
IBM WebSphere Business Integration

Adapter for CORBA User Guide

Version 1.3.x

���

IBM WebSphere Business Integration

Adapter for CORBA User Guide

Version 1.3.x

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page 119.

13September2005

This edition of this document applies to IBM WebSphere Business Integration Adapter for CORBA, version 1.3.x

(product number 5724-H22) and to all subsequent releases and modifications until otherwise indicated in new

editions.

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing

from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document . v

What this document includes . v

What this document does not include . v

Audience . v

Prerequisites for this document . v

Related documents . v

Typographic conventions . vi

New in this release . vii

New in release 1.3.x . vii

New in release 1.2.x . vii

New in release 1.1.x . viii

Chapter 1. Overview . 1

Adapter for CORBA environment . 1

Terminology . 4

Architecture of the connector running as a client . 6

Architecture of the connector running as a server . 10

Business object requests . 13

Verb processing . 13

Custom business object handlers . 14

Chapter 2. Installing the adapter . 15

Overview of installation tasks . 15

Connector file structure . 16

Post-installation tasks . 17

Chapter 3. Configuring the adapter . 19

Overview of configuration tasks . 19

Configuring the connector . 19

Creating multiple connector instances . 29

Starting the connector . 30

Stopping the connector . 31

Using log and trace files . 32

Chapter 4. Understanding business objects . 33

Defining metadata . 33

Connector business object structure . 34

Mapping attributes: CORBA, Java, and business object . 42

Business object naming conventions . 43

Sample business object properties . 44

Generating business objects . 48

Chapter 5. Creating and modifying business objects 49

Overview of the ODA for CORBA . 49

IDL file compatibility . 49

Generating business object definitions . 50

Specifying business object information . 55

Uploading business object files . 60

Chapter 6. Troubleshooting and error handling 61

Error handling . 61

Troubleshooting tips . 64

Logging . 64

© Copyright IBM Corp. 2003, 2005 iii

Tracing . 64

Appendix A. Standard configuration properties for connectors 67

New properties . 67

Standard connector properties overview . 67

Standard properties quick-reference . 69

Standard properties . 75

Appendix B. Connector Configurator . 91

Overview of Connector Configurator . 91

Starting Connector Configurator . 92

Running Configurator from System Manager . 93

Creating a connector-specific property template . 93

Creating a new configuration file . 96

Using an existing file . 97

Completing a configuration file . 98

Setting the configuration file properties . 99

Saving your configuration file . 106

Changing a configuration file . 107

Completing the configuration . 107

Using Connector Configurator in a globalized environment 107

Appendix C. Common event infrastructure . 109

Required software . 109

Enabling Common Event Infrastructure . 109

Obtaining Common Event Infrastructure adapter events . 109

For more information . 110

Common Event Infrastructure event catalog definitions . 110

XML format for “start adapter” metadata . 110

XML format for ″stop adapter″ metadata . 112

XML format for “timeout adapter” metadata . 112

XML format for ″request″ or ″delivery″ metadata . 113

Appendix D. Application response measurement 115

Application Response Measurement instrumentation support 115

Index . 117

Notices . 119

Programming interface information . 121

Trademarks and service marks . 121

iv Adapter for CORBA User Guide

About this document

The IBMR WebSphereR Business Integration Adapter portfolio supplies integration

connectivity for leading e-business technologies, enterprise applications, and legacy

and mainframe systems. The product set includes tools and templates for

customizing, creating, and managing components for business integration.

What this document includes

This document describes installation, connector property configuration, business

object development, and troubleshooting for this IBM WebSphere Business

Integration adapter.

What this document does not include

This document does not describe deployment metrics and capacity planning issues

such as server load balancing, number of adapter processing threads, maximum

and minimum throughputs, and tolerance thresholds.

Such issues are unique to every customer deployment and must be measured

within or close to the exact environment where the adapter is to be deployed. You

should contact your IBM services representative to discuss the configuration of

your deployment site, and for details on planning and evaluating these kinds of

metrics, given your specific configuration.

Audience

This document is for consultants, developers, and system administrators who

support and manage the WebSphere business integration system at customer sites.

Prerequisites for this document

Users of this document should be familiar with the WebSphere business integration

system, with business object and collaboration development, and with the CORBA

technology.

Related documents

The complete set of documentation available with this product describes the

features and components common to all WebSphere Business Integration Adapters

installations, and includes reference material on specific components.

You can install related documentation from the following sites:

v For general adapter information; for using adapters with WebSphere message

brokers (WebSphere MQ Integrator, WebSphere MQ Integrator Broker,

WebSphere Business Integration Message Broker); and for using adapters with

WebSphere Application Server, see the IBM WebSphere Business Integration

Adapters information center:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

v For using adapters with WebSphere InterChange Server, see the IBM WebSphere

InterChange Server information centers:

© Copyright IBM Corp. 2003, 2005 v

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

http://www.ibm.com/websphere/integration/wicserver/infocenter

http://www.ibm.com/websphere/integration/wbicollaborations/infocenter

v For more information about WebSphere message brokers:

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

v For more information about WebSphere Application Server:

http://www.ibm.com/software/webservers/appserv/library.html

These sites contain simple directions for downloading, installing, and viewing the

documentation.

Note: Important information about this product may be available in Technical

Support Technotes and Flashes issued after this document was published.

These can be found on the WebSphere Business Integration Support Web

site, http://www.ibm.com/software/integration/websphere/support/.

Select the component area of interest and browse the Technotes and Flashes

sections. Additional information might also be available in IBM Redbooks at

http://www.redbooks.ibm.com/.

Typographic conventions

This document uses the following conventions:

 courier font Indicates a literal value, such as a command name, filename,

information that you type, or information that the system

prints on the screen.

bold Indicates a new term the first time that it appears.

italic, italic Indicates a variable name or a cross-reference.

blue outline A blue outline, which is visible only when you view the

manual online, indicates a cross-reference hyperlink. Click

inside the outline to jump to the object of the reference.

{ } In a syntax line, curly braces surround a set of options from

which you must choose one and only one.

[] In a syntax line, square brackets surround an optional

parameter.

... In a syntax line, ellipses indicate a repetition of the previous

parameter. For example, option[,...] means that you can

enter multiple, comma-separated options.

< > In a naming convention, angle brackets surround individual

elements of a name to distinguish them from each other, as

in <server_name><connector_name>tmp.log.

/, \ In this document, backslashes (\) are used as the convention

for directory paths. For UNIX installations, substitute slashes

(/) for backslashes. All product pathnames are relative to the

directory where the product is installed on your system.

%text% and $text Text within percent (%) signs indicates the value of the

WindowsTM text system variable or user variable. The

equivalent notation in a UNIX environment is $text,

indicating the value of the text UNIX environment variable.

ProductDir Represents the directory where the product is installed.

vi Adapter for CORBA User Guide

http://www.ibm.com/websphere/integration/wicserver/infocenter
http://www.ibm.com/websphere/integration/wbicollaborations/infocenter
http://www.ibm.com/software/integration/mqfamily/library/manualsa/
http://www.ibm.com/software/webservers/appserv/library.html

New in this release

New in release 1.3.x

Updated in September 2005. For version 1.3.x of the adapter for CORBA, the

following items are new in this release:

v As of version 1.3.x, IBM(R) WebSphere Business Integration Adapter Framework,

version 2.6.0 is a prerequisite of the adapter for CORBA.

v As of version 1.3.x, the adapter for CORBA is supported on the following

platforms:

– Windows(R) 2000

– Windows 2003

– AIX(R) 5L 5.2 - Maintenance Level 2

– AIX 5.3 (on WebSphere Business Integration Adapter Framework, version

2.6.0.3 only)

– HP-UX 11i

– Red Hat Enterprise Linux(R) 3.0 and 4.0

– Linux SuSe 8.1 SP3

For details about the supported platforms, see the following Web site:

http://www-1.ibm.com/support/docview.wss?uid=swg27006230

v The Java Development Kit (JDK), Version 1.4.2 is now a prerequisite of installing

the adapter for CORBA. As a result, the adapter now uses the ORB provided

with IBM JDK 1.4.2 SR1 or later.

v The adapter now supports IBM Tivoli License Manager (ITLM).

v “Business object naming conventions” on page 43, in Chapter 4, “Understanding

business objects,” provides information about the conventions used by the ODA

to generate business object names from IDL files.

v Chapter 5, “Creating and modifying business objects,” on page 49 provides

information about how to specify the value of a path property in the ODA. The

path properties that this information pertains to are listed in Table 15 on page 52.

v This adapter guide now provides an Index.

v This adapter guide now includes the following new appendixes:

– Appendix C, “Common event infrastructure,” on page 109

– Appendix D, “Application response measurement,” on page 115

New in release 1.2.x

Updated in June 2004. For version 1.2.x of the adapter for CORBA, the following

items are new in this release:

v As of version 1.2.x, the adapter for CORBA is not supported on Solaris 7, so

references to that platform version have been deleted from this guide.

v Beginning with the 1.2.x version, during installation of the adapter for CORBA,

Windows and AIX users are required to specify the directory pathname where

the IBM JDK 1.3.1 SR5 is located (as explained in “JDK software” on page 2, this

software is a prerequisite for installing the connector for CORBA). For details,

see “Windows and AIX installation” on page 15.

© Copyright IBM Corp. 2003, 2005 vii

http://www-1.ibm.com/support/docview.wss?uid=swg27006230

v Sample configuration scenarios for the connector running as a client and as a

server are provided in Chapter 3, “Configuring the adapter,” on page 19. For

details, see “Sample configuration scenarios” on page 26.

New in release 1.1.x

Updated in December 2003. For version 1.1.x of the adapter for CORBA, the

following items are new in this release:

v Adapter installation information has been moved from this guide. See “Install

the adapter for CORBA and related files” on page 15 for the new location of that

information.

v Beginning with the 1.1.x version, the adapter for CORBA is no longer supported

on Microsoft Windows NT.

v Beginning with the 1.1.x version, the adapter for CORBA supports IBM Java

Object Request Broker (ORB). For details, see “Object Request Broker (ORB)” on

page 2.

v Beginning with the 1.1.x version, the Object Discovery Agent (ODA) component

of the connector for CORBA uses the IDLJ compiler tool to generate Java proxy

class definitions from IDL files. The ODA does not use any other IDL compiler

tool. For details, see “IDLJ to Java compiler tool” on page 3.

Users of the adapter for CORBA, version 1.0.x, must recompile their IDL files to

regenerate Java proxy class definitions that are compatible with the ODA of

version 1.1.x. For details about this migration step, see “IDL file compatibility”

on page 49.

v Beginning with the 1.1.x version, the adapter for CORBA is compatible with the

IBM ORB Transient Naming Server only. The adapter is not compatible with

other naming services. For details, see “IBM ORB Transient Naming Server” on

page 4.

v Beginning with the 1.1.x version, the adapter for CORBA does not have a

poa_name connector-specific configuration property. For details about the valid

connector-specific configuration properties, see“Connector-specific properties” on

page 20.

viii Adapter for CORBA User Guide

Chapter 1. Overview

v “Adapter for CORBA environment”

v “Terminology” on page 4

v “Architecture of the connector running as a client” on page 6

v “Architecture of the connector running as a server” on page 10

v “Business object requests” on page 13

v “Verb processing” on page 13

v “Custom business object handlers” on page 14

The connector for CORBA (Common Object Request Broker Architecture) is a

runtime component of the WebSphere Business Integration adapter for CORBA.

The CORBA Adapter includes a connector, message files, configuration tools, and

an Object Discovery Agent (ODA). The connector allows the WebSphere integration

broker to exchange data between business objects and their corresponding CORBA

objects running on a CORBA server. It also allows a CORBA object to submit client

requests against the connector, in which case the connector runs as a CORBA

server.

Connectors consist of two components: the connector framework and the

application-specific component. The connector framework, whose code is common

to all connectors, acts as an intermediary between the integration broker and the

application-specific component. The application-specific component contains code

tailored to a particular technology (in this case, CORBA) or application. The

connector framework provides the following services between the integration

broker and the application-specific component:

v Receives and sends business objects

v Manages the exchange of startup and administrative messages

This document contains information about both the connector framework and the

application-specific component. It refers to both of these components as the

connector.

All WebSphere business integration adapters operate with an integration broker.

The connector for CORBA operates with WebSphere InterChange Server,

WebSphere MQ Integrator Broker, or WebSphere Application Server. For more

information, see the installation and implementation documentation of your broker.

Adapter for CORBA environment

Before installing, configuring, and using the adapter, you must understand its

environment requirements. For details about software requirements, including the

supported platforms, brokers, and adapter framework version, see the following

Web site:

http://www-1.ibm.com/support/docview.wss?uid=swg27006230

In addition, this section provides the following information

v “Adapter standards” on page 2

v “Adapter prerequisites” on page 2

v “Adapter dependencies” on page 2

© Copyright IBM Corp. 2003, 2005 1

http://www-1.ibm.com/support/docview.wss?uid=swg27006230

v “Locale-dependent data” on page 4

Adapter standards

The adapter is written to the CORBA 2.3.1 specification and as such is compatible

with CORBA applications designed to this standard.

Adapter prerequisites

IBM WebSphere Business Integration Adapter Framework, version 2.6.0 is a

prerequisite of the adapter for CORBA.

Adapter dependencies

The connector for CORBA has the following dependencies, each with unique

installation requirements, depending on your adapter platform.

v “JDK software”

v “Object Request Broker (ORB)”

v “IDLJ to Java compiler tool” on page 3

v “JavaC” on page 4

v “IBM ORB Transient Naming Server” on page 4

JDK software

The Java Development Kit (JDK), Version 1.4.2, is a prerequisite of installing the

adapter for CORBA.

Windows 2000: WebSphere Business Integration Adapter Framework, Version

2.6.0 provides a separate installation of IBM JDK, Version 1.4.2 SR1. Note that the

IBM JDK, Version 1.4.2 SR1 is not installed as part of the WebSphere Business

Integration Adapter Framework installation. You must run a separate installation to

install the JDK. For details about how to install the JDK from WebSphere Business

Integration Adapter Framework, refer to that software package.

Solaris: Install the Sun JDK 1.4.2 that is specified by the WebSphere Business

Integration Adapter Framework, Version 2.6.0 installation. The JDK is not installed

as part of the WebSphere Business Integration Adapter Framework installation. You

must run separate installation software, provided by Sun Microsystems, to install

the JDK.

AIX: Install the IBM JDK, Version 1.4.2 SR1. For details about obtaining the

installation software, contact IBM Technical Support.

HP-UX: Install the HP JDK 1.4.2 that is specified by the WebSphere Business

Integration Adapter Framework, Version 2.6.0 installation. The JDK is not installed

as part of the WebSphere Business Integration Adapter Framework installation. You

must run separate installation software, provided by HP, to install the JDK.

Object Request Broker (ORB)

The adapter for CORBA assumes an object request broker environment that

supports the IBM Java Object Request Broker (ORB). ORBs provided by other

vendors are not supported.

Windows 2000: The required IBM Java ORB is provided in the IBM JDK, Version

1.4.2 SR1. For instructions about installing the ORB, see the JDK installation

package.

2 Adapter for CORBA User Guide

Solaris: WebSphere Business Integration Adapter Framework, Version 2.6.0

provides the necessary IBM Java ORB software. The ORB is installed as part of the

Adapter Framework installation.

AIX: The required IBM Java ORB is provided in the IBM JDK, Version 1.4.2 SR1.

For instructions about installing the ORB, see the JDK installation package.

HP-UX: WebSphere Business Integration Adapter Framework, Version 2.6.0

provides the necessary IBM Java ORB software. The ORB is installed as part of the

Adapter Framework installation.

IDLJ to Java compiler tool

The Object Discovery Agent (ODA) component of the connector for CORBA uses

the IDLJ compiler tool. This tool is a compiler that the ODA uses to generate the

Java proxy class definitions that allow the connector to act as a CORBA client or

server.

CORBA structs, interfaces, methods, and other programmatic entities are defined in

an IDL (Interface Definition Language) file. The IDLJ compiler tool run by the

ODA converts the CORBA programmatic entities defined in the IDL file into proxy

classes. At runtime, the connector creates a proxy object from a proxy class and

uses the proxy object to invoke the methods of that object’s corresponding CORBA

class that is defined in the IDL file.

Users of the adapter for CORBA, version 1.0.x, must recompile their IDL files to

regenerate Java proxy class definitions that are compatible with the ODA of

version 1.3.x. For details about this migration step, see “IDL file compatibility” on

page 49.

Note: Certain application providers of CORBA servers supply the .jar file that

defines the proxy classes, thus bypassing the need for the object definitions

generated (compiled) by the connector’s ODA (using the IDLJ compiler

tool). If the CORBA server application provider supplies a .jar file of proxy

class definitions, then be sure to copy the file to the

ProductDir\connectors\CORBA\ext directory, or whatever directory you

designate as the directory for storing the proxy class .jar files, where

ProductDir represents the directory where the connector product is installed.

Using Business Object Designer, you specify the appropriate directory name,

in the OutputFileDir configure agent property. For details about this

property and how to set it, see “Configure the agent” on page 51. For details

about defining properties in the ODA, see Chapter 5, “Creating and

modifying business objects,” on page 49.

Windows 2000: The required IDLJ compiler tool is provided in the IBM JDK 1.4.2

SR1. For instructions about installing IDLJ, see the JDK installation package.

Solaris: WebSphere Business Integration Adapter Framework, Version 2.6.0

provides the necessary IDLJ software. The IDLJ is installed as part of the Adapter

Framework installation.

AIX: The required IDLJ compiler tool is provided in the IBM JDK 1.4.2 SR1. For

instructions about installing IDLJ, see the JDK installation package.

HP-UX: WebSphere Business Integration Adapter Framework, Version 2.6.0

provides the necessary IBM IDLJ software. The IDLJ is installed as part of the

Adapter Framework installation.

Chapter 1. Overview 3

JavaC

JavaC, the Java programming language compiler, is a prerequisite of the Adapter

for CORBA. JavaC is part of the JDK 1.4.2 and as such is installed as a part of any

JDK installation. For details about the JDK prerequisite, see “JDK software” on

page 2

IBM ORB Transient Naming Server

The IBM ORB Transient Naming Server is a prerequisite of the connector for

CORBA. This service provides the necessary CORBA naming services that allow

CORBA objects to be named by means of binding a name to an object reference.

When running as a client, the connector is able to connect with CORBA servers

that use the IBM Java Object Request Broker (ORB) only. When running as a

server, CORBA clients that use ORBs of other ORB vendors are able to connect

with the connector. For details about the IBM Java ORB, see “Object Request

Broker (ORB)” on page 2.

IBM WebSphere Business Integration Adapter Framework, Version 2.6.0 provides

the necessary IBM ORB Transient Naming Server software. This software is

installed as part of the Adapter Framework installation. To launch the IBM ORB

Transient Naming Server, run one of the following commands, depending on your

platform, from the \connectors\CORBA\ directory.

 Windows 2000 Solaris, AIX, HP-UX

NamingService.bat NamingService.sh

This command requires a user-defined port number. For example, the following

command, run in a Windows 2000 environment, starts an instance of the IBM ORB

Transient Naming Server at port 1100:

NamingService.bat 1100

Note that to use the required IBM ORB Transient Naming Server software

provided by WebSphere Business Integration Adapter Framework, you may need

to re-register your existing CORBA services with the service that is launched by

the NamingService.bat/NamingService.sh command.

Locale-dependent data

The connector has been internationalized so that it can support delivery of

double-byte character sets going into a CORBA interface that also supports

double-byte character sets, and deliver message text in the specified language.

When the connector transfers data from a location that uses one character code to a

location that uses a different code set, it performs character conversion to preserve

the meaning of the data.

The Java runtime environment within the Java Virtual Machine (JVM) represents

data in the Unicode character code set. Unicode contains encodings for characters

in most known character code sets (both single-byte and multibyte). Most

components in the WebSphere business integration system are written in Java.

Therefore, when data is transferred between most integration components, there is

no need for character conversion.

Terminology

The following terms are used in this guide:

4 Adapter for CORBA User Guide

v ASI (Application-Specific Information) Metadata tailored to a particular

application or technology. ASI exists at both the attribute, verb, and business

object level of a business object. See also Verb ASI.

v BO (Business Object) A set of attributes that represent a business entity (such as

Employee) and an action on the data (such as a create or update operation).

Components of the WebSphere business integration system use business objects

to exchange information and trigger actions.

v BO (Business Object) handler A connector component that contains methods

that interact with an application and that transforms request business objects

into application operations.

v Connection object A special kind of proxy object that is an instance of the

connection class. A connection is a reference to an application that can contain

state information. For every instance of a connection on the adapter side, there is

a corresponding object on the CORBA side. Connections can be instantiated in

batches, retrieved at will, sent back to the connection pool, and be re-used by

another thread.

v Connection pool A repository used to store and retrieve connection objects.

v CORBA object The connector interacts with a CORBA server by processing

between a business object and a CORBA object. During connector processing, a

CORBA object (application) is represented in the connector by a proxy object. A

proxy is a Java class that represents a CORBA object.

v Factory A special kind of proxy object that refers to an application. If the

appropriate connector properties are set, the factory object, which is persistent

for the life of the connector, can create connections that are placed in the

connection pool or can create CORBA objects to be used by CORBA applications.

The number of connections created depends on the value specified in the

PoolSize property.

v Foreign key A simple attribute whose value uniquely identifies a child business

object. Typically, this attribute identifies a child business object to its parent by

containing the child’s primary key value. The connector for CORBA uses the

foreign key to specify poolable connection objects.

v IDLJ The connector for CORBA supports IBM Java Object Request Broker (ORB),

which uses the IDLJ compiler tool. This tool allows Java programs to

communicate with CORBA objects by generating the Java proxy classes that the

connector requires at runtime to generate proxy objects that in turn invoke

CORBA objects. The properties, structures, and methods of a CORBA object are

defined in an IDL (Interface Definition Language) file. Using the proxy object

class definitions that the IDLJ compiler tool creates through the ODA, the

connector can invoke the CORBA methods of an object that are defined in the

IDL.

v ODA (Object Discovery Agent) A tool that automatically generates a business

object definition by examining specified entities within the application and

“discovering” the elements of these entities that correspond to business object

attributes. When you install the adapter, the ODA is automatically installed.

Business Object Designer provides a graphical user interface to access the ODA

and to work with it interactively.

v ORB (Object Request Broker) A component in the CORBA programming model

that acts as the middleware between clients and servers. In the CORBA model, a

client can request a service without knowing anything about what servers are

attached to the network. The various ORBs receive the requests, forward them to

the appropriate servers, and then hand the results back to the client.

Chapter 1. Overview 5

v Per-call object pool A programmatic entity for storing objects that need to pass

from one method to the next during a single doVerbFor method call. Stored

objects may be proxy objects or simple attributes.

v Proxy class A Java class that represents a CORBA object in the connector. The

connector creates a proxy object instance of the proxy class name specified in the

business object’s ASI.

v Verb ASI (application-specific information) For a given verb, the verb ASI

specifies how the connector should process the business object when that verb is

active. It can contain the name of the method to call to process the current

request business object.

Architecture of the connector running as a client

The connector can process requests in the following two ways:

v The connector acts as a client that sends business object requests to a CORBA

server, as illustrated in Figure 1 on page 7. These requests invoke methods on

objects running on an external CORBA server.

v The connector acts as a server that receives requests from external CORBA

clients, as illustrated in Figure 3 on page 11. These requests invoke collaborations

on the integration broker, which, for example, can update data in an external

application.

This section describes the architecture of the CORBA connector when it runs as a

client. For details about the CORBA connector running as a server, see

“Architecture of the connector running as a server” on page 10.

Request flow

Figure 1 on page 7 illustrates the request flow when the connector runs as a client.

In this scenario, the connector invokes a method on an object that resides on an

external CORBA server. The connector acts as a client communicating with the

CORBA server through the ORB. The connector communicates with the CORBA

server by sending object requests to the server where the CORBA objects reside.

6 Adapter for CORBA User Guide

1. The connector receives a business object request from the integration broker.

2. The connector creates a proxy object instance of the business object. The proxy

object instance acts as a representation of the CORBA object to which the

connector is sending the request. For details about how the connector creates

and processes the proxy object, see “How the connector works as a client.”

3. The connector processes the proxy object by using it to access the

corresponding CORBA object running on CORBA server and write data to the

application (object). The connector can also invoke methods on the CORBA

object.

4. The connector updates the proxy object by reading, or getting, data from

CORBA server object.

5. The connector returns a message to the integration broker indicating that the

original object request was either successful or unsuccessful (a FAIL status). If

the request was successful, the connector also returns the updated business

object to the broker.

How the connector works as a client

This section describes in detail how the different parts of the connector process a

business object when the connector runs as a client, as illustrated in Figure 2 on

page 8.

Integration broker

Application

CORBA Server

Business
process

Adapter for CORBA (client)

ORB

1

2

3

4

5

(collaboration)

Figure 1. Request process when the connector acts as a client

Chapter 1. Overview 7

1. When you first start up the connector and run it as a client, the connector’s

Agent class performs the following initialization processes:

v Instantiates the CORBA environment by initializing the ORB.

v Does one of the following, depending on how the connector properties have

been set. For details about the connector properties and how they affect

each of the following scenarios, see “Connector-specific properties” on page

20.

– Scenario 1: Creates a factory object instance, which is an object that

refers to an application. The factory object, which is persistent for the life

of the connector, creates connections that are placed in the connection

pool. The number of connections created depends on the value specified

in the connector PoolSize property.

Application

Connector modules

Connector
framework

CORBAProxy
Init CORBAEnv

init()

Connector (application-specific component of the adapter)

AgentInit()

Connection Pool

Connection

Generic BO Handler

DoVerbFor()

Dispatch()

Invoker

Per Call Object Pool

Object Reference

CORBA Server

Synchronizer

Factory

CORBA Proxy
Instantiator

Figure 2. The connector for CORBA running as a client

8 Adapter for CORBA User Guide

– Scenario 2: Creates connection objects only that are placed in the

connection pool. The number of connections depends on the value

specified in the PoolSize property. No factory object is created in this

scenario.

