

  

Figure  1. Connector  architecture

 

2 Adapter  for Portal  Infranet  User Guide



variables  it  carries.  For  the  connector  to be  meta-data  driven,  business  objects  for  

Portal  Infranet  must  contain  the  following  information:  

v   The  field  name  for  each  attribute  as  identified  by  the  data  dictionary  in  Infranet.  

This  includes  a pin  field  number  for  each  pin  field  name  as  described  in the  API  

documentation.  The  field  name  is specified  as  application-specific  information  at 

the  attribute  level,  and  the  name  is  converted  to  the  number  by  the  connector  

using  the  data  dictionary.  

v   The  opcodes  (operation  codes)  that  are  supported  by  this  business  object.  The  

opcodes  are  specified  at the  verb  level  of  the  business  object.  An  Infranet  opcode  

is an  operation  used  by  client  applications  and  scripts  to  manage  

customer-related  information,  create  online  accounts,  collect  and  track  customer  

information,  and  integrate  third-party  systems  with  Infranet.

For  more  information  on  business  object  meta-data  for  Portal,  see  Chapter  3,  

“Understanding  business  objects,”  on  page  25.  

Business object processing 

When  the  connector  receives  a business  object  request  from  the  WebSphere  

business  integration  system,  the  connector  business  object  handler  processes  the  

business  object.  The  business  object  handler  is the  bridge  between  the  

application-specific  object  and  the  Portal  Infranet  API.  It is responsible  for  

submitting  a Portal  Infranet  operation  to  the  API  and  for  creating  an  

application-specific  business  object  that  is sent  to  the  WebSphere  business  

integration  system  as the  result  of an  Infranet  event.  The  business  object  handler  

uses  the  data  in  the  business  object  and  any  meta-data  to make  a call  to the  

Infranet  Java  API  to  submit  a storable  object  to Portal.  When  this  operation  is 

complete,  a status  is returned  to  the  integration  broker.  

The  flowchart  in  Figure  2 shows  at a high  level  how  the  business  object  handler  

processes  business  object  requests.  The  business  object  handler  extracts  the  verb  

and  key  attributes  from  the  business  object.  It  uses  the  verb  to  determine  the  

function  call  that  is made  to  handle  the  business  object.  In  this  example,  if the  verb  

were  an  update  verb,  the  UpdateObject  function  would  be  called.  

 

 

Chapter 1. Overview  of the connector  3



Retrieve verb processing 

The  business  object  handler  Retrieve  method  retrieves  an  object  from  Portal  

Infranet  and  populates  a WebSphere  Business  Integration  Adapter  business  object  

with  the  application  information.  The  connector  Retrieve  method  does  the  

following:  

1.   Checks  that  the  Portal  Infranet  connection  is valid.  If it  is not,  the  connection  

must  be  reinstantiated.  If the  connection  is lost  during  the  processing,  the  

connector  returns  a BON_FAIL  status  indicating  a connection  problem  with  

Infranet.  

2.   Retrieves  the  application-specific  information  for  the  object.  The  

application-specific  information  specified  for  a verb  provides  the  operation  

code,  or  opcode,  that  must  be  invoked  to retrieve  a Portal  Infranet  object.  

3.   Prepares  the  flist  for  the  opcode  based  on  the  application-specific  information  

for  the  business  object  and  its  attributes.  

Note:   An  flist  is a variable  length  list  of field  and  value  pairs.  Flists  provide  

input  and  output  parameters  to  Infranet  opcodes  and  functions.  

4.   Invokes  the  specified  opcode  with  the  flist  as input,  and  an  empty  output  

flist. 

Enter the BOHandler

Extract verb
from object

Validate Portal
API connection

Log verb error

Return status of
object function

Exit

No

No

No

No

Perform
ObjectRetrieve
function

Yes

Yes

Yes

Yes

Check the object to
ensure it has entered
with a verb and correct
key attributes

Verb=
Retrieve

Verb=
Create

Verb=
Delete

Verb=
Update

Perform
ObjectUpdate
function

Perform
ObjectDelete
function

Perform
ObjectCreate
function

  

Figure  2. High-level  view  of business  object  processing

 

4 Adapter  for Portal  Infranet  User Guide



5.   If the  previous  steps  are  successful,  the  return  flist  structure  contains  a fully  

populated  flist  object  corresponding  to the  storable  object  that  is defined  by  a 

WebSphere  Business  Integration  Adapter  business  object.  Since  the  flist  has  a 

one-to-one  correspondence  to the  WebSphere  Business  Integration  Adapter  

business  object,  the  flist  is traversed  to retrieve  all  the  attributes  of  the  

WebSphere  Business  Integration  Adapter  business  object  based  on  the  attribute  

level  application-specific  information  that  identifies  the  flist  field  name  and  

type.  

6.   Populates  the  business  object  and  sends  it to  integration  broker.

Figure  3 shows  how  the  Retrieve  method  works.  The  method  determines  which  

action  should  be  performed  on  an  attribute,  depending  on  its  type.  If  it is a basic  

attribute  type  (such  as  a string),  the  business  object  handler  dynamically  populates  

the  field.  If the  method  encounters  a child  business  object,  it  descends  through  the  

object  until  it reaches  the  basic  attributes  of that  child  business  object.  Then  it 

cycles  through  all  the  basic  attributes  of the  child  object  before  continuing  with  the  

basic  attributes  of  the  parent  object.  

   

Create and update verb processing 

To process  a Create  or  Update  verb,  the  business  object  handler  constructs  an  

Infranet  API  object  (an  flist)  and  passes  it to  the  Infranet  API.  The  business  object  

handler  performs  the  following  steps:  

1.   Retrieves  the  application-specific  business  object  from  the  WebSphere  Business  

Integration  Adapter  business  object.  

2.   Populates  the  Portal  Infranet  API  object.  When  the  flist  is instantiated,  the  

connector  iterates  through  the  object,  attribute  by  attribute,  and  locates  the  

values  with  which  to  populate  the  flist.  This  process  must  search  through  an 

object  to  find  an  attribute  that  may  be  several  layers  into  the  object.  

Is the
Attribute an

Object?

Is the object
a multiple
cardinaltiy

object?

Yes

Create a container
to hold multiple

objects

Cast the attribute
into an object type,

so that you may
loop through it

NoYes

Query App-spec
data to determine

the name and
type of field

No

Convert the field
name and type to
numbers using the

Data Dictionary

Advance to next
attribute

Cast the first
attribute of the

container to be a
simple business

object

Get value of the
field using the

number and type
and populate CW

BO attribute

  

Figure  3. Flowchart  for retrieve  verb  processing

 

Chapter 1. Overview  of the connector  5



3.   Checks  that  the  Portal  Infranet  connection  is still  valid.  If the  connection  is lost  

during  processing,  the  connector  returns  a BON_FAIL  status,  indicating  a 

connection  problem  with  Infranet,  and  the  connection  must  be  reinstantiated.  

4.   Uses  the  application-specific  information  for  the  business  object  verb  to  

dynamically  call  the  appropriate  opcode  for  the  Create  or  Update  operation.  

Once  the  parameters  are  gathered  and  placed  in  an  array,  and  the  functional  

string  has  been  assembled,  the  context  function  with  the  appropriate  opcode  is 

invoked.  

5.   To process  child  business  objects  that  have  their  own  opcodes,  the  business  

object  handler  populates  a separate  flist  for  each  child  and  then  calls  the  

appropriate  opcode.  

6.   Returns  a status  when  the  operation  is complete.

Event notification 

Infranet  has  an  event  mechanism  that  permits  it to  keep  track  of  the  actions  that  

occur  in  the  application.  When  a user  performs  an  action  in  Infranet,  the  

application  generates  an  associated  event.  

The  WebSphere  Business  Integration  Adapter  event  module  examines  the  event  

and  determines  whether  it  is one  that  the  connector  is interested  in.  If so,  the  event  

module  generates  an  entry  in  the  WebSphere  Business  Integration  Adapter  event  

table  for  the  event.  

Event detection in infranet 

Event  detection  in  Infranet  is implemented  by  means  of  a custom  Infranet  facilities  

module  that  is called  by  the  event  notification  mechanism.  This  facilities  module  is 

provided  by  the  integration  broker,  and  it works  with  two  configuration  files  to 

identify  Infranet  events  and  write  events  to  the  WebSphere  Business  Integration  

Adapter  event  table.  

When  a change  occurs  to  an  Infranet  object,  a persistent  event  is  raised.  Infranet  

can  be  configured  to  call  a specific  opcode  when  a given  event  occurs;  therefore,  

the  integration  broker  provides  a configuration  flat  file  that  configures  Infranet  to 

call  the  WebSphere  Business  Integration  Adapter  event  facilities  module  for  events  

associated  with  business  objects  for  Portal.  This  configuration  file  is called  

“pin_notify_cw”  and  is loaded  into  Infranet  using  the  load_pin_notify  utility  

delivered  with  Infranet.  

When  the  event  module  receives  an  event,  it  extracts  information  from  the  event  

object  and  creates  a new  entry  in the  WebSphere  Business  Integration  Adapter  

event  table.  An  event  in  Infranet  is actually  an  instance  of an  Infranet  storable  

class,  and  each  creation,  modification,  or  deletion  event  is related  to a specific  

Infranet  storable  class.  For  example,  if a user  modifies  a particular  contact  related  

to  a customer,  Infranet  generates  an  instance  of  the  storable  class  

/event/customer/nameinfo. 

The  event  module  uses  its  own  event  module  configuration  file  to determine  what  

event  occurred,  identify  what  part  of the  storable  class  (and  related  business  object)  

was  modified,  and  determine  what  type  of action  occurred.  Using  the  

configuration  file  event_code.txt, the  event  module  examines  the  Infranet  event  

and  populates  the  WebSphere  Business  Integration  Adapter  event  table  with  a 

record  reflecting  the  event.  

The  event  notification  mechanism  for  the  connector  uses  three  tables  created  inside  

the  Oracle  database  instance  used  by  Infranet.  

 

6 Adapter  for Portal  Infranet  User Guide



v   XWORLDS_Events  – Stores  all  pending  events  

v   XWORLDS_Archive_Events  – Archives  events  that  the  connector  has  processed  

v   XWORLDS_Current_Event_ID  – Stores  the  last  event  ID  number

The  schema  of  the  first  table  specifies  the  information  that  is recorded  for  each  

event  sent  by  Infranet  that  the  connector  is interested  in.  This  table  layout  is also  

used  for  the  archive  table.  

Event  detection  and  associated  processing  is done  within  an  Infranet  transaction.  

Infranet  calls  custom  processes  within  a transaction  and  waits  for  the  results  of the  

processing.  If  the  custom  process  returns  an  error, the  transaction  is  aborted.  This  

guarantees  that  the  connector  does  not  lose  any  events.  

Note:   

Known  Issues  - The  event  notification  module  verifies  the  USERID  of  any  

Portal  Event  sent  to  it defined  in  the  pin_notify_cw  file.  If there  is no  

PIN_FLD_USERID  associated  with  the  event  sent  to  the  module,  it will  error  

and  cause  problems  saving  the  object  online.  These  types  of  events  need  to 

be  adjusted  using  FLists  or  the  storable  classes  to  include  such  an  ID.  Check  

for  these  errors  in  the  log  file  defined  in  the  crossworlds.cnf  configuration  

file.  

The  event  module  checks  for  a USERID  to prevent  events  sent  into  the  

application  by  the  connector  from  being  added  to  the  event  queue.  This  is  

referred  to  as  Ping-Ponging.  

The  ″/event/customer/billinfo″ is an  event  type  where  such  a problem  

exists.  

Event retrieval 

The  connector  checks  for  events  by  polling  the  XWORLDS_Events  table  that  was  

set  up  in the  Infranet  database  instance.  The  connector  polls  by  using  an  SQL  

SELECT  statement  to  extract  entries  from  the  XWORLDS_Events  table.  The  number  

of  events  selected  is specified  by  the  PollQuantity  property  of  the  connector.  

Polling  is done  by  the  pollForEvents()  method  in  the  connector.  The  connector  

polls  the  event  table  at the  PollFrequency  set  in  the  WebSphere  Business  

Integration  Adapter  connector  properties.  If  a new  row  is detected  in  the  table,  the  

event  data  is  retrieved,  and  the  connector  processes  the  event  as  follows:  

1.   The  poll  function  creates  an  empty  business  object,  sets  the  verb  to  Retrieve,  

and  sets  the  keys  using  the  event  record.  The  business  object  is sent  to  the  

connector’s  business  object  handler.  

2.   The  business  object  handler  uses  the  event  data  to make  a call  to  the  Infranet  

Java  API  to  retrieve  the  Portal  Infranet  storable  object.  

3.   The  business  object  handler  converts  the  storable  object  to  a WebSphere  

Business  Integration  Adapter  application-specific  business  object,  sets  the  verb  

to  the  action  in  the  event  record,  and  then  sends  the  business  object  to  the  

integration  broker.

Once  the  business  object  is sent  to  the  WebSphere  business  integration  system,  the  

event  table  entry  is archived  to  the  XWORLDS_Archive_Events  table  and  deleted  

from  the  event  table.  

 

Chapter 1. Overview  of the connector  7



The  time  interval  at  which  the  poll  method  is called  can  be  adjusted  by  changing  

the  PollFrequency  connector  property.  This  property  is set  using  the  integration  

broker.  

Connecting to the Infranet application 

When  connecting  to  the  Portal  Infranet  connection  manager  using  the  API,  the  

connector  does  the  following:  

1.   Creates  a new  instance  of a Portal  Infranet  context.  

2.   When  an  opcode  is to be  executed,  the  connector  uses  a context  from  the  pool  

and  adds  it  to  the  busy  pool.  

3.   When  the  task  is completed,  the  context  is returned  to  the  free  pool.

The  connect  statement  uses  the  values  of  connector  application-specific  properties  

that  are  defined  in  the  repository.  

The  context  instances  in  the  pool  are  closed  when  the  connector  is terminated.  

Processing locale-dependent data 

The  connector  has  been  internationalized  so  that  it  can  support  double-byte  

character  sets,  and  deliver  message  text  in  the  specified  language.  When  the  

connector  transfers  data  from  a location  that  uses  one  character  code  set  to  a 

location  that  uses  a different  code  set,  it performs  character  conversion  to  preserve  

the  meaning  of  the  data.  The  Java  runtime  environment  within  the  Java  Virtual  

Machine  (JVM)  represents  data  in  the  Unicode  character  code  set.  Unicode  contains  

encodings  for  characters  in  most  known  character  code  sets  (both  single-byte  and  

multibyte).  Most  components  in  the  IBM  CrossWorlds  system  are  written  in Java.  

Therefore,  when  data  is transferred  between  most  IBM  CrossWorlds  components,  

there  is  no  need  for  character  conversion.  To log  error  and  informational  messages  

in  the  appropriate  language  and  for  the  appropriate  country  or  territory,  configure  

the  Locale  standard  configuration  property  for  your  environment.  For  more  

information  on  these  properties,  see  Appendix  A,  “Standard  connector  properties,”  

on  page  63  

 

8 Adapter  for Portal  Infranet  User Guide



Chapter  2.  Installing  and  configuring  the  connector  

This  chapter  describes  how  to  install  and  configure  the  connector  and  includes  the  

following  topics:  

v   “Adapter  for  Portal  Infranet  environment”  

v   “Configuring  the  Infranet  application”  

v   “Installing  the  Portal  Infranet  adapter  and  other  files”  on  page  11 

v   “Configuring  the  adapter  in  an  Oracle  environment”  on  page  11 

v   “Configuring  the  connector”  on  page  13  

v   “Customizing  the  event  mechanism  for  new  business  objects”  on  page  16  

v   “Declaring  Infranet  custom  attribute  optional  configurations”  on  page  20  

v   “Creating  multiple  connector  instances”  on  page  20  

v   “Starting  the  connector”  on  page  21  

v   “Stopping  the  connector”  on  page  22  

The  connector  component  of the  IBM  WebSphere  Business  Integration  Adapter  for  

Portal  Infranet  has  two  components  that  need  to  be  installed  and  configured:  

v   Connector.  The  connector  is  a Java  .jar  file.  The  connector  implements  the  

connector  verb  support  and  the  event  polling  mechanism.  

v   WebSphere  Business  Integration  Adapter  event  facilities  module.  The  event  

facilities  module  is an  executable  that  implements  event  notification.  This  

module  selects  the  Infranet  events  relevant  for  the  integration  broker  and  stores  

them  in  a database  table.

This  chapter  describes  how  to  install  and  configure  the  components  of the  

connector  and  how  to  configure  the  Portal  Infranet  application  to work  with  the  

connector.  

Note:   In  this  document  backslashes  (\)  are  used  as the  convention  for  directory  

paths,  except  in  some  example  code  files.  For  UNIX  installations,  substitute  

slashes  (/)  for  backslashes  (\).  All  file  pathnames  are  relative  to  the  

directory  where  the  WebSphere  Business  Integration  Adapter  product  is 

installed  on  your  system,  unless  otherwise  noted.  

Adapter for Portal Infranet environment 

For  hardware  and  software  requirements  for  this  adapter,  see  IBM  WebSphere  

Adapters  and  IBM  WebSphere  Business  Integration  Adapters:  Hardware  and  

Software  Requirements.  Select  your  adapter  from  the  list  of  WebSphere  adapters.  

Configuring the Infranet application 

To set  up  the  Infranet  application  for  use  by  the  connector,  you  must  define  a user  

account  for  the  connector,  and  create  the  event  and  archive  tables  in  the  Oracle  

database  used  by  Infranet.  

Setting up an Infranet account 

Using  the  Infranet  Administrator,  define  a Customer  Service  Representative  (CSR)  

User  with  all  rights.  This  user  is  used  by  the  connector  and  identifies  the  

 

© Copyright  IBM Corp. 1999, 2005 9

http://www.ibm.com/support/docview.wss?uid=swg27006249
http://www.ibm.com/support/docview.wss?uid=swg27006249


connector.  This  user  ID  is  set  in  the  event  module  configuration  file  

crossworlds.cnf  and  in  the  connector  configuration  parameters.  The  Custom  Event  

Facilities  module  checks  this  value  before  inserting  events,  to  prevent  events  sent  

into  the  application  by  the  connector  from  being  redistributed  back  to  the  

connector.  This  scenario  is also  referred  to as  “ping-ponging.”  

Creating the event and archive tables in the database 

Event  and  archive  tables  are  used  to  queue  events  for  pickup  by  the  connector.  The  

event  notification  mechanism  for  the  connector  requires  that  three  event  tables  be  

created  inside  the  Oracle  database  instance  used  by  Infranet.  These  tables  are:  

v   XWORLDS_Events  – Event  table  used  to  store  all  pending  Infranet  events  of 

interest  to  the  connector.  

v   XWORLDS_Archive_Events  – Archive  table  where  events  are  written  after  the  

connector  processes  them.  

v   XWORLDS_Current_Event_ID  – Table used  to store  the  last  event  ID  number.  

Note:   This  table  must  be  initialized  to 0.

The  first  two  tables  specify  the  information  that  will  be  recorded  for  each  Infranet  

event  that  the  connector  is interested  in.  The  archive  table  holds  all  events  that  

have  been  processed  by  the  connector.  

To create  the  event  and  archive  tables,  load  the  file  EventTable.sqlif you  are  using  

an  Oracle  database.  If you  are  using  a DB2  database,  then  load  the  file  

EventTable2.sql  in  %ProductDir%\connectors\Portal\dependencies\config_files. 

Description of event and archive table schema 

The  event  table  contains  the  following  columns.  This  table  layout  is also  used  for  

the  archive  table.  

 Table 1. Event  and  archive  table  schema  

Name  Type Description  

Event_id  integer  Unique  key  for  the event.  The  key  value  is generated  in the  

XWORLDS_Current_Event_ID  table.  

Object_name  char  80 Name  of the  application-specific  business  object.  

Object_verb  char  80 Verb  associated  with  the  event.  

Object_key  VARCHAR  Primary  key  for the  object  (POID).  

Event_time  Date  time  Time  at which  the event  occurred.  

Archive_time  Date  time  Archive  table  only.  Time at which  the event  was  received  by Portal  

Infranet.  

Event_status  Integer  Status  of the  event:  READY_FOR_POLL  0 

SENT_TO_INTERCHANGE  1 UNSUBSCRIBED_EVENT  2 

IN_PROGRESS  3 ERROR_PROCESSING_EVENT  -1 

ERROR_SENDING_EVENT_TO_INTERCHANGE  -2 

Event_comment  char  255  String  used  to provide  extra  information  about  the event.  The  user  

can  define  this  comment  in  the event  module  configuration  file.  

Event_priority  Integer  Priority  associated  with  the event.  The  lower  the  number,  the  higher  

the  priority.  The  user  can  define  this  priority  in the  event  module  

configuration  file.
 

 

10 Adapter  for Portal Infranet  User Guide



Installing the Portal Infranet adapter and other files 

For  information  on  installing  WebSphere  Business  Integration  adapter  products,  

refer  to  the  Installing  WebSphere  Business  Integration  Adapters  guide  located  in  the  

WebSphere  Business  Integration  Adapters  Infocenter  at  the  following  site:  

http://www.ibm.com/websphere/integration/wbiadapters/infocenter  

Configuring the adapter in an Oracle environment 

If  you  are  using  Oracle  as your  database,  follow  these  instructions  to configure  the  

connector:  

 1.   Log  into  the  UNIX  system  as pin. Create  this  account  if necessary.  

 2.   Copy  the  Infranet  files  pcm.jar  and  pcmext.jar  into  

$ProductDir/Connector/Portal/dependencies. This  file  is located  in  the  

infranet/jars  directory  on  the  Infranet  6.7.0  server.  

 3.   Copy  the  .profile  file  into  the  pin  user’s  home  directory,  for  example  

/home/pin. If  necessary,  modify  the  .profile  file  to reflect  the  environment  

variables  set  in  your  system.  Make  any  changes  using  a text  editor  such  as  vi.  

When  the  environment  variables  are  correct,  load  the  environment  variables  

into  the  system  by  typing  the  following  command  at the  command  prompt:  

source  .profile  

 4.   Place  the  fm_crossworlds.so  file  in  the  $INFRANET/lib  directory. . This  file  

contains  the  triggers  for  the  events.  

Note  that  UNIX  is case  sensitive,  so  if files  are  not  found,  verify  that  all 

directory  and  file  names  have  the  proper  case.  

 5.   Make  sure  that  the  $LIBRARY_PATH  variable  contains  the  $INFRANET/lib  path  so  

that  the  system  can  recognize  the  connector.so files.  

 6.   Copy  the  following  files  into  the  directory  $CW_PORTAL_PATH. 

v   crossworlds.cnf. This  file  contains  configuration  information  for  the  event  

module.  

If necessary,  edit  this  file  for  your  system.  An  example  of the  content  for  

this  file  is:  

db name  = oracle1  

db string  = NYNON  

db user  = pin  

db password  = pin  

crossworlds  id = 0.0.0.1\service\admin_client  14088  

log  level   = 3 

log  file  = D:\pinlog.log  

where:  

 db  name  For  Oracle,  db_name  is the  host  variable.  

db  string  Name  of the  database.  

db  user  Name  of the  user  connecting  to the  Portal  Infranet  database.  

db  password  Password.  

crossworlds  id POID  representing  the  WebSphere  Business  Integration  Adapter  user  

in Portal  Infranet.  

 

Chapter  2. Installing  and configuring  the connector  11



log  level  Number  representing  the  log  level:  

0 : No trace  

1 : Only  Error  

2 : Error  and  Warning  

3 : Error,  Warning,  and  Debug  (all traces)  

log  file  Name  of the  log  file.
  

Note:   Provide  values  for  db  name  and  db  string  if your  database  is Oracle.  

If  you  have  a default  database  on  your  local  machine  there  is no  

need  to  provide  values.  

v   event_code.txt. This  file  contains  descriptions  of  Infranet  events  that  the  

event  module  will  use  to generate  entries  in  the  WebSphere  Business  

Integration  Adapter  event  table.
 7.   Place  the  pin_notify_cw  in the  $INFRANET/sys/test  directory.  This  file  contains  

the  names  of  the  connector  events.  If any  events  need  to  be  added  or  deleted,  

follow  the  standard  format  of  the  file.  Note  that  /event  encapsulates  all  

subclasses,  such  as  /event/customer, /event/status.  

 8.   Stop  and  restart  the  Infranet  application.  Make  sure  that  $INFRANET/bin  is in  

the  $PATH  variable.  Follow  these  steps:  

a.   Stop  Infranet  with  this  command:  

    stop_all  

b.   Check  that  all  Infranet  processes  are  stopped  by  typing  the  following  

command.  Note  the  process  numbers  (PID)  of  any  running  Infranet  

processes.  

ps -ef|grep  portal  

c.   Kill  any  running  Infranet  processes  with  this  command:  

kill  -9 <PID>  

d.   Restart  Infranet  with  the  following  command:  

       start_all  

 9.   In the  $CM  directory,  edit  the  file  pin.conf  to add  the  following  line  in  the  

fm_required  section.  Be  sure  to type  the  full  directory  path  for  $INFRANET. 

    - cm fm_module  $INFRANET/lib/fm_crossworlds.so  fm_cw_pol_config  -pin  

10.   Verify  that  Infranet  is running  by  entering  the  command  ps  -ef|grep  portal. 

11.   Change  directory  to  $INFRANET/sys/test, open  the  pin.conf  file,  and  check  

that  the  file  has  a line  similar  to  the  following.  

- nap  cm ptr  ip Infranet_cm_machine  cm_port  

For  example:  

- nap  cm ptr  ip roadrunner  11960  

where  roadrunner  is Infranet_cm_machine  and  cm_port  is 11960.  

In  addition  to  the  above  statement,  the  pin.conf  file  should  include:  

- nap  login_type  1 

- nap  login_name  root.0.0.0.1  

- nap  login_pw  password  

This  identifies  the  login  information  for  a connection  to Infranet.  If  there  is no  

pin.conf  file  in  the  directory,  copy  one  into  the  directory.  

12.   To load  configuration  information  into  the  Infranet  application,  enter  the  

command:  

 

12 Adapter  for Portal Infranet  User Guide



load_pin_notify  pin_notify_cw  

The  response  should  read  successful. If  another  response  is shown,  check  the  

pin_notify_cw.  This  file  contains  the  opcodes  that  Infranet  will  call  when  

specific  events  occur.  Note  that  pin_notify_cw  should  be  located  in  the  same  

directory  as  the  load_pin_notify  executable.  

13.   In  the  $INFRANET_VAR/cm  directory,  check  the  log  file  and  verify  that  there  is a 

core  in  the  $CM  and  then  start  up  the  Infranet  Administrator.  

14.   To test  the  connector,  enter  or  modify  an  account  and  check  the  event  table  

xworlds_events  for  the  proper  event  entry.  Since  this  results  in  a dummy  

event,  the  event  entry  needs  to be  deleted  once  testing  is complete.

To  start  the  connector,  see  “Starting  the  connector”  on  page  21.  

Configuring the connector 

Adapters  have  two  types  of  configuration  properties:  standard  configuration  

properties  and  adapter-specific  configuration  properties.  You must  set  the  values  of 

some  of  these  properties  before  running  the  connector.  

You configure  connector  properties  from  Connector  Configurator  (when  WebSphere  

MQ  Integrator  Broker  is the  integration  broker)  or  from  Connector  Configurator,  

which  is accessed  from  System  Manager  (when  ICS  is the  integration  broker).  For  

detailed  configuration  information,  see  Appendix  B, “Using  Connector  

Configurator,”  on  page  87Connector  Development  Guide  for  Java. 

Standard connector properties 

Standard  configuration  properties  provide  information  that  all  connectors  use.  See  

Appendix  A,  “Standard  connector  properties,”  on  page  63  for  documentation  of  

these  properties.  

Important:   Because  this  connector  supports  all  integration  brokers,  configuration  

properties  for  all  brokers  are  relevant  to  it.  

Note:   Because  this  connector  is single-threaded,  it cannot  take  advantage  of the  

AgentConnections  property.  

Table  2 provides  information  specific  to this  connector  about  configuration  

properties  in  the  appendix.  

 Table 2. Property  Information  Specific  to This  Connector  

Property  Note  

CharacterEncoding  This  connector  does  not  use  this  property.  

Locale  Because  the connector  has  been  

internationalized,  you  can  change  the  value  

of this  property.  See  release  notes  for the 

connector  to determine  currently  supported  

locales.
  

Important:   WebSphere  MQ  Integrator  Broker  does  not  support  multiple  locales.  

Ensure  that  every  component  of  your  installation  (for  example,  all 

adapters,  applications,  and  the  integration  broker  itself),  are  set  to  the  

same  locale.

 

Chapter  2. Installing  and configuring  the connector  13



Note:   The  Portal  Infranet  adapter  supports  the  DuplicateEventElimination  

property.  To enable  the  DuplicateEventElimination  property,  set  the  

DuplicateEventElimination  atribute  to  true.For  more  details  about  the  

DuplicateEventElimination  property,  see  Appendix  A,  “Standard  connector  

properties,”  on  page  63.  

Note:   Because  this  connector  supports  all  integration  brokers,  configuration  

properties  for  all  brokers  are  relevant  to it.  

Connector-specific properties 

Connector-specific  configuration  properties  provide  information  needed  by  the  

connector  at  runtime.  Connector-specific  properties  also  provide  a way  of  changing  

static  information  or  logic  within  the  connector  without  having  to  recode  and  

rebuild  the  connector.  

Table  3 lists  the  connector-specific  configuration  properties  for  the  connector.  See  

the  sections  that  follow  for  explanations  of  the  properties.  

 Table 3. Connector-specific  configuration  properties  

Name  Possible  values  Default  value  Required  

Application  password  Password  of user  

account  

Yes 

ApplicationUserName  Name  of user  account  Yes 

CommentFail  Event  table  comment  

for failed  events  

Fail  No  

CommentSucceed  Event  table  comment  

for successful  events  

Succeed  No  

DatabaseInfo  jdbc:oracle:thin@  

CWENGTEST:1521: 

portaldb  

Server-host  name,  

Portal  database  port  

number,  and  the  name  

of the  database.  

Yes 

DbName  Oracle  Listener  name  Yes 

DbPassword  Database  password  Yes 

DbUser  Database  user  name  pin  Yes 

DriverClass  Driver  class  name  of 

the database  

No  

InfDatabase  String  0.0.0.1  Yes 

InfHost  Host  machine  name  

and  port  

//CWENGTEST1:11960  Yes 

InfLogFile  Name  of log  file  InfConnection.txt  Yes 

InfranetConnections  Number  of Infranet  

connections  the  

connector  opens  for 

connection  pooling  

5 Yes 

InfService  String  service\admin_client  1 Yes 

InfType 0 or 1 1 Yes 

InfVersion  Version of the  Infranet  

application  

Yes 

PollQuantity  Number  of events  to 

pick up 

1 No  

 

14 Adapter  for Portal Infranet  User Guide



Table 3. Connector-specific  configuration  properties  (continued)  

Name  Possible  values  Default  value  Required  

UseDefaults  true  or false  false  No
  

Application password 

Password  for  WebSphere  business  integration  system  user  account.  

ApplicationUserName 

Name  of  the  user  account  for  the  connector.  

CommentFail 

Event  table  comment  in  case  of a fail.  Default  value  is Fail. 

CommentSucceed 

Event  table  comment  in  case  of a success.  Default  value  is  Succeed. 

DatabaseInfo 

This  property  defines  the  URL  that  would  be  used  by  the  JDBC  driver  to make  a 

connection  to  the  database.  

Example:  

jdbc:oracle:thin:@CWENGTEST1:1521:portaldb  

Please  refer  to  the  JDBC  documentation  for  specific  formats  of the  URL  

DbName 

Oracle  Listener  name  for  the  Infranet  database.  

DbPassword 

Database  password.  

DriverClass 

Driver  class  name  of the  database.  

For  Oracle  set:  

oracle.jdbc.driver.OracleDriver  

If  the  DriverClass  is not  set,  the  adapter  uses  oracle.jdbc.driver.OracleDriver  as  

the  default  value.  

DbUser 

Database  user  name,  usually  pin. 

InfDatabase 

String  in  Infranet  form.  The  default  value  is 0.0.0.1.  

InfHost 

Host  machine  name  and  port,  for  example,  //engtest2:11960. The  default  value  is  

//CWENGTEST1:11960. 

InfLogFile 

Name  of  file  to  use  as default  log.  The  default  value  is InfConnection.txt. 

 

Chapter  2. Installing  and configuring  the connector  15



InfranetConnections 

This  property  is  used  to  define  the  number  of  connections  the  connector  opens  

with  the  Infranet  application  for  connection  pooling.  The  connector  maintains  the  

assigned  number  of  connections.  When  a business  object  process  requires  a 

connection,  it  allocates  one  from  the  pool.  That  connection  is then  removed  from  

the  available  pool  and  added  to the  busy  pool.  When  the  business  object  process  is 

complete,  the  connection  is  removed  from  the  busy  pool  and  added  back  to  the  

available  pool.  Using  connection  pooling  in  this  way  increases  efficiency  in 

performance  because  the  connection  does  not  need  to be  opened  and  closed  for  

each  business  process.  

Note:   If  this  property  is not  set,  the  connector  will  throw  the  following  exception  

when  the  connector  is started:  NumberFormatException  

InfService 

String,  usually  service\admin_client  1. This  is the  default  value.  

InfType 

Connection  type.  The  only  possible  values  are  0 or  1. The  default  value  is  1. 

InfVersion 

Version  of  the  Infranet  application.  

PollQuantity 

Number  of  event  picked  up  in  a single  poll.  Default  value  is 1.  

UseDefaults 

If UseDefaults  is  set  to  true or  not  set,  the  connector  checks  whether  a valid  value  

or  a default  value  is  provided  for  each  isRequired  business  object  attribute.  If a 

value  is provided,  the  Create  succeeds;  otherwise,  it fails.  

If the  parameter  is set  to  false,  the  connector  checks  only  for  valid  values;  the  

Create  operation  fails  if valid  values  are  not  provided.  

The  default  value  is  false.  

Customizing the event mechanism for new business objects 

If you  create  a new  business  object,  you  must  determine  what  events  will  be  

generated  for  each  action  on  the  business  object.  When  you  have  determined  this,  

you  must  customize  the  event  module  configuration  file  so that  the  event  module  

DLL  can  find  events  of that  type.  The  name  of  the  event  module  configuration  file 

is event_code.txt, and  it is located  in  $INFRANET$\sys\cm. 

Infranet  generates  enough  data  for  an  event  to  enable  the  event  module  to identify  

what  part  of  a storable  class  (in  other  words,  what  business  object)  has  been  

invoked.  When  the  event  module  gets  an  event,  it  gets  an  instance  of a storable  

class  containing  information,  such  as the  account,  the  user, and  the  calling  

program.  

