
IBM WebSphere Business Integration Adapters

Adapter for PeopleSoft User Guide

Adapter Version 3.1.0

���

IBM WebSphere Business Integration Adapters

Adapter for PeopleSoft User Guide

Adapter Version 3.1.0

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page 137.

30September2004

This edition of this document applies to WebSphere Business Integration Adapter for PeopleSoft (5724-G98), version

3.1.0.

To send us your comments about this document, e-mail doc-comments@us.ibm.com. We look forward to hearing

from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document . vii

What this document includes . vii

What this document does not include . vii

Audience . vii

Related documents . vii

Typographic conventions . viii

New in this release . ix

New in Release 3.1.0 . ix

New in Release 3.0.x . ix

New in Release 2.3.x . ix

New in Release 2.2.x . x

New in Release 2.1.x . x

New in Release 2.0.x . x

New in Release 1.4.x . xi

New in Release 1.3.x . xi

New in Release 1.2.x . xi

New in Release 1.1.x . xi

Chapter 1. Overview . 1

Terminology . 1

Connector components . 2

How the connector works . 4

Chapter 2. Installing the connector . 11

Adapter for PeopleSoft environment . 11

Installing the adapter and related files . 13

Verifying an installation . 13

Enabling the application for the connector . 14

Chapter 3. Configuring the connector . 15

Overview of Connector Configurator . 15

Starting Connector Configurator . 16

Running Configurator from System Manager . 17

Creating a connector-specific property template . 17

Creating a new configuration file . 20

Using an existing file . 21

Completing a configuration file . 22

Setting the configuration file properties . 23

Saving your configuration file . 30

Changing a configuration file . 31

Completing the configuration . 31

Using Connector Configurator in a globalized environment 31

Chapter 4. Configuring the application . 33

Building required objects . 33

Building the API files for event processing . 33

Code for processing application events . 35

Event and archive tables . 37

Chapter 5. Understanding business objects for the connector 39

Business object and attribute naming conventions . 39

Business object structure . 40

Creating a business object . 44

© Copyright IBM Corp. 2001, 2004 iii

Business object verb processing . 47

Business object attribute properties . 56

Business object application-specific information . 58

Chapter 6. Generating business object definitions using PeopleSoftODA 63

Installation and usage . 63

Using PeopleSoftODA in business object designer . 66

Contents of the generated definition . 73

Sample business object definition file . 76

BO_PsftEmployee business object . 77

SavePostChange business object examples . 81

Modifying information in the business object definition . 81

Chapter 7. Running the connector . 83

Starting the connector . 83

Stopping the connector . 84

Upgrading the connector . 85

Chapter 8. Troubleshooting and error handling 87

Startup problems . 87

Startup problems (WebSphere InterChange Server broker only) 87

Startup problems (WebSphere MQ Integrator broker only) . 88

Processing Problems . 88

Mapping (WebSphere InterChange Server Only) . 88

Error Handling and Logging . 88

Loss of Connection to the Application . 90

Memory limitations with result set support . 90

PeopleSoft record limitations with result set retrieval . 90

Appendix A. Standard configuration properties for connectors 91

New properties . 91

Standard connector properties overview . 91

Standard properties quick-reference . 93

Standard properties . 99

Appendix B. Connector specific properties . 115

AppServerMachineNameOrIP . 115

ApplicationPassword . 115

ApplicationUserName . 115

ConnectorID . 116

ConvertToPrimitiveFloat . 116

DisableCrossReferencing . 116

EventKeyDelimiter . 116

PingCompInterface . 116

PollFutureEvents . 116

PollQuantity . 117

PortNumber . 117

ReconnectSessionOnGetFail . 117

SessionPoolSize . 117

SetLangCode . 117

UseEventCl . 117

Appendix C. Delta event propagation . 119

Overview . 119

Process dependencies . 120

Configuring WebSphere MQ server . 120

Setting up the class path for the WebSphere MQ client jars 122

Verifying the WebSphere MQ Client installation . 123

Generating the JNDI bindings file . 123

iv Adapter for PeopleSoft User Guide

Configuring PeopleSoft . 124

Appendix D. Common Event Infrastructure . 127

Required software . 127

Enabling Common Event Infrastructure . 127

Obtaining Common Event Infrastructure adapter events . 127

For more information . 128

Common Event Infrastructure event catalog definitions . 128

XML format for “start adapter” metadata . 128

XML format for ″stop adapter″ metadata . 130

XML format for “timeout adapter” metadata . 130

XML format for ″request″ or ″delivery″ metadata . 131

Appendix E. Application Response Management 133

Application Response Measurement instrumentation support 133

Index . 135

Notices . 137

Programming interface information . 138

Trademarks and service marks . 139

Contents v

vi Adapter for PeopleSoft User Guide

About this document

The IBMR WebSphereR Business Integration Adapter portfolio supplies integration

connectivity for leading e-business technologies, enterprise applications, legacy

applications and mainframe systems. The product set includes tools and templates

for customizing, creating, and managing components for business integration.

What this document includes

This document describes installation, connector property configuration, business

object development, and troubleshooting for the IBM WebSphere Business

Integration Adapter for PeopleSoftR.

What this document does not include

This document does not describe deployment metrics and capacity planning issues,

such as server load balancing, number of adapter processing threads, maximum

and minimum throughputs, and tolerance thresholds.

Such issues are unique to each customer deployment and must be measured

within or close to the exact environment where the adapter is to be deployed. You

should contact your IBM services representative to discuss the configuration of

your deployment site, and for details on planning and evaluating these kinds of

metrics, given your specific configuration.

Audience

This document is for IBM consultants and customers. You should be familiar with

PeopleSoft and WebSphere business integration system adapter development.

Related documents

The complete set of documentation available with this product describes the

features and components common to all WebSphere Business Integration Adapters

installations, and includes reference material on specific components.

This document contains many references to two other documents: the System

Installation Guide for Windows® or for UNIX® and the Implementation Guide for

WebSphere InterChange Server. If you choose to print this document, you may

want to print these documents as well.

You can install documentation from the following sites:

v ″For general adapter information; for using adapters with WebSphere message

brokers (WebSphere MQ Integrator, WebSphere MQ Integrator Broker,

WebSphere Business Integration Message Broker); and for using adapters with

WebSphere Application Server:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

v For using adapters with InterChange Server:

http://www.ibm.com/websphere/integration/wicserver/infocenter

http://www.ibm.com/websphere/integration/wbicollaborations/infocenter

© Copyright IBM Corp. 2001, 2004 vii

http://www.ibm.com/websphere/integration/wicserver/infocenter
http://www.ibm.com/websphere/integration/wicserver/infocenter
http://www.ibm.com/websphere/integration/wbicollaborations/infocenter

v For more information about message brokers (WebSphere MQ Integrator Broker,

WebSphere MQ Integrator, and WebSphere Business Integration Message

Broker):

http://www.ibm.com/software/integration/mqfamily/library/manualsa/.

v For more information about WebSphere Application Server:

http://www.ibm.com/software/webservers/appserv/library.html

These sites contain simple directions for downloading, installing, and viewing the

documentation.

Note: iImportant information about this product may be available in Technical

Support Technotes and Flashes issued after this document was published.

These can be found on the WebSphere Business Integration Support Web

site, http://www.ibm.com/software/integration/websphere/support/.

Typographic conventions

This document uses the following conventions:

 courier font Indicates a literal value, such as a command name, file

name, information that you type, or information that the

system prints on the screen.

bold Indicates a new term the first time that it appears.

italic, italic Indicates a variable name or a cross-reference.

blue text Blue text, which is visible only when you view the manual

online, indicates a cross-reference hyperlink. Click any blue

text to jump to the object of the reference.

{ } In a syntax line, curly braces surround a set of options from

which you must choose one and only one.

[] In a syntax line, square brackets surround an optional

parameter.

... In a syntax line, ellipses indicate a repetition of the previous

parameter. For example, option[,...] means that you can

enter multiple, comma-separated options.

< > Angle brackets surround individual elements of a name to

distinguish them from each other, as in

<server_name><connector_name>tmp.log.

viii Adapter for PeopleSoft User Guide

http://www.ibm.com/software/integration/mqfamily/library/manualsa/.
http://www.ibm.com/software/webservers/appserv/library.html

New in this release

New in Release 3.1.0

The following are new in this release:

v The adapter supports the following child verbs: insert, update, and delete.

v Support for PeopleTools 8.44 and 8.45 is added.

v Delta event propagation is provided for PeopleTools, versions 8.44 and 8.45.

v The adapter for PeopleSoft is supported on the Solaris 9.0 and the Windows

2003 platforms. In addition, the adapter is enabled to run on Linux Red Hat 3.0.

After PeopleSoft client API tools are enabled for Linux Red Hat 3.0, look for

updates about using the adapter on this platform.

v The adapter now supports bidirectional script languages.

v Support for result set retrieval, which is enabled only with specific versions of

DB2® Information Integrator broker (For information about these specific

versions, refer to the DB2 Information Integrator product documentation.)

New in Release 3.0.x

The following are new in this release:

v The Adapter for PeopleSoft provides additional support for processing attributes

by the order in which they are listed in the business object definition.

v Polling for future effective-dated events is added.

v As of version 3.0.x, the adapter for PeopleSoft is not supported on Solaris 7, so

references to that platform version have been deleted from this guide.

New in Release 2.3.x

The following are new in this release:

v Support for processing retrieve-by-content requests.

This enables record retrieval by alternate-key values.

v The adapter now supports BigDecimal type data.

v The connector can now be configured to run multi-threaded when processing

inbound objects. When the connector runs multi-threaded, one session instance

is reserved for polling which is performed serially, single-threaded.

v PeopleTools 8.14 through 8.43 are supported. However, features that are specific

to certain versions of PeopleTools are only supported against those versions.

v Additional parameters have been added to address limitations encountered

when trying to insert effective-dated items using a call in the PeopleSoft API

library.

v Delete requests are supported for outbound objects.

v Adapter installation information has been moved from this guide. See Chapter 2

for the new location of that information.

v Beginning with the 2.3 version, the adapter for PeopleSoft is no longer

supported on Microsoft® Windows NT®.

© Copyright IBM Corp. 2001, 2004 ix

New in Release 2.2.x

The following are new in this release:

v The Adapter for PeopleSoft is now supported on HP-UX

v A single ODA instance can be reused several times to connect to the same

application server

The connector terminates when the connection to the application server is lost or

the session instance becomes invalid during a transaction. Configurable

connector termination support has been added. (PingCompInterface)

v This connector adds a new effective-dating sequence attribute that allows data to

be inserted based on the sequence number.

New in Release 2.1.x

Updated in March, 2003. The “CrossWorlds®” name is no longer used to describe

an entire system or to modify the names of components or tools, which are

otherwise mostly the same as before. For example “CrossWorlds System Manager”

is now “System Manager,” and “CrossWorlds InterChange Server” is now

“WebSphere InterChange Server.”

The following features are new in this release:

v The PeopleSoft Adapter, which includes the PeopleSoft ODA, only fully supports

versions 8.18 through 8.40 of PeopleTools.

v Because PeopleTools now supports Application Designer projects in XML, all

previous versions of the CrossWorlds event notification objects must be updated

or imported in the new format. See PeopleSoft support for instructions.

v The Business Object ASI has been extended to include the new PeopleSoft

property setEditHistoryItems. When this value is set to true, the adapter can run

in Correction mode, which allows changes to history records in PeopleSoft.

Before this value was incorporated into the getHistoryItems property, but with

releases of PeopleTools 8.4 and later, this has been extracted into two separate

properties, getHistoryItems, which retrieves history items, and

setEditHistoryItems, which allows editing. Both of these properties are

supported in this version of the adapter for PeopleSoft. See the PeopleSoft

documentation on Component Interfaces for details on the functionality of these

properties.

v Internal PeopleSoft messages are now enabled in the adapter log files. If there

are PeopleCode processing errors or warnings in the context of the current

component interface, the connector retrieves the messages from the PSMessage

Collection object and displays them. See PeopleSoft Component Interface

documentation for a full explanation of the content of these messages.

New in Release 2.0.x

The connector delivered with IBM WebSphere Business Integration Adapter for

PeopleSoft® has been internationalized. For more information, see “Processing

locale-dependent data” on page 9 and Appendix A, “Standard configuration

properties for connectors.”

x Adapter for PeopleSoft User Guide

New in Release 1.4.x

IBM WebSphere Business Integration Adapter for PeopleSoft includes the connector

for PeopleSoft. This adapter operates with both the InterChange Server (ICS) and

WebSphere MQ Integrator (WMQI) integration brokers. An integration broker,

which is an application that performs integration of heterogeneous sets of

applications, provides services that include data routing.

This adapter includes:

v An application-component specific to PeopleSoft

v PeopleSoftODA for PeopleTools Version 8.16 or later

v A sample business object, which is located in \connectors\PeopleSoft\Samples\

v IBM WebSphere Adapter Framework, which consists of:

– Connector Framework

– Development tools (including Business Object Designer and Connector

Configurator)

– APIs (including ODK, JCDK, and CDK)

This manual provides information about using this adapter with both integration

brokers: InterChange Server (ICS) and WebSphere MQ Integrator (WMQI).

Important: Because the connector has not been internationalized, do not run it

against InterChange Server version 4.1.1 if you cannot guarantee that

only ISO Latin-1 data will be processed.

New in Release 1.3.x

Important: Because the connector has not been internationalized, do not run it

against InterChange Server version 4.1.1 if you cannot guarantee that

only ISO Latin-1 data will be processed.

A new tool, PeopleSoftODA, has been developed for generating business object

definitions for the connector. For more information, see Chapter 6, “Generating

business object definitions using PeopleSoftODA,” on page 63.

New in Release 1.2.x

This release of the document for connector version 1.2.x contains the following

new or corrected information:

v Events that have a status of ″In Status″ (3) are reset to ReadyToPoll (0) by the

connector during Init().

v Connector Properties GetHistoryItems and setInteractiveMode have been

removed. This functionality is now defined at the business-object level

application-specific information in the form of name value pairs. The default for

both is true.

v A new connector property ConnectorID is available to support Event

Distribution.

New in Release 1.1.x

This release of the document for connector version 1.1.x contains the following

new or corrected information:

New in this release xi

v Event notification support: “Event-processing components” on page 3,

“Processing application events” on page 7, “Importing the project” on page 14,

“Code for processing application events” on page 35, “Event and archive tables”

on page 37.

v Four new connector-specific configuration properties: “ConvertToPrimitiveFloat”

on page 116, “EventKeyDelimiter” on page 116, “SetLangCode” on page 117, and

“ReconnectSessionOnGetFail” on page 117.

xii Adapter for PeopleSoft User Guide

Chapter 1. Overview

This chapter defines useful adapter terminology, and it describes the connector

component of the IBM WebSphere® Business Integration Adapter for PeopleSoft.

The connector enables an integration broker to exchange business objects with

PeopleSoft version 8.x applications that use PeopleTools, versions 8.45.

Connectors consist of an application-specific component and the connector

framework. The application-specific component contains code tailored to a

particular application. The connector framework, whose code is common to all

connectors, acts as an intermediary between the integration broker and the

application-specific component. The connector framework provides the following

services between the integration broker and the application-specific component:

v Receives and sends business objects

v Manages the exchange of startup and administrative messages

This chapter contains the following sections:

v “Terminology”

v “Connector components” on page 2

v “How the connector works” on page 4

For more information about the relationship of the integration broker to the

connector, see the IBM WebSphere InterChange Server System Administration Guide, or

the Implementation Guide for MQ Integrator.

Terminology

The following terms are used in this document.

adapter

The component in the WebSphere business integration system that

provides components to support communication between an integration

broker and either an application or a technology. An adapter always

includes a connector, message files, and configuration tools. It can also

include an Object Discovery Agent (ODA) or a data handler.

adapter framework

The software that IBM provides to configure and run an adapter. The

runtime components of the adapter framework include the Java runtime

environment, the connector framework, and the Object Discovery Agent

(ODA) runtime. This connector framework includes the connector libraries

(C++ and Java™) needed to develop new connectors. The ODA runtime

includes the library in the Object Development Kit (ODK) needed to

develop new ODAs. The configuration components include the following

tools:

v Business Object Designer,

v Connector Configurator,

v Log Viewer,

v System Manager,

v Adapter Monitor,

v Test Connector

© Copyright IBM Corp. 2001, 2004 1

v and, optionally, any Object Discovery Agents (ODAs) associated with an

adapter.

Adapter Development Kit (ADK)

A development kit that provides some samples for adapter development,

including sample connectors and Object Discovery Agents (ODAs).

connector

The component of an adapter that uses business objects to send

information about an event to an integration broker (event notification) or

receive information about a request from the integration broker (request

processing). A connector consists of the connector framework and the

connector’s application-specific component.

connector framework

The component of a connector that manages interactions between a

connector’s application-specific component and the integration broker. This

component provides all required management services and retrieves the

meta-data that the connector requires from the repository. The connector

framework, whose code is common to all connectors, is written in Java and

includes a C++ extension to support application-specific components

written in C++.

connector controller

The subcomponent of the connector framework that interacts with

collaborations. A connector controller runs within InterChange Server and

initiates mapping between application-specific and generic business objects,

and manages collaboration subscriptions to business object definitions.

integration broker

The component in the WebSphere business integration system that

integrates data among heterogeneous applications. An integration broker

typically provides a variety of services that include: the ability to route

data, a repository of rules that govern the integration process, connectivity

to a variety of applications, and administrative capabilities that facilitate

integration. Examples of integration brokers: the WebSphere Business

Integration Message Broker; WebSphere Business InterChange Server.

WebSphere business integration system

An enterprise solution that moves information among diverse sources to

perform business exchanges, and that processes and routes information

among disparate applications in the enterprise environment. The business

integration system consists of an integration broker and one or more

adapters.

Connector components

The IBM WebSphere Business Integration Adapter for PeopleSoft contains the

connector and at least one PeopleSoft component and Component Interface.

Figure 1 shows the connector and its relationship to the PeopleSoft application.

2 Adapter for PeopleSoft User Guide

Connector for PeopleSoft 8

The connector, which is written in Java, complies with IBM business integration

system standards for adapters. It establishes a PeopleSoft session object, and uses

the standard connector methods to process components.

Business components, component interfaces, and records

The connector requires a PeopleSoft Business Component and Component Interface

for each hierarchical business object that it processes.

The adapter does not include PeopleSoft-specific business objects or the

Component and Component Interface that must be associated with each business

object. These objects must be created by the person who implements the connector.

For information on creating a Component Interface and its corresponding business

object, see “Component interface and business object relationship” on page 40. For

information on creating the required classes and methods, see “Generating APIs”

on page 45.

Note: In this document backslashes (\) are used as the convention for directory

paths. For UNIX installations, substitute slashes (/) for backslashes (\). All

file pathnames are relative to the directory where the product is installed on

your system.

Event-processing components

To enable event notification, the adapter provides the CW_EVENT_vX Project,

which includes:

v Fields

The fields store event information.

Generic services (Java)

Connector

Integration broker
PeopleSoft application

Database

Business objects

Event
table

Archive
table

Business
object

handlers

Application
event

notification
manager

Global
functions

Component interfaces

Application tables

Figure 1. Connector architecture

Chapter 1. Overview 3

v Records

The records include an event table (CW_EVENT_TBL), an archive table

(CW_ARCHIVE_TBL), and a function library (FUNCLIB_CW). The function

library contains the connector-specific event-notification functions that are called

from Components and Records during SavePostChg() PeopleCode events. For

more information, see “Processing application events” on page 7,

“cw_publish_event() and cw_publish_future_dated_events() Functions” on page

35, and “Event and archive tables” on page 37.

v Component

The CW_EVENT_BC Component enables events to be viewed online. It also

provides the appropriate structure for the Component Interface required for

event processing. The Component Interface exposes the fields from the

CW_EVENT_TBL record that are required for the connector’s processing. The

CW_EVENT_BC Component contains the CW_EVENT_TBL record.

v Component Interface

The CWEVENT_CI Component Interface exposes the fields and records of the

component as the properties and methods necessary for event processing.

How the connector works

This section describes:

v “Interacting with the PeopleSoft application”

v “Processing business object requests” on page 4

v “Processing application events” on page 7

Interacting with the PeopleSoft application

At startup, the connector creates a session object through which it connects to the

PeopleSoft Application Server. Connecting to the Application Server gives the

connector access to the APIs for all the Component Interfaces that correspond to its

supported business objects. The server also provides access to the PeopleCode and

the Application Designer objects included with the adapter for event notification.

Each Component Interface (and its associated Business Component, Records,

Fields, Scrolls, and PeopleCode) contains all the information required by the

connector to process a hierarchical WebSphere business object for PeopleSoft.

Because each Component Interface encapsulates its Business Component’s data and

processing logic, the connector does not replicate this processing logic. For

example, the connector need not explicitly handle duplicate record checks,

edit-table validations, or security.

If an error occurs within the connector or during its online processing within the

PeopleSoft application, the connector’s application-specific component sends the

FAIL return code to the connector framework, which sends it to the integration

broker. If the connector loses its connection to the Application Server, the

connector’s application-specific component sends the return code of

APPRESPONSETIMEOUT, and then the terminate() method is invoked on it.

For information on how the connector processes data in a business object, see

Chapter 5, “Understanding business objects for the connector,” on page 39

Processing business object requests

When the connector receives a business object request to change data in the

application, the connector processes hierarchical business objects recursively. In

4 Adapter for PeopleSoft User Guide

other words, the connector processes each child business object until it has

processed data for all levels in the Component Interface associated with the

business object.

When processing a business object request from the integration broker, the

connector calls PeopleSoft APIs from the session object in the following order:

1. The connector uses the getComponent("ciName") method to return the

Component Interface associated with the business object. The Component

Interface’s name is stored in the application-specific information property at the

business-object level of each business object.

2. If the business object requests data creation or modification, the connector

inserts or changes values in the application. If the business object requests data

retrieval, the connector obtains values from the application.

v For a Create or Update request, the connector uses the setFieldName(value)

method to set each field on the Component Interface for which it obtained a

value in step 1.

If the application-specific information of a key attribute specifies that the

PeopleSoft application generate the unique ID, the connector sends the

business object to the application with the string NEXT specified as the value

of the attribute. For information on using the NEXT string in a WebSphere

business object for PeopleSoft, see “Application-specific information at the

attribute level” on page 60.

If the business object’s application-specific information defines

setInteractiveMode as true, entering or exiting each field triggers the

associated business logic in the underlying component, which immediately

publishes errors to the PeopleSoft PSMessage collection queue.

v For a Retrieve request, the connector uses the getFieldName() method

without specifying a value.

For information on how the connector processes data in a business object, see

Chapter 5, “Understanding business objects for the connector,” on page 39. For

information on connector-specific properties, see Appendix B, “Connector

specific properties,” on page 115.

3. After processing a Create or Update request for an entire business object,

including all its child business objects, the connector invokes the Component

Interface’s Save() method. If successful, the Save() method executes a single

COMMIT statement. If the business object’s application-specific information

defines setInteractiveMode as false, invoking the Save() method triggers all

FieldEdit business logic associated with the records and fields of the underlying

component. All PeopleCode errors are published to the PSMessage collection

queue.

4. If the PeopleSoft system generates the unique identifiers (IDs) during a Create

request, the connector uses standard PeopleSoft auto-numbering functionality

(that is, built-in functions) to retrieve the most recently used ID, and populate

the business object with a new one.

5. The connector’s processing uses all the business logic that is provided in the

associated Component Interface.

If a connection error is detected when the connector is processing a business object

request, the connector’s application-specific component logs a fatal error and sends

the return code of APPRESPONSETIMEOUT to trigger email notification. The connector

is then terminated.

The following sections describe request verb processing:

Chapter 1. Overview 5

v “Processing create requests”

v “Processing retrieve requests” on page 6

v “Processing update requests” on page 6

v “Processing delete requests” on page 7

Processing create requests

When the integration broker sends a business object request with the Create verb,

the connector uses PeopleSoft’s Create() method to create a new instance of the

Component Interface. If the instance passes all PeopleSoft business logic as the

transaction proceeds, it is saved in the application. The object created in the

application contains all values contained in the business object, including all child

business objects.

For more information about processing a create operation, see “Create operations”

on page 50.

Processing retrieve requests

When the integration broker sends a business object request with the Retrieve verb,

the connector uses PeopleSoft’s Get() method to verify that a unique instance of

the corresponding Component Interface exists. This Get() method instantiates the

Component Interface, allowing the connector to load its values into the business

object. The business object that the connector returns to the integration broker

exactly matches the instance of the Component Interface.

In other words, the value of each simple attribute of the business object returned to

the integration broker matches the value of the corresponding Property Field in the

Component Interface. Also, if the returned business object is hierarchical, the

number of individual business objects in each of its arrays matches the number of

levels or collections in the Component Interface for that array.

For more information about processing a retrieve operation, see “Retrieve

operations” on page 51.

Processing update requests

When the integration broker sends a business object request with the Update verb,

the connector modifies an existing instance of the Component Interface. If the

instance passes all PeopleSoft business logic as the transaction proceeds, it is saved

in the application.

The object updated in the application exactly matches the request business object.

The connector updates all simple Property Fields except those whose

corresponding attribute in the request business object contain the value CxIgnore. It

inserts all child business objects contained in the request business object.

Depending on the value of its KeepRelationship application-specific information

parameter, the connector either deletes or retains child business objects that do not

exist in the request business object.

For more information about processing an update operation, see “Update

operations” on page 53.

Processing deltaupdate requests

When the integration broker sends a business object request with the deltaupdate

verb, the connector modifies an existing instance of the Component Interface. If the

instance passes all PeopleSoft business logic as the transaction proceeds, it is saved

in the application.

6 Adapter for PeopleSoft User Guide

The deltaupdate verb is supported only for top-level business objects. Associated

child-level business objects should have one of these three verbs: insert, delete, or

update. The child verb operations will be performed recursively throughout all

levels of children in the hierachy, and the top-level object will be updated in the

application. See “DeltaUpdate operations” on page 55 for more information.

Processing delete requests

Because PeopleSoft does not support deletion of transactions, the connector does

not either. The standard behavior for processing a logical delete is to use the

Update verb to change the status of the business object’s EffectiveStatus attribute

to “I” (Inactive).

However, to cause the connector to support a delete of an entire object, do the

following:

1. Create a user-defined PeopleCode method that performs deletion within

PeopleSoft.

2. Expose the method through the appropriate Component Interface.

Processing application events

Event notification involves three main processes:

v “Event publication”—Events are published to the connector’s event table

(CW_EVENT_TBL), which is stored in the PeopleSoft database.

v “Event polling”—The connector polls the event table through the PeopleSoft

API.

v “Event archiving” on page 8—The connector archives events into its archive

table (CW_ARCHIVE_TBL).

Event publication

To publish events to the connector’s event table, the PeopleSoft application uses

PeopleCode and Application Designer objects included with the adapter. For

information about these objects, see “Event-processing components” on page 3.

The event publication process uses eithe the cw_publish_event() or the

cw_publish_future_dated_event()function, which are stored in the FieldFormula

event of the FUNCLIB_CW record. You must declare and call one of these

functions from the SavePostChg() PeopleCode of the component involved in the

event.

Note: This procedure does not use a Component Interface.

For more information, see “cw_publish_event() and

cw_publish_future_dated_events() Functions” on page 35.

Event polling

The connector polls the event table at a regular, configurable interval. It searches

for events first by status, then by the value of the connector property ConnectorID.

If this value is null or blank, the property will not be used for the search. When

the connector processes an event, it immediately updates the status to

INPROGRESS (a value of 3). Any pending INPROGRESS events are reset to

READYFORPOLL (a value of 0) during the connector’s initialization.

The connector uses the CWEVENT_CI Component Interface’s Find() method to

poll the event table. This method returns a Collection of events with the status

Chapter 1. Overview 7

READYFORPOLL. The connector loops through the Collection, obtaining the name of

every business object listed in the CW_EVENT_TBL.

The connector uses the API to set and get property values, gathering event

information for each event returned in the Collection. The connector checks to

determine which business objects are subscribed. For subscription information

specific to your integration broker, see the broker’s implementation guide.

v For each subscribed business object, the connector retrieves the name of its

associated Component Interface. Using the key values listed in the

CW_OBJ_KEYS field, the connector instantiates the Component Interface

involved in the event and copies the information into an application-specific

business object. After creating the business object, the connector passes it to the

integration broker and archives the event.

v For unsubscribed business objects and business objects that generate errors, the

connector moves the event to the archive table and updates its status.

v The connector supports the delete verb for outbound objects. The key values of

the business object instance are set, and the object is sent to the WBI Integration

broker.

For more information, see “Event and archive tables” on page 37.

Event archiving

While the CWEVENT_CI Component Interface is instantiated, the connector calls

the cw_archive_events() user-defined method for each event it processes. This

method, which is in the form of PeopleCode, sets the Archive flag to Y. Setting this

flag causes the SavePostChg() PeopleCode to archive the event when the user

invokes the Save() method. The archive table also records the date and time the

event was processed.

Note: The SavePostChg() PeopleCode is included with the Project.

You can use the archive table to query for event history or to troubleshoot

problems in event processing. For example, all unsubscribed events have a status

of unsubscribed.

Because there are potential failure points associated with the processing of events,

the event management process does not delete an event from the event table until

it has been inserted into the archive table.

Event notification process flow

The following steps describe the event notification process:

1. When a user saves a change online in a Component, the SavePostChg() method

calls either the cw_publish_event() function or the

cw_publish_future_dated_events() function.

2. The cw_publish_event() function, which has four parameters, does the

following:

v Gets the application-specific business object name from its first parameter.

v Gets the name of each key required to instantiate the Component Interface

that corresponds to the application-specific business object. It gets the key

names and their respective values from its second parameter.

v Sets the CW_CONN_ID field to the value of the fourth parameter, which also

corresponds to the ConnectorID connector property. The default is

PeopleSoftConnector.

v Generates the unique ID for the event.

8 Adapter for PeopleSoft User Guide

v Evaluates the PeopleSoft system variable %Mode to identify the verb

associated with the event.

v Inserts the event into CW_EVENT_TBL.

Note: The cw_publish_future_dated_events() function performs similarly to

the cw_publish_event()function, except that it uses an additional

parameter. Use this function if you want to pass the any date attribute

(usually the effective date) of the component being saved so that events

with future dates are polled only when the date arrives. If the effective

date is in the future, the event status is set to 99 and the event date is set

to the future date. If not, the status is set to 0 and the date is set to the

system date.

For more information, see “cw_publish_event() and

cw_publish_future_dated_events() Functions” on page 35.

3. The connector polls the event table for events at the interval specified by its

PollFrequency configuration property, picking up no more than the number of

events specified by its PollQuantity configuration property. To do the polling,

the connector instantiates the CWEVENT_CI Component and invokes the

Find() method.

Note: The connector uses a different thread from the one used for request

processing.

4. For each record retrieved from the event table, the connector checks whether it

subscribes to the event data.

If the data is not subscribed, the connector moves the event record from

CW_EVENT_TBL to CW_ARCHIVE_TBL with a status of unsubscribed.

5. If the data is subscribed, the connector uses the event record’s key fields to

instantiate the appropriate Component Interface, from which it retrieves

complete data for the event.

6. After retrieving complete event data from the Component Interface, the

connector instantiates the appropriate application-specific business object.

7. The connector sends the application-specific business object to the integration

broker.

8. The connector calls the cw_archive_events() function, which sets the Archive

flag to Y and sets the status and processing time appropriately. Setting the

Archive flag causes the SavePostChg() PeopleCode to copy the event

information to the archive table and delete the event from the event table.

Processing locale-dependent data

The connector has been internationalized so that it can support double-byte

character sets, and deliver message text in the specified language. When the

connector transfers data from a location that uses one character code to a location

that uses a different code set, it performs character conversion to preserve the

meaning of the data.

The Java runtime environment within the Java Virtual Machine (JVM) represents

data in the Unicode character code set. Unicode contains encodings for characters

in most known character code sets (both single-byte and multibyte). Most

components in the WebSphere business integration system are written in Java.

Therefore, when data is transferred between most integration components, there is

no need for character conversion.

Chapter 1. Overview 9

This adapter supports the processing of bidirectional script data for the Arabic and

Hebrew languages when the adapter is run in a Windows environment.

Bidirectional processing is not supported in non-Windows environments. To use

the bidirectional capacity, you must configure the bidirectional standard properties.

