
IBM WebSphere Business Integration Adapters

Adapter for JText User Guide

Adapter Version 5.6.x

���

IBM WebSphere Business Integration Adapters

Adapter for JText User Guide

Adapter Version 5.6.x

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page 123.

30September2004

This edition of this document applies to WebSphere Business Integration Adapter for JText (5724-H03) version 5.6.x,

and to all subsequent releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing

from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2003, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document . v

What this document includes . v

What this document does not include . v

Audience . v

Related documents . v

Typographic conventions . vi

New in this release . ix

Version 5.6.x . ix

Prior versions . ix

Chapter 1. Overview of the JText adapter . 1

Adapter components . 1

Business objects used by the JText connector . 3

How the connector works . 6

Connector features . 13

Processing locale-dependent data . 13

Common Event Infrastructure . 14

Application Response Measurement . 14

Chapter 2. Installing the JText adapter . 15

Overview of the installation tasks . 15

Adapter environment . 15

Installing the JText adapter . 17

Verifying installation . 17

Chapter 3. Configuring the JText adapter . 21

Overview of Connector Configurator . 21

Starting Connector Configurator . 22

Running Configurator from System Manager . 23

Creating a connector-specific property template . 23

Creating a new configuration file . 26

Using an existing file . 27

Completing a configuration file . 28

Setting the configuration file properties . 29

Saving your configuration file . 39

Changing a configuration file . 39

Completing the configuration . 40

Using Connector Configurator in a globalized environment 40

Starting the connector . 40

Stopping the connector . 42

Creating multiple connector instances . 42

Adding supported business objects . 43

Chapter 4. Using JText connector meta-objects 45

JText meta-object naming conventions . 45

JText meta-object structure . 46

Common configuration tasks . 57

Chapter 5. Troubleshooting the JText connector 81

Error message logging . 81

Problem with meta-object naming . 81

Problem with event triggering . 81

JText failure handling . 82

© Copyright IBM Corp. 2000, 2003, 2004 iii

Chapter 6. Migrating to or upgrading the JText connector 87

Upgrade scenarios . 87

Upgrading to version 5.6.x from version 5.3.x . 87

Reasons to upgrade to version 4.0.x from version 3.2.0 . 88

Upgrading to version 4.0.x . 88

Reasons to upgrade from the Text connector . 90

Upgrading to the JText connector . 90

Appendix A. Standard configuration properties for connectors 91

New properties . 91

Standard connector properties overview . 91

Standard properties quick-reference . 93

Standard properties . 99

Appendix B. Application Response Measurement 115

Application Response Measurement instrumentation support 115

Appendix C. Common Event Infrastructure . 117

Required software . 117

Enabling Common Event Infrastructure . 117

Obtaining Common Event Infrastructure adapter events . 117

For more information . 118

Common Event Infrastructure event catalog definitions . 118

XML format for “start adapter” metadata . 118

XML format for ″stop adapter″ metadata . 120

XML format for “timeout adapter” metadata . 120

XML format for ″request″ or ″delivery″ metadata . 121

Notices . 123

Programming interface information . 124

Trademarks and service marks . 125

Index . 127

iv Adapter for JText User Guide

About this document

The IBM(R) WebSphere(R) Business Integration Adapter portfolio supplies

integration connectivity for leading e-business technologies, enterprise applications,

legacy, and mainframe systems. The product set includes tools and templates for

customizing, creating, and managing components for business process integration.

This document describes the installation, configuration, business object

development, and troubleshooting for the IBM WebSphere Business Integration

Adapter for JText(TM).

What this document includes

This document describes installation, connector property configuration, business

object development, and troubleshooting for the IBM WebSphere Business

Integration Adapter for JText.

What this document does not include

This document does not describe deployment metrics and capacity planning issues

such as server load balancing, number of adapter processing threads, maximum

and minimum throughputs, and tolerance thresholds.

Such issues are unique to every customer deployment and must be measured

within or close to the exact environment where the adapter is to be deployed. You

should contact your IBM services representative to discuss the configuration of

your deployment site, and for details on planning and evaluating these kinds of

metrics, given your specific configuration.

Audience

This document is for WebSphere consultants and customers. You should be

familiar with the fundamentals of your integration broker, the fundamentals of

business object development, and possibly with data handler development.

Related documents

The complete set of documentation available with this product describes the

features and components common to all WebSphere Business Integration Adapters

installations, and includes reference material on specific components.

You can install related documentation from the following sites:

For general adapter information; for using adapters with WebSphere message

brokers (WebSphere MQ Integrator, WebSphere MQ Integrator Broker, WebSphere

Business Integration Message Broker); and for using adapters with WebSphere

Application Server:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

For using adapters with InterChange Server:

© Copyright IBM Corp. 2000, 2003, 2004 v

http://www.ibm.com/websphere/integration/wicserver/infocenter

http://www.ibm.com/websphere/integration/wbicollaborations/infocenter

For more information about message brokers (WebSphere MQ Integrator Broker,

WebSphere MQ Integrator, and WebSphere Business Integration Message Broker):

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

For more information about WebSphere Application Server:

http://www.ibm.com/software/webservers/appserv/library.html

These sites contain simple directions for downloading, installing, and viewing the

documentation.

Note: Important information about this product may be available in Technical

Support Technotes and Flashes issued after this document was published.

These can be found on the WebSphere Business Integration Support Web

site,

http://www.ibm.com/software/integration/websphere/support/

Select the component area of interest and browse the Technotes and Flashes

sections.

Typographic conventions

This document uses the following conventions:

 courier font Indicates a literal value, such as a command name, filename,

information that you type, or information that the system

prints on the screen.

bold Indicates a new term the first time that it appears.

italic, italic Indicates a variable name or a cross-reference.

blue outline A blue outline, which is visible only when you view the

manual online, indicates a cross-reference hyperlink. Click

inside the outline to jump to the object of the reference.

{ } In a syntax line, curly braces surround a set of options from

which you must choose one and only one.

[] In a syntax line, square brackets surround an optional

parameter.

... In a syntax line, ellipses indicate a repetition of the previous

parameter. For example, option[,...] means that you can

enter multiple, comma-separated options.

< > In a naming convention, angle brackets surround individual

elements of a name to distinguish them from each other, as

in <server_name><connector_name>tmp.log.

/, \ In this document, backslashes (\) are used as the convention

for directory paths. For UNIX installations, substitute slashes

(/) for backslashes. All WebSphere business integration

system product pathnames are relative to the directory

where the product is installed on your system.

%text% and $text Text within percent (%) signs indicates the value of the

Windows text system variable or user variable. The

equivalent notation in a UNIX environment is $text,

indicating the value of the text UNIX environment variable.

ProductDir Represents the directory where the product is installed.

vi Adapter for JText User Guide

About this document vii

viii Adapter for JText User Guide

New in this release

Version 5.6.x

The release of this document for JText connector version 5.6.x contains the

following new features:

v The adapter, running on Windows, provides bidirectional script support for JText

meta-data

v Tivoli License Manager enablement

v Support for GB18030 Chinese code has been added for this release

v For this release, the adapter runtime code has been split from the server code

line

v Support has been added for secure FTP

v A new Connector-specific boolean property, ″NoPoll″, has been introduced, to

optionally turn off polling. The default value is false. When set to true, the

adapter only processes requests and does not poll.

The 5.6.x version of the adapter is supported on the following platforms:

v WIN 2003

v AIX 5.1 and 5.2: this adapter supports 32-bit JVM on a 64-bit platform

v Solaris 9: this adapter supports 32-bit JVM on a 64-bit platform

v HP-UX, 11, 11i

v Linux RedHat AS 3.0, ES 3.0 and WS 3.0

v SUSE LINUX Standard Server 8.1 and Enterprise Server 8.1 SP3

v IBM JRE/JDK 1.4.2

Prior versions

Features and changes in prior versions.

Version 5.5.x

The release of this document for JText connector version 5.5.x contains the

following new features:

v Support for the option to use the MVS FTP SITE commands on MVS datasets is

provided with introduction of a new meta-object property named

MVSSiteCommand.

v Enhancements to handle large Business Objects and to reduce Out-of-memory

errors (for a 1GB RAM configuration) have been implemented. A new

meta-object property LargeObject has been introduced for the adapter to work

in large object mode.

v A new SortFilesOnTimestamp connector specific property has been added to the

Adapter and allows the adapter to pick up event files based on the modification

timestamp.

Note: This version of the JText adapter is not backward compatible with ADK

versions prior to the 4222. It needs ADK 4222 or future versions of the ADK

to function correctly.

© Copyright IBM Corp. 2000, 2003, 2004 ix

Version 5.4.x

Beginning with the 5.4 version, the adapter for JText is no longer supported on

Microsoft Windows NT.

Adapter installation information has been moved from this guide. See Chapter 2,

Chapter 2, “Installing the JText adapter,” on page 15, for the new location of that

information.

Version 5.3.x

The release of this document for JText connector version 5.3.x contains the

following new features:

v A new FTPTransferType meta object property has been added to allow for ASCII

and Binary file transfers.

v An additional data parsing method for binary data, FixedBOSize, has been

added to the JText Adapter.

v Support for host file system MVS has been enhanced to provide for time

stamping to avoid duplicate file names.

v A new DataProcessingMode meta object property has been added to the Adapter

to enable the reading and writing of Binary data.

v A new meta object attribute, FTPDataStructure, has been added to the JText

Adapter to provide support for either file or record oriented data structures on

remote MVS platforms.

The adapter can now use WebSphere Application Server as an integration broker.

For further information, see “Adapter environment” on page 15. The adapter now

runs on the following platforms:

v Solaris 7, 8

v AIX 5.x

v HP UX 11.i

Version 5.2.x

Updated in March, 2003. The “CrossWorlds” name is no longer used to describe an

entire system or to modify the names of components or tools, which are otherwise

mostly the same as before. For example “CrossWorlds System Manager” is now

“System Manager,” and “CrossWorlds InterChange Server” is now “WebSphere

InterChange Server.”

Version 5.1.x

The release of this document for JText connector version 5.1.x contains the

following new or corrected information:

v Documentation of theStagingDir meta-object attribute, which allows the

connector to use a staging directory when writing files. The connector writes

files that represent business objects to a staging directory and then moves them

to the configured output directory so that external processes that might

manipulate files in the output directory do not receive the files before they have

been completely written. For more information, see “StagingDir” on page 56.

v Documentation of the IncludeEndBODelimitermeta-object attribute, which

enables the connector to either include the value specified for the

EndBODelimiter attribute when it writes out files, or to leave the value out of

the data stream. For more information, see “IncludeEndBODelimiter” on page

54.

x Adapter for JText User Guide

v Documentation of the FTPFileListingFormatmeta-object attribute, which enables

the connector to read in files with format information (such as date and

timestamps) that differ depending on the locale. For more information, see

“FTPFileListingFormat” on page 52.

v Documentation of the FTPKeepConnectionOpenmeta-object attribute, which

enables the connector to maintain a persistent connection with an FTP server.

For more information, see “FTPKeepConnectionOpen” on page 52.

v Documentation of the FTPOSPlatformmeta-object attribute, which must be set to

the value MVS if the FTP server with which the connector communicates is

running an MVS platform. For more information, see “FTPOSPlatform” on page

53.

v Documentation of the FTPPollTerminateIfServerDownmeta-object attribute,

which allows you to specify whether the connector terminate when an FTP

server it is polling for events is unavailable. For more information, see

“FTPPollTerminateIfServerDown” on page 53.

v Documentation of the FTPRequestTerminateIfServerDownmeta-object attribute,

which allows you to specify whether the connector terminate when performing

request processing with an FTP server that is unavailable. For more information,

see “FTPRequestTerminateIfServerDown” on page 53.

v Revision of the information regarding the DataEncodingmeta-object attribute.

You can set the attribute to any Java-supported encoding. For more information,

see “DataEncoding” on page 48.

Version 5.0.x

The connector has been internationalized. For more information, see “Processing

locale-dependent data” on page 13 and Appendix A, “Standard configuration

properties for connectors,” on page 91.

Version 4.5.x

WebSphere Business Integration Adapter for JText includes the connector for JText.

This adapter operates with both the InterChange Server (ICS) and WebSphere MQ

Integrator (WMQI) integration brokers. An integration broker, which is an

application that performs integration of heterogeneous sets of applications,

provides services that include data routing.

This adapter includes:

v An application component specific to JText

v A sample business object, included in the \connectors\JText\Samples\ directory

v IBM WebSphere Adapter Framework, which consists of:

– Connector Framework

– Development tools (including Business Object Designer and Connector

Configurator)

– APIs (including ODK, JCDK, and CDK)

This manual provides information about using this adapter with both integration

brokers: InterChange Server (ICS) and WebSphere MQ Integrator (WMQI).

Version 4.4.x

The release of this document for JText connector version 4.4.x contains the

following changes:

New in this release xi

v Support has been added for configuring the connector to use a remote FTP file

system. See “Specifying a remote FTP file system” on page 68 for details.

v Documentation of the deprecated DataHandlerFormatter and the ByNameValue,

ByDelimiter, and BySize formatters has been removed. For documentation on

using these formatters, see the JText connector documentation for the 3.0.0 or

2.0.3 releases of the guide for the connector.

v Documentation of dynamic child meta-objects has been clarified, and the manual

states that use of the JTextWrapper configuration is being deprecated.

v Documentation of the BODelimiter meta-object attribute has been clarified.

v The MO_JText_DHFormatter.txt file has been removed from the

\repository\Jtext directory under the product directory.

Version 4.3.x

IBM WebSphere Business Integration for JText includes the adapter for e-Mail. This

adapter operates with both the InterChange Server and WebSphere MQ Integrator

integration brokers. An integration broker, which is an application that performs

integration of heterogeneous sets of applications, provides services that include

data routing.

This adapter includes:

v An application-specific component specific to e-Mail technology.

v A sample, which is located in \connectors\EMail\samples.

v IBM WebSphere Adapter Framework, which consists of:

– Adapter Framework

– Development tools (including Business Object Designer and Connector

Configurator)

– APIs (including ODK, JCDK, and CDK)

This manual provides instructions about using this adapter with both integration

brokers: InterChange Server and WebSphere MQ Integrator.

The adapter has been internationalized. For more information, see “Processing

locale-dependent data” on page 13 and Appendix A, “Standard configuration

properties for connectors,” on page 91.

Version 4.2.x

The release of this document for JText connector version 4.2.x contains the

following new or corrected information:

v Support has been added for dynamic child meta-objects. The connector can now

be configured to use wrapper objects or dynamic child meta-objects for dynamic

file specification. See “Using a dynamic child meta-object” on page 4 for details.

v The EventDataHandler and OutputDataHandler meta-object attributes have been

added to allow the connector to directly invoke data handlers rather than invoke

them via the DataHandlerFormatter. You may use these attributes to directly

specify a data handler in the JText connector meta-object rather than indirectly

within the DataHandlerFormatter’s meta-object. See Table 7 on page 48 for

details.

v The new user option None has been added for configuring the EndBODelimiter

meta-object attribute when outputting business objects to a file without any

EndBODelimiter or newline character. See Table 9 on page 65 for details.

xii Adapter for JText User Guide

v The DataEncoding meta-object attribute has been added to allow users to specify

the UTF8 encoding instead of the default UTF7. See Table 7 on page 48 for

details.

The release of the document for JText connector version 4.1.x contained the

following new information:

v The connector’s archiving feature has been redesigned.

v The naming convention for formatter meta-objects has changed.

Important: It is recommended that you use only data handlers and not formatters

for business-object processing.

v The CwJTFormatter.jar file is no longer distributed.

v The format and use of the event.log file has changed.

v The process of specifying a data handler has been clarified and corrected.

v The descriptions of event notification and data handler processing have been

clarified and corrected.

v A new section on creating custom meta-objects has been added.

v The sections “Problem with event triggering” on page 81 and “JText failure

handling” on page 82 have been clarified and corrected.

New in this release xiii

xiv Adapter for JText User Guide

Chapter 1. Overview of the JText adapter

This chapter describes the IBM WebSphere Business Integration Adapter for JText.

The adapter enables an integration broker to communicate with an application by

exchanging text or binary files. This connector facilitates integration of data with

applications that lack an API.

Adapters consist of two parts: the connector framework and the

application-specific component. The connector framework, whose code is common

to all connectors, acts as an intermediary between the integration broker and the

application-specific component. The application-specific component contains code

tailored to a particular application. The connector framework provides the

following services between the integration broker and the application-specific

component:

v Receives and sends business objects

v Manages the exchange of startup and administrative messages

This document contains information about the connector framework and the

application-specific component. It refers to both of these components as the

adapter.

Topics included in this chapter are:

v “Adapter components”

v “Business objects used by the JText connector” on page 3

v “How the connector works” on page 6

v “Connector features” on page 13

v “Processing locale-dependent data” on page 13

v “Common Event Infrastructure” on page 14

v “Application Response Measurement” on page 14

For more information about the relationship of the integration broker to the

connector, see the System Administration Guide, or the Implementation Guide for

WebSphere MQ Integrator Broker

Use the JText adapter when:

v An application does not have a C, C++, or Java standard API through which an

integration broker can communicate.

v It is not feasible to have an event table for a custom-built application.

v String or binary files are the most appropriate method for exchanging data.

In these cases, the simplest method for integrating an application into a larger

system may be by exchanging string or binary files through the JText connector.

Adapter components

The JText adapter has the following components:

v “Application-specific component” on page 2

v “Data Handlers” on page 2

v “Meta-objects” on page 3

© Copyright IBM Corp. 2000, 2003, 2004 1

Figure 1 illustrates the JText connector’s architecture when IBM WebSphere

InterChange Server (ICS) is used as the integration broker.

Application-specific component

The JText adapter’s application-specific component manipulates files and calls a

specified data handler to convert data between business objects and strings or byte

arrays. It also handles communication with the integration broker.

Data Handlers

The goal of the JText connector is to provide conversion between any existing file

format and a business object. To do so, it uses the data handler specified in the

connector’s meta-object configuration.

The data handler performs the conversion without interacting with the file system

in any way, either by reading from or writing to files. All interaction with the text

file is handled by other connector components.

To handle data conversion, you can use data handlers that IBM WebSphere

Business Integration Adapter Framework provides or data handlers that you create

to handle specific text-formatting needs. The product provides the following data

handlers:

v NameValue — Parses text data based on named fields. In this case, the text file

contains fields that identify the business object type (BusinessObject=BOname),

verb (Verb=verbName), and number of attributes (AttributeCount=numericValue).

v Delimited — Used primarily where the efficiency of machine reading is most

important. Parses text data based on a specified delimiter that separates the

individual fields of a business object’s data.

v FixedWidth — Parses text data by using fixed-length fields. The field lengths are

specified by the MaxLength property of each business object attribute. The value

of this property is stored in the business object definition.

JText connector

Application

Integration broker

Global
functions

Business
object

handlers
Event

notification

File writerFile

Data handler instance

Figure 1. JText connector architecture

2 Adapter for JText User Guide

For more information, see “How data handler processing works” on page 11. For

more information about each of the product-delivered data handlers, see the Data

Handler Guide.

Meta-objects

In addition to the standard and application-specific connector configuration

properties that you set in Connector Configurator, the JText connector has a set of

configuration properties that enable you to configure the connector to process

different business objects differently. You set these properties by using JText

meta-objects. A meta-object is a special kind of business object that contains

configuration information.

The connector uses the meta-object information to determine what classes to use to

transform strings or byte arrays that it reads from files into business objects, and to

format strings or byte arrays from business objects into files. The JText meta-objects

specify the directories, file extensions, filenames, business object delimiters, and

data handlers to use during event, and request processing.

The JText adapter uses meta-objects internally. It does not send them through the

integration broker. For more information about using meta-objects to configure the

connector, see Chapter 4, “Using JText connector meta-objects,” on page 45.

Business objects used by the JText connector

Business objects for the JText connector must deliver data in the format required by

the data handler specified for conversion. However, the JText connector may not

need a set of specially designed business objects comparable to application-specific

business objects for an application connector.

For example, the NameValue data handler requires each piece of data to have a

string that identifies it (such as CustomerName=Kumar, Region=NE, and

Department=HR). Because every generic business object definition contains attributes

whose names identify each piece of data, the JText connector can use generic

business objects.

However, because generic business objects represent a superset of information

required by a multitude of different applications, each generic business object

usually contains far more information than is required by any one application.

Therefore, to convert data into a manageable size for each application, a good

practice is to create your own business object for each type of data to be processed.

In the business object, provide only the data required by the application and the

information required by the data handler.

For example, for the FixedWidth data handler, you must ensure that every business

object attribute has a value specified for the MaxLength attribute property. For the

IBM WebSphere Business Integration Data Handler for XML, other specific

information is required. On the other hand, for the NameValue and Delimited data

handlers, the business object needs not contain any information that is not already

contained in a generic business object. See the Data Handler Guide for information

specific to each data handler.

In addition to delivering data, a business object can contain information that

enables the connector to dynamically obtain the business object’s event filename or

to return the output filename to the integration broker. To configure the connector

Chapter 1. Overview of the JText adapter 3

for this dynamic processing, the application-specific information at the

business-object level must contain the following name-value pair:

v cw_mo_JTextConfig = DynChildMOAttrName

If the business object contains additional application-specific information that is

used by the data handler, the name-value pair must appear first in the business

object, and must be separated from the additional application-specific information

by a semicolon (;). The connector reads the name-value pair up to the semicolon to

determine whether to use dynamic processing, then passes any information that

appears after the semicolon to the data handler.

Using a dynamic child meta-object

A dynamic child meta-object enables the filename to be exchanged with

InterChange Server. This section describes:

v “Why use a dynamic child meta-object?”

v “How to use a dynamic child meta-object” on page 4

v “Attributes of a dynamic child meta-object” on page 5

Why use a dynamic child meta-object?

Create and use a dynamic child meta-object to cause the connector to do the

following:

Service Call Requests

v Dynamically generate an output filename for each type of business object (based

on the value inserted into the child’s OutFileName attribute by the integration

broker) or for each individual business object (if the integration broker specifies

sequencing).

Note: The connector uses the child’s FileWriteMode attribute to determine

whether to overwrite or append to the file specified in the child’s

OutFileName attribute.

v Return the name of each connector-generated output filename (if the child’s

OutFileName attribute does not contain a value). In this case, the connector does

the following:

– derives the name from the parent business object’s name

– writes the object to that file

– populates the OutFileName meta-object attribute with the derived name

– passes the derived name back to the integration broker, which obtains the

dynamically created output filename without having specified it

Event Processing

The connector populates the child’s InFileName attribute with the name of the file

from which the business object was read.

How to use a dynamic child meta-object

To cause the connector to process the filename dynamically, you must:

1. Create a dynamic child meta-object with specific attributes.

2. In the data business object, add an attribute that represents the dynamic child

meta-object.

3. In the data business object, specify the following in the application-specific

information at the business-object level:

4 Adapter for JText User Guide

cw_mo_JTextConfig = DynChildMOAttrName

where DynChildMOAttrName is the name of the attribute in the data business

object that represents the dynamic child business object. For an example, see

Figure 2.

Important: The cw_mo_ prefix is required when you use a data handler. If the

prefix is missing, the connector writes the dynamic child

meta-object to the specified output file as if it were a data business

object.

4. In the dynamic child meta-object, specify values for the attributes in the

dynamic child meta-object.

Attributes of a dynamic child meta-object

A dynamic child meta-object must contain the following attributes:

v FileWriteMode — A string attribute whose value specifies whether the connector

appends to or overwrites an existing output file. The value of this attribute can

be either ″a″ for append or ″o″ for overwrite. The connector examines only the

first letter and does not consider the value’s case.

v InFileName — A string attribute that is populated with the event file name (file

and absolute path from which the business object is obtained).

v OutFileName — A string attribute whose value can contain the filename, the

absolute path and filename, or an FTP URL for the connector to use when

writing to the output file.

– If this attribute contains only the filename, the connector writes the specified

file to the directory from which it was started.

– If this attribute contains the absolute path and filename, the connector writes

the specified file to the specified directory.

– If this attribute contains only an FTP URL, the connector obtains the login,

password, and port values from the EventDir attribute of the top-level JText

meta-object.

– If this attribute contains an FTP URL that includes the login, password, and

port values, the connector uses the values specified in this attribute and

overrides those specified in the EventDir attribute of the top-level JText

meta-object.

For more information, see “Specifying a remote FTP file system” on page 68.

Figure 2 illustrates an example Customer business object that contains a dynamic

child meta-object.

Chapter 1. Overview of the JText adapter 5

How the connector works

The JText connector communicates with an application through the exchange of

text or binary files. It performs the following primary tasks when processing

business objects:

v Event notification

v Request processing

This section describes these tasks. It also explains how data handler processing

works and how the JText connector processes verbs.

Event notification

The JText connector handles events differently from other connectors. Unlike

connectors that depend on third-party applications, the JText connector does not

have an event table. Instead, it treats the event directory as an event table.

The following operations occur when the JText connector handles events:

1. The connector polls for events by checking specified directories for files with

specified extensions. The presence of a file with the specified extension in the

specified directory is considered the equivalent of an event. The connector

reads event files directly from the event directory without interpretation. It uses

a parsing method to determine which subsection represents each business

object. For more information, see “Polling for specific business objects” on page

65.

2. The connector creates an instance of the data handler (based on values

specified in the JText meta-object for the data business object).

3. The connector calls getBO()or getBOByteArray() on the data handler instance,

and sends the string or byte array that represents the business object to it. The

connector passes each element that represents a business object to the data

MO_DynamicChild business object
Customer business object

Customer

Attribute1

AppSpecificInfo: cw_mo_JTextconfig=ChildMO

Attribute2

ChildMO: MO_DynamicChild

Version = 1.0 MO_DynamicChild

Relationship: Containment
Cardinality: 1

InFileName: C:\TEMP\MyCustomer.in

FileWriteMode: a

OutFileName:
...

Type: MO_DynamicChild

Version = 1.0

Figure 2. Example of a dynamic child meta-object

6 Adapter for JText User Guide

handler. When a file represents multiple business objects, the connector sends

only an element (that is, a string or byte array representation of a single

business object), not the entire file.

4. The data handler converts the string or byte array to a business object and

returns it to the connector. The data handler also reports errors and provides

tracing.

5. The data handler performs default verb processing. The person who develops

the data handler must specify logic for setting the verbs, because the connector

does not provide this logic. For information on how the sample data handlers

set verbs, see the Data Handler Guide.

6. If the data handler encounters any error that prevents it from creating a

business object, the connector archives the string or byte array with the.fail

extension. If the data handler succeeds, the connector checks for subscriptions

to the business object.

v If the connector does not subscribe to the business object, it writes it to an

archive file with the .unsub extension.

v If the connector subscribes to the business object, it sends the business object

to the integration broker.
7. If the connector successfully sends the business object to the integration broker,

it archives the file with the .success or .partial extension, depending on

whether any business object in the event file has failed processing. If the

connector fails to send the business object, it archives the file with the .fail

extension.

The JText connector processes event files in alphabetic order according to their file

names. Depending on its configuration, the JText connector can pick up all files in

the event directory or pick up only those with a specified extension. For more

information, see “Specifying multiple event files or multiple event directories” on

page 64.The SortFilesOnTimestamp property allows the JText connector to process

event files in the order of their time stamps, from the oldest to the most recent,

regardless of their location. In other words, the JText connector processes files

located in separate directories in the chronological order of their time stamps.For

more information, see “SortFilesOnTimestamp” on page 33.

The PollQuantity property specifies the maximum number of business objects that

the connector can post to the integration broker in a given poll. For example,

assume that the value of PollQuantity is set to 5 and that there are two files in a

directory in which the connector is polling. The first file has four business objects

and the second has 12 business objects. On the first poll call, the connector

performs the following steps:

1. Sends all four business objects from the first file, archiving each business object

as it processes it.

2. Sends the first business object from the second file.

On the second poll call, the connector sends the 2nd through 6th business objects

from the second file. On the third poll call, the connector sends the 7th through

11th business objects from the second file. On the fourth poll, the connector sends

the last business object. The connector archives each business object after

processing it. If any of the business objects in a file fail processing, the connector

archives the entire file with the .orig extension.

For more information, see:

v On using the PollQuantity property to tune performance, see “Tuning the

performance of the JText connector” on page 77.

Chapter 1. Overview of the JText adapter 7

v On specifying the event directory and extension, see “Specifying event

directories and extensions” on page 58.

v On specifying event processing, see “Specifying event notification” on page 58.

Figure 3 shows an event notification operation (numbers in the graphic do not

correlate to the steps outlined above).

Event archiving

After it has processed an event, and if it is configured to enable archiving, the JText

connector writes the business object string or byte array representation of one

business object into a file in the local archive directory. It names the file with an

underscore (_), a time stamp, and a file extension that corresponds to the event

status. The delivered default extensions are success, partial, unsub, orig, and

fail. The underscore and time stamp are appended after the filename and before

the file extension.

The time stamp is an underscore-separated list that contains the year, month, day,

hour, minute, second, and millisecond of the system time. It ensures that archived

filenames are unique and that the connector does not overwrite an existing file

with the same name. The format of the archived file is:

BOName_YYYY_MM_DD_HH_MM_SS_sss.[extension]

For example, the connector might rename a successfully processed file named

Customer.in to Customer_2003_11_15_18_24_59_999.success.

The JText connector archives a business object to the .fail file if a formatting error

occurs, or if the connector fails to send the business object to the integration

broker. The JText connector archives a business object to a file with an extension of

.unsub if the connector does not subscribe to it. After you examine these archive

files and correct any formatting errors or start the processes that subscribe to the

business objects, resubmit the business objects in these files for processing.

For more information on archiving, see “Specifying event archiving” on page 59.

JText connector

Application

Integration broker

Global
functions

Business
object

handlers

Event
notification

File writerFile

Data handler instance
GetBO(String) or
GetBO(byte[])

6

5

4

3 2
1

Figure 3. Event notification operation

8 Adapter for JText User Guide

Default file extensions for event and archive files

Because the JText connector does not use event and archive tables, it updates event

status by changing file extensions. Table 1 shows the default file extension values

that IBM WebSphere Business Integration Adapter for JText delivers for event and

archive files.