To differentiate  an  update  from  a delete  or  a create,  the  event  module  compares  the  

original  value  and  the  updated  one.  To find  out  if a create  or delete  occurred,  

however,  the  event  module  must  retrieve  the  storable  class  when  the  action  is done  

at  the  root  level,  or  it can  look  at the  element  ID  for  a child  object.  When  a child  is 

added,  its  element  ID  is positive  and  contains  the  position  of this  element  in  the  

array.  If it is negative,  it  has  been  dropped.  

 

16 Adapter  for Portal Infranet  User Guide



Syntax of the event module configuration file 

When  modifying  the  event  module  configuration  file,  changes  to the  file  must  

conform  to  the  following  syntax  rules.  This  syntax  must  be  strictly  adhered  to.  

1.   Comment  lines  begin  with  two  dashes.  

2.   An  event  is  described  in  one  row. Parameters  are  delimited  by  the  pipe  

character  (|).  

3.   A  row  follows  this  syntax:  

<event>|<Inf.action>|<array>|<key poid>|<constraints>|<BO.verb>|<priority>|<comment> 

where:  

 event  Storable  class  name  of the  event  

Infranet  action  C (Create),  U (Update),  or D (Delete).  This  represents  the  action  

performed  in Portal  Infranet.  

array  Portal  Infranet  code  representing  the  array  on which  the  action  is 

done.  The  array  is the  Infranet  element  that  must  be retrieved  from  the 

event  information.  

In Portal  Infranet,  each  field  has  an associated  number.  For  example,  

PIN_FLD_NAMEINFO  is associated  with  the  Infranet  code  156.  The  

list of fields  and  associated  numbers  can  be found  in the  file  

$INFRANET$\Include\pin_flds.h. 

poid  Portal  Infranet  code  representing  the  field  which  is the  key  of the 

storable  class  created,  updated,  or deleted.  

constraints  List  of constraints  necessary  to determine  exactly  what  happened.  The  

constraint  supports  these  keywords:  

v   exists  or not_exists: true  or false  specifying  whether  the  object  

exists  or not.  

v   =, >, >=,  <=, < : comparison  operators  for numerical  types  

v   equal, nequal, contains: comparison  operators  for  string  type.  

v   & is used  to separate  constraints.  The  constraints  are  true  only  if all 

conditions  separated  by & are  true.

If  you  want  to specify  an or, use  several  lines.  The  first  line  in  which  

the constraints  are  true  is executed.  

BO.verb  Name  of the  business  object  and  verb  corresponding  to the  action  in 

Portal  Infranet.  

priority  Priority  of the  event  

comment  Comment  to insert  in the  event  table
  

Example event module configuration file 

The  text  below  shows  an  example  of  an  event_code.txt  file.  This  example  includes  

lines  specifying  events  for  the  account  storable  class.  Lines  beginning  with  dashes  

are  comments.  

--  Account  creation:  PIN_FLD_STATUSES[0].PIN_FLD_STATUS[0]  = 0 & 

      PIN_FLD_SYS_DESCR  = "Set  Status  (acct)":  OK 

/event/customer/status  |U |144   |40   |40  exists&55;5  equal  "Set  Status  

      (acct)"&144:0-145;3  = 0 |Portal_Account.Create  |1 |Account  Creation  

  

--  Account  Updated  (status  updated)  : PIN_FLD_STATUSES[1].PIN_FLD_STATUS[0]  = 

      10100  or 10103  or 10102  & & PIN_FLD_SYS_DESCR  = "Set  Status  (acct)"  : OK 

/event/customer/status  |U |144   |40   |40  exists&55;5  equal  "Set  Status  (acct)  

      "&144:1-145;3  > 0 |Portal_Account.Update  |1 |Status  Updated  

  

--  Account  Updated  (new  contact  added):OK  

/event/customer/nameinfo  |C |156  |40|40  exists|Portal_Account.Update|1|new  contact  

 

 

Chapter  2. Installing  and configuring  the connector  17



-- Account  Updated  (contact  updated):  OK 

/event/customer/nameinfo  |U |156  |40 |40  exists&17;5  equal  "Customer  Mngmt.  Event  

      Log"  |Portal_Account.Update  |2  |contact_update  

  

-- Account  Updated  (contact  deleted):OK  

/event/customer/nameinfo  |D |156   |40  |40 exists&67;5  nequal  "Automatic  Account  

      Creation"|Portal_Account.Update  |2 |contact_delete  

  

-- Account  Updated  (billinfo  updated)  : two PIN_FLD_BILLINFO  and 

      PIN_FLD_BILLINFO[0].PIN_FLD_BILL_TYPE[0]  <> 0 : OK  

/event/customer/billinfo  |U |126   |40 |40  exists  & 126:0-127;3  > 0 

      Portal_Account.Update  |2  |billinfo_update  

Defining event configuration file entries 

When  an  event  occurs,  Infranet  generates  an  flist  representing  the  event.  The  event  

facilities  module  examines  the  flist  to  identify  the  verb  and  the  action  that  

occurred.  

For  example,  assume  an  flist  representing  an  event  is:  

0     PIN_FLD_POID             POID  [0]  0.0.0.1  /event/customer/nameinfo  -1 0 

0     PIN_FLD_NAME              STR [0] "Customer  Mngmt.  Event  Log"  

0     PIN_FLD_USERID           POID  [0]  0.0.0.1  /service/admin_client  2 1 

0     PIN_FLD_SESSION_OBJ      POID  [0] 0.0.0.1  /event/session  10366  0 

0     PIN_FLD_ACCOUNT_OBJ      POID  [0] 0.0.0.1  /account  9406  32 

0     PIN_FLD_PROGRAM_NAME      STR  [0] "Admin  Manager"  

0     PIN_FLD_START_T        TSTAMP  [0] (942104217)  11/08/99  15:36:57  

0     PIN_FLD_END_T          TSTAMP  [0]  (942104217)  11/08/99  15:36:57  

0     PIN_FLD_SYS_DESCR         STR  [0]  "Set  Name  Info"  

0     PIN_FLD_NAMEINFO        ARRAY  [0] allocated  20,  used  17 

1     PIN_FLD_SALUTATION        STR  [0] "" 

1     PIN_FLD_LAST_NAME         STR  [0]  "Event  Test1"  

1     PIN_FLD_LAST_CANON        STR  [0] "event  test1"  

1     PIN_FLD_FIRST_NAME        STR  [0] "Event  Test1"  

1     PIN_FLD_FIRST_CANON       STR [0]  "event  test1"  

1     PIN_FLD_MIDDLE_NAME       STR [0]  "" 

1     PIN_FLD_MIDDLE_CANON      STR  [0] ""  

1     PIN_FLD_TITLE             STR [0]  "Event  Test1   " 

1     PIN_FLD_COMPANY           STR  [0]  "Event  Test1"  

1     PIN_FLD_ADDRESS           STR  [0]  "Event  Test1"  

1     PIN_FLD_CITY              STR [0] "Event  Test1"  

1     PIN_FLD_STATE             STR [0]  "CA"  

1     PIN_FLD_ZIP               STR  [0]  "00000"  

1     PIN_FLD_COUNTRY           STR  [0]  "US"  

1     PIN_FLD_EMAIL_ADDR        STR  [0] "" 

1     PIN_FLD_CONTACT_TYPE      STR  [0] "Billing"  

1     PIN_FLD_ELEMENT_ID       UINT  [0]  1 

0     PIN_FLD_NAMEINFO        ARRAY  [1] allocated  20,  used  19 

1     PIN_FLD_SALUTATION        STR  [0] "" 

1     PIN_FLD_LAST_NAME         STR  [0]  "Event  Test1"  

1     PIN_FLD_LAST_CANON        STR  [0] "event  test1"  

1     PIN_FLD_FIRST_NAME        STR  [0] "Event  Test1"  

1     PIN_FLD_FIRST_CANON       STR [0]  "event  test1"  

1     PIN_FLD_MIDDLE_NAME       STR [0]  "" 

1     PIN_FLD_MIDDLE_CANON      STR  [0] NULL  str  ptr 

1     PIN_FLD_TITLE             STR [0]  "Event  Test1"  

1     PIN_FLD_COMPANY           STR  [0]  "Event  Test1"  

1     PIN_FLD_ADDRESS           STR  [0]  "Event  Test1"  

1     PIN_FLD_CITY              STR [0] "Event  Test1"  

1     PIN_FLD_STATE             STR [0]  "CA"  

1     PIN_FLD_ZIP               STR  [0]  "00000"  

1     PIN_FLD_COUNTRY           STR  [0]  "US"  

1     PIN_FLD_EMAIL_ADDR        STR  [0] "" 

1     PIN_FLD_CONTACT_TYPE      STR  [0] "Billing"  

1     PIN_FLD_ELEMENT_ID       UINT  [0]  1 

1     PIN_FLD_CANON_COUNTRY     STR [0] "US"

 

18 Adapter  for Portal Infranet  User Guide



1     PIN_FLD_CANON_COMPANY     STR [0]  "event  test1"  

0     PIN_FLD_ITEM_OBJ         POID  [0]  0.0.0.1  /item  11454  0 

0     PIN_FLD_CURRENCY         UINT  [0]  840  

When  adding  a line  to the  event  module  file,  you  must  specify  the  number  

associated  with  the  field  instead  of  the  field  name.  For  example,  the  field  

PIN_FLD_NAMEINFO,  as shown  in  bold  in  the  preceding  flist,  is represented  by  

the  code  156.  

For  a field  that  is  deeper  than  the  first  level  of the  flist,  you  must  use  a constraint  

to  identify  the  field.  With  the  exception  of  a constraint,  each  field  is identified  by  a 

simple  number,  which  is the  number  associated  with  the  field.  

Because  a given  event  can  be  generated  for  various  reasons,  sometimes  constraints  

are  required  to determine  whether  an  event  is  the  result  of  a particular  business  

object.  Therefore,  you  may  need  to  add  constraints  such  as exists. 

The  following  syntax  must  be  used  in  a constraint  to  identify  a field.  

[<array  code:array  element>-field;type]  

For  example,  if the  Infranet  code  156  represents  PIN_FLD_NAMEINFO,  and  the  

code  161  represents  PIN_FLD_LAST_NAME,  the  representation  of  the  field  

PIN_FLD_LAST_NAME  contained  in  the  array  PIN_FLD_NAMEINFO  of  element  

ID  1 is represented  in a constraint  related  to  this  field  with  156:1-161;5  = 

PINFLDNAMEINFO[1].PIN_FLD_LASTNAME  

The  last  number  following  the  semicolon  in  a constraint  represents  the  type  of the  

object.  The  type  indicates  the  type  of  data  on  which  the  comparison  must  be 

performed.  For  example,  the  number  5 indicates  a string.  For  more  information,  see  

the  list  of  associated  types  in  $INFRANET$\Include\pin_type.h. 

Adding events to the pin_notify_cw file 

When  you  add  new  business  objects,  you  must  also  add  events  to  the  

pin_notify_cw  file.  This  file  contains  the  names  of  the  connector  events.  To add  

events,  follow  the  standard  format  of  the  file  as  seen  in“Defining  event  

configuration  file  entries”  on  page  18.  

The  CrossWorlds  Event  Notification  Module  (FmCw.dll)  verifies  the  USERID  of 

any  Portal  Event  sent  to it  (defined  in  the  pin_notify_cw  file).  If there  is no  

PIN_FLD_USERID  associated  with  the  event  sent  to  the  module,  it will  error  and  

cause  problems  saving  the  object  online.  These  types  of  events  need  to  be  adjusted  

(f-lists  or  the  storable  classes)  to include  such  an  ID.  Check  for  these  errors  in the  

log  file  defined  in  the  crossworlds.cnf  configuration  file.  

The  Event  Module  checks  for  a USERID  to prevent  events  sent  into  the  application  

by  the  connector  from  being  added  to the  event  queue.  This  is referred  to as  

Ping-Ponging.  The  ″/event/customer/billinfo″ is an  example  of an  event  type  

where  such  a problem  exists.  

Note:   To identify  all  the  events  generated  for  an  Infranet  operation,  call  the  event  

module  for  all  Infranet  events  (using  /event  in  the  load_pin_notify  

configuration  file).  The  event  module  will  then  be  triggered  for  all  events  

raised.  Set  the  log  level  to  3 in  the  event  module  configuration  file,  and  then  

in the  pinlog.log  file,  you  will  have  the  event  flist  sent  by  Infranet  for  this  

operation.

 

Chapter  2. Installing  and configuring  the connector  19



Declaring Infranet custom attribute optional configurations 

If the  Infranet  application  has  been  customized,  the  corresponding  Java  classes  

must  be  generated.  A tool  is  provided  by  Infranet  to generate  such  classes.  The  

connector  must  know  these  classes  at runtime,  so  they  must  be  declared  in  the  

CLASSPATH. 

1.   Create  a directory,  for  example:  c:\CustomAttributes. 

2.   Create  an  #include  file  with  the  custom  fields  and  their  values.  

3.   Launch  the  custom_fields.pl  script  on  this  file  indicating  

com.portal.pcm.fields  as  the  package  name.  

4.   Compile  the  java  files  to  create  the  class  files:  

javac  –classpath  c:\program  files\infranet\java\pcmext.jar  *.java  

5.   Create  a directory  hierarchy  under  your  current  directory  

com\portal\pcm\fields. 

6.   Copy  the  .class  generated  by  the  compiler  into  this  directory.  

7.   Add  the  current  directory  (for  example:  c:\CustomAttributes) to  the  CLASSPATH  

of  the  connector.  

8.   If  needed,  modify  the  file  \bin\start_Portal.bat  file.

Creating multiple connector instances 

Creating  multiple  instances  of  a connector  is in  many  ways  the  same  as  creating  a 

custom  connector.  You can  set  your  system  up  to  create  and  run multiple  instances  

of  a connector  by  following  the  steps  below.  You must:  

v   Create  a new  directory  for  the  connector  instance  

v   Make  sure  you  have  the  requisite  business  object  definitions  

v   Create  a new  connector  definition  file  

v   Create  a new  start-up  script

Create a new directory 

You must  create  a connector  directory  for  each  connector  instance.  This  connector  

directory  should  be  named:  

ProductDir\connectors\connectorInstance  

where  connectorInstance  uniquely  identifies  the  connector  instance.  

If the  connector  has  any  connector-specific  meta-objects,  you  must  create  a 

meta-object  for  the  connector  instance.  If you  save  the  meta-object  as  a file,  create  

this  directory  and  store  the  file  here:  

ProductDir\repository\connectorInstance  

Create business object definitions 

If the  business  object  definitions  for  each  connector  instance  do  not  already  exist  

within  the  project,  you  must  create  them.  

1.   If  you  need  to  modify  business  object  definitions  that  are  associated  with  the  

initial  connector,  copy  the  appropriate  files  and  use  Business  Object  Designer  to  

import  them.  You can  copy  any  of  the  files  for  the  initial  connector.  Just  rename  

them  if you  make  changes  to  them.  

2.   Files  for  the  initial  connector  should  reside  in  the  following  directory:  

ProductDir\repository\initialConnectorInstance  

 

20 Adapter  for Portal Infranet  User Guide



Any  additional  files  you  create  should  be  in  the  appropriate  connectorInstance  

subdirectory  of ProductDir\repository.

Create a connector definition 

You create  a configuration  file  (connector  definition)  for  the  connector  instance  in  

Connector  Configurator.  To do  so:  

1.   Copy  the  initial  connector’s  configuration  file  (connector  definition)  and  rename  

it.  

2.   Make  sure  each  connector  instance  correctly  lists  its  supported  business  objects  

(and  any  associated  meta-objects).  

3.   Customize  any  connector  properties  as  appropriate.

Create a start-up script 

To create  a startup  script:  

1.   Copy  the  initial  connector’s  startup  script  and  name  it to include  the  name  of  

the  connector  directory:  

dirname  

2.   Put  this  startup  script  in  the  connector  directory  you  created  in  “Create  a new  

directory”  on  page  20.  

3.   Create  a startup  script  shortcut  (Windows  only).  

4.   Copy  the  initial  connector’s  shortcut  text  and  change  the  name  of the  initial  

connector  (in  the  command  line)  to  match  the  name  of  the  new  connector  

instance.

You can  now  run both  instances  of  the  connector  on  your  integration  server  at  the  

same  time.  

For  more  information  on  creating  custom  connectors,  refer  to  the  Connector  

Development  Guide  for  C++  or  for  Java. 

Starting the connector 

A  connector  must  be  explicitly  started  using  its  connector  start-up  script. On  

Windows  systems  the  startup  script  should  reside  in the  connector’s  runtime  

directory:  

ProductDir\connectors\connName  

where  connName  identifies  the  connector.  

On  UNIX  systems  the  startup  script  should  reside  in  the  UNIX  ProductDir/bin  

directory.  

The  name  of  the  startup  script  depends  on  the  operating-system  platform,  as  

Table  4 shows.  

 Table 4. Startup  scripts  for a connector  

Operating  system  Startup  script  

UNIX-based  systems  connector_manager  

Windows  start_connName.bat
  

When  the  startup  script  runs, it expects  by  default  to  find  the  configuration  file  in  

the  Productdir  (see  the  commands  below).  This  is where  you  place  your  

configuration  file.  

 

Chapter  2. Installing  and configuring  the connector  21



Note:   You need  a local  configuration  file  if the  adapter  is using  JMS  transport.  

You can  invoke  the  connector  startup  script  in  any  of  the  following  ways:  

v   On  Windows  systems,  from  the  Start  menu  

Select  Programs>IBM  WebSphere  Business  Integration  

Adapters>Adapters>Connectors. By  default,  the  program  name  is “IBM  

WebSphere  Business  Integration  Adapters”.  However,  it can  be  customized.  

Alternatively,  you  can  create  a desktop  shortcut  to  your  connector.  

v   From  the  command  line  

–   On  Windows  systems:  

start_connName  connName  brokerName  [-cconfigFile  ] 

–   On  UNIX-based  systems:  

connector_manager  -start  connName  brokerName  [-cconfigFile  ] 

where  connName  is the  name  of the  connector  and  brokerName  identifies  your  

integration  broker,  as  follows:  

–   For  WebSphere  InterChange  Server,  specify  for  brokerName  the  name  of the  

ICS  instance.  

–   For  WebSphere  message  brokers  (WebSphere  MQ  Integrator,  WebSphere  MQ  

Integrator  Broker,  or  WebSphere  Business  Integration  Message  Broker)  or  

WebSphere  Application  Server,  specify  for  brokerName  a string  that  identifies  

the  broker.

Note:   For  a WebSphere  message  broker  or  WebSphere  Application  Server  on  a 

Windows  system,  you  must  include  the  -c option  followed  by  the  name  of  

the  connector  configuration  file.  For  ICS,  the  -c  is optional.  

v   From  Adapter  Monitor,  which  is launched  when  you  start  System  Manager  

running  with  the  WebSphere  Application  Server  or  InterChange  Server  broker:  

You can  load,  activate,  deactivate,  pause,  shutdown  or  delete  a connector  using  

this  tool.  

v   From  System  Manager  (available  for  all  brokers):  

You can  load,  activate,  deactivate,  pause,  shutdown  or  delete  a connector  using  

this  tool.  

v   On  Windows  systems,  you  can  configure  the  connector  to  start  as  a Windows  

service.  In  this  case,  the  connector  starts  when  the  Windows  system  boots  (for  an  

Auto  service)  or  when  you  start  the  service  through  the  Windows  Services  

window  (for  a Manual  service).

For  more  information  on  how  to  start  a connector,  including  the  command-line  

startup  options,  refer  to  one  of the  following  documents:  

v   For  WebSphere  InterChange  Server,  refer  to  the  System  Administration  Guide. 

v   For  WebSphere  message  brokers,  refer  to Implementing  Adapters  with  WebSphere  

Message  Brokers. 

v   For  WebSphere  Application  Server,  refer  to  Implementing  Adapters  with  WebSphere  

Application  Server.

Stopping the connector 

The  way  to  stop  a connector  depends  on  the  way  that  the  connector  was  started,  

as  follows:  

v   If  you  started  the  connector  from  the  command  line,  with  its  connector  startup  

script:  

 

22 Adapter  for Portal Infranet  User Guide



–   On  Windows  systems,  invoking  the  startup  script  creates  a separate  “console”  

window  for  the  connector.  In  this  window,  type  “Q”  and  press  Enter  to stop  

the  connector.  

–   When  using  InterChange  Server  on  UNIX-based  systems,  connectors  run in 

the  background  so they  have  no  separate  window.  Instead,  run the  following  

command  to  stop  the  connector:  

connector_manager_connName  -stop  

where  connName  is the  name  of  the  connector.
v    From  Adapter  Monitor  (WebSphere  Business  Integration  Adapters  product  only),  

which  is  launched  when  you  start  System  Manager:  

You can  load,  activate,  deactivate,  pause,  shutdown  or  delete  a connector  using  

this  tool.  

v   From  System  Monitor  (WebSphere  InterChange  Server  product  only):  

You can  load,  activate,  deactivate,  pause,  shutdown  or  delete  a connector  using  

this  tool.  

v   On  Windows  systems,  you  can  configure  the  connector  to  start  as  a Windows  

service.  In  this  case,  the  connector  stops  when  the  Windows  system  shuts  down.

 

Chapter  2. Installing  and configuring  the connector  23



24 Adapter  for Portal Infranet  User Guide



Chapter  3.  Understanding  business  objects  

This  chapter  describes  how  the  connector  processes  business  objects  and  provides  

guidelines  for  implementing  business  objects  for  Portal.  The  following  topics  are  

covered:  

v   “Portal  Infranet  application  background”  

v   “Portal  Infranet  application-specific  business  object  structure”  on  page  29 

v   “Guidelines  for  defining  business  objects”  on  page  32  

v   “Business  object  application-specific  information”  on  page  32

Note:   If you  are  not  familiar  with  the  Infranet  application,  designing  and  

implementing  business  objects  for  Portal  Infranet  may  be  difficult.  In this  

case,  it  is  recommended  that  you  work  with  an  application  expert.  For  

information  on  Infranet  concepts  or  programming  elements,  consult  the  

Infranet  documentation.  

Portal Infranet application background 

This  section  provides  a brief  overview  of some  basic  elements  of the  Infranet  

application  that  affect  the  design  and  implementation  of  Portal  Infranet  

application-specific  business  objects.  Infranet  defines  four  main  programming  

elements  that  are  used  to  define,  extend,  or access  functionality  in  the  system.  In  

order  to  design  business  objects  for  Portal,  you  must  be  familiar  with  the  following  

elements.  They  are  briefly  described  in the  sections  that  follow.  

v   Storable  classes  

v   Storable  objects  

v   Fields  and  field  lists  (flists)  

v   Opcodes

Storable classes and objects 

In  Infranet,  storable  classes  contain  fields  that  store  information  about  a class.  

Standard  storable  classes  include  account,  service,  bills,  invoices,  and  other  classes  

that  are  predefined  by  Infranet.  To extend  Infranet  functionality,  you  can  create  

new  storable  classes  or  create  subsets  of  existing  classes.  

Storable  classes  do  not  contain  actual  data;  they  are  object  specifications,  much  as  a 

WebSphere  Business  Integration  Adapter  business  object  definition  defines  a 

business  object  structure  but  does  not  contain  data.  Storable  classes  include  a 

number  of  fields,  which  can  be  simple  fields  (for  example,  an  integer  or  string  

field),  arrays,  or  substructures.  

When  a storable  class  has  been  instantiated  and  includes  actual  data  values,  it 

becomes  a storable  object.  Each  storable  object  is identified  by  a unique  Portal  

Object  ID,  or  POID.  The  POID  contains  the  database  number,  the  name  of  the  

storable  class,  the  instance  number  of  the  storable  object,  and  the  object  revision  

number.  

The  distinction  between  a storable  class  and  storable  object  is illustrated  in  

Figure  4. 

 

 

© Copyright  IBM Corp. 1999, 2005 25



A storable  class  can  define  inherited  and  extended  functionality  for  the  class.  For  

example,  the  /account/email  storable  class  contains  all  the  information  in the  

account  class  with  additional  information  that  applies  specifically  to the  email  

extended  class.  Therefore,  the  /account/email  storable  class  becomes  a subclass  of 

/account  as shown  in  Figure  5.  

Template

Storable class (/account)

create date

last name

first name

middle initial

mother's name

address

number

apartment

state

zipcode

tstamp

str

str

enum

str

str

str

str

str

Storable object

create date

last name

first name

middle initial

address

number

apartment

state

zipcode

perms

Davis

Mark

A

Jane

Birch Ave

1495

1-A

AZ

75035

logon

email address

email name

str

str

str

logon

email address

email name

str

str

str

/account/email
mother's name

  

 

 

 Storable  objects  are  manipulated  using  Infranet  application  programs,  scripts,  and  

tools,  or  any  custom  programs  and  processes.  Regardless  of their  type,  all  client  

programs  operate  on  storable  objects  using  the  PCM  API  and  programming  

libraries.  Storable  objects  are  manipulated  by  opcodes,  which  are  routines  

containing  lists  of  fields  that  operate  on  storable  objects.  

Template

Storable class (/account)

create date

last name

first name

middle initial

mother's name

address

number

apartment

state

zipcode

tstamp

str

str

enum

str

str

str

str

str

Storable object

create date

last name

first name

middle initial

mother's name

address

state

zipcode

perms

Davis

Mark

A

Jane

Birch Ave

1495

1-A

AZ

75035

POID [Values]

enum

number

apartment

  

Figure  4. Infranet  storable  class  and  storable  object

Figure  5. Extending  the  /account  storable  class

 

26 Adapter  for Portal Infranet  User Guide



Fields and flists 

Fields  are  the  simplest  data  value  in  Infranet.  Each  field  name  in  the  system  has  a 

unique  ID,  name,  type,  and  definition.  Field  names  are  shared  and  used  in  many  

different  classes  and  opcode  definitions.  

There  is  a basic  set  of  field  types  in  the  system  that  can  be  used  to  create  new  

fields.  Table 5 lists  the  field  types.  The  first  six  types  correspond  to  data  types  in 

programming  languages  such  as  C.  The  others  hold  more  complex  data  and  can  

point  to  C  structures  as  their  value.  Arrays  and  substructs  hold  pointers  to  other  

lists  of  fields.  

 Table 5. Infranet  field  and  data  types  

Field  type  Data  type  

PIN_FLDT_INT  Signed  integer  

PIN_FLDT_UINT  Unsigned  integer  

PIN_FLDT_ENUM  Enumerated  integer  

PIN_FLDT_NUM  Floating  point  number  

PIN_FLDT_TSTAMP  Time  stamp  

PIN_FLDT_STR  Character  string  

PIN_FLDT_BINSTR  Binary  string  

PIN_FLDT_BUF  Arbitrary-sized  buffer  of data  

PIN_FLDT_POID  Portal  Object  ID 

PIN_FLDT_ARRAY  Array  

PIN_FLDT_SUBSTRUCT  Substructure
  

Field  lists  (flists)  are  fundamental  data  structures  used  in  Infranet  programming  

APIs.  Flists  are  containers  holding  pairs  of  data  fields  and  values,  and  in some  

cases,  other  flists.  Flists  can  represent  floating  point  calculations,  buffers,  or  large  

pieces  of  data  that  do  not  fit  in memory.  Flists  pass  information  between  storable  

objects  and  the  routines  or  programs  that  manipulate  the  storable  objects.  

A  storable  object  (for  example,  in  an  /account  storable  class)  makes  up  an  flist  (or  

part  of  an  flist)  that  uses  the  storable  class  specification.  The  flist  is a list  of fields,  

each  with  its  own  attributes,  permissions,  and  data  values.  Together,  these  fields  

define  the  functionality  of  the  storable  object,  as  shown  in  Figure  6.  

Flists  can  contain  multiple  storable  objects.  The  flist  structure  ensures  that  the  

information  is  passed  from  the  application  to the  correct  storable  object.  

 

Chapter  3. Understanding  business  objects 27



Template

Storable class (/account)

create date

last name

first name

middle initial

mother's name

address

number

apartment

state

zipcode

tstamp

str

str

enum

str

str

str

str

enum

str

Storable object

create date

last name

first name

middle initial

address

state

zipcode

perms

Davis

Mark

A

Jane

Birch Ave

1495

1-A

AZ

75035

Application

Flist

Filled in data

Original
data

Return
data

mother's name

number

apartment

Opcodes 

An  application  uses  Infranet  system  opcodes  to  carry  out  operations  on  storable  

objects  and  the  fields  within  them.  There  are  several  sets  of opcodes,  which  are  

grouped  into  the  following  functional  categories:  Base,  Customer  facilities  module  

(FM),  Activity  FM,  Billing  FM,  Terminal  FM,  and  Email  FM.  

Base  operations  on  objects  include  creation,  deletion,  writing,  reading,  and  

searching.  All  other  opcodes  implement  business-level  (higher-level)  semantics,  

such  as  logging  activities,  billing  an  account  for  the  purchase  of  a product,  

checking  credit  card  information,  changing  a name  and  address,  verifying  a 

password,  or  recording  accounting  data.  These  higher-level  opcodes  are  

implemented  in facilities  modules,  where  base  opcodes  are  implemented  directly  

by  the  Storage  Manager  (SM).  The  higher-level  opcodes  are  translated  by  facilities  

module  routines  in  the  Communication  Managers  to varying  numbers  of base  

opcodes  and  then  passed  on  to Storage  Managers.  

Every  system  opcode  has  an  associated  input  and  output  flist.  A client  application  

determines  what  is  an  interesting  event,  calls  the  Infranet  system  with  the  

appropriate  opcode  and  corresponding  flist,  and  handles  the  return  flist  and  error  

buffer.  

Meta-data-driven connector 

The  connector  is a meta-data-driven  connector.  This  means  that  the  meta-data  in  

the  business  object  drives  the  behavior  of the  connector.  Meta-data  is data  about  

the  application  that  is stored  in  a business  object  and  that  assists  the  connector  to  

interact  with  an  application.  A  meta-data-driven  connector  handles  each  business  

object  that  it supports  based  on  meta-data  encoded  in  the  business  object  definition  

rather  than  on  instructions  hard-coded  in the  connector.  

The  connector  is  meta-data  driven  using  the  Infranet  PIN_FIELDNAME  at the  

attribute  level  and  the  opcode  value  at  the  verb  level.  Because  the  connector  is 

meta-data  driven,  it can  handle  new  or  modified  business  objects  without  requiring  

Figure  6. Storable  object  and  flist

 

28 Adapter  for Portal Infranet  User Guide



modifications  to  the  connector  code.  However,  the  connector  makes  assumptions  

about  the  following  aspects  of  its  business  objects:  

v   Structure  of  its  business  objects  

v   Relationships  between  parent  and  child  business  objects  

v   Format  of  the  application-specific  information  

v   Database  representation  of  a business  object

Therefore,  when  you  create  or  modify  a business  object  for  Portal  Infranet,  your  

modifications  must  conform  to the  rules the  connector  is designed  to  follow,  or  the  

connector  will  not  be  able  to process  new  or  modified  business  objects  correctly.  

The  following  sections  provide  information  on  implementing  business  objects  for  

Portal.  

Portal Infranet application-specific business object structure 

WebSphere  Business  Integration  Adapter  business  objects  are  hierarchical:  parent  

business  objects  can  contain  child  business  objects,  which  can  in  turn  contain  child  

business  objects,  and  so  on.  A cardinality  1 container  occurs  when  an  attribute  in  a 

parent  business  object  references  a single  child  object.  A cardinality  n container  

object  occurs  when  an  attribute  in  the  parent  business  object  references  an  array  of  

child  business  objects.  

The  connector  supports  both  cardinality  1 and  cardinality  n relationships  between  

business  objects.  

Corresponding Portal Infranet objects to WebSphere  Business 

Integration Adapter business objects 

Infranet  has  the  following  container  types:  

v   Storable  class  

v   Array  

v   Substruct

You must  define  a WebSphere  Business  Integration  Adapter  Portal  Infranet  

application-specific  business  object  so  that  it maps  to  the  Infranet  flist  for  the  

corresponding  storable  object  with  all  required  attributes  and  relationships.  The  

relationship  between  an  flist  and  a business  object  is a one-to-one  relationship.  

During  processing,  the  connector  compares  a business  object  to  the  corresponding  

flist  for  the  Infranet  object,  and  it  throws  an  exception  if the  structures  do  not  

match.  It is  possible  to define  a WebSphere  Business  Integration  Adapter  business  

object  that  is  a subset  of the  flist  structure,  but  the  converse  is not  supported.  

For  each  Infranet  container  type,  an  application-specific  business  object  is created  

as  needed.  Typically,  a storable  class  becomes  a top-level  business  object.  A 

container  of  type  substruct  may  become  a cardinality  1 child  business  object,  and  

a container  of  type  array  may  become  a cardinality  n child  business  object.  

However,  if a subcontainer  is not  important  and  the  parent  opcode  is sufficient  to 

manipulate  the  children,  a child  business  object  is not  needed.  

Figure  7 shows  how  the  structure  of  a WebSphere  Business  Integration  Adapter  

business  object  and  an  Infranet  flists  might  correspond.  See  the  Portal  Infranet  

documentation  for  information  on  Infranet  flists.  

 

Chapter  3. Understanding  business  objects 29



Business object

Attributes1..n

Business object

Attributes1..n

(Cardinality 1)

Business object
(Cardinality 1..n)

Flist

Fields1..n

Substruct

Fields1..n

Array element

Fields1..n

(Flist)

(Flist)

Attributes1..n

Figure  8 shows  an  example  of a possible  coordinating  between  the  Infranet  

/account  storable  class  and  the  Portal_Account  hierarchical  business  object.  The  

NameInfo  array  in  the  storable  class  becomes  a cardinality  n child  business  object  

in  the  top-level  business  object,  and  the  Balances  substruct  becomes  a cardinality  1 

child  business  object.  

 

Figure  9 shows  a possible  correspondence  between  the  NameInfo  array  and  the  

Portal_Contact  child  business  object.  The  NameInfo  array  contains  an  array  named  

Phones,  which  becomes  a child  business  object  whose  parent  is the  Portal_Contact  

business  object.  

 

Figure  7. Structure  business  objects  and  flists

Storable class (/account)l

CreateDate

ModifDate

AccountNo

AccessCod

Poid

BillType

NameInfo

Balances

tstamp

tstamp

str

str

TPoid

str

Array

Substruct

Application business object

CreateDate

ModifDate

AccountNo

AccessCod

Poid

ActgType

BillType

NameInfo

Balances

str

str

str

str

str

str

str

Object (card n)

Object (card1)

ActgType str

Portal_account

  

Figure  8. Coordinating  of a storable  class  to a WebSphere  Business  Integration  Adapter  

business  object

 

30 Adapter  for Portal Infranet  User Guide



Note  that  specific  attributes  are  needed  for  some  flists  and  opcodes  and  not  for  

others.  In  this  case,  an  additional  utility  application-specific  business  object  may  be  

used  as  a verb  parameter.  This  object  does  not  correspond  any  persistent  data;  it 

describes  only  some  mandatory  fields  for  the  flist.  For  more  information  on  utility  

business  objects,  see  “Connector  utility  business  objects”  on  page  39.  