For more information, refer to the standard configuration properties for connectors

in Appendix A.

To log error and informational messages in the appropriate language and for the

appropriate country or territory, configure the Locale standard configuration

property for your environment. For more information on configuration properties,

See Appendix A, “Standard configuration properties for connectors,” on page 91.

Common Event Infrastructure

This adapter is compatible with the IBMs Common Event Infrastructure, a

standard for event management that permits interoperability with other IBM

WebSphere event-producing applications. If Common Event Infrastructure support

is enabled, events produced by the adapter can be received (or used) by another

Common Event Infrastructure-compatible application.

For more information refer to the Common Event Infrastructure appendix in this

guide.

Application Response Measurement

This adapter is compatible with the Application Response Measurement

application programming interface (API), an API that allows applications to be

managed for availability, service level agreements, and capacity planning. An

ARM-instrumented application can participate in IBM Tivoli® Monitoring for

Transaction Performance, allowing collection and review of data concerning

transaction metrics.

For more information refer to the Application Response Measurement appendix in

this guide.

10 Adapter for PeopleSoft User Guide

Chapter 2. Installing the connector

This chapter describes how to install and configure the connector component of

IBM WebSphere Business Integration Adapter for PeopleSoft and how to configure

the PeopleSoft application to work with the connector.

This chapter contains the following sections:

v “Adapter for PeopleSoft environment”

v “Installing the adapter and related files” on page 13

v “Verifying an installation” on page 13

v “Enabling the application for the connector” on page 14

Adapter for PeopleSoft environment

Before installing, configuring, and using the adapter, you must understand its

environmental requirements.

Broker compatibility

This adapter runs with the WebSphere Business Integration Adapter

FrameworkV2.6 and requires one of the following:

v WebSphere InterChange ServerV4.2.2,V4.3

v WebSphere MQ IntegratorV2.1

v WebSphere MQ Integrator BrokerV2.1

v WebSphere Business Integration Message BrokerV5.0.1

v WebSphere Application Server EnterpriseV5.0.2, in conjunction with WebSphere

Studio Application Developer Integration EditionV5.0.1

v WebSphere Business Integration Server FoundationV5.1.1

v DB2 Information IntegratorV8.2.3.

Adapter platforms

In addition to a broker, this adapter requires one of the following operating

systems:

v All operating system environments require the Java compiler (IBM JDK 1.4.2for

Windows 2000) for compiling custom adapters

v AIX®:

AIX 5.1 with Maintenance Level 4

AIX 5.2 with Maintenance Level 1. This adapter supports 32-bit JVM on a

64-bit platform.

v Solaris:

Solaris 8 (2.8)with Solaris Patch Cluster dated Feb. 11, 2004 or later

Solaris 9 (2.9) with Solaris Patch Cluster dated February 11, 2004 or later. This

adapter supports 32-bit JVM on a 64-bit platform.

v HP-UX:

HP-UX 11.i (11.11) with June 2003 GOLDBASE11i and June 2003 GOLDAPPS11i

bundles

v LinuxR:

Red HatR Enterprise Linux AS 3.0 with Update 1

© Copyright IBM Corp. 2001, 2004 11

Red Hat Enterprise Linux ES 3.0 with Update 1

Red Hat Enterprise Linux WS 3.0 with Update 1

Note: Although the adapter is supported on Red Hat Enterprise Linux 3.0, this

platform cannot be used in production environments running PeopleTools

versions 8.14 to 8.45. Future releases of PeopleTools are expected to

support this platform. After PeopleSoft releases a version of PeopleTools

that supports Red Hat Enterprise Linux 3.0, please check for more

information and any software updates that may be required to use the

adapter on this platform.

Note: The TMTP (Tivoli Monitoring for Transaction Performance) component of

the WebSphere Business Integration Adapter FrameworkV2.6 is not

supported on Linux Red Hat.

v Windows:

Windows 2000 (Professional, Server, or Advanced Server) with Service Pack 4

Windows XP with Service Pack 1A, for WebSphere Business Integration Adapter

Framework (administrative tools only)

Windows 2003 (Standard Edition or Enterprise Edition)

Adapter dependencies

The adapter has the following software prerequisites and other dependencies:

v The connector requires two layers of PeopleSoft API classes. Make sure that

these API classes are available:

1. psjoa.jar— The connector uses this API to connect to the Application Server

through BEA Systems’ Jolt port, and to send objects through the Application

Server. This file is included with PeopleTools. Save it to the directory where

you will install the connector.

For more information on retrieving PeopleSoft’s API files, see PeopleSoft’s

Installation and Administration Guide.

2. Component Interface API—The connector accesses this layer only after a

session object has been created and a connection to the PeopleSoft

Application Server has been established using psjoa.jar. The Component

Interface API provides access to all of a Component Interface’s exposed

objects and PeopleCode methods. You must manually generate this API in

Application Designer.
v A user account must exist in PeopleSoft for the connector, and it must be

configured so that it does not time out. Also, it must use PeopleSoft security, and

have privileges to insert, update, retrieve, and delete data from pages,

components, and component interfaces in the PeopleSoft system.

v If WebSphere InterChange Server is the integration broker: Delete any previously

installed versions of the connector. Also, delete all previous customizations made

in PeopleSoft for the connector. For example, delete all connector-related Menus,

Pages, Records, Message Definitions Components, and Component Interfaces.

Also, delete the connector’s event and archive tables. Typically, these objects are

stored in a connector-specific project that you can open in Application Designer.

Note: If you install a WebSphere Business Integration Adapter on the same

machine as a previous installation of the connector for WebSphere

InterChange Server, the WebSphere InterChange Server connector will not

run unless you manually switch the IBM WebSphere system environment

variable to point to the desired product path.

12 Adapter for PeopleSoft User Guide

v Required Fields, Pages, Records, Components, and Component Interfaces must

be defined in your PeopleSoft application.

Installing the adapter and related files

For information on installing WebSphere Business Integration adapter products,

refer to the Installing WebSphere Business Integration Adapters guide located in the

WebSphere Business Integration Adapters Infocenter at the following site:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

Verifying an installation

The Installer copies the standard files associated with the adapter into your system.

The utility installs the connector into the ProductDir\connectors\PeopleSoft

directory, and adds a shortcut for the connector to the Start menu.This section

describes the file structures after the product has been installed on a UNIX or

Windows system.

Verifying installed files on a UNIX system

To verify the installation on a UNIX system, compare the files in the directory

where you installed the adapter to those listed.

Table 1 describes the UNIX file structure used by the connector.

 Table 1. Installed UNIX file structure for the connector

Subdirectory of $ProductDirS Description

connectors/PeopleSoft v Contains the connector’s CWPeopleSoft.jar and the

start_PeopleSoft.sh files.

The startup script for the connector is called from the generic

connector manager script. When you click Install from the product

installer’s Connector Configuration screen, the installer creates a

customized wrapper for this connector manager script.

When the connector works with WebSphere InterChange Server

broker, use this customized wrapper to start and stop the

connector. When the connector works with WebSphere MQ

Integrator broker, use this customized wrapper only to start the

connector; use mqsiremotestopadapter to stop the connector.

/lib Please verify that the directory contains the WBIA.jar file. This file

corresponds to ADK 2.2.0. If an older version of ADK is required,

please refer to the Connector Development Guide.

connectors/PeopleSoft/dependencies v Contains the psjoa.jar files that you must copy from the

current version of PeopleTools.

v Contains the PSFTCI.jar file, which contains all the PeopleSoft

Component Interface class files that PeopleSoft generates after

you build and compile the APIs.

v Contains the CW_EVENT_V140 project folder and the CW_EVENT_V150

project folder. These projects contain the event notification

objects.

connectors/messages Contains the PeopleSoftConnector.txt file.

/bin/APP/DATA Contains the PeopleSoft Connector template. This is used to create

the connector configuration file using the Connector Configurator.

Chapter 2. Installing the connector 13

Verifying Installed files on a Windows system

To verify the installation on a Windows system, compare the files in the directory

where you installed the adapter to those listed.

Table 2describes the Windows file structure used by the connector.

 Table 2. Installed Windows file structure for the connector

Subdirectory of%ProductDirS% Description

\connectors\PeopleSoft v Contains the connector’s CWPeopleSoft.jar and the

start_PeopleSoft.bat files.

\bin Please verify that this folder contains the CWConnEnv.bat

file.

\lib Please verify that the directory contains the WBIA.jar file.

This file corresponds to ADK 2.2.0. If an older version of

ADK is required, please refer to the Connector Development

Guide.

\connectors\PeopleSoft\dependencies v Contains the psjoa.jar files that you must copy from

the current version of PeopleTools.

v Contains the PSFTCI.jar file, which contains all the

PeopleSoft Component Interface class files that

PeopleSoft generates after you build and compile the

APIs.

v Contains the CW_EVENT_V140 project folder and the

CW_EVENT_V150 project folder. These projects contain the

event notification objects.

\connectors\messages Contains the PeopleSoftConnector.txt file.

\bin\APP\DATA Contains the PeopleSoft Connector template. This is used

to create the connector configuration file using Connector

Configurator.

Enabling the application for the connector

Before you can use the connector with your PeopleSoft application, you must

import the appropriate project included with the adapter. The project contains the

components required for event processing, building the required tables, and

building the API files.

Importing the project

1. Navigate to the %ProductDirS%\connectors\PeopleSoft\dependencies directory

that was created when you installed the adapter.

2. Select one of the following projects:

v CW_EVENT_V140, if you are using PeopleTools versions 8.14 up to (but not

including) 8.40.

v CW_EVENT_V150, if you are using PeopleTools versions 8.40 through 8.45.
3. Use Application Designer to import the project.

14 Adapter for PeopleSoft User Guide

Chapter 3. Configuring the connector

This chapter provides information about Connector Configurator.

v “Overview of Connector Configurator”

v “Starting Connector Configurator” on page 16

v “Running Configurator from System Manager” on page 17

v “Creating a connector-specific property template” on page 17

v “Creating a new configuration file” on page 20

v “Using an existing file” on page 21

v “Completing a configuration file” on page 22

v “Setting the configuration file properties” on page 23

v “Saving your configuration file” on page 30

v “Changing a configuration file” on page 31

v “Completing the configuration” on page 31

v “Using Connector Configurator in a globalized environment” on page 31

Overview of Connector Configurator

Connector Configurator allows you to configure the connector component of your

adapter for use with these integration brokers:

v WebSphere InterChange Server (ICS)

v WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere

Business Integration Message Broker, collectively referred to as the WebSphere

Message Brokers (WMQI)

v WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and

the DB2 II standard properties (see the Notes column in the Standard Properties

appendix.)

You use Connector Configurator to:

v Create a connector-specific property template for configuring your connector.

v Create a connector configuration file; you must create one configuration file for

each connector you install.

v Set properties in a configuration file.

You may need to modify the default values that are set for properties in the

connector templates. You must also designate supported business object

definitions and, with ICS, maps for use with collaborations as well as specify

messaging, logging and tracing, and data handler parameters, as required.

The mode in which you run Connector Configurator, and the configuration file

type you use, may differ according to which integration broker you are running.

For example, if WMQI is your broker, you run Connector Configurator directly,

and not from within System Manager (see “Running Configurator in stand-alone

mode” on page 16).

© Copyright IBM Corp. 2001, 2004 15

Connector configuration properties include both standard configuration properties

(the properties that all connectors have) and connector-specific properties

(properties that are needed by the connector for a specific application or

technology).

Because standard properties are used by all connectors, you do not need to define

those properties from scratch; Connector Configurator incorporates them into your

configuration file as soon as you create the file. However, you do need to set the

value of each standard property in Connector Configurator.

The range of standard properties may not be the same for all brokers and all

configurations. Some properties are available only if other properties are given a

specific value. The Standard Properties window in Connector Configurator will

show the properties available for your particular configuration.

For connector-specific properties, however, you need first to define the properties

and then set their values. You do this by creating a connector-specific property

template for your particular adapter. There may already be a template set up in

your system, in which case, you simply use that. If not, follow the steps in

“Creating a new template” on page 17 to set up a new one.

Running connectors on UNIX

Connector Configurator runs only in a Windows environment. If you are running

the connector in a UNIX environment, use Connector Configurator in Windows to

modify the configuration file and then copy the file to your UNIX environment.

Some properties in the Connector Configurator use directory paths, which default

to the Windows convention for directory paths. If you use the configuration file in

a UNIX environment, revise the directory paths to match the UNIX convention for

these paths. Select the target operating system in the toolbar drop-list so that the

correct operating system rules are used for extended validation.

Starting Connector Configurator

You can start and run Connector Configurator in either of two modes:

v Independently, in stand-alone mode

v From System Manager

Running Configurator in stand-alone mode

You can run Connector Configurator without running System Manager and work

with connector configuration files, irrespective of your broker.

To do so:

v From Start>Programs, click IBM WebSphere Business Integration

Adapters>IBM WebSphere Business Integration Toolset>Connector

Configurator.

v Select File>New>Connector Configuration.

v When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on

your broker.

You may choose to run Connector Configurator independently to generate the file,

and then connect to System Manager to save it in a System Manager project (see

“Completing a configuration file” on page 22.)

16 Adapter for PeopleSoft User Guide

Running Configurator from System Manager

You can run Connector Configurator from System Manager.

To run Connector Configurator:

1. Open the System Manager.

2. In the System Manager window, expand the Integration Component Libraries

icon and highlight Connectors.

3. From the System Manager menu bar, click Tools>Connector Configurator. The

Connector Configurator window opens and displays a New Connector dialog

box.

4. When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on

your broker.

To edit an existing configuration file:

v In the System Manager window, select any of the configuration files listed in the

Connector folder and right-click on it. Connector Configurator opens and

displays the configuration file with the integration broker type and file name at

the top.

v From Connector Configurator, select File>Open. Select the name of the

connector configuration file from a project or from the directory in which it is

stored.

v Click the Standard Properties tab to see which properties are included in this

configuration file.

Creating a connector-specific property template

To create a configuration file for your connector, you need a connector-specific

property template as well as the system-supplied standard properties.

You can create a brand-new template for the connector-specific properties of your

connector, or you can use an existing connector definition as the template.

v To create a new template, see “Creating a new template” on page 17.

v To use an existing file, simply modify an existing template and save it under the

new name. You can find existing templates in your

\WebSphereAdapters\bin\Data\App directory.

Creating a new template

This section describes how you create properties in the template, define general

characteristics and values for those properties, and specify any dependencies

between the properties. Then you save the template and use it as the base for

creating a new connector configuration file.

To create a template in Connector Configurator:

1. Click File>New>Connector-Specific Property Template.

2. The Connector-Specific Property Template dialog box appears.

v Enter a name for the new template in the Name field below Input a New

Template Name. You will see this name again when you open the dialog box

for creating a new configuration file from a template.

Chapter 3. Configuring the connector 17

v To see the connector-specific property definitions in any template, select that

template’s name in the Template Name display. A list of the property

definitions contained in that template appears in the Template Preview

display.
3. You can use an existing template whose property definitions are similar to

those required by your connector as a starting point for your template. If you

do not see any template that displays the connector-specific properties used by

your connector, you will need to create one.

v If you are planning to modify an existing template, select the name of the

template from the list in the Template Name table below Select the Existing

Template to Modify: Find Template.

v This table displays the names of all currently available templates. You can

also search for a template.

Specifying general characteristics

When you click Next to select a template, the Properties - Connector-Specific

Property Template dialog box appears. The dialog box has tabs for General

characteristics of the defined properties and for Value restrictions. The General

display has the following fields:

v General:

Property Type

Property Subtype

Updated Method

Description

v Flags

Standard flags

v Custom Flag

Flag

The Property Subtype can be selected when Property Type is a String. It is an

optional value which provides syntax checking when you save the configuration

file. The default is a blank space, and means that the property has not been

subtyped.

After you have made selections for the general characteristics of the property, click

the Value tab.

Specifying values

The Value tab enables you to set the maximum length, the maximum multiple

values, a default value, or a value range for the property. It also allows editable

values. To do so:

1. Click the Value tab. The display panel for Value replaces the display panel for

General.

2. Select the name of the property in the Edit properties display.

3. In the fields for Max Length and Max Multiple Values, enter your values.

To create a new property value:

1. Right-click on the square to the left of the Value column heading.

2. From the pop-up menu, select Add to display the Property Value dialog box.

Depending on the property type, the dialog box allows you to enter either a

value, or both a value and a range.

3. Enter the new property value and click OK. The value appears in the Value

panel on the right.

18 Adapter for PeopleSoft User Guide

The Value panel displays a table with three columns:

The Value column shows the value that you entered in the Property Value dialog

box, and any previous values that you created.

The Default Value column allows you to designate any of the values as the

default.

The Value Range shows the range that you entered in the Property Value dialog

box.

After a value has been created and appears in the grid, it can be edited from

within the table display.

To make a change in an existing value in the table, select an entire row by clicking

on the row number. Then right-click in the Value field and click Edit Value.

Setting dependencies

When you have made your changes to the General and Value tabs, click Next. The

Dependencies - Connector-Specific Property Template dialog box appears.

A dependent property is a property that is included in the template and used in

the configuration file only if the value of another property meets a specific

condition. For example, PollQuantity appears in the template only if JMS is the

transport mechanism and DuplicateEventElimination is set to True.

To designate a property as dependent and to set the condition upon which it

depends, do this:

1. In the Available Properties display, select the property that will be made

dependent.

2. In the Select Property field, use the drop-down menu to select the property

that will hold the conditional value.

3. In the Condition Operator field, select one of the following:

== (equal to)

!= (not equal to)

> (greater than)

< (less than)

>= (greater than or equal to)

<=(less than or equal to)

4. In the Conditional Value field, enter the value that is required in order for the

dependent property to be included in the template.

5. With the dependent property highlighted in the Available Properties display,

click an arrow to move it to the Dependent Property display.

6. Click Finish. Connector Configurator stores the information you have entered

as an XML document, under \data\app in the \bin directory where you have

installed Connector Configurator.

Setting pathnames

Some general rules for setting pathnames are:

v The maximum length of a filename in Windows and UNIX is 255 characters.

v In Windows, the absolute pathname must follow the format

[Drive:][Directory]\filename: for example,

C:\WebSphereAdapters\bin\Data\Std\StdConnProps.xml

In UNIX the first character should be /.

Chapter 3. Configuring the connector 19

v Queue names may not have leading or embedded spaces.

Creating a new configuration file

When you create a new configuration file, you must name it and select an

integration broker.

You also select an operating system for extended validation on the file. The toolbar

has a droplist called Target System that allows you to select the target operating

system for extended validation of the properties. The available options are:

Windows, UNIX, Other (if not Windows or UNIX), and None-no extended

validation (switches off extended validation). The default on startup is Windows.

To start Connector Configurator:

v In the System Manager window, select Connector Configurator from the Tools

menu. Connector Configurator opens.

v In stand-alone mode, launch Connector Configurator.

To set the operating system for extended validation of the configuration file:

v Pull down the Target System: droplist on the menu bar.

v Select the operating system you are running on.

Then select File>New>Connector Configuration. In the New Connector window,

enter the name of the new connector.

You also need to select an integration broker. The broker you select determines the

properties that will appear in the configuration file. To select a broker:

v In the Integration Broker field, select ICS, WebSphere Message Brokers or WAS

connectivity.

v Complete the remaining fields in the New Connector window, as described later

in this chapter.

Creating a configuration file from a connector-specific

template

Once a connector-specific template has been created, you can use it to create a

configuration file:

1. Set the operating system for extended validation of the configuration file using

the Target System: droplist on the menu bar (see “Creating a new configuration

file” above).

2. Click File>New>Connector Configuration.

3. The New Connector dialog box appears, with the following fields:

v Name

Enter the name of the connector. Names are case-sensitive. The name you

enter must be unique, and must be consistent with the file name for a

connector that is installed on the system.

Important: Connector Configurator does not check the spelling of the name

that you enter. You must ensure that the name is correct.

v System Connectivity

Click ICS or WebSphere Message Brokers or WAS.

v Select Connector-Specific Property Template

20 Adapter for PeopleSoft User Guide

Type the name of the template that has been designed for your connector.

The available templates are shown in the Template Name display. When you

select a name in the Template Name display, the Property Template Preview

display shows the connector-specific properties that have been defined in

that template.

Select the template you want to use and click OK.
4. A configuration screen appears for the connector that you are configuring. The

title bar shows the integration broker and connector name. You can fill in all

the field values to complete the definition now, or you can save the file and

complete the fields later.

5. To save the file, click File>Save>To File or File>Save>To Project. To save to a

project, System Manager must be running.

If you save as a file, the Save File Connector dialog box appears. Choose *.cfg

as the file type, verify in the File Name field that the name is spelled correctly

and has the correct case, navigate to the directory where you want to locate the

file, and click Save. The status display in the message panel of Connector

Configurator indicates that the configuration file was successfully created.

Important: The directory path and name that you establish here must match

the connector configuration file path and name that you supply in

the startup file for the connector.

6. To complete the connector definition, enter values in the fields for each of the

tabs of the Connector Configurator window, as described later in this chapter.

Using an existing file

You may have an existing file available in one or more of the following formats:

v A connector definition file.

This is a text file that lists properties and applicable default values for a specific

connector. Some connectors include such a file in a \repository directory in

their delivery package (the file typically has the extension .txt; for example,

CN_XML.txt for the XML connector).

v An ICS repository file.

Definitions used in a previous ICS implementation of the connector may be

available to you in a repository file that was used in the configuration of that

connector. Such a file typically has the extension .in or .out.

v A previous configuration file for the connector.

Such a file typically has the extension *.cfg.

Although any of these file sources may contain most or all of the connector-specific

properties for your connector, the connector configuration file will not be complete

until you have opened the file and set properties, as described later in this chapter.

To use an existing file to configure a connector, you must open the file in

Connector Configurator, revise the configuration, and then resave the file.

Follow these steps to open a *.txt, *.cfg, or *.in file from a directory:

1. In Connector Configurator, click File>Open>From File.

2. In the Open File Connector dialog box, select one of the following file types to

see the available files:

v Configuration (*.cfg)

v ICS Repository (*.in, *.out)

Chapter 3. Configuring the connector 21

Choose this option if a repository file was used to configure the connector in

an ICS environment. A repository file may include multiple connector

definitions, all of which will appear when you open the file.

v All files (*.*)

Choose this option if a *.txt file was delivered in the adapter package for

the connector, or if a definition file is available under another extension.
3. In the directory display, navigate to the appropriate connector definition file,

select it, and click Open.

Follow these steps to open a connector configuration from a System Manager

project:

1. Start System Manager. A configuration can be opened from or saved to System

Manager only if System Manager has been started.

2. Start Connector Configurator.

3. Click File>Open>From Project.

Completing a configuration file

When you open a configuration file or a connector from a project, the Connector

Configurator window displays the configuration screen, with the current attributes

and values.

The title of the configuration screen displays the integration broker and connector

name as specified in the file. Make sure you have the correct broker. If not, change

the broker value before you configure the connector. To do so:

1. Under the Standard Properties tab, select the value field for the BrokerType

property. In the drop-down menu, select the value ICS, WMQI, or WAS.

2. The Standard Properties tab will display the connector properties associated

with the selected broker. The table shows Property name, Value, Type, Subtype

(if the Type is a string), Description, and Update Method.

3. You can save the file now or complete the remaining configuration fields, as

described in “Specifying supported business object definitions” on page 25..

4. When you have finished your configuration, click File>Save>To Project or

File>Save>To File.

If you are saving to file, select *.cfg as the extension, select the correct location

for the file and click Save.

If multiple connector configurations are open, click Save All to File to save all

of the configurations to file, or click Save All to Project to save all connector

configurations to a System Manager project.

Before you created the configuration file, you used the Target System droplist

that allows you to select the target operating system for extended validation of

the properties.

Before it saves the file, Connector Configurator checks that values have been

set for all required standard properties. If a required standard property is

missing a value, Connector Configurator displays a message that the validation

failed. You must supply a value for the property in order to save the

configuration file.

If you have elected to use the extended validation feature by selecting a value

of Windows, UNIX or Other from the Target System droplist, the system will

validate the property subtype s well as the type, and it displays a warning

message if the validation fails.

22 Adapter for PeopleSoft User Guide

Setting the configuration file properties

When you create and name a new connector configuration file, or when you open

an existing connector configuration file, Connector Configurator displays a

configuration screen with tabs for the categories of required configuration values.

Connector Configurator requires values for properties in these categories for

connectors running on all brokers:

v Standard Properties

v Connector-specific Properties

v Supported Business Objects

v Trace/Log File values

v Data Handler (applicable for connectors that use JMS messaging with

guaranteed event delivery)

Note: For connectors that use JMS messaging, an additional category may display,

for configuration of data handlers that convert the data to business objects.

For connectors running on ICS, values for these properties are also required:

v Associated Maps

v Resources

v Messaging (where applicable)

v Security

Important: Connector Configurator accepts property values in either English or

non-English character sets. However, the names of both standard and

connector-specific properties, and the names of supported business

objects, must use the English character set only.

Standard properties differ from connector-specific properties as follows:

v Standard properties of a connector are shared by both the application-specific

component of a connector and its broker component. All connectors have the

same set of standard properties. These properties are described in the Standard

Properties appendix. You can change some but not all of these values.

v Application-specific properties apply only to the application-specific component

of a connector, that is, the component that interacts directly with the application.

Each connector has application-specific properties that are unique to its

application. Some of these properties provide default values and some do not;

you can modify some of the default values. The installation and configuration

chapters of each adapter guide describe the application-specific properties and

the recommended values.

The fields for Standard Properties and Connector-Specific Properties are

color-coded to show which are configurable:

v A field with a grey background indicates a standard property. You can change

the value but cannot change the name or remove the property.

v A field with a white background indicates an application-specific property. These

properties vary according to the specific needs of the application or connector.

You can change the value and delete these properties.

v Value fields are configurable.

Chapter 3. Configuring the connector 23

v The Update Method field is displayed for each property. It indicates whether a

component or agent restart is necessary to activate changed values. You cannot

configure this setting.

Setting standard connector properties

To change the value of a standard property:

1. Click in the field whose value you want to set.

2. Either enter a value, or select one from the drop-down menu if it appears.

Note: If the property has a Type of String, it may have a subtype value in the

Subtype column. This subtype is used for extended validation of the

property.

3. After entering all the values for the standard properties, you can do one of the

following:

v To discard the changes, preserve the original values, and exit Connector

Configurator, click File>Exit (or close the window), and click No when

prompted to save changes.

v To enter values for other categories in Connector Configurator, select the tab

for the category. The values you enter for Standard Properties (or any other

category) are retained when you move to the next category. When you close

the window, you are prompted to either save or discard the values that you

entered in all the categories as a whole.

v To save the revised values, click File>Exit (or close the window) and click

Yes when prompted to save changes. Alternatively, click Save>To File from

either the File menu or the toolbar.

To get more information on a particular standard property, left-click the entry in

the Description column for that property in the Standard Properties tabbed sheet.

If you have Extended Help installed, an arrow button will appear on the right.

When you click on the button, a Help window will open and display details of the

standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

If installed, the Extended Help files are located in

<ProductDir>\bin\Data\Std\Help\<RegionalSetting>\.

Setting connector-specific configuration properties

For connector-specific configuration properties, you can add or change property

names, configure values, delete a property, and encrypt a property. The default

property length is 255 characters.

1. Right-click in the top left portion of the grid. A pop-up menu bar will appear.

Click Add to add a property. To add a child property, right-click on the parent

row number and click Add child.

2. Enter a value for the property or child property.

Note: If the property has a Type of String, you can select a subtype from the

Subtype droplist. This subtype is used for extended validation of the

property.

3. To encrypt a property, select the Encrypt box.

24 Adapter for PeopleSoft User Guide

4. To get more information on a particular property, left-click the entry in the

Description column for that property. If you have Extended Help installed, a

hot button will appear. When you click on the hot button, a Help window will

open and display details of the standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

5. Choose to save or discard changes, as described for “Setting standard connector

properties” on page 24.

If the Extended Help files are installed and the AdapterHelpName property is

blank, Connector Configurator will point to the adapter-specific Extended Help

files located in <ProductDir>\bin\Data\App\Help\<RegionalSetting>\. Otherwise,

Connector Configurator will point to the adapter-specific Extended Help files

located in

<ProductDir>\bin\Data\App\Help\<AdapterHelpName>\<RegionalSetting>\. See

the AdapterHelpName property described in the Standard Properties appendix.

The Update Method displayed for each property indicates whether a component or

agent restart is necessary to activate changed values.

Important: Changing a preset application-specific connector property name may

cause a connector to fail. Certain property names may be needed by

the connector to connect to an application or to run properly.

Encryption for connector properties

Application-specific properties can be encrypted by selecting the Encrypt check

box in the Connector-specific Properties window. To decrypt a value, click to clear

the Encrypt check box, enter the correct value in the Verification dialog box, and

click OK. If the entered value is correct, the value is decrypted and displays.

The adapter user guide for each connector contains a list and description of each

property and its default value.

If a property has multiple values, the Encrypt check box will appear for the first

value of the property. When you select Encrypt, all values of the property will be

encrypted. To decrypt multiple values of a property, click to clear the Encrypt

check box for the first value of the property, and then enter the new value in the

Verification dialog box. If the input value is a match, all multiple values will

decrypt.

Update method

Refer to the descriptions of update methods found in the Standard Properties

appendix.

Specifying supported business object definitions

Use the Supported Business Objects tab in Connector Configurator to specify the

business objects that the connector will use. You must specify both generic business

objects and application-specific business objects, and you must specify associations

for the maps between the business objects.

Note: Some connectors require that certain business objects be specified as

supported in order to perform event notification or additional configuration

Chapter 3. Configuring the connector 25

(using meta-objects) with their applications. For more information, see the

Connector Development Guide for C++ or the Connector Development Guide for

Java.

If ICS is your broker

To specify that a business object definition is supported by the connector, or to

change the support settings for an existing business object definition, click the

Supported Business Objects tab and use the following fields.

Business object name: To designate that a business object definition is supported

by the connector, with System Manager running:

1. Click an empty field in the Business Object Name list. A drop list displays,

showing all the business object definitions that exist in the System Manager

project.

2. Click on a business object to add it.

3. Set the Agent Support (described below) for the business object.

4. In the File menu of the Connector Configurator window, click Save to Project.

The revised connector definition, including designated support for the added

business object definition, is saved to an ICL (Integration Component Library)

project in System Manager.

To delete a business object from the supported list:

1. To select a business object field, click the number to the left of the business

object.

2. From the Edit menu of the Connector Configurator window, click Delete Row.

The business object is removed from the list display.

3. From the File menu, click Save to Project.

Deleting a business object from the supported list changes the connector definition

and makes the deleted business object unavailable for use in this implementation

of this connector. It does not affect the connector code, nor does it remove the

business object definition itself from System Manager.

Agent support: If a business object has Agent Support, the system will attempt to

use that business object for delivering data to an application via the connector

agent.

Typically, application-specific business objects for a connector are supported by

that connector’s agent, but generic business objects are not.

To indicate that the business object is supported by the connector agent, check the

Agent Support box. The Connector Configurator window does not validate your

Agent Support selections.

Maximum transaction level: The maximum transaction level for a connector is

the highest transaction level that the connector supports.

For most connectors, Best Effort is the only possible choice.

You must restart the server for changes in transaction level to take effect.

If a WebSphere Message Broker is your broker

If you are working in stand-alone mode (not connected to System Manager), you

must enter the business object name manually.

26 Adapter for PeopleSoft User Guide

If you have System Manager running, you can select the empty box under the

Business Object Name column in the Supported Business Objects tab. A combo

box appears with a list of the business object available from the Integration

Component Library project to which the connector belongs. Select the business

object you want from the list.

The Message Set ID is an optional field for WebSphere Business Integration

Message Broker 5.0, and need not be unique if supplied. However, for WebSphere

MQ Integrator and Integrator Broker 2.1, you must supply a unique ID.

If WAS is your broker

When WebSphere Application Server is selected as your broker type, Connector

Configurator does not require message set IDs. The Supported Business Objects

tab shows a Business Object Name column only for supported business objects.

If you are working in stand-alone mode (not connected to System Manager), you

must enter the business object name manually.

If you have System Manager running, you can select the empty box under the

Business Object Name column in the Supported Business Objects tab. A combo box

appears with a list of the business objects available from the Integration

Component Library project to which the connector belongs. Select the business

object you want from this list.