 Table 1. Default file extensions

File type Event status/description

Default

file

extension

Delivered default directory

Event new in UNIX: /tmp/JTextConn/Default/Event
Windows:

C:\temp\JTextConn\Default\Event

Archive success (if all the

business objects in the

event file process

successfully, this file

contains all the business

objects)

success UNIX: /tmp/JTextConn/Default/Archive

Windows:

C:\temp\JTextConn\Default\Archive

Archive success (if some of the

business objects in the

event file fail processing,

this file contains only the

successfully processed

ones)

partial UNIX: /tmp/JTextConn/Default/Archive
Windows:

C:\temp\JTextConn\Default\Archive

Archive unsubscribed unsub UNIX: /tmp/JTextConn/Default/Archive
Windows:

 C:\temp\JTextConn\Default\Archive

Archive entire original event file

(created only if any

business object fails

processing or is

unsubscribed, even if the

event file contains only

one business object)

orig UNIX: /tmp/JTextConn/Default/Archive
Windows:

C:\temp\JTextConn\Default\Archive

Archive fail fail UNIX: /tmp/JTextConn/Default/Archive

Windows:

C:\temp\JTextConn\Default\Archive

Output out out UNIX: /tmp/JTextConn/Default/Out
Windows:

C:\temp\JTextConn\Default\Out

Important: The access sequence among multiple applications that access and

process the same file at the same time is important. Analyze all

operations performed on a given file to avoid issues with file locking

and incomplete data.

Note: The connector treats every file in the event directory with the specified

extension as an input file. Ensure that the input file extension differs from

the archive file extension, or that the input files and archive files are stored

in different directories, to prevent the connector from treating an archived

file as an event.

For information on specifying your own file extensions, event directory, and output

directory, see Table 7 on page 48..

Chapter 1. Overview of the JText adapter 9

Request processing

When processing a service call request, the connector converts the business object

to an output string or byte array, then writes it to a file.

Before converting the business object, however, the connector determines whether

the business object has been configured for dynamic file naming; that is, whether

the business object contains a dynamic child meta-object. In this case, the connector

dynamically names the output file or returns the name of the output file that it

generates.

This section describes service call request processing when:

v “Data business object does not specify dynamic file naming”

v “Data business object contains a dynamic child meta-object” on page 10

Data business object does not specify dynamic file naming

When the data business object does not specify dynamic file naming, the connector

performs the following operations to handle service call requests:

1. The connector receives a business object request.

2. The connector determines that the AppSpecificInfo property at the

business-object level must contain the following:

cw_mo_JTextConfig = DynChildMOAttrName

3. The connector checks the configuration of the top-level JText meta-object to

determine which data handler to call. By default, this meta-object specifies the

MO_DataHandler_DefaultNameValueConfig data-handler meta-object, which

represents the NameValue data handler.

4. The connector creates an instance of the appropriate data handler and sends the

business object to it.

5. The data handler converts the business object to a string or a byte array, which

it returns to the configuration. The data handler also reports errors and

provides tracing.

6. The connector writes the string or byte array to a file.

For information on configuring the connector to process requests, see “Specifying

request processing” on page 60.

Data business object contains a dynamic child meta-object

When the data business object contains a dynamic child meta-object, the connector

performs the following operations to handle service call requests:

1. The connector receives a business object request.

2. The connector determines that the AppSpecificInfo property at the

business-object level contains the following text:

cw_mo_JTextConfig = DynChildMOAttrName

Note: If the business object’s application-specific information does not specify a

dynamic child meta-object and does not contain such a child, the

connector processes the business object as described in “Data business

object does not specify dynamic file naming” on page 10.

3. The connector gets the name of the output file from the dynamic child

meta-object’s OutFileName attribute.

v If this attribute contains a value, the connector checks whether a file by that

name already exists. If the file does not exist, the connector creates a new

output file, using the value of the attribute to name the file. If the file already

10 Adapter for JText User Guide

exists, the connector appends to or overwrites the existing file (based on the

value of the child meta-object’s FileWriteMode).

Important: If the value of the FileWriteMode attribute begins with any value

other than an ″o″, the connector defaults to append mode.

v If this attribute does not contain a value (that is, OutFileName=CxIgnore), the

connector derives the filename from the name of the parent business object

that contains this child meta-object, and uses the configuration of the

top-level JText meta-object to determine the output file’s location. After

writing the business object to the file, the connector returns the file’s name

and path in this attribute.
4. The connector checks the configuration of the top-level JText meta-object to

determine which data handler to call. By default, this meta-object specifies the

MO_DataHandler_DefaultNameValueConfig data-handler meta-object, which

represents the NameValue data handler.

5. The connector creates an instance of the appropriate data handler and sends the

business object to it.

6. The data handler converts the business object to a string or a byte array, which

it returns to the configuration. The data handler also reports errors and

provides tracing.

7. The connector writes the string or byte array to a file whose name it derives in

step 3. above.

Figure 4 illustrates the JText connector components when the connector processes

requests from an integration broker to the destination application.

How data handler processing works

The connector uses a data handler instance to convert between business objects

and strings or byte arrays that are read from event files. The data handler instance

also reports errors and provides tracing.

The connector creates an instance of a data handler based on the value of the

EventDataHandler and OutputDataHandler attributes in the top-level JText

JText connector

Application

Integration broker

Global
functions

Business
object

handlers

Event
notification

File readerFile

Data handler instance

getStringFromBO() or
getByteArrayFromBO()

2

54
3

1

Figure 4. Business object request operation

Chapter 1. Overview of the JText adapter 11

meta-object. These attributes identify the data-handler meta-object that the

connector uses to create the instance of the data handler. The data-handler

meta-object can represent a delivered or custom data handler. For more

information, see the Data Handler Guide.

The connector determines which interface, string or byte array, based on the setting

of the DataProcessingMode meta-object. For additional information on this

meta-object, see Table 7 on page 48

After receiving the configuration information, the connector performs the following

steps:

1. Instantiates a data handler.

2. Calls the data handler’s setOption() method to set the data handler’s

TracingSubSystem attribute to the connector’s name. The data handler uses this

value to include the connector’s name in the trace messages it writes.

After the data handler has been created and configured, the connector calls the

appropriate methods in the data handler to perform the conversion of data to or

from a business object.

v For event notification, the connector calls the getBO(String) or getBO(byte[])

method on the data handler. The connector passes to the data handler the string

from a file that is be converted to a business object. The data handler returns a

business object.

v For request processing, the connector calls the getStringFromBO() or

getByteArrayFromBO() method on the data handler. The connector passes to the

data handler the business object to be converted to a string or byte array. The

data handler returns a serialized version of the business object, in the form of a

string or byte array.

The getBO(String) or getBO(byte[])and the getStringFromBO() or getByte

ArrayFromBO() methods always send or receive the entire business object hierarchy

of a top-level parent and all of its child business objects, respectively.

In either case, the data handler is responsible for filtering out any meta-object data

so that it passes only business object-specific data. The product-delivered data

handlers provide this functionality. If you use custom data handlers, they must

also provide this functionality.

Business object verb processing for requests

When handling requests, the JText connector does not handle one verb differently

from another. It writes to files without performing update, retrieve, or delete

operations, regardless of the verb associated with the business object.

When processing requests, the JText connector sets all attributes with a value of

CxIgnore to their default values if the following conditions are true:

v The verb is Create.

v The connector’s UseDefaults property is set to true.

v The attribute is set to Required.

v Default values have been set for the attributes in the business object

specification.

12 Adapter for JText User Guide

Connector features

Along with event notification and business object request processing, the JText

connector provides the following capabilities:

v Varied configurations for different business objects; for example, you can

configure different business objects to use different directories and file

extensions, or different data formats.

v Configuration capabilities for file extensions, directory location for archive file

storage, format type, and file sequencing.

v Configuration capabilities for dynamically determining the output filename for

each business object, or for returning the full name of a generated output file.

v Failure recovery.

v Custom data handler capabilities, which means that you can create your own

data handler without recompiling the connector code. You need only change the

configuration properties to use the new class you have created.

v The ability to exchange data with remote FTP locations as well as local file

system directories.

For more information, see Chapter 2, “Installing the JText adapter,” on page 15,

Chapter 4, “Using JText connector meta-objects,” on page 45, and the Data Handler

Guide.

JText differences from other adapters

While the JText connector enables the transfer of data from a source application to

a destination application like other adapters, it is unique in the following ways:

v It processes all business objects in the same way. In other words, because it

always writes the business object to a file, it performs only Create operations

(regardless of the incoming verb).

v It does not interpret the contents of the business objects that it handles. In other

words, it reads each business object as a potential string or byte array in which

key values have no more significance than other data.

v It uses meta-object values for much of its configuration. For more information,

see Chapter 4, “Using JText connector meta-objects,” on page 45.

v It does not have an event table. Instead, it treats the configured event directory

as an event table.

Processing locale-dependent data

The connector has been internationalized so that it can support double-byte

character sets, and deliver message text in the specified language. When the

connector transfers data from a location that uses one character code set to a

location that uses a different code set, it performs character conversion to preserve

the meaning of the data. The Java runtime environment within the Java Virtual

Machine (JVM) represents data in the Unicode character code set. Unicode contains

encodings for characters in most known character code sets (both single-byte and

multibyte). Most components in the WebSphere business integration system are

written in Java. Therefore, when data is transferred between most WebSphere

business integration system components, there is no need for character conversion.

This adapter supports the processing of bidirectional script data for the Arabic and

Hebrew languages when the adapter is run in a Windows environment.

Bidirectional processing is not supported in non-Windows environments. To log

error and informational messages in the appropriate language and for the

appropriate country or territory, configure the Locale standard configuration

Chapter 1. Overview of the JText adapter 13

property for your environment. For more information on these properties, see

Appendix A, “Standard configuration properties for connectors,” on page 91.

Common Event Infrastructure

This adapter is compatible with IBM’s Common Event Infrastructure, a standard

for event management that permits interoperability with other IBM WebSphere

event-producing applications. If Common Event Infrastructure support is enabled,

events produced by the adapter can be received (or used) by another Common

Event Infrastructure-compatible application.

For more information refer to the Common Event Infrastructure appendix in this

guide.

Application Response Measurement

This adapter is compatible with the Application Response Measurement

application programming interface (API), an API that allows applications to be

managed for availability, service level agreements, and capacity planning. An

ARM-instrumented application can participate in IBM Tivoli Monitoring for

Transaction Performance, allowing collection and review of data concerning

transaction metrics.

For more information refer to the Application Response Measurement appendix in

this guide.

14 Adapter for JText User Guide

Chapter 2. Installing the JText adapter

This chapter describes how to install and configure the JText connector.

v “Overview of the installation tasks”

v “Adapter environment”

v “Installing the JText adapter” on page 17

v “Verifying installation” on page 17

Overview of the installation tasks

To install the adapter for JText, you must perform the following tasks:

v Install the integration broker This task, which includes installing the WebSphere

business integration system and starting the integration broker, is described in

the installation documentation for your broker and operating system.

v Install the adapter and related files This task includes installing the files for the

adapter from the software package onto your system. See “Installing the JText

adapter” on page 17.

Before installing the adapter, you must understand the adapter environment. For

further information, see “Adapter environment.”

In this chapter

The tasks described in this chapter are as follows:

 Table 2. Installing the adapter: task roadmap

Task

Associated procedure(s)

(see...) For more information (see...)

Installing the adapter “Installing the JText adapter”

on page 17.

Installation Guide for

WebSphere Business Integration

Adapters

Verifying installation “Verifying installation” on

page 17.

Adapter environment

Before installing, configuring, and using the adapter, you must understand its

environmental requirements:

v “Broker compatibility”

v “Adapter platforms” on page 16

v “Adapter prerequisites” on page 17

v “Locale-dependent data” on page 17

Broker compatibility

The adapter framework that an adapter uses must be compatible with the version

of the integration broker (or brokers) with which the adapter is communicating.

Version 5.6 of the adapter for JText is supported on the following versions of the

adapter framework and with the following integration brokers:

© Copyright IBM Corp. 2000, 2003, 2004 15

Adapter framework: WebSphere Business Integration Adapter Framework version

2.6.

Integration brokers:

v WebSphere InterChange Server, versions 4.2.2, 4.3.x

v WebSphere MQ Integrator, version 2.1

v WebSphere MQ Integrator Broker, version 2.1

v WebSphere Business Integration Message Broker, version 5.0.1

v WebSphere Application Server Enterprise, version 5.0.2, with WebSphere Studio

Application Developer Integration Edition, version 5.0.1

v WebSphere Business Integration Server Foundation version 5.1.1

See the Release Notes for any exceptions.

Note: For instructions on installing the integration broker and its prerequisites, see

the following documentation. For WebSphere InterChange Server (ICS), see

the System Installation Guide for UNIX or for Windows.

For message brokers (WebSphere MQ Integrator Broker, WebSphere MQ

Integrator, and WebSphere Business Integration Message Broker), see

Implementing Adapters with WebSphere Message Brokers, and the

installation documentation for the message broker. Some of this can be

found at the following Web site:

http://www.ibm.com/software/integration/mqfamily/library/manualsa/.

For WebSphere Application Server, see Implementing Adapters with

WebSphere Application Server and the documentation at:

http://www.ibm.com/software/webservers/appserv/library.html.

Adapter platforms

The adapter is supported on the following platforms:

v All operating system environments require the Java compiler (IBM JDK 1.4.2for

Windows 2000) for compiling custom adapters

v AIX:

AIX 5.1 with Maintenance Level 4

AIX 5.2 with Maintenance Level 1. This adapter supports 32-bit JVM on a

64-bit platform.

v Solaris:

Solaris 8 (2.8)with Solaris Patch Cluster dated Feb. 11, 2004 or later

Solaris 9 (2.9) with Solaris Patch Cluster dated February 11, 2004 or later. This

adapter supports 32-bit JVM on a 64-bit platform.

v HP-UX:

HP-UX 11.i (11.11) with June 2003 GOLDBASE11i and June 2003 GOLDAPPS11i

bundles

v Linux:

Red Hat Enterprise Linux AS 3.0 with Update 1

Red Hat Enterprise Linux ES 3.0 with Update 1

Red Hat Enterprise Linux WS 3.0 with Update 1

SUSE Linux Enterprise Server x86 8.1 with SP3

SUSE Linux Standard Server x86 8.1 with SP3

v

16 Adapter for JText User Guide

Note: The TMTP (Tivoli Monitoring for Transaction Performance) component of

the WebSphere Business Integration Adapter FrameworkV2.6 is not

supported on Linux Red Hat.

v Windows:

Windows 2000 (Professional, Server, or Advanced Server) with Service Pack 4

Windows XP with Service Pack 1A, for WebSphere Business Integration Adapter

Framework (administrative tools only)

Windows 2003 (Standard Edition or Enterprise Edition)

Adapter prerequisites

Before running the JText connector, create read/write permissions on the event,

output, and archive directories that will contain the text files that the connector

reads from and writes to. This needs to be done on both the local and remote

servers.

Locale-dependent data

The connector has been internationalized so that it can support double-byte

character sets, and deliver message text in the specified language. When the

connector transfers data from a location that uses one character code to a location

that uses a different code set, it performs character conversion to preserves the

meaning of the data.

The Java runtime environment within the Java Virtual Machine (JVM) represents

data in the Unicode character code set. Unicode contains encoding for characters in

most known character code sets (both single-byte and multibyte). Most

components in the WebSphere business integration system are written in Java.

Therefore, when data is transferred between most integration components, there is

no need for character conversion. To log error and informational messages in the

appropriate language and for the appropriate country or territory, configure the

Locale standard configuration property for your environment. For more

information on configuration properties, see Appendix A, “Standard configuration

properties for connectors,” on page 91.

This adapter supports the processing of bidirectional script data for the Arabic and

Hebrew languages when the adapter is run in a Windows environment.

Bidirectional processing is not supported in non-Windows environments. To use

the bidirectional capacity, you must configure the bidirectional standard properties.

For more information, refer to the standard configuration properties for connectors

inAppendix A, “Standard configuration properties for connectors,” on page 91.

Installing the JText adapter

For information on installing WebSphere Business Integration adapter products,

refer to the Installing WebSphere Business Integration Adapters guide located in the

WebSphere Business Integration Adapters Infocenter at the following site:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

Verifying installation

The sections below describe the paths and filenames of the product after

installation and how to verify your adapter installation.

Chapter 2. Installing the JText adapter 17

Verifying installation on a Windows system

Before you begin: Install the adapter. The Installer copies the standard files

associated with the adapter into your system. The utility installs the connector into

the ProductDir\connectors\JText directory, and adds a shortcut for the connector

to the Start menu.

Perform the following step to verify adapter installation on a Windows system:

Change to the directory where you installed the adapter ProductDir\ and compare

the contents to those listed in Table 3.

Table 3 describes the Windows file structure used by the adapter, and shows the

files that are automatically installed when you choose to install the adapter

through Installer.

 Table 3. Windows file structure for the connector

Subdirectory of ProductDir Description

\connectors\JText\CWJText.jar Contains classes used by the JText connector

only

\connectors\JText\start_JText.bat The startup script for the generic connector

\connectors\messages\JTextConnector.txt Message file for the connector

\repository\JText\CN_JText.txt Repository definition for the connector. The

default name is CN_JText.txt.

\connectors\JText\dependencies\

commons-net-1.1.0.jar, dependencies\

jakarta-oro-2.0.8.jar

Third party.jar packaged with the connector

Note: All product pathnames are relative to the directory where the product is

installed on your system.

Verifying installation on a Unix system

Before you begin: Install the adapter. The Installer copies the standard files

associated with the adapter into your system. The utility installs the connector

agent into the ProductDir/connectors/JText directory.

Perform the following step to verify adapter installation on a UNIX system: v

Change to the directory where you installed the adapter ProductDir/ and compare

the contents to those listed in Table 9.

Table 4 describes the UNIX file structure used by the adapter, and shows the files

that are automatically installed when you choose to install the adapter through

Installer.

 Table 4. Unix file structure for the connector

Subdirectory of ProductDir Description

/connectors/JText/CWJText.jar Contains classes used by the JText connector

only

/connectors/JText/start_JText.bat The startup script for the generic connector

/connectors/messages/JTextConnector.txt Message file for the connector

/repository/JText/CN_JText.txt Repository definition for the connector. The

default name is CN_JText.txt.

18 Adapter for JText User Guide

Table 4. Unix file structure for the connector (continued)

Subdirectory of ProductDir Description

\repository\JText\MO_JTextConnector_Default.jar A sample repository definition of the JText

connector meta-object.

/connectors/JText/dependencies/

commons-net-1.1.0.jar, dependencies/

jakarta-oro-2.0.8.jar

Third party.jar packaged with the connector

Note: All product pathnames are relative to the directory where the product is

installed on your system.

Chapter 2. Installing the JText adapter 19

20 Adapter for JText User Guide

Chapter 3. Configuring the JText adapter

This chapter describes how to install and configure the JText connector.

v “Overview of Connector Configurator”

v “Starting Connector Configurator” on page 22

v “Running Configurator from System Manager” on page 23

v “Creating a connector-specific property template” on page 23

v “Creating a new configuration file” on page 26

v “Using an existing file” on page 27

v “Completing a configuration file” on page 28

v “Setting the configuration file properties” on page 29

v “Saving your configuration file” on page 39

v “Changing a configuration file” on page 39

v “Completing the configuration” on page 40

v “Using Connector Configurator in a globalized environment” on page 40

v “Starting the connector” on page 40

v “Starting the connector” on page 40

v “Stopping the connector” on page 42

v “Creating multiple connector instances” on page 42

v “Adding supported business objects” on page 43

Overview of Connector Configurator

Connector Configurator allows you to configure the connector component of your

adapter for use with these integration brokers:

v WebSphere InterChange Server (ICS)

v WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere

Business Integration Message Broker, collectively referred to as the WebSphere

Message Brokers (WMQI)

v WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and

the DB2 II standard properties (see the Notes column in the Standard Properties

appendix.)

You use Connector Configurator to:

v Create a connector-specific property template for configuring your connector.

v Create a connector configuration file; you must create one configuration file for

each connector you install.

v Set properties in a configuration file.

You may need to modify the default values that are set for properties in the

connector templates. You must also designate supported business object

definitions and, with ICS, maps for use with collaborations as well as specify

messaging, logging and tracing, and data handler parameters, as required.

The mode in which you run Connector Configurator, and the configuration file

type you use, may differ according to which integration broker you are running.

© Copyright IBM Corp. 2000, 2003, 2004 21

For example, if WMQI is your broker, you run Connector Configurator directly,

and not from within System Manager (see “Running Configurator in stand-alone

mode” on page 22).

Connector configuration properties include both standard configuration properties

(the properties that all connectors have) and connector-specific properties

(properties that are needed by the connector for a specific application or

technology).

Because standard properties are used by all connectors, you do not need to define

those properties from scratch; Connector Configurator incorporates them into your

configuration file as soon as you create the file. However, you do need to set the

value of each standard property in Connector Configurator.

The range of standard properties may not be the same for all brokers and all

configurations. Some properties are available only if other properties are given a

specific value. The Standard Properties window in Connector Configurator will

show the properties available for your particular configuration.

For connector-specific properties, however, you need first to define the properties

and then set their values. You do this by creating a connector-specific property

template for your particular adapter. There may already be a template set up in

your system, in which case, you simply use that. If not, follow the steps in

“Creating a new template” on page 23 to set up a new one.

Running connectors on UNIX

Connector Configurator runs only in a Windows environment. If you are running

the connector in a UNIX environment, use Connector Configurator in Windows to

modify the configuration file and then copy the file to your UNIX environment.

Some properties in the Connector Configurator use directory paths, which default

to the Windows convention for directory paths. If you use the configuration file in

a UNIX environment, revise the directory paths to match the UNIX convention for

these paths. Select the target operating system in the toolbar drop-list so that the

correct operating system rules are used for extended validation.

Starting Connector Configurator

You can start and run Connector Configurator in either of two modes:

v Independently, in stand-alone mode

v From System Manager

Running Configurator in stand-alone mode

You can run Connector Configurator without running System Manager and work

with connector configuration files, irrespective of your broker.

To do so:

v From Start>Programs, click IBM WebSphere Business Integration

Adapters>IBM WebSphere Business Integration Toolset>Connector

Configurator.

v Select File>New>Connector Configuration.

v When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on

your broker.

22 Adapter for JText User Guide

You may choose to run Connector Configurator independently to generate the file,

and then connect to System Manager to save it in a System Manager project (see

“Completing a configuration file” on page 28.)

Running Configurator from System Manager

You can run Connector Configurator from System Manager.

To run Connector Configurator:

1. Open the System Manager.

2. In the System Manager window, expand the Integration Component Libraries

icon and highlight Connectors.

3. From the System Manager menu bar, click Tools>Connector Configurator. The

Connector Configurator window opens and displays a New Connector dialog

box.

4. When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on

your broker.

To edit an existing configuration file:

v In the System Manager window, select any of the configuration files listed in the

Connector folder and right-click on it. Connector Configurator opens and

displays the configuration file with the integration broker type and file name at

the top.

v From Connector Configurator, select File>Open. Select the name of the

connector configuration file from a project or from the directory in which it is

stored.

v Click the Standard Properties tab to see which properties are included in this

configuration file.

Creating a connector-specific property template

To create a configuration file for your connector, you need a connector-specific

property template as well as the system-supplied standard properties.

You can create a brand-new template for the connector-specific properties of your

connector, or you can use an existing connector definition as the template.

v To create a new template, see “Creating a new template” on page 23.

v To use an existing file, simply modify an existing template and save it under the

new name. You can find existing templates in your

\WebSphereAdapters\bin\Data\App directory.

Creating a new template

This section describes how you create properties in the template, define general

characteristics and values for those properties, and specify any dependencies

between the properties. Then you save the template and use it as the base for

creating a new connector configuration file.

To create a template in Connector Configurator:

1. Click File>New>Connector-Specific Property Template.

2. The Connector-Specific Property Template dialog box appears.

Chapter 3. Configuring the JText adapter 23

v Enter a name for the new template in the Name field below Input a New

Template Name. You will see this name again when you open the dialog box

for creating a new configuration file from a template.

v To see the connector-specific property definitions in any template, select that

template’s name in the Template Name display. A list of the property

definitions contained in that template appears in the Template Preview

display.
3. You can use an existing template whose property definitions are similar to

those required by your connector as a starting point for your template. If you

do not see any template that displays the connector-specific properties used by

your connector, you will need to create one.

v If you are planning to modify an existing template, select the name of the

template from the list in the Template Name table below Select the Existing

Template to Modify: Find Template.

v This table displays the names of all currently available templates. You can

also search for a template.

Specifying general characteristics

When you click Next to select a template, the Properties - Connector-Specific

Property Template dialog box appears. The dialog box has tabs for General

characteristics of the defined properties and for Value restrictions. The General

display has the following fields:

v General:

Property Type

Property Subtype

Updated Method

Description

v Flags

Standard flags

v Custom Flag

Flag

The Property Subtype can be selected when Property Type is a String. It is an

optional value which provides syntax checking when you save the configuration

file. The default is a blank space, and means that the property has not been

subtyped.

After you have made selections for the general characteristics of the property, click

the Value tab.

Specifying values

The Value tab enables you to set the maximum length, the maximum multiple

values, a default value, or a value range for the property. It also allows editable

values. To do so:

1. Click the Value tab. The display panel for Value replaces the display panel for

General.

2. Select the name of the property in the Edit properties display.

3. In the fields for Max Length and Max Multiple Values, enter your values.

To create a new property value:

1. Right-click on the square to the left of the Value column heading.

24 Adapter for JText User Guide

2. From the pop-up menu, select Add to display the Property Value dialog box.

Depending on the property type, the dialog box allows you to enter either a

value, or both a value and a range.

3. Enter the new property value and click OK. The value appears in the Value

panel on the right.

The Value panel displays a table with three columns:

The Value column shows the value that you entered in the Property Value dialog

box, and any previous values that you created.

The Default Value column allows you to designate any of the values as the

default.

The Value Range shows the range that you entered in the Property Value dialog

box.

After a value has been created and appears in the grid, it can be edited from

within the table display.

To make a change in an existing value in the table, select an entire row by clicking

on the row number. Then right-click in the Value field and click Edit Value.

Setting dependencies

When you have made your changes to the General and Value tabs, click Next. The

Dependencies - Connector-Specific Property Template dialog box appears.

A dependent property is a property that is included in the template and used in

the configuration file only if the value of another property meets a specific

condition. For example, PollQuantity appears in the template only if JMS is the

transport mechanism and DuplicateEventElimination is set to True.

To designate a property as dependent and to set the condition upon which it

depends, do this:

1. In the Available Properties display, select the property that will be made

dependent.

2. In the Select Property field, use the drop-down menu to select the property

that will hold the conditional value.

3. In the Condition Operator field, select one of the following:

== (equal to)

!= (not equal to)

> (greater than)

< (less than)

>= (greater than or equal to)

<=(less than or equal to)

4. In the Conditional Value field, enter the value that is required in order for the

dependent property to be included in the template.

5. With the dependent property highlighted in the Available Properties display,

click an arrow to move it to the Dependent Property display.

6. Click Finish. Connector Configurator stores the information you have entered

as an XML document, under \data\app in the \bin directory where you have

installed Connector Configurator.

Chapter 3. Configuring the JText adapter 25

Setting pathnames

Some general rules for setting pathnames are:

v The maximum length of a filename in Windows and UNIX is 255 characters.

v In Windows, the absolute pathname must follow the format

[Drive:][Directory]\filename: for example,

C:\WebSphereAdapters\bin\Data\Std\StdConnProps.xml

In UNIX the first character should be /.

v Queue names may not have leading or embedded spaces.

Creating a new configuration file

When you create a new configuration file, you must name it and select an

integration broker.

You also select an operating system for extended validation on the file. The toolbar

has a droplist called Target System that allows you to select the target operating

system for extended validation of the properties. The available options are:

Windows, UNIX, Other (if not Windows or UNIX), and None-no extended

validation (switches off extended validation). The default on startup is Windows.

To start Connector Configurator:

v In the System Manager window, select Connector Configurator from the Tools

menu. Connector Configurator opens.

v In stand-alone mode, launch Connector Configurator.

To set the operating system for extended validation of the configuration file:

v Pull down the Target System: droplist on the menu bar.

v Select the operating system you are running on.

Then select File>New>Connector Configuration. In the New Connector window,

enter the name of the new connector.

You also need to select an integration broker. The broker you select determines the

properties that will appear in the configuration file. To select a broker:

v In the Integration Broker field, select ICS, WebSphere Message Brokers or WAS

connectivity.

v Complete the remaining fields in the New Connector window, as described later

in this chapter.

Creating a configuration file from a connector-specific

template

Once a connector-specific template has been created, you can use it to create a

configuration file:

1. Set the operating system for extended validation of the configuration file using

the Target System: droplist on the menu bar (see “Creating a new configuration

file” above).

2. Click File>New>Connector Configuration.

3. The New Connector dialog box appears, with the following fields:

v Name

26 Adapter for JText User Guide

Enter the name of the connector. Names are case-sensitive. The name you

enter must be unique, and must be consistent with the file name for a

connector that is installed on the system.

Important: Connector Configurator does not check the spelling of the name

that you enter. You must ensure that the name is correct.

v System Connectivity

Click ICS or WebSphere Message Brokers or WAS.

v Select Connector-Specific Property Template

Type the name of the template that has been designed for your connector.

The available templates are shown in the Template Name display. When you

select a name in the Template Name display, the Property Template Preview

display shows the connector-specific properties that have been defined in

that template.

Select the template you want to use and click OK.
4. A configuration screen appears for the connector that you are configuring. The

title bar shows the integration broker and connector name. You can fill in all

the field values to complete the definition now, or you can save the file and

complete the fields later.

5. To save the file, click File>Save>To File or File>Save>To Project. To save to a

project, System Manager must be running.

If you save as a file, the Save File Connector dialog box appears. Choose *.cfg

as the file type, verify in the File Name field that the name is spelled correctly

and has the correct case, navigate to the directory where you want to locate the

file, and click Save. The status display in the message panel of Connector

Configurator indicates that the configuration file was successfully created.

Important: The directory path and name that you establish here must match

the connector configuration file path and name that you supply in

the startup file for the connector.

6. To complete the connector definition, enter values in the fields for each of the

tabs of the Connector Configurator window, as described later in this chapter.

Using an existing file

You may have an existing file available in one or more of the following formats:

v A connector definition file.

This is a text file that lists properties and applicable default values for a specific

connector. Some connectors include such a file in a \repository directory in

their delivery package (the file typically has the extension .txt; for example,

CN_XML.txt for the XML connector).

v An ICS repository file.

Definitions used in a previous ICS implementation of the connector may be

available to you in a repository file that was used in the configuration of that

connector. Such a file typically has the extension .in or .out.

v A previous configuration file for the connector.

Such a file typically has the extension *.cfg.

Although any of these file sources may contain most or all of the connector-specific

properties for your connector, the connector configuration file will not be complete

until you have opened the file and set properties, as described later in this chapter.

Chapter 3. Configuring the JText adapter 27

To use an existing file to configure a connector, you must open the file in

Connector Configurator, revise the configuration, and then resave the file.

Follow these steps to open a *.txt, *.cfg, or *.in file from a directory:

1. In Connector Configurator, click File>Open>From File.

2. In the Open File Connector dialog box, select one of the following file types to

see the available files:

v Configuration (*.cfg)

v ICS Repository (*.in, *.out)

Choose this option if a repository file was used to configure the connector in

an ICS environment. A repository file may include multiple connector

definitions, all of which will appear when you open the file.

v All files (*.*)

Choose this option if a *.txt file was delivered in the adapter package for

the connector, or if a definition file is available under another extension.
3. In the directory display, navigate to the appropriate connector definition file,

select it, and click Open.