Business object attribute properties 

Business  object  architecture  defines  various  properties  that  apply  to attributes.  This  

section  describes  how  the  connector  interprets  several  of  these  properties  and  

describes  how  to  set  them  when  modifying  a business  object.  

Key property 

All  business  objects  for  Portal  Infranet  must  have  at least  one  key  attribute.  For  

each  attribute  that  is a key,  set  the  Key  property  to  True.  

Note:   The  connector  does  not  support  specifying  an  attribute  that  represents  a 

child  business  object  or an  array  of child  business  objects  as  a key  attribute.  

The  key  for  a top-level  business  object  is  the  storable  object  Portal  Object  ID  

(POID).  A  POID  is a unique  64-bit  identifier  assigned  to  each  Infranet  database  

object  when  it  is  created.  A  POID  is a unique  key  for  an  Infranet  object.  

A  POID  enables  multiple  instantiations  of the  same  storable  class.  For  example,  

every  account  object  has  a unique  POID.  A POID  contains  the  following  four  

components:  a database  number,  an  object  type,  a unique  ID,  and  a revision  

number.  

Key values for child business objects 

An  Infranet  array  is identified  by  its  element  ID,  and  the  element  ID  is  the  unique  

key  for  the  array.  Because  arrays  typically  correspond  to  child  business  objects,  in  

Portal  Infranet  hierarchical  business  objects,  a child  business  object  key  specifies  

the  array  element  ID  and  the  parent  POID.  

Array (NameInfo)

CreateDate

ElementID

FirstName

MiddleName

LastName

tstamp

int

str

str

str

Application business object

PhonesList Array

Portal_Contact

CreateDate

ElementID

FirstName

MiddleName

LastName

tstamp

int

str

str

str

PhonesList Object (card n)

  

Figure  9. Corresponding  of an flist  array  to a child  business  object

 

Chapter  3. Understanding  business  objects 31



As  a general  rule, second-level  child  business  objects  simply  need  an  attribute  for  

the  element  ID.  During  a Create  or  Update  operation,  all  the  ElementId  and  POID  

values  are  filled  in  the  business  object.  

Foreign key property 

This  property  is  used  by  the  child  business  objects  to  relate  to  the  parent  business  

objects.  During  any  verb  processing,  if the  child  is to  be  executed  separately,  the  

foreign  key  fields  are  populated  from  the  parent  business  object.  The  name  of  

which  attribute  from  the  parent  business  object  is used  is specified  in  the  

application-specific  information  on  the  foreign  key  attribute.  

Required property 

The  connector  does  not  use  the  Required  property.  

Max length property 

Set  the  Max  Length  property  to  255.  

Default value property 

The  connector  uses  the  default  value  of  the  attribute,  if specified.  

Guidelines for defining business objects 

Use  the  following  guidelines  when  defining  a Portal  Infranet  application-specific  

business  object:  

v   The  POID  attribute  of  an  object  must  be  the  first  attribute  in  the  object  

definition.  

v   Any  other  ID  attribute  of  an  object  should  follow  in  the  object  definition.  

v   Any  key  or  foreign  key  attributes  should  follow  next.  

v   The  remaining  attributes,  except  for  referenced  and  contained  objects,  should  

follow  the  key  attributes,  sorted  logically.  

v   All  referenced  objects  (those  with  cardinality  1) or  contained  objects  (those  with  

cardinality  n)  should  follow  next.  

v   The  last  attribute  must  be  the  ObjectEventId.

Business object application-specific information 

Application-specific  information  in business  object  definitions  provides  the  

connector  with  application-dependent  instructions  on  how  to  process  business  

objects.  This  meta-data  is used  with  a business  object’s  attribute  properties  and  

structure.  When  you  create  Portal  Infranet  application-specific  business  objects,  you  

must  make  sure  that  the  application-specific  information  in  the  business  object  

definition  matches  the  syntax  that  the  connector  expects.  

This  section  provides  information  on  the  object,  attribute,  and  verb  

application-specific  information  format  for  business  objects  for  Portal.  

Business object application-specific information 

At  the  business  object  level,  application-specific  information  describes  the  Infranet  

entity  as  follows:  

v   For  a storable  class,  the  business  object  application-specific  information  specifies  

the  storable  class  name  if the  input  flist  for  the  Create  or  Update  verb  is  similar  

to  the  structure  of  the  business  object.  

 

32 Adapter  for Portal Infranet  User Guide



v   If  the  business  object  is a child  object  that  corresponds  to an  flist  array  or  

substruct,  the  object  application-specific  information  contains  the  Infranet  field  

name.

For  example,  the  Portal_Account  business  object  specifies  the  CN=/account  storable  

class  for  the  object  level  application-specific  information,  and  the  Portal_BillInfo  

child  business  object  specifies  the  FN=PIN_FLD_BILLINFO  field  for  the  object  level  

application-specific  information.  

Attribute-level application-specific information 

At  the  attribute  level,  application-specific  information  is used  to  prepare  the  flist  

structure  that  is  used  for  executing  a particular  opcode.  The  application-specific  

information  is  a name-value  pair  list.  This  structure  allows  you  to  remove  

constraints  previously  imposed  by  the  use  of utility  business  objects,  which  are  no  

longer  required  to  define  the  structure  of  an  flist  for  an  opcode.  The  format  of  the  

application-specific  information  for  an  attribute  is as  follows:  

FN=FIN_FLD_POID;Create=true;Update=false;Delete=true;  

Retrieve=true;CreateT=;UpdateT=PIN_FL_NAMEINFO;  

DeleteT=;RetrieveT=;O=false;CreateO=false;UpdateO=true;  

DeleteO=false;RetrieveO=false;ParentAtt=;Alone=false  

Converting old business objects to new business objects 

The  above  format  for  attribute-level  application-specific  information  is supported  

for  backward  compatibility  in  connector  version  4.0.x.  However,  in  future  releases,  

backward  compatibility  will  not  be  supported,  and  you  must  use  PortalODA  to  

convert  old  business  object  definitions  to new  business  object  definitions.  

To use  PortalODA  to  convert  old  business  object  definitions  to new  business  object  

definitions,  do  the  following:  

1.   Mark  the  foreign  key  fields  in  the  child  business  objects  which  link  the  child  

business  object  to  the  parent  business  object.  The  application-specific  

information  contains  a tag  called  ParentAtt.  Set  the  value  for  this  tag  to  the  

name  of  the  attribute  from  the  parent  business  object  which  has  to  be  used  for  

the  foreign  key.  

2.   If necessary,  mark  attributes  of type  ″object″ with  a specific  verb  tag.  Refer  to  

Table 3 for  CreatT, UpdateT,  DeleteT, and  RetrieveT. 

Table  3 on  page  14  describes  the  format  of the  application-specific  information  for  

an  attribute:  

 Table 6. Application-specific  information  for  an attribute  

Name  Description  Possible  value  Default  value  

FN Field  name  representing  the  field  name  

in Infranet  

Create  Identifies  whether  the  attribute  is part  

of the  flist  for  the Create  verb  

true  or false  false  

Update  Identifies  whether  the  attribute  is part  

of the  flist  for  the Update  verb  

true  or false  false  

Delete  Identifies  whether  the  attribute  is part  

of the  flist  for  the Delete  verb  

true  or false  false  

Retrieve  Identifies  whether  the  attribute  is part  

of the  flist  for  the Retrieve  verb  

true  or false  false  

 

Chapter  3. Understanding  business  objects 33



Table 6. Application-specific  information  for an  attribute  (continued)  

Name  Description  Possible  value  Default  value  

CreateT  Infranet  field  name  that  acts  as a 

container  for  the  attribute  in the  

preparation  of the  flist  for  the Create  

verb  

null  

UpdateT  Infranet  field  name  that  acts  as a 

container  for  the  attribute  in the  

preparation  of the  flist  for  the Update  

verb  

null  

DeleteT  Infranet  field  name  that  acts  as a 

container  for  the  attribute  in the  

preparation  of the  flist  for  the Delete  

verb  

null  

RetrieveT  Infranet  field  name  that  acts  as a 

container  for  the  attribute  in the  

preparation  of the  flist  for  the Retrieve  

verb  

null  

O Identifies  whether  the  attribute  has  to 

be updated  in  the response  business  

object  

true  or false  false  

CreateO  Identifies  the  Infranet  field  name  that  

has  the  field  representing  the  value  for 

the  attribute  used  to update  the  

response  business  object  for Create  verb  

processing.  For example,  if the  

FN=PIN_FLD_POID  and  

CreateO=PIN_FLD_NAMEINFO, then  the 

connector  looks  for the field  

PIN_FLD_POID, and  the  value  for this  

field  is populated  in the  response  

business  object  for  this  attribute.  

UpdateO  Identifies  the  Infranet  field  name  that  

has  the  field  representing  the  value  for 

the  attribute  used  to update  the  

response  business  object  for Update  

verb  processing.  

DeleteO  Identifies  the  Infranet  field  name  that  

has  the  field  representing  the  value  for 

the  attribute  used  to delete  the  response  

business  object  for  Delete  verb  

processing.  

RetrieveO  Identifies  the  Infranet  field  name  that  

has  the  field  representing  the  value  for 

the  attribute  used  to retrieve  the  

response  business  object  for Retrieve  

verb  processing.  

ParentAtt  This  field  is used  by  a child  business  

object  to define  the  attribute  in the  

parent  business  object  that  is used  to 

populate  the  keys  fields.  These  fields  

have  to be marked  as Foreign  Key  

fields  in the  child  business  object.  

NULL  

 

34 Adapter  for Portal Infranet  User Guide



Table 6. Application-specific  information  for  an attribute  (continued)  

Name  Description  Possible  value  Default  value  

Alone  This  field  is used  by  a child  business  

object  to represent  that  the  child  

business  object  should  be executed  

separately  and  not  as part  of the  parent  

business  object.  

true  or false  false

  

Figure  10  on  page  36  shows  the  Portal_Account  business  object  and  illustrates  

application-specific  information  for  the  business  objects  and  attributes.  

 

Chapter  3. Understanding  business  objects 35



Portal_Account Business Object Definition

Name = Poid

Portal_Account

IsKey = true
IsForeignKey = true
IsRequired = true

Name = AccountNumber

AppSpecificInfo = /account

Name = AccountObj

Name = Portal_Contact
Type = Portal_Contact

Name = PlaceHolder

Name = Portal_Billinfo
Type = Portal_Billinfo

ObjectEventId

Name = Poid

Portal_Contact

IsKey = true

Name = ElementId

AppSpecificInfo =

Name = LastName

Portal_Contact Business Object Definition

IsKey = true

Portal_Billinfo Business Object Definition

AppSpecificInfo = FN=PIN_FLD_POID;
Create=true;Delete=true;Retrieve=true;
CreateT-;UpdateT=;DeleteT=;RetrieveT=;
O=false;CreateO=false;UpdateO=false;
DeleteO=false;RetrieveO=false;ParentAtt=;
Alone=false

AppSpecificInfo = FN=PIN_FLD_ACCOUNT_NO;
Create=true;Delete=true;Retrieve=true;
CreateT-;UpdateT=;DeleteT=;RetrieveT=;
O=false;CreateO=false;UpdateO=false;
DeleteO=false;RetrieveO=false;ParentAtt=;
Alone=false

AppSpecificInfo = FN=PIN_FLD_ACCOUNT_OBJ;
Create=true;Delete=true;Retrieve=true;
CreateT-;UpdateT=;DeleteT=;RetrieveT=;
O=false;CreateO=false;UpdateO=false;
DeleteO=false;RetrieveO=false;ParentAtt=;
Alone=false

AppSpecificInfo = FN=PIN_FLD_NAMEINFO;
Create=true;Delete=true;Retrieve=true;
CreateT-;UpdateT=;DeleteT=;RetrieveT=;
O=false;CreateO=false;UpdateO=false;
DeleteO=false;RetrieveO=false;ParentAtt=;
Alone=false

AppSpecificInfo = FN=PIN_FLD_BILLINFO;
Create=true;Delete=true;Retrieve=true;
CreateT-;UpdateT=;DeleteT=;RetrieveT=;
O=false;CreateO=false;UpdateO=false;
DeleteO=false;RetrieveO=false;ParentAtt=;
Alone=false

AppSpecificInfo = PIN_FLD_LAST_NAME

Name = Poid

Portal_Billinfo

IsKey = true

Name = BillType

AppSpecificInfo = PIN_FLD_BILLINFO

Name = ElementId
IsKey = true

AppSpecificInfo = FN=PIN_FLD_POID;
Create=true;Delete=true;Retrieve=true;
CreateT-;UpdateT=;DeleteT=;RetrieveT=;
O=false;CreateO=false;UpdateO=false;
DeleteO=false;RetrieveO=false;ParentAtt=;
Alone=false

AppSpecificInfo = FN=PIN_FLD_ELEMENT_ID;
Create=true;Delete=true;Retrieve=true;
CreateT-;UpdateT=;DeleteT=;RetrieveT=;
O=false;CreateO=false;UpdateO=false;
DeleteO=false;RetrieveO=false;ParentAtt=;
Alone=false

AppSpecificInfo = FN=PIN_FLD_BILL_TYPE;
Create=true;Delete=true;Retrieve=true;
CreateT-;UpdateT=;DeleteT=;RetrieveT=;
O=false;CreateO=false;UpdateO=false;
DeleteO=false;RetrieveO=false;ParentAtt=;
Alone=false

AppSpecificInfo = FN=PIN_FLD_POID;
Create=true;Delete=true;Retrieve=true;
CreateT-;UpdateT=;DeleteT=;RetrieveT=;
O=false;CreateO=false;UpdateO=false;
DeleteO=false;RetrieveO=false;ParentAtt=;
Alone=false

AppSpecificInfo = FN=PIN_FLD_ELEMENT_ID;
Create=true;Delete=true;Retrieve=true;
CreateT-;UpdateT=;DeleteT=;RetrieveT=;
O=false;CreateO=false;UpdateO=false;
DeleteO=false;RetrieveO=false;ParentAtt=;
Alone=false

AppSpecificInfo = FN=PIN_FLD_LAST_NAME;
Create=true;Delete=true;Retrieve=true;
CreateT-;UpdateT=;DeleteT=;RetrieveT=;
O=false;CreateO=false;UpdateO=false;
DeleteO=false;RetrieveO=false;ParentAtt=;
Alone=false

Figure  10.  Application-specific  information  for  business  object  and  attributes

 

36 Adapter  for Portal Infranet  User Guide



Verb application-specific information format 

The  verb  level  application-specific  information  for  business  objects  for  Portal  

Infranet  must  specify  a unique  Infranet  opcode  for  the  action  that  the  business  

object  and  verb  will  perform.  

The  opcode  passes  data  between  the  Infranet  application  and  its  database  and  

performs  operations  on  storable  objects.  Each  action  on  an  Infranet  object  has  a 

specific  opcode.  

Opcodes  pass  Infranet  storable  objects  in  the  form  of  flists,  which  are  lists  of  field  

name  and  value  pairs.  Each  opcode  has  a specific  input  and  output  flist.  The  

connector  must  convert  a business  object  request  into  the  input  flist  required  by  

the  opcode.  When  performing  a business  object  request,  the  connector  follows  

these  basic  steps:  

1.   Builds  an  input  flist  using  the  values  in  the  business  object  instance  and  the  

information  in  the  business  object  definition.  

2.   Executes  the  Portal  Infranet  opcode  with  the  input  flist  as  an  argument.  

3.   The  opcode  returns  an  output  flist,  and  the  connector  updates  the  business  

object  with  the  information  in  the  output  flist.

The  verb  application-specific  information  and,  in  some  cases,  additional  utility  

business  objects  enable  the  connector  to  generate  the  appropriate  flists  for  each  

opcode.  A  utility  business  object  enables  the  connector  to  build  the  correct  input  

flist  or  to  properly  update  the  business  object  with  the  output  flist.  Utility  business  

objects  are  provided  as  part  of the  business  object  definition  for  the  top-level  

business  object.  The  new  definition  of  attribute-level  application-specific  

information  makes  the  utility  business  objects  redundant.  The  feature  of utility  

business  objects  is  being  supported  in connector  version  4.0.x  for  backward  

compatibility  but  would  be  removed  from  future  releases.  

Syntax of verb application-specific information 

The  required  syntax  of  verb  application-specific  information  is as  follows:  

<opcode>[‘#’<flag>][‘;’transaction  

enabled][‘;’<input_flist_model>][’;’<output_flist_model>]  

where:  

 opcode  Any  Infranet  opcode  without  PCM_OP_  at the beginning  of the 

name,  or opcode  can  be the keyword  ERROR. The  keyword  ERROR  

indicates  an Infranet  constraint.  The  connector  raises  an error  if 

the  operation  occurs.  This  might  indicate  that  an operation  cannot  

occur  at a child  level.  For  example  a Portal_BillInfo  business  

object  cannot  be deleted  alone;  it must  be deleted  with  its parent  

object.  

flag  An  optional  argument  to an opcode.  For  information  on opcode  

flags,  see  the  Portal  Infranet  documentation.  

transaction  enabled  Some  of the  Opcodes  in Portal  Infranet  maintain  their  own  

transaction  due  to the  critical  nature  of Opcode  functionality.  This  

flag  is used  to provide  that  information  to the  Portal  Infranet  

connector.  The  value  “true”  indicates  that  the  Opcode  maintains  

its own  transaction.  The  default  value  used  by the  Portal  Infranet  

connector  for  this  property  is “false.”  

 

Chapter  3. Understanding  business  objects 37



input_flist_model  Either  the name  of a utility  business  object  for the  input  flist  and,  

optionally,  some  parameters,  or a keyword.  The  syntax  

is:<input_flist_model>[#<parameter>]  The  possible  keywords  are  

NotNull, NORMAL  or OnlyPoid. These  keywords  are  defined  as 

follows:  

v   NORMAL  indicates  that  the  current  business  object  is the  model;  in 

other  words,  the  connector  can  convert  directly  from  the  current  

business  object  to the  input  flist.  

v   OnlyPoid  indicates  that  the  current  opcode  needs  only  the  POID  

from  the  business  object.  The  connector  can  then  simplify  its 

processing.  

v   NotNull  indicates  that  this  object  should  not  be deleted  by 

setting  the array  to Null.

See  “Connector  utility  business  objects”  on page  39  for  

information  on utility  business  objects.  

output_flist_model  Either  the name  of a utility  business  object  for the  output  flist  

and,  optionally,  some  parameters,  or a keyword.  The  syntax  

is:<output_flist_model>[#<parameter>]  The  possible  keywords  

are  NoRewrite  and  Flat. These  keywords  are  defined  as follows:  

v   NoRewrite  indicates  that  the  output  flist  returned  by the  opcode  

must  not  be used  to overwrite  the  business  object.  

v   Flat  indicates  that  the  connector  should  get the  attributes  for  a 

child  business  object  from  the  top-level  business  object.

See  “Connector  utility  business  objects”  on page  39  for  

information  on utility  business  objects.
  

Rules of opcode application 

One  or  more  opcodes  may  exist  at the  storable  class  level  for  Create,  Update,  and  

Delete  operations.  However,  the  connector  supports  only  one  opcode  for  each  verb.  

Therefore,  for  each  verb,  you  must  choose  the  opcode  that  is best  suited  to the  

business  object  and  verb  operation.  

Different  opcodes  may  be  required  at  the  parent  and  child  levels.  When  an  opcode  

exists  for  a child  object,  Portal  Infranet  advises  using  it rather  than  using  the  

parent  opcode.  If  a specific  opcode  is needed  to update  a subcomponent  in  

Infranet,  you  must  create  a new  application-specific  business  object  for  this  child  

and  specify  the  opcode  in  the  verb  application-specific  information.  

When  the  connector  builds  an  input  flist  for  a hierarchical  business  object,  if a 

child  business  object  verb  has  the  same  opcode  as  the  parent,  the  connector  puts  

the  child  in  the  same  flist  as  the  parent.  Otherwise,  the  connector  builds  a separate  

flist  for  the  child.  Infranet  uses  levels  in  flists  to specify  arrays  and  substructures.  

When  the  connector  starts  building  an  input  flist,  it sets  the  level  to zero.  If the  

business  object  has  children,  the  level  is increased  by  an  increment  of  one  when  

processing  a child  object.  If  a business  object  needs  a different  opcode  when  

executed  alone  rather  than  when  executed  as  part  of  a hierarchy,  then  a different  

business  object  should  be  used  with  a similar  structure.  

For  Create  operations,  parent  opcodes  are  executed  before  child  opcodes.  For  

Delete  operations,  child  opcodes  are  executed  before  parent  opcodes.  There  is no  

mandatory  order  of  execution  for  Update  and  Retrieve  operations.  

All  storable  classes  can  be  retrieved  using  the  opcode  READ_OBJ  and  the  POID  of 

the  root  object.  

 

38 Adapter  for Portal Infranet  User Guide



Connector utility business objects 

Each  Infranet  opcode  requires  a specific  input  flist  and  returns  a specific  output  

flist.  In  order  for  the  connector  to  be  meta-data  driven,  the  business  object  must  

provide  the  connector  with  the  fields  that  it needs  to  convert  a business  object  

instance  and  verb  to  the  appropriate  flist.  Because  opcode  flists  differ,  you  may  not  

be  able  to  build  a single  business  object  for  Portal  Infranet  that  provides  all  the  

information  that  the  connector  requires  for  every  input  and  output  flist.  Instead,  

you  may  need  to  define  special  utility  business  object  definitions  that  supplement  

the  application-specific  business  object  definition.  

Note:   The  definition  of  attribute-level  application-specific  information  for  

connector  version  4.0.x  does  not  require  utility  business  objects.  Connector  

version  4.0.x  also  supports  backward  compatibility  for  attribute-level  

application-specific  information,  but  for  future  releases,  you  will  need  to  use  

PortalODA  to  convert  old  business  object  definitions  into  new  business  

object  definitions.  See  “Converting  old  business  objects  to  new  business  

objects”  on  page  33for  instructions.  

Utility  business  object  definitions  do  not  become  business  object  instances  that  are  

sent  through  the  integration  broker.  The  connector  simply  uses  them  to construct  

required  input  and  output  flists  for  specific  opcodes.  You must  design  and  build  

utility  business  object  definitions  during  the  design  of  the  application-specific  

business  object,  and  you  must  define  the  connector  to  support  all  utility  business  

objects  as  well  as all  application-specific  business  objects.  For  an  example  of a 

utility  business  object,  see  “Utility  business  object  example:  Create  verb”  on  page  

40.  

To determine  whether  you  need  utility  business  objects,  examine  the  Infranet  

storable  class,  and  the  input  and  output  flists  of  the  opcodes  used  to perform  the  

verb  operations.  

Portal  Infranet  utility  business  objects  use  application-specific  information  that  

differs  in  format  from  that  of business  objects  for  Portal.  This  format  is described  

in  the  next  section.  

Application-specific information for utility business objects 

The  attribute  application-specific  information  in  utility  business  objects  specifies  

the  fields  to  be  added  to  an  flist  and  contains  the  values  to  use  for  the  flist  fields.  

In  utility  business  objects,  you  must  define  attribute  application-specific  

information  for  simple  attributes  and  for  container  attributes  as follows.  

v   For  a simple  attribute,  provide  the  field  name  for  the  flist  and  define  the  value  

for  the  field.  A field  can  be  extracted  from  the  corresponding  attribute  in the  

business  object  instance,  or  it can  be  a default  value  provided  in  the  

application-specific  information.  The  syntax  for  this  description  is:  

<flist_fieldname>[:[<bus_object_attributename>]:<default_value>]  

v   For  array  or  structure  attributes,  the  application-specific  information  contains  a 

list  of  attributes  in  the  application-specific  business  object  that  must  be  excluded  

from  the  flist.  Attributes  are  separated  by  colon  delimiters.  

[< bus_object_attributename>]([:<  bus_object_attributename>])*  

The  verb  description  is not  used  for  utility  objects.  

 

Chapter  3. Understanding  business  objects 39



The  following  sections  provide  examples  of application-specific  information  for  

Create,  Update,  Retrieve,  and  Delete  verbs.  The  examples  use  the  Portal_Account  

hierarchical  business  object  to  illustrate  aspects  of  verb  application-specific  

information.  

Utility business object example: Create verb 

As  an  example,  consider  the  verb  application-specific  information  for  the  Create  

verb  in the  Portal_Account  top-level  business  object.  

CUST_COMMIT_CUSTOMER;true;NORMAL;Portal_CAOutput_Model

Opcode Keyword Utility business object
required for output flist

Transaction
enabled

  

 

CUST_COMMIT_CUSTOMER  is the  opcode  the  connector  uses  to create  a new  customer  

account  (an  /account  storable  object).  The  opcode  has  its  own  transaction,  so 

“Transaction  Enabled”  has  been  set  to “true.”  The  keyword  NORMAL  in  the  

input_flist_model  field  indicates  that  the  connector  will  correspond  directly  from  

the  business  object  to  the  input  flist.  In  other  words,  the  business  object  provides  

all  the  fields  required  by  the  input  flist,  and  the  connector  does  not  need  

supplemental  information  to  create  the  input  flist.  

The  CUST_COMMIT_CUSTOMER  opcode  for  the  Create  Account  operation  returns  an  

output  flist  containing  the  ID  for  the  new  customer  in the  PIN_FLD_ACCOUNT_OBJ  

field.  The  value  of  this  ID  must  be  returned  to  the  WebSphere  Business  Integration  

Adapter  system.  To enable  the  connector  to  obtain  the  new  ID,  the  business  object  

designer  created  the  Portal_C[reate]A[ccount]Output_Model  utility  business  object  

definition.  The  output_flist_model  field  in  the  application-specific  information  

specifies  the  Portal_CAOutput_Model  as  utility  business  object  that  the  connector  

will  use  to  read  the  output  flist  returned  by  the  opcode.  

The  Portal_CAOutput_Model  utility  object  contains  one  attribute,  Poid,  whose  

application-specific  information  tells  the  connector  to extract  the  value  of 

PIN_FLD_ACCOUNT_OBJ  from  the  return  flist  to get  the  Portal  Infranet  object  ID  for  

the  new  customer.  The  connector  inserts  this  value  in  the  business  object  that  it  

returns  to  the  integration  broker.  The  utility  business  object  is shown  in  Figure  11. 

 

Building  flists  for  create  operations:    The  Portal_Account  business  object  is a 

hierarchical  business  object  that  looks  like  Figure  12.  

 

Name = Poid

Portal_Array_Model

IsKey = true
AppSpecificInfo = PIN_FLD_ACCOUNT_OBJ:Poid

Name = ObjectEventId

  

Figure  11. Portal_CAOutput_Model  utility  business  object  definition

 

40 Adapter  for Portal Infranet  User Guide



On  a Create  operation,  the  connector  examines  the  verb  application-specific  

information  for  the  child  business  objects  to  determine  if the  opcode  is the  same  as  

that  used  by  the  parent  business  object.  For  a Portal_Account  business  object,  the  

opcode  is  the  same  for  parent  and  child  business  objects,  and  the  connector  can  

build  a single  flist  for  the  entire  business  object  Create  operation.  Figure  13  

illustrates  the  single  opcode  and  flist  that  the  connector  uses  to  make  the  Create  

call  to  Infranet.  

 

Note,  however,  that  the  connector  must  create  the  flist  with  arrays  for  the  child  

business  objects.  Therefore,  verb  application-specific  information  must  include  

fields  that  indicate  the  level  in  the  flist  that  the  array  should  occur.  For  example,  

the  Create  verb  application-specific  information  for  the  Portal_Contact  child  

business  object  is:  

CUST_COMMIT_CUSTOMER  

The  Create  verb  application-specific  information  for  the  Portal_Phone  child  

business  object  is:  

CUST_COMMIT_CUSTOMER  

Utility business object example: Update verb 

This  example  shows  the  verb  application-specific  information  for  the  Update  verb  

in  the  Portal_Account  top-level  business  object:  

CUST_SET_STATUS;false;Portal_Array_Model#PIN_FLD_STATUSES;NoRewrite  

CUST_SET_STATUS  is  the  opcode  required  to  update  an  account  object.  The  opcode  

does  not  have  its  own  transaction,  so  “Transaction  Enabled”  has  been  set  to  

“false.”  For  this  verb  operation,  the  connector  cannot  correspond  directly  from  the  

business  object  instance  to the  flist  because  the  Portal_Account  business  object  does  

Portal _Account

Portal_Contact

Portal_BillInfo

Portal_Phones

  

Figure  12.  Diagram  of the  Portal_Account  hierarchical  business  object

Create operation

Portal_
Account

Portal_
Contact

Portal_
BillInfo

Flist

CUST_COMMIT_CUSTOMER

  

Figure  13.  Flist  for create  operation  for Portal_Account  hierarchical  business  object

 

Chapter  3. Understanding  business  objects 41



not  provide  all  the  information  required  by  the  input  flist.  Because  the  connector  

needs  additional  information  to create  the  flist,  the  input_flist_model  field  

specifies  the  utility  business  object  definition  that  the  connector  uses  to construct  

the  input  flist.  This  utility  object  is  named  Portal_Array_Model.  

The  output_flist_model  field  contains  the  keyword  NoRewrite, which  indicates  

that  the  output  flist  returned  by  the  opcode  must  not  be  used  to  overwrite  the  

business  object.  

Portal_Array_Model  utility  business  object:    Portal_Array_Model  is  a hierarchical  

business  object  definition  illustrated  in  Figure  14.  It  contains  the  information  that  

the  connector  needs  to  build  the  input  flist  for  the  Update  operation  opcode.  

Specifically,  the  input  flist  requires  an  array  that  the  Portal_Account  business  object  

definition  does  not  contain.  The  Portal_Array_Model  utility  object  enables  the  

connector  to  create  the  array.  

 

Recall  that  the  Portal_Account  Update  verb  application-specific  information  

contained  this  text  for  the  input_flist_model  field.  

Portal_Array_Model#PIN_FLD_STATUSES  

This  text  identifies  the  utility  business  object  used  to  create  the  flist  and  specifies  

the  name  of  the  array  that  the  connector  needs  to  put  in  the  input  flist.  At  runtime,  

the  connector  uses  both  the  utility  business  object  definition  and  the  

Portal_Account  application-specific  business  object  definition  to  build  the  input  

flist.  

The  connector  builds  the  input  flist  as  follows:  

1.   It begins  constructing  the  flist  with  a field  PIN_FLD_POID  and  gets  the  value  

of  the  POID  from  the  business  object  instance.  

2.   It adds  a field  for  PIN_FLD_PROGRAM_NAME  to  the  flist.  Because  the  

Portal_Account  business  object  definition  does  not  contain  this  attribute,  there  

is  no  value  for  this  in  the  business  object  instance.  Therefore,  the  value  is 

defined  in the  application-specific  information  as  the  string  CrossWorlds. 

Name = Poid

Portal_Array_Model

IsKey = true
AppSpecificInfo = PIN_FLD_POID:Poid

Name = ProgramName
AppSpecificInfo = PIN_FLD_PROGRAM_NAME::CrossWorlds

Name = Portal_Object_Model
AppSpecificInfo = Poid:AccountNumber:AccountObj

Name = ObjectEventId

Portal_Object_Model

Name = ObjectEventId
IsKey = true
AppSpecificInfo =

  

Figure  14. Portal_Array_Model  utility  business  object  definition

 

42 Adapter  for Portal Infranet  User Guide



3.   It  adds  an  array  named  PIN_FLD_STATUSES  to  the  flist.  Because  the  flist  for  

the  opcode  PCM_OP_CUST_SET_STATUS  requires  an  array  for  

PIN_FLD_STATUSES,  the  Portal_Array_Model  must  include  a container  

attribute  so  that  the  connector  will  create  an  array  in the  flist.  The  connector  

names  the  array  as indicated  in  the  application-specific  information  for  the  

Update  verb.  

The  connector  uses  the  current  business  object,  Portal_Account,  as  the  model  

for  the  array.  In  other  words,  the  connector  will  insert  in  the  flist  array  the  

fields  specified  in  the  current  business  object.  Because  some  of the  fields  may  

not  be  required,  the  application-specific  information  for  the  container  attribute  

in the  utility  business  object  specifies  which  attributes  to  ignore.  The  container  

attribute  Portal_Object_Model  specifies  these  attributes:  

Poid:AccountNumber:AccountObj  

Therefore,  to  construct  the  array,  the  connector  examines  the  business  object  

definition  for  Portal_Account,  ignores  the  POID,  AccountNumber,  and  

AccountObj  attributes,  and  builds  the  array  using  only  the  remaining  attributes  

in the  business  object  definition,  PIN_FLD_STATUS  and  

PIN_FLD_STATUS_FLAGS.

As a result,  the  input  flist  for  the  Update  verb  looks  like  this:  

PIN_FLD_POID               POID     <value  from  bus  obj  instance> 

PIN_FLD_PROGRAM_NAME       STR      “CrossWorlds”  

PIN_FLD_STATUSES           ARRAY  

   PIN_FLD_STATUS          ENUM     <value  from  bus obj instance>  

   PIN_FLD_STATUS_FLAGS      INT       <value  from  bus obj  instance>  

This  flist  contains  the  mandatory  fields  for  the  input  flist  for  the  

PCM_OP_CUST_SET_STATUS  opcode.  

Child  Business  Object  Processing:    For  an  Update  operation,  the  required  Infranet  

opcodes  are  different  to  update  an  account  storable  object,  update  the  customer  

contact  information  in  the  account  storable  object,  and  update  the  billing  

information  in the  account  storable  object.  

Therefore,  although  the  customer  contact  information  and  customer  billing  

information  are  part  of  the  same  storable  class,  the  connector  must  use  different  

opcodes  to  update  the  Portal_Account  top-level  business  object  and  the  

Portal_Contact  and  Portal_BillInfo  child  business  objects.  In  addition,  the  connector  

must  generate  separate  input  flists  for  each  opcode.  Figure  15  shows  the  set  of  

flists  required  to  update  the  Portal_Account  hierarchical  business  object.  