Associated maps (ICS)

Each connector supports a list of business object definitions and their associated

maps that are currently active in WebSphere InterChange Server. This list appears

when you select the Associated Maps tab.

The list of business objects contains the application-specific business object which

the agent supports and the corresponding generic object that the controller sends

to the subscribing collaboration. The association of a map determines which map

will be used to transform the application-specific business object to the generic

business object or the generic business object to the application-specific business

object.

If you are using maps that are uniquely defined for specific source and destination

business objects, the maps will already be associated with their appropriate

business objects when you open the display, and you will not need (or be able) to

change them.

If more than one map is available for use by a supported business object, you will

need to explicitly bind the business object with the map that it should use.

The Associated Maps tab displays the following fields:

v Business Object Name

These are the business objects supported by this connector, as designated in the

Supported Business Objects tab. If you designate additional business objects

under the Supported Business Objects tab, they will be reflected in this list after

you save the changes by choosing Save to Project from the File menu of the

Connector Configurator window.

v Associated Maps

Chapter 3. Configuring the connector 27

The display shows all the maps that have been installed to the system for use

with the supported business objects of the connector. The source business object

for each map is shown to the left of the map name, in the Business Object

Name display.

v Explicit Binding

In some cases, you may need to explicitly bind an associated map.

Explicit binding is required only when more than one map exists for a particular

supported business object. When ICS boots, it tries to automatically bind a map

to each supported business object for each connector. If more than one map

takes as its input the same business object, the server attempts to locate and

bind one map that is the superset of the others.

If there is no map that is the superset of the others, the server will not be able to

bind the business object to a single map, and you will need to set the binding

explicitly.

To explicitly bind a map:

1. In the Explicit column, place a check in the check box for the map you want

to bind.

2. Select the map that you intend to associate with the business object.

3. In the File menu of the Connector Configurator window, click Save to

Project.

4. Deploy the project to ICS.

5. Reboot the server for the changes to take effect.

Resources (ICS)

The Resource tab allows you to set a value that determines whether and to what

extent the connector agent will handle multiple processes concurrently, using

connector agent parallelism.

Not all connectors support this feature. If you are running a connector agent that

was designed in Java to be multi-threaded, you are advised not to use this feature,

since it is usually more efficient to use multiple threads than multiple processes.

Messaging (ICS)

The Messaging tab enables you to configure messaging properties. The messaging

properties are available only if you have set MQ as the value of the

DeliveryTransport standard property and ICS as the broker type. These properties

affect how your connector will use queues.

Validating messaging queues

Before you can validate a messaging queue, you must:

v Make sure that WebSphere MQ Series is installed.

v Create a messaging queue with channel and port on the host machine.

v Set up a connection to the host machine.

To validate the queue, use the Validate button to the right of the Messaging Type

and Host Name fields on the Messaging tab.

Security (ICS)

You can use the Security tab in Connector Configurator to set various privacy

levels for a message. You can only use this feature when the DeliveryTransport

property is set to JMS.

28 Adapter for PeopleSoft User Guide

By default, Privacy is turned off. Check the Privacy box to enable it.

The Keystore Target System Absolute Pathname is:

v For Windows:

<ProductDir>\connectors\security\<connectorname>.jks

v For UNIX:

opt/IBM/WebSphereAdapters/connectors/security/<connectorname>.jks

This path and file should be on the system where you plan to start the connector,

that is, the target system.

You can use the Browse button at the right only if the target system is the one

currently running. It is greyed out unless Privacy is enabled and the Target System

in the menu bar is set to Windows.

The Message Privacy Level may be set as follows for the three messages categories

(All Messages, All Administrative Messages, and All Business Object Messages):

v “” is the default; used when no privacy levels for a message category have been

set.

v none

Not the same as the default: use this to deliberately set a privacy level of none

for a message category.

v integrity

v privacy

v integrity_plus_privacy

The Key Maintenance feature lets you generate, import and export public keys for

the server and adapter.

v When you select Generate Keys, the Generate Keys dialog box appears with the

defaults for the keytool that will generate the keys.

v The keystore value defaults to the value you entered in Keystore Target System

Absolute Pathname on the Security tab.

v When you select OK, the entries are validated, the key certificate is generated

and the output is sent to the Connector Configurator log window.

Before you can import a certificate into the adapter keystore, you must export it

from the server keystore. When you select Export Adapter Public Key, the Export

Adapter Public Key dialog box appears.

v The export certificate defaults to the same value as the keystore, except that the

file extension is <filename>.cer.

When you select Import Server Public Key, the Import Server Public Key dialog

box appears.

v The import certificate defaults to <ProductDir>\bin\ics.cer (if the file exists on

the system).

v The import Certificate Association should be the server name. If a server is

registered, you can select it from the droplist.

The Adapter Access Control feature is enabled only when the value of

DeliveryTransport is IDL. By default, the adapter logs in with the guest identity. If

the Use guest identity box is not checked, the Adapter Identity and Adapter

Password fields are enabled.

Chapter 3. Configuring the connector 29

Setting trace/log file values

When you open a connector configuration file or a connector definition file,

Connector Configurator uses the logging and tracing values of that file as default

values. You can change those values in Connector Configurator.

To change the logging and tracing values:

1. Click the Trace/Log Files tab.

2. For either logging or tracing, you can choose to write messages to one or both

of the following:

v To console (STDOUT):

Writes logging or tracing messages to the STDOUT display.

Note: You can only use the STDOUT option from the Trace/Log Files tab for

connectors running on the Windows platform.

v To File:

Writes logging or tracing messages to a file that you specify. To specify the

file, click the directory button (ellipsis), navigate to the preferred location,

provide a file name, and click Save. Logging or tracing message are written

to the file and location that you specify.

Note: Both logging and tracing files are simple text files. You can use the file

extension that you prefer when you set their file names. For tracing

files, however, it is advisable to use the extension .trace rather than

.trc, to avoid confusion with other files that might reside on the

system. For logging files, .log and .txt are typical file extensions.

Data handlers

The data handlers section is available for configuration only if you have designated

a value of JMS for DeliveryTransport and a value of JMS for

ContainerManagedEvents. Not all adapters make use of data handlers.

See the descriptions under ContainerManagedEvents in Appendix A, Standard

Properties, for values to use for these properties. For additional details, see the

Connector Development Guide for C++ or the Connector Development Guide for Java.

Saving your configuration file

When you have finished configuring your connector, save the connector

configuration file. Connector Configurator saves the file in the broker mode that

you selected during configuration. The title bar of Connector Configurator always

displays the broker mode (ICS, WMQI or WAS) that it is currently using.

The file is saved as an XML document. You can save the XML document in three

ways:

v From System Manager, as a file with a *.con extension in an Integration

Component Library, or

v In a directory that you specify.

v In stand-alone mode, as a file with a *.cfg extension in a directory folder. By

default, the file is saved to \WebSphereAdapters\bin\Data\App.

v You can also save it to a WebSphere Application Server project if you have set

one up.

30 Adapter for PeopleSoft User Guide

For details about using projects in System Manager, and for further information

about deployment, see the following implementation guides:

v For ICS: Implementation Guide for WebSphere InterChange Server

v For WebSphere Message Brokers: Implementing Adapters with WebSphere Message

Brokers

v For WAS: Implementing Adapters with WebSphere Application Server

Changing a configuration file

You can change the integration broker setting for an existing configuration file.

This enables you to use the file as a template for creating a new configuration file,

which can be used with a different broker.

Note: You will need to change other configuration properties as well as the broker

mode property if you switch integration brokers.

To change your broker selection within an existing configuration file (optional):

v Open the existing configuration file in Connector Configurator.

v Select the Standard Properties tab.

v In the BrokerType field of the Standard Properties tab, select the value that is

appropriate for your broker.

When you change the current value, the available tabs and field selections in the

properties window will immediately change, to show only those tabs and fields

that pertain to the new broker you have selected.

Completing the configuration

After you have created a configuration file for a connector and modified it, make

sure that the connector can locate the configuration file when the connector starts

up.

To do so, open the startup file used for the connector, and verify that the location

and file name used for the connector configuration file match exactly the name you

have given the file and the directory or path where you have placed it.

Using Connector Configurator in a globalized environment

Connector Configurator is globalized and can handle character conversion between

the configuration file and the integration broker. Connector Configurator uses

native encoding. When it writes to the configuration file, it uses UTF-8 encoding.

Connector Configurator supports non-English characters in:

v All value fields

v Log file and trace file path (specified in the Trace/Log files tab)

The drop list for the CharacterEncoding and Locale standard configuration

properties displays only a subset of supported values. To add other values to the

drop list, you must manually modify the \Data\Std\stdConnProps.xml file in the

product directory.

For example, to add the locale en_GB to the list of values for the Locale property,

open the stdConnProps.xml file and add the line in boldface type below:

Chapter 3. Configuring the connector 31

<Property name="Locale"

isRequired="true"

updateMethod="component restart">

 <ValidType>String</ValidType>

 <ValidValues>

 <Value>ja_JP</Value>

 <Value>ko_KR</Value>

 <Value>zh_CN</Value>

 <Value>zh_TW</Value>

 <Value>fr_FR</Value>

 <Value>de_DE</Value>

 <Value>it_IT</Value>

 <Value>es_ES</Value>

 <Value>pt_BR</Value>

 <Value>en_US</Value>

 <Value>en_GB</Value>

 <DefaultValue>en_US</DefaultValue>

 </ValidValues>

 </Property>

32 Adapter for PeopleSoft User Guide

Chapter 4. Configuring the application

This chapter describes the tasks you must complete to use your PeopleSoftR

applications with the adapter. It includes the folowing topics:

v “Building required objects”

v “Building the API files for event processing”

v “Code for processing application events” on page 35

v “Sample PeopleCode declarations and function calls” on page 36

v “Event and archive tables” on page 37

Building required objects

To build the event and archive tables and the function library:

1. Build the tables by selecting Project... from the Build menu.

2. In the dialog box that appears, verify that the CW_EVENT_TBL, FUNCLIB_CW

and CW_ARCHIVE_TBL appear as illustrated in Figure 2.

3. Select the build options “Create Tables” and “Execute SQL now”. Also, click the

Settings button and, in the window that displays, verify that “create table if it

already exists” and “recreate index if it already exists” are selected.

4. Click Build.

5. Log on to a SQL editor using an ID with appropriate database privileges. The

default ID is SYSADM/SYSADM.Initialize the CW_EVENT_NOT Field on the

FUNCLIB_CW Record with a value of zero. To do so, run the following

statement:

INSERT INTO PS_FUNCLIB_CW (CW_EVENT_NOT) VALUES (’0’);

Building the API files for event processing

To build the CWEVENT_CI API files (required when the connector processes only

events) or the Component Interface API files (required when the connector

processes both events and requests):

Figure 2. Building the tables

© Copyright IBM Corp. 2001, 2004 33

1. Open the Component Interface CWEVENT_CI from the project window and

select PeopleSoft APIs from the Build menu.

2. In the Java Classes panel:

v Select the Build box

v In the “Directory containing PeopleSoft package:” field, enter the path for

connector’s dependencies directory (or the directory where all the PeopleSoft

API files reside for your implementation). This is usually:

UNIX

$ProductDirS/connectors/PeopleSoft/dependencies

End of UNIX

Windows

%ProductDirS%\connectors\PeopleSoft\dependencies

End of Windows

3. From the “Select APIs to Build:” field, select CWEVENT_CI and its associated

collection. Figure 3 illustrates the screen within PeopleSoft.

4. Click OK.

5. Compile any API files that you generate, and add them to PSFTCI.jar (if it

exists) or create this file if it does not exist.

Note: The start script or batch file is configured to search for these API files in

a file named PSFTCI.jar in the \connectors\PeopleSoft\dependencies

directory. After you compile these API classes, make a jar file that you

Figure 3. Building APIs

34 Adapter for PeopleSoft User Guide

name PSFTCI.jar. If you put this jar file in a different directory, change

the start script or batch file to point to the correct location of these API

classes.

6. Place the cw_publish_events() function declaration and function call in the

SavePostChg() PeopleCode for each Component associated with an event. For

more information, see “Sample PeopleCode declarations and function calls” on

page 36.

Note: The function must be placed in the SavePostChg() of the Component and

not of the Record.

7. Define all parameters used in the function call and insert PeopleCode to check

whether the Component has changed before making the function call. This

code eliminates unnecessary calls to the function. Also add a check for %userid

to prevent the connector from ping-ponging (that is, creating an endless loop in

which the connector interprets a data change from a request as a new

application event). For an example, see “Sample PeopleCode declarations and

function calls” on page 36.

Code for processing application events

The adapter includes the cw_publish_event() function and the

cw_publish_future_dated_events()function in the FUNCLIB_CW function library.

These functions perform similarly to insert events into the connector’s event table.

The difference between them is that cw_publish_future_dated_events()enables

publishing events with a future effective-date to the event table, and

cw_publish_event() does not. If you use events with a future-effective date, use

the cw_publish_future_dated_events()function.

This section describes the functions and provides an example of the code that calls

them.

cw_publish_event() and cw_publish_future_dated_events()

Functions

The cw_publish_event() function takes four parameters, and the

cw_publish_future_dated_events() function takes five parameters:

v &BONAME—contains the name of the WebSphere application-specific business

object for PeopleSoft that is generated for the event. (Used by both functions.)

v &KEYLIST—contains the name of all keys required to instantiate the Component

Interface that corresponds to the business object named in the &BONAME

parameter. This function uses the GetKey() method for instantiation. Because the

connector uses name-value pairs, the order of the keys is not significant.

However, the names must match those listed on the Component Interface.

Separate multiple keys with a colon or other configurable delimiter, for example,

SETID:DEPTID. For more information, see “EventKeyDelimiter” on page 116.(Used

by both functions.)

v &CWPRIORITY1—defines the priority of the event; defaults to 2. This parameter

enables certain events to be processed prior to events with a lower specified

priority. (Used by both functions.)

v &CONNID—contains the name of the connector instance that will retrieve the

event. This parameter is used for event distribution and defined in the

ConnectorID property for the connector. If not using event distribution, use the

value ″PeopleSoftConnector″. (Used by both functions.)

Chapter 4. Configuring the application 35

v &EFFDATE—the date associated with the event. If this value is greater than the

system date, peoplecode in the cw_publish_future_dated_events function sets

the event date to the &EFFDATE value . (This parameter is used by the

cw_publish_future_dated_events.)

Important: You must define these parameters, in proper form, before or during the

function call.

Using the values specified for its parameters and the information currently

available in the Component Buffer, the function gathers the required information

from the Component and inserts the event in the event table. The function

performs the following:

v Evaluates the PeopleSoft system variable %Mode, which contains values such as

Add and Update/Display, to identify the verb associated with the event

v Uses the key names to gather the current key values from the Component and

creates a list of business object key names and values

v Loads all information into a row, which it inserts into the event table using

PeopleCode built-in functions and methods

Sample PeopleCode declarations and function calls

This section provides examples of the PeopleCode declarations and function calls

for each of the two functions. Based on the function you use, insert one of the

following code examples into the PeopleCode editor.

Before making the actual function call, use a simple logic test to verify that the

Record or Component actually changed. If it did not change, the connector does

not call the function, which enhances performance. Also verify that the %userid is

not CW. Doing so prevents the connector from interpreting a data change from a

request as a new application event.

Code example for cw_publish_event:

/* Place this code in Component’s SavePostChg() and define the four */

/* parameters used in the function call */

Declare Function cw_publish_event PeopleCode FUNCLIB_CW.CW_EVENT_NOT

 FieldFormula;

Component String &BONAME1;

Component STring &KEYLIST1;

Component String &CWPRIORITY1;

Component String &CONNID1;

 &BONAME1 ="Psft_Dept";

 &KEYLIST1 = "DEPT_TBL.SetId:DEPT_TBL.DeptId";

 &CWPRIORITY = 2;

 &CONNID1 ="PeopleSoftConnector";

/* Check if Component Changed before calling function */

If ComponentChanged() and

 %userid <> "CW" then

 /* Publish this event to the IBM WebSphere

 CW_EVENT_TBL for polling */

 cw_publish_event(&BONAME1,&KEYLIST1,&CWPRIORITY1,&CONNID1);

End-if;

Code example for cw_publish_future_dated events:

36 Adapter for PeopleSoft User Guide

/* Place this code in Component’s SavePostChg() and define the four */

/* parameters used in the function call */

Declare Function cw_publish_future_dated_events PeopleCode FUNCLIB_CW.CW_EVENT_NOT

 FieldFormula;

Component String &BONAME1;

Component STring &KEYLIST1;

Component String &CWPRIORITY1;

Component String &CONNID1;

Component String &EFFDATE;

 &BONAME1 ="psft_CW_TEST_CI";

 &KEYLIST1 = "CW_PARENT_TBL.CW_PARENT_KEY1";

 &CWPRIORITY = 2;

 &CONNID1 ="PeopleSoftConnector";

 &EFFDATE = CW_PARENT_TBL.CW_PARENT_DTTM";

/* Check if Component Changed before calling function */

If ComponentChanged() and

 %userid <> "CW" then

 /* Publish this event to the IBM WebSphere

 CW_EVENT_TBL for polling */

 cw_publish_future_dated_events(&BONAME1,&KEYLIST1,&CWPRIORITY1,&CONNID1,

&EFFDATE);

End-if;

Event and archive tables

The connector uses the event table to poll events for pickup. For each event, the

connector gets the business object’s name, verb, and key from the event table. The

connector uses this information to retrieve the entire entity from the application. If

the entity was changed after the event was first logged, the connector gets the

initial event and all subsequent changes. In other words, if an entity is created and

updated before the connector gets it from the event table, the connector gets both

data changes in the single retrieval.

The following three outcomes are possible for each event processed by a connector:

v Event was processed successfully

v Event was not processed successfully

v Event was not subscribed to

If events are not deleted from the event table after the connector picks them up,

they occupy unnecessary space there. However, if they are deleted, all events that

are not processed are lost and event-processing cannot be audited. Therefore, the

adapter provides the archive table to store events deleted from the event table.

Table 3 describes the columns in the event and archive tables.

 Table 3. Event and archive table schema

Name Description Type Constraint

CW_EVENT_ID Internal identifier of the event A unique key

field that identifies each event generated from

within PeopleSoft

NUMBER Primary key

CW_CONNECTOR_ID Unique ID of the connector for which the event

is destined. This value is important when

multiple connectors poll the same table.

VARCHAR

Chapter 4. Configuring the application 37

Table 3. Event and archive table schema (continued)

Name Description Type Constraint

CW_OBJ_KEYS Keys of the business object, specified in

name-value format. When defining parameters

for a function call (such as cw_publish_events),

the name consists of the table name and field

name separated by a period. Multiple keys are

separated with a colon or other configurable

delimiter, for example:

DEPT_TBL.SetId:DEPT_TBL.DeptIdFor more

information, see “EventKeyDelimiter” on page

116.

VARCHAR Not null

CW_OBJ Name of the business object VARCHAR Not null

CW_VERB Verb associated with the event. A PeopleCode

function included with the adapter determines

the value (Create, Retrieve, Update, Delete)

based upon the %Mode system variable used by

PeopleSoft

VARCHAR Not null

CW_PRIORITY Not used.

CW_DTTM Date and time the event or archiving occurred STRING Default current

date/time (for archive

table, actual event

time). PeopleSoft treats

the datatype for DATE

fields as STRING and

returns the same.

CW_STATUS -2 (Error sending event to integration broker) VARCHAR Not null

-1 (Error processing event)

0 (Ready for poll)

1 (Sent to integration broker)

2 (No Subscriptions for the business object)

3 (In Progress) This status is used only in the

event table and not in the archive table.

99 (Future effective-dated events) This status is

used only in the event table and not in the

archive table.

38 Adapter for PeopleSoft User Guide

Chapter 5. Understanding business objects for the connector

This chapter contains the following sections:

v “Business object and attribute naming conventions”

v “Business object structure” on page 40

v “Creating a business object” on page 44

v “Business object verb processing” on page 47

v “Business object attribute properties” on page 56

v “Business object application-specific information” on page 58

The connector component of the IBM WebSphere Business Integration Adapter for

PeopleSoft is meta-data-driven. Meta-data, in the WebSphere business integration

system, is application-specific data that is stored in WebSphere business objects

and that assists the connector in its interaction with the application. A

meta-data-driven connector handles each business object that it supports based on

meta-data encoded in the business object definition rather than on instructions

hard coded in the connector.

Business object meta-data includes the structure of a business object, the settings of

its attribute properties, and the content of its application-specific information.

Because the connector is meta-data driven, it can handle new or modified business

objects without requiring modifications to the connector code. The connector uses

the business object definition and its application-specific information to locate and

manipulate the data in a Component Interface.

The connector makes assumptions about the structure of its supported business

objects, the relationships between parent and child business objects, the format of

the application-specific information, and the Component Interface through which it

interacts. Therefore, when you create or modify a business object that will be

processed by the connector, your modifications must conform to the rules the

connector is designed to follow. If they do not, the connector cannot process new

or modified business objects correctly.

This chapter describes how the connector processes business objects and describes

the assumptions the connector makes. You can use this information as suggestions

for implementing new business objects or as a guide to modifying existing ones.

Business object and attribute naming conventions

For clarity, use the PSFT_ prefix when you name an business object to represent

data in a PeopleSoft Component Interface. Follow this convention for all child

business objects as well as for the top-level business object. For example, if you

create business objects that represent parent data in the EMERGENCY_CNTCT table and

child data in the EMERGENCY_PHONE table, you might name the corresponding

business objects: PSFT_EmergencyContact and PSFT_EmergencyPhone.

Note: In this document, the term hierarchical business object refers to a complete

business object, including all the child business objects that it contains at

any level. The term individual business object refers to a single business

object, independent of any child business objects it might contain. The term

© Copyright IBM Corp. 2001, 2004 39

top-level business object refers to the individual business object at the top of

the hierarchy that does not itself have a parent business object.

Business object structure

WebSphere business objects that represent PeopleSoft data can be flat or

hierarchical. All the attributes of a flat business object are simple, that is, they

represent a single value (such as a String or Integer).

In addition to its simple attributes, a hierarchical business object can have

attributes that represent a single-cardinality child business object or an array of

child business objects. In turn, each of these business objects can contain

single-cardinality child business objects and arrays of business objects, and so on.

A single-cardinality relationship occurs when an attribute in a parent business

object represents a single child business object. In this case, the child business

object represents a PeopleSoft Collection that can contain only one Record. The

type of the attribute is the same as that of the child business object.

A multiple-cardinality relationship occurs when an attribute in the parent

business object represents an array of child business objects. In this case, the child

business object represents a PeopleSoft Collection that can contain multiple

Records. The type of the attribute is the same as the type of the array of child

business objects.

The connector assumes that every hierarchical business object represents a single

PeopleSoft Component Interface. Although a hierarchical business object may

represent data in multiple PeopleSoft Records, the connector assumes that each

child business object in the hierarchy represents a single Collection within the

Component Interface. The connector uses PeopleSoft’s Component architecture and

processing (rather than the underlying database) to take advantage of the business

logic defined at the Component level.

When you define a business object, you may find that the PeopleSoft Collection

has more fields than the corresponding individual business object has simple

attributes (that is, some fields in the Collection are not represented in the business

object). Include in your design only those fields needed for the business object

processing.

Component interface and business object relationship

Because the connector requires a PeopleSoft Business Component and Component

Interface for each business object that it processes, and because the WebSphere

business integration system does not provide Business Components, Component

Interfaces, or PeopleSoft-specific business objects, you must create these objects to

use the connector.

Note: For portability, keep all your connector development in one PeopleSoft

Project.

After creating the required objects mentioned above, you can use Application

Designer to create the class structure required for the connector to process its

supported business objects. For more information, see “Generating APIs” on page

45.

To assist you in creating these objects, this section includes:

40 Adapter for PeopleSoft User Guide

v “Example Component and Component Interface” on page 41

v “Example business object” on page 44

v “Creating a business object” on page 44

Example Component and Component Interface

Figure 4 illustrates a simple Component, EMER_CONTACT, which has two Pages and

three Records. The illustrated page, PERSONAL_DATA_PANEL1, stores emergency

contact information for each employee.

The above graphic illustrates the relationship between data displayed at each level

of the personal data Page and the corresponding Record that stores it:

v Level 0 data is stored in the PERSONAL_DATA Record, whose key field is EMPLID.

v Level 1 data is stored in the EMERGENCY_CNTCT Record. Because each employee

can have more than one emergency contact, each contact is uniquely identified

by name (CONTACT_NAME), as well as by the employee’s ID (EMPLID). The Scroll in

Level 1 allows you to display data in the entire contact Collection.

v Level 2 data is stored in the EMERGENCY_PHONE Record. Because each contact can

have more than one phone, each phone number is uniquely identified by type

(PHONE_TYPE), as well as by the contact’s name (CONTACT_NAME) and the

employee’s ID (EMPLID). The Scroll in Level 2 allows you to display data in the

entire phone Collection.

As the EMERGENCY_CNTCT and EMERGENCY_PHONE Records illustrate, each Record’s key

is a composite that includes its parent’s key as well as its own unique identifier.

Not all Components represent data records in the same straightforward manner as

the example. For instance, scroll levels do not always correspond to separate

Records or child Records. Sometimes a Component uses derived or work Records;

sometimes it embeds related display Records; sometimes it uses the same Record

to represent data on several of its levels. In these situations, the design of the

Component Interface is much more sophisticated than the example, and requires

serious consideration of the processing needs.

When working with a complex Component, consider the following areas when

designing:

Figure 4. Example component

Chapter 5. Understanding business objects for the connector 41

v “Levels”

v “Hidden Fields”

v “Read-Only Fields”

Levels: When designing a Component’s levels, consider the following:

v Verify that the Component Interface behaves like the online Pages contained in

the Component that it represents. You may need to modify the structure of

Component Interface properties and Collections, or add user-defined methods,

to ensure that the connector behaves as designed.

v Keys are exposed only at the first level in which they appear. Remove keys from

the top-level Collection of the Component Interface that do not appear at the

level-0 Scroll in the page. Manually add those keys that appear on the level-1

Scroll, in the Page definition, to the level-two Collection.

For example, assume you have a Page that uses three keys from the same

Record (such as SETID, DEPTID, and EFFDT). Assume further that this Page

uses EFFDT at Scroll Level 1 to return historical data for the given SETID and

DEPTID. When you create a Component Interface that contains this Page, it

displays all three keys in Collection Level 0 because all key fields exist in the

same Level-0 primary Record. If you want to use this Component Interface to

return a set of rows with EFFDT as the key, manually remove EFFDT from the

Level-0 Collection and add it to the Level-1 Collection. Doing so causes the

Component Interface to behave the same way as it does online.

v Examine the Page definitions of each Component, paying particular attention to

the order of elements on a Page. Verify the Scroll level at which each field

appears. Use this information to determine whether corresponding business

object attributes are at the correct level, or whether they belong in a child

business object.

Hidden Fields: Hidden fields are not always loaded into the Component

Processor. Exposing these fields might cause application service errors. It is not

recommended that you expose anything to the connector that is not visually

exposed on the Page.

Read-Only Fields: Fields marked as Read-Only on the Component Interface are

accessible to the connector, but only by the method that returns values. The

connector cannot set values in these fields. Therefore, specify the

get=FieldName parameter in the corresponding attribute’s application specific text,

but leave the set=FieldName parameter empty. Specifying the set parameter in such

a case causes an error if the method is triggered by an update or create operation.

For more information, see “Application-specific information at the attribute level”

on page 60.

Figure 5 illustrates the example Component Interface (EMER_CONTACT_PROFILE) that

contains the EMER_CONTACT Component.

42 Adapter for PeopleSoft User Guide

The three broad arrows in the left margin point to the tables (PERSONAL_DATA,

EMERGENCY_CNTCT, and EMERGENCY_PHONE) that store data for the Component

Interface. The two narrow arrows point to the key icons that indicate the key fields

(EMPLID and CONTACT_NAME) of the EMERGENCY_CNTCT table.

PeopleSoft designed Component Interfaces to expose desired elements of a

Component to third parties, making the business process logic (such as the

PeopleCode, Field Edits, and PeopleSoft Security) transparent to external

integration applications. Therefore, the connector relies on the application for any

processing between the Component Interface and the database.

This dependency causes certain limitations, such as the lack of Search dialog

processing. Consequently, the SearchInit, SearchSave, and RowSelect events are

never triggered, and any PeopleCode associated with them does not run. This

limitation also extends to any PeopleCode events that are exclusively related to

GUI or online processing, including Menu PeopleCode and pop-up menus.

Therefore, before you create a Component Interface for the connector, verify that

no important behavior will be lost, and that all predetermined data is in place

before the connector accesses it. You can implement some of this skipped behavior

Figure 5. Example component interface

Chapter 5. Understanding business objects for the connector 43

as user-defined methods in the Component Interface or as Component-specific

PeopleCode (such as the Pre-Build event). Failure to take these precautions can

cause runtime errors.

To enable the connector to process the data represented by the

EMER_CONTACT_PROFILE Component Interface, you must create PeopleSoft-specific

business objects in the WebSphere business integration system.

Example business object

Figure 6 illustrates a hierarchical PeopleSoft-specific business object that you can

create in the WebSphere business integration system to represent the example

Component Interface.

The PSFT_EmergencyContact business object contains two simple attributes that

represent the key field data: EmpId and ContactName. These attributes correspond to

EMPLID and CONTACT_NAME in the EMERGENCY_CNTCT Record. PSFT_EmergencyContact

also has an array attribute (EmergencyPhone[n]) that represents the array of

PSFT_EmergencyPhone business objects.

The PSFT_EmergencyPhone business object contains three simple attributes that

represent the key field data: EmpId, ContactName, and PhoneType. The first two

attributes serve as keys, uniquely identifying the parent business object. The third

attribute uniquely distinguishes the child from other business objects in the same

array.

Creating a business object

To create a supported business object, perform the following steps:

1. Locate the Component that represents the event and transaction. If necessary,

create one.

2. Use the PeopleSoft Application Designer to create a Component Interface from

the Component in step 1.

3. Use PeopleSoftODA or Business Object Designer to create a corresponding

PeopleSoft-specific business object. For more information about business

objects, see “Business object attribute properties” on page 56 and “Business

object application-specific information” on page 58. For more information about

PeopleSoftODA, see Chapter 6, “Generating business object definitions using

PeopleSoftODA,” on page 63.

4. Add the PeopleSoft-specific business object to the list of the connector’s

supported business objects. For business-object subscription information specific

to your integration broker, see the broker’s implementation guide.

PSFT_Emer gencyContact

EmpId

verb

EmergencyPhone[n]

ContactName
DeptId

PSFT_EmergencyPhone

...

verb

EmpId

PhoneType
...

ContactName

Figure 6. Example business objects

44 Adapter for PeopleSoft User Guide

Use the PeopleSoft Application Designer to create a class structure from a

Component Interface. The business object that corresponds to the Component

Interface requires these classes to process the data; it is part of the PeopleSoft API.

To assist you in creating and using the generated classes, this section covers:

v “Generating APIs” on page 45

v “Example APIs” on page 46

Generating APIs

To generate APIs from a Component Interface, do the following:

1. Open the Component Interface in the Application Designer.

2. Select the PeopleSoft APIs menu from the Build menu.

3. Select only the Java option, specifying the destination as:

UNIX

$ProductDirS/connectors/PeopleSoft/dependencies

End of UNIX

Windows

%ProductDir%\connectors\PeopleSoft\dependencies

End of Windows

4. Compile the generated classes and verify that they are in the following

directories:

UNIX

$ProductDir directory:

Component Interface class files

/connectors/PeopleSoft/dependencies/PeopleSoft/Generated/CompIntfc

Session-specific class files

/connectors/PeopleSoft/dependencies/PeopleSoft/Generated/PeopleSoft

End of UNIX

Windows

%ProductDirS% directory:

Component Interface class files

\connectors\PeopleSoft\dependencies\PeopleSoft\Generated\CompIntfc

Session-specific class files

\connectors\PeopleSoft\dependencies\PeopleSoft\Generated\PeopleSoft

End of Windows

Chapter 5. Understanding business objects for the connector 45

For a more detailed explanation of the API-generating process, including screen

shots, see “Building the API files for event processing” on page 33.