Follow these steps to open a connector configuration from a System Manager

project:

1. Start System Manager. A configuration can be opened from or saved to System

Manager only if System Manager has been started.

2. Start Connector Configurator.

3. Click File>Open>From Project.

Completing a configuration file

When you open a configuration file or a connector from a project, the Connector

Configurator window displays the configuration screen, with the current attributes

and values.

The title of the configuration screen displays the integration broker and connector

name as specified in the file. Make sure you have the correct broker. If not, change

the broker value before you configure the connector. To do so:

1. Under the Standard Properties tab, select the value field for the BrokerType

property. In the drop-down menu, select the value ICS, WMQI, or WAS.

2. The Standard Properties tab will display the connector properties associated

with the selected broker. The table shows Property name, Value, Type, Subtype

(if the Type is a string), Description, and Update Method.

3. You can save the file now or complete the remaining configuration fields, as

described in “Specifying supported business object definitions” on page 34..

4. When you have finished your configuration, click File>Save>To Project or

File>Save>To File.

If you are saving to file, select *.cfg as the extension, select the correct location

for the file and click Save.

If multiple connector configurations are open, click Save All to File to save all

of the configurations to file, or click Save All to Project to save all connector

configurations to a System Manager project.

Before you created the configuration file, you used the Target System droplist

that allows you to select the target operating system for extended validation of

the properties.

28 Adapter for JText User Guide

Before it saves the file, Connector Configurator checks that values have been

set for all required standard properties. If a required standard property is

missing a value, Connector Configurator displays a message that the validation

failed. You must supply a value for the property in order to save the

configuration file.

If you have elected to use the extended validation feature by selecting a value

of Windows, UNIX or Other from the Target System droplist, the system will

validate the property subtype s well as the type, and it displays a warning

message if the validation fails.

Setting the configuration file properties

When you create and name a new connector configuration file, or when you open

an existing connector configuration file, Connector Configurator displays a

configuration screen with tabs for the categories of required configuration values.

Connector Configurator requires values for properties in these categories for

connectors running on all brokers:

v Standard Properties

v Connector-specific Properties

v Supported Business Objects

v Trace/Log File values

v Data Handler (applicable for connectors that use JMS messaging with

guaranteed event delivery)

Note: For connectors that use JMS messaging, an additional category may display,

for configuration of data handlers that convert the data to business objects.

For connectors running on ICS, values for these properties are also required:

v Associated Maps

v Resources

v Messaging (where applicable)

v Security

Important: Connector Configurator accepts property values in either English or

non-English character sets. However, the names of both standard and

connector-specific properties, and the names of supported business

objects, must use the English character set only.

Standard properties differ from connector-specific properties as follows:

v Standard properties of a connector are shared by both the application-specific

component of a connector and its broker component. All connectors have the

same set of standard properties. These properties are described in the Standard

Properties appendix. You can change some but not all of these values.

v Application-specific properties apply only to the application-specific component

of a connector, that is, the component that interacts directly with the application.

Each connector has application-specific properties that are unique to its

application. Some of these properties provide default values and some do not;

you can modify some of the default values. The installation and configuration

chapters of each adapter guide describe the application-specific properties and

the recommended values.

Chapter 3. Configuring the JText adapter 29

The fields for Standard Properties and Connector-Specific Properties are

color-coded to show which are configurable:

v A field with a grey background indicates a standard property. You can change

the value but cannot change the name or remove the property.

v A field with a white background indicates an application-specific property. These

properties vary according to the specific needs of the application or connector.

You can change the value and delete these properties.

v Value fields are configurable.

v The Update Method field is displayed for each property. It indicates whether a

component or agent restart is necessary to activate changed values. You cannot

configure this setting.

Setting standard connector properties

To change the value of a standard property:

1. Click in the field whose value you want to set.

2. Either enter a value, or select one from the drop-down menu if it appears.

Note: If the property has a Type of String, it may have a subtype value in the

Subtype column. This subtype is used for extended validation of the

property.

3. After entering all the values for the standard properties, you can do one of the

following:

v To discard the changes, preserve the original values, and exit Connector

Configurator, click File>Exit (or close the window), and click No when

prompted to save changes.

v To enter values for other categories in Connector Configurator, select the tab

for the category. The values you enter for Standard Properties (or any other

category) are retained when you move to the next category. When you close

the window, you are prompted to either save or discard the values that you

entered in all the categories as a whole.

v To save the revised values, click File>Exit (or close the window) and click

Yes when prompted to save changes. Alternatively, click Save>To File from

either the File menu or the toolbar.

To get more information on a particular standard property, left-click the entry in

the Description column for that property in the Standard Properties tabbed sheet.

If you have Extended Help installed, an arrow button will appear on the right.

When you click on the button, a Help window will open and display details of the

standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

If installed, the Extended Help files are located in

<ProductDir>\bin\Data\Std\Help\<RegionalSetting>\.

Setting connector-specific configuration properties

For connector-specific configuration properties, you can add or change property

names, configure values, delete a property, and encrypt a property. The default

property length is 255 characters.

30 Adapter for JText User Guide

1. Right-click in the top left portion of the grid. A pop-up menu bar will appear.

Click Add to add a property. To add a child property, right-click on the parent

row number and click Add child.

2. Enter a value for the property or child property.

Note: If the property has a Type of String, you can select a subtype from the

Subtype droplist. This subtype is used for extended validation of the

property.

3. To encrypt a property, select the Encrypt box.

4. To get more information on a particular property, left-click the entry in the

Description column for that property. If you have Extended Help installed, a

hot button will appear. When you click on the hot button, a Help window will

open and display details of the standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

5. Choose to save or discard changes, as described for “Setting standard connector

properties” on page 30.

If the Extended Help files are installed and the AdapterHelpName property is

blank, Connector Configurator will point to the adapter-specific Extended Help

files located in <ProductDir>\bin\Data\App\Help\<RegionalSetting>\. Otherwise,

Connector Configurator will point to the adapter-specific Extended Help files

located in

<ProductDir>\bin\Data\App\Help\<AdapterHelpName>\<RegionalSetting>\. See

the AdapterHelpName property described in the Standard Properties appendix.

The Update Method displayed for each property indicates whether a component or

agent restart is necessary to activate changed values.

Important: Changing a preset application-specific connector property name may

cause a connector to fail. Certain property names may be needed by

the connector to connect to an application or to run properly.

Connector-specific properties

Connector-specific configuration properties provide information needed by the

connector at runtime. They also provide a way of changing static information or

logic within the connector without having to recode and rebuild the connector.

Table 6 lists the connector-specific configuration properties for the connector. See

the sections that follow for explanations of the properties.

 Table 5. Connector-specific configuration properties

Name Possible values Default value Required?

ArchivingEnabled true or false true Yes

EventLog Name and location of file event.log No

EventRecovery abort or retry retry Yes

FTPPollFrequency number of poll cycles No

GenerateTemplate BOName No

OutputLog File that registers the next

sequence number for each

incoming business object

during request processing

Output.Log No

PollQuantity Number of events processed

at each poll

25 No

Chapter 3. Configuring the JText adapter 31

Table 5. Connector-specific configuration properties (continued)

Name Possible values Default value Required?

SortFilesOnTimestamp true or false False No

NoPoll true or false False No

ArchivingEnabled: Turns on archiving. If this property is set to true, the event file

is archived in the archive directory with the specified extension. If this property is

set to false, the event file is not archived. In this case, the connector deletes the file

after sending all events to the integration broker. For more information, see

“Specifying event archiving” on page 59.

The default value is true.

EventLog: Provides file storage location for events that are generated by the

connector. This file is located in the JText subdirectory in the connectors directory

where the product is installed.

The default value is event.log.

EventRecovery: Specifies recovery behavior. If this property is set to retry, the

connector uses the event.log file to recover failed events. If this property is set to

abort, the connector terminates when it encounters a failed event. For more

information, see “Event log file” on page 82.

The default value is retry.

FTPPollFrequency: Determines how frequently the connector polls an FTP server

measured in the number of standard poll cycles. For example, if PollFrequency

standard configuration property is set to 10000, and FTPPollFrequency is set to 6,

the connector polls the local event directory every 10 seconds and polls the remote

directory every 60 seconds. The connector performs FTP polling only if you specify

a value for this property. If FTPPollFrequency evaluates to 0 or blank, the connector

does not perform FTP polling. By default it does not.

There is no default value for this property.

GenerateTemplate: Enables the connector to generate a template for each

supported business object after connector startup. The syntax for this property is

BOName;BOName where the name of a specific business object is substituted for

BOName. For example, to generate two templates, one for a Customer business

object and one for an Item business object, specify Customer;Item. For more

information, see “Generating sample business objects for testing” on page 78.

There is no default value for this property.

OutputLog: Specifies the name of the file that stores the sequence number that

the connector uses to create unique output files for each type of business object

during request processing. The format of the file is:

BusinessObjectName = NextSequenceNumber

where BusinessObjectName is the name of the request business object, and

NextSequenceNumber represents the sequence number of the most recently received

business object, incremented by one. For example, if the connector is processing

Customer and Item business objects, the output log file might contain the

following:

32 Adapter for JText User Guide

Customer = 12

Item = 2

This file indicates that the connector has already processed 11 Customers and 1

Item. The next Customer and Item business objects will be written to the

Customer_12.out and Item_2.out files, respectively. When it receives a request

Order business object, the connector adds a new row to the output log file and

writes the business object to the Order_1.out file.

If FileSeqEnabled meta object is set to true, the connector uses this sequence

number to uniquely name the output files that it creates for each business object.

The connector names each output file by appending an underscore (_) and the

sequence number to the business object’s name or to a file whose name is specified

in the OutputFileName meta-object attribute. Because the output log is stored in

user-readable format, you can use a standard text editor to read the file or to reset

its value.

For more information on the OutputFileName attribute, see “Specifying the name

of the output file” on page 56. For more information about the output log, see

“Specifying request processing” on page 60. For information on returning the

generated file’s name, see “Returning a file’s name” on page 62.

The default is Output.Log.

PollQuantity: Specifies the number of events to process for each poll. The

connector poll method retrieves the specified number of event records and

processes them in a single poll. Processing multiple events per poll can improve

performance when the application generates large numbers of events. However,

because integration-broker requests are blocked while the poll method is

processing events, do not set the number of events too high. If each poll call takes

a long time, it delays integration-broker request operations. For more information,

see “Tuning the performance of the JText connector” on page 77.

The default value is 25.

SortFilesOnTimestamp: Allows the adapter to pick up event files based on the

timestamp. This property is ideally set to true when there are only a few huge

event files picked up by the adapter during polling. When there are a lot of small

event files, this value should be set to false in order to avoid the excess time taken

to sort the files at each poll.

The default value is False.

Note: Sorting based on the timestamp is supported only on Windows and Unix

platforms. Sorting based on timestamp is not supported on MVS platforms.

Also, the JText adapter can poll remote files based on the timestamp from

FTP site only if the FTP server supports the mdtm (modification date and

time) command.

NoPoll: If this property is set to true, then the adapter will not perform event

processing and the adapter can only be used for request processing.

The default value is False.

Encryption for connector properties

Application-specific properties can be encrypted by selecting the Encrypt check

box in the Connector-specific Properties window. To decrypt a value, click to clear

Chapter 3. Configuring the JText adapter 33

the Encrypt check box, enter the correct value in the Verification dialog box, and

click OK. If the entered value is correct, the value is decrypted and displays.

The adapter user guide for each connector contains a list and description of each

property and its default value.

If a property has multiple values, the Encrypt check box will appear for the first

value of the property. When you select Encrypt, all values of the property will be

encrypted. To decrypt multiple values of a property, click to clear the Encrypt

check box for the first value of the property, and then enter the new value in the

Verification dialog box. If the input value is a match, all multiple values will

decrypt.

Update method

Refer to the descriptions of update methods found in the Standard Properties

appendix.

Specifying supported business object definitions

Use the Supported Business Objects tab in Connector Configurator to specify the

business objects that the connector will use. You must specify both generic business

objects and application-specific business objects, and you must specify associations

for the maps between the business objects.

Note: Some connectors require that certain business objects be specified as

supported in order to perform event notification or additional configuration

(using meta-objects) with their applications. For more information, see the

Connector Development Guide for C++ or the Connector Development Guide for

Java.

If ICS is your broker

To specify that a business object definition is supported by the connector, or to

change the support settings for an existing business object definition, click the

Supported Business Objects tab and use the following fields.

Business object name: To designate that a business object definition is supported

by the connector, with System Manager running:

1. Click an empty field in the Business Object Name list. A drop list displays,

showing all the business object definitions that exist in the System Manager

project.

2. Click on a business object to add it.

3. Set the Agent Support (described below) for the business object.

4. In the File menu of the Connector Configurator window, click Save to Project.

The revised connector definition, including designated support for the added

business object definition, is saved to an ICL (Integration Component Library)

project in System Manager.

To delete a business object from the supported list:

1. To select a business object field, click the number to the left of the business

object.

2. From the Edit menu of the Connector Configurator window, click Delete Row.

The business object is removed from the list display.

3. From the File menu, click Save to Project.

34 Adapter for JText User Guide

Deleting a business object from the supported list changes the connector definition

and makes the deleted business object unavailable for use in this implementation

of this connector. It does not affect the connector code, nor does it remove the

business object definition itself from System Manager.

Agent support: If a business object has Agent Support, the system will attempt to

use that business object for delivering data to an application via the connector

agent.

Typically, application-specific business objects for a connector are supported by

that connector’s agent, but generic business objects are not.

To indicate that the business object is supported by the connector agent, check the

Agent Support box. The Connector Configurator window does not validate your

Agent Support selections.

Maximum transaction level: The maximum transaction level for a connector is

the highest transaction level that the connector supports.

For most connectors, Best Effort is the only possible choice.

You must restart the server for changes in transaction level to take effect.

If a WebSphere Message Broker is your broker

If you are working in stand-alone mode (not connected to System Manager), you

must enter the business object name manually.

If you have System Manager running, you can select the empty box under the

Business Object Name column in the Supported Business Objects tab. A combo

box appears with a list of the business object available from the Integration

Component Library project to which the connector belongs. Select the business

object you want from the list.

The Message Set ID is an optional field for WebSphere Business Integration

Message Broker 5.0, and need not be unique if supplied. However, for WebSphere

MQ Integrator and Integrator Broker 2.1, you must supply a unique ID.

If WAS is your broker

When WebSphere Application Server is selected as your broker type, Connector

Configurator does not require message set IDs. The Supported Business Objects

tab shows a Business Object Name column only for supported business objects.

If you are working in stand-alone mode (not connected to System Manager), you

must enter the business object name manually.

If you have System Manager running, you can select the empty box under the

Business Object Name column in the Supported Business Objects tab. A combo box

appears with a list of the business objects available from the Integration

Component Library project to which the connector belongs. Select the business

object you want from this list.

Associated maps (ICS)

Each connector supports a list of business object definitions and their associated

maps that are currently active in WebSphere InterChange Server. This list appears

when you select the Associated Maps tab.

Chapter 3. Configuring the JText adapter 35

The list of business objects contains the application-specific business object which

the agent supports and the corresponding generic object that the controller sends

to the subscribing collaboration. The association of a map determines which map

will be used to transform the application-specific business object to the generic

business object or the generic business object to the application-specific business

object.

If you are using maps that are uniquely defined for specific source and destination

business objects, the maps will already be associated with their appropriate

business objects when you open the display, and you will not need (or be able) to

change them.

If more than one map is available for use by a supported business object, you will

need to explicitly bind the business object with the map that it should use.

The Associated Maps tab displays the following fields:

v Business Object Name

These are the business objects supported by this connector, as designated in the

Supported Business Objects tab. If you designate additional business objects

under the Supported Business Objects tab, they will be reflected in this list after

you save the changes by choosing Save to Project from the File menu of the

Connector Configurator window.

v Associated Maps

The display shows all the maps that have been installed to the system for use

with the supported business objects of the connector. The source business object

for each map is shown to the left of the map name, in the Business Object

Name display.

v Explicit Binding

In some cases, you may need to explicitly bind an associated map.

Explicit binding is required only when more than one map exists for a particular

supported business object. When ICS boots, it tries to automatically bind a map

to each supported business object for each connector. If more than one map

takes as its input the same business object, the server attempts to locate and

bind one map that is the superset of the others.

If there is no map that is the superset of the others, the server will not be able to

bind the business object to a single map, and you will need to set the binding

explicitly.

To explicitly bind a map:

1. In the Explicit column, place a check in the check box for the map you want

to bind.

2. Select the map that you intend to associate with the business object.

3. In the File menu of the Connector Configurator window, click Save to

Project.

4. Deploy the project to ICS.

5. Reboot the server for the changes to take effect.

Resources (ICS)

The Resource tab allows you to set a value that determines whether and to what

extent the connector agent will handle multiple processes concurrently, using

connector agent parallelism.

36 Adapter for JText User Guide

Not all connectors support this feature. If you are running a connector agent that

was designed in Java to be multi-threaded, you are advised not to use this feature,

since it is usually more efficient to use multiple threads than multiple processes.

Messaging (ICS)

The Messaging tab enables you to configure messaging properties. The messaging

properties are available only if you have set MQ as the value of the

DeliveryTransport standard property and ICS as the broker type. These properties

affect how your connector will use queues.

Validating messaging queues

Before you can validate a messaging queue, you must:

v Make sure that WebSphere MQ Series is installed.

v Create a messaging queue with channel and port on the host machine.

v Set up a connection to the host machine.

To validate the queue, use the Validate button to the right of the Messaging Type

and Host Name fields on the Messaging tab.

Security (ICS)

You can use the Security tab in Connector Configurator to set various privacy

levels for a message. You can only use this feature when the DeliveryTransport

property is set to JMS.

By default, Privacy is turned off. Check the Privacy box to enable it.

The Keystore Target System Absolute Pathname is:

v For Windows:

<ProductDir>\connectors\security\<connectorname>.jks

v For UNIX:

opt/IBM/WebSphereAdapters/connectors/security/<connectorname>.jks

This path and file should be on the system where you plan to start the connector,

that is, the target system.

You can use the Browse button at the right only if the target system is the one

currently running. It is greyed out unless Privacy is enabled and the Target System

in the menu bar is set to Windows.

The Message Privacy Level may be set as follows for the three messages categories

(All Messages, All Administrative Messages, and All Business Object Messages):

v “” is the default; used when no privacy levels for a message category have been

set.

v none

Not the same as the default: use this to deliberately set a privacy level of none

for a message category.

v integrity

v privacy

v integrity_plus_privacy

The Key Maintenance feature lets you generate, import and export public keys for

the server and adapter.

Chapter 3. Configuring the JText adapter 37

v When you select Generate Keys, the Generate Keys dialog box appears with the

defaults for the keytool that will generate the keys.

v The keystore value defaults to the value you entered in Keystore Target System

Absolute Pathname on the Security tab.

v When you select OK, the entries are validated, the key certificate is generated

and the output is sent to the Connector Configurator log window.

Before you can import a certificate into the adapter keystore, you must export it

from the server keystore. When you select Export Adapter Public Key, the Export

Adapter Public Key dialog box appears.

v The export certificate defaults to the same value as the keystore, except that the

file extension is <filename>.cer.

When you select Import Server Public Key, the Import Server Public Key dialog

box appears.

v The import certificate defaults to <ProductDir>\bin\ics.cer (if the file exists on

the system).

v The import Certificate Association should be the server name. If a server is

registered, you can select it from the droplist.

The Adapter Access Control feature is enabled only when the value of

DeliveryTransport is IDL. By default, the adapter logs in with the guest identity. If

the Use guest identity box is not checked, the Adapter Identity and Adapter

Password fields are enabled.

Setting trace/log file values

When you open a connector configuration file or a connector definition file,

Connector Configurator uses the logging and tracing values of that file as default

values. You can change those values in Connector Configurator.

To change the logging and tracing values:

1. Click the Trace/Log Files tab.

2. For either logging or tracing, you can choose to write messages to one or both

of the following:

v To console (STDOUT):

Writes logging or tracing messages to the STDOUT display.

Note: You can only use the STDOUT option from the Trace/Log Files tab for

connectors running on the Windows platform.

v To File:

Writes logging or tracing messages to a file that you specify. To specify the

file, click the directory button (ellipsis), navigate to the preferred location,

provide a file name, and click Save. Logging or tracing message are written

to the file and location that you specify.

Note: Both logging and tracing files are simple text files. You can use the file

extension that you prefer when you set their file names. For tracing

files, however, it is advisable to use the extension .trace rather than

.trc, to avoid confusion with other files that might reside on the

system. For logging files, .log and .txt are typical file extensions.

38 Adapter for JText User Guide

Data handlers

The data handlers section is available for configuration only if you have designated

a value of JMS for DeliveryTransport and a value of JMS for

ContainerManagedEvents. Not all adapters make use of data handlers.

See the descriptions under ContainerManagedEvents in Appendix A, Standard

Properties, for values to use for these properties. For additional details, see the

Connector Development Guide for C++ or the Connector Development Guide for Java.

Saving your configuration file

When you have finished configuring your connector, save the connector

configuration file. Connector Configurator saves the file in the broker mode that

you selected during configuration. The title bar of Connector Configurator always

displays the broker mode (ICS, WMQI or WAS) that it is currently using.

The file is saved as an XML document. You can save the XML document in three

ways:

v From System Manager, as a file with a *.con extension in an Integration

Component Library, or

v In a directory that you specify.

v In stand-alone mode, as a file with a *.cfg extension in a directory folder. By

default, the file is saved to \WebSphereAdapters\bin\Data\App.

v You can also save it to a WebSphere Application Server project if you have set

one up.

For details about using projects in System Manager, and for further information

about deployment, see the following implementation guides:

v For ICS: Implementation Guide for WebSphere InterChange Server

v For WebSphere Message Brokers: Implementing Adapters with WebSphere Message

Brokers

v For WAS: Implementing Adapters with WebSphere Application Server

Changing a configuration file

You can change the integration broker setting for an existing configuration file.

This enables you to use the file as a template for creating a new configuration file,

which can be used with a different broker.

Note: You will need to change other configuration properties as well as the broker

mode property if you switch integration brokers.

To change your broker selection within an existing configuration file (optional):

v Open the existing configuration file in Connector Configurator.

v Select the Standard Properties tab.

v In the BrokerType field of the Standard Properties tab, select the value that is

appropriate for your broker.

When you change the current value, the available tabs and field selections in the

properties window will immediately change, to show only those tabs and fields

that pertain to the new broker you have selected.

Chapter 3. Configuring the JText adapter 39

Completing the configuration

After you have created a configuration file for a connector and modified it, make

sure that the connector can locate the configuration file when the connector starts

up.

To do so, open the startup file used for the connector, and verify that the location

and file name used for the connector configuration file match exactly the name you

have given the file and the directory or path where you have placed it.

Using Connector Configurator in a globalized environment

Connector Configurator is globalized and can handle character conversion between

the configuration file and the integration broker. Connector Configurator uses

native encoding. When it writes to the configuration file, it uses UTF-8 encoding.

Connector Configurator supports non-English characters in:

v All value fields

v Log file and trace file path (specified in the Trace/Log files tab)

The drop list for the CharacterEncoding and Locale standard configuration

properties displays only a subset of supported values. To add other values to the

drop list, you must manually modify the \Data\Std\stdConnProps.xml file in the

product directory.

For example, to add the locale en_GB to the list of values for the Locale property,

open the stdConnProps.xml file and add the line in boldface type below:

<Property name="Locale"

isRequired="true"

updateMethod="component restart">

 <ValidType>String</ValidType>

 <ValidValues>

 <Value>ja_JP</Value>

 <Value>ko_KR</Value>

 <Value>zh_CN</Value>

 <Value>zh_TW</Value>

 <Value>fr_FR</Value>

 <Value>de_DE</Value>

 <Value>it_IT</Value>

 <Value>es_ES</Value>

 <Value>pt_BR</Value>

 <Value>en_US</Value>

 <Value>en_GB</Value>

 <DefaultValue>en_US</DefaultValue>

 </ValidValues>

 </Property>

Starting the connector

A connector must be explicitly started using its connector start-up script. On

Windows systems the startup script should reside in the connector’s runtime

directory:

ProductDir\connectors\connName

where connName identifies the connector.

On UNIX systems the startup script should reside in the UNIX ProductDir/bin

directory.

40 Adapter for JText User Guide

The name of the startup script depends on the operating-system platform, as

Table 6 shows.

 Table 6. Startup scripts for a connector

Operating system Startup script

UNIX-based systems connector_manager

Windows start_connName.bat

When the startup script runs, it expects by default to find the configuration file in

the Productdir (see the commands below). This is where you place your

configuration file.

Note: You need a local configuration file if the adapter is using JMS transport.

You can invoke the connector startup script in any of the following ways:

v On Windows systems, from the Start menu

Select Programs>IBM WebSphere Business Integration

Adapters>Adapters>Connectors. By default, the program name is “IBM

WebSphere Business Integration Adapters”. However, it can be customized.

Alternatively, you can create a desktop shortcut to your connector.

v From the command line

– On Windows systems:

start_connName connName brokerName [-cconfigFile]

– On UNIX-based systems:

connector_manager -start connName brokerName [-cconfigFile]

where connName is the name of the connector and brokerName identifies your

integration broker, as follows:

– For WebSphere InterChange Server, specify for brokerName the name of the

ICS instance.

– For WebSphere message brokers (WebSphere MQ Integrator, WebSphere MQ

Integrator Broker, or WebSphere Business Integration Message Broker) or

WebSphere Application Server, specify for brokerName a string that identifies

the broker.

Note: For a WebSphere message broker or WebSphere Application Server on a

Windows system, you must include the -c option followed by the name of

the connector configuration file. For ICS, the -c is optional.

v From Adapter Monitor, which is launched when you start System Manager

running with the WebSphere Application Server or InterChange Server broker:

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v From System Manager (available for all brokers):

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v On Windows systems, you can configure the connector to start as a Windows

service. In this case, the connector starts when the Windows system boots (for an

Auto service) or when you start the service through the Windows Services

window (for a Manual service).

For more information on how to start a connector, including the command-line

startup options, refer to one of the following documents:

Chapter 3. Configuring the JText adapter 41

v For WebSphere InterChange Server, refer to the System Administration Guide.

v For WebSphere message brokers, refer to Implementing Adapters with WebSphere

Message Brokers.

v For WebSphere Application Server, refer to Implementing Adapters with WebSphere

Application Server.

Stopping the connector

The way to stop a connector depends on the way that the connector was started,

as follows:

v If you started the connector from the command line, with its connector startup

script:

– On Windows systems, invoking the startup script creates a separate “console”

window for the connector. In this window, type “Q” and press Enter to stop

the connector.

– When using InterChange Server on UNIX-based systems, connectors run in

the background so they have no separate window. Instead, run the following

command to stop the connector:

connector_manager_connName -stop

where connName is the name of the connector.
v From Adapter Monitor (WebSphere Business Integration Adapters product only),

which is launched when you start System Manager:

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v From System Monitor (WebSphere InterChange Server product only):

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v On Windows systems, you can configure the connector to start as a Windows

service. In this case, the connector stops when the Windows system shuts down.

Creating multiple connector instances

Creating multiple instances of a connector is in many ways the same as creating a

custom connector. You can set your system up to create and run multiple instances

of a connector by following the steps below. You must:

v Create a new directory for the connector instance

v Make sure you have the requisite business object definitions

v Create a new connector definition file

v Create a new start-up script

Create a new directory

You must create a connector directory for each connector instance. This connector

directory should be named:

ProductDir\connectors\connectorInstance

where connectorInstance uniquely identifies the connector instance.

If the connector has any connector-specific meta-objects, you must create a

meta-object for the connector instance. If you save the meta-object as a file, create

this directory and store the file here:

ProductDir\repository\connectorInstance

42 Adapter for JText User Guide

Create business object definitions

If the business object definitions for each connector instance do not already exist

within the project, you must create them.

1. If you need to modify business object definitions that are associated with the

initial connector, copy the appropriate files and use Business Object Designer to

import them. You can copy any of the files for the initial connector. Just rename

them if you make changes to them.

2. Files for the initial connector should reside in the following directory:

ProductDir\repository\initialConnectorInstance

Any additional files you create should be in the appropriate connectorInstance

subdirectory of ProductDir\repository.

Create a connector definition

You create a configuration file (connector definition) for the connector instance in

Connector Configurator. To do so:

1. Copy the initial connector’s configuration file (connector definition) and rename

it.

2. Make sure each connector instance correctly lists its supported business objects

(and any associated meta-objects).

3. Customize any connector properties as appropriate.

Create a start-up script

To create a startup script:

1. Copy the initial connector’s startup script and name it to include the name of

the connector directory:

dirname

2. Put this startup script in the connector directory you created in “Create a new

directory” on page 42.

3. Create a startup script shortcut (Windows only).

4. Copy the initial connector’s shortcut text and change the name of the initial

connector (in the command line) to match the name of the new connector

instance.

You can now run both instances of the connector on your integration server at the

same time.

For more information on creating custom connectors, refer to the Connector

Development Guide for C++ or for Java.

Adding supported business objects

By default, the JText connector supports the MO_JTextConnector_Default and

MO_DataHandler_Default meta-objects. To fully configure the connector, use

Connector Configurator to add other required business objects to its list of

supported business objects. Depending on how you use the connector, you may

need to add all or many of the following business objects:

v The meta-object for the data handler (which is specified in the EventDataHandler

and OutputDataHandler attributes of the MO_JTextConnector_Default

meta-object). By default, these attributes specify the

MO_DataHandler_DefaultNameValueConfig data-handler meta-object, which

represents the NameValue data handler. For more information, see “Specifying a

data handler” on page 75.

Chapter 3. Configuring the JText adapter 43

v MO_JTextConnector_BusObjName — if you create meta-objects for specific business

objects. For more information, see “Creating a JText meta-object for a specific

business object” on page 75.

v Business objects that are to be read from or written to a file. For more

information, see “Business objects used by the JText connector” on page 3.

44 Adapter for JText User Guide

Chapter 4. Using JText connector meta-objects

A meta-object is a WebSphere Business Integration Adapters business object that

contains configuration information used by a connector or a data handler. The

JText connector requires each of its supported business objects to have an

associated JText meta-object for that business object type. This top-level meta-object

contains at least one child meta-object.

v The connector uses the top-level JText meta-object to obtain configuration

information such as which data handler to use for data conversion, the paths of

the business object’s event, archive, and output directories, the file extensions for

its event, archive, and output files, information that is required if the connector

is processing files on an FTP system, and whether the connector generates

unique file identifiers for its output files.

v The connector uses a child meta-object to specify configuration values for the

data handler to use when converting data between the business object and a

string or byte array. By default, the top-level meta-object specifies the

NameValue data handler to convert data.