   

Update operation

Portal_
Account

CUST_SET_STATUS

CUST_SET_NAMEINFO

CUST_SET_BILLINFO

Flist

Flist

Flist

Portal_
Contact

Portal_
Billinfo

  

Figure  15.  Flists  for  update  operation  for  Portal_Account  hierarchical  business  object

 

Chapter  3. Understanding  business  objects 43



Utility business object example: Retrieve verb 

This  example  is  the  Retrieve  verb  application-specific  information  in the  

Portal_Account  top-level  business  object:  

READ_OBJ;false;Only_Poid;Flat#Portal_BillInfo  

The  connector  uses  the  READ_OBJ  opcode  to  read  a storable  object  from  the  

database.  This  opcode  does  not  have  its  transaction,  so  “Transaction  Enabled”  has  

been  set  to  “false.”  In general,  this  opcode  can  be  used  for  all  Retrieve  operations.  

The  input_flist_model  field  specifies  that  the  current  opcode  needs  only  the  POID  

from  the  business  object.  No  other  fields  are  needed  for  the  input  flist.  

The  opcode  returns  the  POID  of  the  object.  All  other  fields  in  the  object,  including  

all  array  elements,  are  added  to  the  return  flist  after  the  POID.  The  

output_flist_model  field  contains  the  keyword  Flat  with  the  parameter  

Portal_BillInfo.  This  indicates  that  the  information  the  connector  needs  to  build  the  

Portal_BillInfo  child  business  object  is contained  in  the  flat  flist  rather  than  in  an  

array.  

Utility business object example: Delete verb 

The  final  example  is  the  Delete  verb  application-specific  information  in  the  

Portal_Account  top-level  business  object:  

CUST_DELETE_ACCT;false;Only_Poid;NoRewrite  

The  connector  uses  the  CUST_DELETE_ACCT  opcode  to  delete  the  storable  object  from  

the  database.  This  opcode  does  not  have  its  own  transaction,  so  “Transaction  

Enabled”  has  been  set  to  “false.”  The  input_flist_model  field  specifies  that  the  

current  opcode  needs  only  the  POID  from  the  business  object.  No  other  fields  are  

needed  for  the  input  flist.  The  output_flist_model  field  contains  the  keyword  

NoRewrite, which  indicates  that  the  output  flist  returned  by  the  opcode  must  not  

be  used  to  overwrite  the  business  object.  

Note  that  Infranet  is  a logical  delete  application.  For  some  objects,  a delete  

operation  is  a change  in  status.  For  example,  for  the  Portal_Service  business  object,  

the  Delete  verb  application-specific  information  is:  

CUST_SET_STATUS;Portal_DSInput_Model#PIN_FLD_STATUSES#NotNull  

This  text  specifies  the  opcode  for  the  logical  Delete  operation  as  CUST_SET_STATUS, 

and  specifies  that  the  input_flist_model  is  the  utility  object  

Portal_D[elete]S[ervice]Input_Model,  which  defines  an  flist  with  a 

PIN_FLD_STATUSES  array  that  is not  set  to  Null.  

Context-driven verb behavior 

Because  the  connector  has  to be  able  to  handle  both  a hierarchical  business  object  

and  a single  child  business  object  (for  example,  a Portal_Contact  business  object  

can  be  sent  without  the  parent),  certain  meta-data-driven  decisions  depend  on  the  

context  of  the  business  object  and  verb.  Depending  on  the  verb,  you  must  specify  

one  unique  opcode  for  the  whole  business  object  hierarchy  or  one  opcode  for  each  

business  object.  For  this  reason  you  have  to specify  the  opcode  used  by  each  level  

in  each  business  object.  

For  a verb,  the  global  opcode  (the  parent  opcode)  is applied  if both  the  opcode  for  

the  child  level  and  the  parent  level  are  similar.  Otherwise,  the  parent  opcode  on  

the  parent  is  applied  first,  followed  by  the  child  opcode  for  each  child.  

 

44 Adapter  for Portal Infranet  User Guide



For  example,  when  you  need  to create  a contact,  if the  Portal_Contact  business  

object  is sent  as  an  individual  business  object,  use  the  opcode  CUST_SET_NAMEINFO  

for  the  Create  verb  application-specific  information.  However,  if the  contact  will  be  

created  with  the  account  business  object,  use  the  parent  opcode  

CUST_COMMIT_CUSTOMER. This  opcode  must  be  specified  in  the  application-specific  

information.  To support  the  above  functionality,  two  copies  of  the  Portal_Contact  

business  object  must  be  created  and  used  for  two  different  opcodes.  One  business  

object  would  have  the  verb  ASI  set  to  CUST_SET_NAMEINFO  and  the  other  business  

object  would  have  the  verb  ASI  set  to  CUST_COMMIT_CUSTOMER. 

A complete sample Portal Infranet business object definition 

The  following  structure  describes  the  properties  and  application  specific  

information  for  Sample  Account  business  object  in  Portal  Infranet  adapter.  

[BusinessObjectDefinition]  

Name  = Portal_Account  

Version  = 1.0.0  

AppSpecificInfo  = CN=/account  

[Attribute]  

Name  = Poid  

Type  = String  

Cardinality  = 1 

MaxLength  = 255  

IsKey  = true  

IsForeignKey  = false  

IsRequired  = true  

AppSpecificInfo  = eu 

IsRequiredServerBound  = false  

[End]  

[Attribute]  

Name  = AccountNumber  

Type  = String  

Cardinality  = 1 

MaxLength  = 255  

IsKey  = false  

IsForeignKey  = false  

IsRequired  = false  

AppSpecificInfo  = 

   UpdateO=;FN=PIN_FLD_ACCOUNT_NO;Create=true;O=true;DeleteT=;  

   Update=falTse;RetrieveT=;Alone=false;CreateT=;Retrieve=false;  

   DeleteO=;ParentAtt=;UpdateT=;RetrieveO=Main;Delete=false;CreateO=  

IsRequiredServerBound  = false  

[End]  

  

[Attribute]  

Name  = AccountObj  

Type  = String  

Cardinality  = 1 

MaxLength  = 255  

IsKey  = false  

IsForeignKey  = false  

IsRequired  = false  

AppSpecificInfo  = 

   UpdateO=;FN=PIN_FLD_ACCOUNT_OBJ;Create=true;O=true;DeleteT=;Update=false;  

   RetrieveT=;Alone=false;CreateT=;Retrieve=false;DeleteO=;ParentAtt=;  

   UpdateT=;RetrieveO=Main;Delete=false;CreateO=  

IsRequiredServerBound  = false  

[End]  

  

[Attribute]  

Name  = Status  

Type  = String  

Cardinality  = 1 

MaxLength  = 255  

IsKey  = false

 

Chapter  3. Understanding  business  objects 45



IsForeignKey  = false  

IsRequired  = false  

AppSpecificInfo  = 

   UpdateO=;FN=PIN_FLD_STATUS;Create=true;O=true;DeleteT=;Update=true;  

   RetrieveT=;Alone=false;CreateT=;DeleteO=;Retrieve=false;ParentAtt=;  

   RetrieveO=Main;UpdateT=PIN_FLD_STATUSES;CreateO=;Delete=false  

IsRequiredServerBound  = false  

[End]  

  

[Attribute]  

Name  = StatusReason  

Type  = String  

Cardinality  = 1 

MaxLength  = 255  

IsKey  = false  

IsForeignKey  = false  

IsRequired  = false  

AppSpecificInfo  = 

   UpdateO=;FN=PIN_FLD_STATUS_FLAGS;Create=true;O=true;DeleteT=;  

   Update=true;RetrieveT=;Alone=false;CreateT=;DeleteO=;Retrieve=false;  

   ParentAtt=;RetrieveO=Main;UpdateT=PIN_FLD_STATUSES;CreateO=;Delete=false  

IsRequiredServerBound  = false  

[End]  

  

[Attribute]  

Name  = Portal_Contact  

Type  = Portal_Contact  

ContainedObjectVersion  = 1.0.0  

Relationship  = Containment  

Cardinality  = n 

MaxLength  = 0 

IsKey  = false  

IsForeignKey  = false  

IsRequired  = false  

AppSpecificInfo  = 

   UpdateO=Main;FN=PIN_FLD_NAMEINFO;Create=true;O=true;Update=true;  

   Alone=false;Retrieve=false;DeleteO=Main;ParentAtt=;RetrieveO=Main;  

   CreateO=Main;Delete=false  

IsRequiredServerBound  = false  

[End]  

  

[Attribute]  

Name  = PlaceHolder  

Type  = String  

Cardinality  = 1 

MaxLength  = 255  

IsKey  = false  

IsForeignKey  = false  

IsRequired  = false  

IsRequiredServerBound  = false  

[End]  

  

[Attribute]  

Name  = Portal_BillInfo  

Type  = Portal_BillInfo  

ContainedObjectVersion  = 1.0.0  

Relationship  = Containment  

Cardinality  = n 

MaxLength  = 0 

IsKey  = false  

IsForeignKey  = false  

IsRequired  = false  

AppSpecificInfo  = 

   UpdateO=Main;FN=PIN_FLD_BILLINFO;Create=true;O=true;Update=true;  

   Alone=false;Retrieve=false;DeleteO=Main;ParentAtt=;RetrieveO=Main;  

   CreateO=Main;Delete=false  

IsRequiredServerBound  = false

 

46 Adapter  for Portal Infranet  User Guide



[End]  

  

[Attribute]  

Name  = ProgramName  

Type  = String  

Cardinality  = 1 

MaxLength  = 1 

IsKey  = false  

IsForeignKey  = false  

IsRequired  = false  

AppSpecificInfo  = 

   UpdateO=Main;FN=PIN_FLD_PROGRAM_NAME;Create=false;O=true;DeleteT=;  

   Update=true;RetrieveT=;Alone=false;CreateT=;DeleteO=Main;Retrieve=false;  

   ParentAtt=;PAttName=;RetrieveO=Main;UpdateT=;CreateO=;Delete=true  

DefaultValue  = CrossWorlds  

IsRequiredServerBound  = false  

[End]  

  

[Attribute]  

Name  = ObjectEventId  

Type  = String  

Cardinality  = 1 

MaxLength  = 255  

IsKey  = false  

IsForeignKey  = false  

IsRequired  = false  

IsRequiredServerBound  = false  

[End]  

  

[Verb]  

Name  = Create  

AppSpecificInfo  = 

   IFM=;OpCode=CUST_COMMIT_CUSTOMER;OFP=;TFlag=true;  

   IFP=;IF=NORMAL;Flag=0;OF=NORMAL  

[End]  

  

[Verb]  

Name  = Delete  

AppSpecificInfo  = 

   IFM=;OpCode=CUST_DELETE_ACCT;OFP=;TFlag=false;IFP=;  

   IF=NORMAL;Flag=0;OF=NORMAL  

[End]  

  

[Verb]  

Name  = Retrieve  

AppSpecificInfo  = 

   IFM=;OpCode=READ_OBJ;OFP=Portal_BillInfo;TFlag=false;IFP=;  

   IF=NORMAL;Flag=0;OF=NORMAL  

[End]  

  

[Verb]  

Name  = Update  

AppSpecificInfo  = 

   IFM=;OpCode=CUST_SET_STATUS;OFP=;TFlag=false;  

   IFP=;IF=NORMAL;Flag=0;OF=NORMAL  

[End]  

  

[End]  

 

Chapter  3. Understanding  business  objects 47



48 Adapter  for Portal Infranet  User Guide



Chapter  4.  Generating  business  object  definitions  using  

PortalODA  

This  chapter  describes  PortalODA,  an  object  discovery  agent  (ODA),  which  

generates  business  object  definitions  for  the  connector.  The  PortalODA  uses  the  

Portal  Infranet  APIs  to  get  the  information  about  the  Portal  Infranet  storable  

classes.  It then  uses  this  information  to  build  new  business  object  definitions.  The  

PortalODA  also  enables  the  conversion  of existing  business  object  definitions  to  

those  which  are  supported  by  the  connector.  

The  following  topics  are  covered:  

v   “Installation  and  usage”  

v   “Installing  PortalODA”  

v   “Running  PortalODA  on  multiple  machines”  on  page  50  

v   “Using  PortalODA  in  business  object  designer”  on  page  51  

v   “Contents  of  the  generated  definition”  on  page  59  

v   “Adding  information  to the  business  object  definition”  on  page  61

Installation and usage 

This  section  discusses  the  following:  

v   “Installing  PortalODA”  on  page  49  

v   “Before  using  PortalODA”  on  page  50  

v   “Starting  PortalODA”  on  page  50  

v   “Running  PortalODA  on  multiple  machines”  on  page  50  

v   “Changing  the  error  and  message  filename”  on  page  50

Installing PortalODA 

To install  PortalODA,  use  the  WebSphere  Business  Integration  Adapter  (WBIA)  

Installer.  Follow  the  instructions  in  the  System  Installation  Guide  for  UNIX  or for  

Windows. When  the  installation  is complete,  the  following  files  are  installed  in  the  

directory  on  your  system  where  you  have  installed  the  product:  

v   ODA\Portal\PortalODA.jar  

v   ODA\messages\PortalODAAgent.txt  

v   ODA\Portal\start_PortalODA.bat  (Windows  only)  

v   ODA/Portal/start_PortalODA.sh  (UNIX  only)  

v   bin\CWODAEnv.bat  (Windows  only)  

v   bin/CWODAEnv.sh  (UNIX  only)

Note:   Except  as otherwise  noted,  this  document  uses  backslashes  (\)  as  the  

convention  for  directory  paths.  For  UNIX  installations,  substitute  slashes  (/) 

for  backslashes.  All  WBIA  product  pathnames  are  relative  to the  directory  

where  the  product  is installed  on  your  system.

 

© Copyright  IBM Corp. 1999, 2005 49



Before using PortalODA 

Before  you  can  run PortalODA,  you  must  copy  the  required  Portal  Infranet  

application’s.jar  files  to  the  %ProductDir%/connectors/Portal/dependencies  

directory.  The  following  files  must  be  copied  to  this  directory:  

pcm.jar  

pcmext.jar  

The  above  files  are  present  in  the  %INFRANET%\jars  folder.  

After  installing  the  PortalODA,  you  must  do  the  following  to  generate  or  convert  

business  objects:  

1.   Start  the  ODA.  

2.   Start  Business  Object  Designer.  

3.   Follow  a six-step  process  in  Business  Object  Designer  to  configure  and  run the  

ODA.

The  following  sections  describe  these  steps  in detail.  

Starting PortalODA 

You can  start  PortalODA  using  one  of the  following  scripts:  

UNIX: 

start_PortalODA.sh  

Windows: 

start_PortalODA.bat  

You configure  and  run PortalODA  using  Business  Object  Designer.  Business  Object  

Designer  locates  each  ODA  by  the  name  specified  in  the  AGENTNAME  variable  of  each  

script  or  batch  file.  The  default  ODA  name  for  this  connector  is PortalODA. 

Running PortalODA on multiple machines 

You can  run multiple  instances  of the  ODA,  either  on  the  local  host  or  a remote  

host  in  the  network.  Each  instance  has  to run on  a unique  port  if multiple  

instances  are  being  run on  the  same  machine.  

Figure  16  on  page  52  illustrates  the  window  in  Business  Object  Designer  from  

which  you  select  the  ODA  to run. 

Changing the error and message filename 

The  error  and  trace  message  file  (PortalODAAgent.txt)  is located  in 

\ODA\messages\, which  is under  the  product  directory.  This  file  uses  the  following  

naming  convention:  

AgentNameAgent.txt  

If you  change  an  ODA’s  name  in  the  AGENTNAME  variable  of  a script  or  batch  file,  

use  this  convention  to  change  the  name  of  its  associated  error  and  trace  message  

file.  

If you  create  multiple  instances  of  the  script  or  batch  file  and  provide  a unique  

name  for  each  represented  ODA,  create  a copy  of the  error  and  trace  message  file  

 

50 Adapter  for Portal Infranet  User Guide



for  each  of  these.  Name  each  file  according  to  this  convention.  For  example,  if the  

AGENTNAME  variable  specifies  PortalODA1, name  the  associated  message  file:  

PortalODA1Agent.txt. 

During  the  configuration  process,  you  specify:  

v   The  name  of  the  file  into  which  PortalODA  writes  error  and  trace  information  

v   The  level  of  tracing,  which  ranges  from  0 to 5.

Table  7 describes  the  tracing  level  values.  

 Table 7. Tracing levels  

Trace Level  Description  

0 Logs  all errors  

1 Traces all entering  and  exiting  messages  for method  

2 Traces the  ODA’s properties  and  their  values  

3 Traces the  names  of all business  objects  

4 Traces details  of all spawned  threads  

5 v Indicates  the  ODA  initialization  values  for  all of its properties  v Traces a 

detailed  status  of each  thread  that  PortalODA  spawned  v Traces the  

business  object  definition  dump
  

For  information  on  where  you  configure  these  values,  see  “Configure  initialization  

properties”  on  page  52.  

Using PortalODA in business object designer 

This  section  describes  how  to use  PortalODA  in  Business  Object  Designer  to 

convert  the  existing  business  definitions  to  new  ones  and  to  generate  new  business  

object  definitions.  This  is done  by  getting  information  directly  from  Portal  Infranet.  

For  information  on  starting  Business  Object  Designer,  see  the  Business  Object  

Development  Guide. 

After  you  start  an  ODA,  you  must  start  Business  Object  Designer  to  configure  and  

run it.  There  are  six  steps  in  Business  Object  Designer  to  generate  or  convert  a 

business  object  definition  using  an  ODA.  Business  Object  Designer  provides  a 

wizard  that  guides  you  through  each  of  these  steps.  

After  starting  the  ODA,  do  the  following  to start  the  wizard:  

1.   Open  Business  Object  Designer.  

2.   From  the  File  menu,  select  the  New  Using  ODA...  submenu.  

Business  Object  Designer  displays  the  first  window  in  the  wizard,  named  Select  

Agent.  Figure  16  on  page  52  illustrates  this  window.

To  select,  configure,  and  run the  ODA,  follow  these  steps:  

1.   “Select  the  ODA”  on  page  52  

2.   “Configure  initialization  properties”  on  page  52  

3.   “Generating  definitions”  on  page  56  and,  optionally,  “Providing  additional  

information”  on  page  57  

4.   “Saving  definitions”  on  page  58

 

Chapter  4. Generating  business object definitions  using PortalODA  51



Select the ODA 

Figure  16  on  page  52  illustrates  the  first  dialog  box  in  Business  Object  Designer’s  

six-step  wizard.  

 

 To select  the  ODA:  

1.   Click  the  Find  Agents  button  to display  all  registered  or  currently  running  

ODAs  in  the  Located  agents  field.  

You can  also  find  the  agent  using  the  Host  name  and  the  Port  number.  

Note:   If  Business  Object  Designer  does  not  locate  your  desired  ODA,  check  the  

setup  of  the  ODA.  

2.   Select  the  desired  ODA  from  the  displayed  list.  

Business  Object  Designer  displays  your  selection  in  the  Agent’s  name  field.

Configure initialization properties 

The  first  time  Business  Object  Designer  communicates  with  PortalODA,  it prompts  

you  to  enter  a set  of  initialization  properties  as  shown  in  Figure  17  on  page  53.  You 

can  save  these  properties  in  a named  profile  so  that  you  do  not  need  to  re-enter  

them  each  time  you  use  PortalODA.  For  information  on  specifying  an  ODA  profile,  

see  the  Business  Object  Development  Guide. 

 

  

Figure  16.  Selecting  the  ODA

 

52 Adapter  for Portal Infranet  User Guide



Configure  the  PortalODA  properties  described  inTable  8. 

Important:   All  of  the  PortalODA  properties  inTable  8 are  required  to  be  entered.  

 Table 8. PortalODA  properties  

Row  

number  Property  name  Property  type  Description  

1 UserName  String  Portal  Infranet  application  login  name  

2 Password  String  Portal  Infranet  application  password  

3 CMPortNo  String  The  port  number  on which  the  connection  manager  is 

running  

4 CMHostName  String  The  name  or IP address  of the  machine  on  which  the  

connection  manager  is running  

5 Database  String  The  database  number  to which  the  connection  manager  is 

connected  

6 Type String  The  Portal  Infranet  connection  type:  1 is for validating  

UserName  and  Password,  and  0 is for  no validation  

7 Version  String  Version  of Portal  Infranet  

8 LanguageVersion  String  Example:  ENU  for English  

9 DefaultBOPrefix  String  Example:  Portal_BO  

10  FileLocation  String  The  absolute  path  containing  the  files  with  previous  

versions  of business  object  definitions.  For  example,  in 

Windows,  if the  path  is C:\PortalBos, you  must  enter  the 

value  C:\\Portal\\In UNIX,  if the  path  is 

/home/PortalBOs, you  must  enter  the  value  

/home/PortalBos/  

11 TraceFileName  String  Name  of the  trace  file 

12  TraceLevel  Integer  Text that  is prepended  to the name  of the  business  object  

to make  it unique.  You can  change  this  later, if required,  

when  Business  Object  Designer  prompts  you  for  business  

object  properties.  For more  information,  see  “Providing  

additional  information”  on page  57  

13  MessageFile  String  Path  to the  message  file
 

  

Figure  17.  Configuring  agent  initialization  properties

 

Chapter  4. Generating  business object definitions  using PortalODA  53



Expand nodes and select repository files, and storable 

classes 

After  you  configure  all  initialization  properties  for  PortalODA,  the  following  screen  

is displayed  by  Business  Object  Designer.  

 

This  screen  has  two  expandable  options,  Convert  and  Generate.  If  you  need  to 

convert  the  old  business  object  definitions  into  new  ones,  expand  Convert.  This  

displays  the  repository  files  containing  the  business  object  definitions  that  need  to  

be  converted.  

Converting old business object definitions 

The  old  business  object  definitions  have  application-specific  information  as  comma  

delimited  values  while  the  new  business  object  definitions  have  application-specific  

information  as  name-value  pairs  which  are  comma  delimited.  Also,  the  old  

business  object  definitions  use  meta  business  objects  to transform  the  structure  of a 

business  object  for  a particular  opcode  while  in  the  new  business  object  definitions,  

this  feature  is replaced  with  the  name-value  pair  of application-specific  information  

at  the  attribute  level  of the  business  object.  

 Select  the  files  to  be  converted,  then  click  Next.  

Note:   When  you  select  a file,  all  of  the  business  object  definitions  in that  file  are  

converted.  There  is no  method  for  selecting  a subset  of  business  object  

definitions  to  convert.  However,  if you  want  to  convert  only  a subset  of 

business  object  definitions,  you  can  create  a new  file  with  a subset  of  

business  object  definitions,  then  convert  the  new  file.  

Generating new business objects 

If you  need  to  generate  new  business  object  definitions  by  getting  information  

from  Portal  Infranet,  expand  Generate.  This  gets  all  of  the  storable  class  names  

from  Portal  Infranet  and  displays  a tree.  

 The  storable  class  names  which  are  presented  as  nodes  in  the  tree  are  expandable  

(see  Figure  19  on  page  55).  The  generated  business  objects  have  some  properties  

which  have  to  be  set  individually  before  the  business  object  can  be  used  by  the  

  

Figure  18.  Tree giving  two  options  for  BO  conversion  and  BO  generation

 

54 Adapter  for Portal Infranet  User Guide



connector.  The  key  fields  for  any  business  object  have  to  be  marked  as key  fields  in  

the  WebSphere  business  integration  system  business  object.  Depending  on  the  

opcode  being  used  for  the  different  verbs,  the  attribute-level  application-specific  

information  has  to  be  set.  For  example,  if an  attribute  is part  of the  Create  verb  

opcode,  the  value  for  the  property  “Create”  should  be  set  to the  name  of the  

parent  field.  Refer  to  “Attribute-level  application-specific  information”  on  page  33  

for  details  of  various  properties  in  application-specific  information  of  an  attribute.  

 

This  screen  allows  you  to  choose  a storable  class  from  the  list  to  generate.  The  “+”  

sign  before  the  class  name  means  that  the  class  has  child  objects.  Multiple  classes  

can  be  selected  for  generation.  

Note:   When  you  select  a class  to be  generated  which  has  child  objects,  the  child  

objects  are  not  selected  by  default.  You must  explicitly  select  the  child  

objects  if you  want  to generate  those  as  well.  You can  do  this  by  holding  the  

Shift  key  while  selecting  the  child  object.  

Confirming the selection of the repository files and storable 

classes 

After  you  identify  all  the  repository  files  or  storable  classes  to  be  associated  with  

the  generated  business  object  definition,  Business  Object  Designer  displays  the  

following  confirmation  screen  (see  Figure  20  on  page  56).  

 

  

Figure  19.  Screen  showing  the storable  classes

 

Chapter  4. Generating  business object definitions  using PortalODA  55



This  window  provides  the  following  options:  

v   To confirm  the  selection,  click  Next.  

v   If  the  selection  is  not  correct,  click  Back  to return  to the  previous  window  and  

make  the  necessary  changes.  When  the  selection  is correct,  click  Next.

Generating definitions 

After  you  confirm  the  database  objects,  the  next  dialog  box  informs  you  that  

Business  Object  Designer  is generating  the  definitions.  

Figure  21  on  page  56  illustrates  this  dialog  box.  

   

  

Figure  20.  Confirming  your  selection

  

Figure  21.  Generating  definitions

 

56 Adapter  for Portal Infranet  User Guide



Providing additional information 

If  the  PortalODA  needs  additional  information,  Business  Object  Designer  displays  

the  BO  Properties  window,  which  prompts  you  for  the  information.  This  is done  

only  in the  case  of business  object  generation.  Figure  22  on  page  57  illustrates  this  

window.  

 

 In  the  BO  Properties  window,  enter  or  change  the  following  information:  

v   Prefix—The  text  that  is prepended  to  the  name  of  the  business  object  to make  it 

unique.  If  you  are  satisfied  with  the  value  you  entered  for  the  DefaultBOPrefix  

property  in  the  Configure  Agent  window  (Figure  17  on  page  53),  you  do  not  

need  to  change  the  value  here.  

v   Verbs—  Click  in the  Value field  and  select  one  or  more  verbs  from  the  pop-up  

menu.  These  are  the  verbs  supported  by  the  business  object.  

Note:   If  a field  in  the  BO  Properties  dialog  box  has  multiple  values,  the  field  

appears  to  be  empty  when  the  dialog  box  first  displays.  Click  in  the  field  

to  display  a drop-down  list  of its  values.  

v   GenerateVerbApp—A flag  which  allows  you  to edit  the  application-specific  

information  at  the  verb  level.

 

  

Figure  22.  Application-specific  properties  for storable  classes

 

Chapter  4. Generating  business object definitions  using PortalODA  57



The  format  for  the  verb-level  application-specific  information  is:  

OpCode=;Flag=;TFlag=;IF=;IFP=;IFM=;OF=OFP=  describes  

Table  9 describes  each  name  in  the  verb-level  application-specific  information.  

 Table 9. Application-specific  information  for verbs  

Name  Description  

Opcode  The  name  of the opcode  which  should  be  executed  for  this  

verb  

Flag  The  flag  value  which  should  be used  with  the  Opcode  

TFlag  TFlag  is either  true  or false  depending  on whether  the  Opcode  

maintains  its own  transaction  or not.  

IF Input  Flist  (IF)  is the  name  of the  business  object  that  is used  

to prepare  an input  flist  for  the opcode  

IFP  Input  Flist  Parameter  (IFP)  is the  name  of the  optional  

parameter  that  can  be used  to prepare  the  input  flist.  

IFM  Input  Flist  Mode  (IFM)  is the  value  that  defines  the kind  of 

flist  translation  that  is done  

OF Output  Flist  (OF)  is the  parameter  that  governs  how  the return  

flist  of the opcode  execution  should  be converted  to a business  

object  

OFP  Output  Flist  Mode  (OFM)  is the  value  that  defines  the kind  of 

business  object  update  that  is done  from  the  output  flist of the  

opcode
  

Saving definitions 

After  you  provide  all  required  information  in  the  BO  Properties  dialog  box  and  

click  OK,  Business  Object  Designer  displays  the  final  dialog  box  in  the  wizard.  

Here,  you  can  save  the  definition  to  the  server  or  to a file,  or  you  can  open  the  

definition  for  editing  in  Business  Object  Designer.  For  more  information,  and  to 

make  further  modifications,  see  the  Business  Object  Development  Guide. 

  

Figure  23.  Application-specific  information  for  verbs

 

58 Adapter  for Portal Infranet  User Guide



Figure  24  on  page  59  illustrates  this  dialog  box.  

   

Contents of the generated definition 

The  business  object  definition  that  PortalODA  generates  contains:  

v   An  attribute  for  each  column  in  the  specified  database  tables  and  views  

v   The  verbs  specified  in  the  BO  Properties  window  (Figure  23  on  page  58)  

v   Application-specific  information:  

–   At  the  business-object  level  

–   For  each  attribute  

–   For  each  verb

When  generating  business  objects  by  getting  the  information  from  Portal  Infranet,  

the  application-specific  information  generated  is for  simple  attributes  only.  The  

exception  to  this  rule is  if the  container  attribute  is a multi-value  link.  In  all other  

cases,  the  user  must  enter  the  application-specific  information  as  described  in  

Chapter  3,  “Understanding  business  objects,”  on  page  25.  

This  section  describes:  

v   “Business-object-level  properties”  on  page  59  

v   “Attribute  properties”  on  page  60  

v   “Verbs”  on  page  61

Business-object-level properties 

PortalODA  generates  the  following  information  at the  business-object  level:  

v   Name  of the  business  object  

v   Version—defaults  to 1.0.0  

v   Application-specific  information

Application-specific  information  at the  business-object  level  contains  the  name  of  

the  corresponding  Portal  Infranet  business  component.  

  

Figure  24.  Saving  the  business  object  definition

 

Chapter  4. Generating  business object definitions  using PortalODA  59



Attribute properties 

This  section  describes  the  properties  that  PortalODA  generates  for  each  attribute.  

Important:   Any  user  edits  described  in  the  following  sections  refer  to  business  

object  generation  only,  not  to  business  object  conversion.  

Name property 

PortalODA  obtains  the  value  of  the  attribute’s  name  from  the  corresponding  

attribute  in  the  Portal  Infranet  business  component.  

Data type property 

When  setting  the  type  of  an  attribute,  PortalODA  converts  the  data  type  of  the  

attribute  in  the  Portal  Infranet  business  component  and  converts  it to the  

corresponding  data  type,  as shown  in  Table 10.  This  is only  in  the  case  of  business  

object  generation,  since  business  object  conversion  is for  existing  business  objects.  

 Table 10.  Correspondence  of data  types  

Application  WebSphere  business  

integration  system  

Length  

PIN_FLDT_INT  Integer  

PIN_FLDT_ENUM  Integer  

PIN_FLDT_STR  String  Length  of corresponding  attribute  in 

Portal  Infranet  

PIN_FLDT_BUF  String  Length  of corresponding  attribute  in 

Portal  Infranet  

PIN_FLDT_POID  String  Length  of corresponding  attribute  in 

Portal  Infranet  

PIN_FLDT_TSTAMP  Date  

PIN_FLDT_ARRAY  Object  

PIN_FLDT_SUBSTRUCT  Object  

PIN_FLDT_BINSTR  String  Length  of corresponding  attribute  in 

Portal  Infranet  

PIN_FLDT_DECIMAL  Float  

  

Note:   If  an  attribute’s  data  type  is not  one  of those  shown  in  Table 10,  PortalODA  

skips  the  column  and  displays  a message  stating  that  the  column  cannot  be 

processed.  

Cardinality property 

PortalODA  sets  the  cardinality  of  all  simple  attributes  to  1 and  the  container  

attributes  to  n.  The  user  should  change  the  cardinality  of  the  container  attributes  

wherever  it is needed.  

MaxLength property 

PortalODA  obtains  the  length  of  the  attribute  from  Portal  Infranet.  

IsKey property 

PortalODA  does  not  mark  any  attributes  as  key  fields.  You must  manually  mark  

the  key  fields  after  the  business  objects  are  generated.  

 

60 Adapter  for Portal Infranet  User Guide



IsRequired Property 

If  a field  is designated  not  null  in  the  table  or  view, PortalODA  marks  it as  a 

required  attribute.  However,  PortalODA  does  not  mark  the  key  field  as  required  

because  the  Portal  Infranet  application  generates  its  own  Id  values  while  creating  a 

record.  

AppSpecificInfo Property 

The  user  should  edit  this  property  if container  attributes  have  not  been  generated  

and  ensure  the  correctness  if container  attributes  have  been  generated.  

Verbs 

PortalODA  generates  the  verbs  specified  in  the  BO  Properties  window  (as  

illustrated  in Figure  23  on  page  58).  It creates  an  AppSpecificInfo  property  for  each  

verb  but  does  not  populate  it. 

Adding information to the business object definition 

Since  Portal  Infranet  storable  classes  may  not  have  all  the  information  that  a 

business  objects  requires,  it may  be  necessary  to add  information  to  the  business  

object  definition  that  PortalODA  creates,  especially  when  generating  new  business  

objects.  

To examine  the  business  object  definition  or  reload  a revised  definition  into  the  

repository,  use  Business  Object  Designer.  

Note:   Alternatively,  if ICS  is the  integration  broker,  you  can  use  the  repos_copy  

command  to  load  the  definition  into  the  repository;  if WebSphere  MQ  

Integrator  Broker  is the  integration  broker,  you  can  use  a system  command  

to  copy  the  file  into  the  repository  directory.  

 

Chapter  4. Generating  business object definitions  using PortalODA  61



62 Adapter  for Portal Infranet  User Guide



Appendix  A.  Standard  connector  properties  

This  appendix  describes  the  standard  configuration  properties  for  the  connector  

component  of WebSphere  Business  Integration  adapters.  The  information  covers  

connectors  running  with  the  following  integration  brokers:  

v   WebSphere  InterChange  Server  (ICS)  

v   WebSphere  MQ  Integrator,  WebSphere  MQ  Integrator  Broker,  and  WebSphere  

Business  Integration  Message  Broker,  collectively  referred  to  as  the  WebSphere  

Message  Brokers  (and  shown  as  WMQI  in  the  Connector  Configurator).  

v   Information  Integrator  (II)  

v   WebSphere  Application  Server  (WAS)

If  your  adapter  supports  DB2  Information  Integrator,  use  the  WMQI  options  and  

the  DB2  II  standard  properties  (see  the  Notes  column  in  Table  11 on  page  65.)  

The  properties  you  set  for  the  adapter  depend  on  which  integration  broker  you  

use.  You choose  the  integration  broker  using  Connector  Configurator.  After  you  

choose  the  broker,  Connector  Configurator  lists  the  standard  properties  you  must  

configure  for  the  adapter.  

For  information  about  properties  specific  to  this  connector,  see  the  relevant  section  

in  this  guide.  

New properties 

This  standard  property  was  added  in this  release:  

v   BOTrace

Standard connector properties overview 

Connectors  have  two  types  of  configuration  properties:  

v   Standard  configuration  properties,  which  are  used  by  the  framework  

v   Application,  or  connector-specific,  configuration  properties,  which  are  used  by  

the  agent

These  properties  determine  the  adapter  framework  and  the  agent  run-time  

behavior.  