Example APIs

If you use the PeopleSoft APIs menu (a submenu of the Build menu) to create a

class structure from the example EMER_CONTACT_PROFILE Component Interface, you

have the following:

v EmerContactProfile.class—corresponds to the Component Interface

The connector uses the name of this class to retrieve and instantiate the

Component Interface in PeopleSoft. The classname is stored in the CiName

property in the application-specific information at the business object level. For

more information, see “Application-specific information at the business object

level” on page 58.

v EmerContactProfileEmergencyCntct.class—corresponds to the EMERGENCY_CNTCT

Collection.

v EmerContactProfileEmergencyCntctEmergencyPhone.class—corresponds to the

EMERGENCY_PHONE Collection.

The generated methods that the connector uses are:

v “getFieldName() Method” on page 46

v “setFieldName() Method” on page 46

v “getCollectionName() Method” on page 47

v “CurrentItem() Method” on page 47

v “Item(index) Method” on page 47

getFieldName() Method

Each of the generated classes contains the getFieldName() method, which enables

the connector to get the data value of each simple field of the Component

Interface, and load it into the corresponding business object attribute.

For example, as illustrated in the right half of Figure 5, there are seven fields listed

as FINDKEYS for the EMER_CONTACT_PROFILE Component. These fields include EMPLID,

NAME, and DEPTID. To get data from these fields, the connector uses the getEmpId(),

getName(), and getDeptId() methods. After obtaining the values, the connector

loads them into the EmpId, ContactName, and DeptId business object attributes.

To return the value of simple fields in a Collection, the connector first returns the

Collection, and then returns the fields in it. For example, to get the values in the

CONTACT_NAME and SAME_ADDRESS_EMPL fields of the EMERGENCY_CNTCT Collection, the

connector first executes the getEmergencyCntct() method. Then it executes the

getContactName() and getSameAddressEmpl() methods. For more information, see

“getCollectionName() Method” on page 47.

setFieldName() Method

Each of the generated classes contains the setFieldName() method, which enables

the connector to set the data value of each simple field of the Component Interface

based on the value of its corresponding business object attribute.

For example, to load data from the EmpId, ContactName, and DeptId business object

attributes into the EMPLID, NAME, and DEPTID fields, the connector uses the

setEmpId(), setName(), and setDeptId() methods.

46 Adapter for PeopleSoft User Guide

getCollectionName() Method

To return the Collection of emergency contacts for a given employee, the connector

uses the getEmergencyCntct() method in the EmerContactProfile class. The way

that the connector handles the multiple rows depends on the setting of

application-specific information at the business-object level.

v If the EFFDT parameter evaluates to true, the connector uses the CurrentItem()

method to return only the record with the latest effective date.

v If the EFFDT parameter evaluates to false, the connector uses the Item(index)

method to return only the first record, regardless of the effective date. For

example, the connector returns a future date, if one is listed.

For information about the EFFDT parameter, see “Application-specific information at

the business object level” on page 58.

To return the Collection of phone types and phone numbers for each of an

employee’s emergency contacts, the connector uses the getEmergencyPhone()

method in the EmerContactProfileEmergencyCntct class. After obtaining all

Records, the connector loads them into the business object’s array attribute,

EmergencyPhone[n].

CurrentItem() Method

When retrieving the records in a Collection, the connector uses the CurrentItem()

method in the EmerContactProfile class to return only the record with the latest

effective date. The connector uses this method only if the EFFDT parameter of the

business-object level application-specific information evaluates to true.

Item(index) Method

When retrieving the records in a Collection, to return only the record with the

specified record number, the connector uses the Item(index) method in the

EmerContactProfile class. The connector uses this method only if the EFFDT

parameter of the business-object level application-specific information evaluates to

false. By default, this method returns the first row retrieved.

Business object verb processing

This section describes the following aspects of processing a business object’s verbs:

v “After-images and deltas” on page 47, which defines the terms and explains

how the connector works with after-images.

v “Verb Processing for business object requests” on page 49, which explains the

steps the connector takes when creating, retrieving, updating, or deleting a

business object.

v “Committing data” on page 56, which briefly explains how the connector saves

data.

After-images and deltas

An after-image is the state of a business object after all changes have been made to

it. A delta is a business object used in an update operation that contains only key

values and the data to be changed. This connector supports only after-images, not

business object deltas. When the connector receives a request business object for

update, it assumes that the business object represents the desired state of the data

after update.

Chapter 5. Understanding business objects for the connector 47

Therefore, when the connector receives a request business object with the Update

verb, it changes the current representation of the business object in the Component

Interface so that it exactly matches the source business object. To do this, the

connector changes simple attribute values and adds or removes child business

objects.

For an example of how the connector modifies child business objects, assume that

the PSFT_EmergencyContact business object has two additional attributes, one of

which represents a single-cardinality child and the other of which represents an

array of child business objects. Each child of the array can contain its own array of

child business objects.

Figure 7 illustrates the current state of PSFT_EmergencyContact for an employee

whose ID is 2345. The ArrayData attribute represents three Records (A, B, and C).

The array attribute in two of these records represents two additional Records.

Figure 8 illustrates a business object request. This business object contains a new

single-cardinality child business object and contains different business objects in its

arrays.

PSFT_EmergencyContact

EmpId=2345

A

B

C

ArrayData[n]

EmergencyPhone[n]
SingleData[1]

PSFT_EmergencyPhone

D

E

F

G

ContactName
DeptID

Figure 7. State of data prior to update

48 Adapter for PeopleSoft User Guide

To process the update, the connector applies the following changes to the

Component Interface:

v Updates the simple attributes in the PSFT_EmergencyContact and the

PSFT_EmergencyPhone business objects.

v Creates the PSFT_SingleData business object.

v Updates the simple attributes in the child business objects A, B, F and G.

v Deletes the child business objects C, D and E.

v Creates the child business objects H, I and J.

Because the connector assumes that each request business object it receives

represents an afterimage, it is important that each business object sent to the

connector for updating contains all valid existing child business objects. Even if

none of a child business object’s simple attributes have changed, the child business

object must be included in the source business object.

There is a way, however, that you can prevent the connector from deleting missing

child business objects during an update operation. To instruct the connector to

keep child business objects that are not included in the source business object, use

the application-specific information for the attribute that represents the child or

array of children. To do so, set KeepRelationship to true. For more information,

see “Application-specific information at the attribute level” on page 60.

Verb Processing for business object requests

This section outlines the steps the connector takes when creating, retrieving,

updating, or deleting a business object that it receives as a request. The connector

processes hierarchical business objects recursively; that is, it performs the same

steps for each child business object until it has processed all individual business

objects.

A

B

H

F

G

I

J

PSFT_SingleData

PSFT_EmergencyContact

EmpId=2345

Update

ArrayData[n]

EmergencyPhone[n]
SingleData[1]

ContactName
DeptID

PSFT_EmergencyPhone

Figure 8. Data represented by an update request

Chapter 5. Understanding business objects for the connector 49

Business object comparison

At various points in the processing outlined below, the connector compares two

business objects to see if they are the same. For example, during an update

operation, the connector determines whether a particular business object exists in

an array of business objects. To perform the check, the connector compares the

business object to each business object within the array. For two business objects to

be identical, the following two conditions must be satisfied:

v The type of the business objects being compared must be the same. For example,

a PSFT_Customer business object is never considered identical to a PSFT_Contact

business object even if all of their attributes are exactly the same.

v All corresponding key attributes in the two business objects must contain

identical values. If a key attribute is set to CxIgnore in both business objects, the

connector considers them identical. However, if a key attribute is set to CxIgnore

in one business object but not in the other, the business objects are not identical.

Create operations

When creating a business object, the connector returns a status of either

VALCHANGE if the operation was successful (regardless of whether the operation

caused changes to the business object), or FAIL if the operation failed.

The connector performs the following steps when creating a hierarchical business

object:

1. Creates a new instance of a Component Interface for the top-level business

object.

v Uses PeopleSoft’s SetFieldName(value) method to populate properties in the

Component Interface with values from attributes in the business object.

Important: If the UID parameter of a key attribute’s application-specific

information evaluates to false, the business process that creates

the business object must provide a new unique ID value for the

attribute. If the business object does not have the required value,

the connector logs an error.

If the UID parameter of a key attribute’s application-specific

information evaluates to true, the application is responsible for

generating a unique ID. In this case, the attribute’s value or the

Default Value property must contain the string NEXT. In other

words, if the business process that creates the business object

does not populate its value as NEXT, this value must be specified

in the attribute’s Default Value property. If the business object

uses the Default Value property to provide the String NEXT, the

connector’s UseDefaults property must evaluate to true. For

more information, see “PollFutureEvents” on page 116.

If a unique identifier is not provided for the attribute’s value,

and the string NEXT is not specified in the Default Value

property, the application logs a duplicate-key error.

v Verifies that all Required attributes contain a value, and throws an error if

such a value is missing. For more information on Required attributes, see

“Required property” on page 57.
2. Recursively inserts each child business object and each array of child business

objects into the Component Interface. In other words, the connector creates the

child and all child business objects that the child and its children contain.

50 Adapter for PeopleSoft User Guide

Note: If the business object definition for an attribute that represents a

single-cardinality child business object specifies that the child is required

(that is, its Required property evaluates to true), the retrieval must

return a row. If it does not return a row, the connector returns an error

and stops processing. However, if the child is not required and the

attribute is empty, the connector ignores the attribute.

3. The connector calls the Save() method, which writes and commits the data.

v If the connector is generating the unique ID, the generation occurs as this

method executes.

v If the application is generating the unique ID, the connector retrieves the key

values set by the application after this method executes.

Note: If WebSphere InterChange Server is the integration broker, the ID must

be delivered synchronously because WebSphere InterChange Server

requires the ID to cross-reference the business object.

v If setInteractiveMode is defined as false in the business object’s

application-specific information, all PeopleCode editing occurs at this point.

Any PeopleCode errors are published to the PSMessage collection queue.

v If an instance of the Component Interface already exists with the same key

values, the application returns a duplicate-key error, and the connector sends

the FAIL return code.

For more information on attribute properties, see “Business object attribute

properties” on page 56. For more information on specifying application-specific

information, see “Application-specific information at the attribute level” on page

60.

Retrieve operations

When retrieving a business object, the connector returns a status either of

VALCHANGE if the operation was successful (regardless of whether the operation

caused changes to the business object), or FAIL if the operation failed.

The connector performs the following steps when retrieving a hierarchical business

object:

1. Removes all child business objects from the top-level business object that it

received from the integration broker.

2. Retrieves the Component Interface that corresponds to the top-level business

object.

The connector uses the key values in the source business object to instantiate

the Component Interface. The result of the retrieval causes one of the following

actions:

v If it finds a Component Interface instance, the connector continues

processing.

v If it does not find a Component Interface instance, indicating that the

top-level business object does not have a corresponding Component Interface

in the application, the connector returns FAIL.

v If it finds multiple Component Interface instances, the connector returns

MULTIPLE_HITS.

Note: A business object can contain attributes that do not correspond to any

Component Interface property. During retrieval, the connector does not

change such attributes in the top-level business object; they remain set to

Chapter 5. Understanding business objects for the connector 51

the values it received. For child business objects, the connector sets such

attributes to their default values during retrieval.

3. Recursively retrieves all Collections of the Component Interface that correspond

to business object arrays.

The connector uses the keys in each parent business object and the unique key

of each child to select a data row from the Component Interface instance or

Component Interface Collection. For each row returned, the connector performs

the following actions:

a. Creates a new individual business object of the correct type.

b. Sets all of the current business object’s attributes based on the values in the

returned row.

c. Recursively retrieves all of the current business object’s children.

d. Inserts the current business object with all of its children into the

appropriate array of the parent.

Note: The connector does not enforce uniqueness when populating an array of

business objects. It is the application’s responsibility to ensure

uniqueness. If the application returns duplicate child business objects,

the connector returns duplicate children to the integration broker.

4. Recursively retrieves the Collections for each of the top-level business object’s

single-cardinality children. The connector uses the keys in each parent business

object and the unique key of each child to select a data row from the

Component Interface instance or Component Interface Collection. The

connector performs the following:

a. If the business object‘s definition specifies that the child is required, the

retrieval must return a row. If the child is not required and the retrieval

returns no rows, indicating that the child does not exist in the Component

Interface, the connector leaves the parent’s single-cardinality attribute

empty. If the retrieval returns more than one row, the retrieval fails.

b. Recursively retrieves the Collections for all children contained by the child

business object.

c. Inserts the business object with all of its children into the appropriate

attribute in the parent business object.

RetrieveByContent operations

When retrieving a business object, the connector returns a status of VALCHANGE if

the operation was successful (regardless of whether the operation caused changes

to the business object), FAIL if the operation failed, or MULTIPLE_HITS if the

operation returned more than one row.

The connector performs the following steps when retrieving a hierarchical business

object:

1. Removes all child business objects from the top-level business object that it

received from the integration broker.

2. Retrieves the Component Interface that corresponds to the top-level business

object.

The connector uses the values of those attributes that are find keys in the

source business object to instantiate the Component Interface. (For more

information about specifying application-specific information for find key

attributes, see “Application-specific information at the attribute level” on page

60.) The result of the retrieval causes one of the following actions:

v If it finds a Component Interface instance, the connector continues

processing.

52 Adapter for PeopleSoft User Guide

v If it does not find a Component Interface instance, indicating that the

top-level business object does not have a corresponding Component Interface

in the application, the connector returns FAIL.

v If it finds multiple Component Interface instances, the connector returns

MULTIPLE_HITS.

Note: A business object can contain attributes that do not correspond to any

Component Interface property. During retrieval, the connector does not

change such attributes in the top-level business object; they remain set to

the values it received. For child business objects, the connector sets such

attributes to their default values during retrieval.

3. Recursively retrieves all Collections of the Component Interface that correspond

to business object arrays.

The connector uses the keys in each parent business object and the unique key

of each child to select a data row from the Component Interface instance or

Component Interface Collection. For each row returned, the connector performs

the following actions:

a. Creates a new individual business object of the correct type.

b. Sets all of the current business object’s attributes based on the values in the

returned row.

c. Recursively retrieves all of the current business object’s children.

d. Inserts the current business object with all of its children into the

appropriate array of the parent.

Note: The connector does not enforce uniqueness when populating an array of

business objects. It is the application’s responsibility to ensure

uniqueness. If the application returns duplicate child business objects,

the connector returns duplicate children to the integration broker.

4. Recursively retrieves the Collections for each of the top-level business object’s

single-cardinality children. The connector uses the keys in each parent business

object and the unique key of each child to select a data row from the

Component Interface instance or Component Interface Collection. The

connector performs the following:

a. If the business object‘s definition specifies that the child is required, the

retrieval must return a row. If the child is not required and the retrieval

returns no rows, indicating that the child does not exist in the Component

Interface, the connector leaves the parent’s single-cardinality attribute

empty. If the retrieval returns more than one row, the retrieval fails.

b. Recursively retrieves the Collections for all children contained by the child

business object.

c. Inserts the business object with all of its children into the appropriate

attribute in the parent business object.

Update operations

When updating a business object, the connector returns a status of either VALCHANGE

if the operation was successful (regardless of whether the operation caused

changes to the business object), or FAIL if the operation failed.

The connector performs the following steps when updating a hierarchical business

object:

Chapter 5. Understanding business objects for the connector 53

1. Uses the key values of the source business object to retrieve the corresponding

Component Interface instance. The retrieved Component Interface is an

accurate representation of the current state of the data in the PeopleSoft

application.

v If the retrieval fails, indicating that the top-level business object does not

exist in the application, the connector returns BO_DOES_NOT_EXIST.

v If the retrieval succeeds, the connector compares the retrieved Component

Interface to the source business object to determine which child business

objects require changes in the Component Interface. The connector does not,

however, compare values in the source business object‘s simple attributes to

those in the retrieved Component Interface; the connector updates the value

of all simple attributes.
2. Recursively updates all single-cardinality children of the top-level business

object.

If the business object definition requires that an attribute contain a child

business object, the child must exist in both the source business object and the

retrieved Component Interface. If it does not, the update fails, and the

connector returns an error.

The connector processes the update of single-cardinality child business objects

in one of the following ways:

v If the child is present in both the source business object and the retrieved

Component Interface, the connector recursively updates it in the Component

Interface.

Note: The source business object and the retrieved Component Interface

must match. If the two hierarchical objects contain the same

single-cardinality ownership children in different order, the connector

returns an error and stops processing.

v If the child is present in the source business object but not in the retrieved

Component Interface, the connector recursively creates it in the Component

Interface.

Important: If the UID parameter of a key attribute’s application-specific

information evaluates to false, the business process that creates

the business object must provide a new unique ID value for the

attribute. If the business object does not have the required value,

the connector logs an error.

If the UID parameter of a key attribute’s application-specific

information evaluates to true, the application is responsible for

generating a unique ID. In this case, the attribute’s value or the

Default Value property must contain the string NEXT. In other

words, if the business process that creates the business object

does not populate its value as NEXT, this value must be specified

in the attribute’s Default Value property.

If a unique identifier is not provided for the attribute’s value,

and the string NEXT is not specified in the Default Value

property, the application logs a duplicate-key error.

v If the child is present in the retrieved Component Interface but not in the

source business object, the connector recursively deletes it from the

Component Interface. However, if the KeepRelationship parameter of the

parent’s application-specific information evaluates to true, the connector

preserves the child business object.

54 Adapter for PeopleSoft User Guide

When deleting child business objects during an Update operation, the

connector uses PeopleSoft’s deleteItem() method to delete the

corresponding Collection from the Component Interface instance. The

connector physically or logically deletes only Collections that are at level 1 or

higher.

For more information on specifying application-specific information, see

“Application-specific information at the attribute level” on page 60.
3. Updates all simple attributes of the retrieved Component Interface except those

whose corresponding attribute in the source business object contain the value

CxIgnore.

4. Processes all arrays of the retrieved Component Interface in one of the

following ways:

v If a child exists in both the source business object’s array and the retrieved

Component Interface’s array, the connector recursively updates it in the

Component Interface.

v If a child exists in the source array but not in the retrieved Component

Interface’s array, the connector recursively creates it in the Component

Interface.

v If the child exists in the retrieved Component Interface’s array but not in the

source array, the connector recursively deletes it from the Component

Interface.

Important: The business process that creates the business object must ensure

that multiple-cardinality business objects in the source business

object are unique (that is, that an array does not contain two or

more copies of the same business object). If the connector receives

duplicates of a business object in a source array, it processes the

business object twice, with possibly unpredictable results.

Note: The connector locks data while retrieving it to ensure data integrity.

DeltaUpdate operations

The deltaupdate verb is only supported for top-level business objects. When

deltaupdate is set for the top-level business object, child objects of this parent

should have one of the following three verbs set: insert, delete, or update. The verb

operations for child objects will be performed recursively through all levels of

children in the hierarchy.

The connector processes a deltaupdate verb request as follows:

v Insert verb set for child objects: The insert operation tries to insert the child

that has been received. The operation is performed recursively, regardless of any

verbs set for the child object’s children. The connector returns a status of either

VALCHANGE if the operation was successful (regardless of whether the

operation caused changes to the business object), or FAIL if the operation failed.

The connector processes the insert verb under deltaupdate operations very

similarly to the way it processes a request to create a business object. For more

information, see“Create operations” on page 50.

v Delete verb set for child objects: The delete operation tries to retrieve and

delete the identified child. The operation is performed recursively, regardless of

any verbs set for the child object’s children. The connector processes the delete

verb under deltaupdate operations very similarly to the way it processes a

request to delete a business object. For more information, see “Delete

operations” on page 56 and “Update operations” on page 53.

Chapter 5. Understanding business objects for the connector 55

v Update verb set for child objects: The verb operation will try to retrieve and

update the identified child. The connector processes the update verb under

deltaupdate operations very similarly to the way it processes a request to update

a business object. For more information, see “Update operations” on page 53.

Delete operations

The connector does not delete a top-level business object. However, it does

physically delete a child business object under the following circumstances:

v The top-level business object uses the update verb, and the child does not exist

in the request object that represents the source data, and KeepRelationship is set

to false or not set at the child level.

v The top-level business object uses the deltaupdate verb. In this case, the delete

operation will try to retrieve and delete the identified child.

For more information, see “Update operations” on page 53.

Committing data

Whenever the connector receives a business object for create or update processing,

it either saves all changes to the Component Interface or none. The connector

never saves subset of data changes.

Business object attribute properties

Business object architecture defines various properties that apply to attributes. This

section describes how the connector interprets several of these properties and

describes how to set them.

Name property

Each business object attribute must have a unique name.

Type property

Each business object attribute must have a type, such as Integer, String or the

type of a child business object.

Cardinality property

Each business object attribute that represents a child or array of child business

objects has the value of 1 or n, respectively, in this attribute. All attributes that

represent child business objects also have a ContainedObjectVersion property

(which specifies the child’s version number) and a Relationship property (which

specifies the value Containment).

Key property

At least one simple attribute of each business object must be specified as the key.

To do so, set this property to true.

Note: The connector does not support specifying an attribute that represents a

child business object or an array of child business objects as a key attribute.

The connector uses each key attribute to uniquely identify or create an instance of

a Component Interface. For information about causing the application to generate a

unique ID, see “Create operations” on page 50 and “Update operations” on page

53.

56 Adapter for PeopleSoft User Guide

Required property

The Required property specifies whether a simple attribute or an attribute that

represents a single-cardinality child business object must contain a value.

If this property is specified for an attribute that represents a single-cardinality child

business object, the connector requires the parent business object to contain a child

business object for this attribute.

When the connector receives a business object with a Create request, the connector

causes the Create operation to fail if a required attribute does not have a valid

value.

When the connector receives a business object with a Retrieve request and the

business object does not have a valid value or a default value for a required

attribute, the connector causes the retrieval operation to fail.

The connector does not use this property for attributes that represent an array of

child business objects.

Max length property

If the attribute is of type String, this property specifies the maximum length

allowed for the attribute’s value.

AppSpecificInfo

For information on this property, see “Application-specific information at the

attribute level” on page 60.

Default value property

This property specifies a default value that the connector uses to populate a simple

field if the attribute does not contain a value. The connector does not evaluate this

property for attributes that represent child business objects. For a create operation,

the connector uses the value of this property.

The connector sends the value of this property to the application to use in

identifier-generation if the following is true:

v The Default Value property is specified for a key attribute whose

application-specific information specifies true in its UID parameter

v The value of the Default Value property is the string NEXT

v The connector’s UseDefaults property evaluates to true

For information about causing the application to generate a unique ID, see “Create

operations” on page 50 and “Update operations” on page 53.

Special attribute value

Simple attributes in business object can have a special value: CxIgnore. When the

connector receives a request business object, the connector ignores all attributes

with a value of CxIgnore. It is as if those attributes were invisible to the connector.

When the connector retrieves data from a Component Interface with a field that

contains a null value, the connector sets the value of its corresponding attribute to

CxIgnore by default.

Chapter 5. Understanding business objects for the connector 57

Because the connector requires at least one key attribute to create a business object,

the business process that creates the business object should ensure that business

objects passed to the connector have at least one key that is not set to CxIgnore.

The only exception to this requirement is a business object whose key is to be

generated by the connector.

Business object application-specific information

Application-specific information in business object definitions provides the

connector with application-dependent instructions on how to process business

objects. The connector parses the application-specific information from the

attributes or verb of a business object or from the business object itself to generate

queries for Create, Update, Retrieve, and Delete operations.

The connector stores some of the business object’s application-specific information

in cache and uses this information to build queries for all the verbs.

If you extend or modify an application-specific business object, you must make

sure that the application-specific information in the business object definition

matches the syntax that the connector expects.

This section provides information on the application-specific information format

for business objects supported by the connector.

Table 4 provides an overview of the functionality available in business object

application-specific information.

 Table 4. Overview of application-specific information in supported business objects

Scope of application-specific

information Functionality

Entire business object Specifies:

v The name of the corresponding Component Interface

v Whether triggering of online Field PeopleCode edits is

immediate or batch

v Whether all rows associated with component interface are

retrieved or only the most recent instance

Simple attributes Specifies:

v Whether the application generates unique identifier values

or whether the connector provides them

v Whether an attribute should be used as a key for

retrieving data

Business object verb The connector does not specify functionality based on the

verb.

The following sections discuss this functionality in more detail.

Application-specific information at the business object level

Application-specific information at the business-object level allows you to:

v Specify the name of the corresponding Component Interface.

v Define whether online Field PeopleCode triggers immediately after update or

during save() method

v Indicate whether or not all rows from a Component Interface are retrieved

regardless of effective date.

58 Adapter for PeopleSoft User Guide

At the business-object level, application-specific information format consists of four

parameters separated by a colon (:) delimiter. The format is:

cIName=<ComponentInterface>

:EFFDT=[true|false]:setInteractiveMode=[true|false]

:GetHistoryItems

=[true|false]:setEditHistoryItems=[true|false]

:GetDummyRows=[true|false]:InsAtOldestEffDtPos=[true]

:InsAtCurrentEffDtPos=[true]

:processAttributesInOrder=[true|false]

Table 5 describes these parameters.

 Table 5. AppSpecificInfo at the business-object level

AppSpecificinfo parameter Description

cIName Specifies the name of the Component Interface defined in

the PeopleSoft application.

EFFDT (isEffectiveDated) Specifies whether the business object (or child business

object) uses an Effective Date:

v If the EFFDT parameter evaluates to true, the connector

uses the CurrentItem() method to return only the

record with the latest effective date.

v If the EFFDT parameter evaluates to false, the connector

uses the Item(index) method to return only the first

record, regardless of the effective date. For example, the

connector returns a future date, if one is listed.

The default value is true.

setInteractiveMode Determines when the connector sends changes to the

Application Server. This property is typically used to

enhance performance.

v When set to true, the connector processes each time the

value of a property or attribute changes; in other

words, all online Field PeopleCode immediately

triggers after the connector calls setPropertyName() on

each attribute.

v When set to false, the PeopleSoft application batches

the processing, sending changes to the Application

Server only when the connector calls Save() on a

Component Interface.

The default value is true.

GetHistoryItems Determines how much data the connector retrieves.

v When set to true, the connector retrieves all data rows,

regardless of effective date, for the corresponding

Component Interface.

v When set to false, the connector retrieves only the

current data (the effective row).

The default value is true.

GetDummyRows Supports the GetDummyRowsproperty in PeopleTools 8.4 and

higher. However, you should set this to true even for

lower versions of PeopleTools. When using versions of

PeopleTools lower than 8.4 that do not support this

parameter, the adapter may log warnings. These warnings

can be ignored. For information about this property, see

your PeopleSoft documentation.

Chapter 5. Understanding business objects for the connector 59

Table 5. AppSpecificInfo at the business-object level (continued)

AppSpecificinfo parameter Description

InsAtOldestEffDtPos This parameter is provided to address limitations in older

versions of PeopleTools where the call

getEffectiveItemNum()returns an insert position of -1 for

effective-dated rows. When InsAtOldestEffDtPos is set,

the connector inserts the row at the highest index, which

has the oldest effective date. If you set this parameter, do

not set InsAtCurrentEffDtPos.

InsAtCurrentEffDtPos This parameter is provided to address limitations in older

versions of PeopleTools where the call

getEffectiveItemNum()returns an insert position of -1 for

effective-dated rows. When InsAtCurrentEffDtPos is set,

the connector inserts the row at the lowest index zero,

which has the current effective date. If you set this

parameter, do not set InsAtOldestEffDtPos.

processAttributesInOrder Enables the adapter to process the attributes in the order

in which they are listed in the business object definition.

SetEditHistoryItems Enables editing and saving of history data. Applies to

effective-dated fields only.

For more information about the setInteractiveMode and GetHistoryItems

properties, see the documentation from PeopleSoft.

For example, the PSFT_EmergencyContact business object might have the

following value specified for its business object application-specific information:

cINAME=EMER_CONTACT_PROFILE:setInteractiveMode=false:

GetHistoryItems=true:isEffectiveDated=false

Application-specific information at the attribute level

Application-specific information at the attribute level specifies the connector’s

behavior on an attribute-by-attribute level. The format of the application-specific

information is a set of five name-value parameters, each of which includes the

parameter name and its value. Each parameter set is separated from the next by a

colon (:) delimiter. A vertical bar (|) separates the members of a set of options. The

format is:

get=getFieldName:set=setFieldName:UID=[true|false]:GetKey=[true|false]

:KeepRelationship

=[true|false]:findKey=[true|false]:bigDec=true:

EFFDT=[true|false]

:EFFDTSEQ=[true|false]

Important: Case is significant when the connector evaluates application-specific

information.

For example, for a Read-Only simple attribute that should be used in addition to

the key fields when retrieving data, you might specify the following format:

get=getBusinessUnit:GetKey=true

For a multiple-cardinality attribute whose children should be preserved even if

they are not included in an Update business object request, you might specify the

following format:

get=getEmergencyPhone:set=setEmergencyPhone

:KeepRelationship=true

60 Adapter for PeopleSoft User Guide

Table 6 describes each name-value parameter.

 Table 6. Name-value parameters in attribute application-specific information

Parameter Description

get=getFieldName This parameter specifies the method to use when retrieving a value from a

Component Interface field or Component Interface Collection to the current

attribute.

set=setFieldName This parameter specifies the method to use when setting a value in a

Component Interface field or Component Interface Collection, based on the

value in the current attribute.

UID=[true|false] If this parameter is set to false, a unique value for the attribute must be

provided by the business process that creates the business object. If the

attribute does not contain a value, the connector sends an error message.

If this parameter is set to true, the application is responsible for generating

a unique ID (using auto-numbering). Identifier generation requires the

attribute’s value to contain the String NEXT. The business process that creates

the business object must populate its value as NEXT, or this value can be

specified in the attribute’s Default Value property. If the business object

uses the Default Value property to provide the String NEXT, the connector’s

UseDefaults property must evaluate to true. For more information, see

“PollFutureEvents” on page 116.

If the key value is set to anything other than varchar, and you want the

application to generate the IDs, leave the value blank and UID=True. Only

set the value to NEXT when the key value is set to a varchar datatype.

When the application generates the unique ID, the connector retrieves the

generated ID from the application after the Save operation completes and

the data has been committed.

When WebSphere InterChange Server is the integration broker, the

connector uses the retrieved ID in cross-referencing the business object.

If an attribute does not require the application to generate a unique ID, set

this value to false, or do not include this parameter in the

application-specific information.

GetKey=[true|false] If this parameter is set to true and the attribute’s Key and Required

properties evaluate to true, the connector includes the attribute as part of

the key during a retrieve or retrieve-for-update operation.

The connector uses this parameter to differentiate a retrieval key from a

create key when a distinction is necessary. When executing a create

operation, the connector provides as keys only those attributes whose Key

and Required properties evaluate to true. Because the create-key fields alone

do not always uniquely retrieve required data, the connector adds to the

keys all attributes whose GetKey parameter evaluates to true when it

executes a retrieve operation.

Chapter 5. Understanding business objects for the connector 61

Table 6. Name-value parameters in attribute application-specific information (continued)

Parameter Description

KeepRelationship=[true|false] Used only on an attribute that represents an array of child business objects,

this parameter specifies whether the connector deletes existing child

business objects that are not represented in the source business object during

an update operation.

v Set to true to prevent deletion.

v Set to false to allow deletion.

For example, assume an existing phone number is associated with an

existing contact. Assume further that the connector receives a request to

update a PSFT_EmergencyContact business object that contains a single

child business object. The child associates an emergency phone number with

the contact. If KeepRelationship evaluates to true for the EmergencyPhone[n]

attribute, the connector updates the contact by adding its new association

without deleting its existing association.

However, if KeepRelationship evaluates to false, the connector deletes all

existing child data that is not contained in the source business object. In

such a case, the contact is associated only with the new phone number.

findKey=[true|false] If this parameter is set to true, the connector includes the attribute as a key

during a retrieve-by-content operation. Set this parameter for attributes that

are find keys in the Component Interface.

bigDec=[true|false] This parameter identifies bigdecimal type attributes. Set this parameter to

true for bigdecimal attributes in the Component Interface.

EFFDT=[true|false] This parameter identifies effective-dated attributes in the Component

Interface. The connector only uses this if, at the business object level,

application-specific information has EFFDT set to true.

EFFDTSEQ=[true|false] This parameter identifies the sequence of effective-dated attributes based on

which insert position getEffectiveItemNum returns. The connector only uses

this if the business object definition includes an effective-dated attribute.