– Scenario 3: Creates a factory proxy object against which the business

object will call methods (the factory class matches the proxy class ASI of

the BO). In this scenario, no connections are created.
 2. The integration broker sends a request, in the form of a business object, to the

connector.

 3. The connector’s BO handler receives the object.

 4. The doVerbFor() method of the BO handler calls the Dispatch() method,

which reads the BO ASI to obtain the proxy class name. The Dispatch()

method gets the proxy class name and sends it to the CORBA Proxy

Instantiator.

 5. The CORBA Proxy Instantiator uses the proxy class name to load the proxy

class (qualified using valid Java class notation, ie. xxxxx.myclass) and create a

proxy object instance, loading it in the per-call object pool. The CORBA Proxy

Instantiator verifies if the object is one of the following:

v Is it a connection? If so, retrieve it as a connection object from the

connection pool.

v Is it a factory object? If so, retrieve it as a static object from the factory. The

CORBA Proxy Instantiator also checks whether or not a factory method is

specified in the business object ASI. If so, then it uses the factory method on

the factory object.
 6. Dispatch reads through the BO’s verb ASI and builds a list of methods. The

verb ASI is an ordered list of attribute names. Each attribute represents a

method on the proxy object. In other words, the verb ASI is not a list of

methods, but a list of attributes, each one having a value that represents a

proxy object method.

 7. For each method on the verb ASI list, the InvokeMethods() method of the BO

handler calls InvokeMethod() to do one of the following:

v Call Invoker, if the method is a regular method. If the argument is marked

as a foreign key, store it in the per-call object pool. If the attribute is not

populated, check the attribute ASI for use_attribute_value. If the

use_attribute_value ASI is present, attempt to pull the object from the

per-call object pool.

v Call the Load and Store operations of Synchronizer (the BO handler’s object

synchronization process) against all attributes on the proxy object. The

operation called depends on what is in the verb ASI. LoadFromProxy

(Load) and WriteToProxy (Store) are pre-defined functions that you can

include in the verb ASI. Their purpose is to synchronize a business object’s

simple attributes with a CORBA object’s public properties.

v Call Load (LoadFromProxy function) or Store (WriteToProxy function)

operations against a single, specific attribute (LoadFromProxy gets the

proxy property and sets the BO property to that value; WriteToProxy sets

the proxy property with values from the BO).

Note: If the verb ASI is empty, the BO handler will search for a method on

the BO with populated parameters and call that. Only one method can

have populated parameters. Otherwise, if multiple methods are

populated and the verb ASI is empty, then the connector logs an error

and returns a FAIL code.

Chapter 1. Overview 9

8. For each method of the proxy object, Invoker constructs the parameters and

arguments of the method by doing the following:

v If it encounters a BO type (rather than a simple data type, such as a String)

in the attribute, Invoker recursively calls the Dispatch() method on the

active BO handler.

v Dispatch() returns a proxy object that the parent method can use to invoke

its method call.

v The BO handler’s synchronization process, called Synchronizer, invokes

WriteToProxy to store (set) a value in each property of the CORBA object

(proxy object), thus updating data on the CORBA server. The value stored is

from the corresponding attribute on the business object that the CORBA

object corresponds to.
 9. When values are returned from the CORBA server, the LoadFromProxy

function loads the data returned from the proxy object onto the BO. (For

return parameters, the connector creates the return proxy object and also

updates the in / out parameters).

10. The connector returns the business object back to the integration broker.

Architecture of the connector running as a server

In addition to processing requests as a client, the connector can act as a server that

receives requests from external CORBA clients. These requests invoke

collaborations on the integration broker, which, for example, can update data in an

external application.

This section describes the architecture of the connector when it runs as a server.

For details about the connector running as a client, see “Architecture of the

connector running as a client” on page 6.

Request flow

Figure 3 on page 11 illustrates the request flow when the connector runs as a

server. In this scenario, the connector executes a collaboration on behalf of a

CORBA client.

10 Adapter for CORBA User Guide

1. When you first start the connector, all business objects that have been

configured as server-side objects are registered by the connector with the ORB.

For details about configuring a business object as a server, see Chapter 4,

“Understanding business objects,” on page 33.

 2. The CORBA client application sends a method call request through the

connector against a registered server object.

 3. The connector converts the method call to the verb that has been specified in

the attribute ASI of the registered CORBA server object. For details about the

attribute ASI of a business object, see “Attribute-level ASI” on page 40.

 4. The connector invokes the excecuteCollaboration() method of the adapter’s

Agent class. Based on the connector’s BO_COLLAB_MAPPING property, which

associates a business object verb (Step 3) to a particular collaboration,

executeCollaboration() calls the appropriate collaboration (business process).

For details about the BO_COLLAB_MAPPING property, see “Configuring the

connector” on page 19.

Integration broker

CORBA client application

Collaboration

Adapter for CORBA (server)

ORB

Adapter for application

(For example, Clarify)

Application (for example, Clarify)

1

2

3

5

10

6

8

9

7

4

(Business
process)

Figure 3. Request process when the connector acts as a server

Chapter 1. Overview 11

5. The integration broker sends data from the collaboration or business process

that was executed to the connector for the external application (that is, the

application with which the collaboration is exchanging data; in Figure 3 on

page 11, the example of this external application is Clarify).

 6. The connector of the external application sends the data to that application.

 7. The application returns a message to the connector of the external application

(for example, Clarify, as shown in Figure 3 on page 11).

 8. The connector of the external application forwards the message to the

integration broker.

 9. The integration broker forwards the message to the connector acting as a

CORBA server (the connector that invoked the excecuteCollaboration()

method in Step 4 on page 11).

10. An exception, if it has occurred, is sent to the CORBA client application that

initiated the original request (Step 2 on page 11).

How the connector works running as a server

When running as a server, the connector performs business object processing in a

different manner than when running as a client. This section describes how the

different parts of the connector, running as a server, process business objects, as

illustrated in Figure 4.

1. When you start the connector, its Agent class performs the following

initialization processes:

v Instantiates the CORBA environment by initializing the ORB.

v Passes information to the implementation classes about the business objects

that will be processed as server objects. To determine if a business object is a

server object, the connector verifies that the BO ASI includes the attribute

object_type=CorbaImplObject.

v Registers with the ORB the implementation classes that correspond to the

business objects. You specify the implementation class of a given business

object in the implementation_class ASI. Class definitions are stored in the

Connector
framework

Connector (application-specific component of the adapter)

Init
CORBAEnv
(ORB)

Implementation_Classes

AgentInit()

Server business objects

CORBAProxy

CORBA client

ExecuteCollaboration()

Collaboration

External
connector

Figure 4. The connector for CORBA running as a server

12 Adapter for CORBA User Guide

.jar file generated by the ODA when you create the business objects. For

details, see Chapter 5, “Creating and modifying business objects,” on page

49.
2. The Agent class sets up the factory, the instance of the factory proxy object, or

the connection objects, depending on how the connector properties have been

set. For details about connector properties, see “Connector-specific properties”

on page 20.

3. The external CORBA client sends to the CORBA server business object in the

connector a request to invoke a collaboration. The request, sent via the ORB, is

in the form of input arguments of a method.

4. As described in step 3 on page 11 and step 4 on page 11:

v The connector creates a business object using the argument values of the

method.

v The connector then sets the verb on the business object, as specified in the

attribute ASI of the CORBA server business object.

v Next, the connector calls the executeCollab() method of the connector’s

Agent class.

v The executeCollab() method looks for the collaboration specified in the

BO_COLLAB_MAPPING property, a connector property that maps the

business object verb to a collaboration. If the collaboration is found, the

connector executes the collaboration. If the collaboration is not found, an

exception is raised. (For return parameters, the connector creates the return

proxy object and also updates the in / out parameters).
5. The data resulting from collaboration processing is then passed back to the

CORBA client application via the ORB.

Business object requests

Business object requests are processed when the integration broker sends a

business object to the connector. The only requirement of the business object is that

it must map to the corresponding CORBA object that the proxy object will

represent. The proxy class is a Java class that represents a CORBA object in the

connector. At runtime, the connector creates a proxy object instance of the proxy

class name specified in the business object’s ASI.

Verb processing

Note: This section pertains to the connector when it acts as a client. The

verb-processing issues described here do not apply when the connector runs

as a server.

The connector processes business objects passed to it by a broker based on the verb

for each business object.

When the connector framework receives a request from the broker, it calls the

doVerbFor() method of the business-object-handler class associated with the

business object definition of the request business object. The role of the

doVerbFor() method is to determine the verb processing to perform, based on the

active verb of the request business object. It obtains information from the request

business object to build and send requests for operations to the application.

When the connector framework passes the request business object to doVerbFor(),

this method retrieves the business object ASI and invokes the business object

Chapter 1. Overview 13

handler, which in turn reads the verb ASI and translates it into a series of callable

functions. The verb ASI is an ordered list of the methods that need to be called for

that verb. The order in which the calls are made is critical to the successful

processing of the object.

If the verb ASI is blank, the BO handler searches for a method with populated

parameters and calls that. Only one method can be populated; otherwise, if

multiple methods are populated yet the verb ASI is blank, the connector logs an

error and returns a FAIL code. For details about error processing, see “Error

handling” on page 61.

The connector does not support any specific verbs, but using the ODA, the user

can configure custom verbs. The standard, pre-existing verbs are Create, Retrieve,

Update, and Delete. These can be given whatever semantic meaning you provide

through the Object Discovery Agent (ODA) running in Business Object Designer.

For details about using the ODA to assign a method call sequence to a verb, see

Chapter 5, “Creating and modifying business objects,” on page 49.

Note: You can specify two pre-defined functions in the verb ASI: LoadFromProxy

and WriteToProxy. Their purpose is to synchronize a business object’s simple

attributes to a CORBA object’s public properties.

Custom business object handlers

When you create a business object, you can override the default BO handler by

specifying the CBOH keyword in the BO verb ASI. At connector runtime, the

doVerbFor() method retrieves the business object ASI. If it detects the CBOH

keyword, doVerbFor() invokes the custom BO handler.

The connector supports custom BO handlers on parent-level business objects only.

For details about creating a custom BO handler, see the Connector Development

Guide.

14 Adapter for CORBA User Guide

Chapter 2. Installing the adapter

v “Overview of installation tasks”

v “Connector file structure” on page 16

v “Post-installation tasks” on page 17

Overview of installation tasks

To install the adapter for CORBA, you must confirm that the necessary adapter

prerequisites exist in your environment, install the integration broker, and run the

adapter installation.

Confirm adapter prerequisites

Before you install the adapter, confirm that all the environment prerequisites for

installing and running the adapter are on your system. For detail, see “Adapter for

CORBA environment” on page 1.

Install the integration broker

Installing the integration broker, a task that includes installing the WebSphere

business integration system and starting the broker, is described in the

documentation for your broker. For details about the brokers that the connector for

CORBA supports, see the following Web site:

http://www.ibm.com/support/docview.wss?uid=swg27006249

For details about how to install the broker, see the appropriate implementation

documentation of the broker you are using.

Install the adapter for CORBA and related files

For information on installing WebSphere Business Integration adapter products,

refer to the Installing WebSphere Business Integration Adapters guide located in the

WebSphere Business Integration Adapters Infocenter at the following site:

http://www.ibm.com/websphere/integration/wbiadapters/infocenter

Windows and AIX installation

When installing the connector on a Windows or AIX platform, note that Installer

will ask you to specify the directory pathname where the IBM JDK 1.3.1 SR5 is

located (as explained in “JDK software” on page 2, this software is a prerequisite

for installing the connector for CORBA).

Make sure that you have the directory information readily available so that you

can provide it during installation. Otherwise, you will have to prematurely cancel

out of Installer while you locate the JDK directory on your machine, and then

re-run Installer from the beginning.

The adapter provides the following script that you can run to obtain the pathname

of the JDK home directory:

v \connectors\CORBA\BIA_CORBAEnv.bat (Windows)

v \connectors\CORBA\BIA_CORBAEnv.sh (Unix)

© Copyright IBM Corp. 2003, 2005 15

http://www.ibm.com/support/docview.wss?uid=swg27006249

Connector file structure

The adapter installation copies the standard files associated with the connector into

your system.

The utility installs the connector into the ProductDir\connectors\CORBA directory,

and adds a shortcut for the connector to the Start menu. Note that ProductDir

represents the directory where the product is installed.

Table 1 describes the file structure used by the connector, and shows the files that

are automatically installed when you choose to install the connector through the

Installer.

 Table 1. File structure for the connector

Subdirectory of ProductDir Description

\connectors\CORBA\BIA_CORBA.jar Contains classes used by the CORBA connector only

\connectors\CORBA\start_CORBA.bat The startup script for the generic connector

(Windows)

\connectors\CORBA\start_CORBA.sh The startup script for the generic connector (Unix)

\connectors\CORBA\ext\ A directory where the ODA-generated .jar files can

be saved. If you save to this directory, specify the

directory in the startup script (start_CORBA.bat or

start_CORBA.sh).

\connectors\CORBA\NamingService.bat The IBM Transient Naming Server startup file

(Windows).

\connectors\CORBA\NamingService.sh The IBM Transient Naming Server startup file (Unix).

\connectors\messages\BIA_CORBAConnector.txt Message file for the connector

\connectors\CORBA\BIA_CORBAEnv.bat Script file that tracks the pathname of the JDK home

directory.

\connectors\CORBA\BIA_CORBAEnv.sh Script file that tracks the pathname of the JDK home

directory (Unix).

\ODA\CORBA\BIA_CORBAODA.jar The CORBA ODA

\ODA\CORBA\start_CORBAODA.bat The ODA startup file (Windows)

\ODA\CORBA\BIA_CORBAODA.sh The ODA start up file (Unix)

\ODA\messages\BIA_CORBAODAAgent_de_DE.txt Message file for the ODA (German text strings)

\ODA\messages\BIA_CORBAODAAgent_en_US.txt Message file for the ODA (US English text strings)

\ODA\messages\BIA_CORBAODAAgent_es_ES.txt Message file for the ODA (Spanish text strings)

\ODA\messages\BIA_CORBAODAAgent_fr_FR.txt Message file for the ODA (French text strings)

\ODA\messages\BIA_CORBAODAAgent_it_IT.txt Message file for the ODA (Italian text strings)

\ODA\messages\BIA_CORBAODAAgent_ja_JP.txt Message file for the ODA (Japanese text strings)

\ODA\messages\BIA_CORBAODAAgent_ko_KR.txt Message file for the ODA (Korean text strings)

\ODA\messages\BIA_CORBAODAAgent_pt_BR.txt Message file for the ODA (Portuguese - Brazil text

strings)

\ODA\messages\BIA_CORBAODAAgent_zh_CN.txt Message file for the ODA (Simplified Chinese text

strings)

\ODA\messages\BIA_CORBAODAAgent_zh_TW.txt Message file for the ODA (Traditional Chinese text

strings)

\repository\CORBA\BIA_CN_CORBA.txt Repository definition for the connector. The default

name is BIA_CN_CORBA.txt.

Note: All product pathnames are relative to the directory where the product is

installed on your system.

16 Adapter for CORBA User Guide

Post-installation tasks

After installation and before startup, you must configure the adapter. For details,

see Chapter 3, “Configuring the adapter,” on page 19.

Chapter 2. Installing the adapter 17

18 Adapter for CORBA User Guide

Chapter 3. Configuring the adapter

v “Post-installation tasks” on page 17

v “Configuring the connector”

v “Creating multiple connector instances” on page 29

v “Starting the connector” on page 30

v “Stopping the connector” on page 31

v “Using log and trace files” on page 32

Overview of configuration tasks

After installation and before startup, you must configure components as described

in this section.

Configure the connector

Configuring the connector includes setting up and configuring the connector. For

details, see “Configuring the connector.”

Configure the business objects

You create and configure business objects through Business Object Designer. You

can create a business object definition using an ODA (Object Discovery Agent),

through Business Object Designer. The ODA enables you to generate business

object definitions. A business object definition is a template for a business object.

The ODA examines specified application objects, “discovers” the elements of those

objects that correspond to business object attributes, and generates business object

definitions to represent the information. Business Object Designer provides a

graphical interface to access the Object Discovery Agent and work with it

interactively. You use Business Object Designer to edit an already existing business

object.

For details business objects, see Chapter 4, “Understanding business objects,” on

page 33.

For details about using the ODA, see Chapter 5, “Creating and modifying business

objects,” on page 49.

Configuring the connector

Connectors have two types of configuration properties: standard configuration

properties and adapter-specific configuration properties. You must set the values of

these properties using Connector Configurator before running the adapter. For

further information, see Appendix B, “Connector Configurator,” on page 91.

A connector obtains its configuration values at startup. During a runtime session,

you may want to change the values of one or more connector properties. Changes

to some connector configuration properties, such as AgentTraceLevel, take effect

immediately. Changes to other connector properties require connector component

restart or system restart after a change. To determine whether a property is

dynamic (taking effect immediately) or static (requiring either connector

component restart or system restart), refer to the Update Method column in the

Connector Properties window of the System Manager.

© Copyright IBM Corp. 2003, 2005 19

Standard connector properties

Standard connector configuration properties provide information that all adapters

use. See Appendix A, “Standard configuration properties for connectors,” on page

67 for documentation of these properties.

Although the following properties are listed in Appendix A, “Standard

configuration properties for connectors,” on page 67, the connector for CORBA

does not use them:

v DuplicateEvent Elimination

v PollEndTime

v PollFrequency

v PollStartTime

You must provide a value for the ApplicationName configuration property before

running the connector.

Connector-specific properties

Connector-specific configuration properties provide information needed by the

connector at runtime. These properties also provide a way for you to change static

information or logic within the connector without having to recode and rebuild it.

To configure connector-specific properties, use Connector Configurator. Click the

Application Config Properties tab to add or modify configuration properties. For

more information, see Appendix B, “Connector Configurator,” on page 91.

Note that all the connector-specific properties are optional, unless otherwise noted,

in that you can choose to set them based on your specific connector configuration

requirements. For example, when running the connector as a client, do you want

the connector to create both factory objects and connections, only a factory object,

or only connections? The configuration you choose determines which properties

you must set.

Table 2 lists the connector-specific configuration properties for the connector, along

with their descriptions and possible values. The + character indicates the entry’s

position in the property hierarchy. See the sections that follow for details about the

properties, including the hierarchy of these properties illustrated in Figure 5 on

page 22.

 Table 2. Connector-specific configuration properties

Name Possible values Default value

+ Factory None. This is simply a category in the

hierarchy.

None

+ + FactoryClass The class name None

+ + FactoryMethod The method name None

+ + + Arguments Any encrypted or non-encrypted strings

+ + FactoryInitializer The method name of the initializer None

+ + + ior_file_name The directory and file name of the IOR file. None

+ + + name The name of the object used for getting the

factory; for example:

HelloServerServerObject

None

20 Adapter for CORBA User Guide

Table 2. Connector-specific configuration properties (continued)

Name Possible values Default value

+ ConnectionPool None. This is simply a category in the

hierarchy.

None

+ + ConnectionClass Class name None

+ + ConnectionInitializer Method name of the initializer None

+ + + Arguments Any encrypted or non-encrypted strings None

+ + PoolSize Any integer 0

+ UseNamingContext True, False None

+ ClientOnly True, False None

+ BO_COLLAB_MAPPING The business object and verb mapped to the

collaboration. The structure is:

<businessObject.verb> mapped to

<collaborationName>

None

+ CORBAServerName A valid CORBA server name; for example,

CORBAAdapter.

None

+ BO_CONNECTION_PROP The name of the business object mapped to the

ior_file_name or name; for example:

 Customer mapped to

ior_file_name=c:\psrserver.ior;

name=;

None

+ ORBInitialHost The host name of the CORBA name server.

Must be the IBM ORB Transient Naming

Server.

None

+ ORBInitialPort The port number of the CORBA name server.

Must be the IBM ORB Transient Naming

Server.

None

Figure 5 on page 22 illustrates the hierarchical relationship of the connector-specific

properties.

Chapter 3. Configuring the adapter 21

Connector properties

Factory

ConnectionPool

BO_CONNECTION_PROP

FactoryClass

ConnectionClass

FactoryInitializer

FactoryMethod

ConnectionInitializer

PoolSize

UseNamingContext

ClientOnly

BO_COLLAB_MAPPING

CORBAServerName

name

n Arguments (Argument1 to ArgumentN)

ior_file_name

ORBInitialPort

ORBInitialHost

n Arguments (Argument1 to ArgumentN)

n Arguments (Argument1 to ArgumentN)

Factory

A hierarchical property that represents the category of the Factory class

information.

FactoryClass

The name of the factory class.

Figure 5. Hierarchy of connector-specific properties

22 Adapter for CORBA User Guide

v If you specify a FactoryClass and a ConnectionClass, the connector instantiates a

factory proxy object and connections (Scenario 1 in step 1 on page 8).

v If you do not specify a FactoryClass, then specify a ConnectionClass, in which

case a connection pool of the specified connection class and size is created when

you initialize the connector (Scenario 2 in step 1 on page 8).

v If you specify a FactoryClass only, the connector will instantiate a factory proxy

object (Scenario 3 in step 1 on page 8) and will not use connections.

You can use this property when the connector runs as a client.

FactoryMethod

A hierarchical property that represents the name of the FactoryMethod on the

FactoryClass. If you specify a FactoryMethod, ConnectionInitializer is called on

the connection object it gets from the Factory method (after that object is created).

You can use this property when the connector runs as a client.

Arguments

The parameters of the FactoryMethod must be arguments (Argument1, Argument2,

and so on) on the FactoryClass, listed in proper sequential order. The property

names are Argument1, Argument2, and so on, for as many parameters as the method

takes. The value of each argument is any encrypted or non-encrypted string

You can use this property when the connector runs as a client.

FactoryInitializer

A hierarchical property that represents the way the Factory class must be

initialized.

You can use this property when the connector runs as a client.

ior_file_name

The name of the ior_file for the Factory object. The connector uses this property to

instantiate the Factory object. You can specify this property, or name, or both.

You can use this property when the connector runs as a client.

name

The name of the object used for getting the Factory. This property is used to

instantiate the Factory object and is required if you have not specified a value for

ior_file_name. This property is also required if the adapter uses a naming context

(the useNamingContext property is set to true).

You can use this property when the connector runs as a client.

ConnectionPool

A hierarchical property that represents the category of the Connection class

information.

ConnectionClass

The name of the poolable connection class.

v If you specify a ConnectionClass and a FactoryClass, the connector instantiates a

factory proxy object and connections (Scenario 1 in step 1 on page 8).

v If you specify a ConnectionClass, but not a FactoryClass, then, when the

connector is initialized, a connection pool instance is created for storing

connections (Scenario 2 in step 1 on page 8).

Chapter 3. Configuring the adapter 23

The size of the pool (number of connections) is based on the value you specify in

the PoolSize property.

If you use connection pooling on a multi-use server (one instance of a server object

can be re-used to create a connection), then you have to set up a factory and

factory method call to create the connection pool. In this case, each BO handler

thread pulls a discrete connection from the pool to be used during processing.

You can use this property when the connector runs as a client.

ConnectionInitializer

The name of the poolable ConnectionClass initializer method.

If you specify a FactoryMethod, ConnectionInitializer is called on the connection

object it gets from the FactoryMethod (after that object is created).

You can use this property when the connector runs as a client.

Arguments

The parameters of the ConnectionInitializer must be arguments (Argument1,

Argument2, and so on) on the ConnectionClass, listed in proper sequential order.

The property names are Argument1, Argument2, and so on, for as many parameters

as the initializer takes. The value of each argument is any encrypted or

non-encrypted string

You can use this property when the connector runs as a client.

PoolSize

Determines the size of the connection pool. The default value is 0.

This property is required if the ConnectionClass is specified. Use this property

when the connector runs as a client.

UseNamingContext

A boolean true/false flag that indicates whether or not the connector uses the

CORBA naming service to look up the object with the specified value for name. For

details about the naming services, see “IBM ORB Transient Naming Server” on

page 4.

This is a required property when the connector runs as either a client or a server.

ClientOnly

A boolean true/false flag that indicates whether or not the connector runs as a

CORBA client. If the flag is set to false, then the connector runs as both a CORBA

server and a client.

This is a required property.

BO_COLLAB_MAPPING

If the connector runs as a CORBA server (the ClientOnly property is set to false),

this hierarchical property is used to map a business object and its verb

(businessObject.verb) to a collaboration. The collaboration executes when an external

CORBA client places a method call against a server object. After receiving the

method call, the connector converts the method to the appropriate verb (as

specified in the object’s attribute ASI). Then, using the verb-collaboration mapping

24 Adapter for CORBA User Guide

specified in the BO_COLLAB_MAPPING property, the server object calls the

executeCollaboration() method, which in turn executes the appropriate

collaboration for that verb.

This property is required only when the connector processes business objects that

map to CORBA servers. Use this property when the connector runs only as a

server.

CORBAServerName

The name that is used when registering the connector as a CORBA server.

This property is required only when the connector processes business objects that

map to CORBA servers. Use this property when the connector runs only as a

server.

BO_CONNECTION_PROP

The information required for mapping business objects to connection information.

You set this property when the connector runs as a client. The information includes

the name of the supported client business object, the ior_file_name and the name.

For example, if the connector has two supported business objects, CORBACustomer

and CORBAAccount, the BO_CONNECTION_PROP setting is as follows:

CORBACustomer=ior_file_name=<fileName>;name=<name>

CORBAAccount=ior_file_name=<fileName>;name=<name>

The connector uses this property in one of the following ways, depending on the

values provided in the property setting:

v If ior_file_name is populated, then the connector uses this value to look up the

business object.

v If name is populated with a value and the UseNamingContext property is set to

true, then the connector uses the naming context to look up the CORBA object

of the specified name value.

If neither of these property setting scenarios is true (in other words ior_file_name

and name are blank), then the connector logs an error in the log file stating that

the necessary connection information is missing for the business object. In addition,

the BO handler is not initialized for the given business object. For details about

error logging, see Chapter 6, “Troubleshooting and error handling,” on page 61.