This  section  describes  how  to start  Connector  Configurator  and  describes  

characteristics  common  to all  properties.  For  information  on  configuration  

properties  specific  to  a connector,  see  its  adapter  user  guide.  

Starting Connector Configurator 

You configure  connector  properties  from  Connector  Configurator,  which  you  access  

from  System  Manager.  For  more  information  on  using  Connector  Configurator,  

refer  to  the  sections  on  Connector  Configurator  in  this  guide.  

Connector  Configurator  and  System  Manager  run only  on  the  Windows  system.  If 

you  are  running  the  connector  on  a UNIX  system,  you  must  have  a Windows  

machine  with  these  tools  installed.  

 

© Copyright  IBM Corp. 1999, 2005 63



To set  connector  properties  for  a connector  that  runs on  UNIX,  you  must  start  up  

System  Manager  on  the  Windows  machine,  connect  to the  UNIX  integration  broker,  

and  bring  up  Connector  Configurator  for  the  connector.  

Configuration property values overview 

The  connector  uses  the  following  order  to determine  a property’s  value:  

1.   Default  

2.   Repository  (valid  only  if WebSphere  InterChange  Server  (ICS)  is the  integration  

broker)  

3.   Local  configuration  file  

4.   Command  line

The  default  length  of  a property  field  is 255  characters.  There  is no  limit  on  the  

length  of  a STRING  property  type.  The  length  of  an  INTEGER  type  is determined  

by  the  server  on  which  the  adapter  is running.  

A connector  obtains  its  configuration  values  at startup.  If  you  change  the  value  of  

one  or  more  connector  properties  during  a run-time  session,  the  property’s  update  

method  determines  how  the  change  takes  effect.  

The  update  characteristics  of  a property,  that  is,  how  and  when  a change  to the  

connector  properties  takes  effect,  depend  on  the  nature  of  the  property.  

There  are  four  update  methods  for  standard  connector  properties:  

v   Dynamic  

The  new  value  takes  effect  immediately  after  the  change  is saved  in System  

Manager.  However,  if the  connector  is in  stand-alone  mode  (independently  of 

System  Manager),  for  example,  if it is running  with  one  of  the  WebSphere  

message  brokers,  you  can  change  properties  only  through  the  configuration  file.  

In  this  case,  a dynamic  update  is not  possible.  

v   Agent  restart  (ICS  only)  

The  new  value  takes  effect  only  after  you  stop  and  restart  the  connector  agent.  

v   Component  restart  

The  new  value  takes  effect  only  after  the  connector  is stopped  and  then  restarted  

in  System  Manager.  You do  not  need  to  stop  and  restart  the  agent  or  the  server  

process.  

v   System  restart  

The  new  value  takes  effect  only  after  you  stop  and  restart  the  connector  agent  

and  the  server.

To determine  how  a specific  property  is updated,  refer  to  the  Update  Method  

column  in  the  Connector  Configurator  window,  or see  the  Update  Method  column  

in  Table 11 on  page  65.  

There  are  three  locations  in  which  a standard  property  can  reside.  Some  properties  

can  reside  in  more  than  one  location.  

v   ReposController  

The  property  resides  in  the  connector  controller  and  is effective  only  there.  If 

you  change  the  value  on  the  agent  side,  it does  not  affect  the  controller.  

v   ReposAgent  

The  property  resides  in  the  agent  and  is effective  only  there.  A  local  

configuration  can  override  this  value,  depending  on  the  property.  

 

64 Adapter  for Portal Infranet  User Guide



v   LocalConfig  

The  property  resides  in the  configuration  file  for  the  connector  and  can  act  only  

through  the  configuration  file.  The  controller  cannot  change  the  value  of the  

property,  and  is not  aware  of  changes  made  to  the  configuration  file  unless  the  

system  is redeployed  to  update  the  controller  explicitly.

Standard properties quick-reference 

Table  11 provides  a quick-reference  to  the  standard  connector  configuration  

properties.  Not  all  connectors  require  all  of  these  properties,  and  property  settings  

may  differ  from  integration  broker  to  integration  broker.  

See  the  section  following  the  table  for  a description  of  each  property.  

Note:   In  the  Notes  column  in  Table 11, the  phrase  “RepositoryDirectory  is set  to  

<REMOTE>”  indicates  that  the  broker  is InterChange  Server.  When  the  

broker  is WMQI  or  WAS, the  repository  directory  is set  to  

<ProductDir>\repository  

 Table 11. Summary  of standard  configuration  properties  

Property  name Possible values Default value 

Update 

method  Notes  

AdapterHelpName  One of the valid 

subdirectories in 

<ProductDir>\bin\Data  

\App\Help\  that 

 contains  a valid  

<RegionalSetting>  

directory 

Template  name, if valid, 

or blank field 

Component  

restart 

Supported  regional 

settings.  

Include  chs_chn, 

cht_twn,  deu_deu, 

esn_esp,  fra_fra, 

ita_ita,  jpn_jpn, 

kor_kor,  ptb_bra, 

and enu_usa  (default).  

AdminInQueue  Valid  JMS queue  name <CONNECTORNAME>  

/ADMININQUEUE  

Component  

restart 

This property is valid 

 only when the value 

of DeliveryTransport 

is JMS 

AdminOutQueue  Valid  JMS queue  name <CONNECTORNAME>  

/ADMINOUTQUEUE  

Component  

restart 

This property is valid 

only  when the value 

of DeliveryTransport 

is JMS 

AgentConnections  1 through 4 1 Component  

restart 

This property is valid 

only  when the value 

of DeliveryTransport 

is MQ or IDL, the value 

of Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

AgentTraceLevel  0 through 5 0 Dynamic  

if broker is 

ICS; 

otherwise  

Component  

restart 

ApplicationName  Application  name The value specified  for 

the connector  

application  name 

Component  

restart 

 

Appendix  A. Standard connector  properties 65



Table 11. Summary  of standard  configuration  properties  (continued)  

Property  name Possible  values Default value 

Update 

method Notes 

BiDi.Application  Any valid  combination  

of these bidirectional 

attributes:  

 1st letter: I,V 

2nd letter: L,R 

3rd  letter: Y, N 

4th letter: S, N 

5th letter: H, C, N 

ILYNN (five letters) Component  

restart 

This property is valid 

only if the value 

of BiDi.Transforma tion 

is true 

BiDi.Broker Any valid  combination  

of these bidirectional 

attributes:  

 1st letter: I,V 

2nd letter: L,R 

3rd  letter: Y, N 

4th letter: S, N 

5th letter: H, C, N 

ILYNN (five letters) Component  

restart 

This property is valid 

only if the value of 

BiDi.Transformation  

is true. If the value of 

BrokerType is 

ICS, the property 

is read-only. 

BiDi.Metadata  Any valid  combination  

of these bidirectional 

attributes:  

 1st letter: I,V 

2nd letter: L,R 

3rd  letter: Y, N 

4th letter: S, N 

5th letter: H, C, N 

ILYNN (five letters) Component  

restart 

This property is valid 

only if the value of 

BiDi.Transformation  

is true. 

BiDi.Transformation  true or false false Component  

restart 

This property is valid 

only if the value of 

BrokerType is not WAS. 

BOTrace none or keys or full none Agent 

restart 

This property is valid 

only if the value of 

AgentTraceLevel is 

lower than 5. 

BrokerType  ICS, WMQI, WAS  ICS Component  

restart 

CharacterEncoding  Any supported  code. 

The list shows  this subset: 

ascii7,  ascii8,  SJIS, 

Cp949,  GBK, Big5, 

Cp297,  Cp273,  Cp280, 

Cp284,  Cp037,  Cp437 

. 

ascii7 Component  

restart 

This property is valid 

only for C++ connectors.  

CommonEventInfrastruc  

ture  

true or false false Component  

restart 

CommonEventInfrastruc  

tureURL  

A URL string, for 

example,  

corbaloc:iiop:  

host:2809. 

No default value. Component  

restart 

This property is valid 

only if the value of 

CommonEvent  

Infrastructure is true.  

ConcurrentEventTrig  

geredFlows 

1 through 32,767 1 Component  

restart 

This property is valid 

only if the value of 

RepositoryDirectory 

is set to <REMOTE>  

and the value of 

BrokerType is ICS. 

ContainerManagedEvents  Blank or JMS Blank Component  

restart 

This property is valid 

only when the value 

of Delivery  Transport 

is JMS. 

 

66 Adapter  for Portal Infranet  User Guide



Table 11. Summary  of standard  configuration  properties  (continued)  

Property  name Possible values Default value 

Update 

method  Notes  

ControllerEventSequenc  

ing 

true or false true Dynamic  This property is valid 

only  if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

ControllerStoreAndFor  

wardMode  

true or false true Dynamic  This property is valid 

only  if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

ControllerTraceLevel  0 through 5 0 Dynamic  This property is valid 

only  if the value of 

RepositoryDirectory  

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

DeliveryQueue  Any valid JMS 

queue  name 

<CONNECTORNAME>  

/DELIVERYQUEUE  

Component  

restart 

This property is valid 

only  when the value 

of Delivery Transport 

is JMS. 

DeliveryTransport  MQ, IDL, or JMS IDL when the value of 

RepositoryDirectory is 

<REMOTE>,  otherwise  

JMS 

Component  

restart 

If the value of 

RepositoryDirectory  is 

not <REMOTE>,  

the only valid value for 

this property is JMS. 

DuplicateEventElimina  

tion 

true or false false Component  

restart 

This property is valid 

only  if the value of 

DeliveryTransport  is JMS.  

EnableOidForFlowMoni  

toring  

true or false false Component  

restart 

This property is valid 

only  if the value of 

BrokerType  is ICS. 

FaultQueue  Any valid queue  name. <CONNECTORNAME>  

/FAULTQUEUE  

Component  

restart 

This property is 

valid only if the value 

of DeliveryTransport 

is JMS. 

jms.FactoryClassName  CxCommon.Messaging.jms  

.IBMMQSeriesFactory,  

CxCommon.Messaging  

.jms.SonicMQFactory, 

or any Java class name 

CxCommon.Messaging.  

jms.IBMMQSeriesFactory  

Component  

restart 

This property is 

valid only if the value 

of DeliveryTransport 

is JMS. 

jms.ListenerConcurrency  1 through 32767 1 Component  

restart 

This property is 

valid only if the value of 

jms.TransportOptimized  

is true. 

jms.MessageBrokerName  If the value of 

jms.FactoryClassName  

is IBM, use 

crossworlds.queue.  

manager. 

crossworlds.queue.  

manager 

Component  

restart 

This property is valid 

only  if the value of 

DeliveryTransport  

is JMS 

. 

jms.NumConcurrent  

Requests  

Positive  integer 10 Component  

restart 

This property is valid 

only  if the value of 

DeliveryTransport  

is JMS 

. 

 

Appendix  A. Standard connector  properties 67



Table 11. Summary  of standard  configuration  properties  (continued)  

Property  name Possible  values Default value 

Update 

method Notes 

jms.Password  Any valid  password Component  

restart 

This property is valid 

only if the value of 

DeliveryTransport  

is JMS 

. 

jms.TransportOptimized  true or false false Component  

restart 

This property is valid 

only if the value of 

DeliveryTransport  

is JMS and the value of 

BrokerType is ICS. 

jms.UserName  Any valid  name Component  

restart 

This property is valid 

only if the value of 

Delivery  Transport is JMS. 

JvmMaxHeapSize  Heap  size in megabytes  128m Component  

restart 

This property is valid 

only if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType is ICS. 

JvmMaxNativeStackSize  Size of stack in kilobytes  128k Component  

restart 

This property is valid 

only if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType is ICS. 

JvmMinHeapSize  Heap  size in megabytes  1m Component  

restart 

This property is valid 

only if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType is ICS. 

ListenerConcurrency  1 through 100 1 Component  

restart 

This property is valid 

only if the value of 

DeliveryTransport  is MQ. 

Locale This is a subset  of the 

supported  locales:  

en_US, ja_JP,  ko_KR,  

 zh_CN, zh_TW, fr_FR,  

de_DE, it_IT,  

es_ES, pt_BR 

en_US Component  

restart 

LogAtInterchangeEnd  true or false false Component  

restart 

This property is valid 

only if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType is ICS. 

MaxEventCapacity  1 through 2147483647  2147483647  Dynamic  This property is valid 

only if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType is ICS. 

MessageFileName  Valid  file name InterchangeSystem.txt  Component  

restart 

 

68 Adapter  for Portal Infranet  User Guide



Table 11. Summary  of standard  configuration  properties  (continued)  

Property  name Possible values Default value 

Update 

method  Notes  

MonitorQueue  Any valid queue  name <CONNECTORNAME>  

/MONITORQUEUE  

Component  

restart 

This property is valid 

only  if the value of 

DuplicateEventElimination  

is true and 

ContainerManagedEvents  

has no value. 

OADAutoRestartAgent  true or false false Dynamic  This property is valid 

only  if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

OADMaxNumRetry  A positive  integer  1000 Dynamic  This property is valid 

only  if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

OADRetryTimeInterval  A positive  integer 

in minutes   

10 Dynamic  This property is valid 

only  if the value of 

Repository  Directory 

is set to <REMOTE>  

and the value of 

BrokerType  is ICS. 

PollEndTime  HH = 0 through  23 

MM = 0 through 59 

HH:MM Component  

restart 

PollFrequency  A positive  integer 

(in milliseconds)  

10000 Dynamic  

if broker is 

ICS; 

otherwise  

Component  

restart 

PollQuantity  1 through 500 1 Agent restart This property is valid 

only  if the value of 

ContainerManagedEvents  

is JMS. 

PollStartTime  HH = 0 through  23 

MM = 0 through 59 

HH:MM Component  

restart 

RepositoryDirectory  <REMOTE>  if the broker  

is ICS; otherwise  any 

valid local directory. 

For ICS, the value is set 

to <REMOTE>  

 For WMQI  and WAS,  

the value is 

<ProductDir  

\repository  

Agent restart 

RequestQueue  Valid  JMS queue  name <CONNECTORNAME>  

/REQUESTQUEUE  

Component  

restart 

This property is valid 

only  if the value of 

DeliveryTransport  

is JMS 

ResponseQueue  Valid  JMS queue  name <CONNECTORNAME>  

/RESPONSEQUEUE  

Component  

restart 

This property is valid 

only  if the value of 

DeliveryTransport  is JMS. 

RestartRetryCount  0 through 99 7 Dynamic  

if ICS; 

otherwise  

Component  

restart 

 

Appendix  A. Standard connector  properties 69



Table 11. Summary  of standard  configuration  properties  (continued)  

Property  name Possible  values Default value 

Update 

method Notes 

RestartRetryInterval  A value in minutes  

from  1 through 

2147483647  

1 Dynamic  

if ICS; 

otherwise  

Component  

restart 

ResultsSetEnabled  true or false false Component  

restart 

Used only  by connectors  

that support  DB2II. 

 This property is valid 

only if the value of 

DeliveryTransport  

is JMS, and the value of 

BrokerType is WMQI. 

ResultsSetSize  Positive  integer  0 (means  the results  

set size is unlimited)  

Component  

restart 

Used only by connectors 

that support  DB2II. 

 This property is valid 

only if the value of 

ResultsSetEnabled  

is true. 

RHF2MessageDomain  mrm or xml mrm Component  

restart 

This property is valid 

only if the value 

of DeliveryTransport  

is JMS and the value of 

WireFormat  is CwXML. 

SourceQueue Any valid  WebSphere  

MQ queue name 

<CONNECTORNAME>  

/SOURCEQUEUE  

Agent restart This property is valid 

only if the value of 

ContainerManagedEvents  

is JMS. 

SynchronousRequest  

Queue 

Any valid  queue  name. <CONNECTORNAME>  

/SYNCHRONOUSREQUEST  

QUEUE 

Component  

restart 

This property is valid 

only if the value 

of DeliveryTransport  

is JMS. 

SynchronousRequest  

Timeout  

0 to any number  

(milliseconds)  

0 Component  

restart 

This property is valid 

only if the value 

of DeliveryTransport  

is JMS. 

SynchronousResponse  

Queue 

Any valid  queue  name <CONNECTORNAME>  

/SYNCHRONOUSRESPONSE  

QUEUE 

Component  

restart 

This property is valid 

only if the value 

of DeliveryTransport  

is JMS. 

TivoliMonitorTransaction  

Performance  

true or false false Component  

restart 

WireFormat  CwXML or CwBO CwXML Agent restart The value of this 

property must be CwXML 

if the value 

of RepositoryDirectory 

is not set to <REMOTE>.  

The value must 

be CwBO if the value of 

RepositoryDirectory is set 

to <REMOTE>.  

WsifSynchronousRequest  

Timeout  

0 to any number  

(milliseconds)  

0 Component  

restart 

This property is valid 

only if the value of 

BrokerType is WAS. 

 

70 Adapter  for Portal Infranet  User Guide



Table 11. Summary  of standard  configuration  properties  (continued)  

Property  name Possible values Default value 

Update 

method  Notes  

XMLNameSpaceFormat  short or long or no short Agent restart This property is valid 

only  if the value of 

BrokerType  is 

WMQI  or WAS  

  

Standard properties 

This  section  describes  the  standard  connector  configuration  properties.  

AdapterHelpName 

The  AdapterHelpName  property  is the  name  of  a directory  in  which  

connector-specific  extended  help  files  are  located.  The  directory  must  be  located  in  

<ProductDir>\bin\Data\App\Help  and  must  contain  at  least  the  language  

directory  enu_usa.  It may  contain  other  directories  according  to  locale.  

The  default  value  is the  template  name  if it is  valid,  or  it  is blank.  

AdminInQueue 

The  AdminInQueue  property  specifies  the  queue  that  is  used  by  the  integration  

broker  to  send  administrative  messages  to  the  connector.  

The  default  value  is <CONNECTORNAME>/ADMININQUEUE  

AdminOutQueue 

The  AdminOutQueue  property  specifies  the  queue  that  is used  by  the  connector  to  

send  administrative  messages  to  the  integration  broker.  

The  default  value  is <CONNECTORNAME>/ADMINOUTQUEUE  

AgentConnections 

The  AgentConnections  property  controls  the  number  of  ORB  (Object  Request  

Broker)  connections  opened  when  the  ORB  initializes.  

It  is  valid  only  if the  value  of  the  RepositoryDirectory  is set  to <REMOTE>  and  the  

value  of  the  DeliveryTransport  property  is MQ  or  IDL.  

The  default  value  of this  property  is 1.  

AgentTraceLevel 

The  AgentTraceLevel  property  sets  the  level  of  trace  messages  for  the  

application-specific  component.  The  connector  delivers  all  trace  messages  

applicable  at  the  tracing  level  set  and  lower.  

The  default  value  is 0. 

 

Appendix  A. Standard connector  properties 71



ApplicationName 

The  ApplicationName  property  uniquely  identifies  the  name  of the  connector  

application.  This  name  is used  by  the  system  administrator  to  monitor  the  

integration  environment.  This  property  must  have  a value  before  you  can  run the  

connector.  

The  default  is  the  name  of the  connector.  

BiDi.Application 

The  BiDi.Application  property  specifies  the  bidirectional  format  for  data  coming  

from  an  external  application  into  the  adapter  in  the  form  of  any  business  object  

supported  by  this  adapter.  The  property  defines  the  bidirectional  attributes  of  the  

application  data.  These  attributes  are:  

v   Type  of  text:  implicit  or  visual  (I  or  V) 

v   Text direction:  left-to-right  or  right-to-left  (L or  R) 

v   Symmetric  swapping:  on  or  off  (Y  or  N) 

v   Shaping  (Arabic):  on  or  off  (S  or  N) 

v   Numerical  shaping  (Arabic):  Hindi,  contextual,  or  nominal  (H,  C, or  N)

This  property  is  valid  only  if the  BiDi.Transformation  property  value  is set  to  true. 

The  default  value  is  ILYNN  (implicit,  left-to-right,  on,  off,  nominal).  

BiDi.Broker 

The  BiDi.Broker  property  specifies  the  bidirectional  script  format  for  data  sent  from  

the  adapter  to  the  integration  broker  in the  form  of any  supported  business  object.  

It defines  the  bidirectional  attributes  of  the  data,  which  are  as listed  under  

BiDi.Application  above.  

This  property  is  valid  only  if the  BiDi.Transformation  property  value  is set  to  true. 

If the  BrokerType  property  is  ICS,  the  property  value  is read-only.  

The  default  value  is  ILYNN  (implicit,  left-to-right,  on,  off,  nominal).  

BiDi.Metadata 

The  BiDi.Metadata  property  defines  the  bidirectional  format  or  attributes  for  the  

metadata,  which  is  used  by  the  connector  to  establish  and  maintain  a link  to  the  

external  application.  The  attribute  settings  are  specific  to  each  adapter  using  the  

bidirectional  capabilities.  If your  adapter  supports  bidirectional  processing,  refer  to  

the  section  on  adapter-specific  properties  for  more  information.  

This  property  is  valid  only  if the  BiDi.Transformation  property  value  is set  to  true. 

The  default  value  is  ILYNN  (implicit,  left-to-right,  on,  off,  nominal).  

BiDi.Transformation  

The  BiDi.Transformation  property  defines  whether  or  not  the  system  performs  a 

bidirectional  transformation  at run time.  

If the  property  value  is set  to  true, the  BiDi.Application,  BiDi.Broker,  and  

BiDi.Metadata  properties  are  available.  If the  property  value  is set  to  false, they  

are  hidden.  

 

72 Adapter  for Portal Infranet  User Guide



The  default  value  is false. 

BOTrace 

The  BOTrace  property  specifies  whether  or  not  business  object  trace  messages  are  

enabled  at  run time.  

Note:   It applies  only  when  the  AgentTraceLevel  property  is set  to less  than  5. 

When  the  trace  level  is set  to less  than  5,  you  can  use  these  command  line  

parameters  to  reset  the  value  of  BOTrace.  

v   Enter  -xBOTrace=Full  to dump  all  the  business  object’s  attributes.  

v   Enter  -xBOTrace=Keys  to dump  only  the  business  object’s  keys.  

v   Enter  -xBOTrace=None  to disable  business  object  attribute  dumping.

The  default  value  is false. 

BrokerType  

The  BrokerType  property  identifies  the  integration  broker  type  that  you  are  using.  

The  possible  values  are  ICS, WMQI  (for  WMQI,  WMQIB  or  WBIMB), or  WAS. 

CharacterEncoding 

The  CharacterEncoding  property  specifies  the  character  code  set  used  to  map  from  

a character  (such  as  a letter  of the  alphabet,  a numeric  representation,  or  a 

punctuation  mark)  to  a numeric  value.  

Note:   Java-based  connectors  do  not  use  this  property.  C++  connectors  use  the  

value  ascii7  for  this  property.  

By  default,  only  a subset  of supported  character  encodings  is displayed.  To add  

other  supported  values  to the  list,  you  must  manually  modify  the  

\Data\Std\stdConnProps.xml  file  in  the  product  directory  (<ProductDir>).  For  

more  information,  see  the  Connector  Configurator  appendix  in  this  guide.  

CommonEventInfrastructure 

The  Common  Event  Infrastructure  (CEI)  is a simple  event  management  function  

handling  generated  events.  The  CommonEventInfrastructure  property  specifies  

whether  the  CEI  should  be  invoked  at  run time.  

The  default  value  is false. 

CommonEventInfrastructureContextURL  

The  CommonEventInfrastructureContextURL  is used  to  gain  access  to the  WAS 

server  that  executes  the  Common  Event  Infrastructure  (CEI)  server  application.  

This  property  specifies  the  URL  to  be  used.  

This  property  is  valid  only  if the  value  of  CommonEventInfrastructure  is set  to  

true.  

The  default  value  is a blank  field.  

 

Appendix  A. Standard connector  properties 73



ConcurrentEventTriggeredFlows  

The  ConcurrentEventTriggeredFlows  property  determines  how  many  business  

objects  can  be  concurrently  processed  by  the  connector  for  event  delivery.  You set  

the  value  of  this  attribute  to  the  number  of business  objects  that  are  mapped  and  

delivered  concurrently.  For  example,  if you  set  the  value  of this  property  to  5, five  

business  objects  are  processed  concurrently.  

Setting  this  property  to  a value  greater  than  1 allows  a connector  for  a source  

application  to  map  multiple  event  business  objects  at the  same  time  and  deliver  

them  to  multiple  collaboration  instances  simultaneously.  This  speeds  delivery  of 

business  objects  to  the  integration  broker,  particularly  if the  business  objects  use  

complex  maps.  Increasing  the  arrival  rate  of  business  objects  to collaborations  can  

improve  overall  performance  in  the  system.  

To implement  concurrent  processing  for  an  entire  flow  (from  a source  application  

to  a destination  application),  the  following  properties  must  configured:  

v   The  collaboration  must  be  configured  to use  multiple  threads  by  setting  its  

Maximum  number  of  concurrent  events  property  high  enough  to  use  multiple  

threads.  

v   The  destination  application’s  application-specific  component  must  be  configured  

to  process  requests  concurrently.  That  is,  it must  be  multithreaded,  or  it must  be  

able  to  use  connector  agent  parallelism  and  be  configured  for  multiple  processes.  

The  Parallel  Process  Degree  configuration  property  must  be  set  to a value  larger  

than  1.

The  ConcurrentEventTriggeredFlows  property  has  no  effect  on  connector  polling,  

which  is  single-threaded  and  is performed  serially.  

This  property  is  valid  only  if the  value  of  the  RepositoryDirectory  property  is set  

to  <REMOTE>.  

The  default  value  is  1.  

ContainerManagedEvents  

The  ContainerManagedEvents  property  allows  a JMS-enabled  connector  with  a 

JMS  event  store  to  provide  guaranteed  event  delivery,  in  which  an  event  is 

removed  from  the  source  queue  and  placed  on  the  destination  queue  as  one  JMS  

transaction.  

When  this  property  is  set  to  JMS, the  following  properties  must  also  be  set  to  

enable  guaranteed  event  delivery:  

v   PollQuantity  =  1 to  500  

v   SourceQueue  = /SOURCEQUEUE

You  must  also  configure  a data  handler  with  the  MimeType  and  DHClass  (data  

handler  class)  properties.  You can  also  add  DataHandlerConfigMOName  (the  

meta-object  name,  which  is optional).  To set  those  values,  use  the  Data  Handler  

tab  in  Connector  Configurator.  

Although  these  properties  are  adapter-specific,  here  are  some  example  values:  

v   MimeType  =  text\xml  

v   DHClass  = com.crossworlds.DataHandlers.text.xml  

v   DataHandlerConfigMOName  = MO_DataHandler_Default

 

74 Adapter  for Portal Infranet  User Guide



The  fields  for  these  values  in  the  Data  Handler  tab  are  displayed  only  if you  have  

set  the  ContainerManagedEvents  property  to  the  value  JMS. 

Note:   When  ContainerManagedEvents  is set  to  JMS, the  connector  does  not  call  its  

pollForEvents()  method,  thereby  disabling  that  method’s  functionality.  

The  ContainerManagedEvents  property  is valid  only  if the  value  of  the  

DeliveryTransport  property  is set  to  JMS. 

There  is  no  default  value.  

ControllerEventSequencing 

The  ControllerEventSequencing  property  enables  event  sequencing  in  the  connector  

controller.  

This  property  is  valid  only  if the  value  of  the  RepositoryDirectory  property  is set  

to  set  to  <REMOTE>  (BrokerType  is ICS). 

The  default  value  is true. 

ControllerStoreAndForwardMode 

The  ControllerStoreAndForwardMode  property  sets  the  behavior  of  the  connector  

controller  after  it detects  that  the  destination  application-specific  component  is 

unavailable.  

If  this  property  is  set  to true  and  the  destination  application-specific  component  is  

unavailable  when  an  event  reaches  ICS,  the  connector  controller  blocks  the  request  

to  the  application-specific  component.  When  the  application-specific  component  

becomes  operational,  the  controller  forwards  the  request  to  it.  

However,  if the  destination  application’s  application-specific  component  becomes  

unavailable  after  the  connector  controller  forwards  a service  call  request  to  it, the  

connector  controller  fails  the  request.  

If  this  property  is  set  to false, the  connector  controller  begins  failing  all  service  

call  requests  as  soon  as  it detects  that  the  destination  application-specific  

component  is unavailable.  

This  property  is  valid  only  if the  value  of  the  RepositoryDirectory  property  is set  

to  <REMOTE>  (the  value  of the  BrokerType  property  is  ICS).  

The  default  value  is true. 

ControllerTraceLevel  

The  ControllerTraceLevel  property  sets  the  level  of  trace  messages  for  the  

connector  controller.  

This  property  is  valid  only  if the  value  of  the  RepositoryDirectory  property  is set  

to  set  to  <REMOTE>.  

The  default  value  is 0. 

 

Appendix  A. Standard connector  properties 75



DeliveryQueue 

The  DeliveryQueue  property  defines  the  queue  that  is used  by  the  connector  to 

send  business  objects  to  the  integration  broker.  

This  property  is  valid  only  if the  value  of  the  DeliveryTransport  property  is set  to  

JMS. 

The  default  value  is  <CONNECTORNAME>/DELIVERYQUEUE. 

DeliveryTransport  

The  DeliveryTransport  property  specifies  the  transport  mechanism  for  the  delivery  

of  events.  Possible  values  are  MQ  for  WebSphere  MQ,  IDL  for  CORBA  IIOP,  or  JMS  

for  Java  Messaging  Service.  

v   If  the  value  of  the  RepositoryDirectory  property  is set  to <REMOTE>,  the  value  

of  the  DeliveryTransport  property  can  be  MQ,  IDL, or  JMS, and  the  default  is IDL. 

v   If  the  value  of  the  RepositoryDirectory  property  is a local  directory,  the  value  

can  be  only  JMS.

The  connector  sends  service-call  requests  and  administrative  messages  over  

CORBA  IIOP  if the  value  of the  RepositoryDirectory  property  is  MQ  or  IDL. 

If the  value  of  the  DeliveryTransport  property  is MQ,  you  can  set  the  command-line  

parameter  WhenServerAbsent  in  the  adapter  start  script  to indicate  whether  the  

adapter  should  pause  or  shut  down  when  the  InterChange  Server  is shut  down.  

v   Enter  WhenServerAbsent=pause  to  pause  the  adapter  when  ICS  is not  available.  

v   Enter  WhenServerAbsent=shutdown  to  shut  down  the  adapter  when  ICS  is not  

available.

WebSphere MQ and IDL 

Use  WebSphere  MQ  rather  than  IDL  for  event  delivery  transport,  unless  you  must  

have  only  one  product.  WebSphere  MQ  offers  the  following  advantages  over  IDL:  

v   Asynchronous  communication:  

WebSphere  MQ  allows  the  application-specific  component  to  poll  and  

persistently  store  events  even  when  the  server  is not  available.  

v   Server  side  performance:  

WebSphere  MQ  provides  faster  performance  on  the  server  side.  In  optimized  

mode,  WebSphere  MQ  stores  only  the  pointer  to  an  event  in  the  repository  

database,  while  the  actual  event  remains  in  the  WebSphere  MQ  queue.  This  

prevents  writing  potentially  large  events  to  the  repository  database.  

v   Agent  side  performance:  

WebSphere  MQ  provides  faster  performance  on  the  application-specific  

component  side.  Using  WebSphere  MQ,  the  connector  polling  thread  picks  up  an  

event,  places  it in  the  connector  queue,  then  picks  up  the  next  event.  This  is 

faster  than  IDL,  which  requires  the  connector  polling  thread  to pick  up  an  event,  

go  across  the  network  into  the  server  process,  store  the  event  persistently  in  the  

repository  database,  then  pick  up  the  next  event.

JMS 

The  JMS  transport  mechanism  enables  communication  between  the  connector  and  

client  connector  framework  using  Java  Messaging  Service  (JMS).  

If you  select  JMS  as  the  delivery  transport,  additional  JMS  properties  such  as  

jms.MessageBrokerName,  jms.FactoryClassName, jms.Password, and  jms.UserName  

 

76 Adapter  for Portal Infranet  User Guide



are  listed  in  Connector  Configurator.  The  properties  jms.MessageBrokerName  and  

jms.FactoryClassName  are  required  for  this  transport.  

There  may  be  a memory  limitation  if you  use  the  JMS  transport  mechanism  for  a 

connector  in  the  following  environment:  

v   AIX  5.0  

v   WebSphere  MQ  5.3.0.1  

v   ICS  is  the  integration  broker

In  this  environment,  you  may  experience  difficulty  starting  both  the  connector  

controller  (on  the  server  side)  and  the  connector  (on  the  client  side)  due  to memory  

use  within  the  WebSphere  MQ  client.  If your  installation  uses  less  than  768MB  of  

process  heap  size,  set  the  following  variable  and  property:  

v   Set  the  LDR_CNTRL  environment  variable  in  the  CWSharedEnv.sh  script.  

This  script  is  located  in  the  \bin  directory  below  the  product  directory  

(<ProductDir>).  Using  a text  editor,  add  the  following  line  as  the  first  line  in the  

CWSharedEnv.sh  script:  

export  LDR_CNTRL=MAXDATA=0x30000000  

This  line  restricts  heap  memory  usage  to  a maximum  of  768  MB  (3 segments  * 

256  MB).  If  the  process  memory  grows  larger  than  this  limit,  page  swapping  can  

occur,  which  can  adversely  affect  the  performance  of your  system.  

v   Set  the  value  of  the  IPCCBaseAddress  property  to  11  or  12.  For  more  

information  on  this  property,  see  the  System  Installation  Guide  for  UNIX.

DuplicateEventElimination 

When  the  value  of  this  property  is true, a JMS-enabled  connector  can  ensure  that  

duplicate  events  are  not  delivered  to the  delivery  queue.  To use  this  feature,  during  

connector  development,  the  connector  must  have  a unique  event  identifier  set  as 

the  business  object  ObjectEventId  attribute  in the  application-specific  code.  

Note:   When  the  value  of  this  property  is true, the  MonitorQueue  property  must  

be  enabled  to  provide  guaranteed  event  delivery.  

The  default  value  is false. 

EnableOidForFlowMonitoring 

When  the  value  of  this  property  is true, the  adapter  runtime  will  mark  the  

incoming  ObjectEventID  as a foreign  key  for  flow  monitoring.  

This  property  is  only  valid  if the  BrokerType  property  is set  to ICS.  

The  default  value  is false. 

FaultQueue 

If  the  connector  experiences  an  error  while  processing  a message,  it  moves  the  

message  (and  a status  indicator  and  description  of the  problem)  to  the  queue  

specified  in  the  FaultQueue  property.  

The  default  value  is <CONNECTORNAME>/FAULTQUEUE.  