To provide different configuration information for each business object that the

connector supports, you can create a custom top-level JText meta-object for each

one. Because each top-level meta-object specifies its own data-handler meta-object,

the connector can process each type of business object in a different format. The

data-handler meta-object eliminates the need to edit a business object definition or

to modify the connector itself when you introduce new data formats or make

changes to existing formats.

Meta-objects are loaded into memory at startup, making their configuration

information available to the connector. Note that meta-objects are not sent to the

integration broker for processing. They affect the behavior only of the connector.

A sample JText connector Meta-object is provided in

ProductDir\repository\MO_JTextConnector_Default.jar. You can import this file

by right-clicking and choosing to import from a repository file. See the System

Implementation Guide for more details.

This chapter describes how to configure the JText connector by using JText

meta-objects. For information on using data-handler meta-objects, see the Data

Handler Guide. Topics included in this chapter include:

v “JText meta-object naming conventions”

v “JText meta-object structure” on page 46

v “Common configuration tasks” on page 57

JText meta-object naming conventions

The name of a top-level JText meta-object has three components, as illustrated by

the name of the default top-level meta-object, MO_JTextConnector_Default. The

components of a top-level JText meta-object name are as follows:

v MO_ is a prefix that indicates a meta-object.

© Copyright IBM Corp. 2000, 2003, 2004 45

v ConnectorInstanceName_ specifies the name of the connector instance, such as

JText. This name is configurable to support the use of multiple connector

instances. For example, a connector named JText2 might have a meta-object

named MO_JText2Connector_Default.

v Default specifies the name of the associated business object. To create a

meta-object for a specific business object, change the string Default to the name

of the business object, as in MO_JTextConnector_Customer for a business object

named Customer. You can include additional components and underscores in the

meta-object name. For example, the Oracle_Customer business object would be

associated with the MO_JTextConnector_Oracle_Customer meta-object. The

connector uses default meta-objects whenever corresponding business

object-specific meta-objects do not exist.

For information on creating meta-objects for a specific business object, see

“Creating a JText meta-object for a specific business object” on page 75.

JText meta-object structure

A JText meta-object has a hierarchical structure. The default top-level meta-object is

named MO_JTextConnector_Default. Two attributes of the top-level meta-object,

EventDataHandler and OutputDataHandler, represent child meta-objects that

provide configuration information for the data handler that the connector uses. The

connector uses the data handler to convert data between business objects and

strings or byte arrays.

By default, both of these attributes specify the same data-handler meta-object

(MO_DataHandler_DefaultNameValueConfig). This data-handler meta-object calls the

NameValue data handler to actually convert the data. In other words, the delivered

default configuration specifies that event and output file conversion use the same

data handler. For information on instantiating a data handler, see the Data Handler

Guide.

Note: Because formatter usage has been deprecated in favor of data handler usage,

the EventFormat and OutputFormat attributes that formerly represented a

formatter have been removed from the MO_JTextConnector_Default

meta-object. To use a formatter, you must:

v add the EventFormat and OutputFormat attributes to the top-level meta-object

v specify the appropriate business object as the Type of these attributes

v change the Type of the EventDataHandler and OutputDataHandler attributes to

String

For information on using a formatter, see the documentation for the 3.0.0 or 2.3.0

release of the JText connector.

Figure 5 shows the hierarchical structure for the default JText meta-objects and

each attribute name and type.

46 Adapter for JText User Guide

Creating custom meta-objects

MO_JTextConnector_Default, as the top-level JText meta-object, contains

configuration information and child meta-objects for the connector. You can create

separate top-level meta-objects for each type of business object that the connector

handles. These custom meta-objects can contain the same or different child

meta-objects to configure the type of data handler. For example, to configure

processing differently for the Customer and Item business objects, create the

MO_JTextConnector_Customer and MO_JTextConnector_Item meta-objects, and design

these top-level meta-objects to contain different data-handler meta-objects.

At initialization, the connector retrieves a list of its supported meta-objects and

business objects from the integration broker. From the names of these objects, the

connector determines which business objects have their own associated top-level

Top-level Jtext meta-object

MO_JTextConnector_Default

DummyKey String

Version = 1.0.0

EventDataHandler MO_DataHandler_DefaultNameValueConfig

OutputDataHandler MO_DataHandler_DefaultNameValueConfig

Default data handler meta-object

MO_DataHandler_DefaultNameValueConfig

ValidateAttrCount

Version = 1.0.0

CxBlank
CxBlankValue
ClassName
DummyKey

DefaultVerb
SkipCxIgnore
CxIgnore

ObjectEventId

String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String
String

String

String
String
String
String
String

String
String
String

DataEncoding
DataProcessingMode
OriginalArchiveExt
UnsubscribedArchiveExt
PartialArchiveExt
OutputDir
OutputExt
OutputFileName
FileSeqEnabled
ArchiveDir
SuccessArchiveDir
FailArchiveExt
EventDir
EventExt
EndBODelimiter
FixedBOSize

FTPPassword
FTPLocalEventDir
FTPRenameExt
FTPEventFileMask
FTPOSPlatform
FTPArchiveDir
FTPTransferType
FTPDataStructure
StagingDir
FTPFileListingFormat
IncludeEndBODelimiter
FTPPollTerminateIfServerDown
FTPRequestTerminateIfServerDown
FTPKeepConnectionOpen
ObjectEventId

FTPUserId

Figure 5. Hierarchical Structure of the JText meta-object

Chapter 4. Using JText connector meta-objects 47

meta-objects. At runtime, the connector matches the name of a request business

object with one of its supported meta-objects to locate the appropriate

configuration information.

For example, assume that the connector supports the following meta-objects:

v MO_JTextConnector_Default

v MO_JTextConnector_Customer

v MO_JTextConnector_Item

and the following business objects:

v Customer

v Item

v Order

When the integration broker sends a request Customer business object, the

connector uses the configuration information specified in the

MO_JTextConnector_Customer meta-object. When the integration broker sends a

request Order business object, the connector uses the configuration information

specified in the MO_JTextConnector_Default meta-object.

MO_JTextConnector_Default attributes

This section describes the attributes in the MO_JTextConnector_Default

meta-objects.

Note: All values in an attribute’s DefaultValue property are case-sensitive.

Directory information must specify the absolute path of a directory.

Table 7 and the following sections describe the functionality of each attribute in the

MO_JTextConnector_Default meta-object. Among other information, this table

includes the value provided for each simple attribute’s DefaultValue property. You

can replace the product-delivered value with your own value.

 Table 7. Attributes in the MO_JTextConnector_Default meta-object definition

Attribute name Description

ArchiveDir Specifies the absolute path of the Archive directory. The directory must

already exist. The delivered default values are:

UNIX: /tmp/JTextConn/Default/archive

Windows:C:\temp\JTextConn\Default\Archive

BiDi supported for Windows. All BiDi enabled properties will be

transformed from Windows BiDi format into the BiDi.Metadata format,

which is an e-Mail connector standard property.

DataEncoding DataEncoding is the encoding to be used to read and write business object

strings. If this property is not specified in the static meta-object, the

connector tries to read or write the business object string without using

any specific encoding. You can specify any Java-supported encoding set for

this attribute.

48 Adapter for JText User Guide

Table 7. Attributes in the MO_JTextConnector_Default meta-object definition (continued)

Attribute name Description

DataProcessing Mode This attribute provides new flexibility for reading and writing binary files.

When set to Binary, this MO property enables JText to read and write

binary files from the file system while calling the appropriate data handler

interface for BO to byte array and vice versa transformations. The

traditional setting for this is Text. In Text mode, the BO to String and vice

versa data handler interface is used. When the property is not set, it

defaults to Text. Binary mode should only be used with a data handler

that appropriately implements the getBO(byte[]) and

getByteArrayFromBO() methods.

DummyKey This attribute exists to satisfy the requirement that one attribute in every

business object definition have the Key property enabled.

EndBODelimiter Specifies a delimiter that separates business objects within an input file.

For more information on the EndBODelimiter attribute, see “Polling for

specific business objects” on page 65.

If you do not provide a default value during configuration and the

DataProcessingMode is set to Text, the property defaults to the following

value: <EndBO:BOName>. When DataProcessingMode is binary, the property

defaults to the following value: FF01.

Note: Since the NameValue data handler is set as the default data handler,

the EndBODelimiter value is set to <EndBO:BOName>. If you would like to use

another data handler, such as the Delimited data handler, you will have to

specify the corresponding value. For the Delimited data handler, the string

EOL is a valid EndBODelimitervalue.

EndOfFileDelimiter When DataProcessingMode is binary, and FTPDataStructure is Record, both

EndBODelimiter and EndOfFileDelimiter are used. This property is set to

the hexadecimal byte that is used for the end of file marker in the record

file. If it is not set, the default, FF02, is used.

EventDataHandler Represents a child meta-object whose attributes provide configuration

values for the data handler to be used for event processing (business object

string converted to business object). The delivered default value is

MO_DataHandler_DefaultNameValueConfig

Chapter 4. Using JText connector meta-objects 49

Table 7. Attributes in the MO_JTextConnector_Default meta-object definition (continued)

Attribute name Description

EventDir Specifies the absolute path of the Event directory. The directory must

already exist. If you create separate meta-objects for different business

objects, and you specify the same EventDir path for both, you must specify

unique values for the EventExt attribute in each meta-object. For more

information, see “Specifying event directories and extensions” on page 58.

To configure the connector to use a remote FTP file system for event

processing, specify the FTP URL in this attribute. Optionally, you can use

this attribute to specify the following additional information in the URL:

v the id and password of a user with privileges to connect to the FTP

server and perform FTP operations; if not specified in EventDir, must be

specified in FTPUserId and FTPPassword.

v the FTP port; if not specified in EventDir, the connector uses the default

FTP port.

v the remote event directory; if not specified in EventDir, the connector

polls the event files from the directory to which the connection is

established to the FTP server.

Syntax for specifying FTP information in the EventDir attribute is:

ftp://[UserId:password@]FTPserver[:port][RemoteEventDirectory]

For more information, see “Remote event processing” on page 68. To

specify local file information in the EventDir attribute, use the full path of

the file. Alternately, you can use a FILE URL, which uses the following

format:

[file://]FullPathname

The delivered default values are:

UNIX: /tmp/JTextConn/Default/event

Windows:C:\temp\JTextConn\Default\Event

BiDi supported for Windows. All BiDi enabled properties will be

transformed from Windows BiDi format into the BiDi.Metadata format,

which is an e-Mail connector standard property.

Note: A new Connector-specific boolean property, ″NoPoll″, has been

introduced, to optionally turn off polling. The default value is false. When

set to true, the adapter only processes requests and does not poll.

EventExt Specifies the extension of the file used for event notification. If no value is

specified, the JText connector polls for files with no file extension. For more

information, see “Specifying multiple event files or multiple event

directories” on page 64.

Note: The use of an asterisk (*) for this attribute to specify that the

connector poll for all files in a single event directory regardless of their

extension is no longer supported. The delivered default value is in.

FailArchiveExt Specifies the file extension used to archive business objects that were not

successfully processed. For more information, see “Specifying event

archiving” on page 59. The delivered default value is fail.

FileSeqEnabled Specifies filename sequencing, which outputs each business object to a

separate file. The file’s name includes a unique sequence number. For more

information, see “Specifying request processing” on page 60. The delivered

default value is true.

FixedBOSize When present with a valid value, this meta-object property overrides the

EndBODelimiter property, and provides users an alternative to the

traditional delimiter based BO parsing.

50 Adapter for JText User Guide

Table 7. Attributes in the MO_JTextConnector_Default meta-object definition (continued)

Attribute name Description

FTPArchiveDir Specifies the relative path of the archive directory on the FTP server. The

directory must already exist. There are several options for using this

attribute to specify archiving:

v Specifying a value for this attribute but no value for the FTPRenameExt

attribute causes the connector to append a timestamp to the event

filename and move it to the FTP server archive directory specified in this

attribute.

v Specifying a value both for this attribute and the FTPRenameExt attribute

causes the connector to rename the processed event filename with a

timestamp and the value specified in FTPRenameExt, and move it to the

FTP server archive directory specified in this attribute.

v Specifying no value either for this attribute or the FTPRenameExt attribute

causes the connector to delete the processed event file without archiving

it.

v Specifying no value for this attribute but specifying a value for the

FTPRenameExt attribute causes the connector to rename the processed

event file, adding a timestamp and the value specified in FTPRenameExt,

and move it to the directory specified in the EventExt attribute.

v Specifying / (slash) for this attribute but no value for the FTPRenameExt

attribute causes the connector to move the processed event file to the

root directory on the FTP server.

v Specifying / (slash) for this attribute and a value for the FTPRenameExt

attribute causes the connector to rename the processed event filename

with the extension specified in FTPRenameExt, and move it to the root

directory on the FTP server.

For more information, see “Specifying event archiving” on page 59. There

is no delivered default value for this attribute.

BiDi supported for Windows. All BiDi enabled properties will be

transformed from Windows BiDi format into the BiDi.Metadata format,

which is an e-Mail connector standard property.

FTPDataStructure This attribute is of type String. The user can specify the FTP data structure

(either File or Record) to get or put files from or to the remote site. If

nothing is specified, Jtext will use ’File as default value

Chapter 4. Using JText connector meta-objects 51

Table 7. Attributes in the MO_JTextConnector_Default meta-object definition (continued)

Attribute name Description

FTPEventFileMask Uses embedded wildcard characters to specify the mask or prefix of remote

FTP files for event processing. Specify a value for this attribute only to

identify the file mask on a mainframe that does not adhere to the same

naming standards that apply to UNIX or Windows systems. Using

wildcard characters in the file name enables you to specify multiple files

for event processing. For example, you can use the following format to

specify multiple event files: ACT.Z1UC.INPT*For more information, see

“Identifying files on a mainframe: Optional configuration” on page 71.

There is no delivered default value.
If you are polling, you should provide a very specific mask. For example, if

you want to poll all the following event files: USER.JTEXT.TEST001.EVENT,

USER.JTEXT.TEST002.EVENT, USER.JTEXT.TEST003.EVENT,

USER.JTEXT.TEST004.EVENT, and the FTPArchiveDir is set as / or left blank,

and the FTPRenameExt is set as RENAME, then these files would get archived

as the following: USER.JTEXT.TEST001.RENAME,

USER.JTEXT.TEST002.RENAME, USER.JTEXT.TEST003.RENAME. So, if you

provide an FTPEventFileMask=USR.JTEXT.TEST*.*, all the events would get

picked up on the first poll. All the archived files would get picked up at

the next poll, since even they conform to the same file mask. In order to

avoid this, you must provide a very specific mask. For example, like

USR.JTEXT.TEST*.EVENT, so that USR.JTEXT.TEST*.RENAME is not picked up

during polling.

Note: Do not specify a mask that is applicable for both event files and

archived files.

BiDi supported for Windows. All BiDi enabled properties will be

transformed from Windows BiDi format into the BiDi.Metadata format,

which is an e-Mail connector standard property.

FTPFileListingFormat Specifies the format in which the JText connector should expect file

information to appear when reading in files. This enables the connector to

read in files in different locales where date and time information may be

stored in different orders within the file format information. To configure

the connector to use the format for your locale, specify a

semicolon-delimited series of characters that represent the order in which

file attributes occur; below is a list that associates the possible characters

with the file attributes they represent.

P Permission L Links U User G Group S Size D Date

M Month T Time N Name

A suitable value for this attribute, then, might be P:L:U:G:S:D:M:T:N.

FTPGetQuantity Determines the number of files retrieved from the remote FTP URL with

each remote poll.

FTPKeepConnectionOpen Set the Default Value property of this attribute to the value true to cause

the JText connector to maintain its connection with an FTP site. If this

attribute is set to the value true then the connector only closes the

connection when the connector terminates or if the FTP server closes the

connection itself (due to a configured timeout, for instance). The connector

checks to make sure that the connection is still alive each time it performs

a remote operation in order to handle the situation when the FTP server

might have closed the connection due to a timeout. If the connection has

been closed then the connector re-establishes it. Set the Default Value

property of this attribute to the value false to cause the JText connector to

open a connection with the FTP server each time it performs an operation

and to close the connection when it is finished. Configuring the connector

to keep the connection alive can improve the performance of the connector

when performing request processing on FTP sites.

52 Adapter for JText User Guide

Table 7. Attributes in the MO_JTextConnector_Default meta-object definition (continued)

Attribute name Description

FTPLocalEventDir Specifies the local system directory into which the connector downloads

event files from the FTP site. You must specify a value for this attribute to

enable the connector to process events using FTP. For more information,

see “Specifying the local directory” on page 69. There is no delivered

default value.

BiDi supported for Windows. All BiDi enabled properties will be

transformed from Windows BiDi format into the BiDi.Metadata format,

which is an e-Mail connector standard property.

FTPOSPlatform Use this attribute only if configuring the connector to use a remote FTP file

system where the remote FTP server is an MVS platform. In this case,

specify the value of this attribute as MVS. Case is not significant. For more

information, see “Specifying a remote FTP file system” on page 68. There is

no delivered default value.

FTPPassword Specifies the password of the user who has privileges to connect to the FTP

server and perform FTP operations. You need not specify a value for this

attribute if the password is included in the URL specified in the EventDir

or OutputDir attribute. For more information, see “Specifying the FTP URL

and login information” on page 68. There is no delivered default value for

this attribute.

FTPPollTerminateIfServerDown Specifies the behavior of the connector when configured to poll the FTP

site for events and the FTP site is unavailable. If the Default Value property

of the FTPPollTerminateIfServerDown attribute is set to the value true and

the FTP site is unavailable when the connector attempts a poll call, then

the connector terminates. If the Default Value property of the

FTPPollTerminateIfServerDown attribute is set to the value false and the

FTP site is unavailable when the connector attempts a poll call, then the

connector does not terminate.

There is no delivered default value.

FTPRenameExt Specifies the file extension or suffix that the connector uses to rename the

remote FTP file after the connector has polled for it. Renaming the file

prevents the connector from polling the same file in the next poll cycle.

Alternatively, you can configure the connector to rename the processed

event file and move it to an archive directory. For more information, see

the FailArchiveExt attribute. For more information, see “Identifying files

on a mainframe: Optional configuration” on page 71. There is no delivered

default value.

FTPRequestTerminateIfServerDown Specifies the behavior of the connector when configured to perform request

processing and communicate with an FTP site, and the FTP site is

unavailable. If the Default Value property of the

FTPRequestTerminateIfServerDown attribute is set to the value true and

the FTP site is unavailable when the connector attempts to perform request

processing, then the connector terminates. If the Default Value property of

the FTPRequestTerminateIfServerDown attribute is set to the value false

and the FTP site is unavailable when the connector attempts to perform

request processing, then the connector does not terminate.

There is no delivered default value .

FTPTransferType This JText meta-object property is used during both event and request

processing. The possible values for this property are Binary and ASCII. The

property dictates the transfer type JText will use when remotely placing or

retrieving files from an FTP server. When the property does not exist, the

adapter behavior defaults to Binary.

Chapter 4. Using JText connector meta-objects 53

Table 7. Attributes in the MO_JTextConnector_Default meta-object definition (continued)

Attribute name Description

FTPUserId Specifies the name of the user who has privileges to connect to the FTP

server and perform FTP operations. You need not specify a value for this

attribute if the UserId is included in the URL specified in the EventDir or

OutputDir attribute. The connector ignores this attribute if it does not find

an FTP URL in the EventDir attribute (during event processing) or

OutputDir attribute (during request processing). For more information, see

“Specifying the FTP URL and login information” on page 68. There is no

delivered default value for this attribute.

IncludeEndBODelimiter Specifies whether or not the value specified for the EndBODelimiter

meta-object attribute is included in the string written to a file by the JText

connector. If the Default Value property of this attribute is set to true then

the connector includes the value specified for the EndBODelimiter attribute

when it writes files. If the Default Value property of this attribute is set to

false then the connector does not include the value specified in the

EndBODelimiter attribute when it writes files.

LargeObject A flag used to turn on the large object optimization features of JText

adapter (when set to true). Setting this flag to true will result in the

following changes in the behavior of the archiver:

1. If an event file has multiple business objects, the archiving will be done

only after all the business objects for that event file are processed.

2. The original file will not be archived in case the processing of all

business objects in that event file results in failure or unsubscribed

status.

Also an extra log file will be created internally for keeping track of the

archive status.

MVSSiteCommand Used for issuing MVS FTP site commands. The site command should be

specified without SITE or QUOTE keywords. An example for site

command value is:LRECL=<value> BLKSIZE=<value>, where <value>

represents the site command arguments passed.

ObjectEventID Placeholder not used by the connector in a meta-object but required by the

integration broker. This attribute must be the last attribute in the

meta-object. There is no delivered default value.

OriginalArchiveExt Specifies the file extension used to archive the original event file, which

preserves the entire event file for reference in case any of its business

objects fail processing or are unsubscribed. For more information, see

“Specifying event archiving” on page 59. The delivered default value is

orig.

OutputDataHandler Represents a child meta-object whose attributes provide configuration

values for the data handler to be used for service call requests (business

object converted to business object string). The delivered default value is

MO_DataHandler_DefaultNameValueConfig

54 Adapter for JText User Guide

Table 7. Attributes in the MO_JTextConnector_Default meta-object definition (continued)

Attribute name Description

OutputDir Specifies the absolute path of the Output directory. The directory must

already exist. To configure the connector to use a remote FTP file system

for request processing, specify the FTP URL in this attribute. Optionally,

you can use this attribute to specify the following additional information in

the URL:

v the UserId and password of a user with privileges to connect to the FTP

server and perform FTP operations; if not specified in EventDir, must be

specified in FTPUserId and FTPPassword.

v the FTP port; if not specified in OutputDir, the connector uses the default

FTP port.

v the remote output directory; if not specified in OutputDir, the connector

loads request files into the default connection directory (the directory on

the FTP server to which the connection is established).

Syntax for specifying FTP information in the OutputDir attribute

is:ftp://[UserId:password@]FTPserver[:port]For more information, see

“Remote request processing” on page 72. To specify local file information

in the OutputDir attribute, use the full path of the file. Alternately, you can

use a FILE URL, which uses the following format:

[file://]FullPathname

The delivered default values are: UNIX: /tmp/JTextConn/Default/out

Windows:c:\temp\JTextConn\Default\Out

BiDi supported for Windows. All BiDi enabled properties will be

transformed from Windows BiDi format into the BiDi.Metadata format,

which is an e-Mail connector standard property.

OutputExt Specifies the extension of the file used for request processing. The

delivered default value is out.

Note: If OutputFileName contains no extension, but the OutputExt attribute

does contain an extension, the output file is generated with both the file

name and the extension. If neither contain an extension, the output file is

generated without one.

OutputFileName Specifies the name and path of the output file into which the connector

writes the incoming business object during request processing. If the

OutputDir attribute contains a valid output directory, the output file is

generated into the specified directory. For more information, see

“Specifying the name of the output file” on page 56.

Note: If OutputFileName and OutputExt attributes do not contain an

extension, the output file is generated without an extension. The delivered

default value is Native.

BiDi supported. If the BiDi format used in the target platform is different

from the Windows 2003 format, values for these meta-data attributes will

be transformed.

PartialArchiveExt Specifies the file extension used to archive the successfully processed

business objects (when the event file contains multiple business objects, not

all of which process successfully). For more information, see “Specifying

event archiving” on page 59. The delivered default value is partial.

Chapter 4. Using JText connector meta-objects 55

Table 7. Attributes in the MO_JTextConnector_Default meta-object definition (continued)

Attribute name Description

StagingDir Specifies a directory in which the connector should write files to before

moving them into the directory specified by the OutputDir attribute. This is

designed to handle environments where other software processes might be

monitoring and manipulating the directory into which the JText connector

outputs files (such as an FTP process that detects files created by the

connector and moves them to another location). In situations such as this,

there is a risk that the external process could move the file before it has

been completely written. You can specify a staging directory in the

StagingDir attribute, therefore, so that the connector writes the file

completely to the staging directory and then moves it to the output

directory when it is finished, eliminating the risk of the external process

picking up an incomplete file.

It is recommended that the staging directory and output directory be on

the same file system or drive to accommodate different operating systems’

approaches to file moving operations. Note that the StagingDircan be a

remote directory.
There is no delivered default value.
BiDi supported for Windows. All BiDi enabled properties will be

transformed from Windows BiDi format into the BiDi.Metadata format,

which is an e-Mail connector standard property.

SuccessArchiveExt Specifies the file extension used to archive all successfully processed

business objects. For more information, see “Specifying event archiving” on

page 59. The delivered default value is success.

UnsubscribedArchiveExt Specifies the file extension used to archive all unsubscribed business

objects. For more information, see “Specifying event archiving” on page 59.

The delivered default value is unsub.

Note: Attributes FTPTransferType, FTPDataStructure, DataProcessingMode,

EndOfFileDelimiter, and FixedBOSizeare not part of the JText meta-object as

delivered. To use these attributes, they need to be explicitly added to the

meta-object and their default values must be set.

Specifying the name of the output file

There are three ways to specify the name of the output file:

v Use the OutputFileName attribute

Use this attribute when you want the connector to write each business object of

the same type to separate files with unique sequence numbers, or to append

multiple business objects to a single file with a specified name.

v Use a dynamic child meta-object

Use a dynamic child meta-object when you want to dynamically generate an

output filename for each type of business object or to return the name of a

connector-generated output file. See “Using a dynamic child meta-object” on

page 4 for details.

There are several ways to use the OutputFileName attribute to specify the name of

the output file:

v If OutputFileName is set to the string Native and the FileSeqEnabled attribute is

set to true, the connector sends the business object string to a unique file whose

name is derived from the name of the incoming business object, whose extension

is derived from the OutputExt attribute, and whose path is derived from the

OutputDir attribute. In this case, the connector’s default behavior is to write each

business object of the same type to separate files with unique sequence numbers.

56 Adapter for JText User Guide

To cause the connector to overwrite the output file each time it receives business

objects of the same type, set the FileSeqEnabled attribute to false.

v If OutputFileName is set to a string other than Native and the FileSeqEnabled

attribute is set to true, the connector handles the value of the output file in one

of the following ways:

– If OutputFileName contains an absolute path (including the filename and the

extension of the output file, for example, OutputFileName=

C:\temp\Out\test.out), the connector uses only this attribute to generate the

output file. In this case, the connector’s default behavior is to write each

business object of the same type to separate files with the specified name and

with unique sequence numbers.

– If OutputFileName contains the full path and the filename, but not the

extension, and the OutputExt attribute contains a value, (for example,

OutputFileName= C:\temp\Out\test and OutputExt=out), the connector uses

the value of both attributes to generate the output file. In this case, the

connector generates a file named C:\temp\Out\test_1.out.

– If OutputFileName contains the full path and the filename, but not the

extension, and the OutputExt attribute does not contain a value, the connector

generates the output file without any extension. In this case, the connector

generates a file named C:\temp\Out\test_1.

– If OutputFileName contains only the filename, and not the path or extension,

and the OutputDir attribute contains a value, the connector generates the

output file in the directory specified by OutputDir. If OutputExt contains a

value, the connector also uses that value. If not, it creates the filename

without any extension.

Note: If the connector is processing more than one type of business object and

OutputFileName is set to a string other than Native, each business object

must have its own top-level meta-object, which specifies a unique output

filename. For example, the meta-object used by the Customer business object

might be MO_JTextConnector_Customer, and the meta-object used by Item

might be MO_JTextConnector_Item. Set the value of the OutputFileName

attribute in each of these meta-objects to a unique value.

v To cause the connector to append multiple business objects to a single file with

the specified name, specify a value for OutputFileName and set the

FileSeqEnabled attribute to false.

v To cause the connector to overwrite the output file each time it receives business

objects of the same type, use a dynamic child meta-object. Specify its absolute

path and filename in the InFileName attribute and set the FileWriteMode

attribute to “o”. For more information on using a dynamic child meta-object, see

“Using a dynamic child meta-object” on page 4.

Native is a reserved word.

For more information, see “Specifying request processing” on page 60.

Common configuration tasks

This section describes the most common configuration tasks.

v “Specifying event notification” on page 58

v “Specifying event archiving” on page 59

v “Specifying request processing” on page 60

v “Specifying multiple event files or multiple event directories” on page 64

Chapter 4. Using JText connector meta-objects 57

v “Polling for specific business objects” on page 65

v “Specifying a remote FTP file system” on page 68

v “Configuring secure FTP” on page 74

v “Specifying a data handler” on page 75

v “Creating a JText meta-object for a specific business object” on page 75

v “Reading multiple business objects of different types from the same file” on

page 76

v “Specifying values for ObjectEventID attributes” on page 76

v “Setting up a second instance of a JText connector” on page 76

v “Tuning the performance of the JText connector” on page 77

v “Generating sample files for testing” on page 78

v “Generating sample business objects for testing” on page 78

Specifying event notification

This section describes the following:

v “Specifying event directories and extensions”

v “Configuring polling behavior” on page 58

Specifying event directories and extensions

If you send more than one type of business object to the connector for processing,

and each business object type has its own top-level meta-object, the combination of

values you specify for the EventDir and EventExt attributes must be unique for

each directory/extension pair for each business object.

In other words, if you specify the same event directory for two business object

types, you must specify different event extensions for these business objects. If you

specify the same extension for two business object types, you must specify

different event directories for these business objects.

For example, assume you have created the MO_JTextConnector_Customer and

MO_JTextConnector_Item meta-objects to provide configuration values for the

Customer and Item business objects, respectively. If you instruct the connector to

locate the input files for both business objects in the same directory (by specifying

the same path in the EventDir attribute), you must uniquely identify the input files

by specifying different values for the EventExt attribute.

Therefore, if the EventDir attribute evaluates to C:\temp\event for both Customers

and Items, the value of the EventExt attributes for these two business objects must

be different (such as in for Customer input files and inp for Items).

Note: A new Connector-specific boolean property, ″NoPoll″, has been introduced,

to optionally turn off polling. The default value is false. When set to true,

the adapter only processes requests and does not poll.

Configuring polling behavior

To configure polling behavior, perform the following steps:

1. Configure the following attributes of the MO_JTextConnector_Default

meta-object:

v EventDir—Specify the absolute path of an existing directory whose files

trigger event notification.

v EventExt—The connector looks for files with the delivered-default extension

of in. If you use this attribute to specify a different extension, the connector

58 Adapter for JText User Guide

looks for the specified extension. If you leave this attribute empty, the

connector polls for files with no extension.

v EventDataHandler—Specify the data handler to use for data conversion

during event notification.
2. Use Connector Configurator to configure the following connector properties:

v PollFrequency—Specify the interval frequency.

v PollQuantity—Specify the number of events for each polling interval.

v PollEndTime—Specify the time to complete the polling of events.

v PollStartTime—Specify the time to begin the polling of events.
3. Establish read permissions on the event directory.