This property is required only when the connector processes business objects that

run as CORBA clients.

ORBInitialHost

The host name of the IBM ORB Transient Name Server. Whether the connector

runs as a client or server, it must use the naming services of the IBM ORB

Transient Naming Server. For details about the naming server, see “IBM ORB

Transient Naming Server” on page 4.

This property is required. It is used by the connector to connect to a CORBA

server, or to act as a server itself. Even if the name server is running on the same

host as the connector, you must specify this.

Chapter 3. Configuring the adapter 25

ORBInitialPort

The port number of the IBM ORB Transient Name Server. Whether the connector

runs as a client or server, it must use the naming services of the IBM ORB

Transient Naming Server. For details about the naming server, see “IBM ORB

Transient Naming Server” on page 4.

This property is required. It is used by the connector to connect to a CORBA

server, or to act as a server itself. Even if the name server is running on the default

port (900), you must specify this.

Sample configuration scenarios

This section provides examples of the following configuration scenarios:

v “Configuring the connector to run as a client using a FactoryClass and

ConnectionClass”

v “Configuring the connector to run as a simple client without using a

FactoryClass and ConnectionClass” on page 27

v “Configuring the connector to run as a server” on page 28

Configuring the connector to run as a client using a

FactoryClass and ConnectionClass

When you run the connector as a client that makes calls to an external CORBA

server, determine in advance which service--Transient Name Server (TNS) or

Interoperable Object Reference (IOR)--the server is using, so as to set connector

properties accordingly. With TNS, the adapter calls go through the network,

whereas with IOR, the calls are file-based in that the network information required

to locate the server is stored in an IOR file that the adapter reads.

The following sample IDL file (HelloFactory.idl) is used to generate business

objects required by the connector when it runs as a client, using the FactoryClass

and ConnectionClass, against a server that uses TNS. For an example of the

connector running as a simple client without the FactoryClass and

ConnectionClass, see “Configuring the connector to run as a simple client without

using a FactoryClass and ConnectionClass” on page 27.

module HelloAppFactory

{

 interface HelloApp

 {

 string sayHello();

 };

 interface HelloFactory

 {

 HelloApp getHello();

 HelloApp getHelloUsingName(in string name);

 };

};

The sample code contains the following elements:

v interface HelloApp refers to the ConnectionClass.

v interface HelloFactory refers to the FactoryClass.

v HelloApp getHello() refers to the FactoryMethod, which returns an instance of

the HelloApp ConnectionClass.

Table 3 on page 27 provides sample configuration settings of some of the

connector-specific properties for the HelloFactory.idl scenario. For a complete

list of connector-specific properties, see Table 2 on page 20.

26 Adapter for CORBA User Guide

Table 3. Connector-specific properties for HelloFactory.idl scenario (Server configuration)

Connector-specific property Value

UseNamingContext true

ClientOnly true

FactoryClass HelloAppFactory.HelloFactory

FactoryInitializer > name HelloApp_HelloFactoryServerNaming

FactoryMethod getHello

ConnectionClass HelloAppFactory.Hello

PoolSize 10

BO_CONNECTION_PROP Client_HelloAppFactory_HelloFactory

Client_HelloAppFactory_HelloFactory name=HelloApp_HelloFactoryServerNaming

If the connector is running as a client and making calls to a CORBA server that

uses the IOR service rather than TNS, note the following requirements:

v Specify the IOR file name (ior_file_name= ;) in the BO_CONNECTION_PROP >

Client_HelloAppFactory_HelloFactory property.

– Client_HelloAppFactory_HelloFactory is the name of the client business

object used to connect the CORBA client to the server.

– IOR file name (ior_file_name= ;) is used to look up the business object.
v Set the UseNamingContext property to false.

Configuring the connector to run as a simple client without

using a FactoryClass and ConnectionClass

The following sample IDL file for module corbaadapter_sample defines an interface

(Hello) that is used to generate business objects required by the connector when it

runs as a client with TNS but not using the FactoryClass and ConnectionClass. For

an example of the connector running as a client that uses the FactoryClass and

ConnectionClass, see “Configuring the connector to run as a client using a

FactoryClass and ConnectionClass” on page 26.

//code for simple client and server config

module corbaadapter_sample

{

 typedef sequence<long> LongSeq;

 typedef sequence<string> StringSeq;

 interface Hello

 {

 //simple type tests

 string simpleIn(in LongSeq in_long_val, in double in_amount,

 in boolean in_istrue ,in string in_firstNm)

 raises (ProcessingFailureException);

 StringSeq simpleOut(out LongSeq out_long_val,

 out double out_amount,out boolean out_istrue ,

 out string out_firstNm) raises (ProcessingFailureException);

 };

};

Table 4 on page 28 provides sample configuration settings for the connector-specific

properties you configure when using module corbaadapter_sample, which defines

interface Hello. For a complete list of connector-specific properties, see Table 2 on

page 20.

Chapter 3. Configuring the adapter 27

Table 4. Connector-specific properties for interface Hello scenario (simple client without a

FactoryClass and ConnectionClass)

Connector-specific property Value

UseNamingContext true

ClientOnly true

Notice in this scenario that ClientOnly is set to true and that the FactoryClass,

FactoryInitializer, FactoryMethod, ConnectionClass, and ConnectionPool

properties are not used. These properties are relevant only when configuring the

connector as a client that uses the FactoryClass and ConnectionClass.

Configuring the connector to run as a server

When you configure the connector to run as a server, it can receive requests from

external CORBA clients. These requests invoke collaborations on the integration

broker.

The following sample IDL file for module corbaadapter_sample defines an interface

(interface Hello) that is exposed to CORBA clients when the connector is

configured with the property settings listed in Table 5. When the connector runs as

a server, it uses the business objects created from this IDL file to service requests

from CORBA clients.

//code for simple client and server config

module corbaadapter_sample

{

 typedef sequence<long> LongSeq;

 typedef sequence<string> StringSeq;

 interface Hello

 {

 //simple type tests

 string simpleIn(in LongSeq in_long_val, n double in_amount,

 in boolean in_istrue ,in string in_firstNm) raises

 (ProcessingFailureException);

 StringSeq simpleOut(out LongSeq out_long_val,

 out double out_amount,out boolean out_istrue ,

 out string out_firstNm) raises (ProcessingFailureException);

 };

};

Table 5 provides sample configuration settings for the connector-specific properties

you set when using module corbaadapter_sample, which defines interface Hello.

For a complete list of connector-specific properties, see Table 2 on page 20.

 Table 5. Connector-specific properties for interface Hello scenario (Server configuration)

Connector-specific property Value

UseNamingContext true

ClientOnly false

BO_COLLAB_MAPPING Server_corbaadapter_sample_Hello.Create

Notice that in this scenario the FactoryClass, FactoryInitializer, FactoryMethod,

ConnectionClass, and ConnectionPool properties are not used, as these properties

are only relevant when configuring the connector as a client that uses the

FactoryClass and ConnectionClass.

The BO_COLLAB_MAPPING property represents the server object (formatted as

businessObjectName.verb) that the connector, acting as a server, maps to a

28 Adapter for CORBA User Guide

collaboration. The collaboration runs when an external CORBA client places a

method call against an instance of this server object, which creates the interface

defined in module corbaadapter_sample.

Creating multiple connector instances

Creating multiple instances of a connector is in many ways the same as creating a

custom connector. You can set your system up to create and run multiple instances

of a connector by following the steps below. You must:

v Create a new directory for the connector instance

v Make sure you have the requisite business object definitions

v Create a new connector definition file

v Create a new start-up script

Create a new directory

You must create a connector directory for each connector instance. This connector

directory should be named:

ProductDir\connectors\connectorInstance

where connectorInstance uniquely identifies the connector instance.

If the connector has any connector-specific meta-objects, you must create a

meta-object for the connector instance. If you save the meta-object as a file, create

this directory and store the file here:

ProductDir\repository\connectorInstance

Create business object definitions

If the business object definitions for each connector instance do not already exist

within the project, you must create them.

1. If you need to modify business object definitions that are associated with the

initial connector, copy the appropriate files and use Business Object Designer to

import them. You can copy any of the files for the initial connector. Just rename

them if you make changes to them.

2. Files for the initial connector should reside in the following directory:

ProductDir\repository\initialConnectorInstance

Any additional files you create should be in the appropriate connectorInstance

subdirectory of ProductDir\repository.

Create a connector definition

You create a configuration file (connector definition) for the connector instance in

Connector Configurator. To do so:

1. Copy the initial connector’s configuration file (connector definition) and rename

it.

2. Make sure each connector instance correctly lists its supported business objects

(and any associated meta-objects).

3. Customize any connector properties as appropriate.

Create a start-up script

To create a startup script:

1. Copy the initial connector’s startup script and name it to include the name of

the connector directory:

Chapter 3. Configuring the adapter 29

dirname

2. Put this startup script in the connector directory you created in “Create a new

directory” on page 29.

3. Create a startup script shortcut (Windows only).

4. Copy the initial connector’s shortcut text and change the name of the initial

connector (in the command line) to match the name of the new connector

instance.

You can now run both instances of the connector on your integration server at the

same time.

For more information on creating custom connectors, refer to the Connector

Development Guide for C++ or for Java.

Starting the connector

A connector must be explicitly started using its connector start-up script. On

Windows systems the startup script should reside in the connector’s runtime

directory:

ProductDir\connectors\connName

where connName identifies the connector.

On UNIX systems the startup script should reside in the UNIX ProductDir/bin

directory.

The name of the startup script depends on the operating-system platform, as

Table 6 shows.

 Table 6. Startup scripts for a connector

Operating system Startup script

UNIX-based systems connector_manager

Windows start_connName.bat

When the startup script runs, it expects by default to find the configuration file in

the Productdir (see the commands below). This is where you place your

configuration file.

Note: You need a local configuration file if the adapter is using JMS transport.

You can invoke the connector startup script in any of the following ways:

v On Windows systems, from the Start menu

Select Programs>IBM WebSphere Business Integration

Adapters>Adapters>Connectors. By default, the program name is “IBM

WebSphere Business Integration Adapters”. However, it can be customized.

Alternatively, you can create a desktop shortcut to your connector.

v From the command line

– On Windows systems:

start_connName connName brokerName [-cconfigFile]

– On UNIX-based systems:

connector_manager -start connName brokerName [-cconfigFile]

30 Adapter for CORBA User Guide

where connName is the name of the connector and brokerName identifies your

integration broker, as follows:

– For WebSphere InterChange Server, specify for brokerName the name of the

ICS instance.

– For WebSphere message brokers (WebSphere MQ Integrator, WebSphere MQ

Integrator Broker, or WebSphere Business Integration Message Broker) or

WebSphere Application Server, specify for brokerName a string that identifies

the broker.

Note: For a WebSphere message broker or WebSphere Application Server on a

Windows system, you must include the -c option followed by the name of

the connector configuration file. For ICS, the -c is optional.

v From Adapter Monitor, which is launched when you start System Manager

running with the WebSphere Application Server or InterChange Server broker:

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v From System Manager (available for all brokers):

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v On Windows systems, you can configure the connector to start as a Windows

service. In this case, the connector starts when the Windows system boots (for an

Auto service) or when you start the service through the Windows Services

window (for a Manual service).

For more information on how to start a connector, including the command-line

startup options, refer to one of the following documents:

v For WebSphere InterChange Server, refer to the System Administration Guide.

v For WebSphere message brokers, refer to Implementing Adapters with WebSphere

Message Brokers.

v For WebSphere Application Server, refer to Implementing Adapters with WebSphere

Application Server.

Stopping the connector

The way to stop a connector depends on the way that the connector was started,

as follows:

v If you started the connector from the command line, with its connector startup

script:

– On Windows systems, invoking the startup script creates a separate “console”

window for the connector. In this window, type “Q” and press Enter to stop

the connector.

– When using InterChange Server on UNIX-based systems, connectors run in

the background so they have no separate window. Instead, run the following

command to stop the connector:

connector_manager_connName -stop

where connName is the name of the connector.
v From Adapter Monitor (WebSphere Business Integration Adapters product only),

which is launched when you start System Manager:

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v From System Monitor (WebSphere InterChange Server product only):

Chapter 3. Configuring the adapter 31

You can load, activate, deactivate, pause, shutdown or delete a connector using

this tool.

v On Windows systems, you can configure the connector to start as a Windows

service. In this case, the connector stops when the Windows system shuts down.

Using log and trace files

The adapter components provide several levels of message logging and tracing.

The connector uses the adapter framework to log error, informational, and trace

messages. Error and informational messages are recorded in the log file, and trace

messages and their corresponding trace levels (0 to 5) are recorded in a trace file.

For details about logging and trace levels, see Chapter 6, “Troubleshooting and

error handling,” on page 61.

You configure both the log and trace file names, as well as the trace level, in

Connector Configurator. For details about this tool, see Appendix B, “Connector

Configurator,” on page 91.

Note that the ODA has no logging capability. Error messages are sent directly to

the user interface. Trace files and the trace level are configured in Business Object

Designer. The process is described in “Configure the agent” on page 51. The ODA

trace levels are the same as the connector trace levels, defined in “Tracing” on page

64.

32 Adapter for CORBA User Guide

Chapter 4. Understanding business objects

This chapter describes the structure of business objects, how the adapter processes

the business objects, and the assumptions the adapter makes about them.

The chapter contains the following sections:

v “Defining metadata”

v “Connector business object structure” on page 34

v “Mapping attributes: CORBA, Java, and business object” on page 42

v “Business object naming conventions” on page 43

v “Sample business object properties” on page 44

v “Generating business objects” on page 48

Defining metadata

The connector for CORBA is metadata-driven. In the WebSphere business

integration system, metadata is defined as application-specific information that

describes a CORBA application object’s data structures. The metadata is used to

construct business object definitions, which the connector uses at runtime to build

business objects.

After installing the connector, but before you can run it, you must create the

business objects definitions. The business objects that the connector processes can

have any name allowed by the integration broker. For information about naming

conventions, see Naming Components Guide.

A metadata-driven connector handles each business object that it supports

according to the metadata encoded in the business object definition. This enables

the connector to handle new or modified business object definitions without

requiring modifications to the code. New objects are created in Business Object

Designer, without the assistance of the ODA. To modify an existing object, use

Business Object Designer directly (the ODA cannot be used to modify an existing

business object).

Application-specific metadata includes the structure of the business object and the

settings of its attribute properties. Actual data values for each business object are

conveyed in message objects at run time.

The connector makes assumptions about the structure of its supported business

objects, the relationships between parent and child business objects, and the format

of the data. Therefore, it is important that the structure of the business object

exactly mirror the structure defined for the corresponding CORBA object or the

adapter will not be able to process business objects correctly.

If you need to make changes to the business object structure, make them to the

corresponding object in CORBA and then export the changes to the file system

repository for input into the ODA.

For more information on modifying business object definitions, see WebSphere

Business Integration Adapters Business Object Development Guide.

© Copyright IBM Corp. 2003, 2005 33

Connector business object structure

The connector processes two kinds of business objects, both of which are generated

by the ODA:

v Business objects used by CORBA server-side components when the connector

runs as a client

v Business objects used by CORBA client-side components when the connector

runs as a server

Note that if an IDL component is intended both as a client and a server-side object,

the ODA has to generate two separate business objects, one for client-side

processing and one for server-side processing. In this case, make sure to run the

ODA twice against the same IDL component: the first time, run it with the ODA

CORBAServerImpl property set to true to generate a server-side business object;

then, run the ODA again with the same property set to false. For details about

this property, see “Configure the agent” on page 51.

This section describes the key concepts related to the structure of business objects

processed by the CORBA connector.

Attributes

For each attribute present in a CORBA class defined in the IDL file, a

corresponding business object attribute is generated by the ODA. The IDL file is

used by the ODA to compile proxy object definitions.

If an attribute in the CORBA class is not a simple attribute, and instead is a struct

(Figure 6 on page 35), union (Figure 9 on page 36), or sequence (Figure 8 on page

35), then the BO attribute maps to a child object whose definition matches the

corresponding constructed type (construct) in the CORBA object. The CORBA enum

construct (Figure 10 on page 36) maps to a simple attribute, rather than to a child

object attribute.

The primary constructs of CORBA are described in Table 7 and illustrated in

Figure 6 on page 35 through Figure 9 on page 36. (Note that the connector does not

support the constant construct.)

For a complete list of the mapping between CORBA constructs and business

objects, see “Mapping attributes: CORBA, Java, and business object” on page 42.

 Table 7. CORBA Constructs

CORBA construct Description

struct An object that holds business data, as illustrated in Figure 6 on

page 35

interface An object that holds a list of business operations (methods), as

illustrated in Figure 7 on page 35

sequence An object that holds a list of structs or simple data types, as

illustrated in Figure 8 on page 35. A CORBA sequence maps to

a cardinality n business object, as does an array.

union A collection of structs or simple data types, as illustrated in

Figure 9 on page 36. Note that only one attribute within a

union can have a value at a given time.

enum An object that contains a list of sequential or enumerated

identifiers, as illustrated in Figure 10 on page 36.

34 Adapter for CORBA User Guide

struct

Attribute 1

Attribute 2

Attribute n

.

.

.

interface

Method 1

Method 2

Method n

.

.

.

sequence

struct /
simple type

union

struct /
attribute 1

struct /
attribute 2

struct /
attribute n

.

.

.

Figure 6. CORBA construct: struct

Figure 7. CORBA construct: interface

Figure 8. CORBA construct: sequence

Chapter 4. Understanding business objects 35

Enum

Constant
value 1

Constant
value 2

Constant
value n

.

.

.

Some business object attributes, instead of containing data, point to child business

objects or arrays of child business objects that contain the data for these objects.

Keys relate the data between the parent record and child records.

Business objects can be flat or hierarchical. A flat business object only contains

simple attributes, that is, attributes that represent a single value (such as a string)

and do not point to child business objects. A hierarchical business object contains

both simple attributes and child business objects or arrays of child business objects

that contain attribute values.

A cardinality 1 container object, or single-cardinality relationship, occurs when an

attribute in a parent business object contains a single child business object. In this

case, the child business object represents a collection that can contain only one

record. The attribute type is the same as that of the child business object.

A cardinality n container object, or multiple-cardinality relationship, occurs when

an attribute in the parent business object contains an array of child business

objects. In this case, the child business object represents a collection that can

contain multiple records. The attribute type is the same as that of the array of child

business objects.

Methods

For each method defined in the CORBA IDL file, an attribute is created in the

business object. The attribute type is a child BO containing attributes that represent

method parameters. The attributes of the child BO appear in the exact same order

as the parameters of the CORBA method. The child BO also has a Return_Value

attribute that represents the result of the CORBA method call. These attributes (of

the child BO) can be simple type or object type, depending on the type of the

method parameter or return value.

Application-specific information

Application-specific information provides the connector with application-
dependent instructions on how to process business objects. If you extend or modify

a business object definition, you must make sure that the application-specific

information in the definition matches the syntax that the connector expects.

Figure 9. CORBA construct: union

Figure 10. CORBA construct: enum

36 Adapter for CORBA User Guide

Application-specific information can be specified for the overall business object as

well as for each business object attribute.

Business object-level ASI

Object-level ASI provides fundamental information about the nature of a business

object and the objects it contains. The required ASI for a business object depends

on whether you are generating the object for the connector running as a server or

as a client.

Note: Application specific information is used for business objects that represent

methods, method parameters, and method return values. For details about

business object attributes created for methods of CORBA objects, see

“Methods” on page 36.

Table 8 describes the business object-level ASI of business objects that are processed

as client objects when the connector for CORBA runs as a client.

 Table 8. Object-level ASI for client objects

Object-level ASI Description

proxy_class=<nameOfProxy> The name of the proxy class that the business object

represents. Use this ASI to map a proxy class to a

business object. You must specify this using valid Java

Package notation (for example, java.lang.Vector).

factory_method=<Name Of

Factory Method>

The name of the method of the Factory class used to

instantiate the specified proxy_class. This release

supports only a method that does not take any

arguments.

object_type=<leave blank or

set to zero-length string>

If the CORBAServerImpl property of the ODA agent (see

Table 15 on page 52) is set to false, meaning that the

ODA is configured to generate client-side objects, this ASI

should not be specified or should be set to a zero-length

String.

implementation_class=<leave

blank or set to zero-length

string>

If the CORBAServerImpl property of the ODA agent (see

Table 15 on page 52) is set to false, meaning that the

ODA is configured to generate client-side objects, this ASI

should not be specified or should be set to a zero-length

String.

Table 9 describes the business object-level ASI of business objects that are processed

as server objects when the connector acts as a server against which external

CORBA client objects can make method calls. Note that the ODA generates

server-side business objects when you set the CORBAServerImpl property of the

ODA agent to true. For details about this property, see Table 15 on page 52.

 Table 9. Object-level ASI for server objects

Object-level ASI Description

proxy_class=<nameOfProxy> The name of the proxy class that the business object

represents. Use this ASI to map a proxy class to a

business object. This must be specified using Java Package

notation (for example, java.lang.Vector).

object_type=CorbaImplObject If the connector runs as a server and the BO is intended

for CORBA clients to invoke method calls against the BO,

set this ASI to CorbaImplObject.

Chapter 4. Understanding business objects 37

Table 9. Object-level ASI for server objects (continued)

Object-level ASI Description

implementation_class=<Name

Of Implementation Class>

The name of the implementation class that corresponds to

the server business object you are creating in the ODA.

The implementation class name is always:

 com.ibm.adapters.corbaadapter.impl.

<ClassName>Impl

where <ClassName> is the name of the original class being

implemented. The classes are stored in an output .jar file

and saved to the following folder:

com\ibm\adapters\corbaadapter\impl

Figure 11 illustrates the object level ASI for a sample business object acting as a

server object.

Verb ASI

When the connector runs as a client, every client-side business object that it

processes contains a verb. The verb describes how the data in the business object

should be handled by the receiving application.

Note: Server-side objects, processed when the connector runs as a server, do not

have a verb ASI.

The verb ASI contains a sequence of attribute names, each of which contains a

method for the generic business object handler to call. Typically, the method to be

invoked belongs to the object itself (versus belonging to the parent), in which case

you specify the method in the object’s verb ASI. For example, an object that has

the method IncrementCounter would require that you specify that method in the

corresponding business object’s verb ASI.

If the method to be invoked belongs to a parent in the business object hierarchy,

then that parent can be referenced by prefixing the method name with the PARENT

tag.

For example, Figure 12 on page 39 illustrates a business object hierarchy whereby

ContactDetails is a child object of Contact, which itself is a child of

PSRCustomerAccount.

Figure 11. Sample business object-level ASI of a server-side object

38 Adapter for CORBA User Guide

PSRCustomerAccount

Address Contact

ContactDetails

If a method that belongs to PSRCustomerAccount is called on the ContactDetails

business object, then the verb ASI for ContactDetails represents the business object

hierarchy as follows:

PARENT.PARENT.<methodName>

If the method belongs instead to the Contact business object, then the verb ASI for

ContactDetails must be set as:

PARENT.<methodName>

Note that only methods that belong to parent objects within the hierarchy can be

called. Furthermore, a parent business object cannot invoke a child’s method.

The connector developer determines the CORBA operations assigned to the verb.

Although you can add other verbs manually using Business Object Designer, the

supported verbs include:

v Create

v Delete

v Retrieve

v Update

The following keywords can be used in the verb ASI sequence of attribute names:

 Table 10. Keywords allowed in verb ASI

Keyword Description

LoadFromProxy= <attributeName> Loads the specified non-method attribute value

from the proxy object.

WriteToProxy = <attributeName> Writes the non-method attribute value from the

business object into the proxy object.

LoadFromProxy (no attribute name) Loads all the non-method attributes on the current

BO from proxy object.

WriteToProxy (no attribute name) Writes all the non-method attributes on the current

BO to the proxy object.

CBOH=<custom BO handler className> The class name of a custom BO handler, in cases

where the generic BO handler is not used. For

information about custom BO handlers, see

“Custom business object handlers” on page 14.

Figure 12. Business object hierarchy and verb ASI

Chapter 4. Understanding business objects 39

For a given object, you can specify the four supported verbs (Create, Delete,

Retrieve, and Update) and assign as actions of each verb n plus two methods,

where n equals the number of methods in the corresponding CORBA interface. The

two additional methods are those supported by the connector, LoadFromProxy and

WriteToProxy, as defined in Table 10 on page 39.

Attribute-level ASI

The attribute-level ASI of a business object can be for complex attributes, which

contain child objects, and simple attributes. For a complex attribute, the ASI varies,

depending on whether the contained child is a property (non-method) or a method

of the object. The mapping of all the attribute-types in the original CORBA IDL file

to the business object is defined in Table 14 on page 42.

Table 11 describes the ASI for simple attributes.

 Table 11. Attribute-level ASI for attributes that contain simple attributes

Attribute ASI Description

Name Specifies the business object field name.

Type Specifies the business object field type.

MaxLength 255 by default

IsKey Each business object must have at least one key attribute, which you specify by setting

the key property to true for an attribute.

IsForeignKey Set to true if you want the connector to add the value to the per-call object pool.

IsRequired Set to false.

AppSpecInfo Holds the original Java type. This attribute is formatted as follows:

property=<propertyName>; type=<typeName>

property is the name of the CORBA object attribute. Use this ASI to capture

the original CORBA object attribute name.

type is the name of the CORBA simple attribute type. Use this attribute to

capture the original CORBA type name.

DefaultValue Specifies a default value that the connector uses for a simple attribute in the inbound

business object if the attribute is not set and is a required attribute.

Table 12 describes the ASI for complex, non-method attributes. These attributes

contain non-method child objects, such as properties of a class in the original

CORBA IDL file.

 Table 12. Attribute-level ASI for attributes that contain non-method child objects

Attribute Description

Name Specifies the business object field name.

Type Specifies the business object field type.

MaxLength 255 by default

IsKey Each business object must have at least one key attribute, which you specify by setting the

key property to true for an attribute.

IsForeignKey Set to true if you want the connector to add the value to the per-call object pool.

IsRequired Set to false.