62 Adapter for PeopleSoft User Guide

Chapter 6. Generating business object definitions using

PeopleSoftODA

This chapter describes PeopleSoftODA, an object discovery agent (ODA), that

generates business object definitions for the IBM WebSphere Business Integration

Adapter for PeopleSoft. Because the connector works with objects that are based on

PeopleSoft Component Interfaces and their associated Collections, PeopleSoftODA

uses the Component Interface Java API to discover business object requirements

specific to the PeopleSoft data source.

This chapter contains the following sections:

v “Installation and usage”

v “Using PeopleSoftODA in business object designer” on page 66

v “Contents of the generated definition” on page 73

v “Sample business object definition file” on page 76

v “Modifying information in the business object definition” on page 81

Installation and usage

This section discusses the following:

v “Installing PeopleSoftODA”

v “Before using PeopleSoftODA” on page 63

v “Launching PeopleSoftODA” on page 64

v “Running multiple instances of PeopleSoftODA” on page 65

v “Working with error and trace message files” on page 65

Installing PeopleSoftODA

To install PeopleSoftODA, use Installer for IBM WebSphere Business Integration

Adapters. Follow the instructions in the Implementation Guide for MQ Integrator, or,

for WebSphere InterChange Server, the System Installation Guide for UNIX or for

Windows. When the installation is complete, the following files are installed in the

product directory on your system:

v ODA\PeopleSoft\PeopleSoftODA.jar

v ODA\messages\PeopleSoftODAAgent.txt

v ODA\messages\PeopleSoftODAAgent_ll_TT.txt files (message files specific to a

language (_ll) and a country or territory (_TT))

v ODA\PeopleSoft\start_PeopleSoftODA.bat (Windows only)

v ODA/PeopleSoft/start_PeopleSoftODA.sh (UNIX only)

Note: Except as otherwise noted, this document uses backslashes (\) as the

convention for directory paths. For UNIX installations, substitute slashes (/)

for backslashes. All product pathnames are relative to the directory where

product is installed on your system.

Before using PeopleSoftODA

Before you run PeopleSoftODA, verify that your system has the required files and

that the variables are correctly set in the script or batch file that runs the ODA.

© Copyright IBM Corp. 2001, 2004 63

This chapter assumes that you have already followed the instructions for installing

the connector and configuring the application.

Therefore, you should find the following files in the

connectors\PeopleSoft\dependencies directory below the product directory:

v psjoa.jar—Downloaded from \web\PSJOA in the PS_HOME directory.

PeopleSoftODA uses this file to synchronously send Component Interfaces and

their information through the Jolt portion of the PeopleSoft Application Server.

v PSFTCI.jar—Created from Component Interface definitions in the Application

Designer. You must compile the Component Interface API files after you

generate them in PeopleSoft. PeopleSoftODA uses this file to generate business

object definitions. For more information, see “Generating APIs” on page 45.

Important: It is recommended that you regenerate and recompile all component

interfaces prior to running PeopleSoftODA to assure consistency. If the

component interfaces are not in a jar file, or if either of the above jar

files are not in the correct directory, modify the start script or batch file

to locate them.

Open for editing the shell or batch file and confirm that the values described in

Table 7 are correct.

 Table 7. Shell and batch file configuration variables

Variable Explanation Example

set AGENTNAME Name of the ODA set AGENTNAME = PeopleSoftODA

set AGENT Name of the ODA’s jar

file

UNIX: set AGENT =

${ProductDirS}/ODA/PeopleSoft/PeopleSoftODA.jarWINDOWS: set

AGENT = %ProductDirS%\ODA\PeopleSoft\PeopleSoftODA.jar

Note: If you register PeopleSoftODA as a CORBA object or with an Object

Activation Daemon (OAD), you can modify the class path for the PeopleSoft

driver through the object discovery agent registration wizard. For

information on registering the ODA, see the System Installation Guide for

Unix or for Windows.

After installing the PeopleSoft driver and setting configuration values in the shell

or batch file, you must do the following to generate business objects:

1. Launch the ODA.

2. Launch Business Object Designer.

3. Follow a six-step process in Business Object Designer to configure and run the

ODA.

The following sections describe these steps in detail.

Launching PeopleSoftODA

Launch the PeopleSoftODA with the appropriate script:

v

UNIX

start_PeopleSoftODA.sh

64 Adapter for PeopleSoft User Guide

End of UNIX

Windows

start_PeopleSoftODA.bat

End of Windows

You configure and run PeopleSoftODA using Business Object Designer. Business

Object Designer locates each ODA by the name specified in the AGENTNAME variable

of each script or batch file. The default ODA name for this connector is

PeopleSoftODA. During installation, if you register the ODA with an Object

Activation Daemon, the wizard automatically prefixes the hostname to the

AGENTNAME value to make it unique.

Running multiple instances of PeopleSoftODA

It is recommended that you change the name of the ODA when you run multiple

instances of it. To create additional uniquely named instances of PeopleSoftODA:

v Create a separate script or batch file for each instance.

v Specify a unique name in the AGENTNAME variable of each script or batch file.

It is recommended that you prefix each name with the name of the host machine

when you run ODA instances on different machines. If you registered the ODA

with an Object Activation Daemon, you can use an ORB finder (osfind) to locate

existing CORBA object names on your network.

Figure 9 on page 67 illustrates the window in Business Object Designer from which

you select the ODA to run.

Note: The connection properties must be the same for each particular ODA

instance. Each additional ODA instance must to connect to application

server instance to which it first connected.

Working with error and trace message files

Error and trace message files (the default is PeopleSoftODAAgent.txt) are located in

\ODA\messages\, which is under the product directory. These files use the following

naming convention:

AgentNameAgent.txt

If you create multiple instances of the ODA script or batch file and provide a

unique name for each represented ODA, you can have a message file for each

ODA instance. Alternatively, you can have differently named ODAs use the same

message file. There are two ways to specify a valid message file:

v If you change the name of an ODA and do not create a message file for it, you

must change the name of the message file in Business Object Designer as part of

ODA configuration. Business Object Designer provides a name for the message

file but does not actually create the file. If the file displayed as part of ODA

configuration does not exist, change the value to point to an existing file.

v You can copy the existing message file for a specific ODA, and modify it as

required. Business Object Designer assumes you name each file according to the

naming convention. For example, if the AGENTNAME variable specifies

PeopleSoftODA1, the tool assumes that the name of the associated message file is

Chapter 6. Generating business object definitions using PeopleSoftODA 65

PeopleSoftODA1Agent.txt. Therefore, when Business Object Designer provides

the filename for verification as part of ODA configuration, the filename is based

on the ODA name. Verify that the default message file is named correctly, and

correct it as necessary.

Important: Failing to correctly specify the message file’s name when you configure

the ODA causes it to run without messages. For more information on

specifying the message file name, see “Configure initialization

properties” on page 67.

During the configuration process, you specify:

v The name of the file into which PeopleSoftODA writes error and trace

information

v The level of tracing, which ranges from 0 to 5.

Table 8 describes these values.

 Table 8. Tracing levels

Trace Level Description

0 Logs all errors

1 Traces all entering and exiting messages for method

2 Traces the ODA’s properties and their values

3 Traces the names of all business objects

4 Traces details of all spawned threads

5 v Indicates the ODA initialization values for all of its properties v Traces a

detailed status of each thread that PeopleSoftODA spawned v Traces the

business object definition dump

For information on where you configure these values, see “Configure initialization

properties” on page 67.

Using PeopleSoftODA in business object designer

This section describes how to use PeopleSoftODA in Business Object Designer to

generate business object definitions. For information on launching Business Object

Designer, see the Business Object Development Guide.

After you launch an ODA, you must launch Business Object Designer to configure

and run it. There are six steps in Business Object Designer to generate business

object definitions using an ODA. Business Object Designer provides a wizard that

guides you through each of these steps.

After starting the ODA, do the following to start the wizard:

1. Open Business Object Designer.

2. From the File menu, select the New Using ODA... submenu.

Business Object Designer displays the first window in the wizard, named Select

Agent. Figure 9 on page 67 illustrates this window.

To select, configure, and run the ODA, follow these steps:

1. “Select the ODA” on page 67

2. “Configure initialization properties” on page 67

66 Adapter for PeopleSoft User Guide

3. “Expand nodes and select component interfaces and collections” on page 69

4. “Confirm selection of objects” on page 70

5. “Generate the definition” on page 71 and, optionally, “Provide additional

information” on page 71

6. “Save the definition” on page 72

Select the ODA

Figure 9 illustrates the first dialog box in Business Object Designer’s six-step

wizard. From this window, select the ODA to run.

To select the ODA:

1. Click the Find Agents button to display all registered or currently running

ODAs in the Located agents field.

Note: If Business Object Designer does not locate your desired ODA, check the

setup of the ODA.

2. Select the desired ODA from the displayed list.

Business Object Designer displays your selection in the Agent’s name field.

Configure initialization properties

The first time Business Object Designer communicates with PeopleSoftODA, it

prompts you to enter a set of initialization properties as shown in Figure 10. You

can save these properties in a named profile so that you do not need to re-enter

them each time you use PeopleSoftODA. For information on specifying an ODA

profile, see the Business Object Development Guide.

Figure 9. Selecting the ODA

Chapter 6. Generating business object definitions using PeopleSoftODA 67

Configure the PeopleSoftODA properties described in Table 9.

 Table 9. PeopleSoftODA properties

Row

number Property name Property type Description

1 UserName String Name of the user with authorization to connect to the

PeopleSoft application using the Application Server

2 Password String Password of the user with authorization to connect to the

PeopleSoft application

3 AppServerMachineName String Name or IP address of the machine on which the

PeopleSoft Server is running

4 PortNumber String The Jolt port used to connect to the Application Server.

The default value is 9000. Note: This port is different from

the Tuxedo port.

5 DefaultBOPrefix String Text that is prepended to the name of the business object

to make it unique. The prefix cannot begin with an

underscore (_). You can change this value later, if required,

when Business Object Designer prompts you for business

object properties. For more information, see “Provide

additional information” on page 71.

6 TraceFileName String File into which PeopleSoftODA writes trace information. If

the file does not exist, PeopleSoftODA creates it in the

\ODA\PeopleSoft directory. If the file already exists,

PeopleSoftODA appends to it. PeopleSoftODA names the

file according to the naming convention. For example, if

the agent is named PeopleSoftODA, it generates a trace file

named PeopleSoftODAtrace.txt. Use this property to

specify a different name for this file.

7 TraceLevel Integer Level of tracing enabled for PeopleSoftODA. For more

information, see “Working with error and trace message

files” on page 65.

Figure 10. Configuring agent initialization properties

68 Adapter for PeopleSoft User Guide

Table 9. PeopleSoftODA properties (continued)

Row

number Property name Property type Description

8 MessageFile String Name of the error and message file. PeopleSoftODA

displays the filename according to the naming convention.

For example, if the agent is named PeopleSoftODA, the

value of the message file property displays as

PeopleSoftODAAgent.txt.Important: The error and

message file must be located in the \ODA\messages

directory. Use this property to verify or specify an existing

file.

Important: Correct the name of the message file if the default value displayed in

Business Object Designer represents a non-existent file. If the name is

not correct when you move forward from this dialog box, Business

Object Designer displays an error message in the window from which

the ODA was launched. This message does not popup in Business

Object Designer. Failing to specify a valid message file causes the ODA

to run without messages.

Expand nodes and select component interfaces and

collections

Business Object Designer uses the properties configured in the previous step to

create a connect string that connects the tool to the specified PeopleSoft

application. After connecting, Business Object Designer displays a tree whose

nodes represent all the Component Interfaces defined in the PeopleSoft application.

Click on a node to display the next-level Collection of the Component Interface.

You can expand the Component Interfaces to display the entire hierarchical

representation. For each Collection, PeopleSoftODA creates a child business object

definition.

Figure 11 illustrates this dialog box with some Component Interfaces expanded.

Chapter 6. Generating business object definitions using PeopleSoftODA 69

Select all required Component Interfaces, along with all necessary Collections, and

click Next.

Confirm selection of objects

After you identify all the Component Interfaces and Collections to be associated

with the generated business object definitions, Business Object Designer displays

the dialog box with only the selected objects. Figure 12 illustrates this dialog box.

This window provides the following options:

Figure 11. Tree of component interfaces with expanded nodes

Figure 12. Confirming selection of objects

70 Adapter for PeopleSoft User Guide

v To confirm the selection, click Next.

v If the selection is not correct, click Back to return to the previous window and

make the necessary changes. When the selection is correct, click Next.

Generate the definition

After you confirm the Component Interfaces and Collections, the next dialog box

informs you that Business Object Designer is generating the definitions. If a large

number of Component Interfaces has been selected, this generation step can take

time.

Figure 13 illustrates this dialog box.

Provide additional information

If the PeopleSoftODA needs additional information, Business Object Designer

displays the BO Properties window, which prompts you for the information.

Figure 14 illustrates this dialog box.

Figure 13. Generating the definition

Chapter 6. Generating business object definitions using PeopleSoftODA 71

In the BO Properties window, enter or change the following information:

v Prefix—The text that is prepended to the name of the business object to make it

unique. If you are satisfied with the value you entered for the DefaultBOPrefix

property in the Configure Agent window (Figure 10 on page 68), you do not

need to change the value here.

v Verbs— Click in the Value field and select one or more verbs from the pop-up

menu. These are the verbs supported by the business object.

Note: If a field in the BO Properties dialog box has multiple values, the field

appears to be empty when the dialog box first displays. Click in the field

to display a drop-down list of its values.

Save the definition

After you provide all required information in the BO Properties dialog box and

click OK, Business Object Designer displays the final dialog box in the wizard. In

this dialog box, you can save the definition to the server (if WebSphere

InterChange Server is the integration broker) or to a file (for any integration

broker), or you can open the definition for editing in Business Object Designer. For

more information, and to make further modifications, see the Business Object

Development Guide.

Figure 15 illustrates this dialog box.

Figure 14. Providing additional Information

72 Adapter for PeopleSoft User Guide

Contents of the generated definition

The business object definition that PeopleSoftODA generates contains:

v A simple attribute for each property in the specified Component Interface

v An attribute that represents an array of child business objects for each Collection

that was selected in the hierarchical representation of the Component Interface

v The verbs specified in the BO Properties window (Figure 14 on page 72)

v Application-specific information:

– At the business-object level

– For each attribute

This section describes:

v “Business-object-level properties”

v “Attribute properties” on page 74

Business-object-level properties

PeopleSoftODA generates the following information at the business-object level:

v Name of the business object

v Version—defaults to 1.0.0

v Application-specific information

At the business-object level, application-specific information format consists of four

parameters separated by a colon (:) delimiter. The format is:

cIName=ComponentInterface:EFFDT=[true|false]:setInteractiveMode=[true|false]:

GetHistoryItems=[true|false]:SetEditHistoryItems=[true|false]

Figure 15. Saving the business object definition

Chapter 6. Generating business object definitions using PeopleSoftODA 73

Table 10 describes these parameters.

 Table 10. AppSpecificInfo at the business-object level

AppSpecificInfo Parameter Description

ComponentInterface Specifies the name of the Component Interface defined in

the PeopleSoft application

setInteractiveMode Determines when the connector sends changes to the

Application Server

GetHistoryItems Determines how much data the connector retrieves

EFFDT Specifies whether the business object (or child business

object) uses an Effective Date

SetEditHistoryItems Enables editing and saving of history data. Applies to

effective-dated fields only.

Important: PeopleSoftODA uses the name of the Component Interface from which

it has generated the definition to specify a value for the

ComponentInterface property. It does not provide values for the other

properties. You must modify the business object definition to provide

values for the remaining properties. For information on these

properties, see “Application-specific information at the business object

level” on page 58. For information on modifying a business object

definition, see the Business Object Development Guide.

Attribute properties

This section describes the properties that PeopleSoftODA generates for each

attribute. For more information about the attributes, see “Business object attribute

properties” on page 56.

Name property

PeopleSoftODA derives the attribute’s name from a property in the corresponding

Component Interface.

Data type property

When setting the type of an attribute, PeopleSoftODA converts the data type of a

property into a corresponding business object data type as shown in Table 11:

 Table 11. Correspondence of data types

PeopleSoft Business object Length

String String Length specified in the data type

Boolean Boolean

Collection Object

Float Float

Number Integer

Note: If a property’s data type is not one of those shown in Table 11,

PeopleSoftODA skips the property and displays a message stating that the

property cannot be processed.

Cardinality property

PeopleSoftODA sets the cardinality of all simple attributes to 1. It sets the

cardinality of all attributes that represent an array of child business objects to n.

74 Adapter for PeopleSoft User Guide

MaxLength property

PeopleSoftODA provides the default length of 255 characters for strings; for all

other data types, it uses the standard maximum length for the corresponding

business object data type.

IsKey property

If a property is a CreateKey in a Component Interface, PeopleSoftODA sets this

property to true. If a property is a GetKey in a Component Interface,

PeopleSoftODA sets this property to false, and sets the attribute’s AppSpecificInfo

parameter to GetKey=true.

IsForeignKey property

PeopleSoftODA sets this property to false. You can change the setting in Business

Object Designer.

IsRequired property

Because PeopleSoftODA generates some keys internally, it always sets this property

to false. You can change the setting in Business Object Designer.

AppSpecificInfo property

Attribute application-specific information is a set of five name-value parameters

that are separated from one another by a colon (:) delimiter. A vertical bar (|)

separates the members of a set of options. The format is:

get=getFieldName:set=setFieldName:UID=[true|false]:GetKey=[true|false]:KeepRelationship=[true|false]

PeopleSoftODA generates only those properties that are relevant to an attribute, as

described in Table 12. If it generates more than one parameter, it separates

parameters with a colon.

 Table 12. Attribute AppSpecificInfo generated by PeopleSoftODA

AppSpecificInfo parameter Description

GetKey=true PeopleSoftODA generates this parameter only for

attributes that correspond to a Component Interface

property defined as a GetKey. The connector uses the

value of such an attribute to retrieve Component

Interface instances.

get=getPropertyName For PropertyName, PeopleSoftODA substitutes the

name of the Component Interface property associated

with the attribute. It generates this parameter for

every simple attribute that corresponds to a

Component Interface property. The connector uses this

method to retrieve values for the attribute.

get=getCollectionName For CollectionName, PeopleSoftODA substitutes the

name of the Component Interface Collection

associated with the attribute. It generates this

parameter for every attribute that represents an array

of child business objects corresponding to a

Component Interface Collection. The connector uses

this method to retrieve the Collection.

set=setPropertyName For PropertyName, PeopleSoftODA substitutes the

name of the Component Interface property associated

with the attribute. It generates this parameter for

every simple attribute that corresponds to a

Component Interface property. The connector uses the

method to update values for the attribute.

Chapter 6. Generating business object definitions using PeopleSoftODA 75

Note: You can set additional AppSpecificInfo parameters in Business Object

Designer. For information about these parameters, see “Application-specific

information at the attribute level” on page 60. For more information on

modifying definitions, see the Business Object Development Guide. For an

example of using the parameters described in Table 12, see “Sample business

object definition file” on page 76.

Verbs

Note: PeopleSoftODA generates the verbs specified in the BO Properties window

(as illustrated in Figure 14 on page 72).

Sample business object definition file

There are three sample business object definition files included with the product:

v BO_Psft_DEPT

v BO_PsftEmployee

v SavePostChange

BO_Psft_DEPT business object

The following example is the BO_Psft DEPT business object.

 [BusinessObjectDefinition] Name = DeptTbl Version = 1.0.0 AppSpecificInfo =

CiName=DEPT [Attribute] Name = Company Type = String

MaxLength = 255 IsKey = true IsForeignKey = false IsRequired =

false AppSpecificInfo = get=getCompany:set=setCompany

IsRequiredServerBound = false [End] [Attribute] Name =

BudgetLvl Type = String MaxLength = 1 IsKey = false

IsForeignKey = false IsRequired = false AppSpecificInfo =

get=getBudgetLvl:set=setBudgetLvl IsRequiredServerBound = false

[End] [Attribute] Name = Descr Type = String MaxLength = 1

 IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getDescr:set=setDescr IsRequiredServerBound =

false [End] [Attribute] Name = DescrShort Type = String

MaxLength = 1 IsKey = false IsForeignKey = false IsRequired =

false AppSpecificInfo = get=getDescrshort:set=setDescrshort

IsRequiredServerBound = false [End] [Attribute] Name =

ObjectEventId Type = String MaxLength = 255 IsKey = false

IsForeignKey = false IsRequired = false IsRequiredServerBound =

false [End] [Verb] Name = Create [End] [Verb] Name

= Delete [End] [Verb] Name = Retrieve [End] [Verb]

Name = Update [End] [End] [BusinessObjectDefinition] Name = Psft_dept

Version = 1.0.0 AppSpecificInfo = CiName=DEPT [Attribute] Name =

Deptid Type = String MaxLength = 255 IsKey = true

IsForeignKey = false IsRequired = true AppSpecificInfo =

get=getDeptid:set=setDeptid:GetKey=true IsRequiredServerBound = false

 [End] [Attribute] Name = Setid Type = String MaxLength

= 1 IsKey = true IsForeignKey = false IsRequired = true

AppSpecificInfo = get=getSetid:set=setSetid:GetKey=true

IsRequiredServerBound = false [End] [Attribute] Name =

StartDate Type = Date MaxLength = 1 IsKey = false

IsForeignKey = false IsRequired = true AppSpecificInfo =

get=getStartDate:set=setStartDate IsRequiredServerBound = false

[End] [Attribute] Name = DptTbl Type = DeptTbl

76 Adapter for PeopleSoft User Guide

ContainedObjectVersion = 1.0.0 Relationship = Containment

Cardinality = n MaxLength = 1 IsKey = false IsForeignKey =

false IsRequired = true AppSpecificInfo =

get=getDeptTbl:KEEPRELATIONSHIP=true IsRequiredServerBound = false

[End] [Attribute] Name = ObjectEventId Type = String

MaxLength = 255 IsKey = false IsForeignKey = false IsRequired =

false IsRequiredServerBound = false [End] [Verb] Name =

Create [End] [Verb] Name = Delete [End] [Verb] Name

= Retrieve [End] [Verb] Name = Update [End] [End]

BO_PsftEmployee business object

The following example is the BO_PsftEmployee business object.

 [BusinessObjectDefinition] Name = PSFTEmployee Version = 1.0.0

AppSpecificInfo = cIName=Emp [Attribute] Name = EMPID Type =

String Cardinality = 1 MaxLength = 255 IsKey = true

IsForeignKey = false IsRequired = true AppSpecificInfo =

get=getEmplid:set=setEmplid:keepRelationship=false:uid=true:

findKey=true:getKey=true IsRequiredServerBound = false [End]

[Attribute] Name = EMPL_RCD Type = String Cardinality = 1

MaxLength = 1 IsKey = true IsForeignKey = false IsRequired =

true AppSpecificInfo =

get=getEmplRcd:set=setEmplRcd:keepRelationship=false:uid=true:

findKey=true:getKey=true IsRequiredServerBound = false [End]

[Attribute] Name = NAME Type = String Cardinality = 1

MaxLength = 1 IsKey = true IsForeignKey = false IsRequired =

true AppSpecificInfo =

get=getName:set=setName:keepRelationship=false:uid=false:

findKey=true:getKey=false:createKey=false IsRequiredServerBound = false

 [End] [Attribute] Name = LAST_NAME_SRCH Type = String

Cardinality = 1 MaxLength = 1 IsKey = true IsForeignKey = false

IsRequired = true AppSpecificInfo =

get=getLastNameSrch:set=setLastNameSrch:keepRelationship=false:uid=false:

 findKey=true:getKey=false:createKey=false IsRequiredServerBound =

false [End] [Attribute] Name = NAME_AC Type = String

Cardinality = 1 MaxLength = 1 IsKey = true IsForeignKey = false

 IsRequired = true AppSpecificInfo =

get=getNameAc:set=setNameAc:keepRelationship=false:uid=false:

findKey=true:getKey=false:createKey=false IsRequiredServerBound = false

 [End] [Attribute] Name = PER_STATUS Type = String

Cardinality = 1 MaxLength = 1 IsKey = true IsForeignKey = false

 IsRequired = true AppSpecificInfo =

get=getPerStatus:set=setPerStatus:keepRelationship=false:uid=false:

findKey=true:getKey=false:createKey=false IsRequiredServerBound = false

 [End] [Attribute] Name = EMPLID_0 Type = String

Cardinality = 1 MaxLength = 1 IsKey = false IsForeignKey =

false IsRequired = false AppSpecificInfo =

get=getEmplid0:set=setEmplid0:keepRelationship=false:uid=false:

findKey=false:getKey=false:createKey=false IsRequiredServerBound =

false [End] [Attribute] Name = ORIG_HIRE_DT Type = String

 Cardinality = 1 MaxLength = 1 IsKey = false IsForeignKey =

false IsRequired = false AppSpecificInfo =

get=getOrigHireDt:set=setOrigHireDt:keepRelationship=false:uid=false:

findKey=false:getKey=false:createKey=false IsRequiredServerBound =

false [End] [Attribute] Name = SEX Type = String

Chapter 6. Generating business object definitions using PeopleSoftODA 77

Cardinality = 1 MaxLength = 1 IsKey = false IsForeignKey =

false IsRequired = true AppSpecificInfo =

get=getSex:set=setSex:keepRelationship=false:uid=false:findKey=false:

getKey=false:createKey=false IsRequiredServerBound = false [End]

 [Attribute] Name = BIRTHDATE Type = String Cardinality = 1

 MaxLength = 1 IsKey = false IsForeignKey = false IsRequired

= false AppSpecificInfo =

get=getBirthdate:set=setBirthdate:keepRelationship=false:

uid=false:findKey=false:getKey=false:createKey=false

IsRequiredServerBound = false [End] [Attribute] Name =

FT_STUDENT Type = String Cardinality = 1 MaxLength = 1

IsKey = false IsForeignKey = false IsRequired = true

AppSpecificInfo = get=getFtStudent:set=setFtStudent:keepRelationship=false:

 uid=false:findKey=false:getKey=false:createKey=false

IsRequiredServerBound = false [End] [Attribute] Name =

BENEFIT_RCD_NBR Type = String Cardinality = 1 MaxLength = 1

IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getBenefitRcdNbr:set=setBenefitRcdNbr:

keepRelationship=false:uid=false:findKey=false:getKey=false:createKey=false

 IsRequiredServerBound = false [End] [Attribute] Name =

HOME_HOST_CLASS Type = String Cardinality = 1 MaxLength = 1

IsKey = false IsForeignKey = false IsRequired = true

AppSpecificInfo = get=getHomeHostClass:set=setHomeHostClass:

keepRelationship=false:uid=false:findKey=false:getKey=false:createKey=false

 IsRequiredServerBound = false [End] [Attribute] Name =

HIRE_DT Type = String Cardinality = 1 MaxLength = 1 IsKey =

false IsForeignKey = false IsRequired = false AppSpecificInfo =

get=getHireDt:set=setHireDt:keepRelationship=false:

uid=false:findKey=false:getKey=false:createKey=false

IsRequiredServerBound = false [End] [Attribute] Name =

CMPNY_SENIORITY_DT Type = String Cardinality = 1 MaxLength = 1

 IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getCmpnySeniorityDt:

set=setCmpnySeniorityDt:keepRelationship=false:uid=false:

findKey=false:getKey=false:createKey=false IsRequiredServerBound =

false [End] [Attribute] Name = SERVICE_DT Type = String

Cardinality = 1 MaxLength = 1 IsKey = false IsForeignKey =

false IsRequired = false AppSpecificInfo =

get=getServiceDt:set=setServiceDt:

keepRelationship=false:uid=false:findKey=false:getKey=false:createKey=false

 IsRequiredServerBound = false [End] [Attribute] Name =

PROF_EXPERIENCE_DT Type = String Cardinality = 1 MaxLength = 1

 IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getProfExperienceDt:

set=setProfExperienceDt:keepRelationship=false:uid=false:

findKey=false:getKey=false:createKey=false IsRequiredServerBound =

false [End] [Attribute] Name = LAST_VERIFICATN_DT Type =

String Cardinality = 1 MaxLength = 1 IsKey = false

IsForeignKey = false IsRequired = false AppSpecificInfo =

get=getLastVerificatnDt:set=setLastVerificatnDt:

keepRelationship=false:uid=false:findKey=false:getKey=false:createKey=false

 IsRequiredServerBound = false [End] [Attribute] Name =

EXPECTED_RETURN_DT Type = String Cardinality = 1 MaxLength = 1

 IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getExpectedReturnDt:set=

setExpectedReturnDt:keepRelationship=false:

78 Adapter for PeopleSoft User Guide

uid=false:findKey=false:getKey=false:createKey=false

IsRequiredServerBound = false [End] [Attribute] Name =

LAST_DATE_WORKED Type = String Cardinality = 1 MaxLength = 1

 IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getLastDateWorked:

set=setLastDateWorked:keepRelationship=false:uid=false:

findKey=false:getKey=false:createKey=false IsRequiredServerBound =

false [End] [Attribute] Name = LAST_INCREASE_DT Type =

String Cardinality = 1 MaxLength = 1 IsKey = false

IsForeignKey = false IsRequired = false AppSpecificInfo =

get=getLastIncreaseDt: set=setLastIncreaseDt:keepRelationship=false:

 uid=false:findKey=false:getKey=false:createKey=false

IsRequiredServerBound = false [End] [Attribute] Name =

OWN_5PERCENT_CO Type = String Cardinality = 1 MaxLength = 1

IsKey = false IsForeignKey = false IsRequired = true

AppSpecificInfo = get=getOwn5percentCo:

set=setOwn5percentCo:keepRelationship=false:

uid=false:findKey=false:getKey=false:createKey=false

IsRequiredServerBound = false [End] [Attribute] Name =

BUSINESS_TITLE Type = String Cardinality = 1 MaxLength = 1

IsKey = true IsForeignKey = false IsRequired = true

AppSpecificInfo = get=getBusinessTitle:

set=setBusinessTitle:keepRelationship=false:

uid=false:findKey=false:getKey=true:createKey=false

IsRequiredServerBound = false [End] [Attribute] Name =

REPORTS_TO Type = String Cardinality = 1 MaxLength = 1

IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getReportsTo:set=setReportsTo:

keepRelationship=false:uid=false:findKey=false:getKey=false:createKey=false

 IsRequiredServerBound = false [End] [Attribute] Name =

SUPERVISOR_ID Type = String Cardinality = 1 MaxLength = 1

IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getSupervisorId:set=setSupervisorId:

keepRelationship=false:uid=false:findKey=false:getKey=false:createKey=false

 IsRequiredServerBound = false [End] [Attribute] Name =

PROBATION_DT Type = String Cardinality = 1 MaxLength = 1

IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getProbationDt:set=setProbationDt:

keepRelationship=false:uid=false:findKey=false:getKey=false:createKey=false

 IsRequiredServerBound = false [End] [Attribute] Name =

SECURITY_CLEARANCE Type = String Cardinality = 1 MaxLength = 1

 IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getSecurityClearance:

set=setSecurityClearance:keepRelationship=false:

uid=false:findKey=false:getKey=false:createKey=false

IsRequiredServerBound = false [End] [Attribute] Name = PHONE

 Type = String Cardinality = 1 MaxLength = 1 IsKey = false

 IsForeignKey = false IsRequired = false AppSpecificInfo =

get=getPhone:set=setPhone: keepRelationship=false:uid=false:

findKey=false:getKey=false:createKey=false IsRequiredServerBound =

false [End] [Attribute] Name = TIME_RPT_LOCK Type = String

 Cardinality = 1 MaxLength = 1 IsKey = false IsForeignKey =

false IsRequired = false AppSpecificInfo =

get=getTimeRptLock:set=setTimeRptLock:

keepRelationship=false:uid=false:findKey=false:getKey=false:createKey=false

 IsRequiredServerBound = false [End] [Attribute] Name =

Chapter 6. Generating business object definitions using PeopleSoftODA 79

JOB_REPORTING Type = String Cardinality = 1 MaxLength = 1

IsKey = false IsForeignKey = false IsRequired = true

AppSpecificInfo = get=getJobReporting:set=setJobReporting:

keepRelationship=false:uid=false:findKey=false:getKey=false:createKey=false

 IsRequiredServerBound = false [End] [Attribute] Name =

DED_TAKEN Type = String Cardinality = 1 MaxLength = 1 IsKey

= false IsForeignKey = false IsRequired = true AppSpecificInfo

= get=getDedTaken:set=setDedTaken:

keepRelationship=false:uid=false:findKey=false:getKey=false:createKey=false

 IsRequiredServerBound = false [End] [Attribute] Name =

DED_SUBSET_ID Type = String Cardinality = 1 MaxLength = 1

IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getDedSubsetId:set=setDedSubsetId:

keepRelationship=false:uid=false:findKey=false:getKey=false:createKey=false

 IsRequiredServerBound = false [End] [Attribute] Name =

CAN_ABORIGINAL Type = String Cardinality = 1 MaxLength = 1

IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getCanAboriginal:set=setCanAboriginal:

keepRelationship=false:uid=false:findKey=false:getKey=false:createKey=false

 IsRequiredServerBound = false [End] [Attribute] Name =

CAN_VISBL_MINORITY Type = String Cardinality = 1 MaxLength = 1

 IsKey = false IsForeignKey = false IsRequired = true

AppSpecificInfo = get=getCanVisblMinority:set=setCanVisblMinority:

keepRelationship=false:uid=false:findKey=false:getKey=false:createKey=false

 IsRequiredServerBound = false [End] [Attribute] Name =

CURRENT_SEQ Type = String Cardinality = 1 MaxLength = 1

IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getCurrentSeq:set=setCurrentSeq:

keepRelationship=false:uid=false:findKey=false:getKey=false:createKey=false

 IsRequiredServerBound = false [End] [Attribute] Name =

PERS_DATA_EFFDT Type = PERS_DATA_EFFDT ContainedObjectVersion =

1.0.0 Relationship = Containment Cardinality = n MaxLength = 1

 IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getPersDataEffdt:keepRelationship=false:

uid=false:findKey=false:getKey=false:createKey=false

IsRequiredServerBound = false [End] [Attribute] Name =

EMAIL_ADDRESSES Type = EMAIL_ADDRESSES ContainedObjectVersion =

1.0.0 Relationship = Containment Cardinality = n MaxLength = 1

 IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getEmailAddresses:keepRelationship=false:

uid=false:findKey=false:getKey=false:createKey=false

IsRequiredServerBound = false [End] [Attribute] Name =

PERSONAL_PHONE Type = PERSONAL_PHONE ContainedObjectVersion = 1.0.0

 Relationship = Containment Cardinality = n MaxLength = 1

IsKey = false IsForeignKey = false IsRequired = false

AppSpecificInfo = get=getPersonalPhone:keepRelationship=false:

uid=false:findKey=false:getKey=false:createKey=false

IsRequiredServerBound = false [End] [Attribute] Name = PERS_NID

 Type = PERS_NID ContainedObjectVersion = 1.0.0 Relationship =

Containment Cardinality = n MaxLength = 1 IsKey = false

IsForeignKey = false IsRequired = false IsRequiredServerBound =

false [End] [Attribute] Name = JOB Type = JOB

ContainedObjectVersion = 1.0.0 Relationship = Containment

Cardinality = n MaxLength = 1 IsKey = false IsForeignKey =

false IsRequired = false IsRequiredServerBound = false [End]

 [Attribute] Name = ObjectEventId Type = String MaxLength =

80 Adapter for PeopleSoft User Guide

255 IsKey = false IsForeignKey = false IsRequired = false

IsRequiredServerBound = false [End] [Verb] Name = Create

[End] [Verb] Name = Delete [End] [Verb] Name = Retrieve

 [End] [Verb] Name = Update [End] [End]

SavePostChange business object examples

The following example is the SavePostChange business object showing the

function call cw_publish_event.