 

Appendix  A. Standard connector  properties 77



jms.FactoryClassName  

The  jms.FactoryClassName  property  specifies  the  class  name  to  instantiate  for  a 

JMS  provider.  This  property  must  be  set  if the  value  of  the  DeliveryTransport  

property  is  JMS. 

The  default  is  CxCommon.Messaging.jms.IBMMQSeriesFactory. 

jms.ListenerConcurrency 

The  jms.ListenerConcurrency  property  specifies  the  number  of  concurrent  listeners  

for  the  JMS  controller.  It  specifies  the  number  of  threads  that  fetch  and  process  

messages  concurrently  within  a controller.  

This  property  is  valid  only  if the  value  of  the  jms.OptimizedTransport  property  is 

true. 

The  default  value  is  1.  

jms.MessageBrokerName 

The  jms.MessageBrokerName  specifies  the  broker  name  to  use  for  the  JMS  

provider.  You must  set  this  connector  property  if you  specify  JMS  as the  delivery  

transport  mechanism  (in  the  DeliveryTransport  property).  

When  you  connect  to  a remote  message  broker,  this  property  requires  the  following  

values:
QueueMgrName:Channel:HostName:PortNumber  

where:  

QueueMgrName  is the  name  of  the  queue  manager.  

Channel  is the  channel  used  by  the  client.  

HostName  is the  name  of the  machine  where  the  queue  manager  is to  reside.  

PortNumberis the  port  number  used  by  the  queue  manager  for  listening  

For  example:  

jms.MessageBrokerName  = WBIMB.Queue.Manager:CHANNEL1:RemoteMachine:1456  

The  default  value  is  crossworlds.queue.manager. Use  the  default  when  connecting  

to  a local  message  broker.  

jms.NumConcurrentRequests  

The  jms.NumConcurrentRequests  property  specifies  the  maximum  number  of  

concurrent  service  call  requests  that  can  be  sent  to  a connector  at the  same  time.  

Once  that  maximum  is reached,  new  service  calls  are  blocked  and  must  wait  for  

another  request  to  complete  before  proceeding.  

The  default  value  is  10.  

jms.Password 

The  jms.Password  property  specifies  the  password  for  the  JMS  provider.  A  value  

for  this  property  is optional.  

There  is  no  default  value.  

 

78 Adapter  for Portal Infranet  User Guide



jms.TransportOptimized 

The  jms.TransportOptimized  property  determines  if the  WIP  (work  in  progress)  is 

optimized.  You must  have  a WebSphere  MQ  provider  to  optimize  the  WIP.  For  

optimized  WIP  to  operate,  the  messaging  provider  must  be  able  to:  

1.   Read  a message  without  taking  it off  the  queue  

2.   Delete  a message  with  a specific  ID  without  transferring  the  entire  message  to  

the  receiver’s  memory  space  

3.   Read  a message  by  using  a specific  ID  (needed  for  recovery  purposes)  

4.   Track the  point  at which  events  that  have  not  been  read  appear.

The  JMS  APIs  cannot  be  used  for  optimized  WIP  because  they  do  not  meet  

conditions  2 and  4 above,  but  the  MQ  Java  APIs  meet  all  four  conditions,  and  

hence  are  required  for  optimized  WIP.  

This  property  is  valid  only  if the  value  of  DeliveryTransport  is JMS  and  the  value  of  

BrokerType  is  ICS. 

The  default  value  is false. 

jms.UserName 

the  jms.UserName  property  specifies  the  user  name  for  the  JMS  provider.  A value  

for  this  property  is  optional.  

There  is  no  default  value.  

JvmMaxHeapSize 

The  JvmMaxHeapSize  property  specifies  the  maximum  heap  size  for  the  agent  (in  

megabytes).  

This  property  is  valid  only  if the  value  for  the  RepositoryDirectory  property  is  set  

to  <REMOTE>.  

The  default  value  is 128m.  

JvmMaxNativeStackSize 

The  JvmMaxNativeStackSize  property  specifies  the  maximum  native  stack  size  for  

the  agent  (in  kilobytes).  

This  property  is  valid  only  if the  value  for  the  RepositoryDirectory  property  is  set  

to  <REMOTE>.  

The  default  value  is 128k.  

JvmMinHeapSize 

The  JvmMinHeapSize  property  specifies  the  minimum  heap  size  for  the  agent  (in  

megabytes).  

This  property  is  valid  only  if the  value  for  the  RepositoryDirectory  property  is  set  

to  <REMOTE>.  

The  default  value  is 1m.  

 

Appendix  A. Standard connector  properties 79



ListenerConcurrency 

The  ListenerConcurrency  property  supports  multithreading  in  WebSphere  MQ  

Listener  when  ICS  is the  integration  broker.  It enables  batch  writing  of  multiple  

events  to  the  database,  thereby  improving  system  performance.  

This  property  valid  only  with  connectors  that  use  MQ  transport.  The  value  of  the  

DeliveryTransport  property  must  be  MQ.  

The  default  value  is  1.  

Locale 

The  Locale  property  specifies  the  language  code,  country  or  territory,  and,  

optionally,  the  associated  character  code  set.  The  value  of this  property  determines  

cultural  conventions  such  as collation  and  sort  order  of data,  date  and  time  

formats,  and  the  symbols  used  in  monetary  specifications.  

A locale  name  has  the  following  format:  

ll_TT.codeset  

where:  

ll is  a two-character  language  code  (in  lowercase  letters)  

TT  is  a two-letter  country  or  territory  code  (in  uppercase  letters)  

codeset  is  the  name  of the  associated  character  code  set  (may  be  optional).  

By  default,  only  a subset  of supported  locales  are  listed.  To add  other  supported  

values  to  the  list,  you  modify  the  \Data\Std\stdConnProps.xml  file  in  the  

<ProductDir>\bin  directory.  For  more  information,  refer  to  the  Connector  

Configurator  appendix  in this  guide.  

If the  connector  has  not  been  internationalized,  the  only  valid  value  for  this  

property  is  en_US. To determine  whether  a specific  connector  has  been  globalized,  

refer  to  the  user  guide  for  that  adapter.  

The  default  value  is  en_US. 

LogAtInterchangeEnd 

The  LogAtInterchangeEnd  property  specifies  whether  to  log  errors  to the  log  

destination  of the  integration  broker.  

Logging  to  the  log  destination  also  turns  on  e-mail  notification,  which  generates  

e-mail  messages  for  the  recipient  specified  as  the  value  of  MESSAGE_RECIPIENT  

in  the  InterchangeSystem.cfg  file  when  errors  or  fatal  errors  occur.  For  example,  

when  a connector  loses  its  connection  to the  application,  if the  value  of  

LogAtInterChangeEnd  is true, an  e-mail  message  is sent  to the  specified  message  

recipient.  

This  property  is  valid  only  if the  value  of  the  RespositoryDirectory  property  is set  

to  <REMOTE>  (the  value  of  BrokerType  is ICS).  

The  default  value  is  false. 

MaxEventCapacity 

The  MaxEventCapacity  property  specifies  maximum  number  of events  in  the  

controller  buffer.  This  property  is used  by  the  flow  control  feature.  

 

80 Adapter  for Portal Infranet  User Guide



This  property  is  valid  only  if the  value  of  the  RespositoryDirectory  property  is set  

to  <REMOTE>  (the  value  of BrokerType  is ICS).  

The  value  can  be  a positive  integer  between  1 and  2147483647.  

The  default  value  is 2147483647.  

MessageFileName 

The  MessageFileName  property  specifies  the  name  of the  connector  message  file.  

The  standard  location  for  the  message  file  is \connectors\messages  in  the  product  

directory.  Specify  the  message  file  name  in an  absolute  path  if the  message  file  is  

not  located  in  the  standard  location.  

If  a connector  message  file  does  not  exist,  the  connector  uses  

InterchangeSystem.txt  as the  message  file.  This  file  is located  in  the  product  

directory.  

Note:   To determine  whether  a connector  has  its  own  message  file,  see  the  

individual  adapter  user  guide.  

The  default  value  is InterchangeSystem.txt. 

MonitorQueue 

The  MonitorQueue  property  specifies  the  logical  queue  that  the  connector  uses  to  

monitor  duplicate  events.  

It  is  valid  only  if the  value  of  the  DeliveryTransport  property  is JMS  and  the  value  

of  the  DuplicateEventElimination  is  true. 

The  default  value  is <CONNECTORNAME>/MONITORQUEUE  

OADAutoRestartAgent 

the  OADAutoRestartAgent  property  specifies  whether  the  connector  uses  the  

automatic  and  remote  restart  feature.  This  feature  uses  the  WebSphere  

MQ-triggered  Object  Activation  Daemon  (OAD)  to  restart  the  connector  after  an  

abnormal  shutdown,  or  to  start  a remote  connector  from  System  Monitor.  

This  property  must  be  set  to  true  to enable  the  automatic  and  remote  restart  

feature.  For  information  on  how  to  configure  the  WebSphere  MQ-triggered  OAD  

feature.  see  the  Installation  Guide  for  Windows  or  for  UNIX. 

This  property  is  valid  only  if the  value  of  the  RespositoryDirectory  property  is set  

to  <REMOTE>  (the  value  of BrokerType  is ICS).  

The  default  value  is false. 

OADMaxNumRetry 

The  OADMaxNumRetry  property  specifies  the  maximum  number  of  times  that  the  

WebSphere  MQ-triggered  Object  Activation  Daemon  (OAD)  automatically  attempts  

to  restart  the  connector  after  an  abnormal  shutdown.  The  OADAutoRestartAgent  

property  must  be  set  to  true  for  this  property  to take  effect.  

This  property  is  valid  only  if the  value  of  the  RespositoryDirectory  property  is set  

to  <REMOTE>  (the  value  of BrokerType  is ICS).  

 

Appendix  A. Standard connector  properties 81



The  default  value  is  1000. 

OADRetryTimeInterval  

The  OADRetryTimeInterval  property  specifies  the  number  of minutes  in  the  

retry-time  interval  for  the  WebSphere  MQ-triggered  Object  Activation  Daemon  

(OAD).  If  the  connector  agent  does  not  restart  within  this  retry-time  interval,  the  

connector  controller  asks  the  OAD  to restart  the  connector  agent  again.  The  OAD  

repeats  this  retry  process  as  many  times  as  specified  by  the  OADMaxNumRetry  

property.  The  OADAutoRestartAgent  property  must  be  set  to true  for  this  

property  to  take  effect.  

This  property  is  valid  only  if the  value  of  the  RespositoryDirectory  property  is set  

to  <REMOTE>  (the  value  of  BrokerType  is ICS).  

The  default  value  is  10.  

PollEndTime  

The  PollEndTime  property  specifies  the  time  to stop  polling  the  event  queue.  The  

format  is  HH:MM, where  HH  is 0 through  23  hours,  and  MM  represents  0 through  59 

minutes.  

You must  provide  a valid  value  for  this  property.  The  default  value  is HH:MM  

without  a value,  and  it must  be  changed.  

If the  adapter  runtime  detects:  

v   PollStartTime  set  and  PollEndTime  not  set,  or  

v   PollEndTime  set  and  PollStartTime  not  set

it  will  poll  using  the  value  configured  for  the  PollFrequency  property.  

PollFrequency 

The  PollFrequency  property  specifies  the  amount  of time  (in  milliseconds)  between  

the  end  of  one  polling  action  and  the  start  of the  next  polling  action.  This  is not  

the  interval  between  polling  actions.  Rather,  the  logic  is  as follows:  

v   Poll  to  obtain  the  number  of objects  specified  by  the  value  of  the  PollQuantity  

property.  

v   Process  these  objects.  For  some  connectors,  this  may  be  partly  done  on  separate  

threads,  which  execute  asynchronously  to the  next  polling  action.  

v   Delay  for  the  interval  specified  by  the  PollFrequency  property.  

v   Repeat  the  cycle.

The  following  values  are  valid  for  this  property:  

v   The  number  of  milliseconds  between  polling  actions  (a  positive  integer).  

v   The  word  no,  which  causes  the  connector  not  to poll.  Enter  the  word  in  

lowercase.  

v   The  word  key, which  causes  the  connector  to  poll  only  when  you  type  the  letter  

p in  the  connector  Command  Prompt  window.  Enter  the  word  in lowercase.

The  default  is  10000. 

Important:   Some  connectors  have  restrictions  on  the  use  of  this  property.  Where  

they  exist,  these  restrictions  are  documented  in  the  chapter  on  

installing  and  configuring  the  adapter.

 

82 Adapter  for Portal Infranet  User Guide



PollQuantity 

The  PollQuantity  property  designates  the  number  of  items  from  the  application  

that  the  connector  polls  for. If the  adapter  has  a connector-specific  property  for  

setting  the  poll  quantity,  the  value  set  in  the  connector-specific  property  overrides  

the  standard  property  value.  

This  property  is valid  only  if the  value  of  the  DeliveryTransport  property  is JMS, 

and  the  ContainerManagedEvents  property  has  a value.  

An  e-mail  message  is also  considered  an  event.  The  connector  actions  are  as 

follows  when  it is polled  for  e-mail.  

v   When  it is  polled  once,  the  connector  detects  the  body  of the  message,  which  it  

reads  as  an  attachment.  Since  no  data  handler  was  specified  for  this  mime  type,  

it will  then  ignore  the  message.  

v   The  connector  processes  the  first  BO  attachment.  The  data  handler  is available  

for  this  MIME  type,  so  it sends  the  business  object  to  Visual  Test Connector.  

v   When  it is  polled  for  the  second  time,  the  connector  processes  the  second  BO  

attachment.  The  data  handler  is available  for  this  MIME  type,  so  it sends  the  

business  object  to  Visual  Test Connector.  

v   Once  it is accepted,  the  third  BO  attachment  should  be  transmitted.

PollStartTime  

The  PollStartTime  property  specifies  the  time  to start  polling  the  event  queue.  The  

format  is HH:MM, where  HH  is 0 through  23 hours,  and  MM  represents  0 through  59  

minutes.  

You must  provide  a valid  value  for  this  property.  The  default  value  is HH:MM  

without  a value,  and  it  must  be  changed.  

If  the  adapter  runtime  detects:  

v   PollStartTime  set  and  PollEndTime  not  set,  or  

v   PollEndTime  set  and  PollStartTime  not  set

it  will  poll  using  the  value  configured  for  the  PollFrequency  property.  

RepositoryDirectory 

The  RepositoryDirectory  property  is the  location  of  the  repository  from  which  the  

connector  reads  the  XML  schema  documents  that  store  the  metadata  for  business  

object  definitions.  

If  the  integration  broker  is ICS,  this  value  must  be  set  to  set  to <REMOTE>  

because  the  connector  obtains  this  information  from  the  InterChange  Server  

repository.  

When  the  integration  broker  is a WebSphere  message  broker  or  WAS, this  value  is 

set  to  <ProductDir>\repository  by  default.  However,  it may  be  set  to  any  valid  

directory  name.  

RequestQueue 

The  RequestQueue  property  specifies  the  queue  that  is used  by  the  integration  

broker  to  send  business  objects  to the  connector.  

This  property  is  valid  only  if the  value  of  the  DeliveryTransport  property  is  JMS. 

 

Appendix  A. Standard connector  properties 83



The  default  value  is  <CONNECTORNAME>/REQUESTQUEUE. 

ResponseQueue 

The  ResponseQueue  property  specifies  the  JMS  response  queue,  which  delivers  a 

response  message  from  the  connector  framework  to the  integration  broker.  When  

the  integration  broker  is ICS,  the  server  sends  the  request  and  waits  for  a response  

message  in  the  JMS  response  queue.  

This  property  is  valid  only  if the  value  of  the  DeliveryTransport  property  is JMS. 

The  default  value  is  <CONNECTORNAME>/RESPONSEQUEUE. 

RestartRetryCount 

The  RestartRetryCount  property  specifies  the  number  of  times  the  connector  

attempts  to  restart  itself.  When  this  property  is used  for  a connector  that  is 

connected  in parallel,  it specifies  the  number  of times  the  master  connector  

application-specific  component  attempts  to  restart  the  client  connector  

application-specific  component.  

The  default  value  is  7.  

RestartRetryInterval 

The  RestartRetryInterval  property  specifies  the  interval  in  minutes  at  which  the  

connector  attempts  to  restart  itself.  When  this  property  is used  for  a connector  that  

is linked  in  parallel,  it specifies  the  interval  at which  the  master  connector  

application-specific  component  attempts  to  restart  the  client  connector  

application-specific  component.  

Possible  values  for  the  property  range  from  1 through  2147483647.  

The  default  value  is  1.  

ResultsSetEnabled 

The  ResultsSetEnabled  property  enables  or  disables  results  set  support  when  

Information  Integrator  is active.  This  property  can  be  used  only  if the  adapter  

supports  DB2  Information  Integrator.  

This  property  is  valid  only  if the  value  of  the  DeliveryTransport  property  is JMS, 

and  the  value  of BrokerType  is WMQI. 

The  default  value  is  false. 

ResultsSetSize 

The  ResultsSetSize  property  defines  the  maximum  number  of business  objects  that  

can  be  returned  to  Information  Integrator.  This  property  can  be  used  only  if the  

adapter  supports  DB2  Information  Integrator.  

This  property  is  valid  only  if the  value  of  the  ResultsSetEnabled  property  is true. 

The  default  value  is  0.  This  means  that  the  size  of the  results  set  is unlimited.  

 

84 Adapter  for Portal Infranet  User Guide



RHF2MessageDomain 

The  RHF2MessageDomain  property  allows  you  to  configure  the  value  of  the  field  

domain  name  in the  JMS  header.  When  data  is sent  to a WebSphere  message  

broker  over  JMS  transport,  the  adapter  framework  writes  JMS  header  information,  

with  a domain  name  and  a fixed  value  of mrm. A configurable  domain  name  lets  

you  track  how  the  WebSphere  message  broker  processes  the  message  data.  

This  is  an  example  header:  

<mcd><Msd>mrm</Msd><Set>3</Set><Type>  

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>  

This  property  is  valid  only  if the  value  of  BrokerType  is  WMQI  or  WAS. Also,  it  is 

valid  only  if the  value  of the  DeliveryTransport  property  is JMS, and  the  value  of  

the  WireFormat  property  is CwXML. 

Possible  values  are  mrm  and  xml. The  default  value  is mrm. 

SourceQueue 

The  SourceQueue  property  designates  the  JMS  source  queue  for  the  connector  

framework  in  support  of guaranteed  event  delivery  for  JMS-enabled  connectors  

that  use  a JMS  event  store.  For  further  information,  see  “ContainerManagedEvents”  

on  page  74.  

This  property  is  valid  only  if the  value  of  DeliveryTransport  is JMS, and  a value  for  

ContainerManagedEvents  is specified.  

The  default  value  is <CONNECTORNAME>/SOURCEQUEUE. 

SynchronousRequestQueue 

The  SynchronousRequestQueue  property  delivers  request  messages  that  require  a 

synchronous  response  from  the  connector  framework  to  the  broker.  This  queue  is  

necessary  only  if the  connector  uses  synchronous  execution.  With  synchronous  

execution,  the  connector  framework  sends  a message  to  the  synchronous  request  

queue  and  waits  for  a response  from  the  broker  on  the  synchronous  response  

queue.  The  response  message  sent  to the  connector  has  a correlation  ID  that  

matches  the  ID  of  the  original  message.  

This  property  is  valid  only  if the  value  of  DeliveryTransport  is JMS. 

The  default  value  is <CONNECTORNAME>/SYNCHRONOUSREQUESTQUEUE  

SynchronousRequestTimeout  

The  SynchronousRequestTimeout  property  specifies  the  time  in  milliseconds  that  

the  connector  waits  for  a response  to a synchronous  request.  If the  response  is not  

received  within  the  specified  time,  the  connector  moves  the  original  synchronous  

request  message  (and  error  message)  to the  fault  queue.  

This  property  is  valid  only  if the  value  of  DeliveryTransport  is JMS. 

The  default  value  is 0.  

 

Appendix  A. Standard connector  properties 85



SynchronousResponseQueue  

The  SynchronousResponseQueue  property  delivers  response  messages  in reply  to  a 

synchronous  request  from  the  broker  to the  connector  framework.  This  queue  is 

necessary  only  if the  connector  uses  synchronous  execution.  

This  property  is  valid  only  if the  value  of  DeliveryTransport  is JMS. 

The  default  is  <CONNECTORNAME>/SYNCHRONOUSRESPONSEQUEUE  

TivoliMonitorTransactionPerformance  

The  TivoliMonitorTransactionPerformance  property  specifies  whether  IBM  Tivoli  

Monitoring  for  Transaction  Performance  (ITMTP)  is invoked  at run time.  

The  default  value  is  false. 

WireFormat 

The  WireFormat  property  specifies  the  message  format  on  the  transport:  

v   If  the  value  of  the  RepositoryDirectory  property  is a local  directory,  the  value  is 

CwXML.  

v   If  the  value  of  the  RepositoryDirectory  property  is a remote  directory,  the  value  

is CwBO.

WsifSynchronousRequestTimeout  

The  WsifSynchronousRequestTimeout  property  specifies  the  time  in milliseconds  

that  the  connector  waits  for  a response  to a synchronous  request.  If the  response  is 

not  received  within  the  specified  time,  the  connector  moves  the  original  

synchronous  request  message  (and  an  error  message)  to the  fault  queue.  

This  property  is  valid  only  if the  value  of  BrokerType  is WAS. 

The  default  value  is  0.  

XMLNameSpaceFormat 

The  XMLNameSpaceFormat  property  specifies  short  or  long  namespaces  in  the  

XML  format  of  business  object  definitions.  

This  property  is  valid  only  if the  value  of  BrokerType  is set  to  WMQI  or  WAS. 

The  default  value  is  short. 

 

86 Adapter  for Portal Infranet  User Guide



Appendix  B.  Using  Connector  Configurator  

This  appendix  describes  how  to  use  Connector  Configurator  to  set  configuration  

property  values  for  your  adapter.  

You use  Connector  Configurator  to:  

v   Create  a connector-specific  property  template  for  configuring  your  connector  

v   Create  a configuration  file  

v   Set  properties  in  a configuration  file

The  topics  covered  in  this  appendix  are:  

v   “Overview  of  Connector  Configurator”  on  page  87  

v   “Starting  Connector  Configurator”  on  page  88  

v   “Creating  a connector-specific  property  template”  on  page  89  

v   “Creating  a new  configuration  file”  on  page  92  

v   “Setting  the  configuration  file  properties”  on  page  95  

v   “Using  Connector  Configurator  in  a globalized  environment”  on  page  103

Overview of Connector Configurator 

Connector  Configurator  allows  you  to  configure  the  connector  component  of  your  

adapter  for  use  with  these  integration  brokers:  

v   WebSphere  InterChange  Server  (ICS)  

v   WebSphere  MQ  Integrator,  WebSphere  MQ  Integrator  Broker,  and  WebSphere  

Business  Integration  Message  Broker,  collectively  referred  to  as  the  WebSphere  

Message  Brokers  (WMQI)  

v   WebSphere  Application  Server  (WAS)

If  your  adapter  supports  DB2  Information  Integrator,  use  the  WMQI  options  and  

the  DB2  II  standard  properties  (see  the  Notes  column  in  the  Standard  Properties  

appendix.)  

You use  Connector  Configurator  to:  

v   Create  a connector-specific  property  template  for  configuring  your  connector.  

v   Create  a connector  configuration  file; you  must  create  one  configuration  file for  

each  connector  you  install.  

v   Set  properties  in  a configuration  file.  

You may  need  to modify  the  default  values  that  are  set  for  properties  in the  

connector  templates.  You must  also  designate  supported  business  object  

definitions  and,  with  ICS,  maps  for  use  with  collaborations  as  well  as  specify  

messaging,  logging  and  tracing,  and  data  handler  parameters,  as  required.

The  mode  in  which  you  run Connector  Configurator,  and  the  configuration  file  

type  you  use,  may  differ  according  to  which  integration  broker  you  are  running.  

For  example,  if WMQI  is your  broker,  you  run Connector  Configurator  directly,  

and  not  from  within  System  Manager  (see  “Running  Configurator  in  stand-alone  

mode”  on  page  88).  

 

© Copyright  IBM Corp. 1999, 2005 87



Connector  configuration  properties  include  both  standard  configuration  properties  

(the  properties  that  all  connectors  have)  and  connector-specific  properties  

(properties  that  are  needed  by  the  connector  for  a specific  application  or  

technology).  

Because  standard  properties  are  used  by  all  connectors,  you  do  not  need  to define  

those  properties  from  scratch;  Connector  Configurator  incorporates  them  into  your  

configuration  file  as  soon  as  you  create  the  file.  However,  you  do  need  to set  the  

value  of each  standard  property  in  Connector  Configurator.  

The  range  of  standard  properties  may  not  be  the  same  for  all  brokers  and  all  

configurations.  Some  properties  are  available  only  if other  properties  are  given  a 

specific  value.  The  Standard  Properties  window  in  Connector  Configurator  will  

show  the  properties  available  for  your  particular  configuration.  

For  connector-specific  properties, however,  you  need  first  to  define  the  properties  

and  then  set  their  values.  You do  this  by  creating  a connector-specific  property  

template  for  your  particular  adapter.  There  may  already  be  a template  set  up  in  

your  system,  in  which  case,  you  simply  use  that.  If not,  follow  the  steps  in  

“Creating  a new  template”  on  page  89 to  set  up  a new  one.  

Running connectors on UNIX 

Connector  Configurator  runs only  in  a Windows  environment.  If  you  are  running  

the  connector  in a UNIX  environment,  use  Connector  Configurator  in  Windows  to  

modify  the  configuration  file  and  then  copy  the  file  to  your  UNIX  environment.  

Some  properties  in  the  Connector  Configurator  use  directory  paths,  which  default  

to  the  Windows  convention  for  directory  paths.  If you  use  the  configuration  file  in  

a UNIX  environment,  revise  the  directory  paths  to match  the  UNIX  convention  for  

these  paths.  Select  the  target  operating  system  in  the  toolbar  drop-list  so  that  the  

correct  operating  system  rules are  used  for  extended  validation.  

Starting Connector Configurator 

You can  start  and  run Connector  Configurator  in  either  of  two  modes:  

v   Independently,  in  stand-alone  mode  

v   From  System  Manager

Running Configurator in stand-alone mode 

You can  run Connector  Configurator  without  running  System  Manager  and  work  

with  connector  configuration  files,  irrespective  of  your  broker.  

To do  so:  

v   From  Start>Programs, click  IBM  WebSphere  Business  Integration  

Adapters>IBM  WebSphere  Business  Integration  Toolset>Connector  

Configurator. 

v   Select  File>New>Connector  Configuration. 

v   When  you  click  the  pull-down  menu  next  to System  Connectivity  Integration  

Broker, you  can  select  ICS,  WebSphere  Message  Brokers  or  WAS, depending  on  

your  broker.

You  may  choose  to  run Connector  Configurator  independently  to  generate  the  file,  

and  then  connect  to  System  Manager  to  save  it in  a System  Manager  project  (see  

“Completing  a configuration  file”  on  page  94.)  

 

88 Adapter  for Portal Infranet  User Guide



Running Configurator from System Manager 

You can  run Connector  Configurator  from  System  Manager.  

To run Connector  Configurator:  

1.   Open  the  System  Manager.  

2.   In  the  System  Manager  window,  expand  the  Integration  Component  Libraries  

icon  and  highlight  Connectors. 

3.   From  the  System  Manager  menu  bar, click  Tools>Connector  Configurator. The  

Connector  Configurator  window  opens  and  displays  a New  Connector  dialog  

box.  

4.   When  you  click  the  pull-down  menu  next  to  System  Connectivity  Integration  

Broker, you  can  select  ICS,  WebSphere  Message  Brokers  or  WAS, depending  on  

your  broker.

To  edit  an  existing  configuration  file:  

v   In  the  System  Manager  window,  select  any  of the  configuration  files  listed  in  the  

Connector  folder  and  right-click  on  it. Connector  Configurator  opens  and  

displays  the  configuration  file  with  the  integration  broker  type  and  file  name  at  

the  top.  

v   From  Connector  Configurator,  select  File>Open. Select  the  name  of the  

connector  configuration  file  from  a project  or  from  the  directory  in  which  it is 

stored.  

v    Click  the  Standard  Properties  tab  to  see  which  properties  are  included  in this  

configuration  file.

Creating a connector-specific property template 

To create  a configuration  file  for  your  connector,  you  need  a connector-specific  

property  template  as  well  as the  system-supplied  standard  properties.  

You can  create  a brand-new  template  for  the  connector-specific  properties  of your  

connector,  or  you  can  use  an  existing  connector  definition  as  the  template.  

v   To create  a new  template,  see  “Creating  a new  template”  on  page  89.  

v   To use  an  existing  file,  simply  modify  an  existing  template  and  save  it under  the  

new  name.  You can  find  existing  templates  in  your  

\WebSphereAdapters\bin\Data\App  directory.

Creating a new template 

This  section  describes  how  you  create  properties  in  the  template,  define  general  

characteristics  and  values  for  those  properties,  and  specify  any  dependencies  

between  the  properties.  Then  you  save  the  template  and  use  it as  the  base  for  

creating  a new  connector  configuration  file.  

To create  a template  in  Connector  Configurator:  

1.   Click  File>New>Connector-Specific  Property  Template. 

2.   The  Connector-Specific  Property  Template  dialog  box  appears.  

v   Enter  a name  for  the  new  template  in the  Name  field  below  Input  a New  

Template  Name.  You will  see  this  name  again  when  you  open  the  dialog  box  

for  creating  a new  configuration  file  from  a template.  

 

Appendix B. Using  Connector  Configurator  89



v   To see  the  connector-specific  property  definitions  in  any  template,  select  that  

template’s  name  in  the  Template  Name  display.  A  list  of  the  property  

definitions  contained  in  that  template  appears  in  the  Template  Preview  

display.
3.   You can  use  an  existing  template  whose  property  definitions  are  similar  to  

those  required  by  your  connector  as  a starting  point  for  your  template.  If  you  

do  not  see  any  template  that  displays  the  connector-specific  properties  used  by  

your  connector,  you  will  need  to create  one.  

v   If  you  are  planning  to modify  an  existing  template,  select  the  name  of the  

template  from  the  list  in the  Template  Name  table  below  Select  the  Existing  

Template  to  Modify:  Find  Template.  

v   This  table  displays  the  names  of  all  currently  available  templates.  You can  

also  search  for  a template.

Specifying general characteristics 

When  you  click  Next  to select  a template,  the  Properties  - Connector-Specific  

Property  Template  dialog  box  appears.  The  dialog  box  has  tabs  for  General  

characteristics  of  the  defined  properties  and  for  Value restrictions.  The  General  

display  has  the  following  fields:  

v   General:  

Property  Type 

Property  Subtype  

Updated  Method  

Description  

v   Flags  

Standard  flags  

v   Custom  Flag  

Flag

The  Property  Subtype  can  be  selected  when  Property  Type is a String.  It is an  

optional  value  which  provides  syntax  checking  when  you  save  the  configuration  

file.  The  default  is a blank  space,  and  means  that  the  property  has  not  been  

subtyped.  

After  you  have  made  selections  for  the  general  characteristics  of  the  property,  click  

the  Value  tab.  

Specifying values 

The  Value  tab  enables  you  to  set  the  maximum  length,  the  maximum  multiple  

values,  a default  value,  or  a value  range  for  the  property.  It also  allows  editable  

values.  To do  so:  

1.   Click  the  Value  tab.  The  display  panel  for  Value  replaces  the  display  panel  for  

General.  

2.    Select  the  name  of the  property  in the  Edit  properties  display.  

3.   In  the  fields  for  Max  Length  and  Max  Multiple  Values, enter  your  values.  

To create  a new  property  value:  

1.   Right-click  on  the  square  to  the  left  of the  Value  column  heading.  

2.   From  the  pop-up  menu,  select  Add  to  display  the  Property  Value  dialog  box.  

Depending  on  the  property  type,  the  dialog  box  allows  you  to  enter  either  a 

value,  or  both  a value  and  a range.  

3.    Enter  the  new  property  value  and  click  OK.  The  value  appears  in  the  Value  

panel  on  the  right.

 

90 Adapter  for Portal Infranet  User Guide



The  Value  panel  displays  a table  with  three  columns:  

The  Value  column  shows  the  value  that  you  entered  in  the  Property  Value  dialog  

box,  and  any  previous  values  that  you  created.  

The  Default  Value  column  allows  you  to  designate  any  of the  values  as  the  

default.  

The  Value  Range  shows  the  range  that  you  entered  in  the  Property  Value  dialog  

box.  

After  a value  has  been  created  and  appears  in  the  grid,  it can  be  edited  from  

within  the  table  display.  

To make  a change  in  an  existing  value  in  the  table,  select  an  entire  row  by  clicking  

on  the  row  number.  Then  right-click  in  the  Value  field  and  click  Edit  Value. 

Setting dependencies 

When  you  have  made  your  changes  to  the  General  and  Value  tabs,  click  Next. The  

Dependencies  - Connector-Specific  Property  Template  dialog  box  appears.  

A  dependent  property  is  a property  that  is included  in the  template  and  used  in 

the  configuration  file  only  if the  value  of another  property  meets  a specific  

condition.  For  example,  PollQuantity  appears  in  the  template  only  if JMS  is the  

transport  mechanism  and  DuplicateEventElimination  is set  to  True. 

To designate  a property  as  dependent  and  to  set  the  condition  upon  which  it 

depends,  do  this:  

1.   In  the  Available  Properties  display,  select  the  property  that  will  be  made  

dependent.  

2.   In  the  Select  Property  field,  use  the  drop-down  menu  to select  the  property  

that  will  hold  the  conditional  value.  

3.   In  the  Condition  Operator  field,  select  one  of  the  following:  

==  (equal  to)  

!=  (not  equal  to)  

> (greater  than)  

< (less  than)  

>=  (greater  than  or  equal  to)  

<=(less  than  or  equal  to)  

4.   In  the  Conditional  Value  field,  enter  the  value  that  is required  in order  for  the  

dependent  property  to  be  included  in  the  template.  

5.   With  the  dependent  property  highlighted  in  the  Available  Properties  display,  

click  an  arrow  to  move  it to  the  Dependent  Property  display.  

6.   Click  Finish. Connector  Configurator  stores  the  information  you  have  entered  

as an  XML  document,  under  \data\app  in  the  \bin  directory  where  you  have  

installed  Connector  Configurator.

Setting pathnames 

Some  general  rules for  setting  pathnames  are:  

v   The  maximum  length  of a filename  in  Windows  and  UNIX  is 255  characters.  

v   In  Windows,  the  absolute  pathname  must  follow  the  format  

[Drive:][Directory]\filename:  for  example,  

C:\WebSphereAdapters\bin\Data\Std\StdConnProps.xml  

In  UNIX  the  first  character  should  be  /. 