40 Adapter for CORBA User Guide

Table 12. Attribute-level ASI for attributes that contain non-method child objects (continued)

Attribute Description

AppSpecInfo Holds the original Java type. This attribute is formatted

as follows:

type=<typeName>; use_attribute_value=<BOName.AttributeName>;

property=<propertyName>; proxy_class=<proxyClassName>;

enumeration_class=<enumerationClassName>; inout=<true or false>;

union=true; union_key=<unionKeyName>;

type is the name of the proxy class when you are referring to an object.

use_attribute_value is set to <BOName.AttributeName>. If you specify a

value for this element, the connector pulls the value from the per-call

object pool at runtime.

property is the name of the CORBA object attribute. Use this ASI to capture

the original CORBA object attribute name.

proxy_class is optional. Use only if the attribute is of type in / out.

enumeration_class is the CORBA enumeration class to which this non-method

attribute corresponds. Use this optional element only if the attribute maps to a

CORBA enumeration construct.

inout is set to true or false. Use this optional element only if the attribute is of

type in / out as a method parameter.

union should be set to true. Optional if the child BO maps to a CORBA union

construct.

union_key is the mapping key to each method that returns a value in the union.

Use this optional element only if the BO maps to a CORBA union construct.

For details about CORBA constructs and structures, see “Attributes” on page 34

DefaultValue Specifies a default value that the connector uses for a simple attribute in the inbound

business object if the attribute is not set and is a required attribute.

Table 13 describes the ASI for complex attributes containing child objects that are

methods.

 Table 13. Attribute-level ASI for attributes that contain method child objects

Attribute Description

Name Specifies the business object field name.

Type Specifies the business object field type.

Relationship If the child is a container attribute, this is set to Containment.

IsKey Not used.

IsForeignKey Set to false.

Is Required Set to false.

Chapter 4. Understanding business objects 41

Table 13. Attribute-level ASI for attributes that contain method child objects (continued)

Attribute Description

AppSpecInfo Holds the original CORBA application method name. This attribute

is formatted as follows:

method_name=<methodName>; verb=<verbName>;

method_name is the name of the method call placed to the external CORBA

server, when the connector runs as a client.

verb is the verb that the connector sets on the business object before invoking

the collaboration, when the connector runs as a server. This verb corresponds

to the method call from the external CORBA client. The method call is a

request to execute a collaboration. Use only if the BO acts as a CORBA

server object that is receiving method calls from an external CORBA client

object. For a list of valid verbs, see “Verb ASI” on page 38

Cardinality Set to N if the type represents an array or vector, otherwise set to 1.

Mapping attributes: CORBA, Java, and business object

This section provides a list of the main CORBA IDL constructs and the

corresponding Java constructs and business object attributes. For all business object

attributes that are not child business objects, the data type is String. In a business

object, the ASI holds the actual data type of the attribute and is used when

invoking methods against the Java proxy object.

For details about CORBA constructs, see “Attributes” on page 34.

For details about business object ASI, see “Application-specific information” on

page 36.

 Table 14. Object mapping: CORBA, JAVA, and business object

CORBA IDL

construct Java construct Business object ASI

module package (does not apply) (does not apply)

interface

(non-abstract)

Signature interface and an

operations interface, helper

class, holder class

BO proxy_class=<fully qualified CORBA class

name>

interface (abstract) Signature interface, helper

class, holder class

BO proxy_class=<fully qualified CORBA

interface name>

boolean boolean Boolean type=boolean

char, wchar char String type=char

octet byte String type=byte

string, wstring java.lang.String String type=String

short, unsigned

short

short Integer type=short

long, unsigned long int Integer type=int

long, long unsigned

long long

long Integer type=long

float float Float type=float

42 Adapter for CORBA User Guide

Table 14. Object mapping: CORBA, JAVA, and business object (continued)

CORBA IDL

construct Java construct Business object ASI

double double Double type=double

fixed java.math.BigDecimal String type=BigDecimal

enum class String property=<propertyName>;type=String;

enumeration_class=<JavaEnumClassName>

struct, union class BO proxy_class=<fully qualified class name)

sequence, array array Child BO with

multiple

cardinality

proxy_class=<fully qualified class name)

exception class (does not apply) (does not apply)

readonly attribute accessor method Child BO method=<method name>

readwrite attribute accessor and modifier

methods

Child BO method=<method name>

operation method Child BO method=<method name>

Business object naming conventions

The CORBA ODA uses the following naming conventions to generate business

objects names from an IDL file:

v <Interface_BO_Name> is formed by appending the <BOPrefix>, <Module Name>,

and _<Interface Name>.

v <Interface_Method_BO_Name> is formed by appending <BOPrefix>,

<Interface_BO_Name>, and _<MethodName>.

For example, the following IDL module called corbaadapterSimpleSample defines

an interface named Hello.

module corbaadapterSimpleSample

{

 interface Hello

 {

 string simpleIn(in LongSeq in_long_val);

 };

};

The name of the business object that represents the interface Hello would be:

<BOPrefix>corbaadapterSimpleSample_Hello

The name of the business object that represents the method simpleIn of the Hello

interface would be:

<BOPrefix>corbaadapterSimpleSample_Hello_simpleIn

Where <BOPrefix> in both names represents the prefix assigned in the ODA to the

business object name. Notice the underscore character in front of the interface and

method names.

Chapter 4. Understanding business objects 43

Sample business object properties

This section provides an example of a WebSphere business integration business

object. The corresponding CORBA class and Java proxy class are also provided to

illustrate the mapping across the three constructs. Note that business objects inherit

their names from the matching CORBA application objects.

The samples provided in this section are as follows:

v “Sample IDL file”

v “Sample Java code generated by IDLJ” on page 45

v “Sample business objects for Java classes” on page 46

v “Sample BO handler method calls” on page 47

Sample IDL file

The following sample code is a portion of a larger IDL file. The portion provided

here illustrates definitions for the CORBAAccount struct and for the Hello

interface which uses that class for method argument types.

Sample IDL File

module corbaadapter

{

.

.

.

 struct CORBAAccount

 {

 short accessCustomerNumber;

 AccountStatusEnum accountStatus;

 string acctSecurity;

 string companyNm;

 long custAcctID;

 string disconnectReasonCd;

 string firstNm;

 string lastNm;

 char middleInitial;

 CORBASicCodeUnion sicCode;

 CORBAAddressSeq addresses;

 LongSeq custAcctChildrenIds;

 StringSeq nameList;

 ShortSeq accountList;

 BooleanSeq flagList;

 CharSeq initialList;

 FloatSeq amountList;

 DoubleSeq doubleAmtList;

 };

 interface Hello

 {

 CORBAAccount sayHello(in CORBAAccount test, inout double amount);

 CORBAAccount sayInOutHello(inout CORBAAccount test,

 inout string name,

 in long id);

 };

};

44 Adapter for CORBA User Guide

Sample Java code generated by IDLJ

The following examples illustrate Java code generated by the IDLJ compiler tool

from the code in “Sample IDL file” on page 44.

v “Sample Java code: CORBAAccount class”

v “Sample Java code: HelloOperations class” on page 46

Sample Java code: CORBAAccount class

The following sample code is a portion of the Java code generated by the IDLJ

compiler tool for the CORBAAccount struct defined in “Sample IDL file” on page

44.

package corbaadapter;

/**

 *

 * IDL Source "d:/corba adapter/sample/hello.idl"

 * IDL Name ::corbaadapter::CORBAAccount

 * Repository Id IDL:corbaadapter/CORBAAccount:1.0

 *

 * IDL definition:

 * <pre>

 * struct CORBAAccount {

 ...

};

 * </pre>

 */

public final class CORBAAccount implements org.omg.CORBA.portable.IDLEntity {

 public short accessCustomerNumber;

 public corbaadapter.AccountStatusEnum accountStatus;

 public java.lang.String acctSecurity;

 public java.lang.String companyNm;

 public int custAcctID;

 public java.lang.String disconnectReasonCd;

 public java.lang.String firstNm;

 public java.lang.String lastNm;

 public char middleInitial;

 public corbaadapter.CORBASicCodeUnion sicCode;

 public corbaadapter.CORBAAddress[] addresses;

 public int[] custAcctChildrenIds;

 public java.lang.String[] nameList;

 public short[] accountList;

 public boolean[] flagList;

 public char[] initialList;

 public float[] amountList;

 public double[] doubleAmtList;

 public CORBAAccount () {

Chapter 4. Understanding business objects 45

}

.

.

.

}

Sample Java code: HelloOperations class

The following sample code is the Java class generated by the IDLJ compiler tool

for the Hello interface defined in “Sample IDL file” on page 44.

package corbaadapter;

/**

 *

 * IDL Source "d:/corba adapter/sample/hello.idl"

 * IDL Name ::corbaadapter::Hello

 * Repository Id IDL:corbaadapter/Hello:1.0

 *

 * IDL definition:

 * <pre>

 * interface Hello {

 ...

};

 * </pre>

 */

public interface HelloOperations {

 /**

 * <pre>

 * corbaadapter.CORBAAccount sayHello (in corbaadapter.CORBAAccount test,

 inout double amount);

 * </pre>

 */

 public corbaadapter.CORBAAccount sayHello (corbaadapter.CORBAAccount test,

 org.omg.CORBA.DoubleHolder amount);

 /**

 * <pre>

 * corbaadapter.CORBAAccount sayInOutHello (inout corbaadapter.

 CORBAAccount test,inout string name, in long id);

 * </pre>

 */

 public corbaadapter.CORBAAccount sayInOutHello

 (corbaadapter.CORBAAccountHolder test,org.omg.CORBA.StringHolder

 name, int id);

Sample business objects for Java classes

The following sample screens illustrate the business object structure, as viewed in

Business Object Designer, for the Java classes defined in the examples in “Sample

Java code generated by IDLJ” on page 45.

Figure 13 on page 47 illustrates the business object structure for the

CORBAAccount class.

46 Adapter for CORBA User Guide

Sample BO handler method calls

For the CORBA objects defined in “Sample IDL file” on page 44, the connector BO

handler could make the following method calls.

//Initialize ORB

 ORB orb = ORB.init(args, orbProps);

 System.out.println("ORB initialized");

 byte[] helloId = "HelloServerObject".getBytes();

 Hello helloRef = HelloHelper.bind(orb, "/CORBAServer", helloId);

 // Call the Hello server object and print results

 CORBAAccount customer = new CORBAAccount();

 customer.accessCustomerNumber = 0;

 customer.accountStatus = AccountStatusEnum.asPENDING;

 customer.acctSecurity = "check";

 customer.companyNm = "Hello";

 customer.custAcctID = 100;

 customer.disconnectReasonCd = "Reason";

 customer.firstNm = "Name check";

 customer.lastNm = "Last Name";

 customer.middleInitial = ’D’;

 CORBASicCodeUnion sicCodeUnion = new CORBASicCodeUnion();

 CORBASicCode sicCode = new CORBASicCode();

 sicCode.description = "Description";

 sicCode.sicCd = "1000";

 sicCode.stdCdInd = ’N’;

 sicCode.subAcctInd = ’S’;

 sicCodeUnion.value(sicCode);

 customer.sicCode = sicCodeUnion;

 customer.addresses = new CORBAAddress[0];

 customer.custAcctChildrenIds = new int[0];

 double value = 123;

 DoubleHolder dHolder = new DoubleHolder(value);

 customer = helloRef.sayHello(customer, dHolder);

Figure 13. Business object structure for CORBAAccount class

Chapter 4. Understanding business objects 47

Generating business objects

Each time an event occurs during run time, a CORBA application sends a message

object containing object-level data and information about the type of transaction.

The connector maps this data to the corresponding business object definition, to

create an application-specific business object. The connector sends these business

objects on to the integration broker for processing. It also receives business objects

back from the integration broker, which it passes back to the CORBA application.

Note: If the object model in the CORBA application is changed, use the ODA to

create a new definition. If the business object definitions in the integration

broker repository do not match exactly the data that the CORBA application

sends, the connector is not able to create a business object and the

transaction will fail.

Business Object Designer provides a graphical interface that enables you to create

and modify business object definitions for use at run time. For details, see

Chapter 5, “Creating and modifying business objects,” on page 49.

48 Adapter for CORBA User Guide

Chapter 5. Creating and modifying business objects

This chapter describes the Object Discovery Agent (ODA) for CORBA, and how to

use it to generate business object definitions for the IBM WebSphere Business

Integration adapter for CORBA.

This chapter contains the following sections:

v “Overview of the ODA for CORBA”

v “IDL file compatibility”

v “Generating business object definitions” on page 50

v “Specifying business object information” on page 55

v “Uploading business object files” on page 60

Overview of the ODA for CORBA

An ODA (Object Discovery Agent) enables you to generate business object

definitions. A business object definition is a template for a business object. The

ODA examines specified application objects, “discovers” the elements of those

objects that correspond to business object attributes, and generates business object

definitions to represent the information. Business Object Designer provides a

graphical interface to access the Object Discovery Agent and to work with it

interactively.

The Object Discovery Agent (ODA) for CORBA generates business object

definitions from metadata contained in IDL files. The Business Object Designer

wizard automates the process of creating these definitions. You use the ODA to

create business objects and Connector Configurator to configure the connector to

support them. For information about Connector Configurator, see Appendix B,

“Connector Configurator,” on page 91.

IDL file compatibility

Users of the adapter for CORBA, version 1.0.x, who are migrating to version 1.3.x,

must recompile their IDL files to generate proxy class files that are compatible with

the ODA component of version 1.3.x.

Note: Users of the adapter for CORBA, version 1.2.x do not need to recompile

their IDL files to generate 1.3.x ODA-compatible proxy class files.

There are two options for recompiling IDL files:

v Option 1: Regenerate the necessary executable files using the ODA, as described

in “Generating business object definitions” on page 50

v Option 2: Keep the existing business objects but regenerate the Java executables

manually through the IBM IDLJ Java compiler tool (idlj or idlj.exe). To do

this, follow these steps:

1. Recompile the IDL files using IBM IDLJ Java compiler. This compiler is

available from the bin directory of the IBM JDK directory for the Window

2000 and AIX platforms. For the Solaris and HP-UX platforms, the compiler

is available at the following directory:

<adapter runtime directory>/jre/ibm_bin

© Copyright IBM Corp. 2003, 2005 49

Where <adapter runtime directory> is the directory where the adapter runtime

files are stored.

If the Java files are generated for the adapter running as a server, invoke the

IBM IDLJ Java compiler using the -oldImplBase -fserverTIE option.

If the Java files are generated for the adapter running as a client, invoke the

IBM IDLJ Java compiler using the -fclient option

2. Compile the Java files using the Java compiler available in the JDK, version

1.3.1.

3. Package the Java executable files (files with a .class extension) that you

generated in Step 2, into a suitable .jar file.

Generating business object definitions

This section describes how to use the CORBA ODA in Business Object Designer to

generate business object definitions. For information on launching and using

Business Object Designer, see IBM WebSphere Business Integration Adapters Business

Object Development Guide.

Starting the ODA

The ODA can be run from any machine that can mount the file system on which

the metadata repository (that is, the IDL files) resides, using the

start_CORBAODA.bat (Windows) or start_CORBAODA.sh (Unix) start file. This

file contains start parameters, including the paths to certain required CORBA and

connector .jar files. These .jar files must also be accessible from the machine on

which you are running the ODA.

The ODA for CORBA has a default name of CORBAODA. The name can be

changed by changing the value of the AGENTNAME variable in the start script.

To start the ODA, run this command:

v Windows: start_CORBAODA

v Unix: start_CORBAODA.sh

Running Business Object Designer

Business Object Designer provides a wizard that guides you through the steps to

generate a business object definition using the ODA. The steps are as follows:

Select the agent

You must first select the ODA agent.

 1. Start Business Object Designer.

2. Click File > New Using ODA. The Business Object Wizard - Step 1 of 6 - Select

Agent screen appears.

3. Select the ODA/AGENTNAME (from the start_CORBAODA script) in the

Located agents list and click Next. (You may have to click Find Agents if the

desired agent is not listed.)

50 Adapter for CORBA User Guide

CORBAODA[local host57037]

local host

Configure the agent

After you click Next on the Select Agent screen, the Business Object Wizard - Step 2

of 6 - Configure Agent screen appears. Figure 15 on page 52 illustrates this screen

with sample values.

Figure 14. Select Agent screen

Chapter 5. Creating and modifying business objects 51

C:\IBM\Java131\bin\idlj.exe

.;C:\IBM\CORBA\jre\lib\ext

C:\IBM\Java131

The properties you set on this screen are described in Table 15. You can save all the

values you enter on this screen to a profile. Instead of retyping the property data

next time you run the ODA, you simply select a profile from the drop-down menu

and re-use the saved values. You can save multiple profiles, each with a different

set of specified values.

Note: If any of the ODA properties for directories (see Table 15) are set to values

with spaces, the entire value should be enclosed in double quotes. So, for

example, if the ODA property OutputFileDir is set to C:\My IDLFiles\My

Output, then enter the value in the ODA as ″C:\My IDLFiles\My Output″.

 Table 15. Configure Agent properties

Property name Default value Type Description

IDLFileDirectory None String (required) The directory where the IDL files are located.

All the IDL files that define the CORBA interface must be

placed in this directory.

GenerateProxies True Boolean (required) When set to true, generates the required proxy

object classes. When set to false, the adapter uses the .jar

file of a CORBA application vendor instead of generating

the .jar file of proxy object classes. Make sure to specify

the CORBA application vendor’s file name in the

JCLASSES setting in the start_CORBA.bat (Windows) or

start_CORBA.sh (Unix) file.

If you are creating server-side objects for a connector that

runs as a server, this property is ignored and the ODA

generates server implementation classes. This allows you

to use the proxy class definitions provided in a .jar file of

a CORBA application vendor, instead of generating your

own.

Figure 15. Configure Agent screen

52 Adapter for CORBA User Guide

Table 15. Configure Agent properties (continued)

Property name Default value Type Description

JarFileName None String The name of the .jar file in which the classes generated

by the ODA will be stored. If you specify a file name

only (no path), the ODA uses the value you specify in

OutputFileDir as the directory in which to output this

file. If you specify the absolute path (directory and .jar

file name) here, the ODA ignores the value you specify in

OutputFileDir. This property is required when the

GenerateProxies property is set to true.

BOPrefix None String The prefix that the ODA will add to the names of the

business objects it generates. In Figure 15 on page 52, all

business objects that the ODA generates, will have names

that start with myBO_.

CORBAServerImpl False Boolean (required) When set to true, the ODA generates

server-side business objects and implementation class

definitions for server-side processing (to be used when

the connector runs as a server). If you also want to

generate client-side business objects for the same CORBA

IDL objects, run the ODA again with this property set to

false.

IDLToJavaTool None String The absolute path of the IDLJ compiler tool.

CORBAClassPath None String (optional) The semicolon delimited (Windows) or

colon-delimited (Unix) string that contains the pathname

of the external CORBA infrastructure class files. These

.jar files are required to successfully compile the proxy

class definitions. The value of this property is

temporarily appended, whenever you run the ODA, to

the class path used by the ODA. Set this value explicitly

to include all JAR files or directories needed to compile

CORBA classes, including any generic CORBA classes

such as those defined in ibmorb.jar (the jar file required

by the IBM Java ORB).

OutputFileDir None String (required) Directory in which to store all output files

generated by the ODA. If you set the GenerateProxies

property to false, the ODA does not create a JAR file

(JarFileName property) in which the ODA-generated

classes are stored. Instead, the classes are saved as

separate output files in the directory you specify here.

This is a working directory, so as a precaution, make sure

each time you run the ODA that the directory you

specify here does not already contain any files.

JDKHomeDir None String (required) The directory in which the JDK is installed on

this machine.

TraceFileName None String The name of the trace message file; for example,

CORBAODAtrace.txt.

TraceLevel 5 Integer (required) The tracing level (from 0 to 5) for the Agent.

For details about tracing levels, see “Tracing” on page 64.

MessageFile None String (required) The name of the message file that contains all

the messages displayed by the ODA. For CORBA, the

name of this file is BIA_CORBAODAAgent.txt. If you do not

correctly specify the name of the message file, the ODA

will run without messages.

Chapter 5. Creating and modifying business objects 53

1. Use the New and Save buttons in the Profiles group box any time you want

the ODA to create a new profile. When you use the ODA again, you can select

an existing profile.

2. Type the value of each property, as defined in Table 15 on page 52.

Note: If you use a profile, the property values are filled in for you, though you

can modify the values as needed. You can also save new values.

Select a business object

The Business Object Wizard - Step 3 of 6 - Select Source screen appears, as illustrated

in Figure 16. The screen lists the interfaces and structs that have been defined in

the CORBA IDL file. Use this screen to select any number of CORBA entities for

which the ODA will generate business object definitions. A high level parent entity

is always an interface or a struct. A sub object of the high-level parent can be an

interface, struct, union, enum, or sequence. A descendent union, enum, or sequence

is automatically generated as a business object when you select any of its

interface or struct ancestors (parent or higher level).

Note: A descendent interface or struct is only generated if you explicitly select

it. In other words, it is not automatically generated simply because an

ancestor has been selected.

To determine which CORBA objects listed on this screen are child objects of a

high-level object, refer to the original IDL file. You can also simply select all the

CORBA objects listed on this screen and generate their corresponding business

objects. The resulting business objects will reflect the parent-child relationships.

For details about the CORBA structures for which you can create business objects,

see Table 7 on page 34.

Figure 16. Select Source screen

54 Adapter for CORBA User Guide

1. If necessary, expand a CORBA module to see a list of sub objects.

2. Select the CORBA object(s) you want to use. In Figure 16 on page 54, the Hello

object is selected

3. Click Next.

Confirm the object selection

The Business Object Wizard - Step 4 of 6 - Confirm source nodes for business object

definitions screen appears. It shows the object(s) you selected.

Click Back to make changes or Next to confirm that the list is correct.

The Business Object Wizard - Step 5 of 6 - Generating business objects... screen appears

with a message stating that the wizard is generating the business objects.

Specifying business object information

After you create a business object, you can specify the verbs that are valid for the

object, the method sequence of a given verb on the object, the business object-level

ASI, and the attribute-level ASI. This section describes how to specify this

information, using the ODA with Business Object Designer. For a detailed

description of these categories of information and what they mean for business

object structure in the CORBA connector, see Chapter 4, “Understanding business

objects,” on page 33.

Selecting verbs

In Business Object Designer, the first screen that appears when you finish creating

a business object and then open it in a separate window is the BO Properties -

Figure 17. Confirm source node screen

Chapter 5. Creating and modifying business objects 55

Select Verbs for component screen. Figure 18 illustrates this screen for the Hello

business object created in Figure 16 on page 54 and Figure 17 on page 55.

On this screen you specify the verbs that the business objects supports. The ODA

allows you to specify the four supported verbs (Create, Retrieve, Delete, and

Update) and assign as actions of each verb n plus two methods, where n equals the

number of methods in the corresponding CORBA interface. The two additional

methods are those supported by the connector (LoadFromProxy and WriteToProxy).

To specify additional verbs beyond the supported four, or to edit verb information

after you create a business object, use Business Object Designer.

For details about business object verbs for the CORBA connector, see “Verb ASI”

on page 38.

1. In the Value list for the Verbs property, select the verbs that you want the

business object to support. You can select one or more verbs. You can also

deselect a verb at any time.

2. Click OK.

Specifying the verb ASI

For each verb selected in Step 1 of “Selecting verbs” on page 55, a separate

window appears where you specify the method sequence that must be executed

for the verb.

Figure 19 on page 57 illustrates this screen for the Retrieve verb of the Hello

business object created in Figure 16 on page 54 and Figure 17 on page 55.

Figure 18. Select verb for component screen

56 Adapter for CORBA User Guide

1. In the Value list for the MethodSequence property, click the method that you

want the business object to execute first for the verb. In Figure 19, the method

sequence is as follows:

v The first method that will be executed in the sequence of methods for the

Retrieve verb is LoadFromProxy.

v The second method in the sequence is sayHello.

v The third method in the sequence is sayInOutHello.

v The last method in the sequence is WriteToProxy.

These methods are provided by the CORBA interface (defined in the IDL file),

with the exception of two methods that are provided by the ODA:

LoadFromProxy and WriteToProxy.

By specifying a method sequence for the verb, you are creating the verb ASI

that is associated with that verb. If necessary, this verb ASI can be modified

later.

2. Click OK.

For a list of the keywords supported by the CORBA verb ASI, see Table 10 on page

39.

Figure 19. Setting the verb method sequence

Chapter 5. Creating and modifying business objects 57

Open the business object in a separate window

The Business Object Wizard - Step 6 of 6 - Save business objects screen appears.

You can optionally open the business object in a separate window within Business

Object Designer, or, after specifying a key for the top-level business object, you can

save the generated business object definitions to a file.

To open the business objects in separate windows:

1. Select Open the new BOs in separate windows. A dialog box appears.

2. Click Finish. Each business object appears in a separate window where you can

view and set the ASI information for the business objects and business object

verbs you just created. For details, see “Specifying business object information”

on page 55.

To save the business objects to a file (only after you a have specified a key for the

parent-level business object):

1. Select Save a copy of the business objects to a separate file. A dialog box

appears.

2. Type the location in which you want the copy of the new business object

definitions to be saved.

Business Object Designer saves the files to the specified location.

If you have finished working with the ODA, you can shut it down by checking

“Shutdown ODA CORBA ODA” before clicking Finish.

Figure 20. Save business objects screen

58 Adapter for CORBA User Guide

Specifying the attribute-level ASI

After you define the verb ASI (by specifying a method sequence that must be

executed for each verb), Business Object Designer displays the attributes for the

business object. For details about the attribute-level ASI in the CORBA connector,

see “Attribute-level ASI” on page 40.

The attributes are listed on the Attributes tab in the order in which they appear in

the business object structure, as defined by the numeric value in the Pos column.

Simple CORBA object attributes are represented as simple attributes and their ASI

contains the original CORBA attribute name and type.

For each attribute, the screen provides the name of the attribute, its type, and the

ASI information. The sayHello attribute of the business object has an ASI that

maps the attribute to the original CORBA IDL method name. In this example, the

original method name is indicated under the App Spec Info column, by the

method_name=sayHello ASI.