 /* Place this code in Component’s SavePostChg() and define the four

parameters used in the function call */ Declare Function cw_publish_event

PeopleCode FUNCLIB_CW.CW_EVENT_NOT FieldFormula; Component string &BONAME1;

Component string &KEYLIST1; Component number &CWPRIORITY1; Component string

&CONNID; &BONAME1 = "Psft_Dept"; &KEYLIST1 =

"DEPT_TBL.SETID:DEPT_TBL.DEPTID"; &CWPRIORITY1 = 2; &CONNID = "PeopleSoft

Connector"; /* Check if Component Changed before calling function */ If

ComponentChanged() And %UserId <> "CW" Then /* Publish this event to

the CrossWorlds CW_EVENT_TBL for polling */ cw_publish_event(&BONAME1,

&KEYLIST1, &CWPRIORITY1, &CONNID); End-If;

The following example is the SavePostChange business object showing the

function call cw_publish_future_dated_events.

/* Place this code in Component’s SavePostChg() and define the four

parameters used in the function call */ Declare Function cw_publish_event

PeopleCode FUNCLIB_CW.CW_EVENT_NOT FieldFormula; Component string &BONAME1;

Component string &KEYLIST1; &EFFDATE="DEPT_TBL_.STARTDATE"; Component

number &CWPRIORITY1; Component string &CONNID; &BONAME1 = "Psft_Dept";

&KEYLIST1 = "DEPT_TBL.SETID:DEPT_TBL.DEPTID"; &CWPRIORITY1 = 2; &CONNID =

"PeopleSoft Connector"; /* Check if Component Changed before calling

function */ If ComponentChanged() And %UserId <> "CW" Then /* Publish

this event to the CrossWorlds CW_EVENT_TBL for polling */

cw_publish_future_dated_events(&BONAME1, &KEYLIST1, &CWPRIORITY1, &CONNID,

&EFFDATEW); End-If;

Modifying information in the business object definition

It may be necessary modify information in the business object definition that

PeopleSoftODA creates. For example, you must manually remove unwanted

attributes, change the default values for the getHistoryItems and

setInteractiveMode parameters of the application-specific information at the

business-object level, and add required parameters for attribute application-specific

information. For more information, see Chapter 5, “Understanding business objects

for the connector,” on page 39.

To examine or modify the business object definition, you can use Business Object

Designer or a text editor. To reload a revised definition into the repository, you can

use Business Object Designer. Alternatively, if WebSphere InterChange Server (ICS)

is the integration broker, you can use the repos_copy command to load the

definition into the repository; if WebSphere MQ Integrator broker is the integration

broker, you can use a system command to copy the file into the repository

directory.

Chapter 6. Generating business object definitions using PeopleSoftODA 81

82 Adapter for PeopleSoft User Guide

Chapter 7. Running the connector

This chapter provides information about starting, stopping, and upgrading the

connector.

v “Starting the connector”

v “Stopping the connector” on page 84

v “Upgrading the connector” on page 85

Starting the connector

A connector must be explicitly started using its connector start-up script. On

Windows systems the startup script should reside in the connector’s runtime

directory:

ProductDir\connectors\connName

where connName identifies the connector.

On UNIX systems the startup script should reside in the ProductDir/bin directory.

The name of the startup script depends on the operating-system platform, as

Table 13 shows.

 Table 13. Startup scripts for a connector

Operating system Startup script

UNIX-based systems connector_manager

Windows start_connName.bat

When the startup script runs, it expects by default to find the configuration file in

the Productdir (see the commands below). This is where you place your

configuration file.

Note: You need a local configuration file if the adapter is using JMS transport.

You can invoke the connector startup script in any of the following ways:

v On Windows systems, from the Start menu

Select Programs>IBM WebSphere Business Integration

Adapters>Adapters>Connectors. By default, the program name is “IBM

WebSphere Business Integration Adapters”. However, it can be customized.

Alternatively, you can create a desktop shortcut to your connector.

v From the command line

– On Windows systems:

start_connName connName brokerName [-cconfigFile]

– On UNIX-based systems:

connector_manager -start connName brokerName [-cconfigFile]

where connName is the name of the connector and brokerName identifies your

integration broker, as follows:

– For WebSphere InterChange Server, specify for brokerName the name of the

ICS instance.

© Copyright IBM Corp. 2001, 2004 83

– For WebSphere message brokers (WebSphere MQ Integrator, WebSphere MQ

Integrator Broker, or WebSphere Business Integration Message Broker) or

WebSphere Application Server, specify for brokerName a string that identifies

the broker.

Note: For a WebSphere message broker or WebSphere Application Server on a

Windows system, you must include the -c option followed by the name of

the connector configuration file. For ICS, the -c is optional.

v From Adapter Monitor (available only when the broker is WebSphere

Application Server or InterChange Server), which is launched when you start

System Manager

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v From System Manager (available for all brokers)

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v On Windows systems, you can configure the connector to start as a Windows

service. In this case, the connector starts when the Windows system boots (for an

Auto service) or when you start the service through the Windows Services

window (for a Manual service).

For more information on how to start a connector, including the command-line

startup options, refer to one of the following documents:

v For WebSphere InterChange Server, refer to the System Administration Guide.

v For WebSphere message brokers, refer to Implementing Adapters with WebSphere

Message Brokers.

v For WebSphere Application Server, refer to Implementing Adapters with WebSphere

Application Server.

Stopping the connector

The way to stop a connector depends on the way that the connector was started,

as follows:

v If you started the connector from the command line, with its connector startup

script:

– On Windows systems, invoking the startup script creates a separate “console”

window for the connector. In this window, type “Q” and press Enter to stop

the connector.

– On UNIX-based systems, connectors run in the background so they have no

separate window. Instead, run the following command to stop the connector:

connector_manager_connName -stop

where connName is the name of the connector.
v From Adapter Monitor (WebSphere Business Integration Adapters product only),

which is launched when you start System Manager

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v From System Monitor (WebSphere InterChange Server product only)

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v On Windows systems, you can configure the connector to start as a Windows

service. In this case, the connector stops when the Windows system shuts down.

84 Adapter for PeopleSoft User Guide

Upgrading the connector

IIf you have installed an earlier version of the WebSphere Business Integration

Adapter for PeopleSoft, you must delete it before installing this connector.

 Also, upgrade or delete all previous customizations made in PeopleSoft for the

connector according to the project standards for PeopleSoft Upgrades and Fixes.

Each version of the connector is included with an Application Designer project (a

maintenance project) containing all current PeopleSoft objects and code needed for

Event Notification. The project also lists adapter-specific fixes and enhancements

made to those objects in the details portion of the project properties. Follow the

general project standards for importing or copying this project into databases. It

might be necessary to delete menus, pages, records or fields if they are no longer

used.

To install the new connector, follow the instructions in Chapter 2, “Installing the

connector,” on page 11.

Chapter 7. Running the connector 85

86 Adapter for PeopleSoft User Guide

Chapter 8. Troubleshooting and error handling

The chapter describes problems that you may encounter when starting up or

running the IBM WebSphere Business Integration Adapter for PeopleSoft.

This chapter contains the following sections:

v “Startup problems”

v “Startup problems (WebSphere InterChange Server broker only)”

v “Startup problems (WebSphere MQ Integrator broker only)” on page 88

v “Processing Problems” on page 88

v “Mapping (WebSphere InterChange Server Only)” on page 88

v “Error Handling and Logging” on page 88

v “Loss of Connection to the Application” on page 90

Startup problems

If you encounter difficulties when trying to start the connector, do the following:

v Use the psadmin utility to check that the PeopleSoft Application Server is

running.

v Use the Test Component Interface utility in Application Designer to verify that

the Component Interface is working online.

v Rebuild and recompile the APIs in PeopleSoft. For more information, see

“Generating APIs” on page 45.

v Verify that PeopleSoft security has been set correctly; the Component Interface is

listed on the Permission List; and that the connector’s user account has been

configured to never time out.

v Verify that Row-Level Security has been set for the connector’s user account.

v Trace the API by selecting relevant options on the Trace tab in the PeopleSoft

Configuration Manager.

Startup problems (WebSphere InterChange Server broker only)

When using the connector with WebSphere InterChange MQ Integrator Broker as

the integration broker and you encounter difficulties starting the connector:

v Check to make sure that WebSphere InterChange Server is up and running.

On UNIX, enter the following command:

ICS_manager -stat

On Windows, the second parameter after the start_connector command should

contain the WebSphere InterChange Server name. For example:

start_PeopleSoft ConnectorName InterChangeServerName

where InterChangeServerName is the name of the WebSphere InterChange Server

instance.

v Follow the suggestions in “Startup problems” on page 87.

© Copyright IBM Corp. 2001, 2004 87

Startup problems (WebSphere MQ Integrator broker only)

When using the connector with MQ Integrator broker as the integration broker and

you encounter difficulties starting the connector:

v Check to make sure that WebSphere MQ Integrator broker is up and running.

On UNIX, enter the following command:

ICS_manager -stat

On Windows, the start_connector command must contain the name of the

connector and the broker, as well as the path and name of the connector’s

configuration file. For example:

start_PeopleSoft ConnectorName BrokerName -cConfigFileName

where BrokerName is the name of the WebSphere MQ Integrator broker broker

and ConfigFileName specifies the path and filename of the connector’s

configuration file.

v Follow the suggestions in “Startup problems” on page 87.

Processing Problems

If an error occurs when the connector is processing, create a simple Java program

and test the following using IDE:

1. The connection to the application

2. The Get(), Create(), and Find() methods

3. The retrieval of Property values from each level of the corresponding

Component Interface

This test can isolate problems arising between the PeopleSoft API and the

connector. In other words, if you have no problems in the test program, then there

probably is a problem with the connector code.

PeopleSoft generates a template for a test Java program. To generate the template:

1. Open the Component Interface in question.

2. Right click anywhere in the window and select Generate Java Template from

the popup menu.

Mapping (WebSphere InterChange Server Only)

If the business objects are not being mapped or mapping is not being invoked,

check to make sure the maps have been installed in the correct directory.

Error Handling and Logging

The connector logs an error message whenever it encounters a condition that

causes its current processing of a business object and verb to fail. When such an

error occurs, the connector also prints a textual representation of the failed

business object as it received it. It writes the text to the connector log file or the

standard output stream, depending on its configuration. You can use the text as an

aid in determining the source of the error.

Error Types

Table 14 describes the types of tracing messages that the connector outputs at each

trace level. These messages are in addition to any tracing messages output by the

WebSphere business integration system’s architecture, such as the Java connector

88 Adapter for PeopleSoft User Guide

execution wrapper and the IBM MQSeries message interface.

 Table 14. PeopleSoft Tracing Messages

Tracing Level Tracing Messages

Level 0 Message that identifies the connector version. No other tracing is

done at this level. This is the default value.

Level 1 v Status messages

v Messages that provide identifying (key) information for each

business object processed

v Messages delivered each time the pollForEvents method is

executed

Level 2 v Business object handler messages that contain information such as

the arrays and child business objects that the connector encounters

or retrieves during the processing of a business object

v Messages logged each time a business object is posted to the

integration broker, either from gotApplEvent() or consumeSync()

v Messages that indicate that a business object has been received as

a request

Level 3 v Foreign key processing messages that contain such information as

when the connector has found or has set a foreign key in a

business object

v Messages that provide information about business object

processing. For example, these messages are delivered when the

connector finds a match between business objects, or finds a

business object in an array of child business objects

Level 4 v Application-specific information messages, for example, messages

showing the values returned by the functions that parse the

business object’s application-specific information fields

v Messages that identify when the connector enters or exits a

function, which helps trace the process flow of the connector

v All thread-specific messages. If the connector spawns multiple

threads, a message appears for the creation of each new thread.

Level 5 v Messages that indicate connector initialization, for example,

messages showing the value of each configuration property

retrieved from the integration broker.

v Messages that include statements executed in the application. At

this trace level, the connector log file contains all statements

executed in the destination application and the value of any

variables that are substituted.

v Messages that comprises a representation of a business object

before the connector begins processing it (displaying its state as

the connector receives it) and after the connector has completed its

processing (displaying its state as the connector returns it to the

integration broker)

v Messages that comprise a business object dump

v Messages that indicate the status of each thread the connector

spawns while it is running

Error Messages

All the error messages that the connector generates are stored in a message file

named PeopleSoftConnector.txt. Each error has an error number followed by the

error message. For example:

1210

Chapter 8. Troubleshooting and error handling 89

PeopleSoft Connector unable to initialize.

1211

PeopleSoft Connector failed to locate.

Loss of Connection to the Application

If the connector’s application-specific component fails to establish connection, it

sends FAIL to integration broker and terminates.

Memory limitations with result set support

When result set support is being used on DB2, The adapter has a JVM memory

restriction of 2GB for J2SE JRE 1.4.1, version SR2, that is provided with the adapter.

To enable the result set process to utilize the 2GB memory, your environment must

use hardware that facilitates efficient memory utilization without excessive paging.

PeopleSoft record limitations with result set retrieval

PeopleSoft applications are limited to returning the first 300 records per component

when processing result set retrieval requests. Result set processing is supported

only when DB2 Information Integrator is the integration broker.

90 Adapter for PeopleSoft User Guide

Appendix A. Standard configuration properties for connectors

This appendix describes the standard configuration properties for the connector

component of WebSphere Business Integration adapters. The information covers

connectors running with the following integration brokers:

v WebSphere InterChange Server (ICS)

v WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere

Business Integration Message Broker, collectively referred to as the WebSphere

Message Brokers (and shown as WMQI in the Connector Configurator).

v Information Integrator (II)

v WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and

the DB2 II standard properties (see the Notes column in Table 15 on page 93.)

The properties you set for the adapter depend on which integration broker you

use. You choose the integration broker using Connector Configurator. After you

choose the broker, Connector Configurator lists the standard properties you must

configure for the adapter.

For information about properties specific to this connector, see the relevant section

in this guide.

New properties

These standard properties have been added in this release:

v AdapterHelpName

v BiDi.Application

v BiDi.Broker

v BiDi.Metadata

v BiDi.Transformation

v CommonEventInfrastructure

v CommonEventInfrastructureContextURL

v ControllerEventSequencing

v jms.ListenerConcurrency

v jms.TransportOptimized

v ResultsSetEnabled

v ResultsSetSize

v TivoliTransactionMonitorPerformance

Standard connector properties overview

Connectors have two types of configuration properties:

v Standard configuration properties, which are used by the framework

v Application, or connector-specific, configuration properties, which are used by

the agent

© Copyright IBM Corp. 2001, 2004 91

These properties determine the adapter framework and the agent run-time

behavior.

This section describes how to start Connector Configurator and describes

characteristics common to all properties. For information on configuration

properties specific to a connector, see its adapter user guide.

Starting Connector Configurator

You configure connector properties from Connector Configurator, which you access

from System Manager. For more information on using Connector Configurator,

refer to the sections on Connector Configurator in this guide.

Connector Configurator and System Manager run only on the Windows system. If

you are running the connector on a UNIX system, you must have a Windows

machine with these tools installed.

To set connector properties for a connector that runs on UNIX, you must start up

System Manager on the Windows machine, connect to the UNIX integration broker,

and bring up Connector Configurator for the connector.

Configuration property values overview

The connector uses the following order to determine a property’s value:

1. Default

2. Repository (valid only if WebSphere InterChange Server (ICS) is the integration

broker)

3. Local configuration file

4. Command line

The default length of a property field is 255 characters. There is no limit on the

length of a STRING property type. The length of an INTEGER type is determined

by the server on which the adapter is running.

A connector obtains its configuration values at startup. If you change the value of

one or more connector properties during a run-time session, the property’s update

method determines how the change takes effect.

The update characteristics of a property, that is, how and when a change to the

connector properties takes effect, depend on the nature of the property.

There are four update methods for standard connector properties:

v Dynamic

The new value takes effect immediately after the change is saved in System

Manager. However, if the connector is in stand-alone mode (independently of

System Manager), for example, if it is running with one of the WebSphere

message brokers, you can change properties only through the configuration file.

In this case, a dynamic update is not possible.

v Agent restart (ICS only)

The new value takes effect only after you stop and restart the connector agent.

v Component restart

The new value takes effect only after the connector is stopped and then restarted

in System Manager. You do not need to stop and restart the agent or the server

process.

92 Adapter for PeopleSoft User Guide

v System restart

The new value takes effect only after you stop and restart the connector agent

and the server.

To determine how a specific property is updated, refer to the Update Method

column in the Connector Configurator window, or see the Update Method column

in Table 15 on page 93.

There are three locations in which a standard property can reside. Some properties

can reside in more than one location.

v ReposController

The property resides in the connector controller and is effective only there. If

you change the value on the agent side, it does not affect the controller.

v ReposAgent

The property resides in the agent and is effective only there. A local

configuration can override this value, depending on the property.

v LocalConfig

The property resides in the configuration file for the connector and can act only

through the configuration file. The controller cannot change the value of the

property, and is not aware of changes made to the configuration file unless the

system is redeployed to update the controller explicitly.

Standard properties quick-reference

Table 15 provides a quick-reference to the standard connector configuration

properties. Not all connectors require all of these properties, and property settings

may differ from integration broker to integration broker.

See the section following the table for a description of each property.

Note: In the Notes column in Table 15, the phrase “RepositoryDirectory is set to

<REMOTE>” indicates that the broker is InterChange Server. When the

broker is WMQI or WAS, the repository directory is set to

<ProductDir>\repository

 Table 15. Summary of standard configuration properties

Property name Possible values Default value

Update

method Notes

AdapterHelpName One of the valid

subdirectories in

<ProductDir>\bin\Data

\App\Help\ that

 contains a valid

<RegionalSetting>

directory

Template name, if valid,

or blank field

Component

restart

Supported regional

settings.

Include chs_chn,

cht_twn, deu_deu,

esn_esp, fra_fra,

ita_ita, jpn_jpn,

kor_kor, ptb_bra,

and enu_usa (default).

AdminInQueue Valid JMS queue name <CONNECTORNAME>

/ADMININQUEUE

Component

restart

This property is valid

 only when the value

of DeliveryTransport

is JMS

AdminOutQueue Valid JMS queue name <CONNECTORNAME>

/ADMINOUTQUEUE

Component

restart

This property is valid

only when the value

of DeliveryTransport

is JMS

Appendix A. Standard configuration properties for connectors 93

Table 15. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

AgentConnections 1 through 4 1 Component

restart

This property is valid

only when the value

of DeliveryTransport

is MQ or IDL, the value

of Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

AgentTraceLevel 0 through 5 0 Dynamic

if broker is

ICS;

otherwise

Component

restart

ApplicationName Application name The value specified for

the connector

application name

Component

restart

BiDi.Application Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value

of BiDi.Transforma tion

is true

BiDi.Broker Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true. If the value of

BrokerType is

ICS, the property

is read-only.

BiDi.Metadata Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true.

BiDi.Transformation true or false false Component

restart

This property is valid

only if the value of

BrokerType is

not WAS

.

BrokerType ICS, WMQI, WAS ICS Component

restart

CharacterEncoding Any supported code.

The list shows this subset:

ascii7, ascii8, SJIS,

Cp949, GBK, Big5,

Cp297, Cp273, Cp280,

Cp284, Cp037, Cp437

.

ascii7 Component

restart

This property is valid

only for C++ connectors.

94 Adapter for PeopleSoft User Guide

Table 15. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

CommonEventInfrastruc

ture

true or false false Component

restart

CommonEventInfrastruc

tureURL

A URL string, for

example,

corbaloc:iiop:

host:2809.

No default value. Component

restart

This property is valid

only if the value of

CommonEvent

Infrastructure is true.

ConcurrentEventTrig

geredFlows

1 through 32,767 1 Component

restart

This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ContainerManagedEvents Blank or JMS Blank Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

ControllerEventSequenc

ing

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerStoreAndFor

wardMode

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerTraceLevel 0 through 5 0 Dynamic This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

DeliveryQueue Any valid JMS

queue name

<CONNECTORNAME>

/DELIVERYQUEUE

Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

DeliveryTransport MQ, IDL, or JMS IDL when the value of

RepositoryDirectory is

<REMOTE>, otherwise

JMS

Component

restart

If the value of

RepositoryDirectory is

not <REMOTE>,

the only valid value for

this property is JMS.

DuplicateEventElimina

tion

true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

EnableOidForFlowMoni

toring

true or false false Component

restart

This property is valid

only if the value of

BrokerType is ICS.

FaultQueue Any valid queue name. <CONNECTORNAME>

/FAULTQUEUE

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.FactoryClassName CxCommon.Messaging.jms

.IBMMQSeriesFactory,

CxCommon.Messaging

.jms.SonicMQFactory,

or any Java class name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

Appendix A. Standard configuration properties for connectors 95

Table 15. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

jms.ListenerConcurrency 1 through 32767 1 Component

restart

This property is

valid only if the value of

jms.TransportOptimized

is true.

jms.MessageBrokerName If the value of

jms.FactoryClassName

is IBM, use

crossworlds.queue.

manager.

crossworlds.queue.

manager

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.NumConcurrent

Requests

Positive integer 10 Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.Password Any valid password Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.TransportOptimized true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS and the value of

BrokerType is ICS.

jms.UserName Any valid name Component

restart

This property is valid

only if the value of

Delivery Transport is JMS.

JvmMaxHeapSize Heap size in megabytes 128m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMaxNativeStackSize Size of stack in kilobytes 128k Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMinHeapSize Heap size in megabytes 1m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ListenerConcurrency 1 through 100 1 Component

restart

This property is valid

only if the value of

DeliveryTransport is MQ.

Locale This is a subset of the

supported locales:

en_US, ja_JP, ko_KR,

 zh_CN, zh_TW, fr_FR,

de_DE, it_IT,

es_ES, pt_BR

en_US Component

restart

96 Adapter for PeopleSoft User Guide

Table 15. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

LogAtInterchangeEnd true or false false Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MaxEventCapacity 1 through 2147483647 2147483647 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MessageFileName Valid file name InterchangeSystem.txt Component

restart

MonitorQueue Any valid queue name <CONNECTORNAME>

/MONITORQUEUE

Component

restart

This property is valid

only if the value of

DuplicateEventElimination

is true and

ContainerManagedEvents

has no value.

OADAutoRestartAgent true or false false Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADMaxNumRetry A positive integer 1000 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADRetryTimeInterval A positive integer

in minutes

10 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

PollEndTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

PollFrequency A positive integer

(in milliseconds)

10000 Dynamic

if broker is

ICS;

otherwise

Component

restart

PollQuantity 1 through 500 1 Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

PollStartTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

RepositoryDirectory <REMOTE> if the broker

is ICS; otherwise any

valid local directory.

For ICS, the value is set

to <REMOTE>

 For WMQI and WAS,

the value is

<ProductDir

\repository

Agent restart

Appendix A. Standard configuration properties for connectors 97

Table 15. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

RequestQueue Valid JMS queue name <CONNECTORNAME>

/REQUESTQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

ResponseQueue Valid JMS queue name <CONNECTORNAME>

/RESPONSEQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

RestartRetryCount 0 through 99 3 Dynamic

if ICS;

otherwise

Component

restart

RestartRetryInterval A value in minutes

from 1 through

2147483647

1 Dynamic

if ICS;

otherwise

Component

restart

ResultsSetEnabled true or false false Component

restart

Used only by connectors

that support DB2II.

 This property is valid

only if the value of

DeliveryTransport

is JMS, and the value of

BrokerType is WMQI.

ResultsSetSize Positive integer 0 (means the results

set size is unlimited)

Component

restart

Used only by connectors

that support DB2II.

 This property is valid

only if the value of

ResultsSetEnabled

is true.

RHF2MessageDomain mrm or xml mrm Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS and the value of

WireFormat is CwXML.

SourceQueue Any valid WebSphere

MQ queue name

<CONNECTORNAME>

/SOURCEQUEUE

Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

SynchronousRequest

Queue

Any valid queue name. <CONNECTORNAME>

/SYNCHRONOUSREQUEST

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousResponse

Queue

Any valid queue name <CONNECTORNAME>

/SYNCHRONOUSRESPONSE

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

TivoliMonitorTransaction

Performance

true or false false Component

restart

98 Adapter for PeopleSoft User Guide

Table 15. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

WireFormat CwXML or CwBO CwXML Agent restart The value of this

property must be CwXML

if the value

of RepositoryDirectory

is not set to <REMOTE>.

The value must

be CwBO if the value of

RepositoryDirectory is set

to <REMOTE>.

WsifSynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value of

BrokerType is WAS.

XMLNameSpaceFormat short or long short Agent restart This property is valid

only if the value of

BrokerType is

WMQI or WAS

Standard properties

This section describes the standard connector configuration properties.

AdapterHelpName

The AdapterHelpName property is the name of a directory in which

connector-specific extended help files are located. The directory must be located in

<ProductDir>\bin\Data\App\Help and must contain at least the language

directory enu_usa. It may contain other directories according to locale.

The default value is the template name if it is valid, or it is blank.

AdminInQueue

The AdminInQueue property specifies the queue that is used by the integration

broker to send administrative messages to the connector.

The default value is <CONNECTORNAME>/ADMININQUEUE

AdminOutQueue

The AdminOutQueue property specifies the queue that is used by the connector to

send administrative messages to the integration broker.

The default value is <CONNECTORNAME>/ADMINOUTQUEUE

AgentConnections

The AgentConnections property controls the number of ORB (Object Request

Broker) connections opened when the ORB initializes.

It is valid only if the value of the RepositoryDirectory is set to <REMOTE> and the

value of the DeliveryTransport property is MQ or IDL.

The default value of this property is 1.

Appendix A. Standard configuration properties for connectors 99

AgentTraceLevel

The AgentTraceLevel property sets the level of trace messages for the

application-specific component. The connector delivers all trace messages

applicable at the tracing level set and lower.

The default value is 0.

ApplicationName

The ApplicationName property uniquely identifies the name of the connector

application. This name is used by the system administrator to monitor the

integration environment. This property must have a value before you can run the

connector.

The default is the name of the connector.

BiDi.Application

The BiDi.Application property specifies the bidirectional format for data coming

from an external application into the adapter in the form of any business object

supported by this adapter. The property defines the bidirectional attributes of the

application data. These attributes are:

v Type of text: implicit or visual (I or V)

v Text direction: left-to-right or right-to-left (L or R)

v Symmetric swapping: on or off (Y or N)

v Shaping (Arabic): on or off (S or N)

v Numerical shaping (Arabic): Hindi, contextual, or nominal (H, C, or N)

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Broker

The BiDi.Broker property specifies the bidirectional format for data sent from the

adapter to the integration broker in the form of any supported business object. It

defines the bidirectional attributes of the data, which are as listed under

BiDi.Application above.

This property is valid only if the BiDi.Transformation property value is set to true.

If the BrokerType property is ICS, the property value is read-only.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Metadata

The BiDi.Metadata property defines the bidirectional format or attributes for the

metadata, which is used by the connector to establish and maintain a link to the

external application. The attribute settings are specific to each adapter using the

bidirectional capabilities. If your adapter supports bidirectional processing, refer to

section on adapter-specific properties for more information.

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

100 Adapter for PeopleSoft User Guide

BiDi.Transformation

The BiDi.Transformation property defines whether the system performs a

bidirectional transformation at run time.

If the property value is set to true, the BiDi.Application, BiDi.Broker, and

BiDi.Metadata properties are available. If the property value is set to false, they

are hidden.

The default value is false.

BrokerType

The BrokerType property identifies the integration broker type that you are using.

The possible values are ICS, WMQI (for WMQI, WMQIB or WBIMB), or WAS.

CharacterEncoding

The CharacterEncoding property specifies the character code set used to map from

a character (such as a letter of the alphabet, a numeric representation, or a

punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. C++ connectors use the

value ascii7 for this property.

By default, only a subset of supported character encodings is displayed. To add

other supported values to the list, you must manually modify the

\Data\Std\stdConnProps.xml file in the product directory (<ProductDir>). For

more information, see the Connector Configurator appendix in this guide.

CommonEventInfrastructure

The Common Event Infrastructure (CEI) is a simple event management function

handling generated events. The CommonEventInfrastructure property specifies

whether the CEI should be invoked at run time.

The default value is false.

CommonEventInfrastructureContextURL

The CommonEventInfrastructureContextURL is used to gain access to the WAS

server that executes the Common Event Infrastructure (CEI) server application.

This property specifies the URL to be used.

This property is valid only if the value of CommonEventInfrastructure is set to

true.

The default value is a blank field.

ConcurrentEventTriggeredFlows

The ConcurrentEventTriggeredFlows property determines how many business

objects can be concurrently processed by the connector for event delivery. You set

the value of this attribute to the number of business objects that are mapped and

delivered concurrently. For example, if you set the value of this property to 5, five

business objects are processed concurrently.

Setting this property to a value greater than 1 allows a connector for a source

application to map multiple event business objects at the same time and deliver

Appendix A. Standard configuration properties for connectors 101

them to multiple collaboration instances simultaneously. This speeds delivery of

business objects to the integration broker, particularly if the business objects use

complex maps. Increasing the arrival rate of business objects to collaborations can

improve overall performance in the system.