 

Appendix B. Using  Connector  Configurator  91



v   Queue  names  may  not  have  leading  or  embedded  spaces.

Creating a new configuration file 

When  you  create  a new  configuration  file,  you  must  name  it and  select  an  

integration  broker.  

You also  select  an  operating  system  for  extended  validation  on  the  file.  The  toolbar  

has  a droplist  called  Target  System  that  allows  you  to select  the  target  operating  

system  for  extended  validation  of  the  properties.  The  available  options  are:  

Windows,  UNIX,  Other  (if  not  Windows  or  UNIX),  and  None-no  extended  

validation  (switches  off  extended  validation).  The  default  on  startup  is Windows.  

To start  Connector  Configurator:  

v   In  the  System  Manager  window,  select  Connector  Configurator  from  the  Tools  

menu.  Connector  Configurator  opens.  

v   In  stand-alone  mode,  launch  Connector  Configurator.

To  set  the  operating  system  for  extended  validation  of  the  configuration  file:  

v   Pull  down  the  Target  System:  droplist  on  the  menu  bar.  

v   Select  the  operating  system  you  are  running  on.

Then  select  File>New>Connector  Configuration.  In the  New  Connector  window,  

enter  the  name  of  the  new  connector.  

You also  need  to  select  an  integration  broker.  The  broker  you  select  determines  the  

properties  that  will  appear  in the  configuration  file.  To select  a broker:  

v   In  the  Integration  Broker  field,  select  ICS,  WebSphere  Message  Brokers  or  WAS 

connectivity.  

v   Complete  the  remaining  fields  in  the  New  Connector  window,  as described  later  

in  this  chapter.

Creating a configuration file from a connector-specific 

template 

Once  a connector-specific  template  has  been  created,  you  can  use  it  to  create  a 

configuration  file:  

1.   Set  the  operating  system  for  extended  validation  of the  configuration  file  using  

the  Target  System:  droplist  on  the  menu  bar  (see  “Creating  a new  configuration  

file”  above).  

2.   Click  File>New>Connector  Configuration.  

3.   The  New  Connector  dialog  box  appears,  with  the  following  fields:  

v   Name  

Enter  the  name  of  the  connector.  Names  are  case-sensitive.  The  name  you  

enter  must  be  unique,  and  must  be  consistent  with  the  file  name  for  a 

connector  that  is installed  on  the  system.  

Important:   Connector  Configurator  does  not  check  the  spelling  of the  name  

that  you  enter.  You must  ensure  that  the  name  is correct.  

v   System  Connectivity  

Click  ICS  or  WebSphere  Message  Brokers  or  WAS. 

v   Select  Connector-Specific  Property  Template  

 

92 Adapter  for Portal Infranet  User Guide



Type the  name  of  the  template  that  has  been  designed  for  your  connector.  

The  available  templates  are  shown  in  the  Template  Name  display.  When  you  

select  a name  in  the  Template  Name  display,  the  Property  Template  Preview  

display  shows  the  connector-specific  properties  that  have  been  defined  in 

that  template.  

Select  the  template  you  want  to  use  and  click  OK.
4.   A  configuration  screen  appears  for  the  connector  that  you  are  configuring.  The  

title  bar  shows  the  integration  broker  and  connector  name.  You can  fill  in  all  

the  field  values  to complete  the  definition  now, or  you  can  save  the  file  and  

complete  the  fields  later. 

5.   To save  the  file,  click  File>Save>To  File  or  File>Save>To  Project. To save  to a 

project,  System  Manager  must  be  running.  

If you  save  as  a file,  the  Save  File  Connector  dialog  box  appears.  Choose  *.cfg  

as the  file  type,  verify  in the  File  Name  field  that  the  name  is spelled  correctly  

and  has  the  correct  case,  navigate  to  the  directory  where  you  want  to  locate  the  

file,  and  click  Save. The  status  display  in  the  message  panel  of Connector  

Configurator  indicates  that  the  configuration  file  was  successfully  created.  

Important:   The  directory  path  and  name  that  you  establish  here  must  match  

the  connector  configuration  file  path  and  name  that  you  supply  in  

the  startup  file  for  the  connector.  

6.   To complete  the  connector  definition,  enter  values  in  the  fields  for  each  of the  

tabs  of  the  Connector  Configurator  window,  as described  later  in  this  chapter.

Using an existing file 

You may  have  an  existing  file  available  in  one  or  more  of the  following  formats:  

v   A  connector  definition  file.  

This  is a text  file  that  lists  properties  and  applicable  default  values  for  a specific  

connector.  Some  connectors  include  such  a file  in  a \repository  directory  in 

their  delivery  package  (the  file  typically  has  the  extension  .txt; for  example,  

CN_XML.txt  for  the  XML  connector).  

v   An  ICS  repository  file.  

Definitions  used  in  a previous  ICS  implementation  of the  connector  may  be  

available  to  you  in  a repository  file  that  was  used  in the  configuration  of  that  

connector.  Such  a file  typically  has  the  extension  .in  or  .out. 

v   A  previous  configuration  file  for  the  connector.  

Such  a file  typically  has  the  extension  *.cfg.

Although  any  of  these  file  sources  may  contain  most  or  all  of  the  connector-specific  

properties  for  your  connector,  the  connector  configuration  file  will  not  be  complete  

until  you  have  opened  the  file  and  set  properties,  as  described  later  in  this  chapter.  

To use  an  existing  file  to  configure  a connector,  you  must  open  the  file  in  

Connector  Configurator,  revise  the  configuration,  and  then  resave  the  file.  

Follow  these  steps  to open  a *.txt,  *.cfg,  or  *.in  file  from  a directory:  

1.   In  Connector  Configurator,  click  File>Open>From  File. 

2.   In  the  Open  File  Connector  dialog  box,  select  one  of  the  following  file  types  to  

see  the  available  files:  

v   Configuration  (*.cfg) 

v   ICS  Repository  (*.in, *.out) 

 

Appendix B. Using  Connector  Configurator  93



Choose  this  option  if a repository  file  was  used  to  configure  the  connector  in 

an  ICS  environment.  A repository  file  may  include  multiple  connector  

definitions,  all  of  which  will  appear  when  you  open  the  file.  

v   All  files  (*.*)  

Choose  this  option  if a *.txt  file  was  delivered  in  the  adapter  package  for  

the  connector,  or  if a definition  file  is available  under  another  extension.
3.   In  the  directory  display,  navigate  to the  appropriate  connector  definition  file,  

select  it,  and  click  Open.

Follow  these  steps  to  open  a connector  configuration  from  a System  Manager  

project:  

1.   Start  System  Manager.  A  configuration  can  be  opened  from  or  saved  to  System  

Manager  only  if System  Manager  has  been  started.  

2.   Start  Connector  Configurator.  

3.   Click  File>Open>From  Project.

Completing a configuration file 

When  you  open  a configuration  file  or  a connector  from  a project,  the  Connector  

Configurator  window  displays  the  configuration  screen,  with  the  current  attributes  

and  values.  

The  title  of  the  configuration  screen  displays  the  integration  broker  and  connector  

name  as  specified  in  the  file.  Make  sure  you  have  the  correct  broker.  If not,  change  

the  broker  value  before  you  configure  the  connector.  To do  so:  

1.   Under  the  Standard  Properties  tab,  select  the  value  field  for  the  BrokerType  

property.  In  the  drop-down  menu,  select  the  value  ICS, WMQI, or WAS. 

2.   The  Standard  Properties  tab  will  display  the  connector  properties  associated  

with  the  selected  broker.  The  table  shows  Property  name, Value, Type, Subtype  

(if  the  Type  is  a string),  Description, and  Update  Method.  

3.   You can  save  the  file  now  or  complete  the  remaining  configuration  fields,  as 

described  in  “Specifying  supported  business  object  definitions”  on  page  97..  

4.   When  you  have  finished  your  configuration,  click  File>Save>To  Project  or 

File>Save>To  File. 

If  you  are  saving  to  file,  select  *.cfg  as  the  extension,  select  the  correct  location  

for  the  file  and  click  Save. 

If  multiple  connector  configurations  are  open,  click  Save  All  to  File  to  save  all 

of  the  configurations  to file,  or  click  Save  All  to  Project  to save  all  connector  

configurations  to  a System  Manager  project.  

Before  you  created  the  configuration  file,  you  used  the  Target  System  droplist  

that  allows  you  to  select  the  target  operating  system  for  extended  validation  of 

the  properties.  

Before  it  saves  the  file,  Connector  Configurator  checks  that  values  have  been  

set  for  all  required  standard  properties.  If a required  standard  property  is 

missing  a value,  Connector  Configurator  displays  a message  that  the  validation  

failed.  You must  supply  a value  for  the  property  in order  to save  the  

configuration  file.  

If  you  have  elected  to use  the  extended  validation  feature  by  selecting  a value  

of  Windows,  UNIX  or  Other  from  the  Target  System  droplist,  the  system  will  

validate  the  property  subtype  s well  as  the  type,  and  it displays  a warning  

message  if the  validation  fails.

 

94 Adapter  for Portal Infranet  User Guide



Setting the configuration file properties 

When  you  create  and  name  a new  connector  configuration  file,  or  when  you  open  

an  existing  connector  configuration  file,  Connector  Configurator  displays  a 

configuration  screen  with  tabs  for  the  categories  of  required  configuration  values.  

Connector  Configurator  requires  values  for  properties  in  these  categories  for  

connectors  running  on  all  brokers:  

v   Standard  Properties  

v   Connector-specific  Properties  

v   Supported  Business  Objects  

v   Trace/Log  File  values  

v   Data  Handler  (applicable  for  connectors  that  use  JMS  messaging  with  

guaranteed  event  delivery)

Note:   For  connectors  that  use  JMS  messaging,  an  additional  category  may  display,  

for  configuration  of data  handlers  that  convert  the  data  to  business  objects.  

For  connectors  running  on  ICS, values  for  these  properties  are  also  required:  

v   Associated  Maps  

v   Resources  

v   Messaging  (where  applicable)  

v   Security

Important:   Connector  Configurator  accepts  property  values  in  either  English  or  

non-English  character  sets.  However,  the  names  of  both  standard  and  

connector-specific  properties,  and  the  names  of supported  business  

objects,  must  use  the  English  character  set  only.  

Standard  properties  differ  from  connector-specific  properties  as  follows:  

v   Standard  properties  of  a connector  are  shared  by  both  the  application-specific  

component  of  a connector  and  its  broker  component.  All  connectors  have  the  

same  set  of  standard  properties.  These  properties  are  described  in Appendix  A  of 

each  adapter  guide.  You can  change  some  but  not  all  of these  values.  

v   Application-specific  properties  apply  only  to  the  application-specific  component  

of a connector,  that  is,  the  component  that  interacts  directly  with  the  application.  

Each  connector  has  application-specific  properties  that  are  unique  to its  

application.  Some  of  these  properties  provide  default  values  and  some  do  not;  

you  can  modify  some  of  the  default  values.  The  installation  and  configuration  

chapters  of  each  adapter  guide  describe  the  application-specific  properties  and  

the  recommended  values.

The  fields  for  Standard  Properties  and  Connector-Specific  Properties  are  

color-coded  to  show  which  are  configurable:  

v   A  field  with  a grey  background  indicates  a standard  property.  You can  change  

the  value  but  cannot  change  the  name  or  remove  the  property.  

v   A  field  with  a white  background  indicates  an  application-specific  property.  These  

properties  vary  according  to the  specific  needs  of  the  application  or  connector.  

You can  change  the  value  and  delete  these  properties.  

v   Value  fields  are  configurable.  

 

Appendix B. Using  Connector  Configurator  95



v   The  Update  Method  field  is displayed  for  each  property.  It indicates  whether  a 

component  or  agent  restart  is necessary  to  activate  changed  values.  You cannot  

configure  this  setting.

Setting standard connector properties 

To change  the  value  of a standard  property:  

1.   Click  in the  field  whose  value  you  want  to  set.  

2.   Either  enter  a value,  or  select  one  from  the  drop-down  menu  if it appears.  

Note:   If  the  property  has  a Type  of String,  it may  have  a subtype  value  in the  

Subtype  column.  This  subtype  is used  for  extended  validation  of  the  

property.  

3.   After  entering  all  the  values  for  the  standard  properties,  you  can  do  one  of  the  

following:  

v   To discard  the  changes,  preserve  the  original  values,  and  exit  Connector  

Configurator,  click  File>Exit  (or  close  the  window),  and  click  No  when  

prompted  to  save  changes.  

v   To enter  values  for  other  categories  in  Connector  Configurator,  select  the  tab  

for  the  category.  The  values  you  enter  for  Standard  Properties  (or  any  other  

category)  are  retained  when  you  move  to  the  next  category.  When  you  close  

the  window,  you  are  prompted  to  either  save  or  discard  the  values  that  you  

entered  in all  the  categories  as a whole.  

v   To save  the  revised  values,  click  File>Exit  (or  close  the  window)  and  click  

Yes when  prompted  to  save  changes.  Alternatively,  click  Save>To  File  from  

either  the  File  menu  or  the  toolbar.

To  get  more  information  on  a particular  standard  property,  left-click  the  entry  in  

the  Description  column  for  that  property  in  the  Standard  Properties  tabbed  sheet.  

If you  have  Extended  Help  installed,  an  arrow  button  will  appear  on  the  right.  

When  you  click  on  the  button,  a Help  window  will  open  and  display  details  of the  

standard  property.  

Note:   If  the  hot  button  does  not  appear,  no  Extended  Help  was  found  for  that  

property.  

If installed,  the  Extended  Help  files  are  located  in  

<ProductDir>\bin\Data\Std\Help\<RegionalSetting>\. 

Setting connector-specific configuration properties 

For  connector-specific  configuration  properties,  you  can  add  or  change  property  

names,  configure  values,  delete  a property,  and  encrypt  a property.  The  default  

property  length  is  255  characters.  

1.   Right-click  in  the  top  left  portion  of the  grid.  A pop-up  menu  bar  will  appear.  

Click  Add  to  add  a property.  To add  a child  property,  right-click  on  the  parent  

row  number  and  click  Add  child. 

2.   Enter  a value  for  the  property  or  child  property.  

Note:   If  the  property  has  a Type  of String,  you  can  select  a subtype  from  the  

Subtype  droplist.  This  subtype  is used  for  extended  validation  of the  

property.  

3.   To encrypt  a property,  select  the  Encrypt  box.  

 

96 Adapter  for Portal Infranet  User Guide



4.   To get  more  information  on  a particular  property,  left-click  the  entry  in  the  

Description  column  for  that  property.  If  you  have  Extended  Help  installed,  a 

hot  button  will  appear.  When  you  click  on  the  hot  button,  a Help  window  will  

open  and  display  details  of  the  standard  property.  

Note:   If  the  hot  button  does  not  appear,  no  Extended  Help  was  found  for  that  

property.  

5.   Choose  to  save  or  discard  changes,  as described  for  “Setting  standard  connector  

properties”  on  page  96.

If  the  Extended  Help  files  are  installed  and  the  AdapterHelpName  property  is 

blank,  Connector  Configurator  will  point  to  the  adapter-specific  Extended  Help  

files  located  in  <ProductDir>\bin\Data\App\Help\<RegionalSetting>\. Otherwise,  

Connector  Configurator  will  point  to  the  adapter-specific  Extended  Help  files  

located  in  

<ProductDir>\bin\Data\App\Help\<AdapterHelpName>\<RegionalSetting>\. See  

the  AdapterHelpName  property  described  in  the  Standard  Properties  appendix.  

The  Update  Method  displayed  for  each  property  indicates  whether  a component  or 

agent  restart  is  necessary  to activate  changed  values.  

Important:   Changing  a preset  application-specific  connector  property  name  may  

cause  a connector  to fail.  Certain  property  names  may  be  needed  by  

the  connector  to  connect  to an  application  or  to  run properly.  

Encryption for connector properties 

Application-specific  properties  can  be  encrypted  by  selecting  the  Encrypt  check  

box  in the  Connector-specific  Properties  window.  To decrypt  a value,  click  to clear  

the  Encrypt  check  box,  enter  the  correct  value  in the  Verification  dialog  box,  and  

click  OK. If  the  entered  value  is correct,  the  value  is decrypted  and  displays.  

The  adapter  user  guide  for  each  connector  contains  a list  and  description  of  each  

property  and  its  default  value.  

If  a property  has  multiple  values,  the  Encrypt  check  box  will  appear  for  the  first  

value  of  the  property.  When  you  select  Encrypt, all  values  of the  property  will  be  

encrypted.  To decrypt  multiple  values  of  a property,  click  to  clear  the  Encrypt  

check  box  for  the  first  value  of  the  property,  and  then  enter  the  new  value  in  the  

Verification  dialog  box.  If  the  input  value  is a match,  all  multiple  values  will  

decrypt.  

Update method 

Refer  to  the  descriptions  of  update  methods  found  in  the  Standard  Properties  

appendix,  under  “Configuration  property  values  overview”  on  page  64.  

Specifying supported business object definitions 

Use  the  Supported  Business  Objects  tab  in  Connector  Configurator  to  specify  the  

business  objects  that  the  connector  will  use.  You must  specify  both  generic  business  

objects  and  application-specific  business  objects,  and  you  must  specify  associations  

for  the  maps  between  the  business  objects.  

Note:   Some  connectors  require  that  certain  business  objects  be  specified  as 

supported  in  order  to  perform  event  notification  or  additional  configuration  

 

Appendix B. Using  Connector  Configurator  97



(using  meta-objects)  with  their  applications.  For  more  information,  see  the  

Connector  Development  Guide  for  C++  or  the  Connector  Development  Guide  for  

Java. 

If ICS is your broker 

To specify  that  a business  object  definition  is  supported  by  the  connector,  or  to  

change  the  support  settings  for  an  existing  business  object  definition,  click  the  

Supported  Business  Objects  tab  and  use  the  following  fields.  

Business  object  name:    To designate  that  a business  object  definition  is supported  

by  the  connector,  with  System  Manager  running:  

1.   Click  an  empty  field  in  the  Business  Object  Name  list.  A  drop  list  displays,  

showing  all  the  business  object  definitions  that  exist  in  the  System  Manager  

project.  

2.   Click  on  a business  object  to add  it. 

3.   Set  the  Agent  Support  (described  below)  for  the  business  object.  

4.   In  the  File  menu  of  the  Connector  Configurator  window,  click  Save  to  Project. 

The  revised  connector  definition,  including  designated  support  for  the  added  

business  object  definition,  is saved  to  an  ICL  (Integration  Component  Library)  

project  in  System  Manager.

To  delete  a business  object  from  the  supported  list:  

1.   To select  a business  object  field,  click  the  number  to  the  left  of  the  business  

object.  

2.   From  the  Edit  menu  of  the  Connector  Configurator  window,  click  Delete  Row. 

The  business  object  is removed  from  the  list  display.  

3.   From  the  File  menu,  click  Save  to  Project.

Deleting  a business  object  from  the  supported  list  changes  the  connector  definition  

and  makes  the  deleted  business  object  unavailable  for  use  in  this  implementation  

of  this  connector.  It does  not  affect  the  connector  code,  nor  does  it  remove  the  

business  object  definition  itself  from  System  Manager.  

Agent  support:    If a business  object  has  Agent  Support,  the  system  will  attempt  to  

use  that  business  object  for  delivering  data  to  an  application  via  the  connector  

agent.  

Typically,  application-specific  business  objects  for  a connector  are  supported  by 

that  connector’s  agent,  but  generic  business  objects  are  not.  

To indicate  that  the  business  object  is supported  by  the  connector  agent,  check  the  

Agent  Support  box.  The  Connector  Configurator  window  does  not  validate  your  

Agent  Support  selections.  

Maximum  transaction  level:    The  maximum  transaction  level  for  a connector  is 

the  highest  transaction  level  that  the  connector  supports.  

For  most  connectors,  Best  Effort  is the  only  possible  choice.  

You must  restart  the  server  for  changes  in  transaction  level  to take  effect.  

If a WebSphere Message Broker is your broker 

If you  are  working  in stand-alone  mode  (not  connected  to  System  Manager),  you  

must  enter  the  business  object  name  manually.  

 

98 Adapter  for Portal Infranet  User Guide



If  you  have  System  Manager  running,  you  can  select  the  empty  box  under  the  

Business  Object  Name  column  in  the  Supported  Business  Objects  tab.  A  combo  

box  appears  with  a list  of  the  business  object  available  from  the  Integration  

Component  Library  project  to  which  the  connector  belongs.  Select  the  business  

object  you  want  from  the  list.  

The  Message  Set  ID  is an  optional  field  for  WebSphere  Business  Integration  

Message  Broker  5.0,  and  need  not  be  unique  if supplied.  However,  for  WebSphere  

MQ  Integrator  and  Integrator  Broker  2.1,  you  must  supply  a unique  ID.  

If WAS is your broker 

When  WebSphere  Application  Server  is selected  as your  broker  type,  Connector  

Configurator  does  not  require  message  set  IDs.  The  Supported  Business  Objects  

tab  shows  a Business  Object  Name  column  only  for  supported  business  objects.  

If  you  are  working  in  stand-alone  mode  (not  connected  to  System  Manager),  you  

must  enter  the  business  object  name  manually.  

If  you  have  System  Manager  running,  you  can  select  the  empty  box  under  the  

Business  Object  Name  column  in the  Supported  Business  Objects  tab.  A  combo  box  

appears  with  a list  of  the  business  objects  available  from  the  Integration  

Component  Library  project  to  which  the  connector  belongs.  Select  the  business  

object  you  want  from  this  list.  

Associated maps (ICS) 

Each  connector  supports  a list  of  business  object  definitions  and  their  associated  

maps  that  are  currently  active  in  WebSphere  InterChange  Server.  This  list  appears  

when  you  select  the  Associated  Maps  tab.  

The  list  of  business  objects  contains  the  application-specific  business  object  which  

the  agent  supports  and  the  corresponding  generic  object  that  the  controller  sends  

to  the  subscribing  collaboration.  The  association  of a map  determines  which  map  

will  be  used  to  transform  the  application-specific  business  object  to  the  generic  

business  object  or  the  generic  business  object  to  the  application-specific  business  

object.  

If  you  are  using  maps  that  are  uniquely  defined  for  specific  source  and  destination  

business  objects,  the  maps  will  already  be  associated  with  their  appropriate  

business  objects  when  you  open  the  display,  and  you  will  not  need  (or  be  able)  to  

change  them.  

If  more  than  one  map  is available  for  use  by  a supported  business  object,  you  will  

need  to  explicitly  bind  the  business  object  with  the  map  that  it should  use.  

The  Associated  Maps  tab  displays  the  following  fields:  

v   Business  Object  Name  

These  are  the  business  objects  supported  by  this  connector,  as  designated  in the  

Supported  Business  Objects  tab.  If you  designate  additional  business  objects  

under  the  Supported  Business  Objects  tab,  they  will  be  reflected  in this  list  after  

you  save  the  changes  by  choosing  Save  to  Project  from  the  File  menu  of the  

Connector  Configurator  window.  

v   Associated  Maps  

 

Appendix B. Using  Connector  Configurator  99



The  display  shows  all  the  maps  that  have  been  installed  to the  system  for  use  

with  the  supported  business  objects  of  the  connector.  The  source  business  object  

for  each  map  is  shown  to  the  left  of  the  map  name,  in  the  Business  Object  

Name  display.  

v   Explicit  Binding  

In  some  cases,  you  may  need  to  explicitly  bind  an  associated  map.  

Explicit  binding  is required  only  when  more  than  one  map  exists  for  a particular  

supported  business  object.  When  ICS  boots,  it tries  to automatically  bind  a map  

to  each  supported  business  object  for  each  connector.  If  more  than  one  map  

takes  as  its  input  the  same  business  object,  the  server  attempts  to  locate  and  

bind  one  map  that  is the  superset  of the  others.  

If  there  is no  map  that  is the  superset  of  the  others,  the  server  will  not  be  able  to  

bind  the  business  object  to  a single  map,  and  you  will  need  to  set  the  binding  

explicitly.  

To explicitly  bind  a map:  

1.   In  the  Explicit  column,  place  a check  in  the  check  box  for  the  map  you  want  

to  bind.  

2.   Select  the  map  that  you  intend  to  associate  with  the  business  object.  

3.   In  the  File  menu  of the  Connector  Configurator  window,  click  Save  to  

Project. 

4.   Deploy  the  project  to  ICS.  

5.   Reboot  the  server  for  the  changes  to  take  effect.

Resources (ICS) 

The  Resource  tab  allows  you  to set  a value  that  determines  whether  and  to what  

extent  the  connector  agent  will  handle  multiple  processes  concurrently,  using  

connector  agent  parallelism.  

Not  all  connectors  support  this  feature.  If you  are  running  a connector  agent  that  

was  designed  in  Java  to  be  multi-threaded,  you  are  advised  not  to use  this  feature,  

since  it is  usually  more  efficient  to  use  multiple  threads  than  multiple  processes.  

Messaging (ICS) 

The  Messaging  tab  enables  you  to configure  messaging  properties.  The  messaging  

properties  are  available  only  if you  have  set  MQ  as  the  value  of the  

DeliveryTransport  standard  property  and  ICS  as  the  broker  type.  These  properties  

affect  how  your  connector  will  use  queues.  

Validating messaging queues 

Before  you  can  validate  a messaging  queue,  you  must:  

v   Make  sure  that  WebSphere  MQ  Series  is installed.  

v   Create  a messaging  queue  with  channel  and  port  on  the  host  machine.  

v   Set  up  a connection  to the  host  machine.

To  validate  the  queue,  use  the  Validate  button  to  the  right  of the  Messaging  Type 

and  Host  Name  fields  on  the  Messaging  tab.  

Security (ICS) 

You can  use  the  Security  tab  in  Connector  Configurator  to  set  various  privacy  

levels  for  a message.  You can  only  use  this  feature  when  the  DeliveryTransport  

property  is  set  to  JMS.  

 

100 Adapter  for Portal  Infranet  User  Guide



By  default,  Privacy  is turned  off.  Check  the  Privacy  box  to  enable  it. 

The  Keystore  Target  System  Absolute  Pathname  is:  

v   For  Windows:  

<ProductDir>\connectors\security\<connectorname>.jks  

v   For  UNIX:  

opt/IBM/WebSphereAdapters/connectors/security/<connectorname>.jks

This  path  and  file  should  be  on  the  system  where  you  plan  to  start  the  connector,  

that  is,  the  target  system.  

You can  use  the  Browse  button  at the  right  only  if the  target  system  is the  one  

currently  running.  It is greyed  out  unless  Privacy  is enabled  and  the  Target  System  

in  the  menu  bar  is set  to Windows.  

The  Message  Privacy  Level  may  be  set  as follows  for  the  three  messages  categories  

(All  Messages,  All  Administrative  Messages,  and  All  Business  Object  Messages):  

v    “”  is  the  default;  used  when  no  privacy  levels  for  a message  category  have  been  

set.  

v   none  

Not  the  same  as  the  default:  use  this  to  deliberately  set  a privacy  level  of  none  

for  a message  category.  

v   integrity  

v   privacy  

v   integrity_plus_privacy

The  Key  Maintenance  feature  lets  you  generate,  import  and  export  public  keys  for  

the  server  and  adapter.  

v   When  you  select  Generate  Keys, the  Generate  Keys  dialog  box  appears  with  the  

defaults  for  the  keytool  that  will  generate  the  keys.  

v   The  keystore  value  defaults  to  the  value  you  entered  in  Keystore  Target  System  

Absolute  Pathname  on  the  Security  tab.  

v   When  you  select  OK,  the  entries  are  validated,  the  key  certificate  is generated  

and  the  output  is sent  to  the  Connector  Configurator  log  window.

Before  you  can  import  a certificate  into  the  adapter  keystore,  you  must  export  it 

from  the  server  keystore.  When  you  select  Export  Adapter  Public  Key, the  Export  

Adapter  Public  Key  dialog  box  appears.  

v    The  export  certificate  defaults  to  the  same  value  as  the  keystore,  except  that  the  

file  extension  is  <filename>.cer.

When  you  select  Import  Server  Public  Key, the  Import  Server  Public  Key  dialog  

box  appears.  

v    The  import  certificate  defaults  to  <ProductDir>\bin\ics.cer  (if  the  file  exists  on  

the  system).  

v   The  import  Certificate  Association  should  be  the  server  name.  If a server  is 

registered,  you  can  select  it from  the  droplist.

The  Adapter  Access  Control  feature  is enabled  only  when  the  value  of 

DeliveryTransport  is IDL.  By  default,  the  adapter  logs  in  with  the  guest  identity.  If 

the  Use  guest  identity  box  is not  checked,  the  Adapter  Identity  and  Adapter  

Password  fields  are  enabled.  

 

Appendix  B. Using  Connector  Configurator  101



Setting trace/log file values 

When  you  open  a connector  configuration  file  or  a connector  definition  file,  

Connector  Configurator  uses  the  logging  and  tracing  values  of  that  file  as  default  

values.  You can  change  those  values  in  Connector  Configurator.  

To change  the  logging  and  tracing  values:  

1.   Click  the  Trace/Log  Files  tab.  

2.   For  either  logging  or  tracing,  you  can  choose  to write  messages  to  one  or  both  

of  the  following:  

v   To console  (STDOUT):  

Writes  logging  or  tracing  messages  to  the  STDOUT  display.  

Note:   You can  only  use  the  STDOUT  option  from  the  Trace/Log  Files  tab  for  

connectors  running  on  the  Windows  platform.  

v   To File:  

Writes  logging  or  tracing  messages  to  a file  that  you  specify.  To specify  the  

file,  click  the  directory  button  (ellipsis),  navigate  to  the  preferred  location,  

provide  a file  name,  and  click  Save. Logging  or  tracing  message  are  written  

to  the  file  and  location  that  you  specify.  

Note:   Both  logging  and  tracing  files  are  simple  text  files.  You can  use  the  file  

extension  that  you  prefer  when  you  set  their  file  names.  For  tracing  

files,  however,  it is advisable  to  use  the  extension  .trace  rather  than  

.trc, to  avoid  confusion  with  other  files  that  might  reside  on  the  

system.  For  logging  files,  .log  and  .txt  are  typical  file  extensions.

Data handlers 

The  data  handlers  section  is available  for  configuration  only  if you  have  designated  

a value  of JMS  for  DeliveryTransport  and  a value  of  JMS  for  

ContainerManagedEvents.  Not  all  adapters  make  use  of  data  handlers.  

See  the  descriptions  under  ContainerManagedEvents  in Appendix  A,  Standard  

Properties,  for  values  to use  for  these  properties.  For  additional  details,  see  the  

Connector  Development  Guide  for  C++  or  the  Connector  Development  Guide  for  Java.  

Saving your configuration file 

When  you  have  finished  configuring  your  connector,  save  the  connector  

configuration  file.  Connector  Configurator  saves  the  file  in  the  broker  mode  that  

you  selected  during  configuration.  The  title  bar  of  Connector  Configurator  always  

displays  the  broker  mode  (ICS,  WMQI  or  WAS)  that  it  is currently  using.  

The  file  is saved  as  an  XML  document.  You can  save  the  XML  document  in  three  

ways:  

v   From  System  Manager,  as  a file  with  a *.con  extension  in an  Integration  

Component  Library,  or  

v   In  a directory  that  you  specify.  

v   In  stand-alone  mode,  as a file  with  a *.cfg  extension  in a directory  folder.  By  

default,  the  file  is  saved  to \WebSphereAdapters\bin\Data\App. 

v   You can  also  save  it to  a WebSphere  Application  Server  project  if you  have  set  

one  up.

 

102 Adapter  for Portal  Infranet  User  Guide



For  details  about  using  projects  in  System  Manager,  and  for  further  information  

about  deployment,  see  the  following  implementation  guides:  

v   For  ICS:  Implementation  Guide  for  WebSphere  InterChange  Server  

v   For  WebSphere  Message  Brokers:  Implementing  Adapters  with  WebSphere  Message  

Brokers  

v   For  WAS:  Implementing  Adapters  with  WebSphere  Application  Server

Changing a configuration file 

You can  change  the  integration  broker  setting  for  an  existing  configuration  file.  

This  enables  you  to  use  the  file  as  a template  for  creating  a new  configuration  file,  

which  can  be  used  with  a different  broker.  

Note:   You will  need  to  change  other  configuration  properties  as  well  as  the  broker  

mode  property  if you  switch  integration  brokers.  

To change  your  broker  selection  within  an  existing  configuration  file  (optional):  

v   Open  the  existing  configuration  file  in  Connector  Configurator.  

v   Select  the  Standard  Properties  tab.  

v   In  the  BrokerType  field  of the  Standard  Properties  tab,  select  the  value  that  is 

appropriate  for  your  broker.  

When  you  change  the  current  value,  the  available  tabs  and  field  selections  in  the  

properties  window  will  immediately  change,  to show  only  those  tabs  and  fields  

that  pertain  to  the  new  broker  you  have  selected.

Completing the configuration 

After  you  have  created  a configuration  file  for  a connector  and  modified  it, make  

sure  that  the  connector  can  locate  the  configuration  file  when  the  connector  starts  

up.  

To do  so,  open  the  startup  file  used  for  the  connector,  and  verify  that  the  location  

and  file  name  used  for  the  connector  configuration  file  match  exactly  the  name  you  

have  given  the  file  and  the  directory  or  path  where  you  have  placed  it.  

Using Connector Configurator in a globalized environment 

Connector  Configurator  is globalized  and  can  handle  character  conversion  between  

the  configuration  file  and  the  integration  broker.  Connector  Configurator  uses  

native  encoding.  When  it writes  to  the  configuration  file,  it uses  UTF-8  encoding.  

Connector  Configurator  supports  non-English  characters  in:  

v   All  value  fields  

v   Log  file  and  trace  file  path  (specified  in  the  Trace/Log  files  tab)

The  drop  list  for  the  CharacterEncoding  and  Locale  standard  configuration  

properties  displays  only  a subset  of supported  values.  To add  other  values  to the  

drop  list,  you  must  manually  modify  the  \Data\Std\stdConnProps.xml  file  in  the  

product  directory.  

For  example,  to  add  the  locale  en_GB  to the  list  of  values  for  the  Locale  property,  

open  the  stdConnProps.xml  file  and  add  the  line  in  boldface  type  below:  

 

Appendix  B. Using  Connector  Configurator  103



<Property  name="Locale"  

isRequired="true"  

updateMethod="component  restart">  

                <ValidType>String</ValidType>  

            <ValidValues>  

                                <Value>ja_JP</Value>  

                                <Value>ko_KR</Value>  

                                <Value>zh_CN</Value>  

                                <Value>zh_TW</Value>  

                                <Value>fr_FR</Value>  

                                <Value>de_DE</Value>  

                                <Value>it_IT</Value>  

                                <Value>es_ES</Value>  

                                <Value>pt_BR</Value>  

                                <Value>en_US</Value>  

                                <Value>en_GB</Value>  

                    <DefaultValue>en_US</DefaultValue>  

            </ValidValues>  

    </Property>  

 

104 Adapter  for Portal  Infranet  User  Guide



Appendix  C.  Application  Response  Measurement  

This  adapter  is  compatible  with  the  Application  Response  Measurement  

application  programming  interface  (API),  an  API  that  allows  applications  to  be  

managed  for  availability,  service  level  agreements,  and  capacity  planning.  An  

ARM-instrumented  application  can  participate  in  IBM  Tivoli  Monitoring  for  

Transaction  Performance,  allowing  collection  and  review  of  data  concerning  

transaction  metrics.  