On the Attributes tab, you need to specify a key (required by Business Object

Designer to validate and save a business object) for each business object for which

the ODA has not already specified a key. Note that for certain CORBA types (for

example, CORBA_Short, CORBA_Boolean, and CORBA_Char), the ODA sets the keys.

Other CORBA types require that you set the key.

You can also use this screen to set child object keys as needed and specify the

following information:

v Is the attribute required for the connector to process the business object? If so,

click the Required check box.

v Is the maximum length of the attribute different from the value that appears in

the Maximum Length column.

v Does the attribute have a default value? If so, type the value in the Default

column

Note: While you can create a new business object through the ODA (running in

Business Object Designer), do not configure the foreign key in this manner.

The foreign key is non-ASI meta data and therefore must always be

configured without the ODA. In Business Object Designer, click File > New

to create a new business object without using the ODA.

Specifying business object-level ASI

After specifying the attribute-level ASI, you can view and modify the business

object-level ASI. For details about business object-level ASI, see “Business

object-level ASI” on page 37.

The business object-level ASI is listed on the General tab. The ASI value that

appears in the field Business Object Level Application-specific information

contains the name of the proxy class that represents this business object. The

connector uses this information to map a proxy class to a business object, and, in

the case of a server-side business object (when the connector also runs as a server),

the connector uses this information to map an implementation class to a business

object.

This screen also lists all the verbs that are supported by the business object and

provides the ASI for each verb, as it was defined in “Specifying the verb ASI” on

page 56.

Chapter 5. Creating and modifying business objects 59

Figure 21 illustrates the business object-level ASI for the Hello business object. The

only verb that will execute a method sequence for this business object is Retrieve,

which has a verb ASI with the method sequence illustrated here (it was originally

set in Figure 19 on page 57).

On this screen you can modify the ASI of the business object and its supporting

verbs.

Uploading business object files

The newly created business object definition files must be uploaded to the

integration broker once they have been created. The process depends on whether

you are running WebSphere InterChange Server, WebSphere MQ Integrator Broker,

or WebSphere Application Server.

v WebSphere InterChange Server: If you have saved your business object

definition files to a local machine and need to upload them to the repository on

the server, refer to the Implementation Guide for WebSphere InterChange Server.

v WebSphere MQ Integrator Broker: You must export the business object

definitions out of Business Object Designer and into the integration broker. For

details, refer to Implementing Adapters with WebSphere MQ Integrator Broker

v WebSphere Application Server: For details, see Implementing Adapters with

WebSphere Application Server

Figure 21. Setting the business object level ASI

60 Adapter for CORBA User Guide

Chapter 6. Troubleshooting and error handling

This chapter describes how the adapter for CORBA handles errors. The adapter

generates logging and tracing messages. This chapter describes these messages and

provides troubleshooting tips. The chapter contains the following sections:

v “Error handling”

v “Troubleshooting tips” on page 64

v “Logging” on page 64

v “Tracing” on page 64

Error handling

All messages generated by the connector are stored in a message file named

BIA_CORBAConnector.txt. (The name of the file is determined by the LogFileName

standard connector configuration property.) Each message has a message number

followed by the message:

Message number

Message text

The connector handles additional specific errors as described in the following

sections.

Connector error handling

CORBA exception

If the CORBA application is down, or the CORBA call returns a failure, the

connector throws a CORBA exception.

The connector handles such exceptions by logging and returning a FAIL code. To

aid in debugging, the connector logs the details of the CORBA exception, and

returns it in the message field of the VerbProcessingFailed exception. The exception

also contains information about which call in the sequence failed.

ClassNotFound for proxy

When the Loader receives the proxy class name and tries to create a proxy object

of that class, an exception is raised if it cannot find the class. The connector logs

the error, which includes the name of the class not found, and returns a FAIL code.

InstantiationException in Loader

When the Loader receives the proxy class name and tries to create a proxy object

of that class, an exception is raised if it cannot create the object instance. The

connector logs the error, which includes the class name of the object that cannot be

instantiated, and returns a FAIL code.

IIlegal AccessException in Loader or Invoker

The connector raises an exception due to invalid code or improper access (public

or private) on a method by the IDLJ compiler tool.

The connector logs the error and returns a FAIL code.

© Copyright IBM Corp. 2003, 2005 61

NoSuchMethodException in Invoker

The connector raises an exception if a method is specified on the business object

that does not exist in the corresponding proxy object.

The connector logs the error and returns a FAIL code.

InvocationTargetException in Invoker

The connector raises an exception when the CORBA application (with which the

connector is exchanging business objects) raises an exception.

The connector logs the error and returns a FAIL code.

Invalid argument (CXIgnore) in an InParameter object in Invoker

The connector raises an exception when a method is included in the business

object’s verb ASI, but the arguments of that method have not been populated. For

details about business object structure and verb ASI, see Chapter 4,

“Understanding business objects,” on page 33.

The connector logs the error and returns a FAIL code.

Cast failure or wrong attribute type

The connector raises an exception if a proxy object method takes or returns a

different data type than what has been specified in the business object.

The connector logs the error and returns a FAIL code.

Invalid verb ASI

The connector raises an exception if the verb ASI of the business object being

passed to it is formatted incorrectly or uses improper syntax. Examples of this

include a verb ASI that does not contain a proper method sequence, or a child

business object that specifies CBOH (custom BO handler) for an active verb.

The connector logs the error and returns a FAIL code.

ODA error handling

Error produced in buffered reader is: {1}

This exception is raised when an error occurs in the javac compiler. The

description of the error appears in {1}.

There are no components or methods selected by the user

The ODA raises this exception if the user has not selected CORBA methods or

components in Business Object Designer for creating corresponding business

objects.

An error has occurred in {1}:{2}

This exception is raised when an unexpected error occurs in an ODA routine. The

module or function that generates the error appears in {1}, and the description of

the error appears in {2}.

There are no java files in the specified directory, {1}

The ODA raises this exception when the IDLJ compiler tool does not output any

files to the directory for Java proxy files. The name of the directory appears in {1}.

This directory is specified in the OutputFileDir property of the ODA Configure

Agent. For details about this property, see Table 15 on page 52.

62 Adapter for CORBA User Guide

The specified directory, {1}, doesn’t exist

The ODA raises this exception when the user specifies a value in the OutputFileDir

property of the ODA Configure Agent but the directory does not exist on the

machine where the IDLJ compiler tool outputs the proxy .jar files. The name of the

directory appears in {1}. For details about this property, see Table 15 on page 52.

Could not get IDL type information on {1} attribute

The ODA raises this exception when it cannot determine the data type of the

CORBA attribute specified in the IDL file. The name of the attribute appears in {1}.

Note that the CORBA attribute and business object attribute have the same name

(except for the prefix added to the business object name).

{1}: Path to IDL Compiler is incorrect: {2}

The ODA raises this exception when an incorrect pathname has been specified in

the IDLToJavaTool property of the Configure Agent. For details about this property,

see Table 15 on page 52. The module or function that generates the error appears in

{1}, and the incorrect pathname appears in {2}.

{1}: Path to IDL Compiler is unspecified

The ODA raises this exception when a pathname is not specified in the

IDLToJavaTool property of the Configure Agent. For details about this property, see

Table 15 on page 52. The module or function that generates the error appears in

{1}.

{1}: Could not execute IDLJ. Make sure it is in your PATH

The ODA raises this exception when it cannot run the IDLJ compiler tool. The

module or function that generates the error appears in {1}.

Make sure that the directory containing the IDLJ compiler tool is specified in your

system path, or, alternatively, make sure you specify the full path of the IDLJ

compiler tool in the IDLToJavaTool property. For details about this property, see

Table 15 on page 52.

Invalid input file found -- <Type>Operations.java is expected

The ODA raises this exception when it attempts to generate a business object that

corresponds to an IDL interface but is unable to find a particular Java file.

Unable to create base directory

The ODA raises this exception if it cannot, for whatever reason, create the directory

for the implementation classes that are used for server-side business objects

(processed with the connector runs as a server).

Directory not found and is not absolute path

The ODA raises this exception if a relative path, rather than an absolute directory

path, has been specified in any of the Configure Agent properties. You must

specify absolute paths that point to a specific drive and directory.

For details about the Configure Agent properties, see Table 15 on page 52

Unable to create directory {1}

The ODA raises this exception if it cannot, for whatever reason, create a given

output directory for any of the business object output files. The directory name

appears in {1}.

Chapter 6. Troubleshooting and error handling 63

{1}: Found IDL type of ″{2} ″ in file {3}. This is not a known IDL

type. Could not determine IDL type

The ODA raises this exception if an unrecognized type exists in the IDL file. The

module or function that generates the error appears in {1}, the name of the

unrecognized data type appears in {2}, and the IDL file name appears in {3}.

This exception is typically raised if you are using a Java proxy compiler other than

the IDLJ compiler tool of IBM Java ORB, which is the only IDL to Java proxy

compiler that the connector currently supports.

Troubleshooting tips

 Problem Potential solution / explanation

The ODA Select Source screen (see Figure 16 on page 54)

appears blank with no CORBA objects to select for

generating business objects.

Verify which IDL to Java proxy class compiler you are

using, and make sure that it is supported by the

connector. Currently, the connector supports the IDLJ

compiler tool of IBM Java ORB.

Verify that the pathname for the IDLJ compiler tool is

specified correctly in the IDLToJavaTool property of the

Configure Agent. For details about this property, see

Table 15 on page 52.

The message “{1}: Found IDL type of ″{2} ″ in file {3}. This

is not a known IDL type. Could not determine IDL type”

appears because a CORBA fixed data type has been

found during IDL compilation.

The IBM IDLJ compiler tool does not support the CORBA

fixed data type, hence the ODA does not support

generating a business object with an attribute that

represents a fixed data type. Verify which IDL compiler

you are using, and make sure that it is supported by the

connector. Currently, the connector supports the IBM IDLJ

compiler tool.

The ODA failed to generate Java proxy files from the

CORBA IDL file, for whatever reason.

Run the IDLJ compiler tool (idlj.exe for Windows; idlj

for Unix) manually, outside of the ODA, and then

compile the resulting Java files manually, using javac.

Logging

All messages described in “Error handling” on page 61 must be read from the

message file (BIA_CORBAConnector.txt).

Tracing

Tracing is an optional debugging feature you can turn on to closely follow

connector behavior. Trace messages, by default, are written to STDOUT. For more

on configuring trace messages, see the connector configuration properties in

“Configuring the connector” on page 19. For more information on tracing,

including how to enable and set it, see the Connector Development Guide.

Table 16 lists the recommended content for connector tracing message levels.

 Table 16. Tracing messages content

Level Description

Level 0 Use this level for trace messages that identify the connector version. No

other tracing is performed at this level.

64 Adapter for CORBA User Guide

Table 16. Tracing messages content (continued)

Level Description

Level 1 Use this level for trace messages that:

v Provide status information.

v Provide key information on each business object processed.

v Record each time a polling thread detects a new message in an input

queue.

Level 2 Use this level for trace messages that:

v Identify the BO handler used for each object that the connector processes.

v Log each time a business object is posted to the integration broker.

v Indicate each time a request business object is received.

Level 3 Use this level for trace messages that:

v Identify the foreign keys being processed, if applicable. These messages

appear when the connector has encountered a foreign key in a business

object or when the connector sets a foreign key in a business object.

v Relate to business object processing. Examples of this include finding a

match between business objects, or finding a business object in an array

of child business objects.

Level 4 Use this level for trace messages that:

v Identify application-specific information. Examples of this include the

values returned by the methods that process the application-specific

information fields in business objects.

v Identify when the connector enters or exits a function. These messages

help trace the process flow of the connector.

v Record any thread-specific processing. For example, if the connector

spawns multiple threads, a message logs the creation of each new thread.

Level 5 Use this level for trace messages that:

v Indicate connector initialization. This type of message can include, for

example, the value of each connector configurator property that has been

retrieved from the broker.

v Detail the status of each thread that the connector spawns while it is

running.

v Represent statements executed in the application. The connector log file

contains all statements executed in the target application and the value of

any variables that are substituted, where applicable.

v Record business object dumps. The connector should output a text

representation of a business object before it begins processing (showing

the object that the connector receives from the collaboration) as well as

after it finishes processing the object (showing the object that the

connector returns to the collaboration).

Chapter 6. Troubleshooting and error handling 65

66 Adapter for CORBA User Guide

Appendix A. Standard configuration properties for connectors

This appendix describes the standard configuration properties for the connector

component of WebSphere Business Integration adapters. The information covers

connectors running with the following integration brokers:

v WebSphere InterChange Server (ICS)

v WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere

Business Integration Message Broker, collectively referred to as the WebSphere

Message Brokers (and shown as WMQI in the Connector Configurator).

v Information Integrator (II)

v WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and

the DB2 II standard properties (see the Notes column in Table 17 on page 69.)

The properties you set for the adapter depend on which integration broker you

use. You choose the integration broker using Connector Configurator. After you

choose the broker, Connector Configurator lists the standard properties you must

configure for the adapter.

For information about properties specific to this connector, see the relevant section

in this guide.

New properties

This standard property was added in this release:

v BOTrace

Standard connector properties overview

Connectors have two types of configuration properties:

v Standard configuration properties, which are used by the framework

v Application, or connector-specific, configuration properties, which are used by

the agent

These properties determine the adapter framework and the agent run-time

behavior.

This section describes how to start Connector Configurator and describes

characteristics common to all properties. For information on configuration

properties specific to a connector, see its adapter user guide.

Starting Connector Configurator

You configure connector properties from Connector Configurator, which you access

from System Manager. For more information on using Connector Configurator,

refer to the sections on Connector Configurator in this guide.

Connector Configurator and System Manager run only on the Windows system. If

you are running the connector on a UNIX system, you must have a Windows

machine with these tools installed.

© Copyright IBM Corp. 2003, 2005 67

To set connector properties for a connector that runs on UNIX, you must start up

System Manager on the Windows machine, connect to the UNIX integration broker,

and bring up Connector Configurator for the connector.

Configuration property values overview

The connector uses the following order to determine a property’s value:

1. Default

2. Repository (valid only if WebSphere InterChange Server (ICS) is the integration

broker)

3. Local configuration file

4. Command line

The default length of a property field is 255 characters. There is no limit on the

length of a STRING property type. The length of an INTEGER type is determined

by the server on which the adapter is running.

A connector obtains its configuration values at startup. If you change the value of

one or more connector properties during a run-time session, the property’s update

method determines how the change takes effect.

The update characteristics of a property, that is, how and when a change to the

connector properties takes effect, depend on the nature of the property.

There are four update methods for standard connector properties:

v Dynamic

The new value takes effect immediately after the change is saved in System

Manager. However, if the connector is in stand-alone mode (independently of

System Manager), for example, if it is running with one of the WebSphere

message brokers, you can change properties only through the configuration file.

In this case, a dynamic update is not possible.

v Agent restart (ICS only)

The new value takes effect only after you stop and restart the connector agent.

v Component restart

The new value takes effect only after the connector is stopped and then restarted

in System Manager. You do not need to stop and restart the agent or the server

process.

v System restart

The new value takes effect only after you stop and restart the connector agent

and the server.

To determine how a specific property is updated, refer to the Update Method

column in the Connector Configurator window, or see the Update Method column

in Table 17 on page 69.

There are three locations in which a standard property can reside. Some properties

can reside in more than one location.

v ReposController

The property resides in the connector controller and is effective only there. If

you change the value on the agent side, it does not affect the controller.

v ReposAgent

The property resides in the agent and is effective only there. A local

configuration can override this value, depending on the property.

68 Adapter for CORBA User Guide

v LocalConfig

The property resides in the configuration file for the connector and can act only

through the configuration file. The controller cannot change the value of the

property, and is not aware of changes made to the configuration file unless the

system is redeployed to update the controller explicitly.

Standard properties quick-reference

Table 17 provides a quick-reference to the standard connector configuration

properties. Not all connectors require all of these properties, and property settings

may differ from integration broker to integration broker.

See the section following the table for a description of each property.

Note: In the Notes column in Table 17, the phrase “RepositoryDirectory is set to

<REMOTE>” indicates that the broker is InterChange Server. When the

broker is WMQI or WAS, the repository directory is set to

<ProductDir>\repository

 Table 17. Summary of standard configuration properties

Property name Possible values Default value

Update

method Notes

AdapterHelpName One of the valid

subdirectories in

<ProductDir>\bin\Data

\App\Help\ that

 contains a valid

<RegionalSetting>

directory

Template name, if valid,

or blank field

Component

restart

Supported regional

settings.

Include chs_chn,

cht_twn, deu_deu,

esn_esp, fra_fra,

ita_ita, jpn_jpn,

kor_kor, ptb_bra,

and enu_usa (default).

AdminInQueue Valid JMS queue name <CONNECTORNAME>

/ADMININQUEUE

Component

restart

This property is valid

 only when the value

of DeliveryTransport

is JMS

AdminOutQueue Valid JMS queue name <CONNECTORNAME>

/ADMINOUTQUEUE

Component

restart

This property is valid

only when the value

of DeliveryTransport

is JMS

AgentConnections 1 through 4 1 Component

restart

This property is valid

only when the value

of DeliveryTransport

is MQ or IDL, the value

of Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

AgentTraceLevel 0 through 5 0 Dynamic

if broker is

ICS;

otherwise

Component

restart

ApplicationName Application name The value specified for

the connector

application name

Component

restart

Appendix A. Standard configuration properties for connectors 69

Table 17. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

BiDi.Application Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value

of BiDi.Transforma tion

is true

BiDi.Broker Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true. If the value of

BrokerType is

ICS, the property

is read-only.

BiDi.Metadata Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true.

BiDi.Transformation true or false false Component

restart

This property is valid

only if the value of

BrokerType is not WAS.

BOTrace none or keys or full none Agent

restart

This property is valid

only if the value of

AgentTraceLevel is

lower than 5.

BrokerType ICS, WMQI, WAS ICS Component

restart

CharacterEncoding Any supported code.

The list shows this subset:

ascii7, ascii8, SJIS,

Cp949, GBK, Big5,

Cp297, Cp273, Cp280,

Cp284, Cp037, Cp437

.

ascii7 Component

restart

This property is valid

only for C++ connectors.

CommonEventInfrastruc

ture

true or false false Component

restart

CommonEventInfrastruc

tureURL

A URL string, for

example,

corbaloc:iiop:

host:2809.

No default value. Component

restart

This property is valid

only if the value of

CommonEvent

Infrastructure is true.

ConcurrentEventTrig

geredFlows

1 through 32,767 1 Component

restart

This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ContainerManagedEvents Blank or JMS Blank Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

70 Adapter for CORBA User Guide

Table 17. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

ControllerEventSequenc

ing

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerStoreAndFor

wardMode

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerTraceLevel 0 through 5 0 Dynamic This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

DeliveryQueue Any valid JMS

queue name

<CONNECTORNAME>

/DELIVERYQUEUE

Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

DeliveryTransport MQ, IDL, or JMS IDL when the value of

RepositoryDirectory is

<REMOTE>, otherwise

JMS

Component

restart

If the value of

RepositoryDirectory is

not <REMOTE>,

the only valid value for

this property is JMS.

DuplicateEventElimina

tion

true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

EnableOidForFlowMoni

toring

true or false false Component

restart

This property is valid

only if the value of

BrokerType is ICS.

FaultQueue Any valid queue name. <CONNECTORNAME>

/FAULTQUEUE

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.FactoryClassName CxCommon.Messaging.jms

.IBMMQSeriesFactory,

CxCommon.Messaging

.jms.SonicMQFactory,

or any Java class name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.ListenerConcurrency 1 through 32767 1 Component

restart

This property is

valid only if the value of

jms.TransportOptimized

is true.

jms.MessageBrokerName If the value of

jms.FactoryClassName

is IBM, use

crossworlds.queue.

manager.

crossworlds.queue.

manager

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.NumConcurrent

Requests

Positive integer 10 Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

Appendix A. Standard configuration properties for connectors 71

Table 17. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

jms.Password Any valid password Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.TransportOptimized true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS and the value of

BrokerType is ICS.

jms.UserName Any valid name Component

restart

This property is valid

only if the value of

Delivery Transport is JMS.

JvmMaxHeapSize Heap size in megabytes 128m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMaxNativeStackSize Size of stack in kilobytes 128k Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMinHeapSize Heap size in megabytes 1m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ListenerConcurrency 1 through 100 1 Component

restart

This property is valid

only if the value of

DeliveryTransport is MQ.

Locale This is a subset of the

supported locales:

en_US, ja_JP, ko_KR,

 zh_CN, zh_TW, fr_FR,

de_DE, it_IT,

es_ES, pt_BR

en_US Component

restart

LogAtInterchangeEnd true or false false Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MaxEventCapacity 1 through 2147483647 2147483647 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MessageFileName Valid file name InterchangeSystem.txt Component

restart

72 Adapter for CORBA User Guide

Table 17. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

MonitorQueue Any valid queue name <CONNECTORNAME>

/MONITORQUEUE

Component

restart

This property is valid

only if the value of

DuplicateEventElimination

is true and

ContainerManagedEvents

has no value.

OADAutoRestartAgent true or false false Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADMaxNumRetry A positive integer 1000 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADRetryTimeInterval A positive integer

in minutes

10 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

PollEndTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

PollFrequency A positive integer

(in milliseconds)

10000 Dynamic

if broker is

ICS;

otherwise

Component

restart

PollQuantity 1 through 500 1 Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

PollStartTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

RepositoryDirectory <REMOTE> if the broker

is ICS; otherwise any

valid local directory.

For ICS, the value is set

to <REMOTE>

 For WMQI and WAS,

the value is

<ProductDir

\repository

Agent restart

RequestQueue Valid JMS queue name <CONNECTORNAME>

/REQUESTQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

ResponseQueue Valid JMS queue name <CONNECTORNAME>

/RESPONSEQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

RestartRetryCount 0 through 99 7 Dynamic

if ICS;

otherwise

Component

restart

Appendix A. Standard configuration properties for connectors 73

Table 17. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

RestartRetryInterval A value in minutes

from 1 through

2147483647

1 Dynamic

if ICS;

otherwise

Component

restart

ResultsSetEnabled true or false false Component

restart

Used only by connectors

that support DB2II.

 This property is valid

only if the value of

DeliveryTransport

is JMS, and the value of

BrokerType is WMQI.

ResultsSetSize Positive integer 0 (means the results

set size is unlimited)

Component

restart

Used only by connectors

that support DB2II.

 This property is valid

only if the value of

ResultsSetEnabled

is true.

RHF2MessageDomain mrm or xml mrm Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS and the value of

WireFormat is CwXML.

SourceQueue Any valid WebSphere

MQ queue name

<CONNECTORNAME>

/SOURCEQUEUE

Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

SynchronousRequest

Queue

Any valid queue name. <CONNECTORNAME>

/SYNCHRONOUSREQUEST

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousResponse

Queue

Any valid queue name <CONNECTORNAME>

/SYNCHRONOUSRESPONSE

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

TivoliMonitorTransaction

Performance

true or false false Component

restart

WireFormat CwXML or CwBO CwXML Agent restart The value of this

property must be CwXML

if the value

of RepositoryDirectory

is not set to <REMOTE>.

The value must

be CwBO if the value of

RepositoryDirectory is set

to <REMOTE>.

WsifSynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value of

BrokerType is WAS.

74 Adapter for CORBA User Guide

Table 17. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

XMLNameSpaceFormat short or long or no short Agent restart This property is valid

only if the value of

BrokerType is

WMQI or WAS

Standard properties

This section describes the standard connector configuration properties.

AdapterHelpName

The AdapterHelpName property is the name of a directory in which

connector-specific extended help files are located. The directory must be located in

<ProductDir>\bin\Data\App\Help and must contain at least the language

directory enu_usa. It may contain other directories according to locale.

The default value is the template name if it is valid, or it is blank.

AdminInQueue

The AdminInQueue property specifies the queue that is used by the integration

broker to send administrative messages to the connector.

The default value is <CONNECTORNAME>/ADMININQUEUE

AdminOutQueue

The AdminOutQueue property specifies the queue that is used by the connector to

send administrative messages to the integration broker.

The default value is <CONNECTORNAME>/ADMINOUTQUEUE

AgentConnections

The AgentConnections property controls the number of ORB (Object Request

Broker) connections opened when the ORB initializes.

It is valid only if the value of the RepositoryDirectory is set to <REMOTE> and the

value of the DeliveryTransport property is MQ or IDL.

The default value of this property is 1.

AgentTraceLevel

The AgentTraceLevel property sets the level of trace messages for the

application-specific component. The connector delivers all trace messages

applicable at the tracing level set and lower.

The default value is 0.

Appendix A. Standard configuration properties for connectors 75

ApplicationName

The ApplicationName property uniquely identifies the name of the connector

application. This name is used by the system administrator to monitor the

integration environment. This property must have a value before you can run the

connector.

The default is the name of the connector.

BiDi.Application

The BiDi.Application property specifies the bidirectional format for data coming

from an external application into the adapter in the form of any business object

supported by this adapter. The property defines the bidirectional attributes of the

application data. These attributes are:

v Type of text: implicit or visual (I or V)

v Text direction: left-to-right or right-to-left (L or R)

v Symmetric swapping: on or off (Y or N)

v Shaping (Arabic): on or off (S or N)

v Numerical shaping (Arabic): Hindi, contextual, or nominal (H, C, or N)

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Broker

The BiDi.Broker property specifies the bidirectional script format for data sent from

the adapter to the integration broker in the form of any supported business object.

It defines the bidirectional attributes of the data, which are as listed under

BiDi.Application above.

This property is valid only if the BiDi.Transformation property value is set to true.

If the BrokerType property is ICS, the property value is read-only.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Metadata

The BiDi.Metadata property defines the bidirectional format or attributes for the

metadata, which is used by the connector to establish and maintain a link to the

external application. The attribute settings are specific to each adapter using the

bidirectional capabilities. If your adapter supports bidirectional processing, refer to

the section on adapter-specific properties for more information.

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Transformation

The BiDi.Transformation property defines whether or not the system performs a

bidirectional transformation at run time.