To implement concurrent processing for an entire flow (from a source application

to a destination application), the following properties must configured:

v The collaboration must be configured to use multiple threads by setting its

Maximum number of concurrent events property high enough to use multiple

threads.

v The destination application’s application-specific component must be configured

to process requests concurrently. That is, it must be multithreaded, or it must be

able to use connector agent parallelism and be configured for multiple processes.

The Parallel Process Degree configuration property must be set to a value larger

than 1.

The ConcurrentEventTriggeredFlows property has no effect on connector polling,

which is single-threaded and is performed serially.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1.

ContainerManagedEvents

The ContainerManagedEvents property allows a JMS-enabled connector with a

JMS event store to provide guaranteed event delivery, in which an event is

removed from the source queue and placed on the destination queue as one JMS

transaction.

When this property is set to JMS, the following properties must also be set to

enable guaranteed event delivery:

v PollQuantity = 1 to 500

v SourceQueue = /SOURCEQUEUE

You must also configure a data handler with the MimeType and DHClass (data

handler class) properties. You can also add DataHandlerConfigMOName (the

meta-object name, which is optional). To set those values, use the Data Handler

tab in Connector Configurator.

Although these properties are adapter-specific, here are some example values:

v MimeType = text\xml

v DHClass = com.crossworlds.DataHandlers.text.xml

v DataHandlerConfigMOName = MO_DataHandler_Default

The fields for these values in the Data Handler tab are displayed only if you have

set the ContainerManagedEvents property to the value JMS.

Note: When ContainerManagedEvents is set to JMS, the connector does not call its

pollForEvents() method, thereby disabling that method’s functionality.

The ContainerManagedEvents property is valid only if the value of the

DeliveryTransport property is set to JMS.

102 Adapter for PeopleSoft User Guide

There is no default value.

ControllerEventSequencing

The ControllerEventSequencing property enables event sequencing in the connector

controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE> (BrokerType is ICS).

The default value is true.

ControllerStoreAndForwardMode

The ControllerStoreAndForwardMode property sets the behavior of the connector

controller after it detects that the destination application-specific component is

unavailable.

If this property is set to true and the destination application-specific component is

unavailable when an event reaches ICS, the connector controller blocks the request

to the application-specific component. When the application-specific component

becomes operational, the controller forwards the request to it.

However, if the destination application’s application-specific component becomes

unavailable after the connector controller forwards a service call request to it, the

connector controller fails the request.

If this property is set to false, the connector controller begins failing all service

call requests as soon as it detects that the destination application-specific

component is unavailable.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE> (the value of the BrokerType property is ICS).

The default value is true.

ControllerTraceLevel

The ControllerTraceLevel property sets the level of trace messages for the

connector controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE>.

The default value is 0.

DeliveryQueue

The DeliveryQueue property defines the queue that is used by the connector to

send business objects to the integration broker.

This property is valid only if the value of the DeliveryTransport property is set to

JMS.

The default value is <CONNECTORNAME>/DELIVERYQUEUE.

Appendix A. Standard configuration properties for connectors 103

DeliveryTransport

The DeliveryTransport property specifies the transport mechanism for the delivery

of events. Possible values are MQ for WebSphere MQ, IDL for CORBA IIOP, or JMS

for Java Messaging Service.

v If the value of the RepositoryDirectory property is set to <REMOTE>, the value

of the DeliveryTransport property can be MQ, IDL, or JMS, and the default is IDL.

v If the value of the RepositoryDirectory property is a local directory, the value

can be only JMS.

The connector sends service-call requests and administrative messages over

CORBA IIOP if the value of the RepositoryDirectory property is MQ or IDL.

The default value is JMS.

WebSphere MQ and IDL

Use WebSphere MQ rather than IDL for event delivery transport, unless you must

have only one product. WebSphere MQ offers the following advantages over IDL:

v Asynchronous communication:

WebSphere MQ allows the application-specific component to poll and

persistently store events even when the server is not available.

v Server side performance:

WebSphere MQ provides faster performance on the server side. In optimized

mode, WebSphere MQ stores only the pointer to an event in the repository

database, while the actual event remains in the WebSphere MQ queue. This

prevents writing potentially large events to the repository database.

v Agent side performance:

WebSphere MQ provides faster performance on the application-specific

component side. Using WebSphere MQ, the connector polling thread picks up an

event, places it in the connector queue, then picks up the next event. This is

faster than IDL, which requires the connector polling thread to pick up an event,

go across the network into the server process, store the event persistently in the

repository database, then pick up the next event.

JMS

The JMS transport mechanism enables communication between the connector and

client connector framework using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as

jms.MessageBrokerName, jms.FactoryClassName, jms.Password, and jms.UserName

are listed in Connector Configurator. The properties jms.MessageBrokerName and

jms.FactoryClassName are required for this transport.

There may be a memory limitation if you use the JMS transport mechanism for a

connector in the following environment:

v AIX 5.0

v WebSphere MQ 5.3.0.1

v ICS is the integration broker

In this environment, you may experience difficulty starting both the connector

controller (on the server side) and the connector (on the client side) due to memory

use within the WebSphere MQ client. If your installation uses less than 768MB of

process heap size, set the following variable and property:

v Set the LDR_CNTRL environment variable in the CWSharedEnv.sh script.

104 Adapter for PeopleSoft User Guide

This script is located in the \bin directory below the product directory

(<ProductDir>). Using a text editor, add the following line as the first line in the

CWSharedEnv.sh script:

export LDR_CNTRL=MAXDATA=0x30000000

This line restricts heap memory usage to a maximum of 768 MB (3 segments *

256 MB). If the process memory grows larger than this limit, page swapping can

occur, which can adversely affect the performance of your system.

v Set the value of the IPCCBaseAddress property to 11 or 12. For more

information on this property, see the System Installation Guide for UNIX.

DuplicateEventElimination

When the value of this property is true, a JMS-enabled connector can ensure that

duplicate events are not delivered to the delivery queue. To use this feature, during

connector development, the connector must have a unique event identifier set as

the business object ObjectEventId attribute in the application-specific code.

Note: When the value of this property is true, the MonitorQueue property must

be enabled to provide guaranteed event delivery.

The default value is false.

EnableOidForFlowMonitoring

When the value of this property is true, the adapter runtime will mark the

incoming ObjectEventID as a foreign key for flow monitoring.

This property is only valid if the BrokerType property is set to ICS.

The default value is false.

FaultQueue

If the connector experiences an error while processing a message, it moves the

message (and a status indicator and description of the problem) to the queue

specified in the FaultQueue property.

The default value is <CONNECTORNAME>/FAULTQUEUE.

jms.FactoryClassName

The jms.FactoryClassName property specifies the class name to instantiate for a

JMS provider. This property must be set if the value of the DeliveryTransport

property is JMS.

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.ListenerConcurrency

The jms.ListenerConcurrency property specifies the number of concurrent listeners

for the JMS controller. It specifies the number of threads that fetch and process

messages concurrently within a controller.

This property is valid only if the value of the jms.OptimizedTransport property is

true.

The default value is 1.

Appendix A. Standard configuration properties for connectors 105

jms.MessageBrokerName

The jms.MessageBrokerName specifies the broker name to use for the JMS

provider. You must set this connector property if you specify JMS as the delivery

transport mechanism (in the DeliveryTransport property).

When you connect to a remote message broker, this property requires the following

values:
QueueMgrName:Channel:HostName:PortNumber

where:

QueueMgrName is the name of the queue manager.

Channel is the channel used by the client.

HostName is the name of the machine where the queue manager is to reside.

PortNumberis the port number used by the queue manager for listening

For example:

jms.MessageBrokerName = WBIMB.Queue.Manager:CHANNEL1:RemoteMachine:1456

The default value is crossworlds.queue.manager. Use the default when connecting

to a local message broker.

jms.NumConcurrentRequests

The jms.NumConcurrentRequests property specifies the maximum number of

concurrent service call requests that can be sent to a connector at the same time.

Once that maximum is reached, new service calls are blocked and must wait for

another request to complete before proceeding.

The default value is 10.

jms.Password

The jms.Password property specifies the password for the JMS provider. A value

for this property is optional.

There is no default value.

jms.TransportOptimized

The jms.TransportOptimized property determines if the WIP (work in progress) is

optimized. You must have a WebSphere MQ provider to optimize the WIP. For

optimized WIP to operate, the messaging provider must be able to:

1. Read a message without taking it off the queue

2. Delete a message with a specific ID without transferring the entire message to

the receiver’s memory space

3. Read a message by using a specific ID (needed for recovery purposes)

4. Track the point at which events that have not been read appear.

The JMS APIs cannot be used for optimized WIP because they do not meet

conditions 2 and 4 above, but the MQ Java APIs meet all four conditions, and

hence are required for optimized WIP.

This property is valid only if the value of DeliveryTransport is JMS and the value of

BrokerType is ICS.

The default value is false.

106 Adapter for PeopleSoft User Guide

jms.UserName

the jms.UserName property specifies the user name for the JMS provider. A value

for this property is optional.

There is no default value.

JvmMaxHeapSize

The JvmMaxHeapSize property specifies the maximum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128m.

JvmMaxNativeStackSize

The JvmMaxNativeStackSize property specifies the maximum native stack size for

the agent (in kilobytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128k.

JvmMinHeapSize

The JvmMinHeapSize property specifies the minimum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1m.

ListenerConcurrency

The ListenerConcurrency property supports multithreading in WebSphere MQ

Listener when ICS is the integration broker. It enables batch writing of multiple

events to the database, thereby improving system performance.

This property valid only with connectors that use MQ transport. The value of the

DeliveryTransport property must be MQ.

The default value is 1.

Locale

The Locale property specifies the language code, country or territory, and,

optionally, the associated character code set. The value of this property determines

cultural conventions such as collation and sort order of data, date and time

formats, and the symbols used in monetary specifications.

A locale name has the following format:

ll_TT.codeset

Appendix A. Standard configuration properties for connectors 107

where:

ll is a two-character language code (in lowercase letters)

TT is a two-letter country or territory code (in uppercase letters)

codeset is the name of the associated character code set (may be optional).

By default, only a subset of supported locales are listed. To add other supported

values to the list, you modify the \Data\Std\stdConnProps.xml file in the

<ProductDir>\bin directory. For more information, refer to the Connector

Configurator appendix in this guide.

If the connector has not been internationalized, the only valid value for this

property is en_US. To determine whether a specific connector has been globalized,

refer to the user guide for that adapter.

The default value is en_US.

LogAtInterchangeEnd

The LogAtInterchangeEnd property specifies whether to log errors to the log

destination of the integration broker.

Logging to the log destination also turns on e-mail notification, which generates

e-mail messages for the recipient specified as the value of MESSAGE_RECIPIENT

in the InterchangeSystem.cfg file when errors or fatal errors occur. For example,

when a connector loses its connection to the application, if the value of

LogAtInterChangeEnd is true, an e-mail message is sent to the specified message

recipient.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

MaxEventCapacity

The MaxEventCapacity property specifies maximum number of events in the

controller buffer. This property is used by the flow control feature.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The value can be a positive integer between 1 and 2147483647.

The default value is 2147483647.

MessageFileName

The MessageFileName property specifies the name of the connector message file.

The standard location for the message file is \connectors\messages in the product

directory. Specify the message file name in an absolute path if the message file is

not located in the standard location.

If a connector message file does not exist, the connector uses

InterchangeSystem.txt as the message file. This file is located in the product

directory.

108 Adapter for PeopleSoft User Guide

Note: To determine whether a connector has its own message file, see the

individual adapter user guide.

The default value is InterchangeSystem.txt.

MonitorQueue

The MonitorQueue property specifies the logical queue that the connector uses to

monitor duplicate events.

It is valid only if the value of the DeliveryTransport property is JMS and the value

of the DuplicateEventElimination is true.

The default value is <CONNECTORNAME>/MONITORQUEUE

OADAutoRestartAgent

the OADAutoRestartAgent property specifies whether the connector uses the

automatic and remote restart feature. This feature uses the WebSphere

MQ-triggered Object Activation Daemon (OAD) to restart the connector after an

abnormal shutdown, or to start a remote connector from System Monitor.

This property must be set to true to enable the automatic and remote restart

feature. For information on how to configure the WebSphere MQ-triggered OAD

feature. see the Installation Guide for Windows or for UNIX.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

OADMaxNumRetry

The OADMaxNumRetry property specifies the maximum number of times that the

WebSphere MQ-triggered Object Activation Daemon (OAD) automatically attempts

to restart the connector after an abnormal shutdown. The OADAutoRestartAgent

property must be set to true for this property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is 1000.

OADRetryTimeInterval

The OADRetryTimeInterval property specifies the number of minutes in the

retry-time interval for the WebSphere MQ-triggered Object Activation Daemon

(OAD). If the connector agent does not restart within this retry-time interval, the

connector controller asks the OAD to restart the connector agent again. The OAD

repeats this retry process as many times as specified by the OADMaxNumRetry

property. The OADAutoRestartAgent property must be set to true for this

property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is 10.

Appendix A. Standard configuration properties for connectors 109

PollEndTime

The PollEndTime property specifies the time to stop polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

PollFrequency

The PollFrequency property specifies the amount of time (in milliseconds) between

the end of one polling action and the start of the next polling action. This is not

the interval between polling actions. Rather, the logic is as follows:

v Poll to obtain the number of objects specified by the value of the PollQuantity

property.

v Process these objects. For some connectors, this may be partly done on separate

threads, which execute asynchronously to the next polling action.

v Delay for the interval specified by the PollFrequency property.

v Repeat the cycle.

The following values are valid for this property:

v The number of milliseconds between polling actions (a positive integer).

v The word no, which causes the connector not to poll. Enter the word in

lowercase.

v The word key, which causes the connector to poll only when you type the letter

p in the connector Command Prompt window. Enter the word in lowercase.

The default is 10000.

Important: Some connectors have restrictions on the use of this property. Where

they exist, these restrictions are documented in the chapter on

installing and configuring the adapter.

PollQuantity

The PollQuantity property designates the number of items from the application

that the connector polls for. If the adapter has a connector-specific property for

setting the poll quantity, the value set in the connector-specific property overrides

the standard property value.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the ContainerManagedEvents property has a value.

An e-mail message is also considered an event. The connector actions are as

follows when it is polled for e-mail.

v When it is polled once, the connector detects the body of the message, which it

reads as an attachment. Since no data handler was specified for this mime type,

it will then ignore the message.

110 Adapter for PeopleSoft User Guide

v The connector processes the first BO attachment. The data handler is available

for this MIME type, so it sends the business object to Visual Test Connector.

v When it is polled for the second time, the connector processes the second BO

attachment. The data handler is available for this MIME type, so it sends the

business object to Visual Test Connector.

v Once it is accepted, the third BO attachment should be transmitted.

PollStartTime

The PollStartTime property specifies the time to start polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

RepositoryDirectory

The RepositoryDirectory property is the location of the repository from which the

connector reads the XML schema documents that store the metadata for business

object definitions.

If the integration broker is ICS, this value must be set to set to <REMOTE>

because the connector obtains this information from the InterChange Server

repository.

When the integration broker is a WebSphere message broker or WAS, this value is

set to <ProductDir>\repository by default. However, it may be set to any valid

directory name.

RequestQueue

The RequestQueue property specifies the queue that is used by the integration

broker to send business objects to the connector.

This property is valid only if the value of the DeliveryTransport property is JMS.

The default value is <CONNECTORNAME>/REQUESTQUEUE.

ResponseQueue

The ResponseQueue property specifies the JMS response queue, which delivers a

response message from the connector framework to the integration broker. When

the integration broker is ICS, the server sends the request and waits for a response

message in the JMS response queue.

This property is valid only if the value of the DeliveryTransport property is JMS.

The default value is <CONNECTORNAME>/RESPONSEQUEUE.

Appendix A. Standard configuration properties for connectors 111

RestartRetryCount

The RestartRetryCount property specifies the number of times the connector

attempts to restart itself. When this property is used for a connector that is

connected in parallel, it specifies the number of times the master connector

application-specific component attempts to restart the client connector

application-specific component.

The default value is 3.

RestartRetryInterval

The RestartRetryInterval property specifies the interval in minutes at which the

connector attempts to restart itself. When this property is used for a connector that

is linked in parallel, it specifies the interval at which the master connector

application-specific component attempts to restart the client connector

application-specific component.

Possible values for the property range from 1 through 2147483647.

The default value is 1.

ResultsSetEnabled

The ResultsSetEnabled property enables or disables results set support when

Information Integrator is active. This property can be used only if the adapter

supports DB2 Information Integrator.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the value of BrokerType is WMQI.

The default value is false.

ResultsSetSize

The ResultsSetSize property defines the maximum number of business objects that

can be returned to Information Integrator. This property can be used only if the

adapter supports DB2 Information Integrator.

This property is valid only if the value of the ResultsSetEnabled property is true.

The default value is 0. This means that the size of the results set is unlimited.

RHF2MessageDomain

The RHF2MessageDomain property allows you to configure the value of the field

domain name in the JMS header. When data is sent to a WebSphere message

broker over JMS transport, the adapter framework writes JMS header information,

with a domain name and a fixed value of mrm. A configurable domain name lets

you track how the WebSphere message broker processes the message data.

This is an example header:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

This property is valid only if the value of BrokerType is WMQI or WAS. Also, it is

valid only if the value of the DeliveryTransport property is JMS, and the value of

the WireFormat property is CwXML.

112 Adapter for PeopleSoft User Guide

Possible values are mrm and xml. The default value is mrm.

SourceQueue

The SourceQueue property designates the JMS source queue for the connector

framework in support of guaranteed event delivery for JMS-enabled connectors

that use a JMS event store. For further information, see “ContainerManagedEvents”

on page 102.

This property is valid only if the value of DeliveryTransport is JMS, and a value for

ContainerManagedEvents is specified.

The default value is <CONNECTORNAME>/SOURCEQUEUE.

SynchronousRequestQueue

The SynchronousRequestQueue property delivers request messages that require a

synchronous response from the connector framework to the broker. This queue is

necessary only if the connector uses synchronous execution. With synchronous

execution, the connector framework sends a message to the synchronous request

queue and waits for a response from the broker on the synchronous response

queue. The response message sent to the connector has a correlation ID that

matches the ID of the original message.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is <CONNECTORNAME>/SYNCHRONOUSREQUESTQUEUE

SynchronousRequestTimeout

The SynchronousRequestTimeout property specifies the time in milliseconds that

the connector waits for a response to a synchronous request. If the response is not

received within the specified time, the connector moves the original synchronous

request message (and error message) to the fault queue.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is 0.

SynchronousResponseQueue

The SynchronousResponseQueue property delivers response messages in reply to a

synchronous request from the broker to the connector framework. This queue is

necessary only if the connector uses synchronous execution.

This property is valid only if the value of DeliveryTransport is JMS.

The default is <CONNECTORNAME>/SYNCHRONOUSRESPONSEQUEUE

TivoliMonitorTransactionPerformance

The TivoliMonitorTransactionPerformance property specifies whether IBM Tivoli

Monitoring for Transaction Performance (ITMTP) is invoked at run time.

The default value is false.

WireFormat

The WireFormat property specifies the message format on the transport:

Appendix A. Standard configuration properties for connectors 113

v If the value of the RepositoryDirectory property is a local directory, the value is

CwXML.

v If the value of the RepositoryDirectory property is a remote directory, the value

is CwBO.

WsifSynchronousRequestTimeout

The WsifSynchronousRequestTimeout property specifies the time in milliseconds

that the connector waits for a response to a synchronous request. If the response is

not received within the specified time, the connector moves the original

synchronous request message (and an error message) to the fault queue.

This property is valid only if the value of BrokerType is WAS.

The default value is 0.

XMLNameSpaceFormat

The XMLNameSpaceFormat property specifies short or long namespaces in the

XML format of business object definitions.

This property is valid only if the value of BrokerType is set to WMQI or WAS.

The default value is short.

114 Adapter for PeopleSoft User Guide

Appendix B. Connector specific properties

This appendix documents configuration properties specific to this connector at

runtime. Connector-specific properties provide a way of changing static

information or logic within the connector without having to recode and rebuild it.

Table 16 lists the connector-specific configuration properties for the connector. See

the sections that follow for explanations of the properties.

 Table 16. Connector-specific configuration properties

Name Possible values

Default

value Required

AppServerMachineNameOrIP n/a Yes

ApplicationPassword Password for the connector’s user account PS Yes

ApplicationUserName Name of the connector’s user account PS Yes

ConnectorID Name of connector for event distribution null No

ConvertToPrimitiveFloat true or false false No

DisableCrossReferencing true or false false No

EventKeyDelimiter <NameValueChar><DelimiterChar> Note: Do not

specify a space between the actual characters.

=: No

PingCompInterface replace < CHANGEME > with the name of an

existing component interface

CHANG

ME

Yes

PollFutureEvents true or false false No

PollQuantity Values are 1 to 500 1 No

PortNumber The Jolt port number 9000 Yes

ReconnectSessionOnGetFail true or false false No

Values are 1or greater 1 No

SetLangCode true or false false No

UseEventCI true or false true No

AppServerMachineNameOrIP

The name or IP address of the machine where the Application Server is running.

The connector uses this value only when connecting to the application.

ApplicationPassword

Password for the connector’s user account in the PeopleSoft application.

There is no default value.

ApplicationUserName

Name of the connector’s user account in the PeopleSoft application.

There is no default value.

© Copyright IBM Corp. 2001, 2004 115

ConnectorID

The value of this property is used to search for events in the CW_EVENT_TBL through

the cweventci. It is used for event distribution, when multiple connectors are used

to retrieve specific events. If the value is left blank or null, this property will not

be set prior to invoking the Find() method in the event component interface.

ConvertToPrimitiveFloat

Specifies whether to convert float objects to primitive float objects.

The default value is false.

DisableCrossReferencing

Specifies how key values are set. When key values are generated through

PeopleCode, set this property to false, which enables cross referencing. When key

values are set against the key attributes in the business object definition, set this

property to true.

The default value is false.

EventKeyDelimiter

Specifies the two characters in name-value pairs that separate the name from its

value (NameValue character) and the pairs from each other (Delimiter character).

The following example uses the default equals (=) NameValue character and default

colon (:) Delimiter character:

SETID=1234:DEPTID=5678

The default value is =:

PingCompInterface

Pings the component interface to test for network connectivity/session validity.

FAIL is returned when either the session or connectivity are invalid. When the

name of the component interface is given, the connector agent terminates if the

session instance is unable to get that interface, because of either invalid session or

network connectivity issues.

PollFutureEvents

Specifies whether the connector searches for future-dated events to see if they are

ready for polling. When this is set to true, the connector polls by first searching for

events with a status of 99, indicating that they are set for future polling. When it

finds these events, it checks their date against the system date. If the event date is

equal to or less than the system date, the connector changes the event status to 0,

indicating that the event is ready for pollong.

When this is set to false, the connector does not check for events set for future

polling.

The default value is false.

116 Adapter for PeopleSoft User Guide

PollQuantity

Number of rows in the database table that the connector retrieves per polling

interval. Allowable values are 1 to 500.

The default is 1.

PortNumber

The Jolt Port Number (not the Tuxedo port number) on the Application Server. The

connector connects to the JSL, not to the WSL.

The default value is 9000

ReconnectSessionOnGetFail

If set to true, the connector automatically creates a new session object and

reconnects to the PeopleSoft application. The connector uses this property only

when the component interface’s Get() method returns a non-critical error or

warning message that terminates the connector’s session object. Typically this

problem arises when an instance has different keys from those used by the

connector.

The default value is false.

SessionPoolSize

Enables the connector to run multiple PeopleSoft session instances. Set this

property to the number of session instances you want to run. Multi-threading is

only available to inbound objects. Each inbound object thread is allocated a session

instance from a pool of free sessions, and then that session instance moves to a

busy pool. When the transaction finishes, the session instance is released back to

the free pool.

When the connector runs multi-threaded, one session instance is reserved for

polling which is single-threaded and performed serially.

SetLangCode

Specifies whether the connector sets the base language immediately after it

connects to the PeopleSoft application. If set to true, the connector uses a

workaround that correctly updates the base language in the base table rather than

in the language table. If you set this property to false, your base tables may not

be updated correctly.

The default value is false.

UseEventCl

Specifies whether the component interface CWEVENT_Clis used for outbound

processing. When this property is set to true, CWEVENT_CL is used for outbound

processing. When this is set to false, no outbound processing occurs.

The default value is true.

Appendix B. Connector specific properties 117

118 Adapter for PeopleSoft User Guide

Appendix C. Delta event propagation

For environments that use PeopleTools versions 8.44 and 8.45, the delta event

propagation process provides an alternative to the DeltaUpdate verb operations for

updating business objects between PeopleSoftR and the adapter with small

changes. It is an asynchronous process, and may offer greater processing

efficiencies over the recursive verb operations in some circumstances. This

appendix includes the following topics:

v “Overview”

v “Process dependencies” on page 120

v “Configuring WebSphere MQ server” on page 120

v “Verifying the WebSphere MQ Client installation” on page 123.

v “Generating the JNDI bindings file” on page 123

v “Configuring PeopleSoft” on page 124

Overview

The delta event propagation process uses the PeopleSoft integration broker, the

WebSphere MQ message queue, and the XML ODA and XML data handler, to send

business updates from the PeopleSoft application to the adapter. Event polling is

never performed as a part of this process.

The following steps occur during the process:

v You create an XML message definition for each component of interest. The

message structure mirrors the structure of the component.

v When you make and save changes to a component, the changes are copied to

the corresponding XML message definition instance.

Binds JNDI NAme Space

(Queue Connection Factory,

Queue, Queue Manager)

JMS Target Connector
JMS Provider

(WebSphere MQ)

PeopleSoft Applicatoin

on the Client Machine
Server Machine

(Server Connection

Channel)

Sends Message to psQ

(Server Connection

Channel)

On the

event of

incomming

message on

psQ picks

the messageJMS Admin Tool

Lo
ok

up

WBI Adapter

Figure 16. Delta event propagation architecture

© Copyright IBM Corp. 2001, 2004 119

v The PeopleSoft integration broker uses the JMSTargetConnector to publish the

XML messages onto the MQ message queue.

v The adapter for PeopleSoft picks up the messages from the MQ message queue.

v The adapter uses the XML ODA and the XML data handler to construct a

WebSphere business object from the XML message. The business object reflects

the changes that were made to the component within the PeopleSoft application.

Process dependencies

This appendix assumes that you are experienced with PeopleSoft component

development and application configuration, and with WebSphere MQ installation

and configuration. Also, it assumes that you have access to full product

documentation for both products. Before you attempt to implement this process,

make sure that the following dependencies are satisfied:

v PeopleTools 8.44 or 8.45 and any appropriate patches are installed.

v WebSphere MQ server, version 5.3, is installed on a server machine.

v WebSphere MQ client is installed on the same machine as the PeopleSoft

Application.

v You have set the standard property ContainerManagedEvents to true, and you

have specified the SourceQueue as the name of the WebSphere MQ message

queue where the XML message from PeopleSoft will be routed.

For more information on setting this property, see “ContainerManagedEvents”

on page 102.

v The XML ODA is installed, and the XML data handler is configured.

When configuring the XML data handler, only the BOPrefix default value will

need to be set in the corresponding meta object’s attribute.

For more information, see the Data Handler Guide.

Configuring WebSphere MQ server

On the WebSphere MQ server machine, you must configure the following:

v a Queue Manager

v a Queue

v If you are working in a distributed environment: a Server Connection Channel

Configuring a Queue manager

Follow these steps to configure a queue manager.

1. In the WebSphere MQ client, navigate to the Create Queue Manager-Step 1

page. Set the fields as shown:

 Field Setting

Queue Manager psQM

Dead Letter Queue SYSTEM.DEAD.LETTER.QUEUE

Max Handle Limit 256

Trigger Interval 999999999

Uncommitted Mssgs 1000

2. Click Next to open the Create Queue Manager (Step 2) page. page. Set the fields

as shown:

120 Adapter for PeopleSoft User Guide

Field Setting

Use Circular Logging Selected

Log Path C:\program files\ibm\websphere mq\log

Log File Size 256

Log Primary Files 3

Log Secondary Files 2

3. Click Nextto open the Create Queue Manager (Step 3) page.

4. Select the Start Queue Manager check box

5. Click Nextto open the Create Queue Manager (Step 4) page.

6. Select the Create listener configured for TCP/IP check box.

7. At the Listen on port number: field, enter

81

.

8. Click

Finish.

Configuring a queue

Follow these steps to configure a queue.

 1. In the MQ client, navigate to Local Queue.

 2. On the general tab, select the following settings for the fields shown:

 Field Setting

Queue name Name of the Queue you are creating, for

example, psQ

Description Websphere Default Local Queue

Put Messages Allowed

Get Messages Allowed

Default Priority 0

Default Persistence Not Persistent

Scope Queue Manager

Usage Normal

 3. Click OK.

 4. On the Extended tab, select the following settings for the fields shown:

 Field Setting

Maximum Queue Length 5000

Maximum Message Length 4194304

Shareability Shareable

Default Input Open Option Shared

Message delivery Sequence Priority

Retention Level 999999999

Distribution Lists Disabled

Appendix C. Delta event propagation 121

5. Click OK.

 6. On the Cluster tab, set the following:

v Select Not Shared in Cluster.

v Select On Open at the Default Bind: field.
 7. Click OK.

 8. On the Events tab, select the following settings for the fields shown:

 Field Setting

Maximum Depth Event Extended

High Depth Event Disabled

High Depth Limit 80

Low Depth Event Disabled

Low Depth Limit 20

Service Interval Event None

Service Interval 999999999

 9. Click OK.

10. On the Storage tab, set the following:

v Set Backout Threshold to 0.

v Set Harden Get Backout to Harden.
11. Click OK.

Configuring a server channel

If you are working in a distributed environment, you must configure a server

channel. If you are not working in a distributed environment, you do not need to

complete this task.

1. Navigate to the Create Server Connection page.

2. On the General tab, set the following:

v Enter a name for the Channel Name.

v Set Transmission Protocol to TCP/IP.
3. Click OK.

4. On the Extended tab, set the following:

v Set Maximum Message Length to 4194304.

v Set Heartbeat Interval to 300.
5. Click OK.

6. On the MCA tab, enter an MCA User ID. Make sure that the user ID you enter is

legitimate on the operating system you use, and on both the server and client

machines.

7. Click OK.

8. On the SSL tab, select none at the Standard settings field.

Setting up the class path for the WebSphere MQ client jars

You must set up a class path for the WebSphere MQ client jars. Follow these steps

to do so:

1. Log on to WebSphere Application Server Admin Console.

122 Adapter for PeopleSoft User Guide

2. From the left navigation pane, click Servers > Application Servers > <Server

Name> where the <Server Name> is the name of the server on the right hand

pane.

3. Under Additional Properties, click Process Definition.

4. Under Additional Properties, click the Java Virtual Machine.

5. In the Class Path, set the following:

<MQ_Client>/lib;<MQ_Client>/lib/providerutil.jar;

<MQ_Client>/lib/com.ibm.mq.jar;<MQ_Client>/lib/com.ibm.mqbind.jar;

<MQ_Client>/lib/jms.jar;<MQ_Client>/lib/jndi.jar;

<MQ_Client>/lib/com.ibm.mqjms.jar;<MQ_Client>/lib/fscontext.jar;

<MQ_Client>/lib/connector.jar;<MQ_Client>/lib/jta.jar;

<MQ_Client>/lib/postcard.jar;

Where <MQ_Client> is the installed directory of the WebSphere MQ Client.

6. Click OK and then click Save to save the change.

7. Reboot the WebSphere Application Server.

Verifying the WebSphere MQ Client installation

Verify the Websphere MQ client is installed on the same machine as your

PeopleSoft application. Note the directory where the MQ Client files

(com.ibm.mq.jar, com.ibm.mqbind.jar etc.) are installed, and create a subdirectory

under this directory. Label the subdirectory bin.

Generating the JNDI bindings file

You must generate a JNDI bindings file on the server machine, and then transfer it

to the \bin subdirectory on the client machine.

1. On the server machine, create a directory and label it C:\JNDI-Directory. If this

directory already exists, delete any bindings files from it.