Application Response Measurement instrumentation support 

This  adapter  is  compatible  with  the  Application  Response  Measurement  

application  programming  interface  (API),  an  API  that  allows  applications  to  be  

managed  for  availability,  service  level  agreements,  and  capacity  planning.  An  

ARM-instrumented  application  can  participate  in  IBM  Tivoli  Monitoring  for  

Transaction  Performance,  allowing  collection  and  review  of  data  concerning  

transaction  metrics.  

Required software 

In  addition  to  the  software  prerequisites  required  for  the  adapter,  you  must  have  

the  following  installed  for  ARM  to operate:  

v   WebSphere  Application  Server  5.0.1  (contains  the  IBM  Tivoli  Monitoring  for  

Transaction  Performance  server).  This  does  not  have  to  be  installed  on  the  same  

system  as  the  adapter.  

v   IBM  Tivoli  Monitoring  for  Transaction  Performance  v.  5.2  Fixpack  1. This  must  

be  installed  on  the  same  system  on  which  the  adapter  is installed  and  

configured  to  point  to  the  system  on  which  the  IBM  Tivoli  Monitoring  for  

Transaction  Performance  server  resides.

Application  Response  Measurement  support  is available  using  any  integration  

broker  supported  with  this  release.  

Note:   Application  Response  Measurement  instrumentation  is supported  on  all 

operating  systems  supported  with  this  IBM  WebSphere  Business  Integration  

Adapters  release  except  HP-UX  (any  version)  and  Red  Hat  Linux  3.0.  

Enabling Application Response Measurement 

ARM  instrumentation  is  enabled  by  setting  the  standard  property  

TivoliMonitorTransactionPerformance  in Connector  Configurator  to “True.” By  

default  ARM  support  is not  enabled.  (Refer  to the  ″Standard  Properties″ appendix  

of  this  document  for  more  information.)  

Transaction monitoring 

When  ARM  is  enabled,  the  transactions  that  are  monitored  are  service  requests  and  

event  deliveries.  The  transaction  is measured  from  the  start  of  a service  request  or  

event  delivery  to  the  end  of the  service  request  or  event  delivery.  The  name  of the  

transaction  displayed  on  the  Tivoli  Monitoring  for  Transaction  Performance  console  

will  start  with  either  SERVICE  REQUEST  or  EVENT  DELIVERY. The  next  part  of  the  

name  will  be  the  business  object  verb  (such  as  CREATE, RETRIEVE, UPDATE  or  DELETE). 

The  final  part  of  the  name  will  be  the  business  object  name  such  as  “EMPLOYEE.” 

 

© Copyright  IBM Corp. 1999, 2005 105



For  example,  the  name  of  a transaction  for  an  event  delivery  for  creation  of an 

employee  might  be  EVENT  DELIVERY  CREATE  EMPLOYEE. Another  might  be  SERVICE  

REQUEST  UPDATE  ORDER. 

The  following  metrics  are  collected  by  default  for  each  type  of service  request  or  

event  delivery:  

v   Minimum  transaction  time  

v   Maximum  transaction  time  

v   Average  transaction  time  

v   Total transaction  runs

You (or  the  system  administrator  of  the  WebSphere  Application  Server)  can  select  

which  of  these  metrics  to  display,  for  which  adapter  events,  by  configuring  

Discovery  Policies  and  Listener  Policies  for  particular  transactions  from  within  the  

Tivoli  Monitoring  for  Transaction  Performance  console.  (Refer  to  “For  more  

information.”)  

For more information 

Refer  to  the  IBM  Tivoli  Monitoring  for  Transaction  Performance  documentation  for  

more  information.  In  particular,  refer  to  the  IBM  Tivoli  Monitoring  for  Transaction  

Performance  User’s  Guide  for  information  about  monitoring  and  managing  the  

metrics  generated  by  the  adapter.  

 

106 Adapter  for Portal  Infranet  User  Guide



Appendix  D.  Common  Event  Infrastructure  

WebSphere  Business  Integration  Server  Foundation  includes  the  Common  Event  

Infrastructure  Server  Application,  which  is required  for  Common  Event  

Infrastructure  to  operate.  The  WebSphere  Application  Server  Foundation  can  be  

installed  on  any  system  (it  does  not  have  to be  the  same  machine  on  which  the  

adapter  is installed.)  

The  WebSphere  Application  Server  Application  Client  includes  the  libraries  

required  for  interaction  between  the  adapter  and  the  Common  Event  Infrastructure  

Server  Application.  You must  install  WebSphere  Application  Server  Application  

Client  on  the  same  system  on  which  you  install  the  adapter.  The  adapter  connects  

to  the  WebSphere  Application  Server  (within  the  WebSphere  Business  Integration  

Server  Foundation)  by  means  of a configurable  URL.  

Common  Event  Infrastructure  support  is available  using  any  integration  broker  

supported  with  this  release.  

Required software 

In  addition  to  the  software  prerequisites  required  for  the  adapter,  you  must  have  

the  following  installed  for  Common  Event  Infrastructure  to  operate:  

v   WebSphere  Business  Integration  Server  Foundation  5.1.1  

v   WebSphere  Application  Server  Application  Client  5.0.2,  5.1,  or  5.1.1.  

(WebSphere  Application  Server  Application  Client  5.1.1  is provided  with  

WebSphere  Business  Integration  Server  Foundation  5.1.1.  )

Note:   Common  Event  Infrastructure  is not  supported  on  any  HP-UX  or  Linux  

platform.  

Enabling Common Event Infrastructure 

Common  Event  Infrastructure  functionality  is enabled  with  the  standard  properties  

CommonEventInfrastructure  and  CommonEventInfrastructureContextURL, configured  

with  Connector  Configurator.  By  default,  Common  Event  Infrastructure  is not  

enabled.  The  CommonEventInfrastructureContextURL  property  enables  you  to 

configure  the  URL  of  the  Common  Event  Infrastructure  server.(Refer  to the  

“Standard  Properties”  appendix  of  this  document  for  more  information.)  

Obtaining Common Event Infrastructure adapter events 

If  Common  Event  Infrastructure  is enabled,  the  adapter  generates  Common  Event  

Infrastructure  events  that  map  to  the  following  adapter  events:  

v   Starting  the  adapter  

v   Stopping  the  adapter  

v   An  application  response  to a timeout  from  the  adapter  agent  

v   Any  doVerbFor  call  issued  from  the  adapter  agent  

v   A  gotApplEvent  call  from  the  adapter  agent

For  another  application  (the  “consumer  application”)  to  receive  the  Common  Event  

Infrastructure  events  generated  by  the  adapter,  the  application  must  use  the  

 

© Copyright  IBM Corp. 1999, 2005 107



Common  Event  Infrastructure  event  catalog  to  determine  the  definitions  of 

appropriate  events  and  their  properties.  The  events  must  be  defined  in  the  event  

catalog  for  the  consumer  application  to be  able  to  consume  the  sending  

application’s  events.  

The  “Common  Event  Infrastructure  event  catalog  definitions”  appendix  of  this  

document  contains  XML  format  metadata  showing,  for  WebSphere  Business  

Information  adapters,  the  event  descriptors  and  properties  the  consumer  

application  should  search  for. 

For more information 

For  more  information  about  Common  Event  Infrastructure,  refer  to the  Common  

Event  Infrastructure  information  in the  WebSphere  Business  Integration  Server  

Foundation  documentation,  available  at the  following  URL:  

http://publib.boulder.ibm.com/infocenter/ws51help  

For  sample  XML  metadata  showing  the  adapter-generated  event  descriptors  and  

properties  a consumer  application  should  search  for, refer  to“Common  Event  

Infrastructure  event  catalog  definitions.”  

Common Event Infrastructure event catalog definitions 

The  Common  Event  Infrastructure  event  catalog  contains  event  definitions  that  can  

be  queried  by  other  applications.  The  following  are  event  definition  samples,  using  

XML  metadata,  for  typical  adapter  events.  If you  are  writing  another  application,  

your  application  can  use  event  catalog  interfaces  to  query  against  the  event  

definition.  For  more  information  about  event  definitions  and  how  to  query  them,  

refer  to  the  Common  Event  Infrastructure  documentation  that  is available  from  the  

online  IBM  WebSphere  Server  Foundation  Information  Center.  

For  WebSphere  Business  Integration  adapters,  the  extended  data  elements  that  

need  to  be  defined  in  the  event  catalog  are  the  keys  of  the  business  object.  Each  

business  object  key  requires  an  event  definition.  So  for  any  given  adapter,  various  

events  such  as  start  adapter,  stop  adapter,  timeout  adapter,  and  any  doVerbFor  

event  (create,  update,  or  delete,  for  example)  must  have  a corresponding  event  

definition  in  the  event  catalog.  

The  following  sections  contain  examples  of the  XML  metadata  for  start  adapter,  

stop  adapter,  and  event  request  or  delivery.  

XML format for “start adapter” metadata 

<eventDefinition  name="startADAPTER"  

      parent="event">  

    <property  name  =”creationTime"  //Comment:  example  value  would  be 

 "2004-05-13T17:00:16.319Z"  

         required="true"  /> 

    <property  name="globalInstanceId"  //Comment:  Automatically  generated  

 by Common  Event  Infrastructure  

         required="true"/>  

    <property  name="sequenceNumber"     //Comment:  Source  defined  number  

for  messages  to be sent/sorted  logically  

         required="false"/>  

    <property  name="version"     //Comment:  Version  of  the event  

         required="false"  

         defaultValue="1.0.1"/>

 

108 Adapter  for Portal  Infranet  User  Guide



<property  name="sourceComponentId"  

         path="sourceComponentId"  

         required="true"/>  

    <property  name="application"    //Comment:  The name#version  of the  

source  application  generating  the event.  Example  is "SampleConnector#3.0.0"  

         path="sourceComponentId/application"          required="false"/>  

    <property  name="component"    //Comment:  This  will  be the  name#version  

 of  the  source  component.  

         path="sourceComponentId/component"  

         required="true"  

         defaultValue="ConnectorFrameWorkVersion#4.2.2"/>  

    <property  name="componentIdType"     //Comment:  specifies  the  format  

and  meaning  of the  component  

          path="sourceComponentId/componentIdType"  

          required="true"  

          defaultValue="Application"/>  

    <property  name="executionEnvironment"  

 //Comment:  Identifies  the  environment  the  application  is running  

 in...example  is "Windows  2000#5.0"  

          path="sourceComponentId/executionEnvironment"  

          required="false"  /> 

     <property  name="location"     //Comment:  The  value  of this  is the 

 server  name...example  is "WQMI"  

          path="sourceComponentId/location"  

          required="true"/>  

    <property  name="locationType"    //Comment  specifies  the  format  and  

     meaning  of the  location  

          path="sourceComponentId/locationType"  

          required="true"  

          defaultValue="Hostname"/>  

     <property  name="subComponent"      //Comment:further  distinction  

of  the  logical  component  

          path="sourceComponentId/subComponent"  

          required="true"  

          defaultValue="AppSide_Connector.AgentBusinessObjectManager"/>  

     <property  name="componentType"       //Comment:  well-defined  name  

used  to  characterize  all  instances  of this  component  

          path="sourceComponentId/componentType"  

          required="true"  

          defaultValue="ADAPTER"/>  

     <property  name="situation"    //Comment:  Defines  the  type  of 

 situation  that  caused  the  event  to be reported  

          path="situation"  

          required="true"/>  

     <property  name="categoryName="     //Comment:  Specifies  the  type  

of  situation  for  the  event  

         path="situation/categoryName"  

         required="true"  

         defaultValue="StartSituation"/>  

    <property  name="situationType"     //Comment:  Specifies  the  type  

of  situation  and  disposition  of the  event  

         path="situation/situationType"  

         required="true"  

    <property  name="reasoningScope"  //Comment:  Specifies  the scope  

 of  the  impact  of the  event  

         path="situation/situationType/reasoningScope"  

         required="true"  

         permittedValue="INTERNAL"  

         permittedValue="EXTERNAL"/>  

    <property  name="successDisposition"  //Comment:  Specifies  the  

 success  of event  

         path="situation/situationType/successDisposition"  

         required="true"  

         permittedValue="SUCCESSFUL"  

         permittedValue="UNSUCCESSFUL"  /> 

    <property  name="situationQualifier"   //Comment:  Specifies  the 

 situation  qualifiers  for this  event

 

Appendix  D. Common  Event  Infrastructure 109



path="situation/situationType/situationQualifier"  

         required="true"  

         permittedValue="START_INITIATED"  

         permittedValue="RESTART_INITIATED"  

         permittedValue="START_COMPLETED"  /> 

</eventDefinition>  

XML format for ″stop adapter″ metadata 

The  metadata  for  “stop  adapter”  is the  same  as  that  for  “start  adapter”  with  the  

following  exceptions:  

v   The  default  value  for  the  categoryName  property  is StopSituation: 

<property  name="categoryName="  

 //Comment:  Specifies  the type  

 of situation  for  the  event  

              path="situation/categoryName"  

              required="true"  

              defaultValue="StopSituation"/>  

v   The  permitted  values  for  the  situationQualifier  property  differ  and  are  as  

follows  for  “stop  adapter”:  

<property  name="situationQualifier"  

 //Comment:  Specifies  the situation  qualifiers  for this  event  

           path="situation/situationType/situationQualifier"  

           required="true"  

           permittedValue="STOP_INITIATED"  

           permittedValue="ABORT_INITIATED"  

           permittedValue="PAUSE_INITIATED"  

           permittedValue="STOP_COMPLETED"  

 /> 

XML format for “timeout adapter” metadata 

The  metadata  for  “timeout  adapter”  is the  same  as  that  for  “start  adapter”  and  

“stop  adapter”  with  the  following  exceptions:  

v   The  default  value  for  the  categoryName  property  is ConnectSituation: 

<property  name="categoryName="  

 //Comment:  Specifies  the type  

 of situation  for  the  event  

              path="situation/categoryName"  

              required="true"  

              defaultValue="ConnectSituation"/>  

v   The  permitted  values  for  the  situationQualifier  property  differ  and  are  as  

follows  for  “timeout  adapter”:  

<property  name="situationQualifier"   //Comment:  Specifies  

 the  situation  qualifiers  for  this  event  

           path="situation/situationType/situationQualifier"  

           required="true"  

           permittedValue="IN_USE"  

           permittedValue="FREED"  

           permittedValue="CLOSED"  

           permittedValue="AVAILABLE"  

 /> 

 

110  Adapter  for Portal Infranet  User Guide



XML format for ″request″ or ″delivery″ metadata 

At  the  end  of  this  XML  format  are  the  extended  data  elements.  The  extended  data  

elements  for  adapter  request  and  delivery  events  represent  data  from  the  business  

object  being  processed.  This  data  includes  the  name  of the  business  object,  the  key  

(foreign  or  local)  for  the  business  object,  and  business  objects  that  are  children  of 

parent  business  objects.  The  children  business  objects  are  then  broken  down  into  

the  same  data  as  the  parent  (name,  key,  and  any  children  business  objects).  This  

data  is represented  in  an  extended  data  element  of the  event  definition.  This  data  

will  change  depending  on  which  business  object,  which  keys,  and  which  child  

business  objects  are  being  processed.  The  extended  data  in  this  event  definition  is 

just  an  example  and  represents  a business  object  named  Employee  with  a key  

EmployeeId  and  a child  business  object  EmployeeAddress  with  a key  EmployeeId. 

This  pattern  could  continue  for  as  much  data  as  exists  for  the  particular  business  

object.  

<eventDefinition  name="createEmployee"      //Comment:  This  

 extension  name  is  always  the  business  object  verb  followed  by  the  business  

 object  name  

          parent="event">  

    <property  name  ="creationTime"   //Comment:  example  value  would  be 

"2004-05-13T17:00:16.319Z"  

         required="true"  /> 

    <property  name="globalInstanceId"  //Comment:  Automatically  generated  

 by  Common  Event  Infrastructure  

         required="true"/>  

    <property  name="localInstanceId"     //Comment:  Value  is business  

 object  verb+business  object  name+#+app  name+  business  object  identifier  

         required="false"/>  

    <property  name="sequenceNumber"     //Comment:  Source  defined  number  

for  messages  to be  sent/sorted  logically  

         required="false"/>  

    <property  name="version"   //Comment:  Version  of the event...value  is 

 set  to 1.0.1  

         required="false"  

         defaultValue="1.0.1"/>  

    <property  name="sourceComponentId"  

         path="sourceComponentId"  

         required="true"/>  

    <property  name="application"     //Comment:  The  name#version  of the 

 source  application  generating  the  event...example  is 

 "SampleConnector#3.0.0"  

         path="sourceComponentId/application"  

         required="false"/>  

    <property  name="component"    //Comment:  This  will  be the  name#version  

of  the  source  component.  

         path="sourceComponentId/component"  

         required="true"  

         defaultValue="ConnectorFrameWorkVersion#4.2.2"/>  

    <property  name="componentIdType"      //Comment:  specifies  the format  

 and  meaning  of the  component  

         path="sourceComponentId/componentIdType"  

         required="true"  

         defaultValue="Application"/>  

    <property  name="executionEnvironment"  //Comment:  Identifies  the  

 environment#version  the  app  is running  in...example  is "Windows  2000#5.0"  

         path="sourceComponentId/executionEnvironment"  

         required="false"  /> 

    <property  name="instanceId"  //Comment:  Value  is  business  object  

  verb+business  object  name+#+app  name+  business  object  identifier  

          path="sourceComponentId/instanceId"  

          required="false"  

    <property  name="location"    //Comment:  The  value  of this  is the  

server  name...example  is "WQMI"  

          path="sourceComponentId/location"

 

Appendix  D. Common  Event  Infrastructure 111



required="true"/>  

     <property  name="locationType"  //Comment  specifies  the format  and  

 meaning  of the  location  

          path="sourceComponentId/locationType"  

          required="true"  

          defaultValue="Hostname"/>  

     <property  name="subComponent"   //Comment:further  distinction  of the  

 logical  component-in  this  case  the value  is the  name  of the  business  

 object  

          path="sourceComponentId/subComponent"  

          required="true"/>  

     <property  name="componentType"       //Comment:  well-defined  name  used  

 to characterize  all  instances  of this  component  

          path="sourceComponentId/componentType"  

          required="true"  

          defaultValue="ADAPTER"/>  

     <property  name="situation"  //Comment:  Defines  the  type  of  

situation  that  caused  the event  to be reported  

          path="situation"  

          required="true"/>  

    <property  name="categoryName"     //Comment:  Specifies  the  type  

 of situation  for  the  event  

         path="situation/categoryName"  

         required="true"  

         permittedValue="CreateSituation"  

         permittedValue="DestroySituation"  

         permittedValue="OtherSituation"  /> 

    <property  name="situationType"     //Comment:  Specifies  the type  

of situation  and  disposition  of the event  

         path="situation/situationType"  

         required="true"  

    <property  name="reasoningScope"  //Comment:  Specifies  the scope  

of the  impact  of the  event  

         path="situation/situationType/reasoningScope"  

         required="true"  

         permittedValue="INTERNAL"  

         permittedValue="EXTERNAL"/>  

    <property  name="successDisposition"  //Comment:  Specifies  the 

 success  of event  

         path="situation/situationType/successDisposition"  

         required="true"  

         permittedValue="SUCCESSFUL"  

         permittedValue="UNSUCCESSFUL"  /> 

    <extendedDataElements  name="Employee"  //Comment:  name  of business  

 object  itself  

             type="noValue"  

             <children  name="EmployeeId"  

                  type="string"/>   //Comment:  type  is one  of the 

 permitted  values  within  Common  Event  Infrastructure  documentation  

             <children  name="EmployeeAddress"  

                  type="noValue"/>  

                     <children  name="EmployeeId"  

                         type="string"/>  

                      - 

                      - 

                      - 

    </extendedDataElements  

</eventDefinition>  

 

112  Adapter  for Portal Infranet  User Guide



Index  

A
Application  Response  Measurement  

instrumentation,  support for 105 

B
Business  objects

application-specific  information  32 

application-specific  structure  29 

attribute  properties 31 

attribute-level  application-specific  

information  33 

defining  32 

definition  sample 45 

processing 3 

understanding  25 

C
Common  Event Infrastructure

event  catalog  108 

metadata  108 

Connector-specific  properties 14 

Create  verb
processing 5 

D
Database  archive  table

creating 10 

schema  10 

Database  event table
creating 10 

schema  10 

E
event  catalog,  for Common  Event 

Infrastructure  108 

Event  mechanism
customize  business  objects 16 

Event  module  configuration  file
defining  entries  18 

example  17 

syntax 17 

Event  notification  6 

Event  retrieval  7 

I
IBM Tivoli  Monitoring  for Transaction 

Performance  105 

Infranet  application
connecting  to 8 

event detection  6 

Installation  11 

L
Locale-dependent  data

processing  8 

M
Meta-data  28 

connector  behavior  2 

monitoring,  of transactions  105 

O
Object Discovery  Agent (ODA)

adding information  to business  object 

definition  61 

attribute  properties 60 

business  object level properties 59 

changing  error and message  

filename  50 

confirming  repository files and 

storable classes 55 

contents  of generated  definitions  59 

Generating  business  object 

definitions  49 

generating  definitions  56, 57 

installation  and usage 49 

installing  49 

requirements  50 

running on multiple  machines  50 

saving  definitions  58 

selecting  52 

starting  50 

using in business  object designer 51 

P
pin_notify_cw  file

adding events 19 

Portal Infranet  adapter
application-specific  business  object 

structure 29 

components  1 

configuring  9, 13 

configuring  for Oracle 11 

creating multiple instances  20 

how connector  works 2 

installing  9 

installing  and other files 11 

overview  1 

starting  21 

stopping  22 

Portal Infranet  application
account  set up 9 

background 25 

configuring  9 

fields and flists 27 

opcodes  28 

storable  classes and objects 25 

R
Retrieve  verb

processing 4 

S
Standard  connector  properties 13 

T
Tivoli Monitoring  for Transaction 

Performance  105 

transaction  monitoring  105 

U
Update verb

processing 5

 

© Copyright  IBM Corp. 1999, 2005 113



114  Adapter  for Portal Infranet  User Guide



Notices  

This  information  was  developed  for  products  and  services  offered  in the  U.S.A.  

IBM  may  not  offer  the  products,  services,  or  features  discussed  in  this  document  in  

other  countries.  Consult  your  local  IBM  representative  for  information  on  the  

products  and  services  currently  available  in  your  area.  Any  reference  to an  IBM  

product,  program,  or  service  is  not  intended  to state  or  imply  that  only  that  IBM  

product,  program,  or  service  may  be  used.  Any  functionally  equivalent  product,  

program,  or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  

be  used  instead.  However,  it is the  user’s  responsibility  to  evaluate  and  verify  the  

operation  of  any  non-IBM  product,  program,  or  service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  

described  in  this  document.  The  furnishing  of  this  document  does  not  grant  you  

any  license  to  these  patents.  You can  send  license  inquiries,  in  writing,  to:  

IBM  Director  of Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY  10504-1785  

U.S.A.  

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  

Intellectual  Property  Department  in  your  country  or  send  inquiries,  in  writing,  to:  

IBM  World Trade  Asia  Corporation  Licensing  

2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106-0032,  Japan  

The  following  paragraph  does  not  apply  to the  United  Kingdom  or  any  other  

country  where  such  provisions  are  inconsistent  with  local  law:  

INTERNATIONAL  BUSINESS  MACHINES  CORPORATION  PROVIDES  THIS  

PUBLICATION  ″AS  IS″  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  

EXPRESS  OR  IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  

WARRANTIES  OF  NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  

FOR  A PARTICULAR  PURPOSE.  Some  states  do  not  allow  disclaimer  of express  or  

implied  warranties  in certain  transactions,  therefore,  this  statement  may  not  apply  

to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  

Changes  are  periodically  made  to  the  information  herein;  these  changes  will  be 

incorporated  in  new  editions  of  the  publication.  IBM  may  make  improvements  

and/or  changes  in the  product(s)  and/or  the  program(s)  described  in  this  

publication  at  any  time  without  notice.  

Any  references  in  this  information  to  non-IBM  Web sites  are  provided  for  

convenience  only  and  do  not  in  any  manner  serve  as  an  endorsement  of  those  Web 

sites.  The  materials  at those  Web sites  are  not  part  of the  materials  for  this  IBM  

product  and  use  of those  Web sites  is  at your  own  risk.  

 

© Copyright  IBM Corp. 1999, 2005 115



IBM  may  use  or  distribute  any  of  the  information  you  supply  in  any  way  it  

believes  appropriate  without  incurring  any  obligation  to you.  

Licensees  of  this  program  who  wish  to have  information  about  it for  the  purpose  

of  enabling:  (i)  the  exchange  of information  between  independently  created  

programs  and  other  programs  (including  this  one)  and  (ii)  the  mutual  use  of the  

information  which  has  been  exchanged,  should  contact:  

IBM  Corporation  

577  Airport  Blvd.,  Suite  800  

Burlingame,  CA  94010  

U.S.A.  

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  

including  in  some  cases,  payment  of a fee.  

The  licensed  program  described  in  this  document  and  all  licensed  material  

available  for  it are  provided  by  IBM  under  terms  of the  IBM  Customer  Agreement,  

IBM  International  Program  License  Agreement  or  any  equivalent  agreement  

between  us.  

Any  performance  data  contained  herein  was  determined  in  a controlled  

environment.  Therefore,  the  results  obtained  in  other  operating  environments  may  

vary  significantly.  Some  measurements  may  have  been  made  on  development-level  

systems  and  there  is  no  guarantee  that  these  measurements  will  be  the  same  on  

generally  available  systems.  Furthermore,  some  measurements  may  have  been  

estimated  through  extrapolation.  Actual  results  may  vary.  Users  of  this  document  

should  verify  the  applicable  data  for  their  specific  environment.  

Information  concerning  non-IBM  products  was  obtained  from  the  suppliers  of  

those  products,  their  published  announcements  or  other  publicly  available  sources.  

IBM  has  not  tested  those  products  and  cannot  confirm  the  accuracy  of 

performance,  compatibility  or  any  other  claims  related  to non-IBM  products.  

Questions  on  the  capabilities  of  non-IBM  products  should  be  addressed  to  the  

suppliers  of those  products.  

All  statements  regarding  IBM’s  future  direction  or  intent  are  subject  to change  or  

withdrawal  without  notice,  and  represent  goals  and  objectives  only.  

This  information  contains  examples  of data  and  reports  used  in  daily  business  

operations.  To illustrate  them  as  completely  as  possible,  the  examples  include  the  

names  of  individuals,  companies,  brands,  and  products.  All  of  these  names  are  

fictitious  and  any  similarity  to  the  names  and  addresses  used  by  an  actual  business  

enterprise  is  entirely  coincidental.  

COPYRIGHT  LICENSE:  

This  information  contains  sample  application  programs  in  source  language,  which  

illustrate  programming  techniques  on  various  operating  platforms.  You may  copy,  

modify,  and  distribute  these  sample  programs  in  any  form  without  payment  to 

IBM,  for  the  purposes  of developing,  using,  marketing  or  distributing  application  

programs  conforming  to  the  application  programming  interface  for  the  operating  

platform  for  which  the  sample  programs  are  written.  These  examples  have  not  

been  thoroughly  tested  under  all  conditions.  IBM,  therefore,  cannot  guarantee  or  

imply  reliability,  serviceability,  or  function  of  these  programs.  

 

116  Adapter  for Portal Infranet  User Guide



If  you  are  viewing  this  information  softcopy,  the  photographs  and  color  

illustrations  may  not  appear.  

Programming interface information 

Programming  interface  information,  if provided,  is intended  to help  you  create  

application  software  using  this  program.  

General-use  programming  interfaces  allow  you  to  write  application  software  that  

obtain  the  services  of  this  program’s  tools.  

However,  this  information  may  also  contain  diagnosis,  modification,  and  tuning  

information.  Diagnosis,  modification  and  tuning  information  is provided  to help  

you  debug  your  application  software.  

Warning:   Do  not  use  this  diagnosis,  modification,  and  tuning  information  as  a 

programming  interface  because  it is  subject  to  change.  

Trademarks  and service marks 

The  following  terms  are  trademarks  or  registered  trademarks  of  International  

Business  Machines  Corporation  in the  United  States  or  other  countries,  or  both:  

i5/OS  

IBM  

the  IBM  logo  

AIX  

AIX  5L  

CICS  

CrossWorlds  

DB2  

DB2  Universal  Database  

Domino  

HelpNow  

IMS  

Informix  

iSeries  

Lotus  

Lotus  Notes  

MQIntegrator  

MQSeries  

MVS  

Notes  

OS/400  

Passport  Advantage  

pSeries  

Redbooks  

SupportPac  

WebSphere  

z/OS  

Java  and  all  Java-based  trademarks  are  trademarks  of Sun  Microsystems,  Inc.  in the  

United  States,  other  countries,  or  both.  

Microsoft,  Windows,  Windows  NT, and  the  Windows  logo  are  trademarks  of 

Microsoft  Corporation  in the  United  States,  other  countries,  or  both.  

 

Notices 117



Intel,  Intel  logo,  Intel  Inside,  Intel  Inside  logo,  Intel  Centrino,  Intel  Centrino  logo,  

Celeron,  Intel  Xeon,  Intel  SpeedStep,  Itanium,  and  Pentium  are  trademarks  or  

registered  trademarks  of  Intel  Corporation  or  its  subsidiaries  in  the  United  States  

and  other  countries.  

UNIX  is a registered  trademark  of  The  Open  Group  in  the  United  States  and  other  

countries.  

Linux  is  a trademark  of Linus  Torvalds  in  the  United  States,  other  countries,  or  

both.  

Other  company,  product,  or  service  names  may  be  trademarks  or  service  marks  of  

others.  

This  product  includes  software  developed  by  the  Eclipse  Project  

(http://www.eclipse.org/).  

  

 

WebSphere  Business  Integration  Adapter  Framework,  version  2.6.0.3  

 

118  Adapter  for Portal Infranet  User Guide





����

  

Printed in USA 

 

 

 

 


	Contents
	About this document
	What this document includes
	What this document does not include
	Audience
	Related documents
	Typographic conventions

	New in this release
	Version 4.4.x
	Prior releases
	Version 4.3.x
	Version 4.2.x
	Version 4.1.x
	Version 4.0.x
	Version 3.1.x
	Version 3.0.x
	Version 2.5.x
	Version 2.4.x
	Version 2.3.x
	Version 2.2.x
	Version 2.1.x


	Chapter 1. Overview of the connector
	Connector components
	How the connector works
	Meta-data-driven connector behavior
	Business object processing
	Event notification
	Event retrieval
	Connecting to the Infranet application
	Processing locale-dependent data


	Chapter 2. Installing and configuring the connector
	Adapter for Portal Infranet environment
	Configuring the Infranet application
	Setting up an Infranet account
	Creating the event and archive tables in the database

	Installing the Portal Infranet adapter and other files
	Configuring the adapter in an Oracle environment
	Configuring the connector
	Standard connector properties
	Connector-specific properties

	Customizing the event mechanism for new business objects
	Syntax of the event module configuration file
	Example event module configuration file
	Defining event configuration file entries
	Adding events to the pin_notify_cw file

	Declaring Infranet custom attribute optional configurations
	Creating multiple connector instances
	Create a new directory

	Starting the connector
	Stopping the connector

	Chapter 3. Understanding business objects
	Portal Infranet application background
	Storable classes and objects
	Fields and flists
	Opcodes

	Meta-data-driven connector
	Portal Infranet application-specific business object structure
	Corresponding Portal Infranet objects to WebSphere Business Integration Adapter business objects

	Business object attribute properties
	Key property
	Foreign key property
	Required property
	Max length property
	Default value property

	Guidelines for defining business objects
	Business object application-specific information
	Business object application-specific information
	Attribute-level application-specific information
	Verb application-specific information format
	Syntax of verb application-specific information
	Connector utility business objects
	A complete sample Portal Infranet business object definition


	Chapter 4. Generating business object definitions using PortalODA
	Installation and usage
	Installing PortalODA
	Before using PortalODA
	Starting PortalODA
	Running PortalODA on multiple machines
	Changing the error and message filename

	Using PortalODA in business object designer
	Select the ODA
	Configure initialization properties
	Expand nodes and select repository files, and storable classes
	Confirming the selection of the repository files and storable classes
	Generating definitions
	Providing additional information
	Saving definitions

	Contents of the generated definition
	Business-object-level properties
	Attribute properties
	Verbs

	Adding information to the business object definition

	Appendix A. Standard connector properties
	New properties
	Standard connector properties overview
	Starting Connector Configurator
	Configuration property values overview

	Standard properties quick-reference
	Standard properties
	AdapterHelpName
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BiDi.Application
	BiDi.Broker
	BiDi.Metadata
	BiDi.Transformation
	BOTrace
	BrokerType
	CharacterEncoding
	CommonEventInfrastructure
	CommonEventInfrastructureContextURL
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerEventSequencing
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	jms.FactoryClassName
	jms.ListenerConcurrency
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.TransportOptimized
	jms.UserName
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RepositoryDirectory
	RequestQueue
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	ResultsSetEnabled
	ResultsSetSize
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousRequestTimeout
	SynchronousResponseQueue
	TivoliMonitorTransactionPerformance
	WireFormat
	WsifSynchronousRequestTimeout
	XMLNameSpaceFormat


	Appendix B. Using Connector Configurator
	Overview of Connector Configurator
	Running connectors on UNIX

	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting connector-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS)
	Resources (ICS)
	Messaging (ICS)
	Security (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment

	Appendix C. Application Response Measurement
	Application Response Measurement instrumentation support
	Required software
	Enabling Application Response Measurement
	Transaction monitoring
	For more information


	Appendix D. Common Event Infrastructure
	Required software
	Enabling Common Event Infrastructure
	Obtaining Common Event Infrastructure adapter events
	For more information
	Common Event Infrastructure event catalog definitions
	XML format for “start adapter” metadata
	XML format for "stop adapter" metadata
	XML format for “timeout adapter” metadata
	XML format for "request" or "delivery" metadata

	Index
	Notices
	Programming interface information
	Trademarks and service marks