If the property value is set to true, the BiDi.Application, BiDi.Broker, and

BiDi.Metadata properties are available. If the property value is set to false, they

are hidden.

76 Adapter for CORBA User Guide

The default value is false.

BOTrace

The BOTrace property specifies whether or not business object trace messages are

enabled at run time.

Note: It applies only when the AgentTraceLevel property is set to less than 5.

When the trace level is set to less than 5, you can use these command line

parameters to reset the value of BOTrace.

v Enter -xBOTrace=Full to dump all the business object’s attributes.

v Enter -xBOTrace=Keys to dump only the business object’s keys.

v Enter -xBOTrace=None to disable business object attribute dumping.

The default value is false.

BrokerType

The BrokerType property identifies the integration broker type that you are using.

The possible values are ICS, WMQI (for WMQI, WMQIB or WBIMB), or WAS.

CharacterEncoding

The CharacterEncoding property specifies the character code set used to map from

a character (such as a letter of the alphabet, a numeric representation, or a

punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. C++ connectors use the

value ascii7 for this property.

By default, only a subset of supported character encodings is displayed. To add

other supported values to the list, you must manually modify the

\Data\Std\stdConnProps.xml file in the product directory (<ProductDir>). For

more information, see the Connector Configurator appendix in this guide.

CommonEventInfrastructure

The Common Event Infrastructure (CEI) is a simple event management function

handling generated events. The CommonEventInfrastructure property specifies

whether the CEI should be invoked at run time.

The default value is false.

CommonEventInfrastructureContextURL

The CommonEventInfrastructureContextURL is used to gain access to the WAS

server that executes the Common Event Infrastructure (CEI) server application.

This property specifies the URL to be used.

This property is valid only if the value of CommonEventInfrastructure is set to

true.

The default value is a blank field.

Appendix A. Standard configuration properties for connectors 77

ConcurrentEventTriggeredFlows

The ConcurrentEventTriggeredFlows property determines how many business

objects can be concurrently processed by the connector for event delivery. You set

the value of this attribute to the number of business objects that are mapped and

delivered concurrently. For example, if you set the value of this property to 5, five

business objects are processed concurrently.

Setting this property to a value greater than 1 allows a connector for a source

application to map multiple event business objects at the same time and deliver

them to multiple collaboration instances simultaneously. This speeds delivery of

business objects to the integration broker, particularly if the business objects use

complex maps. Increasing the arrival rate of business objects to collaborations can

improve overall performance in the system.

To implement concurrent processing for an entire flow (from a source application

to a destination application), the following properties must configured:

v The collaboration must be configured to use multiple threads by setting its

Maximum number of concurrent events property high enough to use multiple

threads.

v The destination application’s application-specific component must be configured

to process requests concurrently. That is, it must be multithreaded, or it must be

able to use connector agent parallelism and be configured for multiple processes.

The Parallel Process Degree configuration property must be set to a value larger

than 1.

The ConcurrentEventTriggeredFlows property has no effect on connector polling,

which is single-threaded and is performed serially.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1.

ContainerManagedEvents

The ContainerManagedEvents property allows a JMS-enabled connector with a

JMS event store to provide guaranteed event delivery, in which an event is

removed from the source queue and placed on the destination queue as one JMS

transaction.

When this property is set to JMS, the following properties must also be set to

enable guaranteed event delivery:

v PollQuantity = 1 to 500

v SourceQueue = /SOURCEQUEUE

You must also configure a data handler with the MimeType and DHClass (data

handler class) properties. You can also add DataHandlerConfigMOName (the

meta-object name, which is optional). To set those values, use the Data Handler

tab in Connector Configurator.

Although these properties are adapter-specific, here are some example values:

v MimeType = text\xml

v DHClass = com.crossworlds.DataHandlers.text.xml

v DataHandlerConfigMOName = MO_DataHandler_Default

78 Adapter for CORBA User Guide

The fields for these values in the Data Handler tab are displayed only if you have

set the ContainerManagedEvents property to the value JMS.

Note: When ContainerManagedEvents is set to JMS, the connector does not call its

pollForEvents() method, thereby disabling that method’s functionality.

The ContainerManagedEvents property is valid only if the value of the

DeliveryTransport property is set to JMS.

There is no default value.

ControllerEventSequencing

The ControllerEventSequencing property enables event sequencing in the connector

controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE> (BrokerType is ICS).

The default value is true.

ControllerStoreAndForwardMode

The ControllerStoreAndForwardMode property sets the behavior of the connector

controller after it detects that the destination application-specific component is

unavailable.

If this property is set to true and the destination application-specific component is

unavailable when an event reaches ICS, the connector controller blocks the request

to the application-specific component. When the application-specific component

becomes operational, the controller forwards the request to it.

However, if the destination application’s application-specific component becomes

unavailable after the connector controller forwards a service call request to it, the

connector controller fails the request.

If this property is set to false, the connector controller begins failing all service

call requests as soon as it detects that the destination application-specific

component is unavailable.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE> (the value of the BrokerType property is ICS).

The default value is true.

ControllerTraceLevel

The ControllerTraceLevel property sets the level of trace messages for the

connector controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE>.

The default value is 0.

Appendix A. Standard configuration properties for connectors 79

DeliveryQueue

The DeliveryQueue property defines the queue that is used by the connector to

send business objects to the integration broker.

This property is valid only if the value of the DeliveryTransport property is set to

JMS.

The default value is <CONNECTORNAME>/DELIVERYQUEUE.

DeliveryTransport

The DeliveryTransport property specifies the transport mechanism for the delivery

of events. Possible values are MQ for WebSphere MQ, IDL for CORBA IIOP, or JMS

for Java Messaging Service.

v If the value of the RepositoryDirectory property is set to <REMOTE>, the value

of the DeliveryTransport property can be MQ, IDL, or JMS, and the default is IDL.

v If the value of the RepositoryDirectory property is a local directory, the value

can be only JMS.

The connector sends service-call requests and administrative messages over

CORBA IIOP if the value of the RepositoryDirectory property is MQ or IDL.

If the value of the DeliveryTransport property is MQ, you can set the command-line

parameter WhenServerAbsent in the adapter start script to indicate whether the

adapter should pause or shut down when the InterChange Server is shut down.

v Enter WhenServerAbsent=pause to pause the adapter when ICS is not available.

v Enter WhenServerAbsent=shutdown to shut down the adapter when ICS is not

available.

WebSphere MQ and IDL

Use WebSphere MQ rather than IDL for event delivery transport, unless you must

have only one product. WebSphere MQ offers the following advantages over IDL:

v Asynchronous communication:

WebSphere MQ allows the application-specific component to poll and

persistently store events even when the server is not available.

v Server side performance:

WebSphere MQ provides faster performance on the server side. In optimized

mode, WebSphere MQ stores only the pointer to an event in the repository

database, while the actual event remains in the WebSphere MQ queue. This

prevents writing potentially large events to the repository database.

v Agent side performance:

WebSphere MQ provides faster performance on the application-specific

component side. Using WebSphere MQ, the connector polling thread picks up an

event, places it in the connector queue, then picks up the next event. This is

faster than IDL, which requires the connector polling thread to pick up an event,

go across the network into the server process, store the event persistently in the

repository database, then pick up the next event.

JMS

The JMS transport mechanism enables communication between the connector and

client connector framework using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as

jms.MessageBrokerName, jms.FactoryClassName, jms.Password, and jms.UserName

80 Adapter for CORBA User Guide

are listed in Connector Configurator. The properties jms.MessageBrokerName and

jms.FactoryClassName are required for this transport.

There may be a memory limitation if you use the JMS transport mechanism for a

connector in the following environment:

v AIX 5.0

v WebSphere MQ 5.3.0.1

v ICS is the integration broker

In this environment, you may experience difficulty starting both the connector

controller (on the server side) and the connector (on the client side) due to memory

use within the WebSphere MQ client. If your installation uses less than 768MB of

process heap size, set the following variable and property:

v Set the LDR_CNTRL environment variable in the CWSharedEnv.sh script.

This script is located in the \bin directory below the product directory

(<ProductDir>). Using a text editor, add the following line as the first line in the

CWSharedEnv.sh script:

export LDR_CNTRL=MAXDATA=0x30000000

This line restricts heap memory usage to a maximum of 768 MB (3 segments *

256 MB). If the process memory grows larger than this limit, page swapping can

occur, which can adversely affect the performance of your system.

v Set the value of the IPCCBaseAddress property to 11 or 12. For more

information on this property, see the System Installation Guide for UNIX.

DuplicateEventElimination

When the value of this property is true, a JMS-enabled connector can ensure that

duplicate events are not delivered to the delivery queue. To use this feature, during

connector development, the connector must have a unique event identifier set as

the business object ObjectEventId attribute in the application-specific code.

Note: When the value of this property is true, the MonitorQueue property must

be enabled to provide guaranteed event delivery.

The default value is false.

EnableOidForFlowMonitoring

When the value of this property is true, the adapter runtime will mark the

incoming ObjectEventID as a foreign key for flow monitoring.

This property is only valid if the BrokerType property is set to ICS.

The default value is false.

FaultQueue

If the connector experiences an error while processing a message, it moves the

message (and a status indicator and description of the problem) to the queue

specified in the FaultQueue property.

The default value is <CONNECTORNAME>/FAULTQUEUE.

Appendix A. Standard configuration properties for connectors 81

jms.FactoryClassName

The jms.FactoryClassName property specifies the class name to instantiate for a

JMS provider. This property must be set if the value of the DeliveryTransport

property is JMS.

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.ListenerConcurrency

The jms.ListenerConcurrency property specifies the number of concurrent listeners

for the JMS controller. It specifies the number of threads that fetch and process

messages concurrently within a controller.

This property is valid only if the value of the jms.OptimizedTransport property is

true.

The default value is 1.

jms.MessageBrokerName

The jms.MessageBrokerName specifies the broker name to use for the JMS

provider. You must set this connector property if you specify JMS as the delivery

transport mechanism (in the DeliveryTransport property).

When you connect to a remote message broker, this property requires the following

values:
QueueMgrName:Channel:HostName:PortNumber

where:

QueueMgrName is the name of the queue manager.

Channel is the channel used by the client.

HostName is the name of the machine where the queue manager is to reside.

PortNumberis the port number used by the queue manager for listening

For example:

jms.MessageBrokerName = WBIMB.Queue.Manager:CHANNEL1:RemoteMachine:1456

The default value is crossworlds.queue.manager. Use the default when connecting

to a local message broker.

jms.NumConcurrentRequests

The jms.NumConcurrentRequests property specifies the maximum number of

concurrent service call requests that can be sent to a connector at the same time.

Once that maximum is reached, new service calls are blocked and must wait for

another request to complete before proceeding.

The default value is 10.

jms.Password

The jms.Password property specifies the password for the JMS provider. A value

for this property is optional.

There is no default value.

82 Adapter for CORBA User Guide

jms.TransportOptimized

The jms.TransportOptimized property determines if the WIP (work in progress) is

optimized. You must have a WebSphere MQ provider to optimize the WIP. For

optimized WIP to operate, the messaging provider must be able to:

1. Read a message without taking it off the queue

2. Delete a message with a specific ID without transferring the entire message to

the receiver’s memory space

3. Read a message by using a specific ID (needed for recovery purposes)

4. Track the point at which events that have not been read appear.

The JMS APIs cannot be used for optimized WIP because they do not meet

conditions 2 and 4 above, but the MQ Java APIs meet all four conditions, and

hence are required for optimized WIP.

This property is valid only if the value of DeliveryTransport is JMS and the value of

BrokerType is ICS.

The default value is false.

jms.UserName

the jms.UserName property specifies the user name for the JMS provider. A value

for this property is optional.

There is no default value.

JvmMaxHeapSize

The JvmMaxHeapSize property specifies the maximum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128m.

JvmMaxNativeStackSize

The JvmMaxNativeStackSize property specifies the maximum native stack size for

the agent (in kilobytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128k.

JvmMinHeapSize

The JvmMinHeapSize property specifies the minimum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1m.

Appendix A. Standard configuration properties for connectors 83

ListenerConcurrency

The ListenerConcurrency property supports multithreading in WebSphere MQ

Listener when ICS is the integration broker. It enables batch writing of multiple

events to the database, thereby improving system performance.

This property valid only with connectors that use MQ transport. The value of the

DeliveryTransport property must be MQ.

The default value is 1.

Locale

The Locale property specifies the language code, country or territory, and,

optionally, the associated character code set. The value of this property determines

cultural conventions such as collation and sort order of data, date and time

formats, and the symbols used in monetary specifications.

A locale name has the following format:

ll_TT.codeset

where:

ll is a two-character language code (in lowercase letters)

TT is a two-letter country or territory code (in uppercase letters)

codeset is the name of the associated character code set (may be optional).

By default, only a subset of supported locales are listed. To add other supported

values to the list, you modify the \Data\Std\stdConnProps.xml file in the

<ProductDir>\bin directory. For more information, refer to the Connector

Configurator appendix in this guide.

If the connector has not been internationalized, the only valid value for this

property is en_US. To determine whether a specific connector has been globalized,

refer to the user guide for that adapter.

The default value is en_US.

LogAtInterchangeEnd

The LogAtInterchangeEnd property specifies whether to log errors to the log

destination of the integration broker.

Logging to the log destination also turns on e-mail notification, which generates

e-mail messages for the recipient specified as the value of MESSAGE_RECIPIENT

in the InterchangeSystem.cfg file when errors or fatal errors occur. For example,

when a connector loses its connection to the application, if the value of

LogAtInterChangeEnd is true, an e-mail message is sent to the specified message

recipient.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

MaxEventCapacity

The MaxEventCapacity property specifies maximum number of events in the

controller buffer. This property is used by the flow control feature.

84 Adapter for CORBA User Guide

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The value can be a positive integer between 1 and 2147483647.

The default value is 2147483647.

MessageFileName

The MessageFileName property specifies the name of the connector message file.

The standard location for the message file is \connectors\messages in the product

directory. Specify the message file name in an absolute path if the message file is

not located in the standard location.

If a connector message file does not exist, the connector uses

InterchangeSystem.txt as the message file. This file is located in the product

directory.

Note: To determine whether a connector has its own message file, see the

individual adapter user guide.

The default value is InterchangeSystem.txt.

MonitorQueue

The MonitorQueue property specifies the logical queue that the connector uses to

monitor duplicate events.

It is valid only if the value of the DeliveryTransport property is JMS and the value

of the DuplicateEventElimination is true.

The default value is <CONNECTORNAME>/MONITORQUEUE

OADAutoRestartAgent

the OADAutoRestartAgent property specifies whether the connector uses the

automatic and remote restart feature. This feature uses the WebSphere

MQ-triggered Object Activation Daemon (OAD) to restart the connector after an

abnormal shutdown, or to start a remote connector from System Monitor.

This property must be set to true to enable the automatic and remote restart

feature. For information on how to configure the WebSphere MQ-triggered OAD

feature. see the Installation Guide for Windows or for UNIX.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

OADMaxNumRetry

The OADMaxNumRetry property specifies the maximum number of times that the

WebSphere MQ-triggered Object Activation Daemon (OAD) automatically attempts

to restart the connector after an abnormal shutdown. The OADAutoRestartAgent

property must be set to true for this property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

Appendix A. Standard configuration properties for connectors 85

The default value is 1000.

OADRetryTimeInterval

The OADRetryTimeInterval property specifies the number of minutes in the

retry-time interval for the WebSphere MQ-triggered Object Activation Daemon

(OAD). If the connector agent does not restart within this retry-time interval, the

connector controller asks the OAD to restart the connector agent again. The OAD

repeats this retry process as many times as specified by the OADMaxNumRetry

property. The OADAutoRestartAgent property must be set to true for this

property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is 10.

PollEndTime

The PollEndTime property specifies the time to stop polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

PollFrequency

The PollFrequency property specifies the amount of time (in milliseconds) between

the end of one polling action and the start of the next polling action. This is not

the interval between polling actions. Rather, the logic is as follows:

v Poll to obtain the number of objects specified by the value of the PollQuantity

property.

v Process these objects. For some connectors, this may be partly done on separate

threads, which execute asynchronously to the next polling action.

v Delay for the interval specified by the PollFrequency property.

v Repeat the cycle.

The following values are valid for this property:

v The number of milliseconds between polling actions (a positive integer).

v The word no, which causes the connector not to poll. Enter the word in

lowercase.

v The word key, which causes the connector to poll only when you type the letter

p in the connector Command Prompt window. Enter the word in lowercase.

The default is 10000.

Important: Some connectors have restrictions on the use of this property. Where

they exist, these restrictions are documented in the chapter on

installing and configuring the adapter.

86 Adapter for CORBA User Guide

PollQuantity

The PollQuantity property designates the number of items from the application

that the connector polls for. If the adapter has a connector-specific property for

setting the poll quantity, the value set in the connector-specific property overrides

the standard property value.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the ContainerManagedEvents property has a value.

An e-mail message is also considered an event. The connector actions are as

follows when it is polled for e-mail.

v When it is polled once, the connector detects the body of the message, which it

reads as an attachment. Since no data handler was specified for this mime type,

it will then ignore the message.

v The connector processes the first BO attachment. The data handler is available

for this MIME type, so it sends the business object to Visual Test Connector.

v When it is polled for the second time, the connector processes the second BO

attachment. The data handler is available for this MIME type, so it sends the

business object to Visual Test Connector.

v Once it is accepted, the third BO attachment should be transmitted.

PollStartTime

The PollStartTime property specifies the time to start polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

RepositoryDirectory

The RepositoryDirectory property is the location of the repository from which the

connector reads the XML schema documents that store the metadata for business

object definitions.

If the integration broker is ICS, this value must be set to set to <REMOTE>

because the connector obtains this information from the InterChange Server

repository.

When the integration broker is a WebSphere message broker or WAS, this value is

set to <ProductDir>\repository by default. However, it may be set to any valid

directory name.

RequestQueue

The RequestQueue property specifies the queue that is used by the integration

broker to send business objects to the connector.

This property is valid only if the value of the DeliveryTransport property is JMS.

Appendix A. Standard configuration properties for connectors 87

The default value is <CONNECTORNAME>/REQUESTQUEUE.

ResponseQueue

The ResponseQueue property specifies the JMS response queue, which delivers a

response message from the connector framework to the integration broker. When

the integration broker is ICS, the server sends the request and waits for a response

message in the JMS response queue.

This property is valid only if the value of the DeliveryTransport property is JMS.

The default value is <CONNECTORNAME>/RESPONSEQUEUE.

RestartRetryCount

The RestartRetryCount property specifies the number of times the connector

attempts to restart itself. When this property is used for a connector that is

connected in parallel, it specifies the number of times the master connector

application-specific component attempts to restart the client connector

application-specific component.

The default value is 7.

RestartRetryInterval

The RestartRetryInterval property specifies the interval in minutes at which the

connector attempts to restart itself. When this property is used for a connector that

is linked in parallel, it specifies the interval at which the master connector

application-specific component attempts to restart the client connector

application-specific component.

Possible values for the property range from 1 through 2147483647.

The default value is 1.

ResultsSetEnabled

The ResultsSetEnabled property enables or disables results set support when

Information Integrator is active. This property can be used only if the adapter

supports DB2 Information Integrator.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the value of BrokerType is WMQI.

The default value is false.

ResultsSetSize

The ResultsSetSize property defines the maximum number of business objects that

can be returned to Information Integrator. This property can be used only if the

adapter supports DB2 Information Integrator.

This property is valid only if the value of the ResultsSetEnabled property is true.

The default value is 0. This means that the size of the results set is unlimited.

88 Adapter for CORBA User Guide

RHF2MessageDomain

The RHF2MessageDomain property allows you to configure the value of the field

domain name in the JMS header. When data is sent to a WebSphere message

broker over JMS transport, the adapter framework writes JMS header information,

with a domain name and a fixed value of mrm. A configurable domain name lets

you track how the WebSphere message broker processes the message data.

This is an example header:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

This property is valid only if the value of BrokerType is WMQI or WAS. Also, it is

valid only if the value of the DeliveryTransport property is JMS, and the value of

the WireFormat property is CwXML.

Possible values are mrm and xml. The default value is mrm.

SourceQueue

The SourceQueue property designates the JMS source queue for the connector

framework in support of guaranteed event delivery for JMS-enabled connectors

that use a JMS event store. For further information, see “ContainerManagedEvents”

on page 78.

This property is valid only if the value of DeliveryTransport is JMS, and a value for

ContainerManagedEvents is specified.

The default value is <CONNECTORNAME>/SOURCEQUEUE.

SynchronousRequestQueue

The SynchronousRequestQueue property delivers request messages that require a

synchronous response from the connector framework to the broker. This queue is

necessary only if the connector uses synchronous execution. With synchronous

execution, the connector framework sends a message to the synchronous request

queue and waits for a response from the broker on the synchronous response

queue. The response message sent to the connector has a correlation ID that

matches the ID of the original message.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is <CONNECTORNAME>/SYNCHRONOUSREQUESTQUEUE

SynchronousRequestTimeout

The SynchronousRequestTimeout property specifies the time in milliseconds that

the connector waits for a response to a synchronous request. If the response is not

received within the specified time, the connector moves the original synchronous

request message (and error message) to the fault queue.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is 0.

Appendix A. Standard configuration properties for connectors 89

SynchronousResponseQueue

The SynchronousResponseQueue property delivers response messages in reply to a

synchronous request from the broker to the connector framework. This queue is

necessary only if the connector uses synchronous execution.

This property is valid only if the value of DeliveryTransport is JMS.

The default is <CONNECTORNAME>/SYNCHRONOUSRESPONSEQUEUE

TivoliMonitorTransactionPerformance

The TivoliMonitorTransactionPerformance property specifies whether IBM Tivoli

Monitoring for Transaction Performance (ITMTP) is invoked at run time.

The default value is false.

WireFormat

The WireFormat property specifies the message format on the transport:

v If the value of the RepositoryDirectory property is a local directory, the value is

CwXML.

v If the value of the RepositoryDirectory property is a remote directory, the value

is CwBO.

WsifSynchronousRequestTimeout

The WsifSynchronousRequestTimeout property specifies the time in milliseconds

that the connector waits for a response to a synchronous request. If the response is

not received within the specified time, the connector moves the original

synchronous request message (and an error message) to the fault queue.

This property is valid only if the value of BrokerType is WAS.

The default value is 0.

XMLNameSpaceFormat

The XMLNameSpaceFormat property specifies short or long namespaces in the

XML format of business object definitions.

This property is valid only if the value of BrokerType is set to WMQI or WAS.

The default value is short.

90 Adapter for CORBA User Guide

Appendix B. Connector Configurator

This appendix describes how to use Connector Configurator to set configuration

property values for your adapter.

You use Connector Configurator to:

v Create a connector-specific property template for configuring your connector

v Create a configuration file

v Set properties in a configuration file

The topics covered in this appendix are:

v “Overview of Connector Configurator” on page 91

v “Starting Connector Configurator” on page 92

v “Creating a connector-specific property template” on page 93

v “Creating a new configuration file” on page 96

v “Setting the configuration file properties” on page 99

v “Using Connector Configurator in a globalized environment” on page 107

Overview of Connector Configurator

Connector Configurator allows you to configure the connector component of your

adapter for use with these integration brokers:

v WebSphere InterChange Server (ICS)

v WebSphere MQ Integrator, WebSphere MQ Integrator Broker, and WebSphere

Business Integration Message Broker, collectively referred to as the WebSphere

Message Brokers (WMQI)

v WebSphere Application Server (WAS)

If your adapter supports DB2 Information Integrator, use the WMQI options and

the DB2 II standard properties (see the Notes column in the Standard Properties

appendix.)

You use Connector Configurator to:

v Create a connector-specific property template for configuring your connector.

v Create a connector configuration file; you must create one configuration file for

each connector you install.

v Set properties in a configuration file.

You may need to modify the default values that are set for properties in the

connector templates. You must also designate supported business object

definitions and, with ICS, maps for use with collaborations as well as specify

messaging, logging and tracing, and data handler parameters, as required.

The mode in which you run Connector Configurator, and the configuration file

type you use, may differ according to which integration broker you are running.

For example, if WMQI is your broker, you run Connector Configurator directly,

and not from within System Manager (see “Running Configurator in stand-alone

mode” on page 92).

© Copyright IBM Corp. 2003, 2005 91

Connector configuration properties include both standard configuration properties

(the properties that all connectors have) and connector-specific properties

(properties that are needed by the connector for a specific application or

technology).

Because standard properties are used by all connectors, you do not need to define

those properties from scratch; Connector Configurator incorporates them into your

configuration file as soon as you create the file. However, you do need to set the

value of each standard property in Connector Configurator.

The range of standard properties may not be the same for all brokers and all

configurations. Some properties are available only if other properties are given a

specific value. The Standard Properties window in Connector Configurator will

show the properties available for your particular configuration.

For connector-specific properties, however, you need first to define the properties

and then set their values. You do this by creating a connector-specific property

template for your particular adapter. There may already be a template set up in

your system, in which case, you simply use that. If not, follow the steps in

“Creating a new template” on page 93 to set up a new one.

Running connectors on UNIX

Connector Configurator runs only in a Windows environment. If you are running

the connector in a UNIX environment, use Connector Configurator in Windows to

modify the configuration file and then copy the file to your UNIX environment.

Some properties in the Connector Configurator use directory paths, which default

to the Windows convention for directory paths. If you use the configuration file in

a UNIX environment, revise the directory paths to match the UNIX convention for

these paths. Select the target operating system in the toolbar drop-list so that the

correct operating system rules are used for extended validation.

Starting Connector Configurator

You can start and run Connector Configurator in either of two modes:

v Independently, in stand-alone mode

v From System Manager

Running Configurator in stand-alone mode

You can run Connector Configurator without running System Manager and work

with connector configuration files, irrespective of your broker.

To do so:

v From Start>Programs, click IBM WebSphere Business Integration

Adapters>IBM WebSphere Business Integration Toolset>Connector

Configurator.

v Select File>New>Connector Configuration.

v When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on

your broker.