Specifying event archiving

Depending on whether all or some of the business objects in the event file process

successfully, the JText connector uses different extensions when it creates the

archive file for successfully processed business objects. The connector also writes

business objects that fail processing and those that are unsubscribed to differently

named archive files.

This section describes the following:

v “Local archive filenames”

v “Configuring local archiving” on page 60

Local archive filenames

If you retain the delivered default values for the archive extension attributes, the

connector creates archive files named as shown below:

v Event file has a single business object

After the JText connector processes an event file that contains a single business

object, it creates one of following files in the archive directory:

– filename_timestamp.success, to archive a successfully processed business

object

– filename_timestamp.fail, to archive a business object that was not

successfully processed

– filename_timestamp.unsub, to archive a business object to which it does not

subscribe

If the business object fails processing or is unsubscribed, the connector also

creates the filename_timestamp.orig file, which preserves the event file as the

connector originally received it.

v Event file has multiple business objects, all of which process successfully

After the JText connector successfully processes an event file with multiple

business objects, it creates filename_timestamp.success in the archive directory.

v Event file has multiple business objects, some of which are unsubscribed or fail

processing

After the JText connector processes an event file that contains multiple business

objects, it may create all of the following files in the archive directory:

– filename_timestamp.partial, to archive all business objects whose processing

was successful

– filename_timestamp.fail, to archive all business objects whose processing

was unsuccessful

– filename_timestamp.unsub, to archive all business objects to which the

connector does not subscribe

Chapter 4. Using JText connector meta-objects 59

– filename_timestamp.orig, to preserve the event file as the connector

originally received it

For example, assume that the LegacyApp.in file contains four business objects:

– Contract, which is successfully processed

– Customer, which fails formatting

– Order, which is successfully processed

– Item, to which the connector does not subscribe

In such a case, the connector creates the following files in the archive directory:

– LegacyApp_timestamp.partial, which contains Contract and Order

– LegacyApp_timestamp.fail, which contains Customer

– LegacyApp_timestamp.unsub, which contains Item

– LegacyApp_timestamp.orig, which contains Contract, Customer, Order, and

Item

Configuring local archiving

To configure the connector for archiving, follow these steps:

1. Configure the following attributes of the MO_JTextConnector_Default

meta-object:

v ArchiveDir—Specify the absolute path of an existing local or FTP server

directory into which the connector is to place events (with file extensions that

indicate processing status) after they are processed.

v SuccessArchiveExt—Specify the extension for the file that contains the

successfully processed business objects (when all business objects process

successfully).

v PartialArchiveExt—Specify the extension for the file that contains all the

successfully processed business objects (when some of the business objects in

the event file do not process successfully).

v UnsubscribedArchiveExt—Specify the extension for the file that contains the

business objects to which the connector does not subscribe.

v OriginalArchiveExt—Specify the extension for the file that preserves all the

business objects that were contained in the event file.

v FailArchiveExt—Specify the extension for the file that contains the business

objects that failed processing.
2. Use Connector Configurator to configure the ArchivingEnabled connector

property.

3. Establish write permissions on the archive directory.

Specifying request processing

You can cause the JText connector to write business objects to files whose names

are specified dynamically (in each business object instance) or statically (through

meta-objects). You can also cause the connector to return each filename that it

generates statically; this feature is useful to obtain filenames generated with a

unique sequence number. This section contains the following subsections:

v “Dynamic file naming” on page 61

v “Static file naming” on page 61

v “Returning a file’s name” on page 62

v “Differences between local and remote processing” on page 62

v “Configuring the output file” on page 63

60 Adapter for JText User Guide

Dynamic file naming

To cause the connector to dynamically generate an output filename for each type of

business object, create a dynamic child meta-object. Use the child meta-object:

v either to specify the name of the output file or to receive the name of the

generated filename

v to specify whether to append to or overwrite the output file

Important: In addition to creating the dynamic child meta-object to enable the

connector to generate or return the output filename, if you are using

ICS as the integration broker, you must also modify your maps or

collaboration logic to insert into the dynamic child meta-object’s

InFileName attribute a path and filename for each business object, and,

if required, unique sequence numbers.

For more information, see “Using a dynamic child meta-object” on page 4.

For information about how the connector processes the meta-object, see “Request

processing” on page 10.

For information on configuring the connector to use a dynamically generated

output filename, see “Configuring the output file” on page 63.

Static file naming

When you use meta-objects to specify the name of output files, you must restart

the connector for any changes to take effect. You can specify whether the connector

appends all business objects of a given type to a single file or creates a separate file

for each business object.

When it uses the delivered default configuration, the connector creates an output

file for each business object it processes. It names the output file for the incoming

business object and adds a sequence number to make the name unique; it gives it

the extension of .out. For example, if it receives the Customer and Item business

objects, the connector writes their data to the Customer_1.out and Item_1.out

output files. For information on obtaining the names of generated output files, see

“Returning a file’s name” on page 62. For information on the file that stores the

sequence numbers, see “OutputLog” on page 32.

To use the meta-object to configure the name of output files, do the following:

1. Configure the following attributes of the MO_JTextConnector_Default

meta-object:

v OutputDir—Specify the absolute path of an existing directory to which the

connector is to write files when it processes requests. For more information,

see “Configuring the output file” on page 63.

v OutputExt—Use this attribute to specify your own extension if you want to

change the delivered default configuration, which causes the connector to

create files with the out extension.

v FileSeqEnabled—Keep set to true to cause the connector to output one

business object per file, each with a unique sequence number. Set to false to

cause the connector to output all business objects of a given type to a single

file, either by overwriting or appending. For information on configuring

overwrite or append behavior, see Table 8 on page 63.

Chapter 4. Using JText connector meta-objects 61

v OutputFileName—To the cause the connector to append business objects to a

single output file rather than overwrite the data in the file or generate

unique files for each business object, specify the output file’s full path and

filename.

To cause the connector to overwrite the output file each time it receives the

same type of business object, do not specify a value for OutputFileName.

In each of these cases, set FileSeqEnabled to false.

For information on configuring overwrite or append behavior, see Table 8 on

page 63.
2. Establish write permissions on the output directory.

Note: You must create meta-objects for specific business objects if the connector is

to use different data formats or file naming conventions for different

business objects.

Returning a file’s name

To cause the connector to return the names of the files it generates, do the

following:

v Use meta-objects to specify path and filenames and to cause the connector to

generate a unique sequence number for each output file. For more information,

see “Static file naming” on page 61.

v Use a dynamic child meta-object to cause the connector to return the name of

each file it generates. Follow the steps in “Using a dynamic child meta-object”

on page 4, but do not specify a value for its InFileName attribute. When the

connector receives a business object whose dynamic child meta-object specifies

OutFileName=CxIgnore, it creates a filename based on the configuration of its

top-level meta-object, and returns the full path and filename as a value in the

InFileName attribute.

Note: The connector populates the InFileName attribute only with a local path,

even when processing files over an FTP server.

Important: In addition to creating the dynamic child meta-object to enable the

connector to generate or return the output filename, if you are using

ICS as the integration broker, you must also modify your maps or

collaboration logic to insert into the dynamic child meta-object’s

InFileName attribute a path and filename for each business object, and,

if required, unique sequence numbers.

Differences between local and remote processing

The connector processes files remotely in much the same way that it processes

them locally. There are, however, a few differences:

v When processing events and generating filenames dynamically, the connector

populates the InFileName attribute of the dynamic child meta-object only with a

local path name and not with a remote path.

v When processing requests, if the connector is not configured for dynamic file

naming and FileSeqEnabled evaluates to false and the output file already

exists:

– If processing locally, the connector overwrites the existing file.

– If processing remotely, the connector throws an exception.
v In addition to configuring the standard archive extension attributes for local

event processing, when using the connector to process files remotely over an

FTP server, you can also configure the FTPArchiveDir and FTPRenameExt

62 Adapter for JText User Guide

attributes. These attributes enable you to rename and move the remotely

archived file independently of the success of the processing.

For further information see “Specifying remote archiving” on page 69

Configuring the output file

Table 8 illustrates the possible configuration options for the output file:

 Table 8. Specifying output files

Desired output condition

Attributes/property requiring

configuration Attribute/property value

Each business object of a given type is

appended to a file whose absolute path

and filename is derived at runtime from

an attribute in the business object.

Use a dynamic child meta-object

AppSpecificInfo (at business-object

level)

cw_mo_JTextConfig =

DynChildMOName

For dynamic child meta-object:

OutFileName

user-specified pathname and

filename

FileWriteMode a or append

Each business object of a given type

overwrites the output file whose absolute

path and filename is derived at runtime

from an attribute in the business object.

Use a dynamic child meta-object

AppSpecificInfo (at business-object

level)

cw_mo_JTextConfig =

DynChildMOName

For dynamic child

meta-object:OutFileName

user-specified pathname and

filename

FileWriteMode o or overwrite

Each business object of a given type is

written to its own unique file whose

name is derived from the business object’s

name and a generated unique sequence

number.

OutputDir user-specified pathname

FileSeqEnabled true

OutputFileName Native

The connector returns the name of each

file it generates. Each business object of a

given type is written to its own unique

file whose name is derived from the

business object’s name and a generated

unique sequence number.

Use a dynamic child meta-object

AppSpecificInfo (at business-object

level)

cw_mo_JTextConfig =

DynChildMOName

InFileName (in dynamic child

meta-object)

CxIgnore

FileWriteMode (in dynamic child

meta-object)

N/A

Use meta-object configuration:

MO_JTextConnector

_businessobjectname:

OutputDir user-specified pathname

FileSeqEnabled true

OutputFileName Native

All business objects of a given type are

appended to a single file whose name is

user-specified.

FileSeqEnabled false

OutputFileName user-specified pathname and

filename

Each business object of a given type is

written to its own unique file whose

name is user-specified plus a unique

sequence number.

FileSeqEnabled true

Chapter 4. Using JText connector meta-objects 63

Table 8. Specifying output files (continued)

Desired output condition

Attributes/property requiring

configuration Attribute/property value

If the connector is processing more than

one type of business object and

OutputFileName is set to a string other

than Native, each business must have its

own top-level meta-object. For more

information, see “Specifying the name of

the output file” on page 56.

OutputFileName user-specified pathname and

filename

Each business object of a given type

overwrites the output file, whose name is

derived from the business object’s name.

OutputDir user-specified pathname

FileSeqEnabled false

OutputFileName Native

The connector returns the name of each

file it generates. Each business object of a

given type is written to its own unique

file whose name is user-specified plus a

unique sequence number.

Use a dynamic child meta-object

AppSpecificInfo (at business-object

level)

cw_mo_JTextConfig =

DynChildMOName

InFileName (in dynamic child

meta-object)

CxIgnore

FileWriteMode (in dynamic child

meta-object)

N/A

Use meta-object configuration:

MO_JTextConnector

_businessobjectname:

FileSeqEnabled true

OutputFileName user-specified pathname and

filename

Specifying multiple event files or multiple event directories

You can configure the connector to pick up only files with a specified extension.

You can also configure the connector to pick up files from multiple directories.

Important: The use of an asterisk (*) for the EventExt attribute to specify that the

connector poll for all files in a single event directory regardless of their

extension is no longer supported.

To specify a separate event directory for each business object type, perform the

following steps:

1. Create a separate meta-object for each supported business object; for example,

create MO_JTextConnector_Customer and MO_JTextConnector_Item. For more

information, see “Creating a JText meta-object for a specific business object” on

page 75.

2. Specify the appropriate directory in each meta-object’s EventDir attribute.

Note: The JText connector processes event files in the order of their time stamps,

from the earliest to the most recent, regardless of their location. In other

words, the JText connector processes files located in separate directories in

the chronological order of their time stamps.

64 Adapter for JText User Guide

Polling for specific business objects

Configuration of the JText connector differs depending on whether all your event

files are in a single directory, they all have the same extension, they contain a

single business object or multiple business objects, they contain business objects of

one type or multiple types, and they represent each business object on a single line

or on multiple lines.

This section explains the following:

v “Using EndBODelimiter parsing method”

– “Using non-printable characters for an EndBODelimiter” on page 66
v “Using FixedBOSize parsing method” on page 67

Using EndBODelimiter parsing method

If no value is specified for the EndBODelimiter meta-object attribute, the connector:

v expects the event file to delimit business object strings with <EndBO:BOName>

v specifies <EndBO:BOName> as the delimiter when it writes business object strings

to output files.

If an event file contains only one business object, you can specify EOF (end of file)

for this attribute.

If you set the value of the EndBODelimiter attribute to a non-empty string, the

string is assumed to be the business object delimiter for every file. If the value is

not set or is cleared, the connector assumes the delimiter is <EndBO:BOName>.

Important: If DataProcessingMode is set to binary and if there is no value specified

for EndBODelimiter, JText will set the default EndBODelimiter to FF01 (2

bytes) and EndOfFileDelimiter to FF02 (2 bytes).

Table 9 illustrates delimiter options.

 Table 9. Using the EndBODelimiter attribute

Conditions Delimiter Notes

File contains one or more business object

strings with one or more types of business

object or File contains multiple business object

strings of the same type of business object;

each string runs over several lines.

<EndBO:BOName>or EOL or

user-specified

value

v Specify as many

semicolon-separated EOLs as there

are new lines between business

object strings.

v Specify a custom delimiter in

conjunction with EOLs. A custom

delimiter must always be the first

element when used with EOL. The

following example is valid:

customEndBO;EOL;EOL. The

following example is not valid:

EOL;customEndBO;EOL.

Chapter 4. Using JText connector meta-objects 65

Table 9. Using the EndBODelimiter attribute (continued)

Conditions Delimiter Notes

Each file contains only one business object

string

EOL For user-specified value v Specify as many

semicolon-separated EOLs as there

are new lines between business

object strings.

v Specify a user-specified delimiter

in conjunction with EOLs and EOF if

required by the input strings. A

custom delimiter must always be

the first element when used with

EOL. The following example is

valid: customEndBO;EOL;EOL. The

following example is not valid:

EOL;customEndBO;EOL

File contains multiple business object strings,

one per line

EOL

File contains multiple business object strings of

the same type of business object; each string

runs over several lines without any separators

between business-object strings

None Can use the delivered default

meta-object or a custom meta-object

Note: This option is available only

during service call requests and not

for event notification. Do not use this

delimiter in conjunction with any

other delimiter.

Note: If the source file contains empty lines, the connector ignores them.

Using non-printable characters for an EndBODelimiter: To poll for files in

multiple directories, you must create a meta-object for each supported business

object. The value you specify for each meta-object’s EndBODelimiter attribute

depends on whether your source file contains a single business object or multiple

business objects.

v Files that contain a single business object

You can specify EOF as the EndBODelimiter if the entire data file contains only

one business object string.

v Files that contain multiple business objects

If your input file contains multiple business objects that have only a new line as

the business object delimiter, specify the string EOL in the EndBODelimiter

attribute. In this case, the source file contains strings representing multiple

business objects of the same type.

Important: To poll from a file that contains multiple business object types, you

must use the MO_JTextConnector_Default meta-object, and must

ensure that its EventExt and EventDir attributes correctly point to

the directory where this event file is located. To poll for business

object types that are represented in separate event files or whose

event files are located in different directories, you must create a

separate top-level meta-object for each type. Use the EventExt and

EventDir attributes to point to the appropriate directory.

To use a custom data handler when polling files that contain multiple business

objects of different types, see “Reading multiple business objects of different

types from the same file” on page 76.

66 Adapter for JText User Guide

If using a name/value format, you cannot specify the EOL business object

delimiter if the event file splits business object data over multiple lines. For more

information, see the Data Handler Guide.

The following examples illustrate the delimiter to use for different event file

formats:

v File contains four business object strings and uses the non-printable character

EOL as the end of business object delimiter:

Sample_BO~Create~1~TableGenKey5~strange~TextConnector_924055528_0

Sample_BO~Create~2~TableGenKey5~strange~TextConnector_924055528_0

Sample_BO~Create~3~TableGenKey5~strange~TextConnector_924055528_0

Sample_BO~Create~4~TableGenKey5~strange~TextConnector_924055528_0

v File contains four business object strings and uses a user-specified value and the

non-printable character EOL as the end of business object delimiter, that is

CustomEndBO;EOL:

Sample_BO~Create~1~TableGenKey5~strange~TextConnector_924055528_0CustomEndBO

Sample_BO~Create~2~TableGenKey5~strange~TextConnector_924055528_0CustomEndBO

Sample_BO~Create~3~TableGenKey5~strange~TextConnector_924055528_0CustomEndBO

Sample_BO~Create~4~TableGenKey5~strange~TextConnector_924055528_0CustomEndBO

v File that contains four business object strings and uses the non-printable

character EOL;EOL as the end of business object delimiter:

Sample_BO~Create~1~TableGenKey5~strange~TextConnector_924055528_0

Sample_BO~Create~2~TableGenKey5~strange~TextConnector_924055528_0

Sample_BO~Create~3~TableGenKey5~strange~TextConnector_924055528_0

Sample_BO~Create~4~TableGenKey5~strange~TextConnector_924055528_0

v File that contains four business object strings and uses None as the end of

business object delimiter:

Sample_BO~Create~1~TableGenKey5~strange~TextConnector_924055528_0Sample_BO

~Create~2~TableGenKey5~strange~TextConnector_924055528_0Sample_BO~Create~3

~TableGenKey5~strange~TextConnector_924055528_0Sample_BO~Create~4

~TableGenKey5~strange~TextConnector_924055528_0

Note: The connector is case-sensitive to the string that you specify, except for the

EOL and EOF delimiters.

For more information on creating your own meta-objects, see “Creating a JText

meta-object for a specific business object” on page 75.

Using FixedBOSize parsing method

This meta-object property is only valid in the following instances:

1. When performing event processing.

2. When DataProcessingMode is set to Binary.

When present with a valid value, this meta-object property overrides the

EndBODelimiter property, and provides users an alternative to the traditional

delimiter based business object parsing. This property enables the connector to

correlate a fixed number of bytes with a single business object. For example, if a

file consisted of 300 bytes, and the FixedBOSize property was set to 100, the JText

Adapter would convert these three 100 byte length packets through a binary

enabled data handler and send them to the ICS.

If both FixedBOSize and EndBODelimiter have a value set, then Jtext will take

FixedBOSize for file parsing and it will ignore EndBODelimiter.

Chapter 4. Using JText connector meta-objects 67

Specifying a remote FTP file system

This section describes how to configure the JText adapter to use a remote FTP file

system for event and request processing.

Important: To enable the connector to use a remote FTP file system, you must

specify an FTP URL in the EventDir attribute (for event processing) or

OutputDir attribute (for request processing). You must also resolve all

firewall issues before using the connector to perform FTP operations.

This section describes the following:

v “Remote event processing”

v “Remote request processing” on page 72

v “Notes on configuring the connector for FTP transfer” on page 73

Remote event processing

To configure the connector to use a remote FTP file system for event processing,

you must specify the FTP URL, FTP login information, a local directory into which

the connector downloads the event files from the remote directory, archiving

information, and information related to how the connector behaves when the FTP

server is unavailable. This section describes all of these configurations as well as

additional optional configurations.

v “Specifying the FTP URL and login information”

v “Specifying the local directory” on page 69

v “Specifying remote archiving” on page 69

v “Specifying remote polling” on page 70

v “How the connector processes events from a remote site” on page 70

v “Identifying files on a mainframe: Optional configuration” on page 71

v “Summary of configuration operations for event processing” on page 71

Specifying the FTP URL and login information: The connector polls for events

from the directory specified in the EventDir meta-object attribute. To configure the

connector to use a remote FTP file system for event processing, specify the FTP

URL as the value of this attribute. The FTP URL must conform to IETF standards.

In addition to specifying the FTP server in the URL, you can optionally specify the

following information in the EventDir meta-object attribute:

v Name of a user with privileges to connect to the FTP server and perform FTP

operations—If you do not specify the username in EventDir, specify it in the

FTPUserId meta-object attribute.

v Password of a user with privileges to connect to the FTP server and perform

FTP operations—If you do not specify the password in EventDir, specify it in the

FTPPassword meta-object attribute.

v Port number—If the port is not specified in EventDir, the connector uses the

default port.

v Remote event directory—If you do not specify the remote event directory in

EventDir, the connector polls the event files from the directory to which the

connection is established to the FTP server.

Important: You can specify the FTP values either in a static top-level meta-object

or in a dynamic child meta-object. If the username and password are

not specified in any meta-object attribute, the connector terminates

68 Adapter for JText User Guide

when attempting to connect to the FTP server. For more information,

see “Using a dynamic child meta-object” on page 4.

The examples below illustrate three different formats for EventDir attribute values:

URL only with required values:

ftp://ftp.companyA.com

URL with optional username and port number values:

ftp://companyA:admin@ftp.companyA.com:1433

URL with optional username, port number, and remote event directory values:

ftp://companyA:admin@ftp.companyA.com:1433/temp/JTextConn/Default/Event

URL for Unix / MVS related FTP setup

ftp://ftpuser:ftppwd@ftpserver.in.ibm.com:21/home/ftpuser/JText/event

Specifying the local directory: In addition to specifying the FTP URL and related

login information, you must specify the location of the local directory into which

the connector downloads the event files from the remote directory. To specify the

local directory, use the FTPLocalEventDir meta-object attribute.

Important: If the connector finds a proper FTP URL in EventDir, but does not find

the FTPLocalEventDir meta-object attribute or finds an invalid or a

blank value for this attribute, the connector does not start. The

connector does not evaluate the FTPLocalEventDir attribute when

configured to run locally.

Specifying remote archiving: You have several options in specifying how the

connector handles remote archiving. To specify a remote archive directory, use the

FTPArchiveDir meta-object attribute. This attribute specifies the relative path of the

archive directory on the FTP server. The directory must already exist. There are

several options for using this attribute to specify archiving:

v Specifying a value for the FTPArchiveDir attribute but no value for the

FTPRenameExt attribute causes the connector to append a timestamp to the event

filename and move it to the remote FTP server archive directory specified in the

FTPArchiveDir attribute.

v Specifying a value both for the FTPArchiveDir attribute and the FTPRenameExt

attribute causes the connector to rename the processed event filename, adding a

timestamp and ignoring the FTPRenameExt, then move it to the FTP server

archive directory specified in the FTPArchiveDir attribute.

v Specifying no value either for the FTPArchiveDir or the FTPRenameExt attributes

causes the connector to delete the processed event file without archiving it.

v Specifying no value for the FTPArchiveDir attribute but specifying a value for

the FTPRenameExt attribute causes the connector to rename the processed event

filename with the value specified in FTPRenameExt, and move it to the directory

specified in the EventDir attribute.

File naming with timestamping for remote FTP servers: Support for host file

systems (MVS) using Sequential datasets has been enhanced by providing for time

stamping to avoid duplicate file names. MVS doesn’t support special characters,

such as ″_″, in a dataset or recordset name. On Windows or Unix platforms, we

use a time stamp in the original filename while archiving the file This avoids

duplicate filenames in an archive folder, thereby preventing the overwriting of an

existing file.

Chapter 4. Using JText connector meta-objects 69

We use the following format for MVS systems to overcome this limitation:
Event File: Test.in

Archived file: Test.TSyyyyMM.TSDDHHMM.TSSsSss

Where: yyyy -- year

 MM -- month

 DD -- date

 HH -- hour

 MM -- minutes

 Ss -- seconds

 Sss -- milliseconds
On MVS platforms the dataset or recordset separator is ″.″ (dot) and maximum

number of ’.’ (dots) allowed in a dataset or recordset is 6 (six) The dataset or

recordset name must not exceed 8 characters per ″.″ (dot) and the total number of

characters must not exceed 44 characters. Here is an example of a file name in this

format:
FTPRenameExt -- ARCHIVE

Archived File -- (SAMPLE).ARCHIVE.TS200304.TS290535.TS42234

Note: The members of PDS cannot be renamed with time stamps while archiving.

Hence, an alternate mechanism is provided for PDS archival. Each member

of a PDS that falls into the FTPEventFileMask is archived under the parent

PDS, with filename specified as the FTPRenameExt. The archival file will be

rewritten each time with the latest processed file.

Specifying remote polling: You can use the “FTPPollFrequency” on page 32

configuration property to set how frequently the connector polls an FTP server

measured in the number of standard poll cycles. This setting is useful if the

connector is still reading files from the local event directory when it starts the next

polling cycle.

For example, if “PollFrequency” on page 110 is set to 10000, and

FTPPollFrequency is set to 6, the connector polls the local event directory every 10

seconds and polls the remote directory every 60 seconds. The connector performs

FTP polling only if you specify a value for this property. If FTPPollFrequency

evaluates to 0 or blank, the connector does not perform FTP polling.

For more information, see “Tuning the performance of the JText connector” on

page 77.

How the connector processes events from a remote site: When polling for events

from a remote site, the connector performs the following steps:

1. Obtains the server name, port number, username, password, and remote event

directory from meta-object attributes or default values.

2. Establishes a connection to the remote FTP site to get event files from the

remote event directory.

3. Downloads the event files from the remote directory to the local directory

specified in the FTPLocalEventDir meta-object attribute.

Note: To enable the connector to process events using FTP, this attribute must

have a value.

4. Polls the local directory.

Figure 6 illustrates local and remote event processing.

70 Adapter for JText User Guide

Identifying files on a mainframe: Optional configuration: Use the

FTPEventFileMask attribute to identify file extensions on a mainframe that do not

adhere to the same naming standards that apply to UNIX or Windows systems. If

no value is provided for this attribute, the connector uses the value specified in the

EventExt attribute.

When specifying a value for FTPEventFileMask, you can include wildcard

characters. The following example illustrates several possible formats for this

attribute:

 ACT.Z1UC.*

 ACT.*.INPT

 *.Z1UC.INPT

If the connector finds more than one file at the remote site that meets the criteria

specified for FTPEventFileMask, it does the following:

1. Downloads all specified remote event files to the directory specified in the

FTPLocalEventDir attribute.

2. Renames the extension of the remote files with the value specified in the

FTPRenameExt meta-object attribute. Renaming the files prevents the connector

from polling the same file in the next poll cycle.

3. Disconnects from the FTP server.

4. Processes the files locally in the directory specified in the FTPEventFileMask

meta-object attribute.

Summary of configuration operations for event processing: To configure the

connector to use a remote FTP file system for event processing, specify the

following configuration values:

v Specify the FTP URL in the EventDir meta-object attribute. Optionally, specify

the name and password of a user with privileges to connect to the FTP server

and perform FTP operations.

v If you do not specify the login name and password in the EventDir meta-object

attribute, do so in the FTPUserId and FTPPassword meta-object attributes.

v If you do not specify the port in the EventDir meta-object attribute, the

connector uses the default FTP port.

v Use the FTPLocalEventDir meta-object attribute to specify the local system

directory into which the connector downloads event files from the FTP site.

v On a mainframe that does not adhere to the same naming standards that apply

to UNIX or Windows systems, use the FTPEventFileMask meta-object attribute to

identify files to be polled.

Call FTP wrapper
for file transfer

Check for FTP URL
in attributeEventDir

3

2

1

JText connector
main process

Not found Found

Poll from event
directory

2

While polling

Return to main process
to poll from local directory

Figure 6. Local and remote event notification operation

Chapter 4. Using JText connector meta-objects 71

v To configure the connector to work with an MVS FTP server when the remote

system is MVS, specify MVS in the FTPOSPlatform attribute.

Remote request processing

To configure the connector to use a remote FTP file system for request processing,

you must specify the FTP URL, FTP login information, and a remote directory into

which the connector uploads the request files from the local directory. This section

describes all of these configurations as well as additional optional configurations.

v “Specifying the FTP URL and Login Information”

v “How the connector processes service call requests to a remote site” on page 72

v “Summary of configuration operations for request processing” on page 73

Specifying the FTP URL and Login Information: The connector uploads service

call request files into the directory specified in the OutputDir meta-object attribute.

To configure the connector to use a remote FTP file system for request processing,

specify the FTP URL as the value of this attribute. The FTP URL must conform to

IETF standards.

In addition to the FTP URL, you can optionally specify the following information

in the OutputDir meta-object attribute:

v Name of a user with privileges to connect to the FTP server and perform FTP

operations—If you do not specify the username in OutputDir, specify it in the

FTPUserId meta-object attribute.

v Password of a user with privileges to connect to the FTP server and perform

FTP operations—If you do not specify the password in OutputDir, specify it in

the FTPPassword meta-object attribute.

v Port number—If the port is not specified in EventDir, the connector uses the

default port.

v Remote output directory—If you do not specify the remote output directory in

OutputDir, the connector loads the request files into the default connection

directory (the directory on the FTP server to which the connection is

established).

Important: You can specify the FTP values either in a static top-level meta-object

or in a dynamic child meta-object. If the username and password are

not specified in any meta-object attribute, the connector terminates by

throwing an exception. For more information, see “Using a dynamic

child meta-object” on page 4.

The examples below illustrate three different formats for OutputDir attribute

values:

URL only with required values:

ftp://ftp.companyA.com

URL with optional username and port number values:

ftp://companyA:admin@ftp.companyA.com:1433

URL with optional username, port number, and remote output directory values:

ftp://companyA:admin@ftp.companyA.com:1433/temp/JTextConn/Default/Out

How the connector processes service call requests to a remote site: When the

connector is configured for FTP processing and it receives a service call request, it

performs the following steps:

72 Adapter for JText User Guide

1. Obtains the server name, port number, username, and password from

meta-object attributes or default values.

2. Establishes a connection to the remote FTP site to place service call request files

from the local directory.

3. Uploads the request files from the local directory to the remote directory.

4. Disconnects from the remote server.

Figure 7 illustrates local and remote request processing.

Summary of configuration operations for request processing: To configure the

connector to use a remote FTP file system for request processing, specify the

following configuration values:

v Specify the FTP URL in the OutputDir meta-object attribute. Optionally, specify

the name and password of a user with privileges to connect to the FTP server

and perform FTP operations.

v If you do not specify the login name and password in the OutputDir meta-object

attribute, do so in the FTPUserId and FTPPassword meta-object attributes.

v If you do not specify the port in the OutputDir meta-object attribute, the

connector uses the default port.

v To configure the connector to work with an MVS FTP server when the remote

system is MVS, specify MVS in the FTPOSPlatform attribute.

Notes on configuring the connector for FTP transfer

The following features apply to FTP transfer of data:

v The connector uses Binary mode of data transfer when doing FTP operations.

v The connector does not use FTP transfer of data if the value of the EventDir or

OutputDir meta-object attribute does not begin with ftp://.

v During event processing, if the event business object contains a dynamic child

meta-object with an InFileName attribute, the connector populates this attribute

with the full path of the file specified in the FTPLocalEventDir, but not the path

on the remote system.

v Values entered in the EventExt and FTPRenameExt meta-object attributes cannot

be same; if they were the same, the connector would continuously pick up files

that it had already picked up earlier.

v The connector does not support file sizes that are not supported by FTP.

v You must consider case sensitivity for file names, extensions, and other

components in accordance with the platform of the FTP site.

v Transferring files from a remote FTP site might impact the connector’s

performance.