2. On the server machine, navigate to the java\bin directory of WebSphere MQ

and make the following change in the JMSAdmin config file

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.

RefFSContextFactory PROVIDER_URL=file:/C:/JNDI-Directory

3. Review the pssetup.bat file or ivtsetup.bat file.

v Set the correct class path.

v Verify that qcf and q JMS administered JNDI objects point to the correct

Queue Manager, Queue, and Server Connection Channel, if needed, of

WebSphere MQ Server.

The following code provides an example of what you should see in the file.

set CLASSPATH=C:\Program Files\IBM\WebSphere MQ\Java\lib\com.ibm.mqjms.jar;

C:\Program Files\IBM\WebSphere MQ\Java\lib\com.ibm.mq.jar;

C:\Program Files\IBM\WebSphere MQ\Java\lib\jms.jar;

C:\Program Files\IBM\WebSphere MQ\Java\lib\jndi.jar;

C:\Program Files\IBM\WebSphere MQ\Java\lib\providerutil.jar;

C:\Program Files\IBM\WebSphere MQ\Java\lib\ldap.jar;

C:\Program Files\IBM\WebSphere MQ\Java\lib\fscontext.jar;

C:\Program Files\IBM\WebSphere MQ\Java\lib\connector.jar

echo + Creating script for object creation within JMSAdmin

rem echo def qcf(psQCF) TRANSPORT(CLIENT) > ivtsetup.scp

rem the following line to be used in place of above for mq client scenario

echo def qcf(psQCF) TRANSPORT(CLIENT) HOST(SMEKA) PORT(1415)

CHANNEL(ps_SRV_CHANNEL) QMGR(psQM) > ivtsetup.scp

echo def q(psQ) qu(psQ) >> ivtsetup.scp

Appendix C. Delta event propagation 123

echo end >> ivtsetup.scp

echo + Calling JMSAdmin in batch mode to create objects

java -DMQJMS_LOG_DIR="%MQ_JAVA_INSTALL_PATH%"\

log -DMQJMS_TRACE_DIR="%MQ_JAVA_INSTALL_PATH%"\

trace -DMQJMS_INSTALL_PATH="%MQ_JAVA_INSTALL_PATH%"

 com.ibm.mq.jms.admin.JMSAdmin < ivtsetup.scp

echo + Administration done; tidying up files

del ivtsetup.scp

echo + Done!

PAUSE

4. Run the bat file from the command line in java/bin directory. This creates

a.bindings file in the C:\JNDI-Directory.

5. Copy this file to the client machine to the bin directory of the WebSphere MQ

Client Installation.

Configuring PeopleSoft

You must complete some initial configuration tasks within PeopleSoft, and then

some additional configuration tasks required for each component.

Note: For more information about the tasks listed in these sections, refer to your

PeopleTools documentation that describes the PeopleSoft Integration Broker.

Configuring the PeopleSoft application

Complete the following tasks. These are required to set the PeopleSoft application

correctly for the delta update propagation process.

1. Activate the Pub/Sub Server Domain and add a node definition.

Make sure that the following values are set for the node properties.

 Property Value

Node Name User created

Node Description User created

Node Type PIA

Routing Implicit

Authentication None

Activate Node check box Selected

2. Specify a gateway and connector for the current node. If the gateway is not

available, create one locally with a URL similar to this example:

http://gateway_server/PSIGW/PeopleSoftListeningConnector

Note: Gateway_server is the machine name and port, host name, or IP address

of the web server hosting the gateway. The gateway uses the PeopleSoft

listening connector to receive messages from an integration engine node

or a remote gateway.

3. Edit the JMSTargetConnector properties so that their values match those shown

below.

 Property Value Notes

sendUmcompressed Y

124 Adapter for PeopleSoft User Guide

Property Value Notes

JMSAcknowledgement AUTO_ACKNOWLEDGE

JMSDeliveryMode NON_PERSISTENT

JMSFactory Example value:

psQCF

Make this the value of the

JMS administered

QueueConnectionFactory

object in the.bat file.

JMSMessageTimeToLive 0

JMSMessageType Text

JMSPriority 0

JMSProvider MQSeries

JMSQueue Example value:

psQ

Add this property if it does

not already exist. Make its

value the value of the JMS

administered Queue object in

the.bat file.

JMSReplyTo FALSE

JMSUrl Point to the directory where

you put the.bindings file on

the client machine.

4. Use PeopleTools Application Designer to create a project.

Configuring PeopleSoft components

In addition to the initial tasks you must complete to set up the PeopleSoft

application for delta event propagation, you must also complete the following

tasks for each component for which you want delta events propagated.

1. Use PeopleTools Application Designer to build the component and to include

the component in the project.

2. Define a message with a structure similar to the component of interest.

This means that the message must have the same hierarchy of records as the

component. Make sure all primary records are included, and if the component

has up datable views, make sure the view records are also included in the

message structure.

3. Open the SavePostChange event function for the component in Application

Designer. Add the following PeopleCode at the beginning of the file, replacing

TEST_MSG with the name of the message you have just created in step 2.

Local Message &MSG;

Local Rowset &ComponentBuffer;

If ComponentChanged() Then

 &ComponentBuffer = GetLevel0();

 &MSG = CreateMessage(Message.TEST_MSG);

 &MSG.CopyRowsetDelta(&ComponentBuffer);

 &MSG.Publish();

End-If;

4. Add an Asynchronous Outbound Transaction to the node.

5. Generate a WSDL document for the message created in step 2. When the WSDL

is generated, it will open in a browser.

6. Select all in your browser and save as a.WSDL file.

Appendix C. Delta event propagation 125

7. Use the following script to extract the xsd file from the WSDL file you just

saved.

sed ’/wsdl/d’ $1 | sed ’/soap/d’ | sed ’/xml

version="1.0"/d’| sed ’s/- <xsd:/ <xsd:/g’ | sed ’s/-

<\/xsd:/<\/xsd:/g’ | sed ’s/ <xsd:/<xsd:/g’ | sed ’s/

<\/xsd:/<\/xsd:/g’ > $2

Save the script to a file, named convertWsdlToXSD.sh. The script executes as

follows:

sh convertWsdlToXSD.sh <INPUTFILENAME> <OUTPUTFILENAME>

where <INPUTFILENAME> is the name of the WSDL file and

<OUTPUTFILENAME> is the name of the XSD file

to be generated

You must complete steps 1 through 7 for each PeopleSoft component for which

you want delta changes to be routed from PeopleSoft to the adapter.

Use the XMLODA to generate the business object definition for the corresponding

XSD extracted in step 5 above. This definition will be used by the adapter to send

the events to the integration broker, WebSphere InterChange Server.

126 Adapter for PeopleSoft User Guide

Appendix D. Common Event Infrastructure

WebSphere Business Integration Server Foundation includes the Common Event

Infrastructure Server Application, which is required for Common Event

Infrastructure to operate. The WebSphere Application Server Foundation can be

installed on any system (it does not have to be the same machine on which the

adapter is installed.)

The WebSphere Application Server Application Client includes the libraries

required for interaction between the adapter and the Common Event Infrastructure

Server Application. You must install WebSphere Application Server Application

Client on the same system on which you install the adapter. The adapter connects

to the WebSphere Application Server (within the WebSphere Business Integration

Server Foundation) by means of a configurable URL.

Common Event Infrastructure support is available using any integration broker

supported with this release.

Required software

In addition to the software prerequisites required for the adapter, you must have

the following installed for Common Event Infrastructure to operate:

v WebSphere Business Integration Server Foundation 5.1.1

v WebSphere Application Server Application Client 5.0.2, 5.1, or 5.1.1.

(WebSphere Application Server Application Client 5.1.1 is provided with

WebSphere Business Integration Server Foundation 5.1.1.)

Note: Common Event Infrastructure is not supported on any HP-UX or Linux

platform.

Enabling Common Event Infrastructure

Common Event Infrastructure functionality is enabled with the standard properties

CommonEventInfrastructure and CommonEventInfrastructureContextURL, configured

with Connector Configurator. By default, Common Event Infrastructure is not

enabled. The CommonEventInfrastructureContextURL property enables you to

configure the URL of the Common Event Infrastructure server.(Refer to the

“Standard Properties” appendix of this document for more information.)

Obtaining Common Event Infrastructure adapter events

If Common Event Infrastructure is enabled, the adapter generates Common Event

Infrastructure events that map to the following adapter events:

v Starting the adapter

v Stopping the adapter

v An application response to a timeout from the adapter agent

v Any doVerbFor call issued from the adapter agent

v A gotApplEvent call from the adapter agent

For another application (the “consumer application”) to receive the Common Event

Infrastructure events generated by the adapter, the application must use the

© Copyright IBM Corp. 2001, 2004 127

Common Event Infrastructure event catalog to determine the definitions of

appropriate events and their properties. The events must be defined in the event

catalog for the consumer application to be able to consume the sending

application’s events.

The “Common Event Infrastructure event catalog definitions” appendix of this

document contains XML format metadata showing, for WebSphere Business

Information adapters, the event descriptors and properties the consumer

application should search for.

For more information

For more information about Common Event Infrastructure, refer to the Common

Event Infrastructure information in the WebSphere Business Integration Server

Foundation documentation, available at the following URL:

http://publib.boulder.ibm.com/infocenter/ws51help

For sample XML metadata showing the adapter-generated event descriptors and

properties a consumer application should search for, refer to“Common Event

Infrastructure event catalog definitions.”

Common Event Infrastructure event catalog definitions

The Common Event Infrastructure event catalog contains event definitions that can

be queried by other applications. The following are event definition samples, using

XML metadata, for typical adapter events. If you are writing another application,

your application can use event catalog interfaces to query against the event

definition. For more information about event definitions and how to query them,

refer to the Common Event Infrastructure documentation that is available from the

online IBM WebSphere Server Foundation Information Center.

For WebSphere Business Integration adapters, the extended data elements that

need to be defined in the event catalog are the keys of the business object. Each

business object key requires an event definition. So for any given adapter, various

events such as start adapter, stop adapter, timeout adapter, and any doVerbFor

event (create, update, or delete, for example) must have a corresponding event

definition in the event catalog.

The following sections contain examples of the XML metadata for start adapter,

stop adapter, and event request or delivery.

XML format for “start adapter” metadata

<eventDefinition name="startADAPTER"

 parent="event">

 <property name =”creationTime" //Comment: example value would be

 "2004-05-13T17:00:16.319Z"

 required="true" />

 <property name="globalInstanceId" //Comment: Automatically generated

 by Common Event Infrastructure

 required="true"/>

 <property name="sequenceNumber" //Comment: Source defined number

for messages to be sent/sorted logically

 required="false"/>

 <property name="version" //Comment: Version of the event

 required="false"

 defaultValue="1.0.1"/>

128 Adapter for PeopleSoft User Guide

<property name="sourceComponentId"

 path="sourceComponentId"

 required="true"/>

 <property name="application" //Comment: The name#version of the

source application generating the event. Example is "SampleConnector#3.0.0"

 path="sourceComponentId/application" required="false"/>

 <property name="component" //Comment: This will be the name#version

 of the source component.

 path="sourceComponentId/component"

 required="true"

 defaultValue="ConnectorFrameWorkVersion#4.2.2"/>

 <property name="componentIdType" //Comment: specifies the format

and meaning of the component

 path="sourceComponentId/componentIdType"

 required="true"

 defaultValue="Application"/>

 <property name="executionEnvironment"

 //Comment: Identifies the environment the application is running

 in...example is "Windows 2000#5.0"

 path="sourceComponentId/executionEnvironment"

 required="false" />

 <property name="location" //Comment: The value of this is the

 server name...example is "WQMI"

 path="sourceComponentId/location"

 required="true"/>

 <property name="locationType" //Comment specifies the format and

 meaning of the location

 path="sourceComponentId/locationType"

 required="true"

 defaultValue="Hostname"/>

 <property name="subComponent" //Comment:further distinction

of the logical component

 path="sourceComponentId/subComponent"

 required="true"

 defaultValue="AppSide_Connector.AgentBusinessObjectManager"/>

 <property name="componentType" //Comment: well-defined name

used to characterize all instances of this component

 path="sourceComponentId/componentType"

 required="true"

 defaultValue="ADAPTER"/>

 <property name="situation" //Comment: Defines the type of

 situation that caused the event to be reported

 path="situation"

 required="true"/>

 <property name="categoryName=" //Comment: Specifies the type

of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="StartSituation"/>

 <property name="situationType" //Comment: Specifies the type

of situation and disposition of the event

 path="situation/situationType"

 required="true"

 <property name="reasoningScope" //Comment: Specifies the scope

 of the impact of the event

 path="situation/situationType/reasoningScope"

 required="true"

 permittedValue="INTERNAL"

 permittedValue="EXTERNAL"/>

 <property name="successDisposition" //Comment: Specifies the

 success of event

 path="situation/situationType/successDisposition"

 required="true"

 permittedValue="SUCCESSFUL"

 permittedValue="UNSUCCESSFUL" />

 <property name="situationQualifier" //Comment: Specifies the

 situation qualifiers for this event

Appendix D. Common Event Infrastructure 129

path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="START_INITIATED"

 permittedValue="RESTART_INITIATED"

 permittedValue="START_COMPLETED" />

</eventDefinition>

XML format for ″stop adapter″ metadata

The metadata for “stop adapter” is the same as that for “start adapter” with the

following exceptions:

v The default value for the categoryName property is StopSituation:

<property name="categoryName="

 //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="StopSituation"/>

v The permitted values for the situationQualifier property differ and are as

follows for “stop adapter”:

<property name="situationQualifier"

 //Comment: Specifies the situation qualifiers for this event

 path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="STOP_INITIATED"

 permittedValue="ABORT_INITIATED"

 permittedValue="PAUSE_INITIATED"

 permittedValue="STOP_COMPLETED"

 />

XML format for “timeout adapter” metadata

The metadata for “timeout adapter” is the same as that for “start adapter” and

“stop adapter” with the following exceptions:

v The default value for the categoryName property is ConnectSituation:

<property name="categoryName="

 //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="ConnectSituation"/>

v The permitted values for the situationQualifier property differ and are as

follows for “timeout adapter”:

<property name="situationQualifier" //Comment: Specifies

 the situation qualifiers for this event

 path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="IN_USE"

 permittedValue="FREED"

 permittedValue="CLOSED"

 permittedValue="AVAILABLE"

 />

130 Adapter for PeopleSoft User Guide

XML format for ″request″ or ″delivery″ metadata

At the end of this XML format are the extended data elements. The extended data

elements for adapter request and delivery events represent data from the business

object being processed. This data includes the name of the business object, the key

(foreign or local) for the business object, and business objects that are children of

parent business objects. The children business objects are then broken down into

the same data as the parent (name, key, and any children business objects). This

data is represented in an extended data element of the event definition. This data

will change depending on which business object, which keys, and which child

business objects are being processed. The extended data in this event definition is

just an example and represents a business object named Employee with a key

EmployeeId and a child business object EmployeeAddress with a key EmployeeId.

This pattern could continue for as much data as exists for the particular business

object.

<eventDefinition name="createEmployee" //Comment: This

 extension name is always the business object verb followed by the business

 object name

 parent="event">

 <property name ="creationTime" //Comment: example value would be

"2004-05-13T17:00:16.319Z"

 required="true" />

 <property name="globalInstanceId" //Comment: Automatically generated

 by Common Event Infrastructure

 required="true"/>

 <property name="localInstanceId" //Comment: Value is business

 object verb+business object name+#+app name+ business object identifier

 required="false"/>

 <property name="sequenceNumber" //Comment: Source defined number

for messages to be sent/sorted logically

 required="false"/>

 <property name="version" //Comment: Version of the event...value is

 set to 1.0.1

 required="false"

 defaultValue="1.0.1"/>

 <property name="sourceComponentId"

 path="sourceComponentId"

 required="true"/>

 <property name="application" //Comment: The name#version of the

 source application generating the event...example is

 "SampleConnector#3.0.0"

 path="sourceComponentId/application"

 required="false"/>

 <property name="component" //Comment: This will be the name#version

of the source component.

 path="sourceComponentId/component"

 required="true"

 defaultValue="ConnectorFrameWorkVersion#4.2.2"/>

 <property name="componentIdType" //Comment: specifies the format

 and meaning of the component

 path="sourceComponentId/componentIdType"

 required="true"

 defaultValue="Application"/>

 <property name="executionEnvironment" //Comment: Identifies the

 environment#version the app is running in...example is "Windows 2000#5.0"

 path="sourceComponentId/executionEnvironment"

 required="false" />

 <property name="instanceId" //Comment: Value is business object

 verb+business object name+#+app name+ business object identifier

 path="sourceComponentId/instanceId"

 required="false"

 <property name="location" //Comment: The value of this is the

server name...example is "WQMI"

 path="sourceComponentId/location"

Appendix D. Common Event Infrastructure 131

required="true"/>

 <property name="locationType" //Comment specifies the format and

 meaning of the location

 path="sourceComponentId/locationType"

 required="true"

 defaultValue="Hostname"/>

 <property name="subComponent" //Comment:further distinction of the

 logical component-in this case the value is the name of the business

 object

 path="sourceComponentId/subComponent"

 required="true"/>

 <property name="componentType" //Comment: well-defined name used

 to characterize all instances of this component

 path="sourceComponentId/componentType"

 required="true"

 defaultValue="ADAPTER"/>

 <property name="situation" //Comment: Defines the type of

situation that caused the event to be reported

 path="situation"

 required="true"/>

 <property name="categoryName" //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 permittedValue="CreateSituation"

 permittedValue="DestroySituation"

 permittedValue="OtherSituation" />

 <property name="situationType" //Comment: Specifies the type

of situation and disposition of the event

 path="situation/situationType"

 required="true"

 <property name="reasoningScope" //Comment: Specifies the scope

of the impact of the event

 path="situation/situationType/reasoningScope"

 required="true"

 permittedValue="INTERNAL"

 permittedValue="EXTERNAL"/>

 <property name="successDisposition" //Comment: Specifies the

 success of event

 path="situation/situationType/successDisposition"

 required="true"

 permittedValue="SUCCESSFUL"

 permittedValue="UNSUCCESSFUL" />

 <extendedDataElements name="Employee" //Comment: name of business

 object itself

 type="noValue"

 <children name="EmployeeId"

 type="string"/> //Comment: type is one of the

 permitted values within Common Event Infrastructure documentation

 <children name="EmployeeAddress"

 type="noValue"/>

 <children name="EmployeeId"

 type="string"/>

 -

 -

 -

 </extendedDataElements

</eventDefinition>

132 Adapter for PeopleSoft User Guide

Appendix E. Application Response Management

This adapter is compatible with the Application Response Measurement

application programming interface (API), an API that allows applications to be

managed for availability, service level agreements, and capacity planning. An

ARM-instrumented application can participate in IBM Tivoli Monitoring for

Transaction Performance, allowing collection and review of data concerning

transaction metrics.

Application Response Measurement instrumentation support

This adapter is compatible with the Application Response Measurement

application programming interface (API), an API that allows applications to be

managed for availability, service level agreements, and capacity planning. An

ARM-instrumented application can participate in IBM Tivoli Monitoring for

Transaction Performance, allowing collection and review of data concerning

transaction metrics.

Required software

In addition to the software prerequisites required for the adapter, you must have

the following installed for ARM to operate:

v WebSphere Application Server 5.0.1 (contains the IBM Tivoli Monitoring for

Transaction Performance server). This does not have to be installed on the same

system as the adapter.

v IBM Tivoli Monitoring for Transaction Performance v. 5.2 Fixpack 1. This must

be installed on the same system on which the adapter is installed and

configured to point to the system on which the IBM Tivoli Monitoring for

Transaction Performance server resides.

Application Response Measurement support is available using any integration

broker supported with this release.

Note: Application Response Measurement instrumentation is supported on all

operating systems supported with this IBM WebSphere Business Integration

Adapters release except HP-UX (any version) and Red Hat Linux 3.0.

Enabling Application Response Measurement

ARM instrumentation is enabled via by setting the standard property

TivoliMonitorTransactionPerformance in Connector Configurator to “True.” By

default ARM support is not enabled. (Refer to the ″Standard Properties″ appendix

of this document for more information.)

Transaction monitoring

When ARM is enabled, the transactions that are monitored are service events and

event deliveries. The transaction is measured from the start of a service request or

event delivery to the end of the service request or event delivery. The name of the

transaction displayed on the Tivoli Monitoring for Transaction Performance console

will start with either SERVICE REQUEST or EVENT DELIVERY. The next part of the

name will be the business object verb (such as CREATE, RETRIEVE, UPDATE or DELETE).

The final part of the name will be the business object name such as “EMPLOYEE.”

© Copyright IBM Corp. 2001, 2004 133

For example, the name of a transaction for an event delivery for creation of an

employee might be EVENT DELIVERY CREATE EMPLOYEE. Another might be SERVICE

REQUEST UPDATE ORDER.

The following metrics are collected by default for each type of service request or

event delivery:

v Minimum transaction time

v Maximum transaction time

v Average transaction time

v Total transaction runs

You (or the system administrator of the WebSphere Application Server) can select

which of these metrics to display, for which adapter events, by configuring

Discovery Policies and Listener Policies for particular transactions from within the

Tivoli Monitoring for Transaction Performance console. (Refer to “For more

information.”)

For more information

Refer to the IBM Tivoli Monitoring for Transaction Performance documentation for

more information. In particular, refer to the IBM Tivoli Monitoring for Transaction

Performance User’s Guide for information about monitoring and managing the

metrics generated by the adapter.

134 Adapter for PeopleSoft User Guide

Index

Special characters
&BONAME 35

&CWPRIORITY1 35

&KEYLIST 35

A
adapter

broker compatibility 11

Adapter Development Kit (ADK) 2

adapter framework 1

APIs
examples 46

Application Response Measurement

instrumentation, support for 133

ApplicationPassword 115

ApplicationUserName 115

AppSpecificInfo property 57

archive table 33

attribute properties 56

B
broker compatibility 11

business components 3

business object attributes 51

business object requests 4

C
Cardinality property 56

Common Event Infrastructure
event catalog 128

metadata 128

complex Component 41

Component interface API 12

component interfaces 3

component levels 42

components 3

Connector
overview 1

connector controller 2

connector framework 2

ConnectorID 116

ConvertToPrimitiveFloat 116

CurrentItem() Method 47

cw_publish_event() 35

cw_publish_future_dated_events() 35

D
Default value property 57

delta event propagation 119

DisableCrossReferencing 116

duplicate child objects 52

E
event catalog, for Common Event

Infrastructure 128

event table 33

event-processing components 3

EventKeyDelimiter 116

G
getCollectionName() Method 47

getFieldName() Method 46

GetKey() 35

H
hidden fields 42

hierarchial business object 40

I
IBM Tivoli Monitoring for Transaction

Performance 10, 133

installated files 13

integration broker 2

Item(index) Method 47

K
Key property 56

M
Max length property 57

monitoring, of transactions 10, 133

multiple-cardinality relationship 40

N
Name property 56

O
object discovery agent

error messages 65

installing 63

launching 64

running multiple instances 65

with Business Object Designer 66

Overview
connector 1

P
PeopleCode declarations 36

PeopleCode function calls 36

PIngCompInterface 116

PollFutureEvents 116

PortNumber 117

publishing application events 35

R
read-only fields 42

ReconnectSessionOnGetFail 117

Required property 57

RetrieveByContent operations 52

S
SessionPoolSize 117

setFieldName() Method 46

SetLangCode 117

single-cardinality relationship 40

Special attribute value 57

T
terminology 1

Tivoli Monitoring for Transaction

Performance 10, 133

transaction monitoring 10, 133

Type property 56

U
U

See ventCl

UID parameter 50

V
verb processing

after-images 47

business object requests 49

committing data 56

deltas 47

© Copyright IBM Corp. 2001, 2004 135

136 Adapter for PeopleSoft User Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service. IBM may have patents or

pending patent applications covering subject matter described in this document.

The furnishing of this document does not grant you any license to these patents.

You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you. This

information could include technical inaccuracies or typographical errors. Changes

are periodically made to the information herein; these changes will be incorporated

in new editions of the publication. IBM may make improvements and/or changes

in the product(s) and/or the program(s) described in this publication at any time

without notice. Any references in this information to non-IBM Web sites are

provided for convenience only and do not in any manner serve as an endorsement

of those Web sites. The materials at those Web sites are not part of the materials for

this IBM product and use of those Web sites is at your own risk. IBM may use or

distribute any of the information you supply in any way it believes appropriate

without incurring any obligation to you. Licensees of this program who wish to

have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs

(including this one) and (ii) the mutual use of the information which has been

exchanged, should contact:

© Copyright IBM Corp. 2001, 2004 137

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee. The licensed program described in this

document and all licensed material available for it are provided by IBM under

terms of the IBM Customer Agreement, IBM International Program License

Agreement or any equivalent agreement between us. Any performance data

contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some

measurements may have been made on development-level systems and there is no

guarantee that these measurements will be the same on generally available

systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the

applicable data for their specific environment. Information concerning non-IBM

products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. IBM has not tested those

products and cannot confirm the accuracy of performance, compatibility or any

other claims related to non-IBM products. Questions on the capabilities of non-IBM

products should be addressed to the suppliers of those products. All statements

regarding IBM’s future direction or intent are subject to change or withdrawal

without notice, and represent goals and objectives only. This information contains

examples of data and reports used in daily business operations. To illustrate them

as completely as possible, the examples include the names of individuals,

companies, brands, and products. All of these names are fictitious and any

similarity to the names and addresses used by an actual business enterprise is

entirely coincidental. COPYRIGHT LICENSE: This information contains sample

application programs in source language, which illustrate programming techniques

on various operating platforms. You may copy, modify, and distribute these sample

programs in any form without payment to IBM, for the purposes of developing,

using, marketing or distributing application programs conforming to the

application programming interface for the operating platform for which the sample

programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs. If you are viewing this information softcopy, the

photographs and color illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program. General-use programming interfaces

allow you to write application software that obtain the services of this program’s

tools. However, this information may also contain diagnosis, modification, and

tuning information. Diagnosis, modification and tuning information is provided to

help you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

138 Adapter for PeopleSoft User Guide

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

i5/OS

IBM

the IBM logo

AIX

CICS

CrossWorlds

DB2

DB2 Universal Database

Domino

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MQSeries

MVS

OS/400

Passport Advantage

SupportPac

WebSphere

z/OS

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both. MMX,

Pentium, and ProShare are trademarks or registered trademarks of Intel

Corporation in the United States, other countries, or both. Java and all Java-based

trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both. Linux is a trademark of Linus Torvalds in the United States,

other countries, or both. Other company, product or service names may be

trademarks or service marks of others.

IBM WebSphere Business Integration Adapter Framework V2.6.0

Notices 139

140 Adapter for PeopleSoft User Guide

����

Printed in USA

	Contents
	About this document
	What this document includes
	What this document does not include
	Audience
	Related documents
	Typographic conventions

	New in this release
	New in Release 3.1.0
	New in Release 3.0.x
	New in Release 2.3.x
	New in Release 2.2.x
	New in Release 2.1.x
	New in Release 2.0.x
	New in Release 1.4.x
	New in Release 1.3.x
	New in Release 1.2.x
	New in Release 1.1.x

	Chapter 1. Overview
	Terminology
	Connector components
	Connector for PeopleSoft 8
	Business components, component interfaces, and records
	Event-processing components

	How the connector works
	Interacting with the PeopleSoft application
	Processing business object requests
	Processing application events
	Processing locale-dependent data
	Common Event Infrastructure
	Application Response Measurement

	Chapter 2. Installing the connector
	Adapter for PeopleSoft environment
	Broker compatibility
	Adapter platforms
	Adapter dependencies

	Installing the adapter and related files
	Verifying an installation
	Verifying installed files on a UNIX system
	Verifying Installed files on a Windows system

	Enabling the application for the connector
	Importing the project

	Chapter 3. Configuring the connector
	Overview of Connector Configurator
	Running connectors on UNIX

	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting connector-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS)
	Resources (ICS)
	Messaging (ICS)
	Security (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment

	Chapter 4. Configuring the application
	Building required objects
	Building the API files for event processing
	Code for processing application events
	cw_publish_event() and cw_publish_future_dated_events() Functions
	Sample PeopleCode declarations and function calls

	Event and archive tables

	Chapter 5. Understanding business objects for the connector
	Business object and attribute naming conventions
	Business object structure
	Component interface and business object relationship

	Creating a business object
	Generating APIs
	Example APIs
	getFieldName() Method
	setFieldName() Method
	getCollectionName() Method
	CurrentItem() Method
	Item(index) Method

	Business object verb processing
	After-images and deltas
	Verb Processing for business object requests
	Committing data

	Business object attribute properties
	Name property
	Type property
	Cardinality property
	Key property
	Required property
	Max length property
	AppSpecificInfo
	Default value property
	Special attribute value

	Business object application-specific information
	Application-specific information at the business object level
	Application-specific information at the attribute level

	Chapter 6. Generating business object definitions using PeopleSoftODA
	Installation and usage
	Installing PeopleSoftODA
	Before using PeopleSoftODA
	Launching PeopleSoftODA
	Running multiple instances of PeopleSoftODA
	Working with error and trace message files

	Using PeopleSoftODA in business object designer
	Select the ODA
	Configure initialization properties
	Expand nodes and select component interfaces and collections
	Confirm selection of objects
	Generate the definition
	Provide additional information
	Save the definition

	Contents of the generated definition
	Business-object-level properties
	Attribute properties
	Verbs

	Sample business object definition file
	BO_Psft_DEPT business object

	BO_PsftEmployee business object
	SavePostChange business object examples
	Modifying information in the business object definition

	Chapter 7. Running the connector
	Starting the connector
	Stopping the connector
	Upgrading the connector

	Chapter 8. Troubleshooting and error handling
	Startup problems
	Startup problems (WebSphere InterChange Server broker only)
	Startup problems (WebSphere MQ Integrator broker only)
	Processing Problems
	Mapping (WebSphere InterChange Server Only)
	Error Handling and Logging
	Error Types
	Error Messages

	Loss of Connection to the Application
	Memory limitations with result set support
	PeopleSoft record limitations with result set retrieval

	Appendix A. Standard configuration properties for connectors
	New properties
	Standard connector properties overview
	Starting Connector Configurator
	Configuration property values overview

	Standard properties quick-reference
	Standard properties
	AdapterHelpName
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BiDi.Application
	BiDi.Broker
	BiDi.Metadata
	BiDi.Transformation
	BrokerType
	CharacterEncoding
	CommonEventInfrastructure
	CommonEventInfrastructureContextURL
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerEventSequencing
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	jms.FactoryClassName
	jms.ListenerConcurrency
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.TransportOptimized
	jms.UserName
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RepositoryDirectory
	RequestQueue
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	ResultsSetEnabled
	ResultsSetSize
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousRequestTimeout
	SynchronousResponseQueue
	TivoliMonitorTransactionPerformance
	WireFormat
	WsifSynchronousRequestTimeout
	XMLNameSpaceFormat

	Appendix B. Connector specific properties
	AppServerMachineNameOrIP
	ApplicationPassword
	ApplicationUserName
	ConnectorID
	ConvertToPrimitiveFloat
	DisableCrossReferencing
	EventKeyDelimiter
	PingCompInterface
	PollFutureEvents
	PollQuantity
	PortNumber
	ReconnectSessionOnGetFail
	SessionPoolSize
	SetLangCode
	UseEventCl

	Appendix C. Delta event propagation
	Overview
	Process dependencies
	Configuring WebSphere MQ server
	Configuring a Queue manager
	Configuring a queue
	Configuring a server channel

	Setting up the class path for the WebSphere MQ client jars
	Verifying the WebSphere MQ Client installation
	Generating the JNDI bindings file
	Configuring PeopleSoft
	Configuring the PeopleSoft application
	Configuring PeopleSoft components

	Appendix D. Common Event Infrastructure
	Required software
	Enabling Common Event Infrastructure
	Obtaining Common Event Infrastructure adapter events
	For more information
	Common Event Infrastructure event catalog definitions
	XML format for “start adapter” metadata
	XML format for "stop adapter" metadata
	XML format for “timeout adapter” metadata
	XML format for "request" or "delivery" metadata

	Appendix E. Application Response Management
	Application Response Measurement instrumentation support
	Required software
	Enabling Application Response Measurement
	Transaction monitoring
	For more information

	Index
	Notices
	Programming interface information
	Trademarks and service marks