You may choose to run Connector Configurator independently to generate the file,

and then connect to System Manager to save it in a System Manager project (see

“Completing a configuration file” on page 98.)

92 Adapter for CORBA User Guide

Running Configurator from System Manager

You can run Connector Configurator from System Manager.

To run Connector Configurator:

1. Open the System Manager.

2. In the System Manager window, expand the Integration Component Libraries

icon and highlight Connectors.

3. From the System Manager menu bar, click Tools>Connector Configurator. The

Connector Configurator window opens and displays a New Connector dialog

box.

4. When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS, WebSphere Message Brokers or WAS, depending on

your broker.

To edit an existing configuration file:

v In the System Manager window, select any of the configuration files listed in the

Connector folder and right-click on it. Connector Configurator opens and

displays the configuration file with the integration broker type and file name at

the top.

v From Connector Configurator, select File>Open. Select the name of the

connector configuration file from a project or from the directory in which it is

stored.

v Click the Standard Properties tab to see which properties are included in this

configuration file.

Creating a connector-specific property template

To create a configuration file for your connector, you need a connector-specific

property template as well as the system-supplied standard properties.

You can create a brand-new template for the connector-specific properties of your

connector, or you can use an existing connector definition as the template.

v To create a new template, see “Creating a new template” on page 93.

v To use an existing file, simply modify an existing template and save it under the

new name. You can find existing templates in your

\WebSphereAdapters\bin\Data\App directory.

Creating a new template

This section describes how you create properties in the template, define general

characteristics and values for those properties, and specify any dependencies

between the properties. Then you save the template and use it as the base for

creating a new connector configuration file.

To create a template in Connector Configurator:

1. Click File>New>Connector-Specific Property Template.

2. The Connector-Specific Property Template dialog box appears.

v Enter a name for the new template in the Name field below Input a New

Template Name. You will see this name again when you open the dialog box

for creating a new configuration file from a template.

Appendix B. Connector Configurator 93

v To see the connector-specific property definitions in any template, select that

template’s name in the Template Name display. A list of the property

definitions contained in that template appears in the Template Preview

display.
3. You can use an existing template whose property definitions are similar to

those required by your connector as a starting point for your template. If you

do not see any template that displays the connector-specific properties used by

your connector, you will need to create one.

v If you are planning to modify an existing template, select the name of the

template from the list in the Template Name table below Select the Existing

Template to Modify: Find Template.

v This table displays the names of all currently available templates. You can

also search for a template.

Specifying general characteristics

When you click Next to select a template, the Properties - Connector-Specific

Property Template dialog box appears. The dialog box has tabs for General

characteristics of the defined properties and for Value restrictions. The General

display has the following fields:

v General:

Property Type

Property Subtype

Updated Method

Description

v Flags

Standard flags

v Custom Flag

Flag

The Property Subtype can be selected when Property Type is a String. It is an

optional value which provides syntax checking when you save the configuration

file. The default is a blank space, and means that the property has not been

subtyped.

After you have made selections for the general characteristics of the property, click

the Value tab.

Specifying values

The Value tab enables you to set the maximum length, the maximum multiple

values, a default value, or a value range for the property. It also allows editable

values. To do so:

1. Click the Value tab. The display panel for Value replaces the display panel for

General.

2. Select the name of the property in the Edit properties display.

3. In the fields for Max Length and Max Multiple Values, enter your values.

To create a new property value:

1. Right-click on the square to the left of the Value column heading.

2. From the pop-up menu, select Add to display the Property Value dialog box.

Depending on the property type, the dialog box allows you to enter either a

value, or both a value and a range.

3. Enter the new property value and click OK. The value appears in the Value

panel on the right.

94 Adapter for CORBA User Guide

The Value panel displays a table with three columns:

The Value column shows the value that you entered in the Property Value dialog

box, and any previous values that you created.

The Default Value column allows you to designate any of the values as the

default.

The Value Range shows the range that you entered in the Property Value dialog

box.

After a value has been created and appears in the grid, it can be edited from

within the table display.

To make a change in an existing value in the table, select an entire row by clicking

on the row number. Then right-click in the Value field and click Edit Value.

Setting dependencies

When you have made your changes to the General and Value tabs, click Next. The

Dependencies - Connector-Specific Property Template dialog box appears.

A dependent property is a property that is included in the template and used in

the configuration file only if the value of another property meets a specific

condition. For example, PollQuantity appears in the template only if JMS is the

transport mechanism and DuplicateEventElimination is set to True.

To designate a property as dependent and to set the condition upon which it

depends, do this:

1. In the Available Properties display, select the property that will be made

dependent.

2. In the Select Property field, use the drop-down menu to select the property

that will hold the conditional value.

3. In the Condition Operator field, select one of the following:

== (equal to)

!= (not equal to)

> (greater than)

< (less than)

>= (greater than or equal to)

<=(less than or equal to)

4. In the Conditional Value field, enter the value that is required in order for the

dependent property to be included in the template.

5. With the dependent property highlighted in the Available Properties display,

click an arrow to move it to the Dependent Property display.

6. Click Finish. Connector Configurator stores the information you have entered

as an XML document, under \data\app in the \bin directory where you have

installed Connector Configurator.

Setting pathnames

Some general rules for setting pathnames are:

v The maximum length of a filename in Windows and UNIX is 255 characters.

v In Windows, the absolute pathname must follow the format

[Drive:][Directory]\filename: for example,

C:\WebSphereAdapters\bin\Data\Std\StdConnProps.xml

In UNIX the first character should be /.

Appendix B. Connector Configurator 95

v Queue names may not have leading or embedded spaces.

Creating a new configuration file

When you create a new configuration file, you must name it and select an

integration broker.

You also select an operating system for extended validation on the file. The toolbar

has a droplist called Target System that allows you to select the target operating

system for extended validation of the properties. The available options are:

Windows, UNIX, Other (if not Windows or UNIX), and None-no extended

validation (switches off extended validation). The default on startup is Windows.

To start Connector Configurator:

v In the System Manager window, select Connector Configurator from the Tools

menu. Connector Configurator opens.

v In stand-alone mode, launch Connector Configurator.

To set the operating system for extended validation of the configuration file:

v Pull down the Target System: droplist on the menu bar.

v Select the operating system you are running on.

Then select File>New>Connector Configuration. In the New Connector window,

enter the name of the new connector.

You also need to select an integration broker. The broker you select determines the

properties that will appear in the configuration file. To select a broker:

v In the Integration Broker field, select ICS, WebSphere Message Brokers or WAS

connectivity.

v Complete the remaining fields in the New Connector window, as described later

in this chapter.

Creating a configuration file from a connector-specific

template

Once a connector-specific template has been created, you can use it to create a

configuration file:

1. Set the operating system for extended validation of the configuration file using

the Target System: droplist on the menu bar (see “Creating a new configuration

file” above).

2. Click File>New>Connector Configuration.

3. The New Connector dialog box appears, with the following fields:

v Name

Enter the name of the connector. Names are case-sensitive. The name you

enter must be unique, and must be consistent with the file name for a

connector that is installed on the system.

Important: Connector Configurator does not check the spelling of the name

that you enter. You must ensure that the name is correct.

v System Connectivity

Click ICS or WebSphere Message Brokers or WAS.

v Select Connector-Specific Property Template

96 Adapter for CORBA User Guide

Type the name of the template that has been designed for your connector.

The available templates are shown in the Template Name display. When you

select a name in the Template Name display, the Property Template Preview

display shows the connector-specific properties that have been defined in

that template.

Select the template you want to use and click OK.
4. A configuration screen appears for the connector that you are configuring. The

title bar shows the integration broker and connector name. You can fill in all

the field values to complete the definition now, or you can save the file and

complete the fields later.

5. To save the file, click File>Save>To File or File>Save>To Project. To save to a

project, System Manager must be running.

If you save as a file, the Save File Connector dialog box appears. Choose *.cfg

as the file type, verify in the File Name field that the name is spelled correctly

and has the correct case, navigate to the directory where you want to locate the

file, and click Save. The status display in the message panel of Connector

Configurator indicates that the configuration file was successfully created.

Important: The directory path and name that you establish here must match

the connector configuration file path and name that you supply in

the startup file for the connector.

6. To complete the connector definition, enter values in the fields for each of the

tabs of the Connector Configurator window, as described later in this chapter.

Using an existing file

You may have an existing file available in one or more of the following formats:

v A connector definition file.

This is a text file that lists properties and applicable default values for a specific

connector. Some connectors include such a file in a \repository directory in

their delivery package (the file typically has the extension .txt; for example,

CN_XML.txt for the XML connector).

v An ICS repository file.

Definitions used in a previous ICS implementation of the connector may be

available to you in a repository file that was used in the configuration of that

connector. Such a file typically has the extension .in or .out.

v A previous configuration file for the connector.

Such a file typically has the extension *.cfg.

Although any of these file sources may contain most or all of the connector-specific

properties for your connector, the connector configuration file will not be complete

until you have opened the file and set properties, as described later in this chapter.

To use an existing file to configure a connector, you must open the file in

Connector Configurator, revise the configuration, and then resave the file.

Follow these steps to open a *.txt, *.cfg, or *.in file from a directory:

1. In Connector Configurator, click File>Open>From File.

2. In the Open File Connector dialog box, select one of the following file types to

see the available files:

v Configuration (*.cfg)

v ICS Repository (*.in, *.out)

Appendix B. Connector Configurator 97

Choose this option if a repository file was used to configure the connector in

an ICS environment. A repository file may include multiple connector

definitions, all of which will appear when you open the file.

v All files (*.*)

Choose this option if a *.txt file was delivered in the adapter package for

the connector, or if a definition file is available under another extension.
3. In the directory display, navigate to the appropriate connector definition file,

select it, and click Open.

Follow these steps to open a connector configuration from a System Manager

project:

1. Start System Manager. A configuration can be opened from or saved to System

Manager only if System Manager has been started.

2. Start Connector Configurator.

3. Click File>Open>From Project.

Completing a configuration file

When you open a configuration file or a connector from a project, the Connector

Configurator window displays the configuration screen, with the current attributes

and values.

The title of the configuration screen displays the integration broker and connector

name as specified in the file. Make sure you have the correct broker. If not, change

the broker value before you configure the connector. To do so:

1. Under the Standard Properties tab, select the value field for the BrokerType

property. In the drop-down menu, select the value ICS, WMQI, or WAS.

2. The Standard Properties tab will display the connector properties associated

with the selected broker. The table shows Property name, Value, Type, Subtype

(if the Type is a string), Description, and Update Method.

3. You can save the file now or complete the remaining configuration fields, as

described in “Specifying supported business object definitions” on page 101..

4. When you have finished your configuration, click File>Save>To Project or

File>Save>To File.

If you are saving to file, select *.cfg as the extension, select the correct location

for the file and click Save.

If multiple connector configurations are open, click Save All to File to save all

of the configurations to file, or click Save All to Project to save all connector

configurations to a System Manager project.

Before you created the configuration file, you used the Target System droplist

that allows you to select the target operating system for extended validation of

the properties.

Before it saves the file, Connector Configurator checks that values have been

set for all required standard properties. If a required standard property is

missing a value, Connector Configurator displays a message that the validation

failed. You must supply a value for the property in order to save the

configuration file.

If you have elected to use the extended validation feature by selecting a value

of Windows, UNIX or Other from the Target System droplist, the system will

validate the property subtype s well as the type, and it displays a warning

message if the validation fails.

98 Adapter for CORBA User Guide

Setting the configuration file properties

When you create and name a new connector configuration file, or when you open

an existing connector configuration file, Connector Configurator displays a

configuration screen with tabs for the categories of required configuration values.

Connector Configurator requires values for properties in these categories for

connectors running on all brokers:

v Standard Properties

v Connector-specific Properties

v Supported Business Objects

v Trace/Log File values

v Data Handler (applicable for connectors that use JMS messaging with

guaranteed event delivery)

Note: For connectors that use JMS messaging, an additional category may display,

for configuration of data handlers that convert the data to business objects.

For connectors running on ICS, values for these properties are also required:

v Associated Maps

v Resources

v Messaging (where applicable)

v Security

Important: Connector Configurator accepts property values in either English or

non-English character sets. However, the names of both standard and

connector-specific properties, and the names of supported business

objects, must use the English character set only.

Standard properties differ from connector-specific properties as follows:

v Standard properties of a connector are shared by both the application-specific

component of a connector and its broker component. All connectors have the

same set of standard properties. These properties are described in Appendix A of

each adapter guide. You can change some but not all of these values.

v Application-specific properties apply only to the application-specific component

of a connector, that is, the component that interacts directly with the application.

Each connector has application-specific properties that are unique to its

application. Some of these properties provide default values and some do not;

you can modify some of the default values. The installation and configuration

chapters of each adapter guide describe the application-specific properties and

the recommended values.

The fields for Standard Properties and Connector-Specific Properties are

color-coded to show which are configurable:

v A field with a grey background indicates a standard property. You can change

the value but cannot change the name or remove the property.

v A field with a white background indicates an application-specific property. These

properties vary according to the specific needs of the application or connector.

You can change the value and delete these properties.

v Value fields are configurable.

Appendix B. Connector Configurator 99

v The Update Method field is displayed for each property. It indicates whether a

component or agent restart is necessary to activate changed values. You cannot

configure this setting.

Setting standard connector properties

To change the value of a standard property:

1. Click in the field whose value you want to set.

2. Either enter a value, or select one from the drop-down menu if it appears.

Note: If the property has a Type of String, it may have a subtype value in the

Subtype column. This subtype is used for extended validation of the

property.

3. After entering all the values for the standard properties, you can do one of the

following:

v To discard the changes, preserve the original values, and exit Connector

Configurator, click File>Exit (or close the window), and click No when

prompted to save changes.

v To enter values for other categories in Connector Configurator, select the tab

for the category. The values you enter for Standard Properties (or any other

category) are retained when you move to the next category. When you close

the window, you are prompted to either save or discard the values that you

entered in all the categories as a whole.

v To save the revised values, click File>Exit (or close the window) and click

Yes when prompted to save changes. Alternatively, click Save>To File from

either the File menu or the toolbar.

To get more information on a particular standard property, left-click the entry in

the Description column for that property in the Standard Properties tabbed sheet.

If you have Extended Help installed, an arrow button will appear on the right.

When you click on the button, a Help window will open and display details of the

standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

If installed, the Extended Help files are located in

<ProductDir>\bin\Data\Std\Help\<RegionalSetting>\.

Setting connector-specific configuration properties

For connector-specific configuration properties, you can add or change property

names, configure values, delete a property, and encrypt a property. The default

property length is 255 characters.

1. Right-click in the top left portion of the grid. A pop-up menu bar will appear.

Click Add to add a property. To add a child property, right-click on the parent

row number and click Add child.

2. Enter a value for the property or child property.

Note: If the property has a Type of String, you can select a subtype from the

Subtype droplist. This subtype is used for extended validation of the

property.

3. To encrypt a property, select the Encrypt box.

100 Adapter for CORBA User Guide

4. To get more information on a particular property, left-click the entry in the

Description column for that property. If you have Extended Help installed, a

hot button will appear. When you click on the hot button, a Help window will

open and display details of the standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

5. Choose to save or discard changes, as described for “Setting standard connector

properties” on page 100.

If the Extended Help files are installed and the AdapterHelpName property is

blank, Connector Configurator will point to the adapter-specific Extended Help

files located in <ProductDir>\bin\Data\App\Help\<RegionalSetting>\. Otherwise,

Connector Configurator will point to the adapter-specific Extended Help files

located in

<ProductDir>\bin\Data\App\Help\<AdapterHelpName>\<RegionalSetting>\. See

the AdapterHelpName property described in the Standard Properties appendix.

The Update Method displayed for each property indicates whether a component or

agent restart is necessary to activate changed values.

Important: Changing a preset application-specific connector property name may

cause a connector to fail. Certain property names may be needed by

the connector to connect to an application or to run properly.

Encryption for connector properties

Application-specific properties can be encrypted by selecting the Encrypt check

box in the Connector-specific Properties window. To decrypt a value, click to clear

the Encrypt check box, enter the correct value in the Verification dialog box, and

click OK. If the entered value is correct, the value is decrypted and displays.

The adapter user guide for each connector contains a list and description of each

property and its default value.

If a property has multiple values, the Encrypt check box will appear for the first

value of the property. When you select Encrypt, all values of the property will be

encrypted. To decrypt multiple values of a property, click to clear the Encrypt

check box for the first value of the property, and then enter the new value in the

Verification dialog box. If the input value is a match, all multiple values will

decrypt.

Update method

Refer to the descriptions of update methods found in the Standard Properties

appendix, under “Configuration property values overview” on page 68.

Specifying supported business object definitions

Use the Supported Business Objects tab in Connector Configurator to specify the

business objects that the connector will use. You must specify both generic business

objects and application-specific business objects, and you must specify associations

for the maps between the business objects.

Note: Some connectors require that certain business objects be specified as

supported in order to perform event notification or additional configuration

Appendix B. Connector Configurator 101

(using meta-objects) with their applications. For more information, see the

Connector Development Guide for C++ or the Connector Development Guide for

Java.

If ICS is your broker

To specify that a business object definition is supported by the connector, or to

change the support settings for an existing business object definition, click the

Supported Business Objects tab and use the following fields.

Business object name: To designate that a business object definition is supported

by the connector, with System Manager running:

1. Click an empty field in the Business Object Name list. A drop list displays,

showing all the business object definitions that exist in the System Manager

project.

2. Click on a business object to add it.

3. Set the Agent Support (described below) for the business object.

4. In the File menu of the Connector Configurator window, click Save to Project.

The revised connector definition, including designated support for the added

business object definition, is saved to an ICL (Integration Component Library)

project in System Manager.

To delete a business object from the supported list:

1. To select a business object field, click the number to the left of the business

object.

2. From the Edit menu of the Connector Configurator window, click Delete Row.

The business object is removed from the list display.

3. From the File menu, click Save to Project.

Deleting a business object from the supported list changes the connector definition

and makes the deleted business object unavailable for use in this implementation

of this connector. It does not affect the connector code, nor does it remove the

business object definition itself from System Manager.

Agent support: If a business object has Agent Support, the system will attempt to

use that business object for delivering data to an application via the connector

agent.

Typically, application-specific business objects for a connector are supported by

that connector’s agent, but generic business objects are not.

To indicate that the business object is supported by the connector agent, check the

Agent Support box. The Connector Configurator window does not validate your

Agent Support selections.

Maximum transaction level: The maximum transaction level for a connector is

the highest transaction level that the connector supports.

For most connectors, Best Effort is the only possible choice.

You must restart the server for changes in transaction level to take effect.

If a WebSphere Message Broker is your broker

If you are working in stand-alone mode (not connected to System Manager), you

must enter the business object name manually.

102 Adapter for CORBA User Guide

If you have System Manager running, you can select the empty box under the

Business Object Name column in the Supported Business Objects tab. A combo

box appears with a list of the business object available from the Integration

Component Library project to which the connector belongs. Select the business

object you want from the list.

The Message Set ID is an optional field for WebSphere Business Integration

Message Broker 5.0, and need not be unique if supplied. However, for WebSphere

MQ Integrator and Integrator Broker 2.1, you must supply a unique ID.

If WAS is your broker

When WebSphere Application Server is selected as your broker type, Connector

Configurator does not require message set IDs. The Supported Business Objects

tab shows a Business Object Name column only for supported business objects.

If you are working in stand-alone mode (not connected to System Manager), you

must enter the business object name manually.

If you have System Manager running, you can select the empty box under the

Business Object Name column in the Supported Business Objects tab. A combo box

appears with a list of the business objects available from the Integration

Component Library project to which the connector belongs. Select the business

object you want from this list.

Associated maps (ICS)

Each connector supports a list of business object definitions and their associated

maps that are currently active in WebSphere InterChange Server. This list appears

when you select the Associated Maps tab.

The list of business objects contains the application-specific business object which

the agent supports and the corresponding generic object that the controller sends

to the subscribing collaboration. The association of a map determines which map

will be used to transform the application-specific business object to the generic

business object or the generic business object to the application-specific business

object.

If you are using maps that are uniquely defined for specific source and destination

business objects, the maps will already be associated with their appropriate

business objects when you open the display, and you will not need (or be able) to

change them.

If more than one map is available for use by a supported business object, you will

need to explicitly bind the business object with the map that it should use.

The Associated Maps tab displays the following fields:

v Business Object Name

These are the business objects supported by this connector, as designated in the

Supported Business Objects tab. If you designate additional business objects

under the Supported Business Objects tab, they will be reflected in this list after

you save the changes by choosing Save to Project from the File menu of the

Connector Configurator window.

v Associated Maps

Appendix B. Connector Configurator 103

The display shows all the maps that have been installed to the system for use

with the supported business objects of the connector. The source business object

for each map is shown to the left of the map name, in the Business Object

Name display.

v Explicit Binding

In some cases, you may need to explicitly bind an associated map.

Explicit binding is required only when more than one map exists for a particular

supported business object. When ICS boots, it tries to automatically bind a map

to each supported business object for each connector. If more than one map

takes as its input the same business object, the server attempts to locate and

bind one map that is the superset of the others.

If there is no map that is the superset of the others, the server will not be able to

bind the business object to a single map, and you will need to set the binding

explicitly.

To explicitly bind a map:

1. In the Explicit column, place a check in the check box for the map you want

to bind.

2. Select the map that you intend to associate with the business object.

3. In the File menu of the Connector Configurator window, click Save to

Project.

4. Deploy the project to ICS.

5. Reboot the server for the changes to take effect.

Resources (ICS)

The Resource tab allows you to set a value that determines whether and to what

extent the connector agent will handle multiple processes concurrently, using

connector agent parallelism.

Not all connectors support this feature. If you are running a connector agent that

was designed in Java to be multi-threaded, you are advised not to use this feature,

since it is usually more efficient to use multiple threads than multiple processes.

Messaging (ICS)

The Messaging tab enables you to configure messaging properties. The messaging

properties are available only if you have set MQ as the value of the

DeliveryTransport standard property and ICS as the broker type. These properties

affect how your connector will use queues.

Validating messaging queues

Before you can validate a messaging queue, you must:

v Make sure that WebSphere MQ Series is installed.

v Create a messaging queue with channel and port on the host machine.

v Set up a connection to the host machine.

To validate the queue, use the Validate button to the right of the Messaging Type

and Host Name fields on the Messaging tab.

Security (ICS)

You can use the Security tab in Connector Configurator to set various privacy

levels for a message. You can only use this feature when the DeliveryTransport

property is set to JMS.

104 Adapter for CORBA User Guide

By default, Privacy is turned off. Check the Privacy box to enable it.

The Keystore Target System Absolute Pathname is:

v For Windows:

<ProductDir>\connectors\security\<connectorname>.jks

v For UNIX:

opt/IBM/WebSphereAdapters/connectors/security/<connectorname>.jks

This path and file should be on the system where you plan to start the connector,

that is, the target system.

You can use the Browse button at the right only if the target system is the one

currently running. It is greyed out unless Privacy is enabled and the Target System

in the menu bar is set to Windows.

The Message Privacy Level may be set as follows for the three messages categories

(All Messages, All Administrative Messages, and All Business Object Messages):

v “” is the default; used when no privacy levels for a message category have been

set.

v none

Not the same as the default: use this to deliberately set a privacy level of none

for a message category.

v integrity

v privacy

v integrity_plus_privacy

The Key Maintenance feature lets you generate, import and export public keys for

the server and adapter.

v When you select Generate Keys, the Generate Keys dialog box appears with the

defaults for the keytool that will generate the keys.

v The keystore value defaults to the value you entered in Keystore Target System

Absolute Pathname on the Security tab.

v When you select OK, the entries are validated, the key certificate is generated

and the output is sent to the Connector Configurator log window.

Before you can import a certificate into the adapter keystore, you must export it

from the server keystore. When you select Export Adapter Public Key, the Export

Adapter Public Key dialog box appears.

v The export certificate defaults to the same value as the keystore, except that the

file extension is <filename>.cer.

When you select Import Server Public Key, the Import Server Public Key dialog

box appears.

v The import certificate defaults to <ProductDir>\bin\ics.cer (if the file exists on

the system).

v The import Certificate Association should be the server name. If a server is

registered, you can select it from the droplist.

The Adapter Access Control feature is enabled only when the value of

DeliveryTransport is IDL. By default, the adapter logs in with the guest identity. If

the Use guest identity box is not checked, the Adapter Identity and Adapter

Password fields are enabled.

Appendix B. Connector Configurator 105

Setting trace/log file values

When you open a connector configuration file or a connector definition file,

Connector Configurator uses the logging and tracing values of that file as default

values. You can change those values in Connector Configurator.

To change the logging and tracing values:

1. Click the Trace/Log Files tab.

2. For either logging or tracing, you can choose to write messages to one or both

of the following:

v To console (STDOUT):

Writes logging or tracing messages to the STDOUT display.

Note: You can only use the STDOUT option from the Trace/Log Files tab for

connectors running on the Windows platform.

v To File:

Writes logging or tracing messages to a file that you specify. To specify the

file, click the directory button (ellipsis), navigate to the preferred location,

provide a file name, and click Save. Logging or tracing message are written

to the file and location that you specify.

Note: Both logging and tracing files are simple text files. You can use the file

extension that you prefer when you set their file names. For tracing

files, however, it is advisable to use the extension .trace rather than

.trc, to avoid confusion with other files that might reside on the

system. For logging files, .log and .txt are typical file extensions.

Data handlers

The data handlers section is available for configuration only if you have designated

a value of JMS for DeliveryTransport and a value of JMS for

ContainerManagedEvents. Not all adapters make use of data handlers.

See the descriptions under ContainerManagedEvents in Appendix A, Standard

Properties, for values to use for these properties. For additional details, see the

Connector Development Guide for C++ or the Connector Development Guide for Java.

Saving your configuration file

When you have finished configuring your connector, save the connector

configuration file. Connector Configurator saves the file in the broker mode that

you selected during configuration. The title bar of Connector Configurator always

displays the broker mode (ICS, WMQI or WAS) that it is currently using.