Call FTP wrapper
for file transfer

Check for FTP URL
in attributeOutputDir

3

2

1 JText connector
main process

Not found Found

Process a request
to output directory

4

While processing
a request

Return to main process

Service call
request

3

Figure 7. Local and remote request operations

Chapter 4. Using JText connector meta-objects 73

v When data is exchanged to or from the remote FTP site, there is a chance that

data can be corrupted or lost due to loss of network connection or similar

problems.

v The integration broker does not maintain any type of connection cache or pool.

Connections are opened and closed for each polling cycle and request

processing. Network latency and other configuration outside the control of the

connector can impact its performance.

v The value specified for the FTPLocalEventDir meta-object attribute can not be

specified as the value of the EventDir meta-object attribute of any meta-object

that does not specify FTP values. This restriction prevents the connector from

using values specified in different types of business objects in same directory

that require totally different types of processing.

v If the remote event directory or output directory specified at the end of the FTP

URL does not exist, the connector shuts down when it interacts with the FTP

site. It does not shut down at the time of connector startup.

v When configuring the connector for processing files over an FTP server, you

must configure the FTP server to use the UNIX settings required by the Apache

Commons Net API.

Configuring secure FTP

JText adapter uses the SSL (Secure Socket Layer) protocol to establish a secure

communication channel between the adapter and the FTP server. For this feature,

the FTP server needs to be a secure FTP server supporting this protocol. JText

adapter makes use of the IBM JSSE package that is an implementation of the SSL

protocol. The adapter works in passive FTP mode and implicit SSL mode. This

section describes the additional configurations required to use the secure FTP

feature of JText adapter.

To configure secure FTP:

1. Install and configure a secure FTP server supporting SSL protocol. JText adapter

uses a SSL protocol to transfer data between client application and FTP server.

Therefore, a secure FTP server needs to be installed which supports SSL

protocol and configured appropriately for SSL communication. The server

should have a private key and a certificate.

2. If applicable, configure the Firewall settings. JText adapter uses a passive FTP

mode of data transfer with secure FTP server. Therefore, if there is a firewall

between the client and the server, the firewall settings may need to be

configured to enable this mode.

3. Set the client trust store. During SSL communication, the server sends its

certificate to the client for verification. The client verifies the certificate to

ascertain that it is communicating with the intended server. To enable this

verification process, the server’s certificate should be present in the client’s trust

store. The server’s certificate can be imported into the client’s trust store using

the keytool utility, for example:

keytool -import -v -alias serverCert -file server.cert

-keystore clientTrustStore

where server.cert is the certificate of the server and clientTrustStore is the trust

store of the client.

4. Set the trustStore system property in the adapter start script. The adapter start

script should include the following system property,

 -Djavax.net.ssl.trustStore=C:\MyKeyStore\clientTrustStore

74 Adapter for JText User Guide

where clientTrustStore is the trust store of the client as specified in Step 3.

5. Make sure that you use ftps in the FTP URL. For secure communications, the

FTP URL should have ftps as the protocol, for example:

ftps://host:port/ftpdir

Specifying a data handler

To specify a data handler to be used by the JText Connector, perform the following

steps:

1. Determine the format used by the application with which the JText connector

communicates. Note that only one data handler class can be registered for any

given format type.

2. Configure the following child objects of the top-level JText meta-object:

v EventDataHandler—To specify the data handler meta-object to be used for

event processing (business object string or byte array to business object

conversion).

v OutputDataHandler—To specify the data handler meta-object to be used for

the request processing (business object to business object string or byte array

conversion).

Changing the specified data handler

To change the data handler from the delivered default (either to a different

delivered one or to a custom data handler), do the following:

v Verify that the connector supports the business object specified as the default

value in the EventDataHandler and OutputDataHandler attributes.

v Verify that the class or jar file that contains the data handler is included in the

class path when the connector is started. If you use a delivered data handler, or

you add a custom data handler to the CustDataHandler.jar file (as

recommended in the Data Handler Guide), the file is included in the delivered

startup script (start_JText.bat or connector_manager_JText.sh).

v Make sure you specify an appropriate EndBODelimiter value for the data handler

that you are using.

For information on creating a data handler, see the Data Handler Guide.

Creating a JText meta-object for a specific business object

When you create a JText meta-object for a specific business object, rename the

meta-object to identify the particular business object. For example, to create

meta-objects for the Customer and Item business objects, you might name the

meta-objects MO_JTextConnector_Customer and MO_JTextConnector_Item.

Tip: Use default meta-objects when all business objects to be written to files have

exactly the same configuration. In other words, all text files reside in the same

event directory and are written to the same output directory, use the same

data handler, and have the same file extension (or should be put into the

same file). Create your own meta-objects if the connector must use different

processing for different business objects on requests, or if specific processing

instructions are required for polling. If you create separate meta-objects for

specific business objects, the connector uses your meta-objects for both

integration-broker requests and subscription delivery operations.

Any business object for which you do not create a meta-object is configured by the

values in the default MO_JTextConnector_Default meta-object. For the business

object definition for this default meta-object, see the \repository\JText directory.

Chapter 4. Using JText connector meta-objects 75

Reading multiple business objects of different types from the

same file

If a text file contains multiple business objects of different types, you must use the

MO_JTextConnector_Default meta-object, and must ensure that its EventExt and

EventDir attributes correctly point to the directory where this event file is located.

Each business object in the file must be separated by the same delimiter.

The delivered data handlers can determine the name of each business object from

the input string. In other words, when using the default top-level JText meta-object

and the delivered data handlers, you need not use the <EndBO:BOName> delimiter

to identity each type of business object in a file that contains multiple types.

If you develop a custom data handler to convert business object strings to business

objects, ensure that it can interpret the business object’s type from the input string.

Specifying values for ObjectEventID attributes

You do not have to add ObjectEventId attributes to business object strings. For

event notification business objects, the connector framework populates these

business object attributes if the IDs are not populated by the connector.

For service call request business objects, ObjectEventId attributes are either ignored

or included in the string written to a file. Whether ObjectEventId attributes are

included in the output file depends on the data handler that is used.

Setting up a second instance of a JText connector

To set up a second instance of the JText connector, follow these steps:

1. Make a copy of the JText connector directory and its repository directory and

rename them. For example, assume you name the second connector definition

JText2. After you create the second directories, your directory structure looks

like the following:

\connectors\JText

\connectors\JText2

\repository\JText

\repository\JText2

2. Copy all the meta-objects for the JText connector (there should be at least two

of them) and modify the name of the business objects. For example, for the

JText2 connector, change the names from MO_JTextConnector_BOName to

MO_JText2Connector_BOName.

There are two ways you can copy the meta-objects:

v Create a text file that contains the MO_JText2Connector_BOName meta-object

and its children. Use a text editor’s search and replace option to replace

MO_JTextConnector_ with MO_JText2Connector_.

v Use Business Object Designer to copy the meta-objects one at a time.

Important: Before you can manipulate a business object definition in

Business Object Designer, you must copy the text from the top of

the \repository\ReposVersion.txt file to the top of every

definition file.
3. In Connector Configurator, copy the connector’s definition and rename it to

JText2Connector. Change the supported meta-objects and business objects.

4. Copy any new definition files into the repository. To use Business Object

Designer to copy business object definitions into the repository, select the Save

76 Adapter for JText User Guide

To Server submenu from the File menu. Alternatively, on ICS, perform the

following steps to copy business object definitions into the repository from the

operating system:

a. Copy the text from the top of the \repository\ReposVersion.txt file to the

top of every definition file.

b. Use the following repos_copy command to copy in the new meta-objects

and business objects:

repos_copy -sServerName -iFileName

5. Refresh the integration broker’s administration utility to verify the new

business objects.

6. For UNIX, make a copy of the existing connector manager script for the JText

connector and change the parameters to refer to JText2. For Windows, make a

copy of the existing shortcut for the JText connector and change the parameters

to refer to JText2, and modify it to point to the JText2 directory rather than the

JText directory.

7. Add a new MQ queue for the new connector. See the Implementation Guide for

WebSphere MQ Integrator Broker or System Administration Guide for information

on doing this.

8. Restart the integration broker.

9. In UNIX, run the connector manager script. In Windows, click on the new

shortcut.

Tuning the performance of the JText connector

To tune the polling performance of the JText connector, set the following connector

configuration properties as described below.

v PollQuantity – This property sets the maximum number of business objects that

the connector can deliver to the integration broker in a single call to poll for

events. If you set PollQuantity to a high value, the connector tries to submit

more business objects in one poll. This can improve performance and helps to

clear up internal queues and memory usage.

Enabling the connector to post large quantities of business objects to the

integration broker, however, can affect other business-integration components.

For example, if the message queuing system has been set up with default values,

the queues can fill up quickly if the JText connector sends many large business

objects through the system. Therefore, when tuning performance, keep in mind

that there is an optimal performance setting for PollQuantity.

v PollFrequency – This connector configuration property specifies the amount of

time between polling actions. Setting this property to a longer time slows down

the connector during event processing. Setting it to a shorter time ensures that

events are picked up, converted to business objects, and delivered quickly.

In other words, the connector picks up new files during each poll call. If the

connector does not poll often, it takes longer for it to deliver the files that accrue

in the event directory. If the connector polls frequently, it picks up the files more

often and delivers them more frequently.

The more frequently the connector polls for events, however, the less time it has

for processing requests. If you use the connector primarily for request

processing, set PollFrequency to a lower value than if you use the connector

primarily for event processing.

As with the PollQuantity configuration property discussed above, setting

PollFrequency to an extreme value, such as a very long or short time, can affect

the performance of other business-integration components.

Chapter 4. Using JText connector meta-objects 77

v FTPPollFrequency – This connector configuration property specifies how

frequently the connector polls an FTP server measured in the number of

standard poll cycles. For example, if PollFrequency is set to 10000, and

FTPPollFrequency is set to 6, the connector polls the local event directory every

10 seconds and polls the remote directory every 60 seconds. The connector

performs FTP polling only if you specify a value for this property. If

FTPPollFrequency evaluates to 0 or blank, the connector does not perform FTP

polling.

In summary, the best approach to improving performance in polling is to set

PollQuantity, PollFrequency, and FTPPollFrequency so that they complement each

other.

Generating sample files for testing

You might want to generate a file that looks like the input file that the JText

connector expects. This file can assist you in setting up the output formats in the

source application. A sample file can also be used for testing.

On ICS, the easiest way to generate a file similar to the input file is as follows:

1. Create a pass-through collaboration that takes as input and sends to the

destination the business object that is to be written out to a file.

2. Bind the source port to a connector that supports that business object and can

be emulated by Test Connector.

3. Bind the destination port to the JText connector.

4. Input sample values for the business object into Test Connector, and send that

business object to the JText connector. The JText connector writes the values to

the output file in the configured format.

This process enables you to see multiple business objects written to a single file,

which you can use as input during testing.

Generating sample business objects for testing

You might want to generate business objects that look like ones the JText connector

expects. You can populate the business objects with values to use during testing.

To cause the connector to automatically generate business object templates, use the

GenerateTemplate configuration property. You can generate a definition for each

business object that the connector supports.

The connector uses the value of the GenerateTemplate property to create an

instance of a serialized business object when the connector starts up. A serialized

business object is the string representation of the business object that the data

handler creates. Use Connector Configurator to specify the names of the business

objects for this property.

The syntax for this property is BOName;BOName, where the name of a specific

business object name is substituted for BOName. Case is significant. To specify

more than one business object, separate the names with a semicolon, as in

Customer;Item. Ending punctuation is not required. Templates for these business

objects are created the next time you start the connector.

The generated templates contain the delivered default values that are set for the

attributes of the business objects in the business object’s definition. If there is no

delivered default value for an attribute, it is either ignored (using CxIgnore) or left

78 Adapter for JText User Guide

blank (using CxBlank). One child business object is created for each

single-cardinality child business object and two identical instances of a child

business object are created for multiple-cardinality business objects.

To begin generating templates for a specified business object, start the connector.

The connector writes the template to the same file as the output file. If you do not

want to use this feature, leave the GenerateTemplate property empty.

Chapter 4. Using JText connector meta-objects 79

80 Adapter for JText User Guide

Chapter 5. Troubleshooting the JText connector

This chapter includes the following information to help you diagnose problems

with the JText connector.

v “Error message logging”

v “Problem with meta-object naming”

v “Problem with event triggering”

v “JText failure handling” on page 82

v “Event log file” on page 82

v “Failure recovery” on page 83

v “Recovery from business object delimiter errors” on page 84

v “Recovery from subscription errors” on page 85

v “Recovery from formatting errors” on page 85

v “Recovery from sending errors” on page 85

v “Data handlers and supported business objects” on page 85

Error message logging

Error messages are logged to the standard connector log file, STDOUT, or to the file

specified by the LogFileName standard connector property.

Errors are also logged to the event log file. For more information on the event log

file, see “Event log file” on page 82.

Problem with meta-object naming

During connector startup, the following error message means that the meta-object

name does not correspond to the connector instance name.

Wrong subscription: JText_Customer doesn’t have supporting MO:

this BO is unsubscribed.”

If the meta-object name does not match the name of the connector instance, the

meta-object does not recognize the business objects supported by the connector. To

prevent this, name the meta-object to correspond with the connector instance. For

example, a meta-object named MO_JText2Connector_Default recognizes business

objects supported by the JText2 connector.

Problem with event triggering

The connector ignores event files with the following delimiter problems:

v The EndBODelimiter attribute in the top-level meta-object is set to a valid value,

such as the plus sign (+) or the pipe symbol (|), but the event file does not

contain the specified delimiter at the end of each business object.

v The connector is configured to look for the EndBO:BOName business object

delimiter, but the event file does not contain this delimiter. The connector logs a

warning message that states:
Unable to create Workunits from file filename. Check EndBODelimiter in the file.

© Copyright IBM Corp. 2000, 2003, 2004 81

In both of the above cases, the file remains in the event directory without any

change.

The connector also keeps the file in the event directory without change when

device failures occur while a file is being accessed, opened, or closed. For example,

if the system tries to access a file when it is out of memory, the connector ignores

the file.

JText failure handling

For the JText connector, the following types of errors can occur:

 Table 10. JText error types

Type of error Description

Business object delimiter

failures

Business object delimiter failures occur when the EndBODelimiter

attribute in the top-level meta-object is set to a valid value, and

the event file contains the specified delimiter at the end of each

business object, but the data itself uses the delimiter value in its

text. When the connector encounters the delimiter value in the

text, it sends a partial business object string to the formatter,

which fails processing. In this case, the connector writes the event

to the filename_timestamp.fail file, which contains records for all

business objects that encountered delimiter failures.

Subscription errors Can occur if the connector can find the business object delimiter

and retrieve the business object name, but the business object is

not subscribed. In this case, an event is sent to the

filename_timestamp.unsub file, which contains records for all

unsubscribed business objects.

Formatting errors Can occur if the connector finds the delimiter with a business

object name that does not match the input business object name,

or the format in the business object file does not match the format

of the meta-object. An event is sent to the

filename_timestamp.fail file, which contains records for all

business objects that failed formatting.

Sending errors Can occur if the connector tries to send a business object when the

integration broker is down. If the Send operation fails, an event is

sent to the filename_timestamp.fail file, which contains records

for all business objects that were not successfully sent.

Event log file

The connector logs information about successfully processed business objects to the

event.log file. If the connector goes down before it processes all business objects in

an event file, it uses this log file during recovery to ensure that it sends each

business object only once to the integration broker.

The format of the log file is:

EventFileName::1,2,n

where EventFileName is the name of the current event file, and each number

represents the sequence number of a successfully processed business object in that

file.

For example, assume that the connector has successfully processed three of the first

four business objects in the Customer.in file, and that the second business object

82 Adapter for JText User Guide

failed processing. Assume also that the connector has not yet finished processing

Customer.in. In this case, the event.log file might look like the following on

UNIX:

$ProductDir/JText/Event/Customer.in:: 1,3,4

and like the following on Windows:

C:\JText\Event\Customer.in:: 1,3,4

If the connector went down before processing the entire Customer.in file, at startup

the connector uses the information in the log file to resume processing the event

file at the point where it had stopped processing. The connector reads the log to

get the name of the event file to be recovered and the latest business-object

sequence number. Then the connector begins sending to the integration broker all

business objects in the event file whose sequence number is greater than the last

number in the log file. For example, given the file above, the connector begins

processing the fifth business object in the Customer.in file.

The connector keeps the contents of the log file in memory to enhance

performance. It accesses the file on disk only to update it with a new entry. The

connector reads the log file only at recovery time.

For information on how the connector uses the event.log file in the recovery

process, see “Failure recovery.”

Failure recovery

Note: The following recovery steps do not apply if a disk failure occurs or a disk

is full.

To recover from failures during event notification, the connector does the

following:

1. The connector processes business object strings from the event file. When it

successfully processes an entry, the connector logs the entry in the event.log

file. It also writes it to a file in the archive directory (specified in the

ArchiveDir meta-object attribute).

v If none of the business objects in the event file have failed processing, the

connector archives the successfully processed ones in an archive file with the

extension specified in the SuccessArchiveExt attribute.

v If any of the business objects in the event file have failed processing, the

connector archives the successfully processed ones in an archive file with the

extension specified in the PartialArchiveExt attribute.

v After it has written business objects to the file specified in the

SuccessArchiveExt attribute, if any business object fails processing, the

connector changes the extension of this file to the one specified in

PartialArchiveExt.

The delivered default values for these extensions are .success and .partial.

2. If errors occur, the connector does the following:

v Subscription errors— the connector creates the archive file in the archive

directory with the extension specified in the UnsubscribedArchiveExt

meta-object attribute. The delivered default value for this extension is .unsub.

v Formatting errors or sending errors—the connector creates the archive file in

the archive directory with the extension specified in the FailArchiveExt

meta-object attribute. The delivered default value for this extension is .fail.

Chapter 5. Troubleshooting the JText connector 83

v Business object delimiter errors—the connector creates the archive file in the

archive directory with the extension specified in the FailArchiveExt

attribute. It also backs up the event file by moving it to the archive directory

and changing its extension to the one specified in OriginalArchiveExt.

The connector does not log the failed business objects to event.log.

3. After the connector processes all business objects in an event file, it clears the

event.log file and begins writing entries to it from the next event file.

4. If the connector goes down before it processes all business objects in an event

file, it uses the information in event.log to determine where to begin

processing during the recovery process. When it comes back up, the connector

checks whether there are any entries in the log file.

v If there are no entries, the connector sends all business objects in the event

file to the integration broker.

v If there are entries, the connector uses this information to resume processing

an event file at the point where it had stopped processing. The connector

reads the log to get the name of the event file to be recovered and the latest

business-object sequence number. Then the connector sends to the integration

broker all business objects in the event file whose sequence number is greater

than the last number in the log file. For example, if the event file contains 15

business objects and the last sequence number in the log file is 8, the

connector sends the last seven business objects to the integration broker.

Using the log file prevents the connector from sending the same event

multiple times to the integration broker. The connector keeps the log file in

memory to enhance performance. The connector accesses the file on disk

only to update it with a new entry, and reads the log file only at recovery

time.

If you set the “EventRecovery” on page 32 configuration property to retry, the

connector at startup automatically recovers outstanding events from a

previously processed file. However, if you set this property to abort, the

connector terminates during startup if there are any events to be recovered.

5. To recover from errors that occurred during the event notification process, you

must restart the connector. Before doing this, however, do the following:

v Examine the files that the connector created for failed and unsubscribed

business objects. Make appropriate corrections so that the business object

strings can be successfully processed when the connector starts.

v Copy appropriate files from the archive directory to the event directory and

change all .fail or .unsub extensions to the extension specified in the

EventExt attribute (by default, .in). To facilitate record-keeping, rename these

files in a meaningful way. For example, rename Customer.unsub to

Customer_unsub_resubmit.in.

v You may need to perform additional steps manually to recover, depending

on the type of failure that has occurred.

The following guidelines can help you determine what recovery steps to take,

based on the type of error that occurred.

Recovery from business object delimiter errors

The connector writes the business object to an archive file in the archive directory,

giving it the extension specified in the FailArchiveExt meta-object attribute. To

handle recovery for such a failure, do the following:

1. Ensure that the event file contains the business object delimiter, that the

delimiter is correct, and that it does not contain the delimiter value in the data

itself as text. If the use of the delimiter is not correct, correct it.

84 Adapter for JText User Guide

2. Review the connector’s log file (specified in the LogFileName configuration

attribute) to determine other reasons why the process failed.

3. Copy the file from the archive directory to the event directory and change the

.fail extension to the extension specified in the EventExt attribute (by default,

.in). To facilitate record-keeping, rename the file in a meaningful way. For

example, rename Customer.fail to Customer_delimiter_error.in.

Recovery from subscription errors

The connector writes the business object to a file located in the archive directory,

giving it the extension specified in the UnsubscribedArchiveExt meta-object

attribute. To handle recovery for such a failure, do the following:

1. Open the archived file, find that business object string, and verify that the

business object name and verb are subscribed. Make appropriate corrections if

necessary.

2. Ensure that the integration broker is running.

3. Copy the file from the archive directory to the event directory and change the

.unsub extension to the extension specified in the EventExt attribute (by default,

.in). To facilitate record-keeping, rename the file in a meaningful way. For

example, rename Customer.unsub to Customer_unsub_resubmit.in.

Recovery from formatting errors

The connector writes the business object to a file located in the archive directory,

giving it the extension specified in the FailArchiveExt meta-object attribute. To

handle recovery for such a failure, do the following:

1. Open the archived file and verify that:

v The business object string format matches the expected format in the

meta-object. If there is a mismatch, either change the format type in the

meta-object or in the business object string.

v The formatting syntax of the business object string is correct. If it is incorrect,

correct it.
2. Copy the file from the archive directory to the event directory and change the

.fail extension to the extension specified in the EventExt attribute (by default,

.in). To facilitate record-keeping, rename the file in a meaningful way. For

example, rename Customer.fail to Customer_fail_formatting.in.

Recovery from sending errors

The connector writes the business object to a file located in the archive directory,

giving it the extension specified in the FailArchiveExt meta-object attribute. To

handle recovery for such a failure, do the following:

1. Verify that all components of the business-integration system are running.

2. Copy the file from the archive directory to the event directory and change the

.fail extension to the extension specified in the EventExt attribute (by default,

.in). To facilitate record-keeping, rename the file in a meaningful way. For

example, rename Customer.fail to Customer_fail_sending.in.

3. Restart the connector.

Data handlers and supported business objects

If the connector returns an error stating that the data handler has not been

configured, verify that the meta-object for the data handler is included in the list of

supported business objects. The most common error returned by the connector

states that the BOPrefix is not set.

Chapter 5. Troubleshooting the JText connector 85

The list of supported business objects for the DHFormatter should include the

following:

v MO_JTextConnector_Default

v MO_JTextConnector_BusObjName (meta-objects created for specific business

objects)

v Business objects that are to be read from or written to a file.

v The meta-object for the data handler (which is specified in the

DataHandlerConfigMO attribute of the MO_JTextConnector_Default meta-object).

86 Adapter for JText User Guide

Chapter 6. Migrating to or upgrading the JText connector

This chapter describes how to upgrade to the 5.6.x version of the JText connector

from the 5.3.0 version, and to the 4.0.x version of the JText connector from the 3.2.0

version. It also describes how to upgrade to the JText connector from the Text

connector.

Note: The JText connector versions 4.4.x and 4.3.x contain no specific configuration

changes. They contain only optional configuration changes, none of which is

necessary unless you want to take advantage of the new options. See the

“New in this release” on page ix section for details.

Topics included in this chapter include:

v “Upgrade scenarios”

v “Upgrading to version 5.6.x from version 5.3.x”

v “Reasons to upgrade to version 4.0.x from version 3.2.0” on page 88

v “Upgrading to version 4.0.x” on page 88

v “Reasons to upgrade from the Text connector” on page 90

v “Upgrading to the JText connector” on page 90

Upgrade scenarios

If you are upgrading to the 4.1.x release of the JText connector from the 4.0.x

release, follow the instructions in “Upgrade scenarios” on page 87.

If you are upgrading to the 4.1.x release of the JText connector from the 3.2.0

release, follow the instructions in “Upgrading to version 4.0.x” on page 88 and

“Upgrade scenarios” on page 87.

If you are upgrading to the JText connector from the Text connector, follow the

instructions in “Upgrading to the JText connector” on page 90.

Upgrading to version 5.6.x from version 5.3.x

This section explains:

v “Meta-object changes” on page 87

v “Architecture changes” on page 88

Meta-object changes

The MO_JTextConnector_Default meta-object contains six new attributes

(FTPTransferType, FixedBOSize, DataProcessingMode, FTPDataStructure,

MVSSiteCommand, and LargeObject) that have enhanced the functionality of JText.

You must add these attributes to the JText top-level meta-object, and configure

values for them. Use Business Object Designer to add the new attributes, provide

your own default values for them, and save the changes to the definition.

Add the six new attributes to each of the meta-objects that you have customized

from MO_JTextConnector_Default. For example, if you have created your own

© Copyright IBM Corp. 2000, 2003, 2004 87

meta-object for the Customer and Item business objects, add the new attributes to

these meta-objects, provide your own default values for them, and save the

changes to the repository.

For more information, see Table 7 on page 48.

Architecture changes

This section explains:

v “Configuration property changes”

Configuration property changes

For the 5.6.0 release, two new Connector-specific configuration properties have

been added:

v SortFilesOnTimestamp - New connector specific property has been added to the

adapter and allows the adapter to pick up event files based on the modification

timestamp.

v NoPoll - A new Connector-specific boolean property has been introduced, to

optionally turn off polling. The default value is false. When set to true, the

adapter only processes requests and does not poll.

Reasons to upgrade to version 4.0.x from version 3.2.0

With version 4.0.x of the JText connector, the structure of the meta-objects required

to configure the connector was dramatically simplified, thus simplifying the

configuration process.

Whereas earlier versions of the connector used a meta-object structure that

included three levels of hierarchy and at least ten different meta-objects, the 4.0.x

version uses only two meta-objects and only two levels of hierarchy. This new

version changes the way that you configure the connector but does not change the

connector’s functionality.

Upgrading to version 4.0.x

Because the new meta-objects use the same configuration data as previous

versions, upgrading does not require changing any configuration values. However,

because the new meta-objects store the data in differently named attributes in far

fewer meta-objects, upgrading does require the following operations:

v Create new meta-objects.

v Replace the value of each attribute’s DefaultValue property in each new

meta-object with the customized default values in your existing meta-objects.

v Remove all obsolete meta-objects from the repository.

IBM WBIS Support provides a utility that automates the above operations. To

execute these operations manually, perform the following steps:

1. Make a backup of the repository by using the repos_copy utility. For example,

the following command backs up the entire contents in the Server1 repository

to the output file, InterChangeRepository.out:

repos_copy -oInterChangeRepository.out -sServer1 -pmypassword

2. For each of your existing top-level meta-objects, create a new meta-object with

the same attributes as the new delivered top-level meta-object,

MO_JTextConnector_Default. For example, if you have created your own

meta-object for the Customer business object named according to the previous

88 Adapter for JText User Guide

naming convention (MO_JText_Customer_Connector), create a new meta-object

for Customer that uses the new naming convention

(MO_JTextConnector_Customer).

3. Set the default values of the new meta-objects based on the values in the

original meta-objects. See Table 11 for the correspondence between the

attributes in the original meta-objects and the new ones.

4. Use System Manager to delete the original set of meta-object definitions from

the repository, keeping only the ones just created and

MO_JText_Default_DHFormatter.

Table 11 illustrates the correspondence between the original and new attributes,

including the names of the original meta-objects. Whereas multiple meta-objects

contained the original attributes, MO_JTextConnector_Default meta-object contains

all of the new attributes.

 Table 11. Correspondence of original meta-objects and attributes to new attributes

Original meta-object name Original attribute name New attribute name

MO_JText_BOName_Connector DummyKey N/A

MO_JText_BOName_ArchiveDir Directory ArchiveDir

MO_JText_BOName_ArchiveFileExt Success SuccessArchiveExt

PartialArchiveExt

Fail FailArchiveExt

UnsubscribedArchiveExt

MO_JText_BOName_EventDir Directory EventDir

FileExt EventExt

MO_JText_BOName_OutputDir Directory OutputDir

FileExt OutputExt

FileSequencingEnabled FileSeqEnabled

MO_JText_BOName_FormatType N/A

MO_JText_BOName_ServicePolicy OutputFileName OutputFileName

EndBODelimiter EndBODelimiter

MO_JText_BOName_FormatService EventService EventFormat

OutputService OutputFormat

Table 11 does not include the following information

v Attribute(s) corresponding to the MO_JText_BOname_FormatType meta-object

Previous versions of the connector required you to list all possible formats in the

MO_JText_BOname_FormatType meta-object before configuring the formats to use

for event and output files. In the new meta-object structure, you need only

configure the formats to be used for event and output files. This change is

indicated in Table 11 by the absence of corresponding attribute(s) for the

MO_JText_BOname_FormatType meta-object.

v Meta-objects for the individual Formatters

The top-level meta-object has two attributes that contain a Formatter meta-object.

The Formatter meta-objects have the same attributes as in the original structure,

and are used in the same way. Because three of the four Formatters have been

deprecated, the only relevant Formatter meta-object is

MO_JText_BOname__DHFormatter.

Chapter 6. Migrating to or upgrading the JText connector 89

Reasons to upgrade from the Text connector

If your site currently uses the Text connector to communicate between an

application and integration broker, consider upgrading to the JText connector for

the following reasons:

v Performance. The Text connector processes only one file at a time, which can

hinder performance when processing large files or a great number of files.

v Format availability. The Text connector handles few format types.

v Ease of modification. The Text connector is more difficult to modify.

In contrast, the JText connector can be configured to:

v Process multiple files at one time.

v Search multiple locations for specific business objects, thereby increasing

performance.

v Accommodate a wider range of format types.

Upgrading to the JText connector

To upgrade to the JText connector from the Text connector:

1. From the product CD, copy the JText directory to the %CROSSWORLD%connectors

directory.

2. Open a Command Prompt window and use repos_copy to add the following

two files to the repository: CN_JText.txt and MO_JText_Default.txt.

3. Ensure that the specified directories for the following meta-object attributes

have been created: ArchiveDir, EventDir, and OutputDir. If these directories

have not been created, create them.

4. Configure the meta-object attributes.

5. Subscribe to the desired business objects.

90 Adapter for JText User Guide

Appendix A. Standard configuration properties for connectors

This appendix describes the standard configuration properties for the connector

component of WebSphere Business Integration adapters. The information covers

connectors running with the following integration brokers:

v WebSphere InterChange Server (ICS)

v WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere

Business Integration Message Broker, collectively referred to as the WebSphere

Message Brokers (and shown as WMQI in the Connector Configurator).

v Information Integrator (II)

v WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and

the DB2 II standard properties (see the Notes column in Table 12 on page 93.)

The properties you set for the adapter depend on which integration broker you

use. You choose the integration broker using Connector Configurator. After you

choose the broker, Connector Configurator lists the standard properties you must

configure for the adapter.

For information about properties specific to this connector, see the relevant section

in this guide.

New properties

These standard properties have been added in this release:

v AdapterHelpName

v BiDi.Application

v BiDi.Broker

v BiDi.Metadata

v BiDi.Transformation

v CommonEventInfrastructure

v CommonEventInfrastructureContextURL

v ControllerEventSequencing

v jms.ListenerConcurrency

v jms.TransportOptimized

v ResultsSetEnabled

v ResultsSetSize

v TivoliTransactionMonitorPerformance

Standard connector properties overview

Connectors have two types of configuration properties:

v Standard configuration properties, which are used by the framework

v Application, or connector-specific, configuration properties, which are used by

the agent

© Copyright IBM Corp. 2000, 2003, 2004 91

These properties determine the adapter framework and the agent run-time

behavior.

This section describes how to start Connector Configurator and describes

characteristics common to all properties. For information on configuration

properties specific to a connector, see its adapter user guide.

Starting Connector Configurator

You configure connector properties from Connector Configurator, which you access

from System Manager. For more information on using Connector Configurator,

refer to the sections on Connector Configurator in this guide.

Connector Configurator and System Manager run only on the Windows system. If

you are running the connector on a UNIX system, you must have a Windows

machine with these tools installed.

To set connector properties for a connector that runs on UNIX, you must start up

System Manager on the Windows machine, connect to the UNIX integration broker,

and bring up Connector Configurator for the connector.

Configuration property values overview

The connector uses the following order to determine a property’s value:

1. Default

2. Repository (valid only if WebSphere InterChange Server (ICS) is the integration

broker)

3. Local configuration file

4. Command line

The default length of a property field is 255 characters. There is no limit on the

length of a STRING property type. The length of an INTEGER type is determined

by the server on which the adapter is running.

A connector obtains its configuration values at startup. If you change the value of

one or more connector properties during a run-time session, the property’s update

method determines how the change takes effect.

The update characteristics of a property, that is, how and when a change to the

connector properties takes effect, depend on the nature of the property.

There are four update methods for standard connector properties:

v Dynamic

The new value takes effect immediately after the change is saved in System

Manager. However, if the connector is in stand-alone mode (independently of

System Manager), for example, if it is running with one of the WebSphere

message brokers, you can change properties only through the configuration file.

In this case, a dynamic update is not possible.

v Agent restart (ICS only)

The new value takes effect only after you stop and restart the connector agent.

v Component restart

The new value takes effect only after the connector is stopped and then restarted

in System Manager. You do not need to stop and restart the agent or the server

process.

92 Adapter for JText User Guide

v System restart

The new value takes effect only after you stop and restart the connector agent

and the server.

To determine how a specific property is updated, refer to the Update Method

column in the Connector Configurator window, or see the Update Method column

in Table 12 on page 93.

There are three locations in which a standard property can reside. Some properties

can reside in more than one location.

v ReposController

The property resides in the connector controller and is effective only there. If

you change the value on the agent side, it does not affect the controller.

v ReposAgent

The property resides in the agent and is effective only there. A local

configuration can override this value, depending on the property.

v LocalConfig

The property resides in the configuration file for the connector and can act only

through the configuration file. The controller cannot change the value of the

property, and is not aware of changes made to the configuration file unless the

system is redeployed to update the controller explicitly.

Standard properties quick-reference

Table 12 provides a quick-reference to the standard connector configuration

properties. Not all connectors require all of these properties, and property settings

may differ from integration broker to integration broker.

See the section following the table for a description of each property.

Note: In the Notes column in Table 12, the phrase “RepositoryDirectory is set to

<REMOTE>” indicates that the broker is InterChange Server. When the

broker is WMQI or WAS, the repository directory is set to

<ProductDir>\repository

 Table 12. Summary of standard configuration properties

Property name Possible values Default value

Update

method Notes

AdapterHelpName One of the valid

subdirectories in

<ProductDir>\bin\Data

\App\Help\ that

 contains a valid

<RegionalSetting>

directory

Template name, if valid,

or blank field

Component

restart

Supported regional

settings.

Include chs_chn,

cht_twn, deu_deu,

esn_esp, fra_fra,

ita_ita, jpn_jpn,

kor_kor, ptb_bra,

and enu_usa (default).

AdminInQueue Valid JMS queue name <CONNECTORNAME>

/ADMININQUEUE

Component

restart

This property is valid

 only when the value

of DeliveryTransport

is JMS

AdminOutQueue Valid JMS queue name <CONNECTORNAME>

/ADMINOUTQUEUE

Component

restart

This property is valid

only when the value

of DeliveryTransport

is JMS

Appendix A. Standard configuration properties for connectors 93

Table 12. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

AgentConnections 1 through 4 1 Component

restart

This property is valid

only when the value

of DeliveryTransport

is MQ or IDL, the value

of Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

AgentTraceLevel 0 through 5 0 Dynamic

if broker is

ICS;

otherwise

Component

restart

ApplicationName Application name The value specified for

the connector

application name

Component

restart

BiDi.Application Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value

of BiDi.Transforma tion

is true

BiDi.Broker Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true. If the value of

BrokerType is

ICS, the property

is read-only.

BiDi.Metadata Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true.

BiDi.Transformation true or false false Component

restart

This property is valid

only if the value of

BrokerType is

not WAS

.

BrokerType ICS, WMQI, WAS ICS Component

restart

CharacterEncoding Any supported code.

The list shows this subset:

ascii7, ascii8, SJIS,

Cp949, GBK, Big5,

Cp297, Cp273, Cp280,

Cp284, Cp037, Cp437

.

ascii7 Component

restart

This property is valid

only for C++ connectors.

94 Adapter for JText User Guide

Table 12. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

CommonEventInfrastruc

ture

true or false false Component

restart

CommonEventInfrastruc

tureURL

A URL string, for

example,

corbaloc:iiop:

host:2809.

No default value. Component

restart

This property is valid

only if the value of

CommonEvent

Infrastructure is true.

ConcurrentEventTrig

geredFlows

1 through 32,767 1 Component

restart

This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ContainerManagedEvents Blank or JMS Blank Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

ControllerEventSequenc

ing

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerStoreAndFor

wardMode

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerTraceLevel 0 through 5 0 Dynamic This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

DeliveryQueue Any valid JMS

queue name

<CONNECTORNAME>

/DELIVERYQUEUE

Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

DeliveryTransport MQ, IDL, or JMS IDL when the value of

RepositoryDirectory is

<REMOTE>, otherwise

JMS

Component

restart

If the value of

RepositoryDirectory is

not <REMOTE>,

the only valid value for

this property is JMS.

DuplicateEventElimina

tion

true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

EnableOidForFlowMoni

toring

true or false false Component

restart

This property is valid

only if the value of

BrokerType is ICS.

FaultQueue Any valid queue name. <CONNECTORNAME>

/FAULTQUEUE

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.FactoryClassName CxCommon.Messaging.jms

.IBMMQSeriesFactory,

CxCommon.Messaging

.jms.SonicMQFactory,

or any Java class name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

Appendix A. Standard configuration properties for connectors 95

Table 12. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

jms.ListenerConcurrency 1 through 32767 1 Component

restart

This property is

valid only if the value of

jms.TransportOptimized

is true.

jms.MessageBrokerName If the value of

jms.FactoryClassName

is IBM, use

crossworlds.queue.

manager.

crossworlds.queue.

manager

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.NumConcurrent

Requests

Positive integer 10 Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.Password Any valid password Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.TransportOptimized true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS and the value of

BrokerType is ICS.

jms.UserName Any valid name Component

restart

This property is valid

only if the value of

Delivery Transport is JMS.

JvmMaxHeapSize Heap size in megabytes 128m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMaxNativeStackSize Size of stack in kilobytes 128k Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMinHeapSize Heap size in megabytes 1m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ListenerConcurrency 1 through 100 1 Component

restart

This property is valid

only if the value of

DeliveryTransport is MQ.

Locale This is a subset of the

supported locales:

en_US, ja_JP, ko_KR,

 zh_CN, zh_TW, fr_FR,

de_DE, it_IT,

es_ES, pt_BR

en_US Component

restart

96 Adapter for JText User Guide

Table 12. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

LogAtInterchangeEnd true or false false Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MaxEventCapacity 1 through 2147483647 2147483647 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MessageFileName Valid file name InterchangeSystem.txt Component

restart

MonitorQueue Any valid queue name <CONNECTORNAME>

/MONITORQUEUE

Component

restart

This property is valid

only if the value of

DuplicateEventElimination

is true and

ContainerManagedEvents

has no value.

OADAutoRestartAgent true or false false Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADMaxNumRetry A positive integer 1000 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADRetryTimeInterval A positive integer

in minutes

10 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

PollEndTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

PollFrequency A positive integer

(in milliseconds)

10000 Dynamic

if broker is

ICS;

otherwise

Component

restart

PollQuantity 1 through 500 1 Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

PollStartTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

RepositoryDirectory <REMOTE> if the broker

is ICS; otherwise any

valid local directory.

For ICS, the value is set

to <REMOTE>

 For WMQI and WAS,

the value is

<ProductDir

\repository

Agent restart

Appendix A. Standard configuration properties for connectors 97

Table 12. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

RequestQueue Valid JMS queue name <CONNECTORNAME>

/REQUESTQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

ResponseQueue Valid JMS queue name <CONNECTORNAME>

/RESPONSEQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

RestartRetryCount 0 through 99 3 Dynamic

if ICS;

otherwise

Component

restart

RestartRetryInterval A value in minutes

from 1 through

2147483647

1 Dynamic

if ICS;

otherwise

Component

restart

ResultsSetEnabled true or false false Component

restart

Used only by connectors

that support DB2II.

 This property is valid

only if the value of

DeliveryTransport

is JMS, and the value of

BrokerType is WMQI.

ResultsSetSize Positive integer 0 (means the results

set size is unlimited)

Component

restart

Used only by connectors

that support DB2II.

 This property is valid

only if the value of

ResultsSetEnabled

is true.

RHF2MessageDomain mrm or xml mrm Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS and the value of

WireFormat is CwXML.

SourceQueue Any valid WebSphere

MQ queue name

<CONNECTORNAME>

/SOURCEQUEUE

Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

SynchronousRequest

Queue

Any valid queue name. <CONNECTORNAME>

/SYNCHRONOUSREQUEST

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousResponse

Queue

Any valid queue name <CONNECTORNAME>

/SYNCHRONOUSRESPONSE

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

TivoliMonitorTransaction

Performance

true or false false Component

restart

98 Adapter for JText User Guide

Table 12. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

WireFormat CwXML or CwBO CwXML Agent restart The value of this

property must be CwXML

if the value

of RepositoryDirectory

is not set to <REMOTE>.

The value must

be CwBO if the value of

RepositoryDirectory is set

to <REMOTE>.

WsifSynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value of

BrokerType is WAS.

XMLNameSpaceFormat short or long short Agent restart This property is valid

only if the value of

BrokerType is

WMQI or WAS

Standard properties

This section describes the standard connector configuration properties.

AdapterHelpName

The AdapterHelpName property is the name of a directory in which

connector-specific extended help files are located. The directory must be located in

<ProductDir>\bin\Data\App\Help and must contain at least the language

directory enu_usa. It may contain other directories according to locale.

The default value is the template name if it is valid, or it is blank.

AdminInQueue

The AdminInQueue property specifies the queue that is used by the integration

broker to send administrative messages to the connector.

The default value is <CONNECTORNAME>/ADMININQUEUE

AdminOutQueue

The AdminOutQueue property specifies the queue that is used by the connector to

send administrative messages to the integration broker.

The default value is <CONNECTORNAME>/ADMINOUTQUEUE

AgentConnections

The AgentConnections property controls the number of ORB (Object Request

Broker) connections opened when the ORB initializes.

It is valid only if the value of the RepositoryDirectory is set to <REMOTE> and the

value of the DeliveryTransport property is MQ or IDL.

The default value of this property is 1.

Appendix A. Standard configuration properties for connectors 99

AgentTraceLevel

The AgentTraceLevel property sets the level of trace messages for the

application-specific component. The connector delivers all trace messages

applicable at the tracing level set and lower.

The default value is 0.

ApplicationName

The ApplicationName property uniquely identifies the name of the connector

application. This name is used by the system administrator to monitor the

integration environment. This property must have a value before you can run the

connector.

The default is the name of the connector.

BiDi.Application

The BiDi.Application property specifies the bidirectional format for data coming

from an external application into the adapter in the form of any business object

supported by this adapter. The property defines the bidirectional attributes of the

application data. These attributes are:

v Type of text: implicit or visual (I or V)

v Text direction: left-to-right or right-to-left (L or R)

v Symmetric swapping: on or off (Y or N)

v Shaping (Arabic): on or off (S or N)

v Numerical shaping (Arabic): Hindi, contextual, or nominal (H, C, or N)

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Broker

The BiDi.Broker property specifies the bidirectional format for data sent from the

adapter to the integration broker in the form of any supported business object. It

defines the bidirectional attributes of the data, which are as listed under

BiDi.Application above.

This property is valid only if the BiDi.Transformation property value is set to true.

If the BrokerType property is ICS, the property value is read-only.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Metadata

The BiDi.Metadata property defines the bidirectional format or attributes for the

metadata, which is used by the connector to establish and maintain a link to the

external application. The attribute settings are specific to each adapter using the

bidirectional capabilities. If your adapter supports bidirectional processing, refer to

section on adapter-specific properties for more information.

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

100 Adapter for JText User Guide

BiDi.Transformation

The BiDi.Transformation property defines whether the system performs a

bidirectional transformation at run time.

If the property value is set to true, the BiDi.Application, BiDi.Broker, and

BiDi.Metadata properties are available. If the property value is set to false, they

are hidden.

The default value is false.

BrokerType

The BrokerType property identifies the integration broker type that you are using.

The possible values are ICS, WMQI (for WMQI, WMQIB or WBIMB), or WAS.

CharacterEncoding

The CharacterEncoding property specifies the character code set used to map from

a character (such as a letter of the alphabet, a numeric representation, or a

punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. C++ connectors use the

value ascii7 for this property.

By default, only a subset of supported character encodings is displayed. To add

other supported values to the list, you must manually modify the

\Data\Std\stdConnProps.xml file in the product directory (<ProductDir>). For

more information, see the Connector Configurator appendix in this guide.

CommonEventInfrastructure

The Common Event Infrastructure (CEI) is a simple event management function

handling generated events. The CommonEventInfrastructure property specifies

whether the CEI should be invoked at run time.

The default value is false.

CommonEventInfrastructureContextURL

The CommonEventInfrastructureContextURL is used to gain access to the WAS

server that executes the Common Event Infrastructure (CEI) server application.

This property specifies the URL to be used.

This property is valid only if the value of CommonEventInfrastructure is set to

true.

The default value is a blank field.

ConcurrentEventTriggeredFlows

The ConcurrentEventTriggeredFlows property determines how many business

objects can be concurrently processed by the connector for event delivery. You set

the value of this attribute to the number of business objects that are mapped and

delivered concurrently. For example, if you set the value of this property to 5, five

business objects are processed concurrently.

Setting this property to a value greater than 1 allows a connector for a source

application to map multiple event business objects at the same time and deliver

Appendix A. Standard configuration properties for connectors 101

them to multiple collaboration instances simultaneously. This speeds delivery of

business objects to the integration broker, particularly if the business objects use

complex maps. Increasing the arrival rate of business objects to collaborations can

improve overall performance in the system.

To implement concurrent processing for an entire flow (from a source application

to a destination application), the following properties must configured:

v The collaboration must be configured to use multiple threads by setting its

Maximum number of concurrent events property high enough to use multiple

threads.

v The destination application’s application-specific component must be configured

to process requests concurrently. That is, it must be multithreaded, or it must be

able to use connector agent parallelism and be configured for multiple processes.

The Parallel Process Degree configuration property must be set to a value larger

than 1.

The ConcurrentEventTriggeredFlows property has no effect on connector polling,

which is single-threaded and is performed serially.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1.

ContainerManagedEvents

The ContainerManagedEvents property allows a JMS-enabled connector with a

JMS event store to provide guaranteed event delivery, in which an event is

removed from the source queue and placed on the destination queue as one JMS

transaction.

When this property is set to JMS, the following properties must also be set to

enable guaranteed event delivery:

v PollQuantity = 1 to 500

v SourceQueue = /SOURCEQUEUE

You must also configure a data handler with the MimeType and DHClass (data

handler class) properties. You can also add DataHandlerConfigMOName (the

meta-object name, which is optional). To set those values, use the Data Handler

tab in Connector Configurator.

Although these properties are adapter-specific, here are some example values:

v MimeType = text\xml

v DHClass = com.crossworlds.DataHandlers.text.xml

v DataHandlerConfigMOName = MO_DataHandler_Default

The fields for these values in the Data Handler tab are displayed only if you have

set the ContainerManagedEvents property to the value JMS.

Note: When ContainerManagedEvents is set to JMS, the connector does not call its

pollForEvents() method, thereby disabling that method’s functionality.

The ContainerManagedEvents property is valid only if the value of the

DeliveryTransport property is set to JMS.

102 Adapter for JText User Guide

There is no default value.

ControllerEventSequencing

The ControllerEventSequencing property enables event sequencing in the connector

controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE> (BrokerType is ICS).

The default value is true.

ControllerStoreAndForwardMode

The ControllerStoreAndForwardMode property sets the behavior of the connector

controller after it detects that the destination application-specific component is

unavailable.

If this property is set to true and the destination application-specific component is

unavailable when an event reaches ICS, the connector controller blocks the request

to the application-specific component. When the application-specific component

becomes operational, the controller forwards the request to it.

However, if the destination application’s application-specific component becomes

unavailable after the connector controller forwards a service call request to it, the

connector controller fails the request.

If this property is set to false, the connector controller begins failing all service

call requests as soon as it detects that the destination application-specific

component is unavailable.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE> (the value of the BrokerType property is ICS).

The default value is true.

ControllerTraceLevel

The ControllerTraceLevel property sets the level of trace messages for the

connector controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE>.

The default value is 0.

DeliveryQueue

The DeliveryQueue property defines the queue that is used by the connector to

send business objects to the integration broker.

This property is valid only if the value of the DeliveryTransport property is set to

JMS.

The default value is <CONNECTORNAME>/DELIVERYQUEUE.

Appendix A. Standard configuration properties for connectors 103

DeliveryTransport

The DeliveryTransport property specifies the transport mechanism for the delivery

of events. Possible values are MQ for WebSphere MQ, IDL for CORBA IIOP, or JMS

for Java Messaging Service.

v If the value of the RepositoryDirectory property is set to <REMOTE>, the value

of the DeliveryTransport property can be MQ, IDL, or JMS, and the default is IDL.

v If the value of the RepositoryDirectory property is a local directory, the value

can be only JMS.

The connector sends service-call requests and administrative messages over

CORBA IIOP if the value of the RepositoryDirectory property is MQ or IDL.

The default value is JMS.

WebSphere MQ and IDL

Use WebSphere MQ rather than IDL for event delivery transport, unless you must

have only one product. WebSphere MQ offers the following advantages over IDL:

v Asynchronous communication:

WebSphere MQ allows the application-specific component to poll and

persistently store events even when the server is not available.

v Server side performance:

WebSphere MQ provides faster performance on the server side. In optimized

mode, WebSphere MQ stores only the pointer to an event in the repository

database, while the actual event remains in the WebSphere MQ queue. This

prevents writing potentially large events to the repository database.

v Agent side performance:

WebSphere MQ provides faster performance on the application-specific

component side. Using WebSphere MQ, the connector polling thread picks up an

event, places it in the connector queue, then picks up the next event. This is

faster than IDL, which requires the connector polling thread to pick up an event,

go across the network into the server process, store the event persistently in the

repository database, then pick up the next event.

JMS

The JMS transport mechanism enables communication between the connector and

client connector framework using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as

jms.MessageBrokerName, jms.FactoryClassName, jms.Password, and jms.UserName

are listed in Connector Configurator. The properties jms.MessageBrokerName and

jms.FactoryClassName are required for this transport.

There may be a memory limitation if you use the JMS transport mechanism for a

connector in the following environment:

v AIX 5.0

v WebSphere MQ 5.3.0.1

v ICS is the integration broker

In this environment, you may experience difficulty starting both the connector

controller (on the server side) and the connector (on the client side) due to memory

use within the WebSphere MQ client. If your installation uses less than 768MB of

process heap size, set the following variable and property:

v Set the LDR_CNTRL environment variable in the CWSharedEnv.sh script.

104 Adapter for JText User Guide

This script is located in the \bin directory below the product directory

(<ProductDir>). Using a text editor, add the following line as the first line in the

CWSharedEnv.sh script:

export LDR_CNTRL=MAXDATA=0x30000000

This line restricts heap memory usage to a maximum of 768 MB (3 segments *

256 MB). If the process memory grows larger than this limit, page swapping can

occur, which can adversely affect the performance of your system.

v Set the value of the IPCCBaseAddress property to 11 or 12. For more

information on this property, see the System Installation Guide for UNIX.

DuplicateEventElimination

When the value of this property is true, a JMS-enabled connector can ensure that

duplicate events are not delivered to the delivery queue. To use this feature, during

connector development, the connector must have a unique event identifier set as

the business object ObjectEventId attribute in the application-specific code.

Note: When the value of this property is true, the MonitorQueue property must

be enabled to provide guaranteed event delivery.

The default value is false.

EnableOidForFlowMonitoring

When the value of this property is true, the adapter runtime will mark the

incoming ObjectEventID as a foreign key for flow monitoring.

This property is only valid if the BrokerType property is set to ICS.

The default value is false.

FaultQueue

If the connector experiences an error while processing a message, it moves the

message (and a status indicator and description of the problem) to the queue

specified in the FaultQueue property.

The default value is <CONNECTORNAME>/FAULTQUEUE.

jms.FactoryClassName

The jms.FactoryClassName property specifies the class name to instantiate for a

JMS provider. This property must be set if the value of the DeliveryTransport

property is JMS.

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.ListenerConcurrency

The jms.ListenerConcurrency property specifies the number of concurrent listeners

for the JMS controller. It specifies the number of threads that fetch and process

messages concurrently within a controller.

This property is valid only if the value of the jms.OptimizedTransport property is

true.

The default value is 1.

Appendix A. Standard configuration properties for connectors 105

jms.MessageBrokerName

The jms.MessageBrokerName specifies the broker name to use for the JMS

provider. You must set this connector property if you specify JMS as the delivery

transport mechanism (in the DeliveryTransport property).

When you connect to a remote message broker, this property requires the following

values:
QueueMgrName:Channel:HostName:PortNumber

where:

QueueMgrName is the name of the queue manager.

Channel is the channel used by the client.

HostName is the name of the machine where the queue manager is to reside.

PortNumberis the port number used by the queue manager for listening

For example:

jms.MessageBrokerName = WBIMB.Queue.Manager:CHANNEL1:RemoteMachine:1456

The default value is crossworlds.queue.manager. Use the default when connecting

to a local message broker.

jms.NumConcurrentRequests

The jms.NumConcurrentRequests property specifies the maximum number of

concurrent service call requests that can be sent to a connector at the same time.

Once that maximum is reached, new service calls are blocked and must wait for

another request to complete before proceeding.

The default value is 10.

jms.Password

The jms.Password property specifies the password for the JMS provider. A value

for this property is optional.

There is no default value.

jms.TransportOptimized

The jms.TransportOptimized property determines if the WIP (work in progress) is

optimized. You must have a WebSphere MQ provider to optimize the WIP. For

optimized WIP to operate, the messaging provider must be able to:

1. Read a message without taking it off the queue

2. Delete a message with a specific ID without transferring the entire message to

the receiver’s memory space

3. Read a message by using a specific ID (needed for recovery purposes)

4. Track the point at which events that have not been read appear.

The JMS APIs cannot be used for optimized WIP because they do not meet

conditions 2 and 4 above, but the MQ Java APIs meet all four conditions, and

hence are required for optimized WIP.

This property is valid only if the value of DeliveryTransport is JMS and the value of

BrokerType is ICS.

The default value is false.

106 Adapter for JText User Guide

jms.UserName

the jms.UserName property specifies the user name for the JMS provider. A value

for this property is optional.

There is no default value.

JvmMaxHeapSize

The JvmMaxHeapSize property specifies the maximum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128m.

JvmMaxNativeStackSize

The JvmMaxNativeStackSize property specifies the maximum native stack size for

the agent (in kilobytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128k.

JvmMinHeapSize

The JvmMinHeapSize property specifies the minimum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1m.

ListenerConcurrency

The ListenerConcurrency property supports multithreading in WebSphere MQ

Listener when ICS is the integration broker. It enables batch writing of multiple

events to the database, thereby improving system performance.

This property valid only with connectors that use MQ transport. The value of the

DeliveryTransport property must be MQ.

The default value is 1.

Locale

The Locale property specifies the language code, country or territory, and,

optionally, the associated character code set. The value of this property determines

cultural conventions such as collation and sort order of data, date and time

formats, and the symbols used in monetary specifications.

A locale name has the following format:

ll_TT.codeset

Appendix A. Standard configuration properties for connectors 107

where:

ll is a two-character language code (in lowercase letters)

TT is a two-letter country or territory code (in uppercase letters)

codeset is the name of the associated character code set (may be optional).

By default, only a subset of supported locales are listed. To add other supported

values to the list, you modify the \Data\Std\stdConnProps.xml file in the

<ProductDir>\bin directory. For more information, refer to the Connector

Configurator appendix in this guide.

If the connector has not been internationalized, the only valid value for this

property is en_US. To determine whether a specific connector has been globalized,

refer to the user guide for that adapter.

The default value is en_US.

LogAtInterchangeEnd

The LogAtInterchangeEnd property specifies whether to log errors to the log

destination of the integration broker.

Logging to the log destination also turns on e-mail notification, which generates

e-mail messages for the recipient specified as the value of MESSAGE_RECIPIENT

in the InterchangeSystem.cfg file when errors or fatal errors occur. For example,

when a connector loses its connection to the application, if the value of

LogAtInterChangeEnd is true, an e-mail message is sent to the specified message

recipient.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

MaxEventCapacity

The MaxEventCapacity property specifies maximum number of events in the

controller buffer. This property is used by the flow control feature.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The value can be a positive integer between 1 and 2147483647.

The default value is 2147483647.

MessageFileName

The MessageFileName property specifies the name of the connector message file.

The standard location for the message file is \connectors\messages in the product

directory. Specify the message file name in an absolute path if the message file is

not located in the standard location.

If a connector message file does not exist, the connector uses

InterchangeSystem.txt as the message file. This file is located in the product

directory.

108 Adapter for JText User Guide

Note: To determine whether a connector has its own message file, see the

individual adapter user guide.

The default value is InterchangeSystem.txt.

MonitorQueue

The MonitorQueue property specifies the logical queue that the connector uses to

monitor duplicate events.

It is valid only if the value of the DeliveryTransport property is JMS and the value

of the DuplicateEventElimination is true.

The default value is <CONNECTORNAME>/MONITORQUEUE

OADAutoRestartAgent

the OADAutoRestartAgent property specifies whether the connector uses the

automatic and remote restart feature. This feature uses the WebSphere

MQ-triggered Object Activation Daemon (OAD) to restart the connector after an

abnormal shutdown, or to start a remote connector from System Monitor.

This property must be set to true to enable the automatic and remote restart

feature. For information on how to configure the WebSphere MQ-triggered OAD

feature. see the Installation Guide for Windows or for UNIX.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

OADMaxNumRetry

The OADMaxNumRetry property specifies the maximum number of times that the

WebSphere MQ-triggered Object Activation Daemon (OAD) automatically attempts

to restart the connector after an abnormal shutdown. The OADAutoRestartAgent

property must be set to true for this property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is 1000.

OADRetryTimeInterval

The OADRetryTimeInterval property specifies the number of minutes in the

retry-time interval for the WebSphere MQ-triggered Object Activation Daemon

(OAD). If the connector agent does not restart within this retry-time interval, the

connector controller asks the OAD to restart the connector agent again. The OAD

repeats this retry process as many times as specified by the OADMaxNumRetry

property. The OADAutoRestartAgent property must be set to true for this

property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is 10.

Appendix A. Standard configuration properties for connectors 109

PollEndTime

The PollEndTime property specifies the time to stop polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

PollFrequency

The PollFrequency property specifies the amount of time (in milliseconds) between

the end of one polling action and the start of the next polling action. This is not

the interval between polling actions. Rather, the logic is as follows:

v Poll to obtain the number of objects specified by the value of the PollQuantity

property.

v Process these objects. For some connectors, this may be partly done on separate

threads, which execute asynchronously to the next polling action.

v Delay for the interval specified by the PollFrequency property.

v Repeat the cycle.

The following values are valid for this property:

v The number of milliseconds between polling actions (a positive integer).

v The word no, which causes the connector not to poll. Enter the word in

lowercase.

v The word key, which causes the connector to poll only when you type the letter

p in the connector Command Prompt window. Enter the word in lowercase.

The default is 10000.

Important: Some connectors have restrictions on the use of this property. Where

they exist, these restrictions are documented in the chapter on

installing and configuring the adapter.

PollQuantity

The PollQuantity property designates the number of items from the application

that the connector polls for. If the adapter has a connector-specific property for

setting the poll quantity, the value set in the connector-specific property overrides

the standard property value.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the ContainerManagedEvents property has a value.

An e-mail message is also considered an event. The connector actions are as

follows when it is polled for e-mail.

v When it is polled once, the connector detects the body of the message, which it

reads as an attachment. Since no data handler was specified for this mime type,

it will then ignore the message.

110 Adapter for JText User Guide

v The connector processes the first BO attachment. The data handler is available

for this MIME type, so it sends the business object to Visual Test Connector.

v When it is polled for the second time, the connector processes the second BO

attachment. The data handler is available for this MIME type, so it sends the

business object to Visual Test Connector.

v Once it is accepted, the third BO attachment should be transmitted.

PollStartTime

The PollStartTime property specifies the time to start polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

RepositoryDirectory

The RepositoryDirectory property is the location of the repository from which the

connector reads the XML schema documents that store the metadata for business

object definitions.

If the integration broker is ICS, this value must be set to set to <REMOTE>

because the connector obtains this information from the InterChange Server

repository.

When the integration broker is a WebSphere message broker or WAS, this value is

set to <ProductDir>\repository by default. However, it may be set to any valid

directory name.