The file is saved as an XML document. You can save the XML document in three

ways:

v From System Manager, as a file with a *.con extension in an Integration

Component Library, or

v In a directory that you specify.

v In stand-alone mode, as a file with a *.cfg extension in a directory folder. By

default, the file is saved to \WebSphereAdapters\bin\Data\App.

v You can also save it to a WebSphere Application Server project if you have set

one up.

106 Adapter for CORBA User Guide

For details about using projects in System Manager, and for further information

about deployment, see the following implementation guides:

v For ICS: Implementation Guide for WebSphere InterChange Server

v For WebSphere Message Brokers: Implementing Adapters with WebSphere Message

Brokers

v For WAS: Implementing Adapters with WebSphere Application Server

Changing a configuration file

You can change the integration broker setting for an existing configuration file.

This enables you to use the file as a template for creating a new configuration file,

which can be used with a different broker.

Note: You will need to change other configuration properties as well as the broker

mode property if you switch integration brokers.

To change your broker selection within an existing configuration file (optional):

v Open the existing configuration file in Connector Configurator.

v Select the Standard Properties tab.

v In the BrokerType field of the Standard Properties tab, select the value that is

appropriate for your broker.

When you change the current value, the available tabs and field selections in the

properties window will immediately change, to show only those tabs and fields

that pertain to the new broker you have selected.

Completing the configuration

After you have created a configuration file for a connector and modified it, make

sure that the connector can locate the configuration file when the connector starts

up.

To do so, open the startup file used for the connector, and verify that the location

and file name used for the connector configuration file match exactly the name you

have given the file and the directory or path where you have placed it.

Using Connector Configurator in a globalized environment

Connector Configurator is globalized and can handle character conversion between

the configuration file and the integration broker. Connector Configurator uses

native encoding. When it writes to the configuration file, it uses UTF-8 encoding.

Connector Configurator supports non-English characters in:

v All value fields

v Log file and trace file path (specified in the Trace/Log files tab)

The drop list for the CharacterEncoding and Locale standard configuration

properties displays only a subset of supported values. To add other values to the

drop list, you must manually modify the \Data\Std\stdConnProps.xml file in the

product directory.

For example, to add the locale en_GB to the list of values for the Locale property,

open the stdConnProps.xml file and add the line in boldface type below:

Appendix B. Connector Configurator 107

<Property name="Locale"

isRequired="true"

updateMethod="component restart">

 <ValidType>String</ValidType>

 <ValidValues>

 <Value>ja_JP</Value>

 <Value>ko_KR</Value>

 <Value>zh_CN</Value>

 <Value>zh_TW</Value>

 <Value>fr_FR</Value>

 <Value>de_DE</Value>

 <Value>it_IT</Value>

 <Value>es_ES</Value>

 <Value>pt_BR</Value>

 <Value>en_US</Value>

 <Value>en_GB</Value>

 <DefaultValue>en_US</DefaultValue>

 </ValidValues>

 </Property>

108 Adapter for CORBA User Guide

Appendix C. Common event infrastructure

WebSphere Business Integration Server Foundation includes the Common Event

Infrastructure Server Application, which is required for Common Event

Infrastructure to operate. The WebSphere Application Server Foundation can be

installed on any system (it does not have to be the same machine on which the

adapter is installed.)

The WebSphere Application Server Application Client includes the libraries

required for interaction between the adapter and the Common Event Infrastructure

Server Application. You must install WebSphere Application Server Application

Client on the same system on which you install the adapter. The adapter connects

to the WebSphere Application Server (within the WebSphere Business Integration

Server Foundation) by means of a configurable URL.

Common Event Infrastructure support is available using any integration broker

supported with this release.

Required software

In addition to the software prerequisites required for the adapter, you must have

the following installed for Common Event Infrastructure to operate:

v WebSphere Business Integration Server Foundation 5.1.1

v WebSphere Application Server Application Client 5.0.2, 5.1, or 5.1.1.

(WebSphere Application Server Application Client 5.1.1 is provided with

WebSphere Business Integration Server Foundation 5.1.1.)

Note: Common Event Infrastructure is not supported on any HP-UX or Linux

platform.

Enabling Common Event Infrastructure

Common Event Infrastructure functionality is enabled with the standard properties

CommonEventInfrastructure and CommonEventInfrastructureContextURL, configured

with Connector Configurator. By default, Common Event Infrastructure is not

enabled. The CommonEventInfrastructureContextURL property enables you to

configure the URL of the Common Event Infrastructure server.(Refer to the

“Standard Properties” appendix of this document for more information.)

Obtaining Common Event Infrastructure adapter events

If Common Event Infrastructure is enabled, the adapter generates Common Event

Infrastructure events that map to the following adapter events:

v Starting the adapter

v Stopping the adapter

v An application response to a timeout from the adapter agent

v Any doVerbFor call issued from the adapter agent

v A gotApplEvent call from the adapter agent

For another application (the “consumer application”) to receive the Common Event

Infrastructure events generated by the adapter, the application must use the

© Copyright IBM Corp. 2003, 2005 109

Common Event Infrastructure event catalog to determine the definitions of

appropriate events and their properties. The events must be defined in the event

catalog for the consumer application to be able to consume the sending

application’s events.

The “Common Event Infrastructure event catalog definitions” appendix of this

document contains XML format metadata showing, for WebSphere Business

Information adapters, the event descriptors and properties the consumer

application should search for.

For more information

For more information about Common Event Infrastructure, refer to the Common

Event Infrastructure information in the WebSphere Business Integration Server

Foundation documentation, available at the following URL:

http://publib.boulder.ibm.com/infocenter/ws51help

For sample XML metadata showing the adapter-generated event descriptors and

properties a consumer application should search for, refer to“Common Event

Infrastructure event catalog definitions.”

Common Event Infrastructure event catalog definitions

The Common Event Infrastructure event catalog contains event definitions that can

be queried by other applications. The following are event definition samples, using

XML metadata, for typical adapter events. If you are writing another application,

your application can use event catalog interfaces to query against the event

definition. For more information about event definitions and how to query them,

refer to the Common Event Infrastructure documentation that is available from the

online IBM WebSphere Server Foundation Information Center.

For WebSphere Business Integration adapters, the extended data elements that

need to be defined in the event catalog are the keys of the business object. Each

business object key requires an event definition. So for any given adapter, various

events such as start adapter, stop adapter, timeout adapter, and any doVerbFor

event (create, update, or delete, for example) must have a corresponding event

definition in the event catalog.

The following sections contain examples of the XML metadata for start adapter,

stop adapter, and event request or delivery.

XML format for “start adapter” metadata

<eventDefinition name="startADAPTER"

 parent="event">

 <property name =”creationTime" //Comment: example value would be

 "2004-05-13T17:00:16.319Z"

 required="true" />

 <property name="globalInstanceId" //Comment: Automatically generated

 by Common Event Infrastructure

 required="true"/>

 <property name="sequenceNumber" //Comment: Source defined number

for messages to be sent/sorted logically

 required="false"/>

 <property name="version" //Comment: Version of the event

 required="false"

 defaultValue="1.0.1"/>

110 Adapter for CORBA User Guide

<property name="sourceComponentId"

 path="sourceComponentId"

 required="true"/>

 <property name="application" //Comment: The name#version of the

source application generating the event. Example is "SampleConnector#3.0.0"

 path="sourceComponentId/application" required="false"/>

 <property name="component" //Comment: This will be the name#version

 of the source component.

 path="sourceComponentId/component"

 required="true"

 defaultValue="ConnectorFrameWorkVersion#4.2.2"/>

 <property name="componentIdType" //Comment: specifies the format

and meaning of the component

 path="sourceComponentId/componentIdType"

 required="true"

 defaultValue="Application"/>

 <property name="executionEnvironment"

 //Comment: Identifies the environment the application is running

 in...example is "Windows 2000#5.0"

 path="sourceComponentId/executionEnvironment"

 required="false" />

 <property name="location" //Comment: The value of this is the

 server name...example is "WQMI"

 path="sourceComponentId/location"

 required="true"/>

 <property name="locationType" //Comment specifies the format and

 meaning of the location

 path="sourceComponentId/locationType"

 required="true"

 defaultValue="Hostname"/>

 <property name="subComponent" //Comment:further distinction

of the logical component

 path="sourceComponentId/subComponent"

 required="true"

 defaultValue="AppSide_Connector.AgentBusinessObjectManager"/>

 <property name="componentType" //Comment: well-defined name

used to characterize all instances of this component

 path="sourceComponentId/componentType"

 required="true"

 defaultValue="ADAPTER"/>

 <property name="situation" //Comment: Defines the type of

 situation that caused the event to be reported

 path="situation"

 required="true"/>

 <property name="categoryName=" //Comment: Specifies the type

of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="StartSituation"/>

 <property name="situationType" //Comment: Specifies the type

of situation and disposition of the event

 path="situation/situationType"

 required="true"

 <property name="reasoningScope" //Comment: Specifies the scope

 of the impact of the event

 path="situation/situationType/reasoningScope"

 required="true"

 permittedValue="INTERNAL"

 permittedValue="EXTERNAL"/>

 <property name="successDisposition" //Comment: Specifies the

 success of event

 path="situation/situationType/successDisposition"

 required="true"

 permittedValue="SUCCESSFUL"

 permittedValue="UNSUCCESSFUL" />

 <property name="situationQualifier" //Comment: Specifies the

 situation qualifiers for this event

Appendix C. Common event infrastructure 111

path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="START_INITIATED"

 permittedValue="RESTART_INITIATED"

 permittedValue="START_COMPLETED" />

</eventDefinition>

XML format for ″stop adapter″ metadata

The metadata for “stop adapter” is the same as that for “start adapter” with the

following exceptions:

v The default value for the categoryName property is StopSituation:

<property name="categoryName="

 //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="StopSituation"/>

v The permitted values for the situationQualifier property differ and are as

follows for “stop adapter”:

<property name="situationQualifier"

 //Comment: Specifies the situation qualifiers for this event

 path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="STOP_INITIATED"

 permittedValue="ABORT_INITIATED"

 permittedValue="PAUSE_INITIATED"

 permittedValue="STOP_COMPLETED"

 />

XML format for “timeout adapter” metadata

The metadata for “timeout adapter” is the same as that for “start adapter” and

“stop adapter” with the following exceptions:

v The default value for the categoryName property is ConnectSituation:

<property name="categoryName="

 //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 defaultValue="ConnectSituation"/>

v The permitted values for the situationQualifier property differ and are as

follows for “timeout adapter”:

<property name="situationQualifier" //Comment: Specifies

 the situation qualifiers for this event

 path="situation/situationType/situationQualifier"

 required="true"

 permittedValue="IN_USE"

 permittedValue="FREED"

 permittedValue="CLOSED"

 permittedValue="AVAILABLE"

 />

112 Adapter for CORBA User Guide

XML format for ″request″ or ″delivery″ metadata

At the end of this XML format are the extended data elements. The extended data

elements for adapter request and delivery events represent data from the business

object being processed. This data includes the name of the business object, the key

(foreign or local) for the business object, and business objects that are children of

parent business objects. The children business objects are then broken down into

the same data as the parent (name, key, and any children business objects). This

data is represented in an extended data element of the event definition. This data

will change depending on which business object, which keys, and which child

business objects are being processed. The extended data in this event definition is

just an example and represents a business object named Employee with a key

EmployeeId and a child business object EmployeeAddress with a key EmployeeId.

This pattern could continue for as much data as exists for the particular business

object.

<eventDefinition name="createEmployee" //Comment: This

 extension name is always the business object verb followed by the business

 object name

 parent="event">

 <property name ="creationTime" //Comment: example value would be

"2004-05-13T17:00:16.319Z"

 required="true" />

 <property name="globalInstanceId" //Comment: Automatically generated

 by Common Event Infrastructure

 required="true"/>

 <property name="localInstanceId" //Comment: Value is business

 object verb+business object name+#+app name+ business object identifier

 required="false"/>

 <property name="sequenceNumber" //Comment: Source defined number

for messages to be sent/sorted logically

 required="false"/>

 <property name="version" //Comment: Version of the event...value is

 set to 1.0.1

 required="false"

 defaultValue="1.0.1"/>

 <property name="sourceComponentId"

 path="sourceComponentId"

 required="true"/>

 <property name="application" //Comment: The name#version of the

 source application generating the event...example is

 "SampleConnector#3.0.0"

 path="sourceComponentId/application"

 required="false"/>

 <property name="component" //Comment: This will be the name#version

of the source component.

 path="sourceComponentId/component"

 required="true"

 defaultValue="ConnectorFrameWorkVersion#4.2.2"/>

 <property name="componentIdType" //Comment: specifies the format

 and meaning of the component

 path="sourceComponentId/componentIdType"

 required="true"

 defaultValue="Application"/>

 <property name="executionEnvironment" //Comment: Identifies the

 environment#version the app is running in...example is "Windows 2000#5.0"

 path="sourceComponentId/executionEnvironment"

 required="false" />

 <property name="instanceId" //Comment: Value is business object

 verb+business object name+#+app name+ business object identifier

 path="sourceComponentId/instanceId"

 required="false"

 <property name="location" //Comment: The value of this is the

server name...example is "WQMI"

 path="sourceComponentId/location"

Appendix C. Common event infrastructure 113

required="true"/>

 <property name="locationType" //Comment specifies the format and

 meaning of the location

 path="sourceComponentId/locationType"

 required="true"

 defaultValue="Hostname"/>

 <property name="subComponent" //Comment:further distinction of the

 logical component-in this case the value is the name of the business

 object

 path="sourceComponentId/subComponent"

 required="true"/>

 <property name="componentType" //Comment: well-defined name used

 to characterize all instances of this component

 path="sourceComponentId/componentType"

 required="true"

 defaultValue="ADAPTER"/>

 <property name="situation" //Comment: Defines the type of

situation that caused the event to be reported

 path="situation"

 required="true"/>

 <property name="categoryName" //Comment: Specifies the type

 of situation for the event

 path="situation/categoryName"

 required="true"

 permittedValue="CreateSituation"

 permittedValue="DestroySituation"

 permittedValue="OtherSituation" />

 <property name="situationType" //Comment: Specifies the type

of situation and disposition of the event

 path="situation/situationType"

 required="true"

 <property name="reasoningScope" //Comment: Specifies the scope

of the impact of the event

 path="situation/situationType/reasoningScope"

 required="true"

 permittedValue="INTERNAL"

 permittedValue="EXTERNAL"/>

 <property name="successDisposition" //Comment: Specifies the

 success of event

 path="situation/situationType/successDisposition"

 required="true"

 permittedValue="SUCCESSFUL"

 permittedValue="UNSUCCESSFUL" />

 <extendedDataElements name="Employee" //Comment: name of business

 object itself

 type="noValue"

 <children name="EmployeeId"

 type="string"/> //Comment: type is one of the

 permitted values within Common Event Infrastructure documentation

 <children name="EmployeeAddress"

 type="noValue"/>

 <children name="EmployeeId"

 type="string"/>

 -

 -

 -

 </extendedDataElements

</eventDefinition>

114 Adapter for CORBA User Guide

Appendix D. Application response measurement

This adapter is compatible with the Application Response Measurement

application programming interface (API), an API that allows applications to be

managed for availability, service level agreements, and capacity planning. An

ARM-instrumented application can participate in IBM Tivoli Monitoring for

Transaction Performance, allowing collection and review of data concerning

transaction metrics.

Application Response Measurement instrumentation support

This adapter is compatible with the Application Response Measurement

application programming interface (API), an API that allows applications to be

managed for availability, service level agreements, and capacity planning. An

ARM-instrumented application can participate in IBM Tivoli Monitoring for

Transaction Performance, allowing collection and review of data concerning

transaction metrics.

Required software

In addition to the software prerequisites required for the adapter, you must have

the following installed for ARM to operate:

v WebSphere Application Server 5.0.1 (contains the IBM Tivoli Monitoring for

Transaction Performance server). This does not have to be installed on the same

system as the adapter.

v IBM Tivoli Monitoring for Transaction Performance v. 5.2 Fixpack 1. This must

be installed on the same system on which the adapter is installed and

configured to point to the system on which the IBM Tivoli Monitoring for

Transaction Performance server resides.

Application Response Measurement support is available using any integration

broker supported with this release.

Note: Application Response Measurement instrumentation is supported on all

operating systems supported with this IBM WebSphere Business Integration

Adapters release except HP-UX (any version) and Red Hat Linux 3.0.

Enabling Application Response Measurement

ARM instrumentation is enabled via by setting the standard property

TivoliMonitorTransactionPerformance in Connector Configurator to “True.” By

default ARM support is not enabled. (Refer to the ″Standard Properties″ appendix

of this document for more information.)

Transaction monitoring

When ARM is enabled, the transactions that are monitored are service events and

event deliveries. The transaction is measured from the start of a service request or

event delivery to the end of the service request or event delivery. The name of the

transaction displayed on the Tivoli Monitoring for Transaction Performance console

will start with either SERVICE REQUEST or EVENT DELIVERY. The next part of the

name will be the business object verb (such as CREATE, RETRIEVE, UPDATE or DELETE).

The final part of the name will be the business object name such as “EMPLOYEE.”

© Copyright IBM Corp. 2003, 2005 115

For example, the name of a transaction for an event delivery for creation of an

employee might be EVENT DELIVERY CREATE EMPLOYEE. Another might be SERVICE

REQUEST UPDATE ORDER.

The following metrics are collected by default for each type of service request or

event delivery:

v Minimum transaction time

v Maximum transaction time

v Average transaction time

v Total transaction runs

You (or the system administrator of the WebSphere Application Server) can select

which of these metrics to display, for which adapter events, by configuring

Discovery Policies and Listener Policies for particular transactions from within the

Tivoli Monitoring for Transaction Performance console. (Refer to “For more

information.”)

For more information

Refer to the IBM Tivoli Monitoring for Transaction Performance documentation for

more information. In particular, refer to the IBM Tivoli Monitoring for Transaction

Performance User’s Guide for information about monitoring and managing the

metrics generated by the adapter.

116 Adapter for CORBA User Guide

Index

A
adapter framework 2, 4

Application Response Measurement

instrumentation, support for 115

application-specific information

(ASI) 33, 36

attribute-level 40, 59

business object-level 37, 59

simple attributes 40

verb 14, 38, 39, 56

attribute-level ASI 40, 59

attributes
mapping 42

B
Business Object Designer 33, 49, 50

Configure Agent screen 52

running 50

selecting verbs 55

business object handler 13, 47

custom 14

business object-level ASI 37, 59

business objects
client objects 38

configuring 19

defining metadata 33

flat 36

generating 48, 50

hierarchical 36

mapping to CORBA constructs 42

naming conventions 43

proxy objects 13

request processing 13

samples 44, 46

selecting verbs 55

server objects 37

specifying attribute-level ASI 59

specifying business object

information 55

specifying business object-level

ASI 59

structure 34

supported verbs 40

uploading 60

verb ASI 38, 56

verb processing 13

C
collaboration processing 13

Common Event Infrastructure
event catalog 110

metadata 110

Configure Agent screen 52

configuring business objects 19

configuring the connector 19

samples 26

connector
architecture 6

connector (continued)
client processing 7, 13, 26, 27

collaboration processing 13

configuration properties 19, 20

configuring 19, 20, 26

definition 1

environment 1

error handling 61

installed file structure 16

installing 15

logging 32, 64

post-installation tasks 17

prerequisites 15

request flow 6, 10

server processing 10, 12, 28

tracing 32, 64

troubleshooting 64

connector-specific configuration

properties 19, 20

hierarchy 21

conventions, typographic vi

CORBA constructs 34, 42

enum 36

interface 35

sequence 35

struct 35

union 36

custom business object handlers 14

D
double-byte character sets 4

doVerbFor() method 13

E
error handling 61

ODA (Object Discovery Agent) 62

error messages 61

event catalog, for Common Event

Infrastructure 110

excecuteCollaboration() method 11

executeCollab() method 13

F
framework, adapter 2, 4

functions
LoadFromProxy 14, 40

WriteToProxy 14, 40

G
generating business objects 48, 50

I
IBM Tivoli Monitoring for Transaction

Performance 115

IBM WebSphere Business Integration

Adapter Framework 2, 4

IDL files 3, 49

attributes 34

constructs 42

methods 36

IDLJ
compiler 3, 45, 46, 49

definition 5

installing the connector 15

Windows and AIX considerations 15

integration broker 15

Interface Definition Language (IDL) 3

J
Java Development Kit (JDK) 2

K
keywords, verb ASI 39

L
LoadFromProxy function 14, 40

locale dependent data 4

log files 32, 61

logging 64

M
mapping attributes 42

metadata 33

monitoring, of transactions 115

N
naming conventions, business objects 43

O
Object Discovery Agent,

See ODA

Object Request Broker (ORB) 2, 5

Transient Naming Server 4

ODA (Object Discovery Agent)
configuring the agent 52

definition 19, 49

error handling 62

naming conventions 43

properties 52

starting 50

P
post-installation tasks 17

properties 19

proxy class 13, 49

© Copyright IBM Corp. 2003, 2005 117

proxy objects 13

R
request flow 6, 10

S
samples

business object handler method

calls 47

business object properties 44

business objects 46

configuration 26

IDL files 44

Java code 46

Java code generated by IDLJ 45

simple attributes 40

standard configuration properties 19, 20

starting the ODA 50

supported verbs, business objects 40

T
terminology 4

Tivoli Monitoring for Transaction

Performance 115

trace files 32

trace messages 64

transaction monitoring 115

troubleshooting tips 64

typographic conventions vi

U
uploading business objects 60

V
verb ASI 14, 38, 56

keywords 39

LoadFromProxy function 14

WriteToProxy function 14

verb processing 13

W
WriteToProxy function 14, 40

118 Adapter for CORBA User Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2003, 2005 119

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

120 Adapter for CORBA User Guide

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program.

General-use programming interfaces allow you to write application software that

obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

i5/OS

IBM

the IBM logo

AIX

AIX 5L

CICS

CrossWorlds

DB2

DB2 Universal Database

Domino

HelpNow

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MQSeries

MVS

Notes

OS/400

Passport Advantage

pSeries

Redbooks

SupportPac

WebSphere

z/OS

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Notices 121

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

This product includes software developed by the Eclipse Project

(http://www.eclipse.org/).

WebSphere Business Integration Adapter Framework, version 2.6.0.3

122 Adapter for CORBA User Guide

����

Printed in USA

	Contents
	About this document
	What this document includes
	What this document does not include
	Audience
	Prerequisites for this document
	Related documents
	Typographic conventions

	New in this release
	New in release 1.3.x
	New in release 1.2.x
	New in release 1.1.x

	Chapter 1. Overview
	Adapter for CORBA environment
	Adapter standards
	Adapter prerequisites
	Adapter dependencies
	Locale-dependent data

	Terminology
	Architecture of the connector running as a client
	Request flow
	How the connector works as a client

	Architecture of the connector running as a server
	Request flow
	How the connector works running as a server

	Business object requests
	Verb processing
	Custom business object handlers

	Chapter 2. Installing the adapter
	Overview of installation tasks
	Confirm adapter prerequisites
	Install the integration broker
	Install the adapter for CORBA and related files
	Windows and AIX installation

	Connector file structure
	Post-installation tasks

	Chapter 3. Configuring the adapter
	Overview of configuration tasks
	Configure the connector
	Configure the business objects

	Configuring the connector
	Standard connector properties
	Connector-specific properties
	Sample configuration scenarios

	Creating multiple connector instances
	Create a new directory

	Starting the connector
	Stopping the connector
	Using log and trace files

	Chapter 4. Understanding business objects
	Defining metadata
	Connector business object structure
	Attributes
	Methods
	Application-specific information

	Mapping attributes: CORBA, Java, and business object
	Business object naming conventions
	Sample business object properties
	Sample IDL file
	Sample Java code generated by IDLJ
	Sample business objects for Java classes
	Sample BO handler method calls

	Generating business objects

	Chapter 5. Creating and modifying business objects
	Overview of the ODA for CORBA
	IDL file compatibility
	Generating business object definitions
	Starting the ODA
	Running Business Object Designer

	Specifying business object information
	Selecting verbs
	Specifying the verb ASI
	Open the business object in a separate window
	Specifying the attribute-level ASI
	Specifying business object-level ASI

	Uploading business object files

	Chapter 6. Troubleshooting and error handling
	Error handling
	Connector error handling
	ODA error handling

	Troubleshooting tips
	Logging
	Tracing

	Appendix A. Standard configuration properties for connectors
	New properties
	Standard connector properties overview
	Starting Connector Configurator
	Configuration property values overview

	Standard properties quick-reference
	Standard properties
	AdapterHelpName
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BiDi.Application
	BiDi.Broker
	BiDi.Metadata
	BiDi.Transformation
	BOTrace
	BrokerType
	CharacterEncoding
	CommonEventInfrastructure
	CommonEventInfrastructureContextURL
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerEventSequencing
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	jms.FactoryClassName
	jms.ListenerConcurrency
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.TransportOptimized
	jms.UserName
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RepositoryDirectory
	RequestQueue
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	ResultsSetEnabled
	ResultsSetSize
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousRequestTimeout
	SynchronousResponseQueue
	TivoliMonitorTransactionPerformance
	WireFormat
	WsifSynchronousRequestTimeout
	XMLNameSpaceFormat

	Appendix B. Connector Configurator
	Overview of Connector Configurator
	Running connectors on UNIX

	Starting Connector Configurator
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting connector-specific configuration properties
	Specifying supported business object definitions
	Associated maps (ICS)
	Resources (ICS)
	Messaging (ICS)
	Security (ICS)
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator in a globalized environment

	Appendix C. Common event infrastructure
	Required software
	Enabling Common Event Infrastructure
	Obtaining Common Event Infrastructure adapter events
	For more information
	Common Event Infrastructure event catalog definitions
	XML format for “start adapter” metadata
	XML format for "stop adapter" metadata
	XML format for “timeout adapter” metadata
	XML format for "request" or "delivery" metadata

	Appendix D. Application response measurement
	Application Response Measurement instrumentation support
	Required software
	Enabling Application Response Measurement
	Transaction monitoring
	For more information

	Index
	Notices
	Programming interface information
	Trademarks and service marks