RequestQueue

The RequestQueue property specifies the queue that is used by the integration

broker to send business objects to the connector.

This property is valid only if the value of the DeliveryTransport property is JMS.

The default value is <CONNECTORNAME>/REQUESTQUEUE.

ResponseQueue

The ResponseQueue property specifies the JMS response queue, which delivers a

response message from the connector framework to the integration broker. When

the integration broker is ICS, the server sends the request and waits for a response

message in the JMS response queue.

This property is valid only if the value of the DeliveryTransport property is JMS.

The default value is <CONNECTORNAME>/RESPONSEQUEUE.

Appendix A. Standard configuration properties for connectors 111

RestartRetryCount

The RestartRetryCount property specifies the number of times the connector

attempts to restart itself. When this property is used for a connector that is

connected in parallel, it specifies the number of times the master connector

application-specific component attempts to restart the client connector

application-specific component.

The default value is 3.

RestartRetryInterval

The RestartRetryInterval property specifies the interval in minutes at which the

connector attempts to restart itself. When this property is used for a connector that

is linked in parallel, it specifies the interval at which the master connector

application-specific component attempts to restart the client connector

application-specific component.

Possible values for the property range from 1 through 2147483647.

The default value is 1.

ResultsSetEnabled

The ResultsSetEnabled property enables or disables results set support when

Information Integrator is active. This property can be used only if the adapter

supports DB2 Information Integrator.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the value of BrokerType is WMQI.

The default value is false.

ResultsSetSize

The ResultsSetSize property defines the maximum number of business objects that

can be returned to Information Integrator. This property can be used only if the

adapter supports DB2 Information Integrator.

This property is valid only if the value of the ResultsSetEnabled property is true.

The default value is 0. This means that the size of the results set is unlimited.

RHF2MessageDomain

The RHF2MessageDomain property allows you to configure the value of the field

domain name in the JMS header. When data is sent to a WebSphere message

broker over JMS transport, the adapter framework writes JMS header information,

with a domain name and a fixed value of mrm. A configurable domain name lets

you track how the WebSphere message broker processes the message data.

This is an example header:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

This property is valid only if the value of BrokerType is WMQI or WAS. Also, it is

valid only if the value of the DeliveryTransport property is JMS, and the value of

the WireFormat property is CwXML.

112 Adapter for JText User Guide

Possible values are mrm and xml. The default value is mrm.

SourceQueue

The SourceQueue property designates the JMS source queue for the connector

framework in support of guaranteed event delivery for JMS-enabled connectors

that use a JMS event store. For further information, see “ContainerManagedEvents”

on page 102.

This property is valid only if the value of DeliveryTransport is JMS, and a value for

ContainerManagedEvents is specified.

The default value is <CONNECTORNAME>/SOURCEQUEUE.

SynchronousRequestQueue

The SynchronousRequestQueue property delivers request messages that require a

synchronous response from the connector framework to the broker. This queue is

necessary only if the connector uses synchronous execution. With synchronous

execution, the connector framework sends a message to the synchronous request

queue and waits for a response from the broker on the synchronous response

queue. The response message sent to the connector has a correlation ID that

matches the ID of the original message.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is <CONNECTORNAME>/SYNCHRONOUSREQUESTQUEUE

SynchronousRequestTimeout

The SynchronousRequestTimeout property specifies the time in milliseconds that

the connector waits for a response to a synchronous request. If the response is not

received within the specified time, the connector moves the original synchronous

request message (and error message) to the fault queue.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is 0.

SynchronousResponseQueue

The SynchronousResponseQueue property delivers response messages in reply to a

synchronous request from the broker to the connector framework. This queue is

necessary only if the connector uses synchronous execution.

This property is valid only if the value of DeliveryTransport is JMS.

The default is <CONNECTORNAME>/SYNCHRONOUSRESPONSEQUEUE

TivoliMonitorTransactionPerformance

The TivoliMonitorTransactionPerformance property specifies whether IBM Tivoli

Monitoring for Transaction Performance (ITMTP) is invoked at run time.

The default value is false.

WireFormat

The WireFormat property specifies the message format on the transport:

Appendix A. Standard configuration properties for connectors 113

v If the value of the RepositoryDirectory property is a local directory, the value is

CwXML.

v If the value of the RepositoryDirectory property is a remote directory, the value

is CwBO.

WsifSynchronousRequestTimeout

The WsifSynchronousRequestTimeout property specifies the time in milliseconds

that the connector waits for a response to a synchronous request. If the response is

not received within the specified time, the connector moves the original

synchronous request message (and an error message) to the fault queue.

This property is valid only if the value of BrokerType is WAS.

The default value is 0.

XMLNameSpaceFormat

The XMLNameSpaceFormat property specifies short or long namespaces in the

XML format of business object definitions.

This property is valid only if the value of BrokerType is set to WMQI or WAS.

The default value is short.

114 Adapter for JText User Guide

Appendix B. Application Response Measurement

This adapter is compatible with the Application Response Measurement

application programming interface (API), an API that allows applications to be

managed for availability, service level agreements, and capacity planning. An

ARM-instrumented application can participate in IBM Tivoli Monitoring for

Transaction Performance, allowing collection and review of data concerning

transaction metrics.

Application Response Measurement instrumentation support

This adapter is compatible with the Application Response Measurement

application programming interface (API), an API that allows applications to be

managed for availability, service level agreements, and capacity planning. An

ARM-instrumented application can participate in IBM Tivoli Monitoring for

Transaction Performance, allowing collection and review of data concerning

transaction metrics.

Required software

In addition to the software prerequisites required for the adapter, you must have

the following installed for ARM to operate:

v WebSphere Application Server 5.0.1 (contains the IBM Tivoli Monitoring for

Transaction Performance server). This does not have to be installed on the same

system as the adapter.

v IBM Tivoli Monitoring for Transaction Performance v. 5.2 Fixpack 1. This must

be installed on the same system on which the adapter is installed and

configured to point to the system on which the IBM Tivoli Monitoring for

Transaction Performance server resides.

Application Response Measurement support is available using any integration

broker supported with this release.

Note: Application Response Measurement instrumentation is supported on all

operating systems supported with this IBM WebSphere Business Integration

Adapters release except HP-UX (any version) and Red Hat Linux 3.0.

Enabling Application Response Measurement

ARM instrumentation is enabled via by setting the standard property

TivoliMonitorTransactionPerformance in Connector Configurator to “True.” By

default ARM support is not enabled. (Refer to the ″Standard Properties″ appendix

of this document for more information.)

Transaction monitoring

When ARM is enabled, the transactions that are monitored are service events and

event deliveries. The transaction is measured from the start of a service request or

event delivery to the end of the service request or event delivery. The name of the

transaction displayed on the Tivoli Monitoring for Transaction Performance console

will start with either SERVICE REQUEST or EVENT DELIVERY. The next part of the

name will be the business object verb (such as CREATE, RETRIEVE, UPDATE or DELETE).

The final part of the name will be the business object name such as “EMPLOYEE.”

© Copyright IBM Corp. 2000, 2003, 2004 115

For example, the name of a transaction for an event delivery for creation of an

employee might be EVENT DELIVERY CREATE EMPLOYEE. Another might be SERVICE

REQUEST UPDATE ORDER.

The following metrics are collected by default for each type of service request or

event delivery:

v Minimum transaction time

v Maximum transaction time

v Average transaction time

v Total transaction runs

You (or the system administrator of the WebSphere Application Server) can select

which of these metrics to display, for which adapter events, by configuring

Discovery Policies and Listener Policies for particular transactions from within the

Tivoli Monitoring for Transaction Performance console. (Refer to “For more

information.”)

For more information

Refer to the IBM Tivoli Monitoring for Transaction Performance documentation for

more information. In particular, refer to the IBM Tivoli Monitoring for Transaction

Performance User’s Guide for information about monitoring and managing the

metrics generated by the adapter.

116 Adapter for JText User Guide

Appendix C. Common Event Infrastructure

WebSphere Business Integration Server Foundation includes the Common Event

Infrastructure Server Application, which is required for Common Event

Infrastructure to operate. The WebSphere Application Server Foundation can be

installed on any system (it does not have to be the same machine on which the

adapter is installed.)

The WebSphere Application Server Application Client includes the libraries

required for interaction between the adapter and the Common Event Infrastructure

Server Application. You must install WebSphere Application Server Application

Client on the same system on which you install the adapter. The adapter connects

to the WebSphere Application Server (within the WebSphere Business Integration

Server Foundation) by means of a configurable URL.

Common Event Infrastructure support is available using any integration broker

supported with this release.

Required software

In addition to the software prerequisites required for the adapter, you must have

the following installed for Common Event Infrastructure to operate:

v WebSphere Business Integration Server Foundation 5.1.1

v WebSphere Application Server Application Client 5.0.2, 5.1, or 5.1.1.

(WebSphere Application Server Application Client 5.1.1 is provided with

WebSphere Business Integration Server Foundation 5.1.1.)

Note: Common Event Infrastructure is not supported on any HP-UX or Linux

platform.

Enabling Common Event Infrastructure

Common Event Infrastructure functionality is enabled with the standard properties

CommonEventInfrastructure and CommonEventInfrastructureContextURL, configured

with Connector Configurator. By default, Common Event Infrastructure is not

enabled. The CommonEventInfrastructureContextURL property enables you to

configure the URL of the Common Event Infrastructure server.(Refer to the

“Standard Properties” appendix of this document for more information.)

Obtaining Common Event Infrastructure adapter events

If Common Event Infrastructure is enabled, the adapter generates Common Event

Infrastructure events that map to the following adapter events:

v Starting the adapter

v Stopping the adapter

v An application response to a timeout from the adapter agent

v Any doVerbFor call issued from the adapter agent

v A gotApplEvent call from the adapter agent

For another application (the “consumer application”) to receive the Common Event

Infrastructure events generated by the adapter, the application must use the

© Copyright IBM Corp. 2000, 2003, 2004 117

Common Event Infrastructure event catalog to determine the definitions of

appropriate events and their properties. The events must be defined in the event

catalog for the consumer application to be able to consume the sending

application’s events.

The “Common Event Infrastructure event catalog definitions” appendix of this

document contains XML format metadata showing, for WebSphere Business

Information adapters, the event descriptors and properties the consumer

application should search for.

For more information

For more information about Common Event Infrastructure, refer to the Common

Event Infrastructure information in the WebSphere Business Integration Server

Foundation documentation, available at the following URL:

http://publib.boulder.ibm.com/infocenter/ws51help

For sample XML metadata showing the adapter-generated event descriptors and

properties a consumer application should search for, refer to“Common Event

Infrastructure event catalog definitions.”

Common Event Infrastructure event catalog definitions

The Common Event Infrastructure event catalog contains event definitions that can

be queried by other applications. The following are event definition samples, using

XML metadata, for typical adapter events. If you are writing another application,

your application can use event catalog interfaces to query against the event

definition. For more information about event definitions and how to query them,

refer to the Common Event Infrastructure documentation that is available from the

online IBM WebSphere Server Foundation Information Center.

For WebSphere Business Integration adapters, the extended data elements that

need to be defined in the event catalog are the keys of the business object. Each

business object key requires an event definition. So for any given adapter, various

events such as start adapter, stop adapter, timeout adapter, and any doVerbFor

event (create, update, or delete, for example) must have a corresponding event

definition in the event catalog.

The following sections contain examples of the XML metadata for start adapter,

stop adapter, and event request or delivery.

XML format for “start adapter” metadata

<eventDefinition name="startADAPTER"

 parent="event">

 <property name =”creationTime" //Comment: example value would be

 "2004-05-13T17:00:16.319Z"

 required="true" />

 <property name="globalInstanceId" //Comment: Automatically generated

 by Common Event Infrastructure

 required="true"/>

 <property name="sequenceNumber" //Comment: Source defined number

for messages to be sent/sorted logically

 required="false"/>

 <property name="version" //Comment: Version of the event

 required="false"

 defaultValue="1.0.1"/>

118 Adapter for JText User Guide

<property name="sourceComponentId"

 path="sourceComponentId"

 required="true"/>

 <property name="application" //Comment: The name#version of the

source application generating the event. Example is "SampleConnector#3.0.0"

 path="sourceComponentId/application" required="false"/>

 <property name="component" //Comment: This will be the name#version

 of the source component.

 path="sourceComponentId/component"

 required="true"

 defaultValue="ConnectorFrameWorkVersion#4.2.2"/>

 <property name="componentIdType" //Comment: specifies the format

and meaning of the component

 path="sourceComponentId/componentIdType"

 required="true"

 defaultValue="Application"/>

 <property name="executionEnvironment"

 //Comment: Identifies the environment the application is running

 in...example is "Windows 2000#5.0"

 path="sourceComponentId/executionEnvironment"

 required="false" />

 <property name="location" //Comment: The value of this is the

 server name...example is "WQMI"

 path="sourceComponentId/location"

 required="true"/>

 <property name="locationType" //Comment specifies the format and

 meaning of the location

 path="sourceComponentId/locationType"

 required="true"

 defaultValue="Hostname"/>

 <property name="subComponent" //Comment:further distinction

of the logical component

 path="sourceComponentId/subComponent"

 required="true"

 defaultValue="AppSide_Connector.AgentBusinessObjectManager"/>

 <property name="componentType" //Comment: well-defined name

used to characterize all instances of this component

 path="sourceComponentId/componentType"

 required="true"

 defaultValue="ADAPTER"/>

 <property name="situation" //Comment: Defines the type of

 situation that caused the event to be reported

 path="situation"

 required="true"/>

 <property name="categoryName=" //Comment: Specifies the type

of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="StartSituation"/>

 <property name="situationType" //Comment: Specifies the type

of situation and disposition of the event

 path="situation/situationType"

 required="true"

 <property name="reasoningScope" //Comment: Specifies the scope

 of the impact of the event

 path="situation/situationType/reasoningScope"

 required="true"

 permittedValue="INTERNAL"

 permittedValue="EXTERNAL"/>

 <property name="successDisposition" //Comment: Specifies the

 success of event

 path="situation/situationType/successDisposition"

 required="true"

 permittedValue="SUCCESSFUL"

 permittedValue="UNSUCCESSFUL" />

 <property name="situationQualifier" //Comment: Specifies the

 situation qualifiers for this event

Appendix C. Common Event Infrastructure 119

path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="START_INITIATED"

 permittedValue="RESTART_INITIATED"

 permittedValue="START_COMPLETED" />

</eventDefinition>

XML format for ″stop adapter″ metadata

The metadata for “stop adapter” is the same as that for “start adapter” with the

following exceptions:

v The default value for the categoryName property is StopSituation:

<property name="categoryName="

 //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="StopSituation"/>

v The permitted values for the situationQualifier property differ and are as

follows for “stop adapter”:

<property name="situationQualifier"

 //Comment: Specifies the situation qualifiers for this event

 path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="STOP_INITIATED"

 permittedValue="ABORT_INITIATED"

 permittedValue="PAUSE_INITIATED"

 permittedValue="STOP_COMPLETED"

 />

XML format for “timeout adapter” metadata

The metadata for “timeout adapter” is the same as that for “start adapter” and

“stop adapter” with the following exceptions:

v The default value for the categoryName property is ConnectSituation:

<property name="categoryName="

 //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="ConnectSituation"/>

v The permitted values for the situationQualifier property differ and are as

follows for “timeout adapter”:

<property name="situationQualifier" //Comment: Specifies

 the situation qualifiers for this event

 path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="IN_USE"

 permittedValue="FREED"

 permittedValue="CLOSED"

 permittedValue="AVAILABLE"

 />

120 Adapter for JText User Guide

XML format for ″request″ or ″delivery″ metadata

At the end of this XML format are the extended data elements. The extended data

elements for adapter request and delivery events represent data from the business

object being processed. This data includes the name of the business object, the key

(foreign or local) for the business object, and business objects that are children of

parent business objects. The children business objects are then broken down into

the same data as the parent (name, key, and any children business objects). This

data is represented in an extended data element of the event definition. This data

will change depending on which business object, which keys, and which child

business objects are being processed. The extended data in this event definition is

just an example and represents a business object named Employee with a key

EmployeeId and a child business object EmployeeAddress with a key EmployeeId.

This pattern could continue for as much data as exists for the particular business

object.

<eventDefinition name="createEmployee" //Comment: This

 extension name is always the business object verb followed by the business

 object name

 parent="event">

 <property name ="creationTime" //Comment: example value would be

"2004-05-13T17:00:16.319Z"

 required="true" />

 <property name="globalInstanceId" //Comment: Automatically generated

 by Common Event Infrastructure

 required="true"/>

 <property name="localInstanceId" //Comment: Value is business

 object verb+business object name+#+app name+ business object identifier

 required="false"/>

 <property name="sequenceNumber" //Comment: Source defined number

for messages to be sent/sorted logically

 required="false"/>

 <property name="version" //Comment: Version of the event...value is

 set to 1.0.1

 required="false"

 defaultValue="1.0.1"/>

 <property name="sourceComponentId"

 path="sourceComponentId"

 required="true"/>

 <property name="application" //Comment: The name#version of the

 source application generating the event...example is

 "SampleConnector#3.0.0"

 path="sourceComponentId/application"

 required="false"/>

 <property name="component" //Comment: This will be the name#version

of the source component.

 path="sourceComponentId/component"

 required="true"

 defaultValue="ConnectorFrameWorkVersion#4.2.2"/>

 <property name="componentIdType" //Comment: specifies the format

 and meaning of the component

 path="sourceComponentId/componentIdType"

 required="true"

 defaultValue="Application"/>

 <property name="executionEnvironment" //Comment: Identifies the

 environment#version the app is running in...example is "Windows 2000#5.0"

 path="sourceComponentId/executionEnvironment"

 required="false" />

 <property name="instanceId" //Comment: Value is business object

 verb+business object name+#+app name+ business object identifier

 path="sourceComponentId/instanceId"

 required="false"

 <property name="location" //Comment: The value of this is the

server name...example is "WQMI"

 path="sourceComponentId/location"

Appendix C. Common Event Infrastructure 121

required="true"/>

 <property name="locationType" //Comment specifies the format and

 meaning of the location

 path="sourceComponentId/locationType"

 required="true"

 defaultValue="Hostname"/>

 <property name="subComponent" //Comment:further distinction of the

 logical component-in this case the value is the name of the business

 object

 path="sourceComponentId/subComponent"

 required="true"/>

 <property name="componentType" //Comment: well-defined name used

 to characterize all instances of this component

 path="sourceComponentId/componentType"

 required="true"

 defaultValue="ADAPTER"/>

 <property name="situation" //Comment: Defines the type of

situation that caused the event to be reported

 path="situation"

 required="true"/>

 <property name="categoryName" //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 permittedValue="CreateSituation"

 permittedValue="DestroySituation"

 permittedValue="OtherSituation" />

 <property name="situationType" //Comment: Specifies the type

of situation and disposition of the event

 path="situation/situationType"

 required="true"

 <property name="reasoningScope" //Comment: Specifies the scope

of the impact of the event

 path="situation/situationType/reasoningScope"

 required="true"

 permittedValue="INTERNAL"

 permittedValue="EXTERNAL"/>

 <property name="successDisposition" //Comment: Specifies the

 success of event

 path="situation/situationType/successDisposition"

 required="true"

 permittedValue="SUCCESSFUL"

 permittedValue="UNSUCCESSFUL" />

 <extendedDataElements name="Employee" //Comment: name of business

 object itself

 type="noValue"

 <children name="EmployeeId"

 type="string"/> //Comment: type is one of the

 permitted values within Common Event Infrastructure documentation

 <children name="EmployeeAddress"

 type="noValue"/>

 <children name="EmployeeId"

 type="string"/>

 -

 -

 -

 </extendedDataElements

</eventDefinition>

122 Adapter for JText User Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service. IBM may have patents or

pending patent applications covering subject matter described in this document.

The furnishing of this document does not grant you any license to these patents.

You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you. This

information could include technical inaccuracies or typographical errors. Changes

are periodically made to the information herein; these changes will be incorporated

in new editions of the publication. IBM may make improvements and/or changes

in the product(s) and/or the program(s) described in this publication at any time

without notice. Any references in this information to non-IBM Web sites are

provided for convenience only and do not in any manner serve as an endorsement

of those Web sites. The materials at those Web sites are not part of the materials for

this IBM product and use of those Web sites is at your own risk. IBM may use or

distribute any of the information you supply in any way it believes appropriate

without incurring any obligation to you. Licensees of this program who wish to

have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs

(including this one) and (ii) the mutual use of the information which has been

exchanged, should contact:

© Copyright IBM Corp. 2000, 2003, 2004 123

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee. The licensed program described in this

document and all licensed material available for it are provided by IBM under

terms of the IBM Customer Agreement, IBM International Program License

Agreement or any equivalent agreement between us. Any performance data

contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some

measurements may have been made on development-level systems and there is no

guarantee that these measurements will be the same on generally available

systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the

applicable data for their specific environment. Information concerning non-IBM

products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. IBM has not tested those

products and cannot confirm the accuracy of performance, compatibility or any

other claims related to non-IBM products. Questions on the capabilities of non-IBM

products should be addressed to the suppliers of those products. All statements

regarding IBM’s future direction or intent are subject to change or withdrawal

without notice, and represent goals and objectives only. This information contains

examples of data and reports used in daily business operations. To illustrate them

as completely as possible, the examples include the names of individuals,

companies, brands, and products. All of these names are fictitious and any

similarity to the names and addresses used by an actual business enterprise is

entirely coincidental. COPYRIGHT LICENSE: This information contains sample

application programs in source language, which illustrate programming techniques

on various operating platforms. You may copy, modify, and distribute these sample

programs in any form without payment to IBM, for the purposes of developing,

using, marketing or distributing application programs conforming to the

application programming interface for the operating platform for which the sample

programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs. If you are viewing this information softcopy, the

photographs and color illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program. General-use programming interfaces

allow you to write application software that obtain the services of this program’s

tools. However, this information may also contain diagnosis, modification, and

tuning information. Diagnosis, modification and tuning information is provided to

help you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

124 Adapter for JText User Guide

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

i5/OS

IBM

the IBM logo

AIX

CICS

CrossWorlds

DB2

DB2 Universal Database

Domino

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MQSeries

MVS

OS/400

Passport Advantage

SupportPac

WebSphere

z/OS

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both. MMX,

Pentium, and ProShare are trademarks or registered trademarks of Intel

Corporation in the United States, other countries, or both. Java and all Java-based

trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both. Linux is a trademark of Linus Torvalds in the United States,

other countries, or both. Other company, product or service names may be

trademarks or service marks of others.

WebSphere Business Integration Adapter Framework V2.6.0

Notices 125

126 Adapter for JText User Guide

Index

A
adapter components 1

adapter environment 15

adapter framework 16

adapter supported platforms 16

AIX platforms 16

Application Response Measurement 14,

115

Application Response Measurement

instrumentation, support for 115

architecture 2

B
broker compatibility 15

business objects 3

adding supported 43

delimiter error recovery 84

requests verb processing 12

C
Common Event Infrastructure 14, 117

event catalog 118

metadata 118

configuration file
changing 39

completing 28

creating from template 26

creating new 26

saving 39

setting properties 29

configuration tasks 57

Connector Configurator
globalized environment 40

overview 21

stand-alone mode 22

starting 22

System Manager, running from 23

Unix 22

connector instances
creating multiple 42

connector-specific configuration

properties
setting 30

Connector-specific properties 31

ArchivingEnabled 31, 32

EventLog 31, 32

EventRecovery 31, 32

FTPPollFrequency 31, 32

GenerateTemplate 31, 32

NoPoll 33

OutputLog 31, 32

PollQuantity 31, 33

SortFilesOnTimestamp 32, 33

connector-specific property template
creating 23

D
data handlers 2

changing 75

Delimited 2

FixedWidth 2

NameValue 2

processing 11

specifying 75

supported business objects 85

dynamic file naming 61

E
EndBODelimiter

using non-printable characters 66

EndBODelimiter attribute
using 65

EndBODelimiter parsing method
using 65

error messages
logging 81

error types 82

event archiving 8

specifying 59

event catalog, for Common Event

Infrastructure 118

event log file 82

event notification 6

specifying 58

event processing
configuration operations 71

event triggering
problems 81

F
failure recovery 83

FixedBOSize parsing method
using 67

formatting errors
recovery 85

FTP transfer
configuration notes 73

FTP URL
specifying 68

H
HP-UX platforms 16

I
IBM Tivoli Monitoring for Transaction

Performance 14, 115

installation 15, 17

tasks overview 15

Unix file structure 18

verifying 17

verifying on Unix 18

installation (continued)
verifying on Windows 18

Windows file structure 18

integration brokers 16

J
JText adapter

architecture 2

broker compatibility 15

components 1

configuring 21

differences 13

environment 15

error types 82

failure handling 82

features 13

installing 15, 17

migrating 87

overview 1

performance tuning 77

platforms 16

prerequisites 17

setting up second instance 76

starting 40

stopping 42

troubleshooting 81

upgrading 87

upgrading procedures 90

verifying installation 17

L
Linux platforms 16

local archiving
configuring 60

filenames 59

local directory
specifying 69

locale-dependent data 17

processing 13

M
meta-objects 3

creating custom 47

creating for specific business

objects 75

defined 45

dynamic child attributes 5

hierarchical structure 47

naming conventions 45

naming problems 81

structure 46

upgrade changes 87

using 45

using dynamic child 4

migration 87

MO_JTextConnector_Default
attributes 48

© Copyright IBM Corp. 2000, 2003, 2004 127

monitoring, of transactions 14, 115

multiple event directories
specifying 64

multiple event files
specifying 64

N
new template

creating 23

O
ObjectEventID attributes

specifying values 76

output file
configuring 63

specifying name 56

P
performance

tuning 77

polling
configuring behavior 58

specific business objects 65

prerequisites 17

R
remote archiving

specifying 69

remote event processing 68

remote FTP file system
specifying 68

remote polling
specifying 70

remote request processing 72

remote site
event processing 70

request processing 10

configuration operations 73

specifying 60

S
sample business objects

generating 78

sample files
generating 78

secure FTP
configuring 74

sending errors
recovery 85

Solaris platforms 16

standard configuration properties 91

standard connector properties
setting 30

static file naming 61

subscription errors
recovery 85

supported platforms 16

AIX 16

HP-UX 16

Linux 16

supported platforms (continued)
Solaris 16

Windows 17

T
Tivoli Monitoring for Transaction

Performance 14, 115

transaction monitoring 14, 115

troubleshooting 81

U
upgrading 87

5.3.0 to 5.6.0 87

architecture changes 88

scenarios 87

W
Windows platforms 17

128 Adapter for JText User Guide

����

Printed in USA

	Contents
	About this document
	What this document includes
	What this document does not include
	Audience
	Related documents
	Typographic conventions

	New in this release
	Version 5.6.x
	Prior versions
	Version 5.5.x
	Version 5.4.x
	Version 5.3.x
	Version 5.2.x
	Version 5.1.x
	Version 5.0.x
	Version 4.5.x
	Version 4.4.x
	Version 4.3.x
	Version 4.2.x

	Chapter 1. Overview of the JText adapter
	Adapter components
	Application-specific component
	Data Handlers
	Meta-objects

	Business objects used by the JText connector
	Using a dynamic child meta-object

	How the connector works
	Event notification
	Request processing
	How data handler processing works
	Business object verb processing for requests

	Connector features
	JText differences from other adapters

	Processing locale-dependent data
	Common Event Infrastructure
	Application Response Measurement

	Chapter 2. Installing the JText adapter
	Overview of the installation tasks
	In this chapter

	Adapter environment
	Broker compatibility
	Adapter platforms
	Adapter prerequisites
	Locale-dependent data

	Installing the JText adapter
	Verifying installation
	Verifying installation on a Windows system
	Verifying installation on a Unix system

	Chapter 3. Configuring the JText adapter
	Overview of Connector Configurator
	Running connectors on UNIX

	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting connector-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS)
	Resources (ICS)
	Messaging (ICS)
	Security (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment
	Starting the connector
	Stopping the connector
	Creating multiple connector instances
	Create a new directory

	Adding supported business objects

	Chapter 4. Using JText connector meta-objects
	JText meta-object naming conventions
	JText meta-object structure
	Creating custom meta-objects
	MO_JTextConnector_Default attributes

	Common configuration tasks
	Specifying event notification
	Specifying event archiving
	Specifying request processing
	Specifying multiple event files or multiple event directories
	Polling for specific business objects
	Using FixedBOSize parsing method
	Specifying a remote FTP file system
	Configuring secure FTP
	Specifying a data handler
	Creating a JText meta-object for a specific business object
	Reading multiple business objects of different types from the same file
	Specifying values for ObjectEventID attributes
	Setting up a second instance of a JText connector
	Tuning the performance of the JText connector
	Generating sample files for testing
	Generating sample business objects for testing

	Chapter 5. Troubleshooting the JText connector
	Error message logging
	Problem with meta-object naming
	Problem with event triggering
	JText failure handling
	Event log file
	Failure recovery
	Data handlers and supported business objects

	Chapter 6. Migrating to or upgrading the JText connector
	Upgrade scenarios
	Upgrading to version 5.6.x from version 5.3.x
	Meta-object changes
	Architecture changes

	Reasons to upgrade to version 4.0.x from version 3.2.0
	Upgrading to version 4.0.x
	Reasons to upgrade from the Text connector
	Upgrading to the JText connector

	Appendix A. Standard configuration properties for connectors
	New properties
	Standard connector properties overview
	Starting Connector Configurator
	Configuration property values overview

	Standard properties quick-reference
	Standard properties
	AdapterHelpName
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BiDi.Application
	BiDi.Broker
	BiDi.Metadata
	BiDi.Transformation
	BrokerType
	CharacterEncoding
	CommonEventInfrastructure
	CommonEventInfrastructureContextURL
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerEventSequencing
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	jms.FactoryClassName
	jms.ListenerConcurrency
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.TransportOptimized
	jms.UserName
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RepositoryDirectory
	RequestQueue
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	ResultsSetEnabled
	ResultsSetSize
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousRequestTimeout
	SynchronousResponseQueue
	TivoliMonitorTransactionPerformance
	WireFormat
	WsifSynchronousRequestTimeout
	XMLNameSpaceFormat

	Appendix B. Application Response Measurement
	Application Response Measurement instrumentation support
	Required software
	Enabling Application Response Measurement
	Transaction monitoring
	For more information

	Appendix C. Common Event Infrastructure
	Required software
	Enabling Common Event Infrastructure
	Obtaining Common Event Infrastructure adapter events
	For more information
	Common Event Infrastructure event catalog definitions
	XML format for “start adapter” metadata
	XML format for "stop adapter" metadata
	XML format for “timeout adapter” metadata
	XML format for "request" or "delivery" metadata

	Notices
	Programming interface information
	Trademarks and service marks

	Index

